/usr/share/pyshared/pypsignifit/psigobservers.py is in python-pypsignifit 3.0~beta.20120611.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 | #!/usr/bin/env python
# vi: set ft=python sts=4 ts=4 sw=4 et:
######################################################################
#
# See COPYING file distributed along with the psignifit package for
# the copyright and license terms
#
######################################################################
__docformat__ = "restructuredtext"
import numpy as N
from scipy import stats
import pypsignifit
interface = pypsignifit.interface
from psignidata import Property
__doc__ = """
If we want to know how well a psychometric function can describe an observers behavior, we
may want to simulate an observer. This module implements a number of simulated observers.
The basic observer does not violate any assumptions. However more elaborated observers
violate some of the assumptions that are typical when fitting psychometric functions.
"""
__all__ = ["Observer","LinearSystemLearner","CriterionSettingObserver","BetaBinomialObserver"]
class Observer ( object ):
def __init__ ( self, *params, **model ):
"""A stationary binomial observer
This is the observer, we all want: No interdependencies between trials, no learning,
no fluctuations in attention or motivation. Perfectly binomial responses in accordance
with the psychometric function shape you supply.
:Parameters:
*params* :
a list of parameters in the model. For nAFC tasks the parameters are a,b,lapse
for a Yes/No task the parameters are a,b,lapse,guess
*model* :
a list of keyword arguments specifying the model. These are the same as in
the psignidata module
:Example:
>>> O = Observer ( 4, 1, .02 )
>>> O.seed ( 0 )
>>> O.DoATrial ( 3 )
1
>>> O.DoABlock ( 4, 40 )
28
>>> O.DoABlock ( 6, 40 )
37
>>> O.DoAnExperiment ( [2,4,6], 50 )
[[2, 27, 50], [4, 38, 50], [6, 46, 50]]
>>> O.data
[[3, 1, 1], [4, 28, 40], [6, 37, 40], [2, 27, 50], [4, 38, 50], [6, 46, 50]]
:Example:
>>> model ={"sigmoid" : "gumbel_r", "core" : "mw01", "nafc" : 2}
>>> correct = [0.1, 0.3, 0.5, 0.7, 0.9, 0.99]
>>> ob = Observer(4, 4, 0.05, **model)
>>> levels = ob.getlevels(correct)
>>> data = ob.DoAnExperiment(levels, ntrials=50)
"""
if model.setdefault( "nafc", 2 ) == 1:
self.a,self.b,self.lapse,self.guess = params
else:
self.a,self.b,self.lapse = params
self.guess = 1./model["nafc"]
# Make sure, a,b,lapse and guess are floats
self.a = float(self.a)
self.b = float(self.b)
self.lapse = float(self.lapse)
self.guess = float(self.guess)
self.model = {
"sigmoid": model.setdefault ( "sigmoid", "logistic" ),
"core": model.setdefault ( "core", "ab" ),
"nafc": model.setdefault ( "nafc", 2 )
}
self.data = []
def DoATrial ( self, stimulus_intensity=1 ):
"""Simulate a single trial
:Parameters:
*stimulus_intensity* :
stimulus intensity to be presented
:Output:
The response in the trail (1/0 coding for Yes/No in Yes/No-Tasks or for
Correct/Incorrect in nAFC tasks)
"""
prob = float( interface.diagnostics ( [stimulus_intensity], self.params,
sigmoid=self.model["sigmoid"], core=self.model["core"], nafc=self.model["nafc"] ) )
resp = int ( N.random.rand()<prob )
if len(self.data) == 0 or not stimulus_intensity==self.data[-1][0]:
self.data.append ( [stimulus_intensity,resp,1] )
else:
self.data[-1][1] += resp
self.data[-1][2] += 1
return resp
def DoABlock ( self, stimulus_intensity=1, ntrials=50 ):
"""Simulate a block of trials
:Parameters:
*stimulus_intensity* :
stimulus intensity to be presented
*ntrials* :
number of trials in the block
:Output:
The number of Yes-responses (in Yes/No) or the number of correct responses (nAFC)
"""
prob = float( interface.diagnostics ( [stimulus_intensity], self.params,
sigmoid=self.model["sigmoid"], core=self.model["core"], nafc=self.model["nafc"] ) )
resp = N.random.binomial ( ntrials, prob )
self.data.append ( [stimulus_intensity, resp, ntrials] )
return resp
def DoAnExperiment ( self, stimulus_intensities, ntrials=50 ):
"""Simulate a whole experiment
:Parameters:
*stimulus_intensities* :
a sequence of stimulus intensities in the order they should be presented
*ntrials* :
Either an integer or a sequence. If this is an integer, it is interpreted as a constant
number of trials that is presented in each trial, otherwise, the sequence is expected to
contain a number of trials for each trials.
:Output:
A list of lists. Each element of the list has the structure
[stimulus_intensity, number_of_correct_or_yes_responses,number_of_trials]
"""
if isinstance ( ntrials, int ):
ntrials = [ntrials] * len(stimulus_intensities)
data = []
for s,n in zip ( stimulus_intensities, ntrials ):
data.append ( [s, self.DoABlock ( s, n ), n] )
return data
def seed ( self, seed ):
"""Seed the underlying random number generator to a defined value"""
N.random.seed ( seed )
def __str__ ( self ):
if self.model["nafc"] < 2:
return "< Observer a=%g,b=%g,lapse=%g,guess=%g,core=%s,sigmoid=%s >" % (self.a,self.b,self.lapse,self.guess,self.model["core"],self.model["sigmoid"])
else:
return "< Observer a=%g,b=%g,lapse=%g,core=%s,sigmoid=%s >" % (self.a,self.b,self.lapse,self.model["core"],self.model["sigmoid"])
def getlevels ( self, cuts ):
"""Determine stimulus levels that correspond to predefinde levels of performance"""
return interface.diagnostics ( [[1,2,3]], self.params, self.model["nafc"], self.model["sigmoid"], self.model["core"], cuts )[3]
def evaluate ( self, stimulus_intensities ):
"""Evaluate the psychometric function
:Parameters:
*stimulus_intensities* :
stimulus intensities at which the psychometric function
should be evaluated.
"""
return interface.diagnostics ( stimulus_intensities, self.params,
sigmoid=self.model["sigmoid"], core = self.model["core"], nafc=self.model["nafc"] )
@Property
def params ():
"parameters of the model"
def fget ( self ):
if self.model["nafc"] < 2:
return [self.a,self.b,self.lapse,self.guess]
else:
return [self.a,self.b,self.lapse]
@Property
def thres ():
"determine 50%% of the model"
def fget ( self ):
return float(interface.diagnostics ( [], self.params, cuts=0.5, nafc=self.model["nafc"], sigmoid=self.model["sigmoid"], core=self.model["core"] )[3])
class LinearSystemLearner ( Observer ):
def __init__( self, *params, **model ):
"""A nonstationary observer that learns like a linear system in one or more parameters
For this observer, the parameters of the psychometric function change: The parameters given
to the constructor are initial values. In addition, a dictionary is given containing the learning
parameters.
The constructor requires a dictionary that describes the changes of the parameters. The dictionary
has keys 'a', 'b', and/or 'lapse'. For each key, there are two parameters:
the rate of decay and the asymptote where the parameter converges. Thus
{'a' : ( 40, 3)}
means that after every trial, the a parameter is modified according to
a -= (a-3)/4
:Parameters:
*params* :
parameters of the model a, b, lapse and in Yes/No tasks also guess. In addition, a dictionary
is required to describe the changes of the parameters (see above)
*model* :
a list of keyword arguments to describe the model. These are the same as in the psignidata
module.
:Example:
>>> O = LinearSystemLearner ( 7, 2, .02, {'a': (40,3)} )
>>> O.seed ( 0 )
>>> O.a
7.0
>>> O.DoATrial ( 3 )
1
>>> O.DoABlock ( 4, 50 )
34
>>> O.DoAnExperiment ( [4,2,8,10,6], 50 )
[[4, 43, 50], [2, 32, 50], [8, 48, 50], [10, 49, 50], [6, 38, 50]]
>>> O.data
[[3, 1, 1], [4, 34, 50], [4, 43, 50], [2, 32, 50], [8, 48, 50], [10, 49, 50], [6, 38, 50]]
>>> O.a
3.0019608723226945
"""
# TODO: An other example for sharper discriminations (b) and for fatigue (lapse)
Observer.__init__ ( self, *(params[:-1]), **model )
self.__parstring = "a=%g,b=%g,lapse=%g" % (self.a,self.b,self.lapse)
if self.model["nafc"] < 2:
self.__parstring += ",guess=%g" % (self.guess,)
self.__parstring += ",core=%s,sigmoid=%s" % (self.model["core"],self.model["sigmoid"])
self.learn = params[-1]
def DoATrial ( self, stimulus_intensity=1 ):
"""Simulate a single trial with learning
:Parameters:
*stimulus_intensity* :
intensity of the presented stimulus
:Output:
either 1 or 0 indicating Yes/No in Yes/No-Tasks or Correct/Incorrect in nAFC
"""
# Get the response:
resp = Observer.DoATrial ( self, stimulus_intensity )
# Modify parameters:
for prm,vals in self.learn.iteritems():
if prm in ["a","m"]:
self.a -= (self.a-vals[1])/vals[0]
elif prm in ["b","w"]:
self.b -= (self.b-vals[1])/vals[0]
elif prm=="lapse":
self.lapse -= (self.lapse-vals[1])/vals[0]
else:
# This should issue a warning
raise ValueError, "Trying to modify parameter "+prm+" which does not make sense"
return resp
def DoABlock ( self, stimulus_intensity=1, ntrials=50 ):
"""Simulate a block of trials with learning
:Parameters:
*stimulus_intenstiy* :
intensity of the presented stimulus
*ntrials* :
number of repetitions of the stimulus
:Output:
the number of Yes-responses in a Yes/No-task or the number of correct responses in nAFC
"""
self.data.append ( [stimulus_intensity, 0, 0] )
resp = 0
for k in xrange(ntrials):
resp += self.DoATrial ( stimulus_intensity )
return resp
def __str__ ( self ):
return "< LinearSystemLearner %s,learning: %s >" % (self.__parstring,self.learn)
class CriterionSettingObserver ( Observer ):
def __init__ ( self, *params, **model ):
"""A nonstationary observer that recalibrates its decision process according to CST
Criterion setting theory (CST) is an extension to signal detection theory that was originally
proposed by Treisman & Williams (1984): each isolated psychophysical decision is described in
terms of signal detection theory. In addition, the criterion used by the observer is updated
from trial to trial. There are two processes describing the updating of the criterion:
1. *stabilization* : The criterion is moved into the direction of new incoming stimuli. This
results in the criterion being placed roughly in the middle of the stimulus stream. Thus,
stabilization can be said to maximize information transmission.
2. *tracking* : The criterion is placed in a direction that increases repetitions of the same
response. This strategy can be considered as a prior for an unchanging outside world.
Both, stabilization and tracking are described in the form of linearly decreasing traces.
If Ec(j) ist the effective criterion on trial j and E(j) is the sensory input on trial j, then
this will result in a stabilization trace of the form Ds*( E(j) - Ec(j) ). After one trial,
this trace will have decreased on the next trial j+1 to Ds*( E(j) - Ec(j) ) - ds. Thus,
Ec(j+1) = Ec(j) + Ds*( E(j) - Ec(j))-ds. Similarly for tracking, there are two parameters Dr
and dr describing the size of an indicator trace directly after a response has been made and
describing the decrease of an indicator trace from one trial to another.
:Parameters:
*params* :
a,b,lapse parameters of the psychometric function describing the interrelation between
stimulus intensity and sensitivity (where sensitivity is given in fraction of
correct responses in 2AFC).
E0 the reference criterion, i.e. Ec(0) := E0
Ds,ds parameters of the stabilization mechanism
Dr,dr parameters of the tracking mechanism
:Example:
>>> O = CriterionSettingObserver ( 4., 1., 0.02, 0.5, 0.1, 0.005, 0.1, 0.01 )
>>> O.seed ( 0 )
>>> O.DoATrial ( 1 )
0
>>> O.DoABlock ( 3, 30 )
24
>>> O.DoABlock ( 3, 30, 0 )
(5, 11, 8, 19)
"""
# Make sure, the parameters of the psychometric function are interpreted as 2AFC
model["nafc"] = 2
# Initialize the Observer
Observer.__init__ ( self, *(params[:3]), **model )
# Store CST parameters
self.E0, self.Ds, self.ds, self.Dr, self.dr = params[3:]
self.Straces = []
self.Ttraces = []
def DoATrial ( self, stimulus_intensity=1, nAFC=2 ):
"""Simulate a single trial with criterion setting
:Parameters:
*stimulus_intensity* :
intensity of the stimulus the is presented
*nAFC* :
number of alternatives presented / task to be performed.
- nAFC=-1 Yes/No task, stimulus presence is random.
- nAFC=0 Yes/No task, noise only trial
- nAFC=1 Yes/No task, signal+noise trial
- nAFC>1 nAFC task, number of alternatives
:Output:
A number 1 or 0, depending on the task, this means correct/incorrect (nAFC)
or signal present, signal absent (Yes/No)
"""
prob = float( interface.diagnostics ( [stimulus_intensity], self.params,
sigmoid=self.model["sigmoid"], core=self.model["core"], nafc=2 ) )
d = stats.norm.ppf(prob) - stats.norm.ppf(1-prob)
if nAFC==-1:
if N.random.rand() < 0.5:
stim = [0]
else:
stim = [d]
elif nAFC==0:
stim = [0]
elif nAFC==1:
stim = [d]
else:
stim = N.random.multinomial ( 1, [self.guess]*nAFC ) * d
maxx,maxi = -100,-1
dat = []
# The response traces are updated only once per trial
Ec = self.E0 + self.__updateTrace ( self.Ttraces, self.dr )
for i,s in enumerate(stim):
Ej = s + N.random.randn()
# The remaining traces are updated after every stimulus
Ecs = Ec + self.__updateTrace ( self.Straces, self.ds )
x = Ej - Ecs
# Store
self.Straces.append( self.Ds*x )
dat.append ( (Ej, Ecs) )
if x>maxx:
maxx = x
maxi = i
# self.data.append ( dat )
self.data.append ( Ecs )
# Decision rule depends on task
if nAFC < 2:
if x > 0:
self.Ttraces.append ( self.Dr )
return 1
else:
self.Ttraces.append( -self.Dr )
return 0
else:
if stim[maxi] == 0:
return 0
else:
return 1
def DoABlock ( self, stimulus_intensity=1, ntrials=50, nAFC=2 ):
"""Simulate a whole block of trials with criterion setting
:Parameters:
*stimulus_intensity* :
intensity of the stimulus presented
*ntrials* :
number of trials in the block
*nAFC* :
number of alternatives presented / task to be performed.
- nAFC in {0,1,-1} Yes/No task, stimulus presence is random.
- nAFC>1 nAFC task, number of alternatives
:Output:
Number of Correct responses (nAFC) or a tuple with
(number of hits, number of signal trials, number of false alarms, number of noise trials)
"""
if nAFC<2:
return self.__DoABlock_YesNo ( stimulus_intensity, ntrials )
else:
return self.__DoABlock_nAFC ( stimulus_intensity, ntrials, nAFC )
def __DoABlock_YesNo ( self, stimulus_intensity=1, ntrials=50 ):
"""Yes/No block"""
nhits,nsignals,nfalsealarms,nnoise = 0,0,0,0
for j in xrange ( ntrials ):
s_or_n = N.random.rand () < 0.5
if s_or_n == 0:
nnoise += 1
nfalsealarms += self.DoATrial ( stimulus_intensity, s_or_n )
else:
nsignals += 1
nhits += self.DoATrial ( stimulus_intensity, s_or_n )
return nhits,nsignals,nfalsealarms,nnoise
def __DoABlock_nAFC ( self, stimulus_intensity=1, ntrials=50, nAFC=2 ):
"""nAFC block"""
assert nAFC >= 2
ncorrect = 0
for k in xrange ( ntrials ):
ncorrect += self.DoATrial ( stimulus_intensity, nAFC )
return ncorrect
def __updateTrace ( self, traces, d ):
"""sum up the traces and update"""
Ec = 0
for k,t in enumerate(traces):
newtrace = t-N.sign(t)*d
if newtrace*t < 0: # Sign change of traces ~> the trace died here
traces.pop(k)
else:
traces[k] = newtrace
Ec += newtrace
return Ec
def __str__ ( self ):
return "< CriterionSettingObserver E0=%g,Ds=%g,ds=%g,Dr=%g,dr=%g >" % (self.E0,self.Ds,self.ds,self.Dr,self.dr)
class BetaBinomialObserver ( Observer ):
def __init__ ( self, *params, **model ):
"""An overdispersed observer that otherwise follows binomial assumptions
For every block, this observer draws a p value from a Beta distribution
with mean given by the psychometric function. This p-value is then used
to generate the responses of that block.
:Parameters:
*params* :
a,b,lapse(,guess) are parameters for the classical psychometric function,
m gives the dispersion of the Beta distribution. For a Beta distribution
with parameters alpha and beta, m=alpha+beta
*model* :
a list of keywords to further specify the model
:Example:
>>> O = BetaBinomialObserver ( 4., 1., .02, 30 )
>>> O.seed ( 0 )
>>> O.DoABlock ( 4, 30 )
24
>>> O.DoABlock ( 4, 30 )
18
>>> O.DoAnExperiment ( [4,2,8,10,6], 50 )
[[4, 37, 50], [2, 24, 50], [8, 47, 50], [10, 49, 50], [6, 49, 50]]
"""
self.dispersion = params[-1]
Observer.__init__ ( self, *(params[:-1]), **(model) )
def DoABlock ( self, stimulus_intensity=1, ntrials=50 ):
"""Perform a block of trials
:Parameters:
*stimulus_intensity* :
intensity of the presented stimulus
*ntrials* :
number of trials in the block
:Output:
number of correct responses (nAFC) or number of yes responses (Yes/No-Task)
"""
psi = float( interface.diagnostics ( [stimulus_intensity], self.params,
sigmoid=self.model["sigmoid"], core=self.model["core"], nafc=self.model["nafc"] ) )
alpha = psi*self.dispersion
beta = (1-psi)*self.dispersion
prob = stats.beta.rvs ( alpha, beta )
resp = N.random.binomial ( ntrials, prob )
self.data.append ( [stimulus_intensity, resp, ntrials] )
return resp
def __str__ ( self ):
if self.model["nafc"] < 2:
return "< BetaBinomialObserver a=%g,b=%g,lapse=%g,guess=%g,M=%g >" % (self.a,self.b,self.lapse,self.guess,self.dispersion)
else:
return "< BetaBinomialObserver a=%g,b=%g,lapse=%g,M=%g >" % (self.a,self.b,self.lapse,self.dispersion)
############################################################
# Utilities
def yesno2dprime ( hits, signals, falsealarms, noises ):
"""Determine dprime from hits and false alarms
:Parameters:
*hits* :
number of hits
*signals* :
number of signal trials
*falsealarms* :
number of false alarm trials
*noises* :
number of noise only trials
:Output:
dprime, variance (based on bootstrap)
"""
hrate = N.clip(float(hits)/signals, .001, .999 )
frate = N.clip(float(falsealarms)/noises, .001, .999 )
hsample = N.clip ( N.random.binomial ( signals, hrate, size=5000 ).astype('d') / signals, .001, .999 )
fsample = N.clip ( N.random.binomial ( noises, frate, size=5000 ).astype('d') / noises , .001, .999 )
dprime = stats.norm.ppf ( hrate ) - stats.norm.ppf ( frate )
dprimes = stats.norm.ppf ( hsample ) - stats.norm.ppf ( fsample )
return dprime, N.var ( dprimes )
def dprime2Pcorrect ( dprime ):
"""Convert dprime to 2AFC fraction of correct responses
From a given d' the probability of a correct response in a 2AFC trial can be inferred as
P(correct) = P(s>n) = P(n<s) = E[ Phi(s) ].
The expectation is evaluated by solving the integral using trapezoid integration.
"""
x = N.mgrid [ -20:20:1000j ]
Phiphi = stats.norm.cdf(x)*stats.norm.pdf(x-dprime)
return N.trapz ( Phiphi, x )
if __name__ == "__main__":
import doctest
doctest.testmod()
|