/usr/share/pyshared/MMTK/ParticleProperties.py is in python-mmtk 2.7.9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 | # This module implements classes that represent the atomic properties in a
# simulation, i.e. configurations, force vectors, etc.
#
# Written by Konrad Hinsen
#
"""
Quantities defined for each particle in a universe
"""
__docformat__ = 'restructuredtext'
from MMTK import Utility
from Scientific.Geometry import Vector, isVector, Tensor, isTensor
from Scientific.indexing import index_expression
from Scientific import N
import copy
#
# Base class for all properties defined for a universe.
#
class ParticleProperty(object):
"""
Property defined for each particle
This is an abstract base class; for creating instances, use one of
its subclasses.
ParticleProperty objects store properties that are defined per
particle, such as mass, position, velocity, etc. The value
corresponding to a particular atom can be retrieved or changed by
indexing with the atom object.
"""
def __init__(self, universe, data_rank, value_rank):
universe.configuration()
self.universe = universe
self.version = universe._version
self.n = universe.numberOfPoints()
self.data_rank = data_rank
self.value_rank = value_rank
__safe_for_unpickling__ = True
__had_initargs__ = True
def __len__(self):
return self.n
def _checkCompatibility(self, other, allow_scalar=False):
if isParticleProperty(other):
if other.data_rank != self.data_rank:
raise TypeError('Incompatible types')
if self.universe != other.universe:
raise ValueError('Variables are for different universes')
if self.version != other.version:
raise ValueError("Universe version numbers do not agree")
if self.value_rank == other.value_rank:
return self.return_class, other.array
elif allow_scalar and (self.value_rank==0 or other.value_rank==0):
if self.value_rank == 0:
return other.return_class, other.array
else:
return self.return_class, other.array
else:
raise ValueError("Ranks do not match")
elif isVector(other) or isTensor(other):
if len(other.array.shape) > self.value_rank:
raise TypeError('Incompatible types')
return self.return_class, other.array
else:
return self.return_class, other
def zero(self):
"""
:returns: an object of the element type (scalar, vector, etc.)
with the value 0.
:rtype: element type
"""
pass
def sumOverParticles(self):
"""
:returns: the sum of the values for all particles.
:rtype: element type
"""
pass
def _arithmetic(self, other, op, allow_scalar=False):
a1 = self.array
return_class, a2 = self._checkCompatibility(other, allow_scalar)
if type(a2) != N.ArrayType:
a2 = N.array([a2])
if len(a1.shape) != len(a2.shape):
if len(a1.shape) == 1:
a1 = a1[index_expression[...] +
(len(a2.shape)-1)*index_expression[N.NewAxis]]
else:
a2 = a2[index_expression[...] +
(len(a1.shape)-1)*index_expression[N.NewAxis]]
return return_class(self.universe, op(a1, a2))
def __add__(self, other):
return self._arithmetic(other, N.add)
__radd__ = __add__
def __sub__(self, other):
return self._arithmetic(other, N.subtract)
def __rsub__(self, other):
return self._arithmetic(other, lambda a, b: N.subtract(b, a))
def __mul__(self, other):
return self._arithmetic(other, N.multiply, True)
__rmul__ = __mul__
def __div__(self, other):
return self._arithmetic(other, N.divide, True)
def __rdiv__(self, other):
return self._arithmetic(other, lambda a, b: N.divide(b, a), True)
def __neg__(self):
return self.return_class(self.universe, -self.array)
def __copy__(self, memo = None):
return self.__class__(self.universe, copy.copy(self.array))
__deepcopy__ = __copy__
def assign(self, other):
"""
Copy all values from another compatible ParticleProperty object.
:param other: the data source
"""
self._checkCompatibility(other)
self.array[:] = other.array[:]
def scaleBy(self, factor):
"""
Multiply all values by a factor
:param factor: the scale factor
:type factor: float
"""
self.array[:] = self.array[:]*factor
def selectAtoms(self, condition):
"""
Return a collection containing all atoms a for which
condition(property[a]) is True.
:param condition: a test function
:type condition: callable
"""
from MMTK.Collections import Collection
return Collection([a for a in self.universe.atomList()
if condition(self[a])])
ParticleProperty.return_class = ParticleProperty
#
# One scalar per particle.
#
class ParticleScalar(ParticleProperty):
"""
Scalar property defined for each particle
ParticleScalar objects can be added to each other and
multiplied with scalars.
"""
def __init__(self, universe, data_array=None):
"""
:param universe: the universe for which the values are defined
:type universe: :class:`~MMTK.Universe.Universe`
:param data_array: the data array containing the values for each
particle. If None, a new array containing
zeros is created and used. Otherwise, the
array myst be of shape (N,), where N is the
number of particles in the universe.
:type data_array: Scientific.N.array_type
"""
ParticleProperty.__init__(self, universe, 1, 0)
if data_array is None:
self.array = N.zeros((self.n,), N.Float)
else:
self.array = data_array
if data_array.shape[0] != self.n:
raise ValueError('Data incompatible with universe')
def __getitem__(self, item):
if not isinstance(item, int):
item = item.index
return self.array[item]
def __setitem__(self, item, value):
if not isinstance(item, int):
item = item.index
self.array[item] = value
def zero(self):
return 0.
def maximum(self):
"""
:returns: the highest value in the data array particle
:rtype: float
"""
return N.maximum.reduce(self.array)
def minimum(self):
"""
:returns: the smallest value in the data array particle
:rtype: float
"""
return N.minimum.reduce(self.array)
def sumOverParticles(self):
return N.add.reduce(self.array)
def applyFunction(self, function):
"""
:param function: a function that is applied to each data value
:returns: a new ParticleScalar object containing the function results
"""
return ParticleScalar(self.universe, function(self.array))
ParticleScalar.return_class = ParticleScalar
#
# One vector per particle.
#
class ParticleVector(ParticleProperty):
"""
Vector property defined for each particle
ParticleVector objects can be added to each other and
multiplied with scalars or :class:`~MMTK.ParticleProperties.ParticleScalar` objects; all
of these operations result in another ParticleVector
object. Multiplication with a vector or another ParticleVector object
yields a :class:`~MMTK.ParticleProperties.ParticleScalar` object containing the dot products
for each particle. Multiplications that treat ParticleVectors
as vectors in a 3N-dimensional space are implemented as methods.
"""
def __init__(self, universe, data_array=None):
"""
:param universe: the universe for which the values are defined
:type universe: :class:`~MMTK.Universe.Universe`
:param data_array: the data array containing the values for each
particle. If None, a new array containing
zeros is created and used. Otherwise, the
array myst be of shape (N,3), where N is the
number of particles in the universe.
:type data_array: Scientific.N.array_type
"""
ParticleProperty.__init__(self, universe, 1, 1)
if data_array is None:
self.array = N.zeros((self.n, 3), N.Float)
else:
self.array = data_array
if data_array.shape[0] != self.n:
raise ValueError('Data incompatible with universe')
def __getitem__(self, item):
if not isinstance(item, int):
item = item.index
return Vector(self.array[item])
def __setitem__(self, item, value):
if not isinstance(item, int):
item = item.index
self.array[item] = value.array
def __mul__(self, other):
if isParticleProperty(other):
if self.universe != other.universe:
raise ValueError('Variables are for different universes')
if other.value_rank == 0:
return ParticleVector(self.universe,
self.array*other.array[:,N.NewAxis])
elif other.value_rank == 1:
return ParticleScalar(self.universe,
N.add.reduce(self.array * \
other.array, -1))
else:
raise TypeError('not yet implemented')
elif isVector(other):
return ParticleScalar(self.universe,
N.add.reduce(
self.array*other.array[N.NewAxis,:],
-1))
elif isTensor(other):
raise TypeError('not yet implemented')
else:
return ParticleVector(self.universe, self.array*other)
__rmul__ = __mul__
_product_with_vector = __mul__
def zero(self):
return Vector(0., 0., 0.)
def length(self):
"""
:returns: the length (norm) of the vector for each particle
:rtype: :class:`~MMTK.ParticleProperties.ParticleScalar`
"""
return ParticleScalar(self.universe,
N.sqrt(N.add.reduce(self.array**2,
-1)))
def sumOverParticles(self):
return Vector(N.add.reduce(self.array, 0))
def norm(self):
"""
:returns: the norm of the ParticleVector seen as a 3N-dimensional
vector
:rtype: float
"""
return N.sqrt(N.add.reduce(N.ravel(self.array**2)))
totalNorm = norm
def scaledToNorm(self, norm):
f = norm/self.norm()
return ParticleVector(self.universe, f*self.array)
def dotProduct(self, other):
"""
:param other: another ParticleVector
:type other: :class:`~MMTK.ParticleProperties.ParticleVector`
:returns: the dot product with other, treating both operands
as 3N-dimensional vectors.
"""
if self.universe != other.universe:
raise ValueError('Variables are for different universes')
return N.add.reduce(N.ravel(self.array * other.array))
def massWeightedNorm(self):
"""
:returns: the mass-weighted norm of the ParticleVector seen as a
3N-dimensional vector
:rtype: float
"""
m = self.universe.masses().array
return N.sqrt(N.sum(N.ravel(m[:, N.NewAxis] *
self.array**2))
/ N.sum(m))
def scaledToMassWeightedNorm(self, norm):
f = norm/self.massWeightedNorm()
return ParticleVector(self.universe, f*self.array)
def massWeightedDotProduct(self, other):
"""
:param other: another ParticleVector
:type other: :class:`~MMTK.ParticleProperties.ParticleVector`
:returns: the mass-weighted dot product with other treating both
operands as 3N-dimensional vectors
:rtype: float
"""
if self.universe != other.universe:
raise ValueError('Variables are for different universes')
m = self.universe.masses().array
return N.add.reduce(N.ravel(self.array * other.array * \
m[:, N.NewAxis]))
def dyadicProduct(self, other):
"""
:param other: another ParticleVector
:type other: :class:`~MMTK.ParticleProperties.ParticleVector`
:returns: the dyadic product with other
:rtype: :class:`~MMTK.ParticleProperties.ParticleTensor`
"""
if self.universe != other.universe:
raise ValueError('Variables are for different universes')
return ParticleTensor(self.universe,
self.array[:, :, N.NewAxis] * \
other.array[:, N.NewAxis, :])
ParticleVector.return_class = ParticleVector
#
# Configuration variables: ParticleVector plus universe parameters
#
class Configuration(ParticleVector):
"""
Configuration of a universe
Configuration instances represent a configuration of a universe,
consisting of positions for all atoms (like in a ParticleVector) plus
the geometry of the universe itself, e.g. the cell shape for
periodic universes.
"""
def __init__(self, universe, data_array=None, cell = None):
"""
:param universe: the universe for which the values are defined
:type universe: :class:`~MMTK.Universe.Universe`
:param data_array: the data array containing the values for each
particle. If None, a new array containing
zeros is created and used. Otherwise, the
array myst be of shape (N,3), where N is the
number of particles in the universe.
:type data_array: Scientific.N.array_type
:param cell: the cell parameters of the universe,
i.e. the return value of universe.cellParameters()
"""
ParticleVector.__init__(self, universe, data_array)
if cell is None:
self.cell_parameters = universe.cellParameters()
else:
self.cell_parameters = cell
def __add__(self, other):
value = ParticleVector.__add__(self, other)
return Configuration(self.universe, value.array, self.cell_parameters)
def __sub__(self, other):
value = ParticleVector.__sub__(self, other)
return Configuration(self.universe, value.array, self.cell_parameters)
def __copy__(self, memo = None):
return self.__class__(self.universe, copy.copy(self.array),
copy.copy(self.cell_parameters))
__deepcopy__ = __copy__
def hasValidPositions(self):
return N.logical_and.reduce(N.ravel(N.less(self.array,
Utility.undefined_limit)))
def convertToBoxCoordinates(self):
array = self.universe._realToBoxPointArray(self.array,
self.cell_parameters)
self.array[:] = array
def convertFromBoxCoordinates(self):
array = self.universe._boxToRealPointArray(self.array,
self.cell_parameters)
self.array[:] = array
#
# One tensor per particle.
#
class ParticleTensor(ParticleProperty):
"""
Rank-2 tensor property defined for each particle
ParticleTensor objects can be added to each other and
multiplied with scalars or :class:`~MMTK.ParticleProperties.ParticleScalar` objects; all
of these operations result in another ParticleTensor object.
"""
def __init__(self, universe, data_array=None):
"""
:param universe: the universe for which the values are defined
:type universe: :class:`~MMTK.Universe.Universe`
:param data_array: the data array containing the values for each
particle. If None, a new array containing
zeros is created and used. Otherwise, the
array myst be of shape (N,3,3), where N is the
number of particles in the universe.
:type data_array: Scientific.N.array_type
"""
ParticleProperty.__init__(self, universe, 1, 2)
if data_array is None:
self.array = N.zeros((self.n, 3, 3), N.Float)
else:
self.array = data_array
if data_array.shape[0] != self.n:
raise ValueError('Data incompatible with universe')
def __getitem__(self, item):
if not isinstance(item, int):
item = item.index
return Tensor(self.array[item])
def __setitem__(self, item, value):
if not isinstance(item, int):
item = item.index
self.array[item] = value.array
def __mul__(self, other):
if isParticleProperty(other):
if self.universe != other.universe:
raise ValueError('Variables are for different universes')
if other.value_rank == 0:
return ParticleTensor(self.universe,
self.array*other.array[:,
N.NewAxis,
N.NewAxis])
else:
raise TypeError('not yet implemented')
elif isVector(other):
raise TypeError('not yet implemented')
elif isTensor(other):
raise TypeError('not yet implemented')
else:
return ParticleTensor(self.universe, self.array*other)
__rmul__ = __mul__
def zero(self):
return Tensor([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]])
def sumOverParticles(self):
return Tensor(N.add.reduce(self.array, 0))
def trace(self):
return ParticleScalar(self.universe,
self.array[:, 0, 0] + self.array[:, 1, 1]
+ self.array[:, 2, 2])
ParticleTensor.return_class = ParticleTensor
#
# One tensor per pair, symmetric.
#
class SymmetricPairTensor(ParticleProperty):
def __init__(self, universe, data_array=None):
"""
:param universe: the universe for which the values are defined
:type universe: :class:`~MMTK.Universe.Universe`
:param data_array: the data array containing the values for each
particle. If None, a new array containing
zeros is created and used. Otherwise, the
array myst be of shape (N,3,N,3), where N is the
number of particles in the universe.
:type data_array: Scientific.N.array_type
"""
ParticleProperty.__init__(self, universe, 2, 2)
if data_array is None:
self.array = N.zeros((self.n,3, self.n,3), N.Float)
else:
self.array = data_array
if data_array.shape[0] != self.n or \
data_array.shape[2] != self.n:
raise ValueError('Data incompatible with universe')
self.symmetrized = False
def __getitem__(self, item):
i1, i2 = item
if not isinstance(i1, int):
i1 = i1.index
if not isinstance(i2, int):
i2 = i2.index
if i1 > i2:
i1, i2 = i2, i1
return Tensor(N.transpose(self.array[i1,:,i2,:]))
else:
return Tensor(self.array[i1,:,i2,:])
def __setitem__(self, item, value):
i1, i2 = item
if not isinstance(i1, int):
i1 = i1.index
if not isinstance(i2, int):
i2 = i2.index
if i1 > i2:
i1, i2 = i2, i1
self.array[i1,:,i2,:] = value.transpose().array
else:
self.array[i1,:,i2,:] = value.array
def zero(self):
return Tensor(3*[[0., 0., 0.]])
def symmetrize(self):
if not self.symmetrized:
a = self.array
n = a.shape[0]
a.shape = (3*n, 3*n)
nn = 3*n
for i in range(nn):
for j in range(i+1, nn):
a[j,i] = a[i,j]
a.shape = (n, 3, n, 3)
self.symmetrized = True
def __mul__(self, other):
self.symmetrize()
if isParticleProperty(other):
if self.universe != other.universe:
raise ValueError('Variables are for different universes')
if other.value_rank == 1:
n = self.array.shape[0]
sa = N.reshape(self.array, (n, 3, 3*n))
oa = N.reshape(other.array, (3*n, ))
return ParticleVector(self.universe, N.dot(sa, oa))
else:
raise TypeError('not yet implemented')
SymmetricPairTensor.return_class = SymmetricPairTensor
#
# Type check function
#
def isParticleProperty(object):
"""
:param object: any object
:returns: True if object is a :class:`~MMTK.ParticleProperties.ParticleProperty`
:rtype: bool
"""
return isinstance(object, ParticleProperty)
def isConfiguration(object):
"""
:param object: any object
:returns: True if object is a :class:`~MMTK.ParticleProperties.Configuration`
:rtype: bool
"""
return isinstance(object, Configuration)
|