/usr/share/pyshared/pypsignifit/psigniplot.py is in python-pypsignifit 3.0~beta.20120611.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 | #/usr/bin/env python
# vi: set ft=python sts=4 ts=4 sw=4 et:
######################################################################
#
# See COPYING file distributed along with the psignifit package for
# the copyright and license terms
#
######################################################################
__docformat__ = "restructuredtext"
import pylab as p
import numpy as N
import re
from scipy import stats
import psignidata
import swignifit.interface_methods as interface
from matplotlib.ticker import MaxNLocator
__all__ = ["GoodnessOfFit","ConvergenceMCMC","ParameterPlot","ThresholdPlot","plotSensitivity","plotInfluential","plotMultiplePMFs"]
__warnred = [.7,0,0]
import warnings
spineswarning = """your axes object does not support spines.
The most probable reason for this is that you are using an old version of matplotlib.
spines allow for more beautiful plots and are a new feature in matplotlib 1.0.0.
"""
class parameterdict ( dict ):
def __add__ ( self, other ):
out = parameterdict ( self )
for k,i in other.iteritems ():
out.setdefault ( k, i )
return out
class DefaultParameters ( object ):
def __init__ ( self ):
self.alltext = parameterdict()
self.text = parameterdict(fontsize=8)
self.title = parameterdict(fontsize=12)
self.label = parameterdict(fontsize=10)
self.allplots= parameterdict(color='b')
self.line = parameterdict()
self.highlight = parameterdict(color='r')
self.warning = parameterdict(fontsize=16, color=[.7,0,0])
rc = DefaultParameters()
def drawaxes ( ax, xtics=None, xfmt=None, ytics=None, yfmt=None, xname=None, yname=None ):
"""Draw x and y axes that look nicer than standard matplotlib
This function deletes the pylab default axes and draws visually more
pleasing axes. In addition it takes care that all graphics remain within
the area covered by the axes.
:Parameters:
*ax* :
the axes object in which the graphics should stay
*xtics* :
an array of x-ticks
*xfmt* :
format string for the x-ticks
*ytics* :
an array of y-ticks
*yfmt* :
format string for the y-ticks
*xname* :
label for the x-axis
*yname* :
label for the y-axis
"""
if getattr ( ax, 'spines', False ):
# New Implementation using spines
for loc, spine in ax.spines.iteritems():
if loc in ['left','bottom']:
spine.set_position( ('outward', 10) ) # Outward by 10 points
elif loc in ['right','top']:
spine.set_color('none') # no 'spine'
else:
raise ValueError ( 'unknown spine location: %s' % loc )
else:
warnings.warn ( spineswarning, DeprecationWarning )
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.set_xlabel ( xname, **(rc.label+rc.alltext) )
ax.set_ylabel ( yname, **(rc.label+rc.alltext) )
def prepare_axes ( ax, haveon=("bottom","left" ) ):
"""Prepare an axes object to look nicer than standard matplotlib
:Parameters:
*ax* :
axes object that should be prepared
*haveon* :
axes that should be shown
:Return:
the prepared axes object
"""
if getattr ( ax, 'spines', False ):
for loc,spine in ax.spines.iteritems():
if loc in haveon:
spine.set_position ( ("outward",10) )
else:
spine.set_color ( "none" )
else:
warnings.warn ( spineswarning, DeprecationWarning )
if "bottom" in haveon:
ax.xaxis.set_ticks_position ( "bottom" )
elif "top" in haveon:
ax.xaxis.set_ticks_position ( "top" )
else:
ax.xaxis.set_ticks_position ( "none" )
ax.xaxis.set_ticklabels ( "" )
if "left" in haveon:
ax.yaxis.set_ticks_position ( "left" )
elif "right" in haveon:
ax.yaxis.set_ticks_position ( "right" )
else:
ax.yaxis.set_ticks_position ( "none" )
ax.yaxis.set_ticklabels ( "" )
return ax
def axes_array_h ( fig, naxes, axsize, lowerleft=(0.1,0.1), dist=0.05, showally=True, nox=False ):
"""Draw a horizontal array of axes
:Parameters:
*fig*, matplotlib.figure instance :
the figure in which to plot the axes
*naxes*, integer :
how many axes should be generated
*axsize*, tuple:
size of each axes system
*lowerleft*, tuple:
lower left corner of the first axes system
*dist*, float:
horizontal separation of adjacent axes
*showally*, bool:
indicates whether all y-axes should be shown or not
*nox*, bool:
if True, no x-axes are shown
:Return:
a sequence of the newly generated axes objects
"""
xsize,ysize = axsize
xdist,ydist = lowerleft
step = xsize+dist
if nox:
axs = [prepare_axes ( fig.add_axes ( [xdist,ydist,xsize,ysize] ), haveon="left" )]
else:
axs = [prepare_axes ( fig.add_axes ( [xdist,ydist,xsize,ysize] ) )]
for n in xrange(1,naxes):
xdist += step
haveon = []
if not nox:
haveon.append ( "bottom" )
if showally:
haveon.append ( "left" )
axs.append ( prepare_axes ( fig.add_axes ( [xdist,ydist,xsize,ysize] ), haveon=haveon ) )
return axs
def plotRd ( InferenceObject, ax=None, regressor="p" ):
"""plot deviance residuals against a regressor
Deviance residuals are used plotted agains either predicted performance or
block index to check for systematic deviations of the data from the fitted
function.
:Parameters:
*InferenceObject* :
a BootstrapInference or BayesInference object containing
the actual inference data
*ax* :
an axes object where the plot should go
*regressor* :
plot deviance residuals against model prediction (p) or
against block index (k)
"""
if ax==None:
ax = prepare_axes ( p.axes() )
else:
ax = prepare_axes ( ax )
# Plot the data points
if regressor=="p":
psi = InferenceObject.evaluate ( InferenceObject.data[:,0] )
elif regressor=="k":
psi = N.arange(len(InferenceObject.data[:,0]))+1
else:
raise ValueError,"regressor %s is unknown" % regressor
psilims = N.array([psi.min(),psi.max()])
devianceresiduals = InferenceObject.devianceresiduals
ax.plot ( psi, devianceresiduals, "o", color=rc.allplots['color'] )
# Linear regression
A = N.ones((len(psi),2),'d')
A[:,1] = psi
a,b = N.linalg.lstsq(A,devianceresiduals)[0]
ax.plot(psilims,a+b*psilims,':', color=rc.allplots['color'] )
if regressor=="p":
if InferenceObject.model["nafc"]==1:
ax.set_xlim (0,1)
else:
ax.set_xlim(1./InferenceObject.model["nafc"],1)
# In this case predictions larger than 1 and less than 0 are impossible
xtics = list(ax.get_xticks())
for k in xrange(len(xtics)):
if xtics[k]>1. or xtics[k]<0.:
xtics.pop(k)
ax.set_xticks(xtics)
# Generate the respective labels
if regressor=="p":
ax.text(psilims.mean(),ax.get_yticks()[-2],"Rpd=%.3f" % ( InferenceObject.Rpd, ), **rc.text )
xname = "model prediction"
elif regressor=="k":
ax.text(psilims.mean(),ax.get_yticks()[-2],"Rkd=%.3f" % ( InferenceObject.Rkd, ), **rc.text )
xname = "block index"
ax.set_ylabel ( "deviance residuals", **(rc.label+rc.text) )
ax.set_xlabel ( xname, **(rc.label+rc.text) )
return ax
def plotppScatter ( simdata, observed, quantity, shortname=None, ax=None ):
"""plot a scatter diagram to compare observed and predicted data
:Parameters:
*simdata* :
data simulated from the model (typically data from posterior predictives)
*obseved* :
observed data (transformed in the same way as the posterior predictives)
*quantity* :
name of the quantity that is checked
*shortname* :
abbreviation of the plotted quantity
*ax* :
pylab axes object where the plot should go.
"""
if ax==None:
ax = p.gca()
ax.plot ( simdata, observed, '.', color=rc.allplots['color'] )
xl = list(ax.get_xlim())
yl = list(ax.get_ylim())
axmin = N.min ( list(xl)+list(yl) )
axmax = N.max ( list(xl)+list(yl) )
ax.plot ( [axmin,axmax],[axmin,axmax], 'k:' )
ax.set_xlim ( axmin, axmax )
ax.set_ylim ( axmin, axmax )
ax.set_ylabel ( "observed "+quantity, **(rc.label+rc.alltext) )
ax.set_xlabel ( "predicted "+quantity, **(rc.label+rc.alltext) )
# Write diagnostics
pval = N.mean( (simdata-observed)>=0 )
ax.set_title ( "Bayesian p (%s)=%.3f" % (shortname,pval), **(rc.text+rc.alltext) )
if pval<0.975 and pval>0.025:
return True
else:
return False
def plotHistogram ( simdata, observed, xname, shortname=None, ax=None, hideobserved=False, reference="bootstrap" ):
"""plot a histogram and compare observed data to it
:Parameters:
*simdata* :
an array of monte-carlo samples of the parameter of interest
*observed* :
observed value of the parameter of interest (for MCMC samples, it is often
reasonable to use this as the value of 'no effect' or something)
*xname* :
name of the paramter of interest
*shortname* :
short name of the parameter of interest
*ax* :
axes object defining the area where the plot should go
*hideobserved* :
if this is True, the observed value is not plotted
*reference* :
reference of the data. Could be either a string 'bootstrap'/'bayes' or a number
against which the histogram is tested
:Output:
returns a boolean value indicating whether or not the Null-Hypothesis that
observed was drawn from the same distribution as simdata is true
"""
if ax is None:
ax = p.axes()
if reference.lower()[:5]== "boots":
reference = observed
elif reference.lower()[:5]=="bayes":
reference = 0
# Remove nan
simdata = N.nan_to_num ( simdata )
simdata = simdata[simdata!=0]
# Make sure we have a useful shortname
if shortname is None:
shortname = xname
# Correlations plots should be treated differently
if shortname[0] == "R":
ax.hist ( simdata, bins=N.arange(-1,1,.1) )
ax.set_xlim ( -1, 1 )
else:
ax.hist ( simdata, bins=20 )
# Get the tics and ranges
# xtics = p.getp(ax,"xticks")
# ytics = p.getp(ax,"yticks")
# xr = xtics.max()-xtics.min()
# yy = [ytics.min(),ytics.max()+0.02*xr]
yy = p.array(ax.get_ylim ())
yy[1] += 0.02*(yy[1]-yy[0])
# Plot percentile bars
if not hideobserved:
c = parameterdict ( {"color": rc.highlight['color']} )
ax.plot ( [observed]*2, yy, **(c+rc.line+rc.allplots) )
if shortname=="D":
p95 = p.prctile ( simdata, 95 )
ax.plot ( [p95]*2, yy, ':', color=rc.highlight["color"] )
else:
p25,p975 = p.prctile ( simdata, (2.5,97.5) )
ax.plot ( [p25]*2, yy, 'r:', [p975]*2, yy, ':', color=rc.highlight['color'] )
# Draw the full plot
ax.set_ylim ( yy )
# Write diagnostics
if shortname=="D":
ax.set_title ( "%s=%.3f, %s_crit=%.3f" % (shortname, observed, shortname, p95 ), **(rc.text+rc.alltext) )
if reference < p95:
return True
else:
return False
else:
ax.set_title ( "%s=%.3f, c(2.5%%)=%.3f, c(97.5%%)=%.3f" % (shortname,observed,p25,p975), **(rc.text+rc.alltext) )
if reference>p25 and reference<p975:
return True
else:
return False
def plotPMF ( InferenceObject, xlabel_text="Stimulus intensity", ylabel_text=None,ax=None, showaxes=True, showdesc=False, **kwargs ):
"""Show the psychometric function and data in an axes system
This function plots the best fitting psychometric function and with the
corresponding data points. If data points are labelled influential, they
are plotted as red squares, if data points are labelled as outliers, they
are plotted as red triangles.
The function uses its internal knowledge about the task (nAFC or Yes/No)
to put the correct labels to the y-axis.
:Parameters:
*ax* :
axes object in which the plot should go (default: current)
*xlabel_text* :
label for the x-axis
*ylabel_text* :
label for the y-axis, if this is None, the functions
determines the correct label from its internal knowledge
about the task
*showaxes* :
if this is set to False, no axes will be drawn
*showdesc* :
if this is set to False, no convergence description is drawn
:Return:
returns a tuple (line,points,lims)
*line* :
the matplotlib.lines.Line2D object representing the fitted curve
*points* :
the matplotlib.collections.CircleCollection object representing
the fitted data points
*lims* :
limits of the drawn x axis.
:Example:
You can use this function to plot multiple psychometric functions. However,
keep in mind that the function plotMultiplePMFs does the same job more
conveniently for you. However, plotPMF will typically allow for more control
over the plotting process. this is demonstrated below:
>>> d0 = [[0, 28, 50], [2, 33, 50], [4, 38, 50], [6, 45, 50], [8, 45, 50], [10, 49, 50]]
>>> d1 = [[0, 22, 50], [2, 34, 50], [4, 31, 50], [6, 42, 50], [8, 42, 50], [10, 46, 50]]
>>> d2 = [[0, 26, 50], [2, 31, 50], [4, 38, 50], [6, 47, 50], [8, 49, 50], [10, 49, 50]]
>>> constraints = ("","","Uniform(0,.1)")
>>> B0 = BootstrapInference ( d0, priors=constraints, plotting={'color': 'r'} )
>>> B1 = BootstrapInference ( d1, priors=constraints, plotting={'color': 'b'} )
>>> B2 = BootstrapInference ( d2, priors=constraints, plotting={'color': 'k'} )
>>> plotPMF ( B0, showaxes=False )
>>> plotPMF ( B1, showaxes=False )
>>> plotPMF ( B2, showaxes=True )
Note that the last call to plotPMF sets showaxes to True and thus draws the axes.
"""
if ax==None:
ax = p.gca()
# Plot the psychometric function
xmin = InferenceObject.data[:,0].min()
xmax = InferenceObject.data[:,0].max()
x = N.mgrid[xmin:xmax:100j]
psi = InferenceObject.evaluate ( x )
pmfline = ax.plot(x,psi,
color = kwargs.setdefault ( 'color', InferenceObject.color ),
linestyle = kwargs.setdefault ( 'linestyle', InferenceObject.linestyle ),
linewidth = kwargs.setdefault ( 'linewidth', InferenceObject.linewidth ),
label = kwargs.setdefault ( 'label', InferenceObject.label )
)
# Plot the data
xd = InferenceObject.data[:,0]
pd = InferenceObject.data[:,1].astype("d")/InferenceObject.data[:,2]
nd = InferenceObject.data[:,2]
pmfpoints = ax.scatter ( xd, pd, s=nd, c=kwargs.setdefault ( 'color', InferenceObject.color ),
marker=kwargs.setdefault("markertype", InferenceObject.marker) )
# Check axes limits
ymin,ymax = -.05,1.05
if ylabel_text is None:
if InferenceObject.model["nafc"]>1:
ylabel_text = "P(correct)"
else:
ylabel_text = "P(Yes)"
# Determine tics
ax.set_ylim ( ymin, ymax )
ytics = list(ax.get_yticks())
# Clean up ytics
newytics = []
while len(ytics):
yt = ytics.pop(0)
if yt>=0 and yt<=1.01:
newytics.append(yt)
ax.set_yticks ( newytics )
# Write some model information
if showdesc:
txt = InferenceObject.desc
if not InferenceObject.deviance is None:
txt = txt+"\nD=%g" % (InferenceObject.deviance,)
ax.text ( 0.3*(xmin+xmax),ymin+.1,txt, **(rc.text+rc.alltext) )
return pmfline,pmfpoints,ax
def plotThres ( InferenceObject, ax=None, color="b" ):
"""Plot thresholds and confidence intervals
:Parameters:
*InferenceObject* :
either a BootstrapInference object or a BayesInference object
*ax* :
a pylab.axes object to be used for the plot.
*color* :
a pylab color marker
"""
if ax == None:
ax = p.gca()
# Determine the range where the data live
datarange = InferenceObject.data[:,0].min(),InferenceObject.data[:,0].max()
dataw = datarange[1]-datarange[0]
for k,cut in enumerate(InferenceObject.cuts):
c25,c975 = InferenceObject.getCI ( cut=k, conf=(.025,.975) )
thres = InferenceObject.getThres ( cut )
ylev = InferenceObject.evaluate ( [thres] )
if c25 < datarange[0]-dataw*0.2:
bar = [ datarange[0]-dataw*0.2 ]
markers = ["<"]
c25out = True
ax.text ( datarange[0]-dataw*0.2,ylev,"%g"%(c25,), horizontalalignment="center", fontsize=7 )
else:
bar = [ c25 ]
c25out = False
markers = ["|"]
if thres > datarange[0] and thres < datarange[1]:
bar.append(thres)
markers.append("|")
if c975 > datarange[1]+dataw*0.2:
bar.append(datarange[1]+dataw*0.2)
c975out = True
ax.text ( datarange[1]+dataw*0.2,ylev,"%g"%(c975,), horizontalalignment="center", fontsize=7 )
markers.append(">")
else:
bar.append(c975)
c975out = False
markers.append("|")
ax.plot ( bar,[ylev]*len(bar), '-', color=color )
for x,m in zip(bar,markers):
ax.plot ( [x], [ylev], marker=m, color=color )
return ax
def GoodnessOfFit ( InferenceObject, warn=True ):
"""Draw a diagnostic figure to help assessing goodness of fit
This graphic is intended to help the user determine how well the fitted function describes
the data. The plot has 6 fields:
+-----+-----+-----+
| 1 | 3 | 5 |
+-----+-----+-----+
| 2 | 4 | 6 |
+-----+-----+-----+
The fields provide the following information:
1. The data and the fitted psychometric function. "fitted" here means the parameters are
the mean of the posterior for BayesInference objects and the (constrained)
maximum likelihood fit for BootstrapInference objects. To get an idea of the posterior
resp. bootstrap distribution, credibility intervals are plotted at some positions (the
location and width of the credibility intervals is given in the constructor). To make
the posterior distribution for BayesInference objects really "plastic", a number of
samples from the posterior distribution over psychometric functions are also drawn in
light blue. The saturation of blue also codes the deviance of the respective function:
the more saturated, the better the fit. For BootstrapInference objects, outliers and
influential observations are marked as red triangles and red squares.
2. A histogram to approximate the posterior resp. bootstrap distribution of deviances.
For BootstrapInference objects this histogram provides important information. It estimates
the distribution of deviance that would be expected if the fitted model were perfectly
valid. If the deviance of the fitted model is far in the tails of the deviance histogram,
this typically indicates a bad fit. In that case, a warning is displayed if warn==True.
3. A plot of model predictions against deviance residuals. If there is no obvious
interrelation between model prediction and deviance residuals, this indicates that the
model describes the data reasonably well. To get an idea of the interrelation between
model prediction and deviance residuals, the best fitting line is plotted as a dotted line.
4. A histogram of samples from the posterior resp. bootstrap distribution of correlations
between model prediction and deviance residuals. The interpretation of this histogram
differs for BootstrapInference and for BayesInference. For BayesInference the distibution
should include 0. If the distribution is clearly shifted away from 0, this is strong
evidence, that something is wrong with your model or your data. For BootstrapInference,
The distribution shown corresponds to the distribution that would be expected if your
fitted psychometric function would perfectly describe the data. Thus, if the maximum
likelihood estimate (the vertical bold red line) is in the extremes of the distribution,
this is strong evidence, that something is wrong with your model or your data.
5,6 Similar to 3 and 4 but form correlations between block index and deviance residuals.
Correlations between block index and deviance residuals indicate nonstationary
data as should be found during e.g. perceptual learning.
:Parameters:
*warn* :
if warn is set to True, red warning messages are displayed
whenever the fit does not seem to describe the data well.
"""
if InferenceObject.mcestimates is None:
raise ValueError, "Goodness of fit diagnostics require monte carlo samples. Try to call the sample() method of your inference object."
fig = p.figure ( figsize=(10,8) )
ax_plot,ax_rpd,ax_rkd = axes_array_h ( fig, 3, (.22,.3), (.1,.6), dist=0.1, showally=True )
ax_deviance,ax_rpdh,ax_rkdh = axes_array_h ( fig, 3, (.22,.3), (.1,.1), dist=0.1, showally=True )
infer = InferenceObject.__repr__().split()[1]
if infer not in ["BayesInference","BootstrapInference", "ASIRInference"]:
raise ValueError, "Unknown InferenceObject: %s" % (InferenceObject.__repr__().split()[1],)
# First plot about deviance
if infer in ["BayesInference","ASIRInference"]:
InferenceObject.drawposteriorexamples ( ax=ax_plot )
plotThres ( InferenceObject, ax=ax_plot )
plotPMF ( InferenceObject, ax=ax_plot, showdesc=True )
if infer in ["BayesInference","ASIRInference"]:
distname = "posterior"
observed = -2*N.log ( InferenceObject.nullevidence )
good = plotppScatter ( InferenceObject.ppdeviance, InferenceObject.mcdeviance, "deviance", "D", ax_deviance )
elif infer == "BootstrapInference":
distname = "bootstrap"
observed = InferenceObject.deviance
good = plotHistogram ( InferenceObject.mcdeviance, observed, "bootstrap deviance", "D", ax_deviance )
if warn and not good:
ax_deviance.text ( N.array(ax_deviance.get_xlim()).mean(), N.array(ax_deviance.get_ylim()).mean(),
"The fitted model is a bad\ndescription of the data!",
horizontalalignment="center", verticalalignment="center", rotation=45, **(rc.warning+rc.alltext) )
# The other two plots are in a loop: Rpd, Rkd
ax = [ax_rpd,ax_rkd]
axh = [ax_rpdh,ax_rkdh]
index = ["p","k"]
warningtext = ["Simulated Rpd differs from observed!\nTry other sigmoid?",
"Simulated Rkd differs from observed!\nData are nonstationary!"]
for k in xrange ( 2 ):
plotRd ( InferenceObject, ax[k], index[k] )
name = "R%sd" % (index[k],)
if infer in ["BayesInference","ASIRInference"]:
good = plotppScatter ( eval("InferenceObject.pp%s" % (name,)), eval("InferenceObject.mc%s"%(name,)), name,name, axh[k] )
else:
good = plotHistogram ( eval("InferenceObject.mc%s" % (name,)), eval("InferenceObject.%s"%(name,)), "bootstrap "+name, name, axh[k] )
if warn and not good:
axh[k].text ( p.array(axh[k].get_xlim()).mean(), p.array(axh[k].get_ylim()).mean() , warningtext[k], \
horizontalalignment="center", verticalalignment="center", rotation=45, **(rc.warning+rc.alltext) )
def plotGeweke ( BayesInferenceObject, parameter=0, ax=None, warn=True ):
"""Geweke plot of moving average of samples
:Parameters:
*BayesInferenceObject* :
a BayesInference object that contains all the
infromation about the sampling process
*parameter* :
index of the model parameter of interest
*ax* :
the pylab.axes object where the plot should go
*warn* :
should a warning message be displayed if non stationarity
of the samples is observed?
"""
if BayesInferenceObject.mcestimates is None:
raise ValueError, "Geweke MCMC convergence diagnostic requires monte carlo samples. Try to call the sample() method of your inference object."
stationary,z,bad = BayesInferenceObject.geweke ( parameter )
if ax is None:
ax = prepare_axes (p.axes())
x = N.arange (z[:,0].shape[0])+1
for k in xrange ( z.shape[-1] ):
ax.plot ( x, z[:,k], 'o-' )
ax.plot ( ax.get_xlim(), [-2]*2, 'k:' )
ax.plot ( ax.get_xlim(), [ 2]*2, 'k:' )
if warn and not stationary:
nsegments = z.shape[0]
ax.text(0.5*nsegments,0,"chains did not converge", rotation=45,
verticalalignment="center", horizontalalignment="center", **(rc.warning+rc.alltext) )
ax.set_yticks ( N.array( (-3,-2,-1,0,1,2,3) ) )
ax.set_xticks ( x )
ax.set_ylim ( -3,3 )
ax.set_xlim ( 0.5, z[:,k].shape[0]+.5 )
ax.set_xlabel ( "chain segment", **(rc.label+rc.alltext) )
ax.set_ylabel ( "z-score", **(rc.label+rc.alltext) )
return ax
def plotChains ( BayesInferenceObject, parameter=0, ax=None, raw=False, warn=True ):
"""Simply plot all chains for a single parameter
:Parameters:
*parameter* :
index of the model parameter to plot
*raw* :
plot raw samples instead of thinned samples after burnin
*ax* :
axes in which to print
*warn* :
if True, warnings are written into the plot
"""
if BayesInferenceObject.mcestimates is None:
raise ValueError, "Plotting MCMC chains requires monte carlo samples. Try to call the sample() method of your inference object."
# Do we have an appropriate axis?
if ax==None:
ax = prepare_axes ( p.axes() )
# Plot the chains
for c in xrange(BayesInferenceObject.nchains):
samples = BayesInferenceObject.getsamples ( c, raw=raw )
ax.plot ( samples[:,parameter] )
# Learn something about the axes
xtics = N.array(ax.get_xticks())
x0 = xtics.min()
xr = xtics.max()-xtics.min()
ytics = ax.get_yticks()
y0 = ytics.min()
yr = N.array(ytics.max()-ytics.min())
if BayesInferenceObject.nchains>2:
ax.text(x0+0.6*xr,y0+0.95*yr,r"$\hat{R} = %.4f$" % (BayesInferenceObject.Rhat ( parameter ) ) )
if warn and BayesInferenceObject.Rhat(parameter)>1.1:
ax.text(x0+0.5*xr,y0+0.5*yr,"Chains do not seem to sample\nfrom the same distribution!",
horizontalalignment="center",verticalalignment="center",rotation=45,**(rc.warning+rc.alltext))
ax.set_xlabel ( "sample #", **(rc.label+rc.alltext) )
parname = BayesInferenceObject.parnames[parameter]
if parname in ["alpha","beta","gamma","lambda"]:
parname = r"$\%s$" % (parname,)
ax.set_ylabel ( parname, **(rc.label+rc.alltext) )
return ax
def plotParameterDist ( InferenceObject, parameter=0, ax=None ):
"""Plot the distribution of parameters
:Parameters:
*InferenceObject* :
either a BootstrapInference object or a BayesInference object
containing the samples of the parameter distribtution
*parameter* :
index of the model parameter of interest
*ax* :
pylab.axes object where the plot should go
"""
if InferenceObject.mcestimates is None:
raise ValueError, "Plotting distribution of parameters requires monte carlo samples. Try to call the sample() method of your inference object."
if ax is None:
ax = prepare_axes ( p.axes() )
samples = InferenceObject.mcestimates[:,parameter]
h,b,ptch = ax.hist ( samples, bins=20, normed=True, histtype="step", lw=2 )
if InferenceObject.__repr__().split()[1] in ["BayesInference","ASIRInference"]:
priorstr = InferenceObject.model["priors"]
if not priorstr is None:
priorstr = priorstr[parameter]
m = re.search (
r"(\w+)\((-?\d*\.?\d*[eE]?-?\d*),(-?\d*\.?\d*[eE]?-?\d*)\)",
priorstr )
if not m is None:
dist,prm1,prm2 = m.groups()
prm1,prm2 = float(prm1),float(prm2)
x = N.mgrid[b.min():b.max():100j]
if dist.lower () == "gauss":
ax.plot(x,stats.norm.pdf(x,prm1,prm2))
elif dist.lower () == "beta":
ax.plot(x,stats.beta.pdf(x,prm1,prm2))
elif dist.lower () == "gamma":
ax.plot(x,stats.gamma.pdf(x,prm1,scale=prm2))
elif dist.lower () == "ngamma":
ax.plot(x,stats.gamma.pdf(-x,prm1,scale=prm2))
elif dist.lower () == "uniform":
ax.plot(x,stats.uniform.pdf(x,prm1,prm2))
elif dist.lower () == "invgamma":
ax.plot(x,stats.invgamma.pdf(x,prm1,scale=prm2))
# Highlight estimate and credibility intervals
prm = InferenceObject.estimate[parameter]
c25,c975 = p.prctile ( samples, (2.5,97.5) )
ym = ax.get_ylim()
ax.plot ( [c25]*2,ym,'b:', [c975]*2,ym,'b:' )
ax.plot ( [prm]*2,ym,'b' )
prname = InferenceObject.parnames[parameter]
if prname in ["alpha","beta","gamma","lambda"]:
prname = r"\%s" % (prname,)
message = r"$\hat{%s}"%(prname,)
message += r"$=%.3f, CI(95)=(%.3f,%.3f)" % ( prm,c25,c975 )
ax.set_title ( message, **(rc.text+rc.alltext) )
ax.set_xlabel ( InferenceObject.parnames[parameter], **(rc.label+rc.alltext) )
ax.set_ylabel ( "density estimate", **(rc.label+rc.alltext) )
def plotThresholdDist ( InferenceObject, cut=0, ax=None ):
"""Plot the distribution of thresholds
:Parameters:
*InferenceObjecxt* :
a BootstrapInference or BayesInference object containing the desired
data
*cut* :
index (!) of the desired cut
*ax* :
axes object to place the plot in.
"""
if InferenceObject.mcestimates is None:
raise ValueError, "Plotting distributions of thresholds requires monte carlo samples. Try to call the sample() method of your inference object."
if ax is None:
ax = prepare_axes ( p.axes() )
# Plot histogram
mcthres = InferenceObject.mcthres[:,cut]
h,b,ptch = ax.hist ( mcthres, bins=20, normed=True, histtype="step", lw=2 )
# Highlight estimate and credibility intervals
thres = InferenceObject.getThres ( InferenceObject.cuts[cut] )
c25,c975 = InferenceObject.getCI ( cut=cut, conf=(0.025,0.975) )
yl = ax.get_ylim ()
ax.plot( [c25]*2,yl,'b:', [c975]*2,yl,'b:' )
ax.plot ( [thres]*2, yl, 'b' )
ax.set_title ( r"F$^{-1}$(%.2f)=%.3f, CI(95%%)=(%.3f,%.3f)" % (InferenceObject.cuts[cut], thres, c25, c975 ),
horizontalalignment="center", verticalalignment="bottom", **(rc.text+rc.alltext) )
ax.set_xlabel ( r"F$^{-1}$(%.2f)" % ( InferenceObject.cuts[cut], ), **(rc.label+rc.alltext) )
ax.set_ylabel ( "density estimate", **(rc.label+rc.alltext) )
ax.set_ylim ( yl )
return ax
def ThresholdPlot ( InferenceObject ):
"""Show distributions and estimates for all thresholds
:Parameters:
*InferenceObject*
a BootstrapInference or BayesInference object containing the
desired data
"""
if InferenceObject.mcestimates is None:
raise ValueError, "Plotting distributions of thresholds requires monte carlo samples. Try to call the sample() method of your inference object."
nthres = len(InferenceObject.cuts)
axw = 1./nthres
fig = p.figure ( figsize=(3*nthres,3) )
allax = axes_array_h ( fig, nthres, (.8/nthres-.08/(nthres-1),.7), (.1,.2), dist=.1 )
for k,ax in enumerate ( allax ):
# ax = p.subplot ( 1,nthres,k+1 )
ax = plotThresholdDist ( InferenceObject, k, prepare_axes ( ax ) )
return allax
def ParameterPlot ( InferenceObject ):
"""Show distributions and estimates for all parameters in the model
:Parameters:
*InferenceObject* :
a BootstrapInference or BayesInference object containing the
desired data
"""
if InferenceObject.mcestimates is None:
raise ValueError, "Plotting distributions of parameters requires monte carlo samples. Try to call the sample() method of your inference object."
nparams = len(InferenceObject.parnames)
axw = 1./nparams
fig = p.figure (figsize=(3*nparams,3))
allax = axes_array_h ( fig, nparams, (.8/nparams-.08/(nparams-1),.65), (.1,.2), dist=.1 )
for k,ax in enumerate ( allax ):
# ax = p.subplot ( 1, nparams, k+1 )
plotParameterDist ( InferenceObject, k, ax )
return allax
def ConvergenceMCMC ( BayesInferenceObject, parameter=0, warn=True ):
"""Diagram to check convergence of MCMC chains for a single parameter
:Parameters:
*BayesInferenceObject* :
a BayesInference object containing all information about
the model and the posterior distribution
*parameter* :
model parameter of interest. So far, no model derived parameters such as
thresholds are supported
*warn* :
should warnings be displayed if the samples look suspicious?
"""
if BayesInferenceObject.mcestimates is None:
raise ValueError, "MCMC convergence diagnostics require monte carlo samples. Try to call the sample() method of your inference object."
fig = p.figure ( figsize=[9,3] )
ax_chains,ax_geweke,ax_prm = axes_array_h ( fig, 3, (.2,.65),(.1,.2), dist=.1 )
plotChains ( BayesInferenceObject, parameter, ax_chains, warn=warn )
plotGeweke ( BayesInferenceObject, parameter, ax_geweke, warn=warn )
plotParameterDist ( BayesInferenceObject, parameter, ax_prm )
def plotSensitivity ( BootstrapInferenceObject, ax=None ):
"""Visualize a sensitivity analysis to determine expanded bootstrap confidence intervals
Sensitivity analysis is used for BootstrapInference objects to expand the confidence intervals
in order to obtain more realistic coverage. This function calls the sensitivity_analysis() method
of the BootstrapInferenceObject with default parameters. If other parameters are requested, the
sensitivity_analysis() method should be called manually
:Parameters:
*BootstrapInferenceObject* :
Inference object to be analyzed
*ax* :
pylab axes that should be used for plotting
"""
if BootstrapInferenceObject.mcestimates is None:
raise ValueError, "Sensitivity analysis requires monte carlo samples. Try to call the sample() method of your inference object."
if ax==None:
ax = p.axes()
# Determine axes ranges
prm1 = BootstrapInferenceObject.mcestimates[:,0]
prm2 = BootstrapInferenceObject.mcestimates[:,1]
ax.plot(prm1,prm2,'w.',markersize=1)
xmin,xmax = ax.get_xlim()
ymin,ymax = ax.get_ylim()
ax.cla()
# Plot the density estimate in the background
x,y = N.mgrid[xmin:xmax:100j,ymin:ymax:100j]
C = BootstrapInferenceObject.mcdensity(N.c_[N.ravel(x),N.ravel(y)].T)
C.shape = 100,100
ax.imshow( C.T,origin="lower",extent=(xmin,xmax,ymin,ymax), cmap=p.cm.gray_r )
# Get the points and make sure, a sensitivity_analysis has indeed been run
thres,slope,points = BootstrapInferenceObject.sensitivity_analysis(verbose=False)
# plot the points
ax.fill(points[:,0],points[:,1],fill=False,edgecolor="r",linewidth=2)
ax.plot(prm1,prm2,"b.",markersize=2)
ax.plot(points[:,0],points[:,1],'rd',markersize=5)
ax.plot([BootstrapInferenceObject.estimate[0]],[BootstrapInferenceObject.estimate[1]],'ro',markersize=5)
# plot marginal percentiles
prm1lims = p.prctile ( BootstrapInferenceObject.mcestimates[:,0], (2.5,25,75,97.5) )
prm2lims = p.prctile ( BootstrapInferenceObject.mcestimates[:,1], (2.5,25,75,97.5) )
ax.plot( prm1lims, [ymin-0.05*(ymax-ymin)]*4, 'b-', [xmin-0.05*(xmax-xmin)]*4, prm2lims, 'b-' )
ax.plot( prm1lims[1:3], [ymin-0.05*(ymax-ymin)]*2, 'b-', [xmin-0.05*(xmax-xmin)]*2, prm2lims[1:3], 'b-', linewidth=5 )
# Draw axes
drawaxes ( ax, ax.get_xticks(), "%g", ax.get_yticks(), "%g", BootstrapInferenceObject.parnames[0], BootstrapInferenceObject.parnames[1] )
def plotInfluential ( InferenceObject ):
"""Diagnostic plot for detecting influential observations
Determining influential observations follows a different logic for bootstrap
and for bayes inference. A block is labelled an influential observation if
the fit for a dataset without that point is significantly different from the
fit including that point. For BootstrapInference objects, this is quantified
using a normed distance of the maximum likelihood fit including the block and
withouth that block. This distance is normed in the following way: If the
maximum likelihood fit for the reduced dataset remains inside the 95% confidence
limits of the maximum likelihood fit for the full dataset, the influence
value is below 1. Thus, influence values large than 1 indicate a problem with
the data set. For BayesInference objects, the influence of a block is simply
quantified as the Kullbach-Leibler divergence of the posterior for the full
data set from the posterior for the reduced data set.
:Parameters:
*InferenceObject* :
Data set for which the influential observations are to be plotted
"""
maxinfl = N.argmax(InferenceObject.infl)
ind = range ( InferenceObject.data.shape[0] )
ind.pop(maxinfl)
# influencedDataset = psignidata.BootstrapInference( InferenceObject.data[ind,:],
# sample=False, **(InferenceObject.model))
# influencedDataset = psignidata.BayesInference ( InferenceObject.data[ind,:], **(InferenceObject.model) )
est = interface.mapestimate ( InferenceObject.data[ind,:], start=InferenceObject.estimate, **(InferenceObject.model) )[0]
x = N.mgrid[InferenceObject.data[:,0].min():InferenceObject.data[:,0].max():100j]
influencedPMF = interface.diagnostics ( x, est,
nafc = InferenceObject.model["nafc"],
sigmoid = InferenceObject.model["sigmoid"],
core = InferenceObject.model["core"] )
p.figure ( figsize=(6,8) )
# ax = p.axes ( (0.0,.5,.9,.5) )
ax = prepare_axes ( p.subplot ( 2,1,1 ) )
ax.set_ylabel ( r"$\Psi(x)$" )
if InferenceObject.__repr__().split()[1] in ["BayesInference","ASIRInference"]:
InferenceObject.drawposteriorexamples ( ax=ax )
plotPMF ( InferenceObject, ax=ax, showaxes=True, showdesc=False, color="b", linewidth=2 )
ax.plot ( [InferenceObject.data[maxinfl,0]], [InferenceObject.data[maxinfl,1].astype("d")/InferenceObject.data[maxinfl,2]],
'rx', markersize=20, markeredgewidth=5 )
# ax = plotPMF ( influencedDataset, ax=ax, showdesc=False, showaxes=True, color="r", markertype=([(0,0)],0), linewidth=2 )[-1]
ax.plot ( x, influencedPMF, color="r", linewidth=2 )
xl = list(ax.get_xlim ())
# ax = p.axes ( (0.0, 0., .9, .5) )
ax = p.subplot ( 2,1,2, sharex=ax )
if InferenceObject.__repr__().split()[1] == "BootstrapInference":
ax.plot ( [InferenceObject.data[:,0].min(),InferenceObject.data[:,0].max()], [1,1], 'k:' )
yname = "Influence"
else:
yname = "D_KL( full || reduced )"
ax.plot ( InferenceObject.data[:,0], InferenceObject.infl, 'bo' )
ax.set_xlim(xl)
drawaxes ( ax, ax.get_xticks(), "%g", ax.get_yticks(), "%g", r"stimulus intensity $x$", yname )
def plotMultiplePMFs ( *InferenceObjects, **kwargs ):
"""
Plot multiple psychometric functions
:Parameters:
*InferenceObjects* :
The Inference Objects that should be plotted. If the inference objects contain
information about themselves, this information is used.
*ax* :
the axis object where the plot should go
*xlabel* :
text to be written on the y axis
*ylabel* :
text to be written on the x axis
*ci* :
boolean indicating whether credibility intervals should be drawn
by default, this is False
:Example:
This example shows how to plot multiple psychometric functions
>>> d0 = [[0, 28, 50], [2, 33, 50], [4, 38, 50], [6, 45, 50], [8, 45, 50], [10, 49, 50]]
>>> d1 = [[0, 22, 50], [2, 34, 50], [4, 31, 50], [6, 42, 50], [8, 42, 50], [10, 46, 50]]
>>> d2 = [[0, 26, 50], [2, 31, 50], [4, 38, 50], [6, 47, 50], [8, 49, 50], [10, 49, 50]]
>>> constraints = ("","","Uniform(0,.1)")
>>> B0 = BootstrapInference ( d0, priors=constraints,plotprm={"color": "r", "label": "Condition 0"} )
>>> B1 = BootstrapInference ( d1, priors=constraints, plotprm={"color": "b","label": "Condition 1"} )
>>> B2 = BootstrapInference ( d2, priors=constraints, plotprm={"color": "b","label": "Condition 2"} )
>>> plotMultiplePMFs ( B0, B1, B2 )
"""
ax = kwargs.setdefault ( "ax", None )
if ax is None:
ax = p.axes()
pmflines = []
pmflabels= []
pmfdata = []
for pmf in InferenceObjects:
l,d = plotPMF ( pmf, showaxes=False, showdesc=False, ax=ax )[:2]
pmflines.append(l)
pmfdata.append(d)
pmflabels.append(pmf.label)
if kwargs.setdefault ( "ci", False ):
plotThres ( pmf, ax, color=pmf.color )
ylabel_text = kwargs.setdefault("ylabel", None)
if ylabel_text is None:
if pmf.model["nafc"] < 2:
ylabel_text = "P(Yes)"
else:
ylabel_text = "P(correct)"
# Determine tics
# p.setp(ax,frame_on=False,ylim=(-.05,1.05))
xtics = p.getp(ax,'xticks')
ytics = list(p.getp(ax,'yticks'))
# Clean up ytics
for k,yt in enumerate(ytics):
if yt<0 or yt>1:
ytics.pop(k)
ytics = N.array(ytics)
drawaxes ( ax, xtics, "%g", ytics, "%g", kwargs.setdefault("xlabel", "stimulus intensity"), ylabel_text )
# Draw legend
ax.legend (pmflines,pmflabels,'lower right')
return pmflines,pmfdata
def plotJoint ( InferenceObject ):
"""Plot joint distribution of parameters
For ASIRInference objects, also the fitted marginals are shown
"""
nprm = InferenceObject.nparams
parnames = InferenceObject.parnames
fig = p.figure ()
txt = []
h,w = .9/nprm,.9/nprm
for i in xrange ( nprm ):
ax = prepare_axes ( fig.add_axes ( [.07+i*w,.97-(i+1)*h,.8*w,.8*h] ) )
ax.xaxis.set_major_locator(MaxNLocator(5))
if parnames[i] == "lambda":
pr = r"\lambda"
elif parnames[i] == "guess":
pr = r"\gamma"
else:
pr = parnames[i]
if InferenceObject.inference == "ASIR":
gr = InferenceObject.grids[i]
mrg = InferenceObject.margins[i]
ax.plot ( gr, mrg, 'b-.' )
gn,gx = InferenceObject.getCI ( parnames[i], conf=(.01,.99) )
x = p.mgrid[gn:gx:100j]
ax.plot ( x, InferenceObject.posterior_pdf ( i, x ), 'b-', linewidth=2 )
ax.plot ( x, InferenceObject.prior_pdf ( i, x ), 'k:' )
txt.append ( r"$%s\sim%s$" % (pr, InferenceObject.posterior_approximations[i].strip("$")) )
ax.set_xlabel ( r"$"+pr+r"$" )
th = InferenceObject.mcestimates[:,i]
if not (th==0).all():
hist,b = N.histogram ( th, normed=True )
ax.bar ( b[:-1], hist, N.diff(b), color=[.8,.8,1], edgecolor=[.8,.8,1] )
for i in xrange ( nprm ):
ti = InferenceObject.mcestimates[:,i]
for j in xrange ( i+1, nprm ):
ax = prepare_axes ( fig.add_axes ( [.07+j*w, .97-(i+1)*h, .8*w,.8*h] ) )
tj = InferenceObject.mcestimates[:,j]
ax.plot ( tj, ti, '.' )
ax.xaxis.set_major_locator(MaxNLocator(5))
a,b,r,pr,se = stats.linregress ( tj, ti )
x = N.sort(tj)
ax.plot ( x, a*x+b, 'y' )
ax.text ( ax.get_xlim()[0], ax.get_ylim()[0],r"$r=%.2f, p=%g$" % ( r,pr ),
fontsize=10, horizontalalignment="left", verticalalignment="bottom" )
if InferenceObject.inference == "ASIR":
txt.append ( r"duplicates: %g" % (InferenceObject.duplicates,) )
fig.text ( .1,.1,"\n".join(txt) )
gof = GoodnessOfFit
if __name__ == "__main__":
import doctest
doctest.testmod()
|