This file is indexed.

/usr/lib/python2.7/dist-packages/matplotlib/streamplot.py is in python-matplotlib 1.4.2-3.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
"""
Streamline plotting for 2D vector fields.

"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import six
from six.moves import xrange

import numpy as np
import matplotlib
import matplotlib.cm as cm
import matplotlib.colors as mcolors
import matplotlib.collections as mcollections
import matplotlib.patches as patches


__all__ = ['streamplot']


def streamplot(axes, x, y, u, v, density=1, linewidth=None, color=None,
               cmap=None, norm=None, arrowsize=1, arrowstyle='-|>',
               minlength=0.1, transform=None, zorder=1):
    """Draws streamlines of a vector flow.

    *x*, *y* : 1d arrays
        an *evenly spaced* grid.
    *u*, *v* : 2d arrays
        x and y-velocities. Number of rows should match length of y, and
        the number of columns should match x.
    *density* : float or 2-tuple
        Controls the closeness of streamlines. When `density = 1`, the domain
        is divided into a 30x30 grid---*density* linearly scales this grid.
        Each cell in the grid can have, at most, one traversing streamline.
        For different densities in each direction, use [density_x, density_y].
    *linewidth* : numeric or 2d array
        vary linewidth when given a 2d array with the same shape as velocities.
    *color* : matplotlib color code, or 2d array
        Streamline color. When given an array with the same shape as
        velocities, *color* values are converted to colors using *cmap*.
    *cmap* : :class:`~matplotlib.colors.Colormap`
        Colormap used to plot streamlines and arrows. Only necessary when using
        an array input for *color*.
    *norm* : :class:`~matplotlib.colors.Normalize`
        Normalize object used to scale luminance data to 0, 1. If None, stretch
        (min, max) to (0, 1). Only necessary when *color* is an array.
    *arrowsize* : float
        Factor scale arrow size.
    *arrowstyle* : str
        Arrow style specification.
        See :class:`~matplotlib.patches.FancyArrowPatch`.
    *minlength* : float
        Minimum length of streamline in axes coordinates.
    *zorder* : int
        any number

    Returns:

        *stream_container* : StreamplotSet
            Container object with attributes

                - lines: `matplotlib.collections.LineCollection` of streamlines

                - arrows: collection of `matplotlib.patches.FancyArrowPatch`
                  objects representing arrows half-way along stream
                  lines.

            This container will probably change in the future to allow changes
            to the colormap, alpha, etc. for both lines and arrows, but these
            changes should be backward compatible.

    """
    grid = Grid(x, y)
    mask = StreamMask(density)
    dmap = DomainMap(grid, mask)

    # default to data coordinates
    if transform is None:
        transform = axes.transData

    if color is None:
        color = six.next(axes._get_lines.color_cycle)

    if linewidth is None:
        linewidth = matplotlib.rcParams['lines.linewidth']

    line_kw = {}
    arrow_kw = dict(arrowstyle=arrowstyle, mutation_scale=10 * arrowsize)

    use_multicolor_lines = isinstance(color, np.ndarray)
    if use_multicolor_lines:
        assert color.shape == grid.shape
        line_colors = []
        color = np.ma.masked_invalid(color)
    else:
        line_kw['color'] = color
        arrow_kw['color'] = color

    if isinstance(linewidth, np.ndarray):
        assert linewidth.shape == grid.shape
        line_kw['linewidth'] = []
    else:
        line_kw['linewidth'] = linewidth
        arrow_kw['linewidth'] = linewidth

    line_kw['zorder'] = zorder
    arrow_kw['zorder'] = zorder

    ## Sanity checks.
    assert u.shape == grid.shape
    assert v.shape == grid.shape

    u = np.ma.masked_invalid(u)
    v = np.ma.masked_invalid(v)

    integrate = get_integrator(u, v, dmap, minlength)

    trajectories = []
    for xm, ym in _gen_starting_points(mask.shape):
        if mask[ym, xm] == 0:
            xg, yg = dmap.mask2grid(xm, ym)
            t = integrate(xg, yg)
            if t is not None:
                trajectories.append(t)

    if use_multicolor_lines:
        if norm is None:
            norm = mcolors.Normalize(color.min(), color.max())
        if cmap is None:
            cmap = cm.get_cmap(matplotlib.rcParams['image.cmap'])
        else:
            cmap = cm.get_cmap(cmap)

    streamlines = []
    arrows = []
    for t in trajectories:
        tgx = np.array(t[0])
        tgy = np.array(t[1])
        # Rescale from grid-coordinates to data-coordinates.
        tx = np.array(t[0]) * grid.dx + grid.x_origin
        ty = np.array(t[1]) * grid.dy + grid.y_origin

        points = np.transpose([tx, ty]).reshape(-1, 1, 2)
        streamlines.extend(np.hstack([points[:-1], points[1:]]))

        # Add arrows half way along each trajectory.
        s = np.cumsum(np.sqrt(np.diff(tx) ** 2 + np.diff(ty) ** 2))
        n = np.searchsorted(s, s[-1] / 2.)
        arrow_tail = (tx[n], ty[n])
        arrow_head = (np.mean(tx[n:n + 2]), np.mean(ty[n:n + 2]))

        if isinstance(linewidth, np.ndarray):
            line_widths = interpgrid(linewidth, tgx, tgy)[:-1]
            line_kw['linewidth'].extend(line_widths)
            arrow_kw['linewidth'] = line_widths[n]

        if use_multicolor_lines:
            color_values = interpgrid(color, tgx, tgy)[:-1]
            line_colors.append(color_values)
            arrow_kw['color'] = cmap(norm(color_values[n]))

        p = patches.FancyArrowPatch(arrow_tail,
                                    arrow_head,
                                    transform=transform,
                                    **arrow_kw)
        axes.add_patch(p)
        arrows.append(p)

    lc = mcollections.LineCollection(streamlines,
                                     transform=transform,
                                     **line_kw)
    if use_multicolor_lines:
        lc.set_array(np.ma.hstack(line_colors))
        lc.set_cmap(cmap)
        lc.set_norm(norm)
    axes.add_collection(lc)
    axes.autoscale_view()

    ac = matplotlib.collections.PatchCollection(arrows)
    stream_container = StreamplotSet(lc, ac)
    return stream_container


class StreamplotSet(object):

    def __init__(self, lines, arrows, **kwargs):
        self.lines = lines
        self.arrows = arrows


# Coordinate definitions
#========================

class DomainMap(object):
    """Map representing different coordinate systems.

    Coordinate definitions:

    * axes-coordinates goes from 0 to 1 in the domain.
    * data-coordinates are specified by the input x-y coordinates.
    * grid-coordinates goes from 0 to N and 0 to M for an N x M grid,
      where N and M match the shape of the input data.
    * mask-coordinates goes from 0 to N and 0 to M for an N x M mask,
      where N and M are user-specified to control the density of streamlines.

    This class also has methods for adding trajectories to the StreamMask.
    Before adding a trajectory, run `start_trajectory` to keep track of regions
    crossed by a given trajectory. Later, if you decide the trajectory is bad
    (e.g., if the trajectory is very short) just call `undo_trajectory`.
    """

    def __init__(self, grid, mask):
        self.grid = grid
        self.mask = mask
        ## Constants for conversion between grid- and mask-coordinates
        self.x_grid2mask = float(mask.nx - 1) / grid.nx
        self.y_grid2mask = float(mask.ny - 1) / grid.ny

        self.x_mask2grid = 1. / self.x_grid2mask
        self.y_mask2grid = 1. / self.y_grid2mask

        self.x_data2grid = grid.nx / grid.width
        self.y_data2grid = grid.ny / grid.height

    def grid2mask(self, xi, yi):
        """Return nearest space in mask-coords from given grid-coords."""
        return int((xi * self.x_grid2mask) + 0.5), \
               int((yi * self.y_grid2mask) + 0.5)

    def mask2grid(self, xm, ym):
        return xm * self.x_mask2grid, ym * self.y_mask2grid

    def data2grid(self, xd, yd):
        return xd * self.x_data2grid, yd * self.y_data2grid

    def start_trajectory(self, xg, yg):
        xm, ym = self.grid2mask(xg, yg)
        self.mask._start_trajectory(xm, ym)

    def reset_start_point(self, xg, yg):
        xm, ym = self.grid2mask(xg, yg)
        self.mask._current_xy = (xm, ym)

    def update_trajectory(self, xg, yg):
        if not self.grid.within_grid(xg, yg):
            raise InvalidIndexError
        xm, ym = self.grid2mask(xg, yg)
        self.mask._update_trajectory(xm, ym)

    def undo_trajectory(self):
        self.mask._undo_trajectory()


class Grid(object):
    """Grid of data."""
    def __init__(self, x, y):

        if len(x.shape) == 2:
            x_row = x[0]
            assert np.allclose(x_row, x)
            x = x_row
        else:
            assert len(x.shape) == 1

        if len(y.shape) == 2:
            y_col = y[:, 0]
            assert np.allclose(y_col, y.T)
            y = y_col
        else:
            assert len(y.shape) == 1

        self.nx = len(x)
        self.ny = len(y)

        self.dx = x[1] - x[0]
        self.dy = y[1] - y[0]

        self.x_origin = x[0]
        self.y_origin = y[0]

        self.width = x[-1] - x[0]
        self.height = y[-1] - y[0]

    @property
    def shape(self):
        return self.ny, self.nx

    def within_grid(self, xi, yi):
        """Return True if point is a valid index of grid."""
        # Note that xi/yi can be floats; so, for example, we can't simply check
        # `xi < self.nx` since `xi` can be `self.nx - 1 < xi < self.nx`
        return xi >= 0 and xi <= self.nx - 1 and yi >= 0 and yi <= self.ny - 1


class StreamMask(object):
    """Mask to keep track of discrete regions crossed by streamlines.

    The resolution of this grid determines the approximate spacing between
    trajectories. Streamlines are only allowed to pass through zeroed cells:
    When a streamline enters a cell, that cell is set to 1, and no new
    streamlines are allowed to enter.
    """

    def __init__(self, density):
        if np.isscalar(density):
            assert density > 0
            self.nx = self.ny = int(30 * density)
        else:
            assert len(density) == 2
            self.nx = int(30 * density[0])
            self.ny = int(30 * density[1])
        self._mask = np.zeros((self.ny, self.nx))
        self.shape = self._mask.shape

        self._current_xy = None

    def __getitem__(self, *args):
        return self._mask.__getitem__(*args)

    def _start_trajectory(self, xm, ym):
        """Start recording streamline trajectory"""
        self._traj = []
        self._update_trajectory(xm, ym)

    def _undo_trajectory(self):
        """Remove current trajectory from mask"""
        for t in self._traj:
            self._mask.__setitem__(t, 0)

    def _update_trajectory(self, xm, ym):
        """Update current trajectory position in mask.

        If the new position has already been filled, raise `InvalidIndexError`.
        """
        if self._current_xy != (xm, ym):
            if self[ym, xm] == 0:
                self._traj.append((ym, xm))
                self._mask[ym, xm] = 1
                self._current_xy = (xm, ym)
            else:
                raise InvalidIndexError


class InvalidIndexError(Exception):
    pass


class TerminateTrajectory(Exception):
    pass


# Integrator definitions
#========================

def get_integrator(u, v, dmap, minlength):

    # rescale velocity onto grid-coordinates for integrations.
    u, v = dmap.data2grid(u, v)

    # speed (path length) will be in axes-coordinates
    u_ax = u / dmap.grid.nx
    v_ax = v / dmap.grid.ny
    speed = np.ma.sqrt(u_ax ** 2 + v_ax ** 2)

    def forward_time(xi, yi):
        ds_dt = interpgrid(speed, xi, yi)
        if ds_dt == 0:
            raise TerminateTrajectory()
        dt_ds = 1. / ds_dt
        ui = interpgrid(u, xi, yi)
        vi = interpgrid(v, xi, yi)
        return ui * dt_ds, vi * dt_ds

    def backward_time(xi, yi):
        dxi, dyi = forward_time(xi, yi)
        return -dxi, -dyi

    def integrate(x0, y0):
        """Return x, y grid-coordinates of trajectory based on starting point.

        Integrate both forward and backward in time from starting point in
        grid coordinates.

        Integration is terminated when a trajectory reaches a domain boundary
        or when it crosses into an already occupied cell in the StreamMask. The
        resulting trajectory is None if it is shorter than `minlength`.
        """

        dmap.start_trajectory(x0, y0)
        sf, xf_traj, yf_traj = _integrate_rk12(x0, y0, dmap, forward_time)
        dmap.reset_start_point(x0, y0)
        sb, xb_traj, yb_traj = _integrate_rk12(x0, y0, dmap, backward_time)
        # combine forward and backward trajectories
        stotal = sf + sb
        x_traj = xb_traj[::-1] + xf_traj[1:]
        y_traj = yb_traj[::-1] + yf_traj[1:]

        if stotal > minlength:
            return x_traj, y_traj
        else:  # reject short trajectories
            dmap.undo_trajectory()
            return None

    return integrate


def _integrate_rk12(x0, y0, dmap, f):
    """2nd-order Runge-Kutta algorithm with adaptive step size.

    This method is also referred to as the improved Euler's method, or Heun's
    method. This method is favored over higher-order methods because:

    1. To get decent looking trajectories and to sample every mask cell
       on the trajectory we need a small timestep, so a lower order
       solver doesn't hurt us unless the data is *very* high resolution.
       In fact, for cases where the user inputs
       data smaller or of similar grid size to the mask grid, the higher
       order corrections are negligible because of the very fast linear
       interpolation used in `interpgrid`.

    2. For high resolution input data (i.e. beyond the mask
       resolution), we must reduce the timestep. Therefore, an adaptive
       timestep is more suited to the problem as this would be very hard
       to judge automatically otherwise.

    This integrator is about 1.5 - 2x as fast as both the RK4 and RK45
    solvers in most setups on my machine. I would recommend removing the
    other two to keep things simple.
    """
    ## This error is below that needed to match the RK4 integrator. It
    ## is set for visual reasons -- too low and corners start
    ## appearing ugly and jagged. Can be tuned.
    maxerror = 0.003

    ## This limit is important (for all integrators) to avoid the
    ## trajectory skipping some mask cells. We could relax this
    ## condition if we use the code which is commented out below to
    ## increment the location gradually. However, due to the efficient
    ## nature of the interpolation, this doesn't boost speed by much
    ## for quite a bit of complexity.
    maxds = min(1. / dmap.mask.nx, 1. / dmap.mask.ny, 0.1)

    ds = maxds
    stotal = 0
    xi = x0
    yi = y0
    xf_traj = []
    yf_traj = []

    while dmap.grid.within_grid(xi, yi):
        xf_traj.append(xi)
        yf_traj.append(yi)
        try:
            k1x, k1y = f(xi, yi)
            k2x, k2y = f(xi + ds * k1x,
                         yi + ds * k1y)
        except IndexError:
            # Out of the domain on one of the intermediate integration steps.
            # Take an Euler step to the boundary to improve neatness.
            ds, xf_traj, yf_traj = _euler_step(xf_traj, yf_traj, dmap, f)
            stotal += ds
            break
        except TerminateTrajectory:
            break

        dx1 = ds * k1x
        dy1 = ds * k1y
        dx2 = ds * 0.5 * (k1x + k2x)
        dy2 = ds * 0.5 * (k1y + k2y)

        nx, ny = dmap.grid.shape
        # Error is normalized to the axes coordinates
        error = np.sqrt(((dx2 - dx1) / nx) ** 2 + ((dy2 - dy1) / ny) ** 2)

        # Only save step if within error tolerance
        if error < maxerror:
            xi += dx2
            yi += dy2
            try:
                dmap.update_trajectory(xi, yi)
            except InvalidIndexError:
                break
            if (stotal + ds) > 2:
                break
            stotal += ds

        # recalculate stepsize based on step error
        if error == 0:
            ds = maxds
        else:
            ds = min(maxds, 0.85 * ds * (maxerror / error) ** 0.5)

    return stotal, xf_traj, yf_traj


def _euler_step(xf_traj, yf_traj, dmap, f):
    """Simple Euler integration step that extends streamline to boundary."""
    ny, nx = dmap.grid.shape
    xi = xf_traj[-1]
    yi = yf_traj[-1]
    cx, cy = f(xi, yi)
    if cx == 0:
        dsx = np.inf
    elif cx < 0:
        dsx = xi / -cx
    else:
        dsx = (nx - 1 - xi) / cx
    if cy == 0:
        dsy = np.inf
    elif cy < 0:
        dsy = yi / -cy
    else:
        dsy = (ny - 1 - yi) / cy
    ds = min(dsx, dsy)
    xf_traj.append(xi + cx * ds)
    yf_traj.append(yi + cy * ds)
    return ds, xf_traj, yf_traj


# Utility functions
#========================

def interpgrid(a, xi, yi):
    """Fast 2D, linear interpolation on an integer grid"""

    Ny, Nx = np.shape(a)
    if isinstance(xi, np.ndarray):
        x = xi.astype(np.int)
        y = yi.astype(np.int)
        # Check that xn, yn don't exceed max index
        xn = np.clip(x + 1, 0, Nx - 1)
        yn = np.clip(y + 1, 0, Ny - 1)
    else:
        x = np.int(xi)
        y = np.int(yi)
        # conditional is faster than clipping for integers
        if x == (Nx - 2):
            xn = x
        else:
            xn = x + 1
        if y == (Ny - 2):
            yn = y
        else:
            yn = y + 1

    a00 = a[y, x]
    a01 = a[y, xn]
    a10 = a[yn, x]
    a11 = a[yn, xn]
    xt = xi - x
    yt = yi - y
    a0 = a00 * (1 - xt) + a01 * xt
    a1 = a10 * (1 - xt) + a11 * xt
    ai = a0 * (1 - yt) + a1 * yt

    if not isinstance(xi, np.ndarray):
        if np.ma.is_masked(ai):
            raise TerminateTrajectory

    return ai


def _gen_starting_points(shape):
    """Yield starting points for streamlines.

    Trying points on the boundary first gives higher quality streamlines.
    This algorithm starts with a point on the mask corner and spirals inward.
    This algorithm is inefficient, but fast compared to rest of streamplot.
    """
    ny, nx = shape
    xfirst = 0
    yfirst = 1
    xlast = nx - 1
    ylast = ny - 1
    x, y = 0, 0
    i = 0
    direction = 'right'
    for i in xrange(nx * ny):

        yield x, y

        if direction == 'right':
            x += 1
            if x >= xlast:
                xlast -= 1
                direction = 'up'
        elif direction == 'up':
            y += 1
            if y >= ylast:
                ylast -= 1
                direction = 'left'
        elif direction == 'left':
            x -= 1
            if x <= xfirst:
                xfirst += 1
                direction = 'down'
        elif direction == 'down':
            y -= 1
            if y <= yfirst:
                yfirst += 1
                direction = 'right'