/usr/lib/python2.7/dist-packages/matplotlib/cbook.py is in python-matplotlib 1.4.2-3.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 | """
A collection of utility functions and classes. Originally, many
(but not all) were from the Python Cookbook -- hence the name cbook.
This module is safe to import from anywhere within matplotlib;
it imports matplotlib only at runtime.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import six
from six.moves import xrange, zip
from itertools import repeat
import datetime
import errno
from functools import reduce
import glob
import gzip
import io
import locale
import os
import re
import sys
import threading
import time
import traceback
import types
import warnings
from weakref import ref, WeakKeyDictionary
import numpy as np
import numpy.ma as ma
class MatplotlibDeprecationWarning(UserWarning):
"""
A class for issuing deprecation warnings for Matplotlib users.
In light of the fact that Python builtin DeprecationWarnings are ignored
by default as of Python 2.7 (see link below), this class was put in to
allow for the signaling of deprecation, but via UserWarnings which are not
ignored by default.
http://docs.python.org/dev/whatsnew/2.7.html#the-future-for-python-2-x
"""
pass
mplDeprecation = MatplotlibDeprecationWarning
def _generate_deprecation_message(since, message='', name='',
alternative='', pending=False,
obj_type='attribute'):
if not message:
altmessage = ''
if pending:
message = (
'The %(func)s %(obj_type)s will be deprecated in a '
'future version.')
else:
message = (
'The %(func)s %(obj_type)s was deprecated in version '
'%(since)s.')
if alternative:
altmessage = ' Use %s instead.' % alternative
message = ((message % {
'func': name,
'name': name,
'alternative': alternative,
'obj_type': obj_type,
'since': since}) +
altmessage)
return message
def warn_deprecated(
since, message='', name='', alternative='', pending=False,
obj_type='attribute'):
"""
Used to display deprecation warning in a standard way.
Parameters
------------
since : str
The release at which this API became deprecated.
message : str, optional
Override the default deprecation message. The format
specifier `%(func)s` may be used for the name of the function,
and `%(alternative)s` may be used in the deprecation message
to insert the name of an alternative to the deprecated
function. `%(obj_type)` may be used to insert a friendly name
for the type of object being deprecated.
name : str, optional
The name of the deprecated function; if not provided the name
is automatically determined from the passed in function,
though this is useful in the case of renamed functions, where
the new function is just assigned to the name of the
deprecated function. For example::
def new_function():
...
oldFunction = new_function
alternative : str, optional
An alternative function that the user may use in place of the
deprecated function. The deprecation warning will tell the user about
this alternative if provided.
pending : bool, optional
If True, uses a PendingDeprecationWarning instead of a
DeprecationWarning.
obj_type : str, optional
The object type being deprecated.
Examples
--------
Basic example::
# To warn of the deprecation of "matplotlib.name_of_module"
warn_deprecated('1.4.0', name='matplotlib.name_of_module',
obj_type='module')
"""
message = _generate_deprecation_message(
since, message, name, alternative, pending, obj_type)
warnings.warn(message, mplDeprecation, stacklevel=1)
def deprecated(since, message='', name='', alternative='', pending=False,
obj_type='function'):
"""
Decorator to mark a function as deprecated.
Parameters
------------
since : str
The release at which this API became deprecated. This is
required.
message : str, optional
Override the default deprecation message. The format
specifier `%(func)s` may be used for the name of the function,
and `%(alternative)s` may be used in the deprecation message
to insert the name of an alternative to the deprecated
function. `%(obj_type)` may be used to insert a friendly name
for the type of object being deprecated.
name : str, optional
The name of the deprecated function; if not provided the name
is automatically determined from the passed in function,
though this is useful in the case of renamed functions, where
the new function is just assigned to the name of the
deprecated function. For example::
def new_function():
...
oldFunction = new_function
alternative : str, optional
An alternative function that the user may use in place of the
deprecated function. The deprecation warning will tell the user about
this alternative if provided.
pending : bool, optional
If True, uses a PendingDeprecationWarning instead of a
DeprecationWarning.
Examples
--------
Basic example::
@deprecated('1.4.0')
def the_function_to_deprecate():
pass
"""
def deprecate(func, message=message, name=name, alternative=alternative,
pending=pending):
import functools
import textwrap
if isinstance(func, classmethod):
try:
func = func.__func__
except AttributeError:
# classmethods in Python2.6 and below lack the __func__
# attribute so we need to hack around to get it
method = func.__get__(None, object)
if hasattr(method, '__func__'):
func = method.__func__
elif hasattr(method, 'im_func'):
func = method.im_func
else:
# Nothing we can do really... just return the original
# classmethod
return func
is_classmethod = True
else:
is_classmethod = False
if not name:
name = func.__name__
message = _generate_deprecation_message(
since, message, name, alternative, pending, obj_type)
@functools.wraps(func)
def deprecated_func(*args, **kwargs):
warnings.warn(message, mplDeprecation, stacklevel=2)
return func(*args, **kwargs)
old_doc = deprecated_func.__doc__
if not old_doc:
old_doc = ''
old_doc = textwrap.dedent(old_doc).strip('\n')
message = message.strip()
new_doc = (('\n.. deprecated:: %(since)s'
'\n %(message)s\n\n' %
{'since': since, 'message': message}) + old_doc)
if not old_doc:
# This is to prevent a spurious 'unexected unindent' warning from
# docutils when the original docstring was blank.
new_doc += r'\ '
deprecated_func.__doc__ = new_doc
if is_classmethod:
deprecated_func = classmethod(deprecated_func)
return deprecated_func
return deprecate
# On some systems, locale.getpreferredencoding returns None,
# which can break unicode; and the sage project reports that
# some systems have incorrect locale specifications, e.g.,
# an encoding instead of a valid locale name. Another
# pathological case that has been reported is an empty string.
# On some systems, getpreferredencoding sets the locale, which has
# side effects. Passing False eliminates those side effects.
def unicode_safe(s):
import matplotlib
if isinstance(s, bytes):
try:
preferredencoding = locale.getpreferredencoding(
matplotlib.rcParams['axes.formatter.use_locale']).strip()
if not preferredencoding:
preferredencoding = None
except (ValueError, ImportError, AttributeError):
preferredencoding = None
if preferredencoding is None:
return six.text_type(s)
else:
return six.text_type(s, preferredencoding)
return s
class converter(object):
"""
Base class for handling string -> python type with support for
missing values
"""
def __init__(self, missing='Null', missingval=None):
self.missing = missing
self.missingval = missingval
def __call__(self, s):
if s == self.missing:
return self.missingval
return s
def is_missing(self, s):
return not s.strip() or s == self.missing
class tostr(converter):
'convert to string or None'
def __init__(self, missing='Null', missingval=''):
converter.__init__(self, missing=missing, missingval=missingval)
class todatetime(converter):
'convert to a datetime or None'
def __init__(self, fmt='%Y-%m-%d', missing='Null', missingval=None):
'use a :func:`time.strptime` format string for conversion'
converter.__init__(self, missing, missingval)
self.fmt = fmt
def __call__(self, s):
if self.is_missing(s):
return self.missingval
tup = time.strptime(s, self.fmt)
return datetime.datetime(*tup[:6])
class todate(converter):
'convert to a date or None'
def __init__(self, fmt='%Y-%m-%d', missing='Null', missingval=None):
'use a :func:`time.strptime` format string for conversion'
converter.__init__(self, missing, missingval)
self.fmt = fmt
def __call__(self, s):
if self.is_missing(s):
return self.missingval
tup = time.strptime(s, self.fmt)
return datetime.date(*tup[:3])
class tofloat(converter):
'convert to a float or None'
def __init__(self, missing='Null', missingval=None):
converter.__init__(self, missing)
self.missingval = missingval
def __call__(self, s):
if self.is_missing(s):
return self.missingval
return float(s)
class toint(converter):
'convert to an int or None'
def __init__(self, missing='Null', missingval=None):
converter.__init__(self, missing)
def __call__(self, s):
if self.is_missing(s):
return self.missingval
return int(s)
class _BoundMethodProxy(object):
'''
Our own proxy object which enables weak references to bound and unbound
methods and arbitrary callables. Pulls information about the function,
class, and instance out of a bound method. Stores a weak reference to the
instance to support garbage collection.
@organization: IBM Corporation
@copyright: Copyright (c) 2005, 2006 IBM Corporation
@license: The BSD License
Minor bugfixes by Michael Droettboom
'''
def __init__(self, cb):
try:
try:
self.inst = ref(cb.im_self)
except TypeError:
self.inst = None
if six.PY3:
self.func = cb.__func__
self.klass = cb.__self__.__class__
else:
self.func = cb.im_func
self.klass = cb.im_class
except AttributeError:
self.inst = None
self.func = cb
self.klass = None
def __getstate__(self):
d = self.__dict__.copy()
# de-weak reference inst
inst = d['inst']
if inst is not None:
d['inst'] = inst()
return d
def __setstate__(self, statedict):
self.__dict__ = statedict
inst = statedict['inst']
# turn inst back into a weakref
if inst is not None:
self.inst = ref(inst)
def __call__(self, *args, **kwargs):
'''
Proxy for a call to the weak referenced object. Take
arbitrary params to pass to the callable.
Raises `ReferenceError`: When the weak reference refers to
a dead object
'''
if self.inst is not None and self.inst() is None:
raise ReferenceError
elif self.inst is not None:
# build a new instance method with a strong reference to the
# instance
mtd = types.MethodType(self.func, self.inst())
else:
# not a bound method, just return the func
mtd = self.func
# invoke the callable and return the result
return mtd(*args, **kwargs)
def __eq__(self, other):
'''
Compare the held function and instance with that held by
another proxy.
'''
try:
if self.inst is None:
return self.func == other.func and other.inst is None
else:
return self.func == other.func and self.inst() == other.inst()
except Exception:
return False
def __ne__(self, other):
'''
Inverse of __eq__.
'''
return not self.__eq__(other)
class CallbackRegistry:
"""
Handle registering and disconnecting for a set of signals and
callbacks:
>>> def oneat(x):
... print('eat', x)
>>> def ondrink(x):
... print('drink', x)
>>> from matplotlib.cbook import CallbackRegistry
>>> callbacks = CallbackRegistry()
>>> id_eat = callbacks.connect('eat', oneat)
>>> id_drink = callbacks.connect('drink', ondrink)
>>> callbacks.process('drink', 123)
drink 123
>>> callbacks.process('eat', 456)
eat 456
>>> callbacks.process('be merry', 456) # nothing will be called
>>> callbacks.disconnect(id_eat)
>>> callbacks.process('eat', 456) # nothing will be called
In practice, one should always disconnect all callbacks when they
are no longer needed to avoid dangling references (and thus memory
leaks). However, real code in matplotlib rarely does so, and due
to its design, it is rather difficult to place this kind of code.
To get around this, and prevent this class of memory leaks, we
instead store weak references to bound methods only, so when the
destination object needs to die, the CallbackRegistry won't keep
it alive. The Python stdlib weakref module can not create weak
references to bound methods directly, so we need to create a proxy
object to handle weak references to bound methods (or regular free
functions). This technique was shared by Peter Parente on his
`"Mindtrove" blog
<http://mindtrove.info/articles/python-weak-references/>`_.
"""
def __init__(self, *args):
if len(args):
warn_deprecated(
'1.3',
message="CallbackRegistry no longer requires a list of "
"callback types. Ignoring arguments. *args will "
"be removed in 1.5")
self.callbacks = dict()
self._cid = 0
self._func_cid_map = {}
def __getstate__(self):
# We cannot currently pickle the callables in the registry, so
# return an empty dictionary.
return {}
def __setstate__(self, state):
# re-initialise an empty callback registry
self.__init__()
def connect(self, s, func):
"""
register *func* to be called when a signal *s* is generated
func will be called
"""
self._func_cid_map.setdefault(s, WeakKeyDictionary())
if func in self._func_cid_map[s]:
return self._func_cid_map[s][func]
self._cid += 1
cid = self._cid
self._func_cid_map[s][func] = cid
self.callbacks.setdefault(s, dict())
proxy = _BoundMethodProxy(func)
self.callbacks[s][cid] = proxy
return cid
def disconnect(self, cid):
"""
disconnect the callback registered with callback id *cid*
"""
for eventname, callbackd in list(six.iteritems(self.callbacks)):
try:
del callbackd[cid]
except KeyError:
continue
else:
for category, functions in list(
six.iteritems(self._func_cid_map)):
for function, value in list(six.iteritems(functions)):
if value == cid:
del functions[function]
return
def process(self, s, *args, **kwargs):
"""
process signal *s*. All of the functions registered to receive
callbacks on *s* will be called with *\*args* and *\*\*kwargs*
"""
if s in self.callbacks:
for cid, proxy in list(six.iteritems(self.callbacks[s])):
# Clean out dead references
if proxy.inst is not None and proxy.inst() is None:
del self.callbacks[s][cid]
else:
proxy(*args, **kwargs)
class Scheduler(threading.Thread):
"""
Base class for timeout and idle scheduling
"""
idlelock = threading.Lock()
id = 0
def __init__(self):
threading.Thread.__init__(self)
self.id = Scheduler.id
self._stopped = False
Scheduler.id += 1
self._stopevent = threading.Event()
def stop(self):
if self._stopped:
return
self._stopevent.set()
self.join()
self._stopped = True
class Timeout(Scheduler):
"""
Schedule recurring events with a wait time in seconds
"""
def __init__(self, wait, func):
Scheduler.__init__(self)
self.wait = wait
self.func = func
def run(self):
while not self._stopevent.isSet():
self._stopevent.wait(self.wait)
Scheduler.idlelock.acquire()
b = self.func(self)
Scheduler.idlelock.release()
if not b:
break
class Idle(Scheduler):
"""
Schedule callbacks when scheduler is idle
"""
# the prototype impl is a bit of a poor man's idle handler. It
# just implements a short wait time. But it will provide a
# placeholder for a proper impl ater
waittime = 0.05
def __init__(self, func):
Scheduler.__init__(self)
self.func = func
def run(self):
while not self._stopevent.isSet():
self._stopevent.wait(Idle.waittime)
Scheduler.idlelock.acquire()
b = self.func(self)
Scheduler.idlelock.release()
if not b:
break
class silent_list(list):
"""
override repr when returning a list of matplotlib artists to
prevent long, meaningless output. This is meant to be used for a
homogeneous list of a given type
"""
def __init__(self, type, seq=None):
self.type = type
if seq is not None:
self.extend(seq)
def __repr__(self):
return '<a list of %d %s objects>' % (len(self), self.type)
def __str__(self):
return repr(self)
def __getstate__(self):
# store a dictionary of this SilentList's state
return {'type': self.type, 'seq': self[:]}
def __setstate__(self, state):
self.type = state['type']
self.extend(state['seq'])
def strip_math(s):
'remove latex formatting from mathtext'
remove = (r'\mathdefault', r'\rm', r'\cal', r'\tt', r'\it', '\\', '{', '}')
s = s[1:-1]
for r in remove:
s = s.replace(r, '')
return s
class Bunch:
"""
Often we want to just collect a bunch of stuff together, naming each
item of the bunch; a dictionary's OK for that, but a small do- nothing
class is even handier, and prettier to use. Whenever you want to
group a few variables::
>>> point = Bunch(datum=2, squared=4, coord=12)
>>> point.datum
By: Alex Martelli
From: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52308
"""
def __init__(self, **kwds):
self.__dict__.update(kwds)
def __repr__(self):
keys = six.iterkeys(self.__dict__)
return 'Bunch(%s)' % ', '.join(['%s=%s' % (k, self.__dict__[k])
for k
in keys])
def unique(x):
'Return a list of unique elements of *x*'
return list(six.iterkeys(dict([(val, 1) for val in x])))
def iterable(obj):
'return true if *obj* is iterable'
try:
iter(obj)
except TypeError:
return False
return True
def is_string_like(obj):
'Return True if *obj* looks like a string'
if isinstance(obj, six.string_types):
return True
# numpy strings are subclass of str, ma strings are not
if ma.isMaskedArray(obj):
if obj.ndim == 0 and obj.dtype.kind in 'SU':
return True
else:
return False
try:
obj + ''
except:
return False
return True
def is_sequence_of_strings(obj):
"""
Returns true if *obj* is iterable and contains strings
"""
if not iterable(obj):
return False
if is_string_like(obj):
return False
for o in obj:
if not is_string_like(o):
return False
return True
def is_writable_file_like(obj):
'return true if *obj* looks like a file object with a *write* method'
return hasattr(obj, 'write') and six.callable(obj.write)
def file_requires_unicode(x):
"""
Returns `True` if the given writable file-like object requires Unicode
to be written to it.
"""
try:
x.write(b'')
except TypeError:
return True
else:
return False
def is_scalar(obj):
'return true if *obj* is not string like and is not iterable'
return not is_string_like(obj) and not iterable(obj)
def is_numlike(obj):
'return true if *obj* looks like a number'
try:
obj + 1
except:
return False
else:
return True
def to_filehandle(fname, flag='rU', return_opened=False):
"""
*fname* can be a filename or a file handle. Support for gzipped
files is automatic, if the filename ends in .gz. *flag* is a
read/write flag for :func:`file`
"""
if is_string_like(fname):
if fname.endswith('.gz'):
# get rid of 'U' in flag for gzipped files.
flag = flag.replace('U', '')
fh = gzip.open(fname, flag)
elif fname.endswith('.bz2'):
# get rid of 'U' in flag for bz2 files
flag = flag.replace('U', '')
import bz2
fh = bz2.BZ2File(fname, flag)
else:
fh = open(fname, flag)
opened = True
elif hasattr(fname, 'seek'):
fh = fname
opened = False
else:
raise ValueError('fname must be a string or file handle')
if return_opened:
return fh, opened
return fh
def is_scalar_or_string(val):
"""Return whether the given object is a scalar or string like."""
return is_string_like(val) or not iterable(val)
def _string_to_bool(s):
if not is_string_like(s):
return s
if s == 'on':
return True
if s == 'off':
return False
raise ValueError("string argument must be either 'on' or 'off'")
def get_sample_data(fname, asfileobj=True):
"""
Return a sample data file. *fname* is a path relative to the
`mpl-data/sample_data` directory. If *asfileobj* is `True`
return a file object, otherwise just a file path.
Set the rc parameter examples.directory to the directory where we should
look, if sample_data files are stored in a location different than
default (which is 'mpl-data/sample_data` at the same level of 'matplotlib`
Python module files).
If the filename ends in .gz, the file is implicitly ungzipped.
"""
import matplotlib
if matplotlib.rcParams['examples.directory']:
root = matplotlib.rcParams['examples.directory']
else:
root = os.path.join(os.path.dirname(__file__),
"mpl-data", "sample_data")
path = os.path.join(root, fname)
if asfileobj:
if (os.path.splitext(fname)[-1].lower() in
('.csv', '.xrc', '.txt')):
mode = 'r'
else:
mode = 'rb'
base, ext = os.path.splitext(fname)
if ext == '.gz':
return gzip.open(path, mode)
else:
return open(path, mode)
else:
return path
def flatten(seq, scalarp=is_scalar_or_string):
"""
Returns a generator of flattened nested containers
For example:
>>> from matplotlib.cbook import flatten
>>> l = (('John', ['Hunter']), (1, 23), [[([42, (5, 23)], )]])
>>> print(list(flatten(l)))
['John', 'Hunter', 1, 23, 42, 5, 23]
By: Composite of Holger Krekel and Luther Blissett
From: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/121294
and Recipe 1.12 in cookbook
"""
for item in seq:
if scalarp(item):
yield item
else:
for subitem in flatten(item, scalarp):
yield subitem
class Sorter:
"""
Sort by attribute or item
Example usage::
sort = Sorter()
list = [(1, 2), (4, 8), (0, 3)]
dict = [{'a': 3, 'b': 4}, {'a': 5, 'b': 2}, {'a': 0, 'b': 0},
{'a': 9, 'b': 9}]
sort(list) # default sort
sort(list, 1) # sort by index 1
sort(dict, 'a') # sort a list of dicts by key 'a'
"""
def _helper(self, data, aux, inplace):
aux.sort()
result = [data[i] for junk, i in aux]
if inplace:
data[:] = result
return result
def byItem(self, data, itemindex=None, inplace=1):
if itemindex is None:
if inplace:
data.sort()
result = data
else:
result = data[:]
result.sort()
return result
else:
aux = [(data[i][itemindex], i) for i in range(len(data))]
return self._helper(data, aux, inplace)
def byAttribute(self, data, attributename, inplace=1):
aux = [(getattr(data[i], attributename), i) for i in range(len(data))]
return self._helper(data, aux, inplace)
# a couple of handy synonyms
sort = byItem
__call__ = byItem
class Xlator(dict):
"""
All-in-one multiple-string-substitution class
Example usage::
text = "Larry Wall is the creator of Perl"
adict = {
"Larry Wall" : "Guido van Rossum",
"creator" : "Benevolent Dictator for Life",
"Perl" : "Python",
}
print multiple_replace(adict, text)
xlat = Xlator(adict)
print xlat.xlat(text)
"""
def _make_regex(self):
""" Build re object based on the keys of the current dictionary """
return re.compile("|".join(map(re.escape, list(six.iterkeys(self)))))
def __call__(self, match):
""" Handler invoked for each regex *match* """
return self[match.group(0)]
def xlat(self, text):
""" Translate *text*, returns the modified text. """
return self._make_regex().sub(self, text)
def soundex(name, len=4):
""" soundex module conforming to Odell-Russell algorithm """
# digits holds the soundex values for the alphabet
soundex_digits = '01230120022455012623010202'
sndx = ''
fc = ''
# Translate letters in name to soundex digits
for c in name.upper():
if c.isalpha():
if not fc:
fc = c # Remember first letter
d = soundex_digits[ord(c) - ord('A')]
# Duplicate consecutive soundex digits are skipped
if not sndx or (d != sndx[-1]):
sndx += d
# Replace first digit with first letter
sndx = fc + sndx[1:]
# Remove all 0s from the soundex code
sndx = sndx.replace('0', '')
# Return soundex code truncated or 0-padded to len characters
return (sndx + (len * '0'))[:len]
class Null:
""" Null objects always and reliably "do nothing." """
def __init__(self, *args, **kwargs):
pass
def __call__(self, *args, **kwargs):
return self
def __str__(self):
return "Null()"
def __repr__(self):
return "Null()"
if six.PY3:
def __bool__(self):
return 0
else:
def __nonzero__(self):
return 0
def __getattr__(self, name):
return self
def __setattr__(self, name, value):
return self
def __delattr__(self, name):
return self
def mkdirs(newdir, mode=0o777):
"""
make directory *newdir* recursively, and set *mode*. Equivalent to ::
> mkdir -p NEWDIR
> chmod MODE NEWDIR
"""
try:
if not os.path.exists(newdir):
parts = os.path.split(newdir)
for i in range(1, len(parts) + 1):
thispart = os.path.join(*parts[:i])
if not os.path.exists(thispart):
os.makedirs(thispart, mode)
except OSError as err:
# Reraise the error unless it's about an already existing directory
if err.errno != errno.EEXIST or not os.path.isdir(newdir):
raise
class GetRealpathAndStat:
def __init__(self):
self._cache = {}
def __call__(self, path):
result = self._cache.get(path)
if result is None:
realpath = os.path.realpath(path)
if sys.platform == 'win32':
stat_key = realpath
else:
stat = os.stat(realpath)
stat_key = (stat.st_ino, stat.st_dev)
result = realpath, stat_key
self._cache[path] = result
return result
get_realpath_and_stat = GetRealpathAndStat()
def dict_delall(d, keys):
'delete all of the *keys* from the :class:`dict` *d*'
for key in keys:
try:
del d[key]
except KeyError:
pass
class RingBuffer:
""" class that implements a not-yet-full buffer """
def __init__(self, size_max):
self.max = size_max
self.data = []
class __Full:
""" class that implements a full buffer """
def append(self, x):
""" Append an element overwriting the oldest one. """
self.data[self.cur] = x
self.cur = (self.cur + 1) % self.max
def get(self):
""" return list of elements in correct order """
return self.data[self.cur:] + self.data[:self.cur]
def append(self, x):
"""append an element at the end of the buffer"""
self.data.append(x)
if len(self.data) == self.max:
self.cur = 0
# Permanently change self's class from non-full to full
self.__class__ = __Full
def get(self):
""" Return a list of elements from the oldest to the newest. """
return self.data
def __get_item__(self, i):
return self.data[i % len(self.data)]
def get_split_ind(seq, N):
"""
*seq* is a list of words. Return the index into seq such that::
len(' '.join(seq[:ind])<=N
.
"""
sLen = 0
# todo: use Alex's xrange pattern from the cbook for efficiency
for (word, ind) in zip(seq, xrange(len(seq))):
sLen += len(word) + 1 # +1 to account for the len(' ')
if sLen >= N:
return ind
return len(seq)
def wrap(prefix, text, cols):
'wrap *text* with *prefix* at length *cols*'
pad = ' ' * len(prefix.expandtabs())
available = cols - len(pad)
seq = text.split(' ')
Nseq = len(seq)
ind = 0
lines = []
while ind < Nseq:
lastInd = ind
ind += get_split_ind(seq[ind:], available)
lines.append(seq[lastInd:ind])
# add the prefix to the first line, pad with spaces otherwise
ret = prefix + ' '.join(lines[0]) + '\n'
for line in lines[1:]:
ret += pad + ' '.join(line) + '\n'
return ret
# A regular expression used to determine the amount of space to
# remove. It looks for the first sequence of spaces immediately
# following the first newline, or at the beginning of the string.
_find_dedent_regex = re.compile("(?:(?:\n\r?)|^)( *)\S")
# A cache to hold the regexs that actually remove the indent.
_dedent_regex = {}
def dedent(s):
"""
Remove excess indentation from docstring *s*.
Discards any leading blank lines, then removes up to n whitespace
characters from each line, where n is the number of leading
whitespace characters in the first line. It differs from
textwrap.dedent in its deletion of leading blank lines and its use
of the first non-blank line to determine the indentation.
It is also faster in most cases.
"""
# This implementation has a somewhat obtuse use of regular
# expressions. However, this function accounted for almost 30% of
# matplotlib startup time, so it is worthy of optimization at all
# costs.
if not s: # includes case of s is None
return ''
match = _find_dedent_regex.match(s)
if match is None:
return s
# This is the number of spaces to remove from the left-hand side.
nshift = match.end(1) - match.start(1)
if nshift == 0:
return s
# Get a regex that will remove *up to* nshift spaces from the
# beginning of each line. If it isn't in the cache, generate it.
unindent = _dedent_regex.get(nshift, None)
if unindent is None:
unindent = re.compile("\n\r? {0,%d}" % nshift)
_dedent_regex[nshift] = unindent
result = unindent.sub("\n", s).strip()
return result
def listFiles(root, patterns='*', recurse=1, return_folders=0):
"""
Recursively list files
from Parmar and Martelli in the Python Cookbook
"""
import os.path
import fnmatch
# Expand patterns from semicolon-separated string to list
pattern_list = patterns.split(';')
results = []
for dirname, dirs, files in os.walk(root):
# Append to results all relevant files (and perhaps folders)
for name in files:
fullname = os.path.normpath(os.path.join(dirname, name))
if return_folders or os.path.isfile(fullname):
for pattern in pattern_list:
if fnmatch.fnmatch(name, pattern):
results.append(fullname)
break
# Block recursion if recursion was disallowed
if not recurse:
break
return results
def get_recursive_filelist(args):
"""
Recurse all the files and dirs in *args* ignoring symbolic links
and return the files as a list of strings
"""
files = []
for arg in args:
if os.path.isfile(arg):
files.append(arg)
continue
if os.path.isdir(arg):
newfiles = listFiles(arg, recurse=1, return_folders=1)
files.extend(newfiles)
return [f for f in files if not os.path.islink(f)]
def pieces(seq, num=2):
"Break up the *seq* into *num* tuples"
start = 0
while 1:
item = seq[start:start + num]
if not len(item):
break
yield item
start += num
def exception_to_str(s=None):
if six.PY3:
sh = io.StringIO()
else:
sh = io.BytesIO()
if s is not None:
print(s, file=sh)
traceback.print_exc(file=sh)
return sh.getvalue()
def allequal(seq):
"""
Return *True* if all elements of *seq* compare equal. If *seq* is
0 or 1 length, return *True*
"""
if len(seq) < 2:
return True
val = seq[0]
for i in xrange(1, len(seq)):
thisval = seq[i]
if thisval != val:
return False
return True
def alltrue(seq):
"""
Return *True* if all elements of *seq* evaluate to *True*. If
*seq* is empty, return *False*.
"""
if not len(seq):
return False
for val in seq:
if not val:
return False
return True
def onetrue(seq):
"""
Return *True* if one element of *seq* is *True*. It *seq* is
empty, return *False*.
"""
if not len(seq):
return False
for val in seq:
if val:
return True
return False
def allpairs(x):
"""
return all possible pairs in sequence *x*
Condensed by Alex Martelli from this thread_ on c.l.python
.. _thread: http://groups.google.com/groups?q=all+pairs+group:*python*&hl=en&lr=&ie=UTF-8&selm=mailman.4028.1096403649.5135.python-list%40python.org&rnum=1
"""
return [(s, f) for i, f in enumerate(x) for s in x[i + 1:]]
class maxdict(dict):
"""
A dictionary with a maximum size; this doesn't override all the
relevant methods to contrain size, just setitem, so use with
caution
"""
def __init__(self, maxsize):
dict.__init__(self)
self.maxsize = maxsize
self._killkeys = []
def __setitem__(self, k, v):
if k not in self:
if len(self) >= self.maxsize:
del self[self._killkeys[0]]
del self._killkeys[0]
self._killkeys.append(k)
dict.__setitem__(self, k, v)
class Stack(object):
"""
Implement a stack where elements can be pushed on and you can move
back and forth. But no pop. Should mimic home / back / forward
in a browser
"""
def __init__(self, default=None):
self.clear()
self._default = default
def __call__(self):
'return the current element, or None'
if not len(self._elements):
return self._default
else:
return self._elements[self._pos]
def __len__(self):
return self._elements.__len__()
def __getitem__(self, ind):
return self._elements.__getitem__(ind)
def forward(self):
'move the position forward and return the current element'
N = len(self._elements)
if self._pos < N - 1:
self._pos += 1
return self()
def back(self):
'move the position back and return the current element'
if self._pos > 0:
self._pos -= 1
return self()
def push(self, o):
"""
push object onto stack at current position - all elements
occurring later than the current position are discarded
"""
self._elements = self._elements[:self._pos + 1]
self._elements.append(o)
self._pos = len(self._elements) - 1
return self()
def home(self):
'push the first element onto the top of the stack'
if not len(self._elements):
return
self.push(self._elements[0])
return self()
def empty(self):
return len(self._elements) == 0
def clear(self):
'empty the stack'
self._pos = -1
self._elements = []
def bubble(self, o):
"""
raise *o* to the top of the stack and return *o*. *o* must be
in the stack
"""
if o not in self._elements:
raise ValueError('Unknown element o')
old = self._elements[:]
self.clear()
bubbles = []
for thiso in old:
if thiso == o:
bubbles.append(thiso)
else:
self.push(thiso)
for thiso in bubbles:
self.push(o)
return o
def remove(self, o):
'remove element *o* from the stack'
if o not in self._elements:
raise ValueError('Unknown element o')
old = self._elements[:]
self.clear()
for thiso in old:
if thiso == o:
continue
else:
self.push(thiso)
def popall(seq):
'empty a list'
for i in xrange(len(seq)):
seq.pop()
def finddir(o, match, case=False):
"""
return all attributes of *o* which match string in match. if case
is True require an exact case match.
"""
if case:
names = [(name, name) for name in dir(o) if is_string_like(name)]
else:
names = [(name.lower(), name) for name in dir(o)
if is_string_like(name)]
match = match.lower()
return [orig for name, orig in names if name.find(match) >= 0]
def reverse_dict(d):
'reverse the dictionary -- may lose data if values are not unique!'
return dict([(v, k) for k, v in six.iteritems(d)])
def restrict_dict(d, keys):
"""
Return a dictionary that contains those keys that appear in both
d and keys, with values from d.
"""
return dict([(k, v) for (k, v) in six.iteritems(d) if k in keys])
def report_memory(i=0): # argument may go away
'return the memory consumed by process'
from matplotlib.compat.subprocess import Popen, PIPE
pid = os.getpid()
if sys.platform == 'sunos5':
try:
a2 = Popen('ps -p %d -o osz' % pid, shell=True,
stdout=PIPE).stdout.readlines()
except OSError:
raise NotImplementedError(
"report_memory works on Sun OS only if "
"the 'ps' program is found")
mem = int(a2[-1].strip())
elif sys.platform.startswith('linux'):
try:
a2 = Popen('ps -p %d -o rss,sz' % pid, shell=True,
stdout=PIPE).stdout.readlines()
except OSError:
raise NotImplementedError(
"report_memory works on Linux only if "
"the 'ps' program is found")
mem = int(a2[1].split()[1])
elif sys.platform.startswith('darwin'):
try:
a2 = Popen('ps -p %d -o rss,vsz' % pid, shell=True,
stdout=PIPE).stdout.readlines()
except OSError:
raise NotImplementedError(
"report_memory works on Mac OS only if "
"the 'ps' program is found")
mem = int(a2[1].split()[0])
elif sys.platform.startswith('win'):
try:
a2 = Popen(["tasklist", "/nh", "/fi", "pid eq %d" % pid],
stdout=PIPE).stdout.read()
except OSError:
raise NotImplementedError(
"report_memory works on Windows only if "
"the 'tasklist' program is found")
mem = int(a2.strip().split()[-2].replace(',', ''))
else:
raise NotImplementedError(
"We don't have a memory monitor for %s" % sys.platform)
return mem
_safezip_msg = 'In safezip, len(args[0])=%d but len(args[%d])=%d'
def safezip(*args):
'make sure *args* are equal len before zipping'
Nx = len(args[0])
for i, arg in enumerate(args[1:]):
if len(arg) != Nx:
raise ValueError(_safezip_msg % (Nx, i + 1, len(arg)))
return list(zip(*args))
def issubclass_safe(x, klass):
'return issubclass(x, klass) and return False on a TypeError'
try:
return issubclass(x, klass)
except TypeError:
return False
def safe_masked_invalid(x):
x = np.asanyarray(x)
try:
xm = np.ma.masked_invalid(x, copy=False)
xm.shrink_mask()
except TypeError:
return x
return xm
class MemoryMonitor:
def __init__(self, nmax=20000):
self._nmax = nmax
self._mem = np.zeros((self._nmax,), np.int32)
self.clear()
def clear(self):
self._n = 0
self._overflow = False
def __call__(self):
mem = report_memory()
if self._n < self._nmax:
self._mem[self._n] = mem
self._n += 1
else:
self._overflow = True
return mem
def report(self, segments=4):
n = self._n
segments = min(n, segments)
dn = int(n / segments)
ii = list(xrange(0, n, dn))
ii[-1] = n - 1
print()
print('memory report: i, mem, dmem, dmem/nloops')
print(0, self._mem[0])
for i in range(1, len(ii)):
di = ii[i] - ii[i - 1]
if di == 0:
continue
dm = self._mem[ii[i]] - self._mem[ii[i - 1]]
print('%5d %5d %3d %8.3f' % (ii[i], self._mem[ii[i]],
dm, dm / float(di)))
if self._overflow:
print("Warning: array size was too small for the number of calls.")
def xy(self, i0=0, isub=1):
x = np.arange(i0, self._n, isub)
return x, self._mem[i0:self._n:isub]
def plot(self, i0=0, isub=1, fig=None):
if fig is None:
from .pylab import figure
fig = figure()
ax = fig.add_subplot(111)
ax.plot(*self.xy(i0, isub))
fig.canvas.draw()
def print_cycles(objects, outstream=sys.stdout, show_progress=False):
"""
*objects*
A list of objects to find cycles in. It is often useful to
pass in gc.garbage to find the cycles that are preventing some
objects from being garbage collected.
*outstream*
The stream for output.
*show_progress*
If True, print the number of objects reached as they are found.
"""
import gc
from types import FrameType
def print_path(path):
for i, step in enumerate(path):
# next "wraps around"
next = path[(i + 1) % len(path)]
outstream.write(" %s -- " % str(type(step)))
if isinstance(step, dict):
for key, val in six.iteritems(step):
if val is next:
outstream.write("[%s]" % repr(key))
break
if key is next:
outstream.write("[key] = %s" % repr(val))
break
elif isinstance(step, list):
outstream.write("[%d]" % step.index(next))
elif isinstance(step, tuple):
outstream.write("( tuple )")
else:
outstream.write(repr(step))
outstream.write(" ->\n")
outstream.write("\n")
def recurse(obj, start, all, current_path):
if show_progress:
outstream.write("%d\r" % len(all))
all[id(obj)] = None
referents = gc.get_referents(obj)
for referent in referents:
# If we've found our way back to the start, this is
# a cycle, so print it out
if referent is start:
print_path(current_path)
# Don't go back through the original list of objects, or
# through temporary references to the object, since those
# are just an artifact of the cycle detector itself.
elif referent is objects or isinstance(referent, FrameType):
continue
# We haven't seen this object before, so recurse
elif id(referent) not in all:
recurse(referent, start, all, current_path + [obj])
for obj in objects:
outstream.write("Examining: %r\n" % (obj,))
recurse(obj, obj, {}, [])
class Grouper(object):
"""
This class provides a lightweight way to group arbitrary objects
together into disjoint sets when a full-blown graph data structure
would be overkill.
Objects can be joined using :meth:`join`, tested for connectedness
using :meth:`joined`, and all disjoint sets can be retreived by
using the object as an iterator.
The objects being joined must be hashable and weak-referenceable.
For example:
>>> from matplotlib.cbook import Grouper
>>> class Foo(object):
... def __init__(self, s):
... self.s = s
... def __repr__(self):
... return self.s
...
>>> a, b, c, d, e, f = [Foo(x) for x in 'abcdef']
>>> grp = Grouper()
>>> grp.join(a, b)
>>> grp.join(b, c)
>>> grp.join(d, e)
>>> sorted(map(tuple, grp))
[(a, b, c), (d, e)]
>>> grp.joined(a, b)
True
>>> grp.joined(a, c)
True
>>> grp.joined(a, d)
False
"""
def __init__(self, init=[]):
mapping = self._mapping = {}
for x in init:
mapping[ref(x)] = [ref(x)]
def __contains__(self, item):
return ref(item) in self._mapping
def clean(self):
"""
Clean dead weak references from the dictionary
"""
mapping = self._mapping
to_drop = [key for key in mapping if key() is None]
for key in to_drop:
val = mapping.pop(key)
val.remove(key)
def join(self, a, *args):
"""
Join given arguments into the same set. Accepts one or more
arguments.
"""
mapping = self._mapping
set_a = mapping.setdefault(ref(a), [ref(a)])
for arg in args:
set_b = mapping.get(ref(arg))
if set_b is None:
set_a.append(ref(arg))
mapping[ref(arg)] = set_a
elif set_b is not set_a:
if len(set_b) > len(set_a):
set_a, set_b = set_b, set_a
set_a.extend(set_b)
for elem in set_b:
mapping[elem] = set_a
self.clean()
def joined(self, a, b):
"""
Returns True if *a* and *b* are members of the same set.
"""
self.clean()
mapping = self._mapping
try:
return mapping[ref(a)] is mapping[ref(b)]
except KeyError:
return False
def __iter__(self):
"""
Iterate over each of the disjoint sets as a list.
The iterator is invalid if interleaved with calls to join().
"""
self.clean()
class Token:
pass
token = Token()
# Mark each group as we come across if by appending a token,
# and don't yield it twice
for group in six.itervalues(self._mapping):
if not group[-1] is token:
yield [x() for x in group]
group.append(token)
# Cleanup the tokens
for group in six.itervalues(self._mapping):
if group[-1] is token:
del group[-1]
def get_siblings(self, a):
"""
Returns all of the items joined with *a*, including itself.
"""
self.clean()
siblings = self._mapping.get(ref(a), [ref(a)])
return [x() for x in siblings]
def simple_linear_interpolation(a, steps):
if steps == 1:
return a
steps = int(np.floor(steps))
new_length = ((len(a) - 1) * steps) + 1
new_shape = list(a.shape)
new_shape[0] = new_length
result = np.zeros(new_shape, a.dtype)
result[0] = a[0]
a0 = a[0:-1]
a1 = a[1:]
delta = ((a1 - a0) / steps)
for i in range(1, steps):
result[i::steps] = delta * i + a0
result[steps::steps] = a1
return result
def recursive_remove(path):
if os.path.isdir(path):
for fname in (glob.glob(os.path.join(path, '*')) +
glob.glob(os.path.join(path, '.*'))):
if os.path.isdir(fname):
recursive_remove(fname)
os.removedirs(fname)
else:
os.remove(fname)
#os.removedirs(path)
else:
os.remove(path)
def delete_masked_points(*args):
"""
Find all masked and/or non-finite points in a set of arguments,
and return the arguments with only the unmasked points remaining.
Arguments can be in any of 5 categories:
1) 1-D masked arrays
2) 1-D ndarrays
3) ndarrays with more than one dimension
4) other non-string iterables
5) anything else
The first argument must be in one of the first four categories;
any argument with a length differing from that of the first
argument (and hence anything in category 5) then will be
passed through unchanged.
Masks are obtained from all arguments of the correct length
in categories 1, 2, and 4; a point is bad if masked in a masked
array or if it is a nan or inf. No attempt is made to
extract a mask from categories 2, 3, and 4 if :meth:`np.isfinite`
does not yield a Boolean array.
All input arguments that are not passed unchanged are returned
as ndarrays after removing the points or rows corresponding to
masks in any of the arguments.
A vastly simpler version of this function was originally
written as a helper for Axes.scatter().
"""
if not len(args):
return ()
if (is_string_like(args[0]) or not iterable(args[0])):
raise ValueError("First argument must be a sequence")
nrecs = len(args[0])
margs = []
seqlist = [False] * len(args)
for i, x in enumerate(args):
if (not is_string_like(x)) and iterable(x) and len(x) == nrecs:
seqlist[i] = True
if ma.isMA(x):
if x.ndim > 1:
raise ValueError("Masked arrays must be 1-D")
else:
x = np.asarray(x)
margs.append(x)
masks = [] # list of masks that are True where good
for i, x in enumerate(margs):
if seqlist[i]:
if x.ndim > 1:
continue # Don't try to get nan locations unless 1-D.
if ma.isMA(x):
masks.append(~ma.getmaskarray(x)) # invert the mask
xd = x.data
else:
xd = x
try:
mask = np.isfinite(xd)
if isinstance(mask, np.ndarray):
masks.append(mask)
except: # Fixme: put in tuple of possible exceptions?
pass
if len(masks):
mask = reduce(np.logical_and, masks)
igood = mask.nonzero()[0]
if len(igood) < nrecs:
for i, x in enumerate(margs):
if seqlist[i]:
margs[i] = x.take(igood, axis=0)
for i, x in enumerate(margs):
if seqlist[i] and ma.isMA(x):
margs[i] = x.filled()
return margs
def boxplot_stats(X, whis=1.5, bootstrap=None, labels=None):
'''
Returns list of dictionaries of staticists to be use to draw a series of
box and whisker plots. See the `Returns` section below to the required
keys of the dictionary. Users can skip this function and pass a user-
defined set of dictionaries to the new `axes.bxp` method instead of
relying on MPL to do the calcs.
Parameters
----------
X : array-like
Data that will be represented in the boxplots. Should have 2 or fewer
dimensions.
whis : float, string, or sequence (default = 1.5)
As a float, determines the reach of the whiskers past the first and
third quartiles (e.g., Q3 + whis*IQR, QR = interquartile range, Q3-Q1).
Beyond the whiskers, data are considered outliers and are plotted as
individual points. Set this to an unreasonably high value to force the
whiskers to show the min and max data. Alternatively, set this to an
ascending sequence of percentile (e.g., [5, 95]) to set the whiskers
at specific percentiles of the data. Finally, can `whis` be the
string 'range' to force the whiskers to the min and max of the data.
In the edge case that the 25th and 75th percentiles are equivalent,
`whis` will be automatically set to 'range'
bootstrap : int or None (default)
Number of times the confidence intervals around the median should
be bootstrapped (percentile method).
labels : sequence
Labels for each dataset. Length must be compatible with dimensions
of `X`
Returns
-------
bxpstats : list of dict
A list of dictionaries containing the results for each column
of data. Keys of each dictionary are the following:
======== ===================================
Key Value Description
======== ===================================
label tick label for the boxplot
mean arithemetic mean value
med 50th percentile
q1 first quartile (25th percentile)
q3 third quartile (75th percentile)
cilo lower notch around the median
ciho upper notch around the median
whislo end of the lower whisker
whishi end of the upper whisker
fliers outliers
======== ===================================
Notes
-----
Non-bootstrapping approach to confidence interval uses Gaussian-based
asymptotic approximation:
.. math::
\mathrm{med} \pm 1.57 \\times \\frac{\mathrm{iqr}}{\sqrt{N}}
General approach from:
McGill, R., Tukey, J.W., and Larsen, W.A. (1978) "Variations of
Boxplots", The American Statistician, 32:12-16.
'''
def _bootstrap_median(data, N=5000):
# determine 95% confidence intervals of the median
M = len(data)
percentiles = [2.5, 97.5]
ii = np.random.randint(M, size=(N, M))
bsData = x[ii]
estimate = np.median(bsData, axis=1, overwrite_input=True)
CI = np.percentile(estimate, percentiles)
return CI
def _compute_conf_interval(data, med, iqr, bootstrap):
if bootstrap is not None:
# Do a bootstrap estimate of notch locations.
# get conf. intervals around median
CI = _bootstrap_median(data, N=bootstrap)
notch_min = CI[0]
notch_max = CI[1]
else:
N = len(data)
notch_min = med - 1.57 * iqr / np.sqrt(N)
notch_max = med + 1.57 * iqr / np.sqrt(N)
return notch_min, notch_max
# output is a list of dicts
bxpstats = []
# convert X to a list of lists
X = _reshape_2D(X)
ncols = len(X)
if labels is None:
labels = repeat(None)
elif len(labels) != ncols:
raise ValueError("Dimensions of labels and X must be compatible")
input_whis = whis
for ii, (x, label) in enumerate(zip(X, labels), start=0):
# empty dict
stats = {}
if label is not None:
stats['label'] = label
# restore whis to the input values in case it got changed in the loop
whis = input_whis
# note tricksyness, append up here and then mutate below
bxpstats.append(stats)
# if empty, bail
if len(x) == 0:
stats['fliers'] = np.array([])
stats['mean'] = np.nan
stats['med'] = np.nan
stats['q1'] = np.nan
stats['q3'] = np.nan
stats['cilo'] = np.nan
stats['ciho'] = np.nan
stats['whislo'] = np.nan
stats['whishi'] = np.nan
stats['med'] = np.nan
continue
# up-convert to an array, just to be safe
x = np.asarray(x)
# arithmetic mean
stats['mean'] = np.mean(x)
# medians and quartiles
q1, med, q3 = np.percentile(x, [25, 50, 75])
# interquartile range
stats['iqr'] = q3 - q1
if stats['iqr'] == 0:
whis = 'range'
# conf. interval around median
stats['cilo'], stats['cihi'] = _compute_conf_interval(
x, med, stats['iqr'], bootstrap
)
# lowest/highest non-outliers
if np.isscalar(whis):
if np.isreal(whis):
loval = q1 - whis * stats['iqr']
hival = q3 + whis * stats['iqr']
elif whis in ['range', 'limit', 'limits', 'min/max']:
loval = np.min(x)
hival = np.max(x)
else:
whismsg = ('whis must be a float, valid string, or '
'list of percentiles')
raise ValueError(whismsg)
else:
loval = np.percentile(x, whis[0])
hival = np.percentile(x, whis[1])
# get high extreme
wiskhi = np.compress(x <= hival, x)
if len(wiskhi) == 0 or np.max(wiskhi) < q3:
stats['whishi'] = q3
else:
stats['whishi'] = np.max(wiskhi)
# get low extreme
wisklo = np.compress(x >= loval, x)
if len(wisklo) == 0 or np.min(wisklo) > q1:
stats['whislo'] = q1
else:
stats['whislo'] = np.min(wisklo)
# compute a single array of outliers
stats['fliers'] = np.hstack([
np.compress(x < stats['whislo'], x),
np.compress(x > stats['whishi'], x)
])
# add in the remaining stats
stats['q1'], stats['med'], stats['q3'] = q1, med, q3
return bxpstats
# FIXME I don't think this is used anywhere
def unmasked_index_ranges(mask, compressed=True):
"""
Find index ranges where *mask* is *False*.
*mask* will be flattened if it is not already 1-D.
Returns Nx2 :class:`numpy.ndarray` with each row the start and stop
indices for slices of the compressed :class:`numpy.ndarray`
corresponding to each of *N* uninterrupted runs of unmasked
values. If optional argument *compressed* is *False*, it returns
the start and stop indices into the original :class:`numpy.ndarray`,
not the compressed :class:`numpy.ndarray`. Returns *None* if there
are no unmasked values.
Example::
y = ma.array(np.arange(5), mask = [0,0,1,0,0])
ii = unmasked_index_ranges(ma.getmaskarray(y))
# returns array [[0,2,] [2,4,]]
y.compressed()[ii[1,0]:ii[1,1]]
# returns array [3,4,]
ii = unmasked_index_ranges(ma.getmaskarray(y), compressed=False)
# returns array [[0, 2], [3, 5]]
y.filled()[ii[1,0]:ii[1,1]]
# returns array [3,4,]
Prior to the transforms refactoring, this was used to support
masked arrays in Line2D.
"""
mask = mask.reshape(mask.size)
m = np.concatenate(((1,), mask, (1,)))
indices = np.arange(len(mask) + 1)
mdif = m[1:] - m[:-1]
i0 = np.compress(mdif == -1, indices)
i1 = np.compress(mdif == 1, indices)
assert len(i0) == len(i1)
if len(i1) == 0:
return None # Maybe this should be np.zeros((0,2), dtype=int)
if not compressed:
return np.concatenate((i0[:, np.newaxis], i1[:, np.newaxis]), axis=1)
seglengths = i1 - i0
breakpoints = np.cumsum(seglengths)
ic0 = np.concatenate(((0,), breakpoints[:-1]))
ic1 = breakpoints
return np.concatenate((ic0[:, np.newaxis], ic1[:, np.newaxis]), axis=1)
# a dict to cross-map linestyle arguments
_linestyles = [('-', 'solid'),
('--', 'dashed'),
('-.', 'dashdot'),
(':', 'dotted')]
ls_mapper = dict(_linestyles)
ls_mapper.update([(ls[1], ls[0]) for ls in _linestyles])
def align_iterators(func, *iterables):
"""
This generator takes a bunch of iterables that are ordered by func
It sends out ordered tuples::
(func(row), [rows from all iterators matching func(row)])
It is used by :func:`matplotlib.mlab.recs_join` to join record arrays
"""
class myiter:
def __init__(self, it):
self.it = it
self.key = self.value = None
self.iternext()
def iternext(self):
try:
self.value = next(self.it)
self.key = func(self.value)
except StopIteration:
self.value = self.key = None
def __call__(self, key):
retval = None
if key == self.key:
retval = self.value
self.iternext()
elif self.key and key > self.key:
raise ValueError("Iterator has been left behind")
return retval
# This can be made more efficient by not computing the minimum key for each
# iteration
iters = [myiter(it) for it in iterables]
minvals = minkey = True
while 1:
minvals = ([_f for _f in [it.key for it in iters] if _f])
if minvals:
minkey = min(minvals)
yield (minkey, [it(minkey) for it in iters])
else:
break
def is_math_text(s):
# Did we find an even number of non-escaped dollar signs?
# If so, treat is as math text.
try:
s = six.text_type(s)
except UnicodeDecodeError:
raise ValueError(
"matplotlib display text must have all code points < 128 or use "
"Unicode strings")
dollar_count = s.count(r'$') - s.count(r'\$')
even_dollars = (dollar_count > 0 and dollar_count % 2 == 0)
return even_dollars
def _reshape_2D(X):
"""
Converts a non-empty list or an ndarray of two or fewer dimensions
into a list of iterable objects so that in
for v in _reshape_2D(X):
v is iterable and can be used to instantiate a 1D array.
"""
if hasattr(X, 'shape'):
# one item
if len(X.shape) == 1:
if hasattr(X[0], 'shape'):
X = list(X)
else:
X = [X, ]
# several items
elif len(X.shape) == 2:
nrows, ncols = X.shape
if nrows == 1:
X = [X]
elif ncols == 1:
X = [X.ravel()]
else:
X = [X[:, i] for i in xrange(ncols)]
else:
raise ValueError("input `X` must have 2 or fewer dimensions")
if not hasattr(X[0], '__len__'):
X = [X]
else:
X = [np.ravel(x) for x in X]
return X
def violin_stats(X, method, points=100):
'''
Returns a list of dictionaries of data which can be used to draw a series
of violin plots. See the `Returns` section below to view the required keys
of the dictionary. Users can skip this function and pass a user-defined set
of dictionaries to the `axes.vplot` method instead of using MPL to do the
calculations.
Parameters
----------
X : array-like
Sample data that will be used to produce the gaussian kernel density
estimates. Must have 2 or fewer dimensions.
method : callable
The method used to calculate the kernel density estimate for each
column of data. When called via `method(v, coords)`, it should
return a vector of the values of the KDE evaluated at the values
specified in coords.
points : scalar, default = 100
Defines the number of points to evaluate each of the gaussian kernel
density estimates at.
Returns
-------
A list of dictionaries containing the results for each column of data.
The dictionaries contain at least the following:
- coords: A list of scalars containing the coordinates this particular
kernel density estimate was evaluated at.
- vals: A list of scalars containing the values of the kernel density
estimate at each of the coordinates given in `coords`.
- mean: The mean value for this column of data.
- median: The median value for this column of data.
- min: The minimum value for this column of data.
- max: The maximum value for this column of data.
'''
# List of dictionaries describing each of the violins.
vpstats = []
# Want X to be a list of data sequences
X = _reshape_2D(X)
for x in X:
# Dictionary of results for this distribution
stats = {}
# Calculate basic stats for the distribution
min_val = np.min(x)
max_val = np.max(x)
# Evaluate the kernel density estimate
coords = np.linspace(min_val, max_val, points)
stats['vals'] = method(x, coords)
stats['coords'] = coords
# Store additional statistics for this distribution
stats['mean'] = np.mean(x)
stats['median'] = np.median(x)
stats['min'] = min_val
stats['max'] = max_val
# Append to output
vpstats.append(stats)
return vpstats
class _NestedClassGetter(object):
# recipe from http://stackoverflow.com/a/11493777/741316
"""
When called with the containing class as the first argument,
and the name of the nested class as the second argument,
returns an instance of the nested class.
"""
def __call__(self, containing_class, class_name):
nested_class = getattr(containing_class, class_name)
# make an instance of a simple object (this one will do), for which we
# can change the __class__ later on.
nested_instance = _NestedClassGetter()
# set the class of the instance, the __init__ will never be called on
# the class but the original state will be set later on by pickle.
nested_instance.__class__ = nested_class
return nested_instance
class _InstanceMethodPickler(object):
"""
Pickle cannot handle instancemethod saving. _InstanceMethodPickler
provides a solution to this.
"""
def __init__(self, instancemethod):
"""Takes an instancemethod as its only argument."""
if six.PY3:
self.parent_obj = instancemethod.__self__
self.instancemethod_name = instancemethod.__func__.__name__
else:
self.parent_obj = instancemethod.im_self
self.instancemethod_name = instancemethod.im_func.__name__
def get_instancemethod(self):
return getattr(self.parent_obj, self.instancemethod_name)
# Numpy > 1.6.x deprecates putmask in favor of the new copyto.
# So long as we support versions 1.6.x and less, we need the
# following local version of putmask. We choose to make a
# local version of putmask rather than of copyto because the
# latter includes more functionality than the former. Therefore
# it is easy to make a local version that gives full putmask
# behavior, but duplicating the full copyto behavior would be
# more difficult.
try:
np.copyto
except AttributeError:
_putmask = np.putmask
else:
def _putmask(a, mask, values):
return np.copyto(a, values, where=mask)
|