/usr/share/pyshared/MMTK/Subspace.py is in python-mmtk 2.7.9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 | # This module implements subspaces for motion analysis etc.
#
# Written by Konrad Hinsen
#
"""
Linear subspaces for infinitesimal motions
This module implements subspaces for infinitesimal (or finite
small-amplitude) atomic motions. They can be used in normal mode
calculations or for analyzing complex motions. For an explanation, see:
| K. Hinsen and G.R. Kneller
| Projection methods for the analysis of complex motions in macromolecules
| Mol. Sim. 23:275-292 (2000)
"""
__docformat__ = 'restructuredtext'
from MMTK import Utility, ParticleProperties
from Scientific.Geometry import Vector, ex, ey, ez
from Scientific import N
import copy
#
# Import LAPACK routines
#
try:
array_package = N.package
except AttributeError:
array_package = "Numeric"
dgesdd = None
try:
if array_package == "Numeric":
from lapack_lite import dgesdd, LapackError
else:
from numpy.linalg.lapack_lite import dgesdd, LapackError
except ImportError: pass
if dgesdd is None:
try:
# PyLAPACK
from lapack_dge import dgesdd
except ImportError: pass
if dgesdd:
n = 1
array = N.zeros((n, n), N.Float)
sv = N.zeros((n,), N.Float)
u = N.zeros((n, n), N.Float)
vt = N.zeros((n, n), N.Float)
work = N.zeros((1,), N.Float)
int_types = [N.Int, N.Int8, N.Int16, N.Int32]
try:
int_types.append(N.Int64)
int_types.append(N.Int128)
except AttributeError:
pass
for int_type in int_types:
iwork = N.zeros((1,), int_type)
try:
dgesdd('S', n, n, array, n, sv, u, n, vt, n, work, -1, iwork, 0)
break
except LapackError:
pass
del n, array, sv, u, vt, work, iwork, int_types
del array_package
#
# A set of particle vectors that define a subspace
#
class ParticleVectorSet(object):
def __init__(self, universe, data):
self.universe = universe
if type(data) == N.arraytype:
self.n = data.shape[0]
self.array = data
else:
self.n = data
self.array = N.zeros((self.n, universe.numberOfAtoms(), 3),
N.Float)
def __len__(self):
return self.n
def __getitem__(self, i):
if i >= self.n:
raise IndexError
return ParticleProperties.ParticleVector(self.universe, self.array[i])
class Subspace(object):
"""
Subspace of infinitesimal atomic motions
"""
def __init__(self, universe, vectors):
"""
:param universe: the universe for which the subspace is created
:type universe: :class:`~MMTK.Universe.Universe`
:param vectors: a list of :class:`~MMTK.ParticleProperties.ParticleVector`
objects that define the subspace. They need not be
orthogonal or linearly independent.
:type vectors: list
"""
self.universe = universe
self.vectors = vectors
self._basis = None
def __add__(self, other):
return Subspace(self.vectors+other.vectors)
def __len__(self):
return len(self.vectors)
def __getitem__(self, item):
return self.vectors[item]
def getBasis(self):
"""
Construct a basis for the subspace by orthonormalization of
the input vectors using Singular Value Decomposition. The
basis consists of a sequence of
:class:`~MMTK.ParticleProperties.ParticleVector`
objects that are orthonormal in configuration space.
:returns: the basis
"""
if self._basis is None:
basis = N.array([v.array for v in self.vectors], N.Float)
shape = basis.shape
nvectors = shape[0]
natoms = shape[1]
basis.shape = (nvectors, 3*natoms)
sv = N.zeros((min(nvectors, 3*natoms),), N.Float)
min_n_m = min(3*natoms, nvectors)
vt = N.zeros((nvectors, min_n_m), N.Float)
work = N.zeros((1,), N.Float)
iwork = N.zeros((8*min_n_m,), int_type)
if 3*natoms >= nvectors:
result = dgesdd('O', 3*natoms, nvectors, basis, 3*natoms,
sv, basis, 3*natoms, vt, min_n_m,
work, -1, iwork, 0)
work = N.zeros((int(work[0]),), N.Float)
result = dgesdd('O', 3*natoms, nvectors, basis, 3*natoms,
sv, basis, 3*natoms, vt, min_n_m,
work, work.shape[0], iwork, 0)
u = basis
else:
u = N.zeros((min_n_m, 3*natoms), N.Float)
result = dgesdd('S', 3*natoms, nvectors, basis, 3*natoms,
sv, u, 3*natoms, vt, min_n_m,
work, -1, iwork, 0)
work = N.zeros((int(work[0]),), N.Float)
result = dgesdd('S', 3*natoms, nvectors, basis, 3*natoms,
sv, u, 3*natoms, vt, min_n_m,
work, work.shape[0], iwork, 0)
if result['info'] != 0:
raise ValueError('Lapack SVD: ' + `result['info']`)
svmax = N.maximum.reduce(sv)
nvectors = N.add.reduce(N.greater(sv, 1.e-10*svmax))
u = u[:nvectors]
u.shape = (nvectors, natoms, 3)
self._basis = ParticleVectorSet(self.universe, u)
return self._basis
def projectionOf(self, vector):
"""
:param vector: a particle vector
:type vector: :class:`~MMTK.ParticleProperties.ParticleVector`
:returns: the projection of the vector onto the subspace.
"""
vector = vector.array
basis = self.getBasis().array
p = N.zeros(vector.shape, N.Float)
for bv in basis:
N.add(N.add.reduce(N.ravel(bv*vector))*bv, p, p)
return ParticleProperties.ParticleVector(self.universe, p)
def projectionComplementOf(self, vector):
"""
:param vector: a particle vector
:type vector: :class:`~MMTK.ParticleProperties.ParticleVector`
:returns: the projection of the vector onto the orthogonal complement
of the subspace.
"""
return vector - self.projectionOf(vector)
def complement(self):
"""
:returns: the orthogonal complement subspace
:rtype: :class:`~MMTK.Subspace.Subspace`
"""
basis = []
for i in range(self.universe.numberOfAtoms()):
for e in [ex, ey, ez]:
p = ParticleProperties.ParticleVector(self.universe)
p[i] = e
basis.append(self.projectionComplementOf(p))
return Subspace(self.universe, basis)
class LinkedRigidBodyMotionSubspace(Subspace):
"""
Subspace for the motion of linked rigid bodies
This class describes the same subspace as RigidBodyMotionSubspace,
and is used by the latter. For collections of several chains of
linked rigid bodies, RigidBodyMotionSubspace is more efficient.
"""
def __init__(self, universe, rigid_bodies):
"""
:param universe: the universe for which the subspace is created
:type universe: :class:`~MMTK.Universe.Universe`
:param rigid_bodies: a list or set of rigid bodies
with some common atoms
"""
ex_ey_ez = [Vector(1.,0.,0.), Vector(0.,1.,0.), Vector(0.,0.,1.)]
# Constructs
# 1) a list of vectors describing the rigid-body motions of each
# rigid body as if it were independent.
# 2) a list of pair-distance constraint vectors for all pairs of
# atoms inside a rigid body.
# The LRB subspace is constructed from the projections of the
# first set of vectors onto the orthogonal complement of the
# subspace generated by the second set of vectors.
vectors = []
c_vectors = []
for rb in rigid_bodies:
atoms = rb.atomList()
for d in ex_ey_ez:
v = ParticleProperties.ParticleVector(universe)
for a in atoms:
v[a] = d
vectors.append(v)
if len(atoms) > 1:
center = rb.centerOfMass()
iv = len(vectors)-3
for d in ex_ey_ez:
v = ParticleProperties.ParticleVector(universe)
for a in atoms:
v[a] = d.cross(a.position()-center)
for vt in vectors[iv:]:
v -= v.dotProduct(vt)*vt
if v.dotProduct(v) > 0.:
vectors.append(v)
for a1, a2 in Utility.pairs(atoms):
distance = universe.distanceVector(a1.position(),
a2.position())
v = ParticleProperties.ParticleVector(universe)
v[a1] = distance
v[a2] = -distance
c_vectors.append(v)
if c_vectors:
constraints = Subspace(universe, c_vectors)
vectors = [constraints.projectionComplementOf(v)
for v in vectors]
Subspace.__init__(self, universe, vectors)
class RigidMotionSubspace(Subspace):
"""
Subspace of rigid-body motions
A rigid-body motion subspace is the subspace which contains
the rigid-body motions of any number of chemical objects.
"""
def __init__(self, universe, objects):
"""
:param universe: the universe for which the subspace is created
:type universe: :class:`~MMTK.Universe.Universe`
:param objects: a sequence of objects whose rigid-body motion is
included in the subspace
"""
if not Utility.isSequenceObject(objects):
objects = [objects]
else:
objects = copy.copy(objects)
# Identify connected sets of linked rigid bodies and remove
# them from the plain rigid body list.
atom_map = {}
for o in objects:
for a in o.atomIterator():
am = atom_map.get(a, [])
am.append(o)
atom_map[a] = am
rb_map = {}
for rbs in atom_map.values():
if len(rbs) > 1:
for rb in rbs:
rb_map[rb] = rb_map.get(rb, frozenset()) \
.union(frozenset(rbs))
for rb in rb_map.keys():
objects.remove(rb)
while True:
changed = False
for rbs in rb_map.values():
for rb in rbs:
s = rb_map[rb]
rb_map[rb] = s.union(rbs)
if s != rb_map[rb]:
changed = True
if not changed:
break
lrbs = frozenset(rb_map.values())
# Generate the subspace vectors for the isolated rigid bodies.
ex_ey_ez = [Vector(1.,0.,0.), Vector(0.,1.,0.), Vector(0.,0.,1.)]
vectors = []
for o in objects:
rb_atoms = o.atomList()
for d in ex_ey_ez:
v = ParticleProperties.ParticleVector(universe)
for a in rb_atoms:
v[a] = d
vectors.append(v/N.sqrt(len(rb_atoms)))
if len(rb_atoms) > 1:
center = o.centerOfMass()
iv = len(vectors)-3
for d in ex_ey_ez:
v = ParticleProperties.ParticleVector(universe)
for a in rb_atoms:
v[a] = d.cross(a.position()-center)
for vt in vectors[iv:]:
v -= v.dotProduct(vt)*vt
norm_sq = N.sqrt(v.dotProduct(v))
if norm_sq > 0.:
vectors.append(v/norm_sq)
# Generate the subspace vectors for the linked rigid bodies.
for lrb in lrbs:
lrb_ss = LinkedRigidBodyMotionSubspace(universe, lrb)
for v in lrb_ss.getBasis():
vectors.append(v)
Subspace.__init__(self, universe, vectors)
# The vector set is already orthonormal by construction,
# so we can skip the lengthy SVD procedure.
self._basis = ParticleVectorSet(universe, len(vectors))
for i in range(len(vectors)):
self._basis.array[i] = vectors[i].array
class PairDistanceSubspace(Subspace):
"""
Subspace of pair-distance motions
A pair-distance motion subspace is the subspace which contains
the relative motions of any number of atom pairs along
their distance vector, e.g. bond elongation between two
bonded atoms.
"""
def __init__(self, universe, atom_pairs):
"""
:param universe: the universe for which the subspace is created
:type universe: :class:`~MMTK.Universe.Universe`
:param atom_pairs: a sequence of atom pairs whose distance-vector
motion is included in the subspace
"""
vectors = []
for atom1, atom2 in atom_pairs:
v = ParticleProperties.ParticleVector(universe)
distance = atom1.position()-atom2.position()
v[atom1] = distance
v[atom2] = -distance
vectors.append(v)
Subspace.__init__(self, universe, vectors)
|