/usr/lib/python2.7/dist-packages/matplotlib/dates.py is in python-matplotlib 1.4.2-3.1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 | #!/usr/bin/env python
"""
Matplotlib provides sophisticated date plotting capabilities, standing on the
shoulders of python :mod:`datetime`, the add-on modules :mod:`pytz` and
:mod:`dateutil`. :class:`datetime` objects are converted to floating point
numbers which represent time in days since 0001-01-01 UTC, plus 1. For
example, 0001-01-01, 06:00 is 1.25, not 0.25. The helper functions
:func:`date2num`, :func:`num2date` and :func:`drange` are used to facilitate
easy conversion to and from :mod:`datetime` and numeric ranges.
.. note::
Like Python's datetime, mpl uses the Gregorian calendar for all
conversions between dates and floating point numbers. This practice
is not universal, and calendar differences can cause confusing
differences between what Python and mpl give as the number of days
since 0001-01-01 and what other software and databases yield. For
example, the US Naval Observatory uses a calendar that switches
from Julian to Gregorian in October, 1582. Hence, using their
calculator, the number of days between 0001-01-01 and 2006-04-01 is
732403, whereas using the Gregorian calendar via the datetime
module we find::
In [31]:date(2006,4,1).toordinal() - date(1,1,1).toordinal()
Out[31]:732401
A wide range of specific and general purpose date tick locators and
formatters are provided in this module. See
:mod:`matplotlib.ticker` for general information on tick locators
and formatters. These are described below.
All the matplotlib date converters, tickers and formatters are
timezone aware, and the default timezone is given by the timezone
parameter in your :file:`matplotlibrc` file. If you leave out a
:class:`tz` timezone instance, the default from your rc file will be
assumed. If you want to use a custom time zone, pass a
:class:`pytz.timezone` instance with the tz keyword argument to
:func:`num2date`, :func:`plot_date`, and any custom date tickers or
locators you create. See `pytz <http://pytz.sourceforge.net>`_ for
information on :mod:`pytz` and timezone handling.
The `dateutil module <http://labix.org/python-dateutil>`_ provides
additional code to handle date ticking, making it easy to place ticks
on any kinds of dates. See examples below.
Date tickers
------------
Most of the date tickers can locate single or multiple values. For
example::
# import constants for the days of the week
from matplotlib.dates import MO, TU, WE, TH, FR, SA, SU
# tick on mondays every week
loc = WeekdayLocator(byweekday=MO, tz=tz)
# tick on mondays and saturdays
loc = WeekdayLocator(byweekday=(MO, SA))
In addition, most of the constructors take an interval argument::
# tick on mondays every second week
loc = WeekdayLocator(byweekday=MO, interval=2)
The rrule locator allows completely general date ticking::
# tick every 5th easter
rule = rrulewrapper(YEARLY, byeaster=1, interval=5)
loc = RRuleLocator(rule)
Here are all the date tickers:
* :class:`MinuteLocator`: locate minutes
* :class:`HourLocator`: locate hours
* :class:`DayLocator`: locate specifed days of the month
* :class:`WeekdayLocator`: Locate days of the week, eg MO, TU
* :class:`MonthLocator`: locate months, eg 7 for july
* :class:`YearLocator`: locate years that are multiples of base
* :class:`RRuleLocator`: locate using a
:class:`matplotlib.dates.rrulewrapper`. The
:class:`rrulewrapper` is a simple wrapper around a
:class:`dateutil.rrule` (`dateutil
<http://labix.org/python-dateutil>`_) which allow almost
arbitrary date tick specifications. See `rrule example
<../examples/pylab_examples/date_demo_rrule.html>`_.
* :class:`AutoDateLocator`: On autoscale, this class picks the best
:class:`MultipleDateLocator` to set the view limits and the tick
locations.
Date formatters
---------------
Here all all the date formatters:
* :class:`AutoDateFormatter`: attempts to figure out the best format
to use. This is most useful when used with the :class:`AutoDateLocator`.
* :class:`DateFormatter`: use :func:`strftime` format strings
* :class:`IndexDateFormatter`: date plots with implicit *x*
indexing.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import six
from six.moves import xrange, zip
import re
import time
import math
import datetime
import warnings
from dateutil.rrule import (rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY,
MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY,
SECONDLY)
from dateutil.relativedelta import relativedelta
import dateutil.parser
import numpy as np
import matplotlib
import matplotlib.units as units
import matplotlib.cbook as cbook
import matplotlib.ticker as ticker
__all__ = ('date2num', 'num2date', 'drange', 'epoch2num',
'num2epoch', 'mx2num', 'DateFormatter',
'IndexDateFormatter', 'AutoDateFormatter', 'DateLocator',
'RRuleLocator', 'AutoDateLocator', 'YearLocator',
'MonthLocator', 'WeekdayLocator',
'DayLocator', 'HourLocator', 'MinuteLocator',
'SecondLocator', 'MicrosecondLocator',
'rrule', 'MO', 'TU', 'WE', 'TH', 'FR', 'SA', 'SU',
'YEARLY', 'MONTHLY', 'WEEKLY', 'DAILY',
'HOURLY', 'MINUTELY', 'SECONDLY', 'MICROSECONDLY', 'relativedelta',
'seconds', 'minutes', 'hours', 'weeks')
# Make a simple UTC instance so we don't always have to import
# pytz. From the python datetime library docs:
class _UTC(datetime.tzinfo):
"""UTC"""
def utcoffset(self, dt):
return datetime.timedelta(0)
def tzname(self, dt):
return "UTC"
def dst(self, dt):
return datetime.timedelta(0)
UTC = _UTC()
def _get_rc_timezone():
s = matplotlib.rcParams['timezone']
if s == 'UTC':
return UTC
import pytz
return pytz.timezone(s)
MICROSECONDLY = SECONDLY + 1
HOURS_PER_DAY = 24.
MINUTES_PER_DAY = 60. * HOURS_PER_DAY
SECONDS_PER_DAY = 60. * MINUTES_PER_DAY
MUSECONDS_PER_DAY = 1e6 * SECONDS_PER_DAY
SEC_PER_MIN = 60
SEC_PER_HOUR = 3600
SEC_PER_DAY = SEC_PER_HOUR * 24
SEC_PER_WEEK = SEC_PER_DAY * 7
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY = (
MO, TU, WE, TH, FR, SA, SU)
WEEKDAYS = (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY)
def _to_ordinalf(dt):
"""
Convert :mod:`datetime` to the Gregorian date as UTC float days,
preserving hours, minutes, seconds and microseconds. Return value
is a :func:`float`.
"""
if hasattr(dt, 'tzinfo') and dt.tzinfo is not None:
delta = dt.tzinfo.utcoffset(dt)
if delta is not None:
dt -= delta
base = float(dt.toordinal())
if hasattr(dt, 'hour'):
base += (dt.hour / HOURS_PER_DAY + dt.minute / MINUTES_PER_DAY +
dt.second / SECONDS_PER_DAY +
dt.microsecond / MUSECONDS_PER_DAY
)
return base
# a version of _to_ordinalf that can operate on numpy arrays
_to_ordinalf_np_vectorized = np.vectorize(_to_ordinalf)
def _from_ordinalf(x, tz=None):
"""
Convert Gregorian float of the date, preserving hours, minutes,
seconds and microseconds. Return value is a :class:`datetime`.
"""
if tz is None:
tz = _get_rc_timezone()
ix = int(x)
dt = datetime.datetime.fromordinal(ix)
remainder = float(x) - ix
hour, remainder = divmod(24 * remainder, 1)
minute, remainder = divmod(60 * remainder, 1)
second, remainder = divmod(60 * remainder, 1)
microsecond = int(1e6 * remainder)
if microsecond < 10:
microsecond = 0 # compensate for rounding errors
dt = datetime.datetime(
dt.year, dt.month, dt.day, int(hour), int(minute), int(second),
microsecond, tzinfo=UTC).astimezone(tz)
if microsecond > 999990: # compensate for rounding errors
dt += datetime.timedelta(microseconds=1e6 - microsecond)
return dt
# a version of _from_ordinalf that can operate on numpy arrays
_from_ordinalf_np_vectorized = np.vectorize(_from_ordinalf)
class strpdate2num:
"""
Use this class to parse date strings to matplotlib datenums when
you know the date format string of the date you are parsing. See
:file:`examples/load_demo.py`.
"""
def __init__(self, fmt):
""" fmt: any valid strptime format is supported """
self.fmt = fmt
def __call__(self, s):
"""s : string to be converted
return value: a date2num float
"""
return date2num(datetime.datetime(*time.strptime(s, self.fmt)[:6]))
# a version of dateutil.parser.parse that can operate on nump0y arrays
_dateutil_parser_parse_np_vectorized = np.vectorize(dateutil.parser.parse)
def datestr2num(d, default=None):
"""
Convert a date string to a datenum using
:func:`dateutil.parser.parse`.
Parameters
----------
d : string or sequence of strings
The dates to convert.
default : datetime instance
The default date to use when fields are missing in `d`.
"""
if cbook.is_string_like(d):
dt = dateutil.parser.parse(d, default=default)
return date2num(dt)
else:
if default is not None:
d = [dateutil.parser.parse(s, default=default) for s in d]
d = np.asarray(d)
if not d.size:
return d
return date2num(_dateutil_parser_parse_np_vectorized(d))
def date2num(d):
"""
*d* is either a :class:`datetime` instance or a sequence of datetimes.
Return value is a floating point number (or sequence of floats)
which gives the number of days (fraction part represents hours,
minutes, seconds) since 0001-01-01 00:00:00 UTC, *plus* *one*.
The addition of one here is a historical artifact. Also, note
that the Gregorian calendar is assumed; this is not universal
practice. For details, see the module docstring.
"""
if not cbook.iterable(d):
return _to_ordinalf(d)
else:
d = np.asarray(d)
if not d.size:
return d
return _to_ordinalf_np_vectorized(d)
def julian2num(j):
'Convert a Julian date (or sequence) to a matplotlib date (or sequence).'
if cbook.iterable(j):
j = np.asarray(j)
return j - 1721424.5
def num2julian(n):
'Convert a matplotlib date (or sequence) to a Julian date (or sequence).'
if cbook.iterable(n):
n = np.asarray(n)
return n + 1721424.5
def num2date(x, tz=None):
"""
*x* is a float value which gives the number of days
(fraction part represents hours, minutes, seconds) since
0001-01-01 00:00:00 UTC *plus* *one*.
The addition of one here is a historical artifact. Also, note
that the Gregorian calendar is assumed; this is not universal
practice. For details, see the module docstring.
Return value is a :class:`datetime` instance in timezone *tz* (default to
rcparams TZ value).
If *x* is a sequence, a sequence of :class:`datetime` objects will
be returned.
"""
if tz is None:
tz = _get_rc_timezone()
if not cbook.iterable(x):
return _from_ordinalf(x, tz)
else:
x = np.asarray(x)
if not x.size:
return x
return _from_ordinalf_np_vectorized(x, tz).tolist()
def drange(dstart, dend, delta):
"""
Return a date range as float Gregorian ordinals. *dstart* and
*dend* are :class:`datetime` instances. *delta* is a
:class:`datetime.timedelta` instance.
"""
step = (delta.days + delta.seconds / SECONDS_PER_DAY +
delta.microseconds / MUSECONDS_PER_DAY)
f1 = _to_ordinalf(dstart)
f2 = _to_ordinalf(dend)
# calculate the difference between dend and dstart in times of delta
num = int(np.ceil((f2 - f1) / step))
# calculate end of the interval which will be generated
dinterval_end = dstart + num * delta
# ensure, that an half open interval will be generated [dstart, dend)
if dinterval_end >= dend:
# if the endpoint is greated than dend, just subtract one delta
dinterval_end -= delta
num -= 1
f2 = _to_ordinalf(dinterval_end) # new float-endpoint
return np.linspace(f1, f2, num + 1)
### date tickers and formatters ###
class DateFormatter(ticker.Formatter):
"""
Tick location is seconds since the epoch. Use a :func:`strftime`
format string.
Python only supports :mod:`datetime` :func:`strftime` formatting
for years greater than 1900. Thanks to Andrew Dalke, Dalke
Scientific Software who contributed the :func:`strftime` code
below to include dates earlier than this year.
"""
illegal_s = re.compile(r"((^|[^%])(%%)*%s)")
def __init__(self, fmt, tz=None):
"""
*fmt* is an :func:`strftime` format string; *tz* is the
:class:`tzinfo` instance.
"""
if tz is None:
tz = _get_rc_timezone()
self.fmt = fmt
self.tz = tz
def __call__(self, x, pos=0):
if x == 0:
raise ValueError('DateFormatter found a value of x=0, which is '
'an illegal date. This usually occurs because '
'you have not informed the axis that it is '
'plotting dates, eg with ax.xaxis_date()')
dt = num2date(x, self.tz)
return self.strftime(dt, self.fmt)
def set_tzinfo(self, tz):
self.tz = tz
def _findall(self, text, substr):
# Also finds overlaps
sites = []
i = 0
while 1:
j = text.find(substr, i)
if j == -1:
break
sites.append(j)
i = j + 1
return sites
# Dalke: I hope I did this math right. Every 28 years the
# calendar repeats, except through century leap years excepting
# the 400 year leap years. But only if you're using the Gregorian
# calendar.
def strftime(self, dt, fmt):
fmt = self.illegal_s.sub(r"\1", fmt)
fmt = fmt.replace("%s", "s")
if dt.year > 1900:
return cbook.unicode_safe(dt.strftime(fmt))
year = dt.year
# For every non-leap year century, advance by
# 6 years to get into the 28-year repeat cycle
delta = 2000 - year
off = 6 * (delta // 100 + delta // 400)
year = year + off
# Move to around the year 2000
year = year + ((2000 - year) // 28) * 28
timetuple = dt.timetuple()
s1 = time.strftime(fmt, (year,) + timetuple[1:])
sites1 = self._findall(s1, str(year))
s2 = time.strftime(fmt, (year + 28,) + timetuple[1:])
sites2 = self._findall(s2, str(year + 28))
sites = []
for site in sites1:
if site in sites2:
sites.append(site)
s = s1
syear = "%4d" % (dt.year,)
for site in sites:
s = s[:site] + syear + s[site + 4:]
return cbook.unicode_safe(s)
class IndexDateFormatter(ticker.Formatter):
"""
Use with :class:`~matplotlib.ticker.IndexLocator` to cycle format
strings by index.
"""
def __init__(self, t, fmt, tz=None):
"""
*t* is a sequence of dates (floating point days). *fmt* is a
:func:`strftime` format string.
"""
if tz is None:
tz = _get_rc_timezone()
self.t = t
self.fmt = fmt
self.tz = tz
def __call__(self, x, pos=0):
'Return the label for time *x* at position *pos*'
ind = int(round(x))
if ind >= len(self.t) or ind <= 0:
return ''
dt = num2date(self.t[ind], self.tz)
return cbook.unicode_safe(dt.strftime(self.fmt))
class AutoDateFormatter(ticker.Formatter):
"""
This class attempts to figure out the best format to use. This is
most useful when used with the :class:`AutoDateLocator`.
The AutoDateFormatter has a scale dictionary that maps the scale
of the tick (the distance in days between one major tick) and a
format string. The default looks like this::
self.scaled = {
365.0 : '%Y',
30. : '%b %Y',
1.0 : '%b %d %Y',
1./24. : '%H:%M:%S',
1. / (24. * 60.): '%H:%M:%S.%f',
}
The algorithm picks the key in the dictionary that is >= the
current scale and uses that format string. You can customize this
dictionary by doing::
>>> formatter = AutoDateFormatter()
>>> formatter.scaled[1/(24.*60.)] = '%M:%S' # only show min and sec
A custom :class:`~matplotlib.ticker.FuncFormatter` can also be used.
The following example shows how to use a custom format function to strip
trailing zeros from decimal seconds and adds the date to the first
ticklabel::
>>> def my_format_function(x, pos=None):
... x = matplotlib.dates.num2date(x)
... if pos == 0:
... fmt = '%D %H:%M:%S.%f'
... else:
... fmt = '%H:%M:%S.%f'
... label = x.strftime(fmt)
... label = label.rstrip("0")
... label = label.rstrip(".")
... return label
>>> from matplotlib.ticker import FuncFormatter
>>> formatter.scaled[1/(24.*60.)] = FuncFormatter(my_format_function)
"""
# This can be improved by providing some user-level direction on
# how to choose the best format (precedence, etc...)
# Perhaps a 'struct' that has a field for each time-type where a
# zero would indicate "don't show" and a number would indicate
# "show" with some sort of priority. Same priorities could mean
# show all with the same priority.
# Or more simply, perhaps just a format string for each
# possibility...
def __init__(self, locator, tz=None, defaultfmt='%Y-%m-%d'):
"""
Autoformat the date labels. The default format is the one to use
if none of the values in ``self.scaled`` are greater than the unit
returned by ``locator._get_unit()``.
"""
self._locator = locator
self._tz = tz
self.defaultfmt = defaultfmt
self._formatter = DateFormatter(self.defaultfmt, tz)
self.scaled = {365.0: '%Y',
30.: '%b %Y',
1.0: '%b %d %Y',
1. / 24.: '%H:%M:%S',
1. / (24. * 60.): '%H:%M:%S.%f'}
def __call__(self, x, pos=None):
locator_unit_scale = float(self._locator._get_unit())
fmt = self.defaultfmt
# Pick the first scale which is greater than the locator unit.
for possible_scale in sorted(self.scaled):
if possible_scale >= locator_unit_scale:
fmt = self.scaled[possible_scale]
break
if isinstance(fmt, six.string_types):
self._formatter = DateFormatter(fmt, self._tz)
result = self._formatter(x, pos)
elif six.callable(fmt):
result = fmt(x, pos)
else:
raise TypeError('Unexpected type passed to {!r}.'.formatter(self))
return result
class rrulewrapper:
def __init__(self, freq, **kwargs):
self._construct = kwargs.copy()
self._construct["freq"] = freq
self._rrule = rrule(**self._construct)
def set(self, **kwargs):
self._construct.update(kwargs)
self._rrule = rrule(**self._construct)
def __getattr__(self, name):
if name in self.__dict__:
return self.__dict__[name]
return getattr(self._rrule, name)
class DateLocator(ticker.Locator):
hms0d = {'byhour': 0, 'byminute': 0, 'bysecond': 0}
def __init__(self, tz=None):
"""
*tz* is a :class:`tzinfo` instance.
"""
if tz is None:
tz = _get_rc_timezone()
self.tz = tz
def set_tzinfo(self, tz):
self.tz = tz
def datalim_to_dt(self):
dmin, dmax = self.axis.get_data_interval()
return num2date(dmin, self.tz), num2date(dmax, self.tz)
def viewlim_to_dt(self):
vmin, vmax = self.axis.get_view_interval()
return num2date(vmin, self.tz), num2date(vmax, self.tz)
def _get_unit(self):
"""
Return how many days a unit of the locator is; used for
intelligent autoscaling.
"""
return 1
def _get_interval(self):
"""
Return the number of units for each tick.
"""
return 1
def nonsingular(self, vmin, vmax):
"""
Given the proposed upper and lower extent, adjust the range
if it is too close to being singular (i.e. a range of ~0).
"""
unit = self._get_unit()
interval = self._get_interval()
if abs(vmax - vmin) < 1e-6:
vmin -= 2 * unit * interval
vmax += 2 * unit * interval
return vmin, vmax
class RRuleLocator(DateLocator):
# use the dateutil rrule instance
def __init__(self, o, tz=None):
DateLocator.__init__(self, tz)
self.rule = o
def __call__(self):
# if no data have been set, this will tank with a ValueError
try:
dmin, dmax = self.viewlim_to_dt()
except ValueError:
return []
if dmin > dmax:
dmax, dmin = dmin, dmax
delta = relativedelta(dmax, dmin)
# We need to cap at the endpoints of valid datetime
try:
start = dmin - delta
except ValueError:
start = _from_ordinalf(1.0)
try:
stop = dmax + delta
except ValueError:
# The magic number!
stop = _from_ordinalf(3652059.9999999)
self.rule.set(dtstart=start, until=stop, count=self.MAXTICKS + 1)
# estimate the number of ticks very approximately so we don't
# have to do a very expensive (and potentially near infinite)
# 'between' calculation, only to find out it will fail.
nmax, nmin = date2num((dmax, dmin))
estimate = (nmax - nmin) / (self._get_unit() * self._get_interval())
# This estimate is only an estimate, so be really conservative
# about bailing...
if estimate > self.MAXTICKS * 2:
raise RuntimeError(
'RRuleLocator estimated to generate %d ticks from %s to %s: '
'exceeds Locator.MAXTICKS * 2 (%d) ' % (estimate, dmin, dmax,
self.MAXTICKS * 2))
dates = self.rule.between(dmin, dmax, True)
if len(dates) == 0:
return date2num([dmin, dmax])
return self.raise_if_exceeds(date2num(dates))
def _get_unit(self):
"""
Return how many days a unit of the locator is; used for
intelligent autoscaling.
"""
freq = self.rule._rrule._freq
return self.get_unit_generic(freq)
@staticmethod
def get_unit_generic(freq):
if (freq == YEARLY):
return 365.0
elif (freq == MONTHLY):
return 30.0
elif (freq == WEEKLY):
return 7.0
elif (freq == DAILY):
return 1.0
elif (freq == HOURLY):
return (1.0 / 24.0)
elif (freq == MINUTELY):
return (1.0 / (24 * 60))
elif (freq == SECONDLY):
return (1.0 / (24 * 3600))
else:
# error
return -1 # or should this just return '1'?
def _get_interval(self):
return self.rule._rrule._interval
def autoscale(self):
"""
Set the view limits to include the data range.
"""
dmin, dmax = self.datalim_to_dt()
if dmin > dmax:
dmax, dmin = dmin, dmax
delta = relativedelta(dmax, dmin)
# We need to cap at the endpoints of valid datetime
try:
start = dmin - delta
except ValueError:
start = _from_ordinalf(1.0)
try:
stop = dmax + delta
except ValueError:
# The magic number!
stop = _from_ordinalf(3652059.9999999)
self.rule.set(dtstart=start, until=stop)
dmin, dmax = self.datalim_to_dt()
vmin = self.rule.before(dmin, True)
if not vmin:
vmin = dmin
vmax = self.rule.after(dmax, True)
if not vmax:
vmax = dmax
vmin = date2num(vmin)
vmax = date2num(vmax)
return self.nonsingular(vmin, vmax)
class AutoDateLocator(DateLocator):
"""
On autoscale, this class picks the best
:class:`DateLocator` to set the view limits and the tick
locations.
"""
def __init__(self, tz=None, minticks=5, maxticks=None,
interval_multiples=False):
"""
*minticks* is the minimum number of ticks desired, which is used to
select the type of ticking (yearly, monthly, etc.).
*maxticks* is the maximum number of ticks desired, which controls
any interval between ticks (ticking every other, every 3, etc.).
For really fine-grained control, this can be a dictionary mapping
individual rrule frequency constants (YEARLY, MONTHLY, etc.)
to their own maximum number of ticks. This can be used to keep
the number of ticks appropriate to the format chosen in
:class:`AutoDateFormatter`. Any frequency not specified in this
dictionary is given a default value.
*tz* is a :class:`tzinfo` instance.
*interval_multiples* is a boolean that indicates whether ticks
should be chosen to be multiple of the interval. This will lock
ticks to 'nicer' locations. For example, this will force the
ticks to be at hours 0,6,12,18 when hourly ticking is done at
6 hour intervals.
The AutoDateLocator has an interval dictionary that maps the
frequency of the tick (a constant from dateutil.rrule) and a
multiple allowed for that ticking. The default looks like this::
self.intervald = {
YEARLY : [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500,
1000, 2000, 4000, 5000, 10000],
MONTHLY : [1, 2, 3, 4, 6],
DAILY : [1, 2, 3, 7, 14],
HOURLY : [1, 2, 3, 4, 6, 12],
MINUTELY: [1, 5, 10, 15, 30],
SECONDLY: [1, 5, 10, 15, 30],
MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000,
5000, 10000, 20000, 50000, 100000, 200000, 500000,
1000000],
}
The interval is used to specify multiples that are appropriate for
the frequency of ticking. For instance, every 7 days is sensible
for daily ticks, but for minutes/seconds, 15 or 30 make sense.
You can customize this dictionary by doing::
locator = AutoDateLocator()
locator.intervald[HOURLY] = [3] # only show every 3 hours
"""
DateLocator.__init__(self, tz)
self._locator = YearLocator()
self._freq = YEARLY
self._freqs = [YEARLY, MONTHLY, DAILY, HOURLY, MINUTELY,
SECONDLY, MICROSECONDLY]
self.minticks = minticks
self.maxticks = {YEARLY: 11, MONTHLY: 12, DAILY: 11, HOURLY: 12,
MINUTELY: 11, SECONDLY: 11, MICROSECONDLY: 8}
if maxticks is not None:
try:
self.maxticks.update(maxticks)
except TypeError:
# Assume we were given an integer. Use this as the maximum
# number of ticks for every frequency and create a
# dictionary for this
self.maxticks = dict(zip(self._freqs,
[maxticks] * len(self._freqs)))
self.interval_multiples = interval_multiples
self.intervald = {
YEARLY: [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500,
1000, 2000, 4000, 5000, 10000],
MONTHLY: [1, 2, 3, 4, 6],
DAILY: [1, 2, 3, 7, 14, 21],
HOURLY: [1, 2, 3, 4, 6, 12],
MINUTELY: [1, 5, 10, 15, 30],
SECONDLY: [1, 5, 10, 15, 30],
MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000,
5000, 10000, 20000, 50000, 100000, 200000, 500000,
1000000]}
self._byranges = [None, list(xrange(1, 13)), list(xrange(1, 32)),
list(xrange(0, 24)), list(xrange(0, 60)),
list(xrange(0, 60)), None]
def __call__(self):
'Return the locations of the ticks'
self.refresh()
return self._locator()
def nonsingular(self, vmin, vmax):
# whatever is thrown at us, we can scale the unit.
# But default nonsingular date plots at an ~4 year period.
if vmin == vmax:
vmin = vmin - 365 * 2
vmax = vmax + 365 * 2
return vmin, vmax
def set_axis(self, axis):
DateLocator.set_axis(self, axis)
self._locator.set_axis(axis)
def refresh(self):
'Refresh internal information based on current limits.'
dmin, dmax = self.viewlim_to_dt()
self._locator = self.get_locator(dmin, dmax)
def _get_unit(self):
if self._freq in [MICROSECONDLY]:
return 1. / MUSECONDS_PER_DAY
else:
return RRuleLocator.get_unit_generic(self._freq)
def autoscale(self):
'Try to choose the view limits intelligently.'
dmin, dmax = self.datalim_to_dt()
self._locator = self.get_locator(dmin, dmax)
return self._locator.autoscale()
def get_locator(self, dmin, dmax):
'Pick the best locator based on a distance.'
delta = relativedelta(dmax, dmin)
# take absolute difference
if dmin > dmax:
delta = -delta
numYears = (delta.years * 1.0)
numMonths = (numYears * 12.0) + delta.months
numDays = (numMonths * 31.0) + delta.days
numHours = (numDays * 24.0) + delta.hours
numMinutes = (numHours * 60.0) + delta.minutes
numSeconds = (numMinutes * 60.0) + delta.seconds
numMicroseconds = (numSeconds * 1e6) + delta.microseconds
nums = [numYears, numMonths, numDays, numHours, numMinutes,
numSeconds, numMicroseconds]
use_rrule_locator = [True] * 6 + [False]
# Default setting of bymonth, etc. to pass to rrule
# [unused (for year), bymonth, bymonthday, byhour, byminute,
# bysecond, unused (for microseconds)]
byranges = [None, 1, 1, 0, 0, 0, None]
# Loop over all the frequencies and try to find one that gives at
# least a minticks tick positions. Once this is found, look for
# an interval from an list specific to that frequency that gives no
# more than maxticks tick positions. Also, set up some ranges
# (bymonth, etc.) as appropriate to be passed to rrulewrapper.
for i, (freq, num) in enumerate(zip(self._freqs, nums)):
# If this particular frequency doesn't give enough ticks, continue
if num < self.minticks:
# Since we're not using this particular frequency, set
# the corresponding by_ to None so the rrule can act as
# appropriate
byranges[i] = None
continue
# Find the first available interval that doesn't give too many
# ticks
for interval in self.intervald[freq]:
if num <= interval * (self.maxticks[freq] - 1):
break
else:
# We went through the whole loop without breaking, default to
# the last interval in the list and raise a warning
warnings.warn('AutoDateLocator was unable to pick an '
'appropriate interval for this date range. '
'It may be necessary to add an interval value '
"to the AutoDateLocator's intervald dictionary."
' Defaulting to {0}.'.format(interval))
# Set some parameters as appropriate
self._freq = freq
if self._byranges[i] and self.interval_multiples:
byranges[i] = self._byranges[i][::interval]
interval = 1
else:
byranges[i] = self._byranges[i]
# We found what frequency to use
break
else:
raise ValueError('No sensible date limit could be found in the '
'AutoDateLocator.')
if use_rrule_locator[i]:
_, bymonth, bymonthday, byhour, byminute, bysecond, _ = byranges
rrule = rrulewrapper(self._freq, interval=interval,
dtstart=dmin, until=dmax,
bymonth=bymonth, bymonthday=bymonthday,
byhour=byhour, byminute=byminute,
bysecond=bysecond)
locator = RRuleLocator(rrule, self.tz)
else:
locator = MicrosecondLocator(interval, tz=self.tz)
locator.set_axis(self.axis)
locator.set_view_interval(*self.axis.get_view_interval())
locator.set_data_interval(*self.axis.get_data_interval())
return locator
class YearLocator(DateLocator):
"""
Make ticks on a given day of each year that is a multiple of base.
Examples::
# Tick every year on Jan 1st
locator = YearLocator()
# Tick every 5 years on July 4th
locator = YearLocator(5, month=7, day=4)
"""
def __init__(self, base=1, month=1, day=1, tz=None):
"""
Mark years that are multiple of base on a given month and day
(default jan 1).
"""
DateLocator.__init__(self, tz)
self.base = ticker.Base(base)
self.replaced = {'month': month,
'day': day,
'hour': 0,
'minute': 0,
'second': 0,
'tzinfo': tz
}
def __call__(self):
dmin, dmax = self.viewlim_to_dt()
ymin = self.base.le(dmin.year)
ymax = self.base.ge(dmax.year)
ticks = [dmin.replace(year=ymin, **self.replaced)]
while 1:
dt = ticks[-1]
if dt.year >= ymax:
return date2num(ticks)
year = dt.year + self.base.get_base()
ticks.append(dt.replace(year=year, **self.replaced))
def autoscale(self):
"""
Set the view limits to include the data range.
"""
dmin, dmax = self.datalim_to_dt()
ymin = self.base.le(dmin.year)
ymax = self.base.ge(dmax.year)
vmin = dmin.replace(year=ymin, **self.replaced)
vmax = dmax.replace(year=ymax, **self.replaced)
vmin = date2num(vmin)
vmax = date2num(vmax)
return self.nonsingular(vmin, vmax)
class MonthLocator(RRuleLocator):
"""
Make ticks on occurances of each month month, eg 1, 3, 12.
"""
def __init__(self, bymonth=None, bymonthday=1, interval=1, tz=None):
"""
Mark every month in *bymonth*; *bymonth* can be an int or
sequence. Default is ``range(1,13)``, i.e. every month.
*interval* is the interval between each iteration. For
example, if ``interval=2``, mark every second occurance.
"""
if bymonth is None:
bymonth = list(xrange(1, 13))
o = rrulewrapper(MONTHLY, bymonth=bymonth, bymonthday=bymonthday,
interval=interval, **self.hms0d)
RRuleLocator.__init__(self, o, tz)
class WeekdayLocator(RRuleLocator):
"""
Make ticks on occurances of each weekday.
"""
def __init__(self, byweekday=1, interval=1, tz=None):
"""
Mark every weekday in *byweekday*; *byweekday* can be a number or
sequence.
Elements of *byweekday* must be one of MO, TU, WE, TH, FR, SA,
SU, the constants from :mod:`dateutil.rrule`, which have been
imported into the :mod:`matplotlib.dates` namespace.
*interval* specifies the number of weeks to skip. For example,
``interval=2`` plots every second week.
"""
o = rrulewrapper(DAILY, byweekday=byweekday,
interval=interval, **self.hms0d)
RRuleLocator.__init__(self, o, tz)
class DayLocator(RRuleLocator):
"""
Make ticks on occurances of each day of the month. For example,
1, 15, 30.
"""
def __init__(self, bymonthday=None, interval=1, tz=None):
"""
Mark every day in *bymonthday*; *bymonthday* can be an int or
sequence.
Default is to tick every day of the month: ``bymonthday=range(1,32)``
"""
if bymonthday is None:
bymonthday = list(xrange(1, 32))
o = rrulewrapper(DAILY, bymonthday=bymonthday,
interval=interval, **self.hms0d)
RRuleLocator.__init__(self, o, tz)
class HourLocator(RRuleLocator):
"""
Make ticks on occurances of each hour.
"""
def __init__(self, byhour=None, interval=1, tz=None):
"""
Mark every hour in *byhour*; *byhour* can be an int or sequence.
Default is to tick every hour: ``byhour=range(24)``
*interval* is the interval between each iteration. For
example, if ``interval=2``, mark every second occurrence.
"""
if byhour is None:
byhour = list(xrange(24))
rule = rrulewrapper(HOURLY, byhour=byhour, interval=interval,
byminute=0, bysecond=0)
RRuleLocator.__init__(self, rule, tz)
class MinuteLocator(RRuleLocator):
"""
Make ticks on occurances of each minute.
"""
def __init__(self, byminute=None, interval=1, tz=None):
"""
Mark every minute in *byminute*; *byminute* can be an int or
sequence. Default is to tick every minute: ``byminute=range(60)``
*interval* is the interval between each iteration. For
example, if ``interval=2``, mark every second occurrence.
"""
if byminute is None:
byminute = list(xrange(60))
rule = rrulewrapper(MINUTELY, byminute=byminute, interval=interval,
bysecond=0)
RRuleLocator.__init__(self, rule, tz)
class SecondLocator(RRuleLocator):
"""
Make ticks on occurances of each second.
"""
def __init__(self, bysecond=None, interval=1, tz=None):
"""
Mark every second in *bysecond*; *bysecond* can be an int or
sequence. Default is to tick every second: ``bysecond = range(60)``
*interval* is the interval between each iteration. For
example, if ``interval=2``, mark every second occurrence.
"""
if bysecond is None:
bysecond = list(xrange(60))
rule = rrulewrapper(SECONDLY, bysecond=bysecond, interval=interval)
RRuleLocator.__init__(self, rule, tz)
class MicrosecondLocator(DateLocator):
"""
Make ticks on occurances of each microsecond.
"""
def __init__(self, interval=1, tz=None):
"""
*interval* is the interval between each iteration. For
example, if ``interval=2``, mark every second microsecond.
"""
self._interval = interval
self._wrapped_locator = ticker.MultipleLocator(interval)
self.tz = tz
def set_axis(self, axis):
self._wrapped_locator.set_axis(axis)
return DateLocator.set_axis(self, axis)
def set_view_interval(self, vmin, vmax):
self._wrapped_locator.set_view_interval(vmin, vmax)
return DateLocator.set_view_interval(self, vmin, vmax)
def set_data_interval(self, vmin, vmax):
self._wrapped_locator.set_data_interval(vmin, vmax)
return DateLocator.set_data_interval(self, vmin, vmax)
def __call__(self, *args, **kwargs):
vmin, vmax = self.axis.get_view_interval()
vmin *= MUSECONDS_PER_DAY
vmax *= MUSECONDS_PER_DAY
ticks = self._wrapped_locator.tick_values(vmin, vmax)
ticks = [tick / MUSECONDS_PER_DAY for tick in ticks]
return ticks
def _get_unit(self):
"""
Return how many days a unit of the locator is; used for
intelligent autoscaling.
"""
return 1. / MUSECONDS_PER_DAY
def _get_interval(self):
"""
Return the number of units for each tick.
"""
return self._interval
def _close_to_dt(d1, d2, epsilon=5):
'Assert that datetimes *d1* and *d2* are within *epsilon* microseconds.'
delta = d2 - d1
mus = abs(delta.days * MUSECONDS_PER_DAY + delta.seconds * 1e6 +
delta.microseconds)
assert(mus < epsilon)
def _close_to_num(o1, o2, epsilon=5):
"""
Assert that float ordinals *o1* and *o2* are within *epsilon*
microseconds.
"""
delta = abs((o2 - o1) * MUSECONDS_PER_DAY)
assert(delta < epsilon)
def epoch2num(e):
"""
Convert an epoch or sequence of epochs to the new date format,
that is days since 0001.
"""
spd = 24. * 3600.
return 719163 + np.asarray(e) / spd
def num2epoch(d):
"""
Convert days since 0001 to epoch. *d* can be a number or sequence.
"""
spd = 24. * 3600.
return (np.asarray(d) - 719163) * spd
def mx2num(mxdates):
"""
Convert mx :class:`datetime` instance (or sequence of mx
instances) to the new date format.
"""
scalar = False
if not cbook.iterable(mxdates):
scalar = True
mxdates = [mxdates]
ret = epoch2num([m.ticks() for m in mxdates])
if scalar:
return ret[0]
else:
return ret
def date_ticker_factory(span, tz=None, numticks=5):
"""
Create a date locator with *numticks* (approx) and a date formatter
for *span* in days. Return value is (locator, formatter).
"""
if span == 0:
span = 1 / 24.
minutes = span * 24 * 60
hours = span * 24
days = span
weeks = span / 7.
months = span / 31. # approx
years = span / 365.
if years > numticks:
locator = YearLocator(int(years / numticks), tz=tz) # define
fmt = '%Y'
elif months > numticks:
locator = MonthLocator(tz=tz)
fmt = '%b %Y'
elif weeks > numticks:
locator = WeekdayLocator(tz=tz)
fmt = '%a, %b %d'
elif days > numticks:
locator = DayLocator(interval=int(math.ceil(days / numticks)), tz=tz)
fmt = '%b %d'
elif hours > numticks:
locator = HourLocator(interval=int(math.ceil(hours / numticks)), tz=tz)
fmt = '%H:%M\n%b %d'
elif minutes > numticks:
locator = MinuteLocator(interval=int(math.ceil(minutes / numticks)),
tz=tz)
fmt = '%H:%M:%S'
else:
locator = MinuteLocator(tz=tz)
fmt = '%H:%M:%S'
formatter = DateFormatter(fmt, tz=tz)
return locator, formatter
def seconds(s):
'Return seconds as days.'
return float(s) / SEC_PER_DAY
def minutes(m):
'Return minutes as days.'
return float(m) / MINUTES_PER_DAY
def hours(h):
'Return hours as days.'
return h / 24.
def weeks(w):
'Return weeks as days.'
return w * 7.
class DateConverter(units.ConversionInterface):
"""
Converter for datetime.date and datetime.datetime data,
or for date/time data represented as it would be converted
by :func:`date2num`.
The 'unit' tag for such data is None or a tzinfo instance.
"""
@staticmethod
def axisinfo(unit, axis):
"""
Return the :class:`~matplotlib.units.AxisInfo` for *unit*.
*unit* is a tzinfo instance or None.
The *axis* argument is required but not used.
"""
tz = unit
majloc = AutoDateLocator(tz=tz)
majfmt = AutoDateFormatter(majloc, tz=tz)
datemin = datetime.date(2000, 1, 1)
datemax = datetime.date(2010, 1, 1)
return units.AxisInfo(majloc=majloc, majfmt=majfmt, label='',
default_limits=(datemin, datemax))
@staticmethod
def convert(value, unit, axis):
"""
If *value* is not already a number or sequence of numbers,
convert it with :func:`date2num`.
The *unit* and *axis* arguments are not used.
"""
if units.ConversionInterface.is_numlike(value):
return value
return date2num(value)
@staticmethod
def default_units(x, axis):
'Return the tzinfo instance of *x* or of its first element, or None'
if isinstance(x, np.ndarray):
x = x.ravel()
try:
x = x[0]
except (TypeError, IndexError):
pass
try:
return x.tzinfo
except AttributeError:
pass
return None
units.registry[datetime.date] = DateConverter()
units.registry[datetime.datetime] = DateConverter()
|