This file is indexed.

/usr/share/pyshared/MMTK/Minimization.py is in python-mmtk 2.7.9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# This module implements energy minimizers.
#
# Written by Konrad Hinsen
#

"""
Energy minimizers
"""

__docformat__ = 'restructuredtext'

from MMTK import Features, Trajectory, Units
from MMTK_minimization import conjugateGradient, steepestDescent

#
# Minimizer base class
#
class Minimizer(Trajectory.TrajectoryGenerator):

    def __init__(self, universe, options):
	Trajectory.TrajectoryGenerator.__init__(self, universe, options)

    default_options = {'steps': 100, 'step_size': 0.02*Units.Ang,
		       'convergence': 0.01*Units.kJ/(Units.mol*Units.nm),
                       'background': False, 'threads': None,
                       'mpi_communicator': None, 'actions': []}

    available_data = ['energy', 'configuration', 'gradients']

    restart_data = ['configuration', 'energy']

    def __call__(self, options):
	raise AttributeError

#
# Steepest descent minimizer
#
class SteepestDescentMinimizer(Minimizer):

    """
    Steepest-descent minimizer

    The minimizer can handle fixed atoms, but no distance constraints.
    It is fully thread-safe.

    The minimization is started by calling the minimizer object.
    All the keyword options (see documnentation of __init__) can be
    specified either when creating the minimizer or when calling it.

    The following data categories and variables are available for
    output:

     - category "configuration": configuration and box size (for
       periodic universes)

     - category "gradients": energy gradients for each atom

     - category "energy": potential energy and
                          norm of the potential energy gradient
    """

    def __init__(self, universe, **options):
        """
        :param universe: the universe on which the integrator acts
        :type universe: :class:`~MMTK.Universe.Universe`
        :keyword steps: the number of minimization steps (default is 100)
        :type steps: int
        :keyword step_size: the initial size of a minimization step
                            (default is 0.002 nm)
        :type step_size: float
        :keyword convergence: the root-mean-square gradient length at which
                              minimization stops (default is 0.01 kJ/mol/nm)
        :type convergence: float
        :keyword actions: a list of actions to be executed periodically
                          (default is none)
        :type actions: list
        :keyword threads: the number of threads to use in energy evaluation
                          (default set by MMTK_ENERGY_THREADS)
        :type threads: int
        :keyword background: if True, the integration is executed as a
                             separate thread (default: False)
        :type background: bool
        :keyword mpi_communicator: an MPI communicator object, or None,
                                   meaning no parallelization (default: None)
        :type mpi_communicator: Scientific.MPI.MPICommunicator
        """
	Minimizer.__init__(self, universe, options)
	self.features = [Features.FixedParticleFeature,
			 Features.NoseThermostatFeature,
                         Features.AndersenBarostatFeature]

    def __call__(self, **options):
        """
        Run the minimizer. The keyword options are the same as described
        under __init__.
        """
	self.setCallOptions(options)
	Features.checkFeatures(self, self.universe)
	configuration = self.universe.configuration()
	fixed = self.universe.getAtomBooleanArray('fixed')
        nt = self.getOption('threads')
        comm = self.getOption('mpi_communicator')
	evaluator = self.universe.energyEvaluator(threads=nt,
                                                  mpi_communicator=comm)
        evaluator = evaluator.CEvaluator()
	args = (self.universe,
                configuration.array, fixed.array, evaluator,
                self.getOption('steps'), self.getOption('step_size'),
                self.getOption('convergence'), self.getActions(),
                'Steepest descent minimization with ' +
                self.optionString(['convergence', 'step_size', 'steps']))
        return self.run(steepestDescent, args)

#
# Conjugate gradient minimizer
#
class ConjugateGradientMinimizer(Minimizer):

    """
    Conjugate gradient minimizer

    The minimizer can handle fixed atoms, but no distance constraints.
    It is fully thread-safe.

    The minimization is started by calling the minimizer object.
    All the keyword options can be specified either when
    creating the minimizer or when calling it.

    The following data categories and variables are available for
    output:

     - category "configuration": configuration and box size (for
       periodic universes)

     - category "gradients": energy gradients for each atom

     - category "energy": potential energy and
                          norm of the potential energy gradient
    """

    def __init__(self, universe, **options):
        """
        :param universe: the universe on which the integrator acts
        :type universe: :class:`~MMTK.Universe.Universe`
        :keyword steps: the number of minimization steps (default is 100)
        :type steps: int
        :keyword step_size: the initial size of a minimization step
                            (default is 0.002 nm)
        :type step_size: float
        :keyword convergence: the root-mean-square gradient length at which
                              minimization stops (default is 0.01 kJ/mol/nm)
        :type convergence: float
        :keyword actions: a list of actions to be executed periodically
                          (default is none)
        :type actions: list
        :keyword threads: the number of threads to use in energy evaluation
                          (default set by MMTK_ENERGY_THREADS)
        :type threads: int
        :keyword background: if True, the integration is executed as a
                             separate thread (default: False)
        :type background: bool
        """
	Minimizer.__init__(self, universe, options)
	self.features = [Features.FixedParticleFeature,
			 Features.NoseThermostatFeature]

    def __call__(self, **options):
        """
        Run the minimizer. The keyword options are the same as described
        under __init__.
        """
	self.setCallOptions(options)
	Features.checkFeatures(self, self.universe)
	configuration = self.universe.configuration()
	fixed = self.universe.getAtomBooleanArray('fixed')
        nt = self.getOption('threads')
	evaluator = self.universe.energyEvaluator(threads=nt).CEvaluator()
	args =(self.universe,
               configuration.array, fixed.array, evaluator,
               self.getOption('steps'), self.getOption('step_size'),
               self.getOption('convergence'), self.getActions(),
               'Conjugate gradient minimization with ' +
               self.optionString(['convergence', 'step_size', 'steps']))
        return self.run(conjugateGradient, args)