This file is indexed.

/usr/share/pyshared/pypsignifit/psigniplot.py is in python-pypsignifit 3.0~beta.20120611.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
#/usr/bin/env python
# vi: set ft=python sts=4 ts=4 sw=4 et:

######################################################################
#
#   See COPYING file distributed along with the psignifit package for
#   the copyright and license terms
#
######################################################################

__docformat__ = "restructuredtext"

import pylab as p
import numpy as N
import re
from scipy import stats
import psignidata
import swignifit.interface_methods as interface

from matplotlib.ticker import MaxNLocator

__all__ = ["GoodnessOfFit","ConvergenceMCMC","ParameterPlot","ThresholdPlot","plotSensitivity","plotInfluential","plotMultiplePMFs"]
__warnred = [.7,0,0]

import warnings
spineswarning = """your axes object does not support spines.
The most probable reason for this is that you are using an old version of matplotlib.
spines allow for more beautiful plots and are a new feature in matplotlib 1.0.0.
"""

class parameterdict ( dict ):
    def __add__ ( self, other ):
        out = parameterdict ( self )
        for k,i in other.iteritems ():
            out.setdefault ( k, i )
        return out

class DefaultParameters ( object ):
    def __init__ ( self ):
        self.alltext = parameterdict()
        self.text    = parameterdict(fontsize=8)
        self.title   = parameterdict(fontsize=12)
        self.label   = parameterdict(fontsize=10)
        self.allplots= parameterdict(color='b')
        self.line    = parameterdict()
        self.highlight = parameterdict(color='r')
        self.warning = parameterdict(fontsize=16, color=[.7,0,0])

rc = DefaultParameters()

def drawaxes ( ax, xtics=None, xfmt=None, ytics=None, yfmt=None, xname=None, yname=None ):
    """Draw x and y axes that look nicer than standard matplotlib

    This function deletes the pylab default axes and draws visually more
    pleasing axes. In addition it takes care that all graphics remain within
    the area covered by the axes.

    :Parameters:
        *ax* :
            the axes object in which the graphics should stay
        *xtics* :
            an array of x-ticks
        *xfmt* :
            format string for the x-ticks
        *ytics* :
            an array of y-ticks
        *yfmt* :
            format string for the y-ticks
        *xname* :
            label for the x-axis
        *yname* :
            label for the y-axis
    """

    if getattr ( ax, 'spines', False ):
        # New Implementation using spines
        for loc, spine in ax.spines.iteritems():
            if loc in ['left','bottom']:
                spine.set_position( ('outward', 10) )   # Outward by 10 points
            elif loc in ['right','top']:
                spine.set_color('none')                 # no 'spine'
            else:
                raise ValueError ( 'unknown spine location: %s' % loc )
    else:
        warnings.warn ( spineswarning, DeprecationWarning )
    ax.xaxis.set_ticks_position('bottom')
    ax.yaxis.set_ticks_position('left')

    ax.set_xlabel ( xname, **(rc.label+rc.alltext) )
    ax.set_ylabel ( yname, **(rc.label+rc.alltext) )

def prepare_axes ( ax, haveon=("bottom","left" ) ):
    """Prepare an axes object to look nicer than standard matplotlib

    :Parameters:
        *ax* :
            axes object that should be prepared
        *haveon* :
            axes that should be shown

    :Return:
        the prepared axes object
    """
    if getattr ( ax, 'spines', False ):
        for loc,spine in ax.spines.iteritems():
            if loc in haveon:
                spine.set_position ( ("outward",10) )
            else:
                spine.set_color ( "none" )
    else:
        warnings.warn ( spineswarning, DeprecationWarning )

    if "bottom" in haveon:
        ax.xaxis.set_ticks_position ( "bottom" )
    elif "top" in haveon:
        ax.xaxis.set_ticks_position ( "top" )
    else:
        ax.xaxis.set_ticks_position ( "none" )
        ax.xaxis.set_ticklabels ( "" )
    if "left" in haveon:
        ax.yaxis.set_ticks_position ( "left" )
    elif "right" in haveon:
        ax.yaxis.set_ticks_position ( "right" )
    else:
        ax.yaxis.set_ticks_position ( "none" )
        ax.yaxis.set_ticklabels ( "" )

    return ax

def axes_array_h ( fig, naxes, axsize, lowerleft=(0.1,0.1), dist=0.05, showally=True, nox=False ):
    """Draw a horizontal array of axes

    :Parameters:
        *fig*, matplotlib.figure instance :
            the figure in which to plot the axes
        *naxes*, integer :
            how many axes should be generated
        *axsize*, tuple:
            size of each axes system
        *lowerleft*, tuple:
            lower left corner of the first axes system
        *dist*, float:
            horizontal separation of adjacent axes
        *showally*, bool:
            indicates whether all y-axes should be shown or not
        *nox*, bool:
            if True, no x-axes are shown

    :Return:
        a sequence of the newly generated axes objects
    """
    xsize,ysize = axsize
    xdist,ydist = lowerleft
    step = xsize+dist

    if nox:
        axs = [prepare_axes ( fig.add_axes ( [xdist,ydist,xsize,ysize] ), haveon="left" )]
    else:
        axs = [prepare_axes ( fig.add_axes ( [xdist,ydist,xsize,ysize] ) )]
    for n in xrange(1,naxes):
        xdist += step
        haveon = []
        if not nox:
            haveon.append ( "bottom" )
        if showally:
            haveon.append ( "left" )
        axs.append ( prepare_axes ( fig.add_axes ( [xdist,ydist,xsize,ysize] ), haveon=haveon ) )

    return axs

def plotRd ( InferenceObject, ax=None, regressor="p" ):
    """plot deviance residuals against a regressor

    Deviance residuals are used plotted agains either predicted performance or
    block index to check for systematic deviations of the data from the fitted
    function.

    :Parameters:
        *InferenceObject* :
            a BootstrapInference or BayesInference object containing
            the actual inference data
        *ax* :
            an axes object where the plot should go
        *regressor* :
            plot deviance residuals against model prediction (p) or
            against block index (k)
    """
    if ax==None:
        ax = prepare_axes ( p.axes() )
    else:
        ax = prepare_axes ( ax )

    # Plot the data points
    if regressor=="p":
        psi = InferenceObject.evaluate ( InferenceObject.data[:,0] )
    elif regressor=="k":
        psi = N.arange(len(InferenceObject.data[:,0]))+1
    else:
        raise ValueError,"regressor %s is unknown" % regressor
    psilims = N.array([psi.min(),psi.max()])
    devianceresiduals = InferenceObject.devianceresiduals
    ax.plot ( psi, devianceresiduals, "o", color=rc.allplots['color'] )

    # Linear regression
    A = N.ones((len(psi),2),'d')
    A[:,1] = psi
    a,b = N.linalg.lstsq(A,devianceresiduals)[0]
    ax.plot(psilims,a+b*psilims,':', color=rc.allplots['color'] )

    if regressor=="p":
        if InferenceObject.model["nafc"]==1:
            ax.set_xlim (0,1)
        else:
            ax.set_xlim(1./InferenceObject.model["nafc"],1)

        # In this case predictions larger than 1 and less than 0 are impossible
        xtics = list(ax.get_xticks())
        for k in xrange(len(xtics)):
            if xtics[k]>1. or xtics[k]<0.:
                xtics.pop(k)
        ax.set_xticks(xtics)

    # Generate the respective labels
    if regressor=="p":
        ax.text(psilims.mean(),ax.get_yticks()[-2],"Rpd=%.3f" % ( InferenceObject.Rpd, ), **rc.text )
        xname = "model prediction"
    elif regressor=="k":
        ax.text(psilims.mean(),ax.get_yticks()[-2],"Rkd=%.3f" % ( InferenceObject.Rkd, ), **rc.text )
        xname = "block index"

    ax.set_ylabel ( "deviance residuals", **(rc.label+rc.text) )
    ax.set_xlabel ( xname, **(rc.label+rc.text) )

    return ax

def plotppScatter ( simdata, observed, quantity, shortname=None, ax=None ):
    """plot a scatter diagram to compare observed and predicted data

    :Parameters:
        *simdata* :
            data simulated from the model (typically data from posterior predictives)
        *obseved* :
            observed data (transformed in the same way as the posterior predictives)
        *quantity* :
            name of the quantity that is checked
        *shortname* :
            abbreviation of the plotted quantity
        *ax* :
            pylab axes object where the plot should go.
    """
    if ax==None:
        ax = p.gca()

    ax.plot ( simdata, observed, '.', color=rc.allplots['color'] )
    xl = list(ax.get_xlim())
    yl = list(ax.get_ylim())
    axmin = N.min ( list(xl)+list(yl) )
    axmax = N.max ( list(xl)+list(yl) )
    ax.plot ( [axmin,axmax],[axmin,axmax], 'k:' )
    ax.set_xlim ( axmin, axmax )
    ax.set_ylim ( axmin, axmax )

    ax.set_ylabel ( "observed "+quantity, **(rc.label+rc.alltext) )
    ax.set_xlabel ( "predicted "+quantity, **(rc.label+rc.alltext) )

    # Write diagnostics
    pval = N.mean( (simdata-observed)>=0 )
    ax.set_title ( "Bayesian p (%s)=%.3f" % (shortname,pval), **(rc.text+rc.alltext) )

    if pval<0.975 and pval>0.025:
        return True
    else:
        return False

def plotHistogram ( simdata, observed, xname, shortname=None, ax=None, hideobserved=False, reference="bootstrap" ):
    """plot a histogram and compare observed data to it

    :Parameters:
        *simdata* :
            an array of monte-carlo samples of the parameter of interest
        *observed* :
            observed value of the parameter of interest (for MCMC samples, it is often
            reasonable to use this as the value of 'no effect' or something)
        *xname* :
            name of the paramter of interest
        *shortname* :
            short name of the parameter of interest
        *ax* :
            axes object defining the area where the plot should go
        *hideobserved* :
            if this is True, the observed value is not plotted
        *reference* :
            reference of the data. Could be either a string 'bootstrap'/'bayes' or a number
            against which the histogram is tested

    :Output:
        returns a boolean value indicating whether or not the Null-Hypothesis that
            observed was drawn from the same distribution as simdata is true
    """
    if ax is None:
        ax = p.axes()

    if reference.lower()[:5]==  "boots":
        reference = observed
    elif reference.lower()[:5]=="bayes":
        reference = 0

    # Remove nan
    simdata = N.nan_to_num ( simdata )
    simdata = simdata[simdata!=0]

    # Make sure we have a useful shortname
    if shortname is None:
        shortname = xname

    # Correlations plots should be treated differently
    if shortname[0] == "R":
        ax.hist ( simdata, bins=N.arange(-1,1,.1) )
        ax.set_xlim ( -1, 1 )
    else:
        ax.hist ( simdata, bins=20 )

    # Get the tics and ranges
    # xtics = p.getp(ax,"xticks")
    # ytics = p.getp(ax,"yticks")
    # xr = xtics.max()-xtics.min()
    # yy = [ytics.min(),ytics.max()+0.02*xr]
    yy = p.array(ax.get_ylim ())
    yy[1] += 0.02*(yy[1]-yy[0])

    # Plot percentile bars
    if not hideobserved:
        c = parameterdict ( {"color": rc.highlight['color']} )
        ax.plot ( [observed]*2, yy, **(c+rc.line+rc.allplots) )
    if shortname=="D":
        p95 = p.prctile ( simdata, 95 )
        ax.plot ( [p95]*2, yy, ':', color=rc.highlight["color"] )
    else:
        p25,p975 = p.prctile ( simdata, (2.5,97.5) )
        ax.plot ( [p25]*2, yy, 'r:', [p975]*2, yy, ':', color=rc.highlight['color'] )

    # Draw the full plot
    ax.set_ylim ( yy )

    # Write diagnostics
    if shortname=="D":
        ax.set_title ( "%s=%.3f, %s_crit=%.3f" % (shortname, observed, shortname, p95 ), **(rc.text+rc.alltext) )
        if reference < p95:
            return True
        else:
            return False
    else:
        ax.set_title ( "%s=%.3f, c(2.5%%)=%.3f, c(97.5%%)=%.3f" % (shortname,observed,p25,p975), **(rc.text+rc.alltext) )

        if reference>p25 and reference<p975:
            return True
        else:
            return False

def plotPMF ( InferenceObject, xlabel_text="Stimulus intensity", ylabel_text=None,ax=None, showaxes=True, showdesc=False, **kwargs ):
    """Show the psychometric function and data in an axes system

    This function plots the best fitting psychometric function and with the
    corresponding data points. If data points are labelled influential, they
    are plotted as red squares, if data points are labelled as outliers, they
    are plotted as red triangles.
    The function uses its internal knowledge about the task (nAFC or Yes/No)
    to put the correct labels to the y-axis.

    :Parameters:
        *ax* :
            axes object in which the plot should go (default: current)
        *xlabel_text* :
            label for the x-axis
        *ylabel_text* :
            label for the y-axis, if this is None, the functions
            determines the correct label from its internal knowledge
            about the task
        *showaxes* :
            if this is set to False, no axes will be drawn
        *showdesc* :
            if this is set to False, no convergence description is drawn

    :Return:
        returns a tuple (line,points,lims)
        *line* :
            the matplotlib.lines.Line2D object representing the fitted curve
        *points* :
            the matplotlib.collections.CircleCollection object representing
            the fitted data points
        *lims* :
            limits of the drawn x axis.

    :Example:
    You can use this function to plot multiple psychometric functions. However,
    keep in mind that the function plotMultiplePMFs does the same job more
    conveniently for you. However, plotPMF will typically allow for more control
    over the plotting process. this is demonstrated below:

    >>> d0 = [[0, 28, 50], [2, 33, 50], [4, 38, 50], [6, 45, 50], [8, 45, 50], [10, 49, 50]]
    >>> d1 = [[0, 22, 50], [2, 34, 50], [4, 31, 50], [6, 42, 50], [8, 42, 50], [10, 46, 50]]
    >>> d2 = [[0, 26, 50], [2, 31, 50], [4, 38, 50], [6, 47, 50], [8, 49, 50], [10, 49, 50]]
    >>> constraints = ("","","Uniform(0,.1)")
    >>> B0 = BootstrapInference ( d0, priors=constraints, plotting={'color': 'r'} )
    >>> B1 = BootstrapInference ( d1, priors=constraints, plotting={'color': 'b'} )
    >>> B2 = BootstrapInference ( d2, priors=constraints, plotting={'color': 'k'} )
    >>> plotPMF ( B0, showaxes=False )
    >>> plotPMF ( B1, showaxes=False )
    >>> plotPMF ( B2, showaxes=True  )

    Note that the last call to plotPMF sets showaxes to True and thus draws the axes.
    """
    if ax==None:
        ax = p.gca()

    # Plot the psychometric function
    xmin = InferenceObject.data[:,0].min()
    xmax = InferenceObject.data[:,0].max()
    x = N.mgrid[xmin:xmax:100j]
    psi = InferenceObject.evaluate ( x )
    pmfline = ax.plot(x,psi,
            color     = kwargs.setdefault ( 'color', InferenceObject.color ),
            linestyle = kwargs.setdefault ( 'linestyle', InferenceObject.linestyle ),
            linewidth = kwargs.setdefault ( 'linewidth', InferenceObject.linewidth ),
            label     = kwargs.setdefault ( 'label', InferenceObject.label )
            )

    # Plot the data
    xd = InferenceObject.data[:,0]
    pd = InferenceObject.data[:,1].astype("d")/InferenceObject.data[:,2]
    nd = InferenceObject.data[:,2]
    pmfpoints = ax.scatter ( xd, pd, s=nd, c=kwargs.setdefault ( 'color', InferenceObject.color ),
            marker=kwargs.setdefault("markertype", InferenceObject.marker) )

    # Check axes limits
    ymin,ymax = -.05,1.05
    if ylabel_text is None:
        if InferenceObject.model["nafc"]>1:
            ylabel_text = "P(correct)"
        else:
            ylabel_text = "P(Yes)"

    # Determine tics
    ax.set_ylim ( ymin, ymax )
    ytics = list(ax.get_yticks())
    # Clean up ytics
    newytics = []
    while len(ytics):
        yt = ytics.pop(0)
        if yt>=0 and yt<=1.01:
            newytics.append(yt)
    ax.set_yticks ( newytics )

    # Write some model information
    if showdesc:
        txt = InferenceObject.desc
        if not InferenceObject.deviance is None:
            txt = txt+"\nD=%g" % (InferenceObject.deviance,)
        ax.text ( 0.3*(xmin+xmax),ymin+.1,txt, **(rc.text+rc.alltext) )

    return pmfline,pmfpoints,ax

def plotThres ( InferenceObject, ax=None, color="b" ):
    """Plot thresholds and confidence intervals

    :Parameters:
        *InferenceObject* :
            either a BootstrapInference object or a BayesInference object
        *ax* :
            a pylab.axes object to be used for the plot.
        *color* :
            a pylab color marker
    """
    if ax == None:
        ax = p.gca()

    # Determine the range where the data live
    datarange = InferenceObject.data[:,0].min(),InferenceObject.data[:,0].max()
    dataw = datarange[1]-datarange[0]

    for k,cut in enumerate(InferenceObject.cuts):
        c25,c975 = InferenceObject.getCI ( cut=k, conf=(.025,.975) )
        thres = InferenceObject.getThres ( cut )
        ylev = InferenceObject.evaluate ( [thres] )
        if c25 < datarange[0]-dataw*0.2:
            bar = [ datarange[0]-dataw*0.2 ]
            markers = ["<"]
            c25out = True
            ax.text ( datarange[0]-dataw*0.2,ylev,"%g"%(c25,), horizontalalignment="center", fontsize=7 )
        else:
            bar = [ c25 ]
            c25out = False
            markers = ["|"]
        if thres > datarange[0] and thres < datarange[1]:
            bar.append(thres)
            markers.append("|")
        if c975 > datarange[1]+dataw*0.2:
            bar.append(datarange[1]+dataw*0.2)
            c975out = True
            ax.text ( datarange[1]+dataw*0.2,ylev,"%g"%(c975,), horizontalalignment="center", fontsize=7 )
            markers.append(">")
        else:
            bar.append(c975)
            c975out = False
            markers.append("|")
        ax.plot ( bar,[ylev]*len(bar), '-', color=color )
        for x,m in zip(bar,markers):
            ax.plot ( [x], [ylev], marker=m, color=color )
    return ax

def GoodnessOfFit ( InferenceObject, warn=True ):
    """Draw a diagnostic figure to help assessing goodness of fit

    This graphic is intended to help the user determine how well the fitted function describes
    the data. The plot has 6 fields:

    +-----+-----+-----+
    |  1  |  3  |  5  |
    +-----+-----+-----+
    |  2  |  4  |  6  |
    +-----+-----+-----+

    The fields provide the following information:
    1.  The data and the fitted psychometric function. "fitted" here means the parameters are
        the mean of the posterior for BayesInference objects and the (constrained)
        maximum likelihood fit for BootstrapInference objects. To get an idea of the posterior
        resp. bootstrap distribution, credibility intervals are plotted at some positions (the
        location and width of the credibility intervals is given in the constructor). To make
        the posterior distribution for BayesInference objects really "plastic", a number of
        samples from the posterior distribution over psychometric functions are also drawn in
        light blue. The saturation of blue also codes the deviance of the respective function:
        the more saturated, the better the fit. For BootstrapInference objects, outliers and
        influential observations are marked as red triangles and red squares.
    2.  A histogram to approximate the posterior resp. bootstrap distribution of deviances.
        For BootstrapInference objects this histogram provides important information. It estimates
        the distribution of deviance that would be expected if the fitted model were perfectly
        valid. If the deviance of the fitted model is far in the tails of the deviance histogram,
        this typically indicates a bad fit. In that case, a warning is displayed if warn==True.
    3.  A plot of model predictions against deviance residuals. If there is no obvious
        interrelation between model prediction and deviance residuals, this indicates that the
        model describes the data reasonably well. To get an idea of the interrelation between
        model prediction and deviance residuals, the best fitting line is plotted as a dotted line.
    4.  A histogram of samples from the posterior resp. bootstrap distribution of correlations
        between model prediction and deviance residuals. The interpretation of this histogram
        differs for BootstrapInference and for BayesInference. For BayesInference the distibution
        should include 0. If the distribution is clearly shifted away from 0, this is strong
        evidence, that something is wrong with your model or your data. For BootstrapInference,
        The distribution shown corresponds to the distribution that would be expected if your
        fitted psychometric function would perfectly describe the data. Thus, if the maximum
        likelihood estimate (the vertical bold red line) is in the extremes of the distribution,
        this is strong evidence, that something is wrong with your model or your data.
    5,6 Similar to 3 and 4 but form correlations between block index and deviance residuals.
        Correlations between block index and deviance residuals indicate nonstationary
        data as should be found during e.g. perceptual learning.

    :Parameters:
        *warn* :
            if warn is set to True, red warning messages are displayed
            whenever the fit does not seem to describe the data well.
    """

    if InferenceObject.mcestimates is None:
        raise ValueError, "Goodness of fit diagnostics require monte carlo samples. Try to call the sample() method of your inference object."

    fig = p.figure ( figsize=(10,8) )

    ax_plot,ax_rpd,ax_rkd       = axes_array_h ( fig, 3, (.22,.3), (.1,.6), dist=0.1, showally=True )
    ax_deviance,ax_rpdh,ax_rkdh = axes_array_h ( fig, 3, (.22,.3), (.1,.1), dist=0.1, showally=True )

    infer = InferenceObject.__repr__().split()[1]
    if infer not in ["BayesInference","BootstrapInference", "ASIRInference"]:
        raise ValueError, "Unknown InferenceObject: %s" % (InferenceObject.__repr__().split()[1],)

    # First plot about deviance
    if infer in ["BayesInference","ASIRInference"]:
        InferenceObject.drawposteriorexamples ( ax=ax_plot )
    plotThres ( InferenceObject, ax=ax_plot )
    plotPMF   ( InferenceObject, ax=ax_plot, showdesc=True )
    if infer in ["BayesInference","ASIRInference"]:
        distname = "posterior"
        observed = -2*N.log ( InferenceObject.nullevidence )
        good = plotppScatter ( InferenceObject.ppdeviance, InferenceObject.mcdeviance, "deviance", "D", ax_deviance )
    elif infer == "BootstrapInference":
        distname = "bootstrap"
        observed = InferenceObject.deviance
        good = plotHistogram ( InferenceObject.mcdeviance, observed, "bootstrap deviance", "D", ax_deviance )
    if warn and not good:
        ax_deviance.text ( N.array(ax_deviance.get_xlim()).mean(), N.array(ax_deviance.get_ylim()).mean(),
                "The fitted model is a bad\ndescription of the data!",
                horizontalalignment="center", verticalalignment="center", rotation=45, **(rc.warning+rc.alltext) )

    # The other two plots are in a loop: Rpd, Rkd
    ax = [ax_rpd,ax_rkd]
    axh = [ax_rpdh,ax_rkdh]
    index = ["p","k"]
    warningtext = ["Simulated Rpd differs from observed!\nTry other sigmoid?",
            "Simulated Rkd differs from observed!\nData are nonstationary!"]

    for k in xrange ( 2 ):
        plotRd ( InferenceObject, ax[k], index[k] )
        name = "R%sd" % (index[k],)
        if infer in ["BayesInference","ASIRInference"]:
            good = plotppScatter ( eval("InferenceObject.pp%s" % (name,)), eval("InferenceObject.mc%s"%(name,)), name,name, axh[k] )
        else:
            good = plotHistogram ( eval("InferenceObject.mc%s" % (name,)), eval("InferenceObject.%s"%(name,)), "bootstrap "+name, name, axh[k] )
        if warn and not good:
            axh[k].text ( p.array(axh[k].get_xlim()).mean(), p.array(axh[k].get_ylim()).mean() , warningtext[k], \
                     horizontalalignment="center", verticalalignment="center", rotation=45, **(rc.warning+rc.alltext) )

def plotGeweke ( BayesInferenceObject, parameter=0, ax=None, warn=True ):
    """Geweke plot of moving average of samples

    :Parameters:
        *BayesInferenceObject* :
            a BayesInference object that contains all the
            infromation about the sampling process
        *parameter* :
            index of the model parameter of interest
        *ax* :
            the pylab.axes object where the plot should go
        *warn* :
            should a warning message be displayed if non stationarity
            of the samples is observed?
    """

    if BayesInferenceObject.mcestimates is None:
        raise ValueError, "Geweke MCMC convergence diagnostic requires monte carlo samples. Try to call the sample() method of your inference object."

    stationary,z,bad = BayesInferenceObject.geweke ( parameter )

    if ax is None:
        ax = prepare_axes (p.axes())

    x = N.arange (z[:,0].shape[0])+1
    for k in xrange ( z.shape[-1] ):
        ax.plot ( x, z[:,k], 'o-' )
    ax.plot ( ax.get_xlim(), [-2]*2, 'k:' )
    ax.plot ( ax.get_xlim(), [ 2]*2, 'k:' )

    if warn and not stationary:
        nsegments = z.shape[0]
        ax.text(0.5*nsegments,0,"chains did not converge", rotation=45,
                verticalalignment="center", horizontalalignment="center", **(rc.warning+rc.alltext) )

    ax.set_yticks ( N.array( (-3,-2,-1,0,1,2,3) ) )
    ax.set_xticks ( x )
    ax.set_ylim ( -3,3 )
    ax.set_xlim ( 0.5, z[:,k].shape[0]+.5 )

    ax.set_xlabel ( "chain segment", **(rc.label+rc.alltext) )
    ax.set_ylabel ( "z-score", **(rc.label+rc.alltext) )

    return ax

def plotChains ( BayesInferenceObject, parameter=0, ax=None, raw=False, warn=True ):
    """Simply plot all chains for a single parameter

    :Parameters:
        *parameter* :
            index of the model parameter to plot
        *raw* :
            plot raw samples instead of thinned samples after burnin
        *ax* :
            axes in which to print
        *warn* :
            if True, warnings are written into the plot
    """

    if BayesInferenceObject.mcestimates is None:
        raise ValueError, "Plotting MCMC chains requires monte carlo samples. Try to call the sample() method of your inference object."

    # Do we have an appropriate axis?
    if ax==None:
        ax = prepare_axes ( p.axes() )

    # Plot the chains
    for c in xrange(BayesInferenceObject.nchains):
        samples = BayesInferenceObject.getsamples ( c, raw=raw )
        ax.plot ( samples[:,parameter] )

    # Learn something about the axes
    xtics = N.array(ax.get_xticks())
    x0    = xtics.min()
    xr    = xtics.max()-xtics.min()
    ytics = ax.get_yticks()
    y0    = ytics.min()
    yr    = N.array(ytics.max()-ytics.min())

    if BayesInferenceObject.nchains>2:
        ax.text(x0+0.6*xr,y0+0.95*yr,r"$\hat{R} = %.4f$" % (BayesInferenceObject.Rhat ( parameter ) ) )

    if warn and BayesInferenceObject.Rhat(parameter)>1.1:
        ax.text(x0+0.5*xr,y0+0.5*yr,"Chains do not seem to sample\nfrom the same distribution!",
                horizontalalignment="center",verticalalignment="center",rotation=45,**(rc.warning+rc.alltext))

    ax.set_xlabel ( "sample #", **(rc.label+rc.alltext) )
    parname = BayesInferenceObject.parnames[parameter]
    if parname in ["alpha","beta","gamma","lambda"]:
        parname = r"$\%s$" % (parname,)
    ax.set_ylabel ( parname, **(rc.label+rc.alltext) )

    return ax

def plotParameterDist ( InferenceObject, parameter=0, ax=None ):
    """Plot the distribution of parameters

    :Parameters:
        *InferenceObject* :
            either a BootstrapInference object or a BayesInference object
            containing the samples of the parameter distribtution
        *parameter* :
            index of the model parameter of interest
        *ax* :
            pylab.axes object where the plot should go
    """

    if InferenceObject.mcestimates is None:
        raise ValueError, "Plotting distribution of parameters requires monte carlo samples. Try to call the sample() method of your inference object."

    if ax is None:
        ax = prepare_axes ( p.axes() )

    samples = InferenceObject.mcestimates[:,parameter]
    h,b,ptch = ax.hist ( samples, bins=20, normed=True, histtype="step", lw=2 )

    if InferenceObject.__repr__().split()[1] in ["BayesInference","ASIRInference"]:
        priorstr = InferenceObject.model["priors"]
        if not priorstr is None:
            priorstr = priorstr[parameter]
            m = re.search (
                r"(\w+)\((-?\d*\.?\d*[eE]?-?\d*),(-?\d*\.?\d*[eE]?-?\d*)\)",
                priorstr )
            if not m is None:
                dist,prm1,prm2 = m.groups()
                prm1,prm2 = float(prm1),float(prm2)
                x = N.mgrid[b.min():b.max():100j]

                if dist.lower () == "gauss":
                    ax.plot(x,stats.norm.pdf(x,prm1,prm2))
                elif dist.lower () == "beta":
                    ax.plot(x,stats.beta.pdf(x,prm1,prm2))
                elif dist.lower () == "gamma":
                    ax.plot(x,stats.gamma.pdf(x,prm1,scale=prm2))
                elif dist.lower () == "ngamma":
                    ax.plot(x,stats.gamma.pdf(-x,prm1,scale=prm2))
                elif dist.lower () == "uniform":
                    ax.plot(x,stats.uniform.pdf(x,prm1,prm2))
                elif dist.lower () == "invgamma":
                    ax.plot(x,stats.invgamma.pdf(x,prm1,scale=prm2))

    # Highlight estimate and credibility intervals
    prm = InferenceObject.estimate[parameter]
    c25,c975 = p.prctile ( samples, (2.5,97.5) )
    ym = ax.get_ylim()
    ax.plot ( [c25]*2,ym,'b:', [c975]*2,ym,'b:' )
    ax.plot ( [prm]*2,ym,'b' )

    prname = InferenceObject.parnames[parameter]
    if prname in ["alpha","beta","gamma","lambda"]:
        prname = r"\%s" % (prname,)
    message = r"$\hat{%s}"%(prname,)
    message += r"$=%.3f, CI(95)=(%.3f,%.3f)" % ( prm,c25,c975 )
    ax.set_title ( message, **(rc.text+rc.alltext) )
    ax.set_xlabel ( InferenceObject.parnames[parameter], **(rc.label+rc.alltext) )
    ax.set_ylabel ( "density estimate", **(rc.label+rc.alltext) )

def plotThresholdDist ( InferenceObject, cut=0, ax=None ):
    """Plot the distribution of thresholds

    :Parameters:
        *InferenceObjecxt* :
            a BootstrapInference or BayesInference object containing the desired
            data
        *cut* :
            index (!) of the desired cut
        *ax* :
            axes object to place the plot in.
    """

    if InferenceObject.mcestimates is None:
        raise ValueError, "Plotting distributions of thresholds requires monte carlo samples. Try to call the sample() method of your inference object."

    if ax is None:
        ax = prepare_axes ( p.axes() )

    # Plot histogram
    mcthres = InferenceObject.mcthres[:,cut]
    h,b,ptch = ax.hist ( mcthres, bins=20, normed=True, histtype="step", lw=2 )

    # Highlight estimate and credibility intervals
    thres = InferenceObject.getThres ( InferenceObject.cuts[cut] )
    c25,c975 = InferenceObject.getCI ( cut=cut, conf=(0.025,0.975) )

    yl = ax.get_ylim ()
    ax.plot( [c25]*2,yl,'b:', [c975]*2,yl,'b:' )
    ax.plot ( [thres]*2, yl, 'b' )
    ax.set_title ( r"F$^{-1}$(%.2f)=%.3f, CI(95%%)=(%.3f,%.3f)" % (InferenceObject.cuts[cut], thres, c25, c975 ),
            horizontalalignment="center", verticalalignment="bottom", **(rc.text+rc.alltext) )

    ax.set_xlabel ( r"F$^{-1}$(%.2f)" % ( InferenceObject.cuts[cut], ), **(rc.label+rc.alltext) )
    ax.set_ylabel ( "density estimate", **(rc.label+rc.alltext) )

    ax.set_ylim ( yl )

    return ax

def ThresholdPlot ( InferenceObject ):
    """Show distributions and estimates for all thresholds

    :Parameters:
        *InferenceObject*
            a BootstrapInference or BayesInference object containing the
            desired data
    """

    if InferenceObject.mcestimates is None:
        raise ValueError, "Plotting distributions of thresholds requires monte carlo samples. Try to call the sample() method of your inference object."

    nthres = len(InferenceObject.cuts)
    axw = 1./nthres
    fig = p.figure ( figsize=(3*nthres,3) )
    allax = axes_array_h ( fig, nthres, (.8/nthres-.08/(nthres-1),.7), (.1,.2), dist=.1 )

    for k,ax in enumerate ( allax ):
        # ax = p.subplot ( 1,nthres,k+1 )
        ax = plotThresholdDist ( InferenceObject, k, prepare_axes ( ax ) )

    return allax

def ParameterPlot ( InferenceObject ):
    """Show distributions and estimates for all parameters in the model

    :Parameters:
        *InferenceObject* :
            a BootstrapInference or BayesInference object containing the
            desired data
    """

    if InferenceObject.mcestimates is None:
        raise ValueError, "Plotting distributions of parameters requires monte carlo samples. Try to call the sample() method of your inference object."

    nparams = len(InferenceObject.parnames)
    axw = 1./nparams
    fig = p.figure (figsize=(3*nparams,3))
    allax = axes_array_h ( fig, nparams, (.8/nparams-.08/(nparams-1),.65), (.1,.2), dist=.1 )

    for k,ax in enumerate ( allax ):
        # ax = p.subplot ( 1, nparams, k+1 )
        plotParameterDist ( InferenceObject, k, ax )

    return allax

def ConvergenceMCMC ( BayesInferenceObject, parameter=0, warn=True ):
    """Diagram to check convergence of MCMC chains for a single parameter

    :Parameters:
        *BayesInferenceObject* :
            a BayesInference object containing all information about
            the model and the posterior distribution
        *parameter* :
            model parameter of interest. So far, no model derived parameters such as
            thresholds are supported
        *warn* :
            should warnings be displayed if the samples look suspicious?
    """

    if BayesInferenceObject.mcestimates is None:
        raise ValueError, "MCMC convergence diagnostics require monte carlo samples. Try to call the sample() method of your inference object."

    fig = p.figure ( figsize=[9,3] )
    ax_chains,ax_geweke,ax_prm = axes_array_h ( fig, 3, (.2,.65),(.1,.2), dist=.1 )
    plotChains ( BayesInferenceObject, parameter, ax_chains, warn=warn )
    plotGeweke ( BayesInferenceObject, parameter, ax_geweke, warn=warn )
    plotParameterDist ( BayesInferenceObject, parameter, ax_prm )

def plotSensitivity ( BootstrapInferenceObject, ax=None ):
    """Visualize a sensitivity analysis to determine expanded bootstrap confidence intervals

    Sensitivity analysis is used for BootstrapInference objects to expand the confidence intervals
    in order to obtain more realistic coverage. This function calls the sensitivity_analysis() method
    of the BootstrapInferenceObject with default parameters. If other parameters are requested, the
    sensitivity_analysis() method should be called manually

    :Parameters:
        *BootstrapInferenceObject* :
            Inference object to be analyzed
        *ax* :
            pylab axes that should be used for plotting
    """
    if BootstrapInferenceObject.mcestimates is None:
        raise ValueError, "Sensitivity analysis requires monte carlo samples. Try to call the sample() method of your inference object."

    if ax==None:
        ax = p.axes()

    # Determine axes ranges
    prm1 = BootstrapInferenceObject.mcestimates[:,0]
    prm2 = BootstrapInferenceObject.mcestimates[:,1]
    ax.plot(prm1,prm2,'w.',markersize=1)
    xmin,xmax = ax.get_xlim()
    ymin,ymax = ax.get_ylim()
    ax.cla()

    # Plot the density estimate in the background
    x,y = N.mgrid[xmin:xmax:100j,ymin:ymax:100j]
    C = BootstrapInferenceObject.mcdensity(N.c_[N.ravel(x),N.ravel(y)].T)
    C.shape = 100,100
    ax.imshow( C.T,origin="lower",extent=(xmin,xmax,ymin,ymax), cmap=p.cm.gray_r )

    # Get the points and make sure, a sensitivity_analysis has indeed been run
    thres,slope,points = BootstrapInferenceObject.sensitivity_analysis(verbose=False)

    # plot the points
    ax.fill(points[:,0],points[:,1],fill=False,edgecolor="r",linewidth=2)
    ax.plot(prm1,prm2,"b.",markersize=2)
    ax.plot(points[:,0],points[:,1],'rd',markersize=5)
    ax.plot([BootstrapInferenceObject.estimate[0]],[BootstrapInferenceObject.estimate[1]],'ro',markersize=5)

    # plot marginal percentiles
    prm1lims = p.prctile ( BootstrapInferenceObject.mcestimates[:,0], (2.5,25,75,97.5) )
    prm2lims = p.prctile ( BootstrapInferenceObject.mcestimates[:,1], (2.5,25,75,97.5) )
    ax.plot( prm1lims, [ymin-0.05*(ymax-ymin)]*4, 'b-', [xmin-0.05*(xmax-xmin)]*4, prm2lims, 'b-' )
    ax.plot( prm1lims[1:3], [ymin-0.05*(ymax-ymin)]*2, 'b-', [xmin-0.05*(xmax-xmin)]*2, prm2lims[1:3], 'b-', linewidth=5 )

    # Draw axes
    drawaxes ( ax, ax.get_xticks(), "%g", ax.get_yticks(), "%g", BootstrapInferenceObject.parnames[0], BootstrapInferenceObject.parnames[1] )

def plotInfluential ( InferenceObject ):
    """Diagnostic plot for detecting influential observations

    Determining influential observations follows a different logic for bootstrap
    and for bayes inference. A block is labelled an influential observation if
    the fit for a dataset without that point is significantly different from the
    fit including that point. For BootstrapInference objects, this is quantified
    using a normed distance of the maximum likelihood fit including the block and
    withouth that block. This distance is normed in the following way: If the
    maximum likelihood fit for the reduced dataset remains inside the 95% confidence
    limits of the maximum likelihood fit for the full dataset, the influence
    value is below 1. Thus, influence values large than 1 indicate a problem with
    the data set. For BayesInference objects, the influence of a block is simply
    quantified as the Kullbach-Leibler divergence of the posterior for the full
    data set from the posterior for the reduced data set.

    :Parameters:
        *InferenceObject* :
            Data set for which the influential observations are to be plotted
    """
    maxinfl = N.argmax(InferenceObject.infl)
    ind = range ( InferenceObject.data.shape[0] )
    ind.pop(maxinfl)
    # influencedDataset = psignidata.BootstrapInference( InferenceObject.data[ind,:],
    #         sample=False, **(InferenceObject.model))
    # influencedDataset = psignidata.BayesInference ( InferenceObject.data[ind,:], **(InferenceObject.model) )
    est = interface.mapestimate ( InferenceObject.data[ind,:], start=InferenceObject.estimate, **(InferenceObject.model) )[0]
    x = N.mgrid[InferenceObject.data[:,0].min():InferenceObject.data[:,0].max():100j]
    influencedPMF = interface.diagnostics ( x, est,
            nafc = InferenceObject.model["nafc"],
            sigmoid = InferenceObject.model["sigmoid"],
            core = InferenceObject.model["core"] )

    p.figure ( figsize=(6,8) )
    # ax = p.axes ( (0.0,.5,.9,.5) )
    ax = prepare_axes ( p.subplot ( 2,1,1 ) )
    ax.set_ylabel ( r"$\Psi(x)$" )
    if InferenceObject.__repr__().split()[1] in ["BayesInference","ASIRInference"]:
        InferenceObject.drawposteriorexamples ( ax=ax )
    plotPMF ( InferenceObject, ax=ax, showaxes=True, showdesc=False, color="b", linewidth=2 )
    ax.plot ( [InferenceObject.data[maxinfl,0]], [InferenceObject.data[maxinfl,1].astype("d")/InferenceObject.data[maxinfl,2]],
            'rx', markersize=20, markeredgewidth=5 )
    # ax = plotPMF ( influencedDataset, ax=ax, showdesc=False, showaxes=True, color="r", markertype=([(0,0)],0), linewidth=2 )[-1]
    ax.plot ( x, influencedPMF, color="r", linewidth=2 )

    xl = list(ax.get_xlim ())

    # ax = p.axes ( (0.0, 0., .9, .5) )
    ax = p.subplot ( 2,1,2, sharex=ax )
    if InferenceObject.__repr__().split()[1] == "BootstrapInference":
        ax.plot ( [InferenceObject.data[:,0].min(),InferenceObject.data[:,0].max()], [1,1], 'k:' )
        yname = "Influence"
    else:
        yname = "D_KL( full || reduced )"
    ax.plot ( InferenceObject.data[:,0], InferenceObject.infl, 'bo' )
    ax.set_xlim(xl)
    drawaxes ( ax, ax.get_xticks(), "%g", ax.get_yticks(), "%g", r"stimulus intensity $x$", yname )

def plotMultiplePMFs ( *InferenceObjects, **kwargs ):
    """
    Plot multiple psychometric functions

    :Parameters:
        *InferenceObjects* :
            The Inference Objects that should be plotted. If the inference objects contain
            information about themselves, this information is used.
        *ax* :
            the axis object where the plot should go
        *xlabel* :
            text to be written on the y axis
        *ylabel* :
            text to be written on the x axis
        *ci* :
            boolean indicating whether credibility intervals should be drawn
            by default, this is False

    :Example:
    This example shows how to plot multiple psychometric functions

    >>> d0 = [[0, 28, 50], [2, 33, 50], [4, 38, 50], [6, 45, 50], [8, 45, 50], [10, 49, 50]]
    >>> d1 = [[0, 22, 50], [2, 34, 50], [4, 31, 50], [6, 42, 50], [8, 42, 50], [10, 46, 50]]
    >>> d2 = [[0, 26, 50], [2, 31, 50], [4, 38, 50], [6, 47, 50], [8, 49, 50], [10, 49, 50]]
    >>> constraints = ("","","Uniform(0,.1)")
    >>> B0 = BootstrapInference ( d0, priors=constraints,plotprm={"color": "r", "label": "Condition 0"} )
    >>> B1 = BootstrapInference ( d1, priors=constraints, plotprm={"color": "b","label": "Condition 1"} )
    >>> B2 = BootstrapInference ( d2, priors=constraints, plotprm={"color": "b","label": "Condition 2"} )
    >>> plotMultiplePMFs ( B0, B1, B2 )
    """
    ax = kwargs.setdefault ( "ax", None )
    if ax is None:
        ax = p.axes()
    pmflines = []
    pmflabels= []
    pmfdata  = []

    for pmf in InferenceObjects:
        l,d = plotPMF ( pmf, showaxes=False, showdesc=False, ax=ax )[:2]
        pmflines.append(l)
        pmfdata.append(d)
        pmflabels.append(pmf.label)
        if kwargs.setdefault ( "ci", False ):
            plotThres ( pmf, ax, color=pmf.color )

    ylabel_text = kwargs.setdefault("ylabel", None)
    if ylabel_text is None:
        if pmf.model["nafc"] < 2:
            ylabel_text = "P(Yes)"
        else:
            ylabel_text = "P(correct)"

    # Determine tics
    # p.setp(ax,frame_on=False,ylim=(-.05,1.05))
    xtics = p.getp(ax,'xticks')
    ytics = list(p.getp(ax,'yticks'))
    # Clean up ytics
    for k,yt in enumerate(ytics):
        if yt<0 or yt>1:
            ytics.pop(k)
    ytics = N.array(ytics)
    drawaxes ( ax, xtics, "%g", ytics, "%g", kwargs.setdefault("xlabel", "stimulus intensity"), ylabel_text )

    # Draw legend
    ax.legend (pmflines,pmflabels,'lower right')

    return pmflines,pmfdata

def plotJoint ( InferenceObject ):
    """Plot joint distribution of parameters
    
    For ASIRInference objects, also the fitted marginals are shown
    """
    nprm = InferenceObject.nparams
    parnames = InferenceObject.parnames

    fig = p.figure ()
    txt = []
    h,w = .9/nprm,.9/nprm
    for i in xrange ( nprm ):
        ax = prepare_axes ( fig.add_axes ( [.07+i*w,.97-(i+1)*h,.8*w,.8*h] ) )
        ax.xaxis.set_major_locator(MaxNLocator(5))

        if parnames[i] == "lambda":
            pr = r"\lambda"
        elif parnames[i] == "guess":
            pr = r"\gamma"
        else:
            pr = parnames[i]

        if InferenceObject.inference == "ASIR":
            gr  = InferenceObject.grids[i]
            mrg = InferenceObject.margins[i]
            ax.plot ( gr, mrg, 'b-.' )
            gn,gx = InferenceObject.getCI ( parnames[i], conf=(.01,.99) )
            x = p.mgrid[gn:gx:100j]
            ax.plot ( x, InferenceObject.posterior_pdf ( i, x ), 'b-', linewidth=2 )
            ax.plot ( x, InferenceObject.prior_pdf ( i, x ), 'k:' )
            txt.append ( r"$%s\sim%s$" % (pr, InferenceObject.posterior_approximations[i].strip("$")) )
        ax.set_xlabel ( r"$"+pr+r"$" )

        th = InferenceObject.mcestimates[:,i]
        if not (th==0).all():
            hist,b = N.histogram ( th, normed=True )
            ax.bar ( b[:-1], hist, N.diff(b), color=[.8,.8,1], edgecolor=[.8,.8,1] )

    for  i in xrange ( nprm ):
        ti = InferenceObject.mcestimates[:,i]
        for j in xrange ( i+1, nprm ):
            ax = prepare_axes ( fig.add_axes ( [.07+j*w, .97-(i+1)*h, .8*w,.8*h] ) )
            tj = InferenceObject.mcestimates[:,j]
            ax.plot ( tj, ti, '.' )
            ax.xaxis.set_major_locator(MaxNLocator(5))
            a,b,r,pr,se = stats.linregress ( tj, ti )
            x = N.sort(tj)
            ax.plot ( x, a*x+b, 'y' )
            ax.text ( ax.get_xlim()[0], ax.get_ylim()[0],r"$r=%.2f, p=%g$" % ( r,pr ),
                    fontsize=10, horizontalalignment="left", verticalalignment="bottom" )

    if InferenceObject.inference == "ASIR":
        txt.append ( r"duplicates: %g" % (InferenceObject.duplicates,) )
    fig.text ( .1,.1,"\n".join(txt) )


gof = GoodnessOfFit

if __name__ == "__main__":
    import doctest
    doctest.testmod()