/usr/share/pyshared/rabbyt/anims.py is in python-rabbyt 0.8.1-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 | """
This module provides *Animators* (or *anims* for short) for Rabbyt.
*Anims* are little objects that can implement a movement function, primarily
meant to animate sprites. The movement functions are all implemented in C, so
your sprites can be animated without any python call overhead.
For example, to linearly interpolate a sprite from x=0 to x=100 over the next
second, you can do this:
.. sourcecode:: python
sprite.x = rabbyt.lerp(0, 100, dt=1)
Looks like magic?
It is! Sorta...
The ``Sprite`` class's ``x`` attribute is really a property. If you
assign an anim to it, that anim will be called for it's value every time the
sprite needs it's x position. Nearly all of ``Sprite``'s properties work
like this.
Anims support various arithmatic opperations. If you add two together,
or add one with a constant number, a new anim will be returned. Here is a
rather contrived example of doing that:
.. sourcecode:: python
sprite.x = rabbyt.lerp(0, 100, dt=1) + 20
(In this case, you would be better off interpolating from 20 to 120, but
whatever.)
Here is a more useful example:
.. sourcecode:: python
sprite2.x = sprite1.attrgetter('x') + 20
That will cause sprite2's x position to always be 20 more than sprite1's x
position. (``Sprite.attrgetter()`` returns an anim that gets an attribute.)
This all happens in compiled C code, without any python call overhead. (That
means you can have thousands of sprites doing this and it will still be fast.)
But sometimes you don't really need that much speed. You can use any python
function as an anim as well. This example does the same as the last one:
.. sourcecode:: python
sprite2.x = lambda: sprite1.x + 20
(``Sprite.x`` will automatically wrap the function in an ``AnimPyFunc``
instance behind the scenes.)
Using anims in your own classes
-------------------------------
You can use anims in your own class by subclassing from ``Animable`` and using
the ``anim_slot`` descriptor. For example, a simple sprite class could start
like this:
.. sourcecode:: python
class MySprite(rabbyt.Animable):
x = rabbyt.anim_slot()
y = rabbyt.anim_slot()
xy = rabbyt.swizzle('x', 'y')
The ``x``, ``y``, and ``xy`` attributes will behave the just like they do in
rabbyt's ``Sprite`` class.
"""
from __future__ import division
__credits__ = (
"""
Copyright (C) 2007 Matthew Marshall
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
""")
__author__ = "Matthew Marshall <matthew@matthewmarshall.org>"
from rabbyt._anims import *
import warnings
class swizzle(object):
"""
``swizzle(..., factory=tuple)``
``swizzle`` is a descriptor used to create a shortcut for getting/setting
multiple attributes at once. For example, the ``xy`` attribute for
``BaseSprite`` was created by defining this in the class::
xy = swizzle('x', 'y')
If ``factory`` is given it will be used to build the value when the sizzle
is read. It is passed a sequence of the values. For example, if you're
using a vector class you can do this::
xy = swizzle('x', 'y', factory=MyVector)
``swizzle`` works with any attribute in any new-style class.
"""
def __init__(self, *names, **kwargs):
self.names = names
self.factory = kwargs.pop("factory", tuple)
doc = "swizzle for " + ", ".join("``%s``" % s for s in names)
self.__doc__ = kwargs.pop("doc", doc)
if kwargs:
raise TypeError(
"Unexpected keyword argument(s): %r" % kwargs.keys())
def __get__(self, obj, type):
if obj is None:
return self
return self.factory(getattr(obj, n) for n in self.names)
def __set__(self, obj, value):
if len(value) != len(self.names):
raise ValueError("Need %i values to unpack" % len(self.names))
# TODO optimize this
for n, v in zip(self.names, value):
setattr(obj, n, v)
class AnimableMeta(type):
def __new__(cls, name, bases, dict):
animable_subclasses = [b for b in bases
if hasattr(b, "_anim_slot_descriptors")]
if len(animable_subclasses) > 1:
raise TypeError(
"Cannot subclass from more than one Animable class.")
new_class = type.__new__(cls, name, bases, dict)
inherited_descriptors = []
if animable_subclasses:
a_cls = animable_subclasses[0]
if hasattr(a_cls, "_anim_slot_descriptors"):
inherited_descriptors.extend(a_cls._anim_slot_descriptors)
new_descriptors = [v for v in dict.values()
if isinstance(v, anim_slot)]
used_indexes = set()
for d in inherited_descriptors + new_descriptors:
if d.index != -1:
if d.index in used_indexes:
raise ValueError("Duplicate descriptor index %i" % d.index)
else:
used_indexes.add(d.index)
index = 0
for d in new_descriptors:
if d.index == -1:
while index in used_indexes:
index += 1
d.index = index
used_indexes.add(index)
index += 1
new_class._anim_slot_descriptors = (inherited_descriptors +
new_descriptors)
new_class._anim_slot_descriptors.sort(key=lambda d:d.index)
# WARNING: this is not in the same order as _anim_slot_descriptors!!
new_class._anim_slot_descriptor_names = [n for n in dir(new_class)
if isinstance(getattr(new_class, n), anim_slot)]
if len(new_class._anim_slot_descriptors):
assert len(new_class._anim_slot_descriptors) == max(used_indexes)+1
# Optimization:
# Copy all anim slot descriptors from base classes directly into this
# classes dict. This makes the inheritance tree attribute search
# much shorter.
for name in new_class._anim_slot_descriptor_names:
setattr(new_class, name, getattr(new_class, name))
return new_class
class Animable(cAnimable):
"""
``Animable(**kwargs)``
This is a base class for making classes with propertys that work with anims.
For example, you can create a custom sprite class like this::
class MySprite(Animable):
x = anim_slot()
y = anim_slot()
xy = swizzle('x', 'y')
rot = anim_slot()
The ``x``, ``y``, ``xy``, and ``rot`` attributes will work just like the
default rabbyt ``Sprite`` class.
All ``anim_slot`` and ``swizzle`` attribute names can be passed as keyword
arguments to Animable.__init__::
sprite = MySprite(xy=(10,100), rot=90)
"""
__metaclass__ = AnimableMeta
def __init__(self, **kwargs):
cAnimable.__init__(self)
# set defaults...
for desc in self._anim_slot_descriptors:
slot = desc.get_slot(self)
slot.value = desc.default_value
for name, value in kwargs.items():
if name in self._anim_slot_descriptor_names or \
hasattr(self.__class__, name):
setattr(self, name, value)
else:
raise ValueError("unexpected keyword argument %r" % name)
def end_data_migrate(self, attrs):
self.set_anim_slot_locations()
if hasattr(self, 'in_array') and self.in_array is not None:
self.set_anim_slot_locations_in_array(attrs.keys())
for name, value in attrs.items():
setattr(self, name, value)
def attrgetter(self, name):
"""
``attrgetter(name)``
Returns an anim that returns the value of the given attribute name.
Perhaps this is easiest to see with an example. The following two lines
will both do the same thing, only the second is much, much faster:
.. sourcecode:: python
sprite.x = lambda: other_sprite.x
sprite.x = other_sprite.attrgetter("x")
The anim returned by attrgetter is implemented in C and will retrieve
the value without doing a python attribute lookup.
This works for any attribute that you can assign an anim to.
``swizzle`` descriptors are properly handled.
"""
class_attr = getattr(self.__class__, name)
if isinstance(class_attr, anim_slot):
return AnimSlotReader(class_attr.get_slot(self))
elif isinstance(class_attr, swizzle):
return tuple(self.attrgetter(n) for n in class_attr.names)
extend_types = dict(constant=1, extrapolate=2, repeat=3, reverse=4)
class IncompleteInterpolateAnim(IncompleteAnimBase):
"""
An instance of IncompleteInterpolateAnim is returned by ``lerp`` etc. when
they are not given all of the arguments needed to operate. These arguments
will be filled in when it is added to an anim slot.
For example:
sprite.x = lerp(end=10, dt=2)
Calling ``lerp(end=10, dt=2)`` returns an incomplete anim, because both
``start`` and ``startt`` are missing. When the incomplete anim is assigned
to ``sprite.x``, ``start`` is filled in with the previous value of
``sprite.x`` and ``startt`` is filled in with the current time.
"""
# TODO generalize parts of this class for use with other types of anims.
def __init__(self, kwargs, missing):
self.kwargs = kwargs
self.missing = missing
def complete(self, **new_args):
"""
``complete(self, **new_args)``
Returns a new anim, using ``new_args`` to fill it in.
This method doesn't modify the IncompleteInterpolateAnim.
If the anim still isn't complete, a new IncompleteInterpolateAnim is
returned.
"""
kwargs = self.kwargs.copy()
missing = self.missing.copy()
for name in self.missing:
if name in new_args:
missing.remove(name)
kwargs[name] = new_args[name]
if "endt" not in kwargs and "startt" in kwargs and "dt" in kwargs:
kwargs['endt'] = kwargs['startt'] + kwargs['dt']
missing.remove('endt')
if "startt" not in kwargs and "endt" in kwargs and "dt" in kwargs:
kwargs['startt'] = kwargs['endt'] - kwargs['dt']
missing.remove('startt')
if "t" in kwargs:
missing.difference_update(set(('startt', 'endt')))
if isinstance(kwargs['t'], IncompleteAnimBase):
complete_args = dict(start=0, end=1)
# TODO Do we want to populate our startt etc. with t's startt?
#for name in ('startt', 'endt', 'dt'):
#if name in kwargs:
#complete_args[name] = kwargs[name]
kwargs['t'] = kwargs['t'].complete(**complete_args)
if missing:
return self.__class__(kwargs, missing)
else:
kwargs.pop("dt", None)
return InterpolateAnim(**kwargs)
def force_complete(self, **new_args):
"""
``force_complete(self, **new_args)``
Calls ``complete(**new_args)``, raising an exception if the result is
still incomplete.
This method will also fill in ``startt`` with the result of
``get_time()``.
"""
if "startt" not in new_args:
new_args['startt'] = get_time()
value = self.complete(**new_args)
if isinstance(value, IncompleteAnimBase):
raise ValueError("Unable to complete missing arguments: "+
str(tuple(value.missing)))
else:
return value
def _handle_time_args(startt, endt, dt):
if startt is None:
startt = get_time()
if endt is None:
if dt is None:
raise ValueError("Either dt or endt must be given.")
endt = startt + dt
assert startt < endt
return startt, endt
def _interpolate(method, start=None, end=None, startt=None, endt=None, dt=None,
t=None, extend="constant"):
try:
if start is not None:
iter(start)
if end is not None:
iter(end)
# hack to force a single dimension when both start and end are none.
# (This needs a proper solution.)
if start is None and end is None:
raise TypeError
except TypeError:
args = dict(start=start, end=end, startt=startt, endt=endt, dt=dt,
t=t, extend=extend, method=method)
# remove all args with None values
args = dict((k, v) for k, v in args.items() if v is not None)
missing = set(('start', 'end', 'startt', 'endt', 'extend', 'method')
).difference(set(args.keys()))
# TODO optimize this a bit...
return IncompleteInterpolateAnim(args, missing).complete()
else:
if start is None:
start = [None]*len(end)
if end is None:
end = [None]*len(start)
return [_interpolate(method, s, e, startt, endt, dt, t, extend)
for s,e in zip(start, end)]
def lerp(start=None, end=None, startt=None, endt=None, dt=None, t=None,
extend="constant"):
"""
``lerp(start, end, [startt,] [endt,] [dt,] [t,] [extend])``
Linearly interpolates between ``start`` and ``end`` as time moves from
``startt`` to ``endt``.
``startt`` is the time to start.
To specify the ending time, use either ``endt``, which is the absolute
time, or ``dt``, which is relative from ``startt``.
For example, the following are equivalent:
.. sourcecode:: python
lerp(0, 1, rabbyt.get_time(), endt=rabbyt.get_time()+1)
lerp(0, 1, rabbyt.get_time(), dt=1)
``extend`` is a string defining what to do before ``startt`` and after
``endt``. Possible values are:
``"constant"``
The value will be locked between ``start`` and ``end``. *This is
the default.*
``"extrapolate"``
After the value hits ``end`` it just keeps going!
``"repeat"``
After the value hits ``end`` it will start over again at
``start``.
``"reverse"``
After the value hits ``end`` it will reverse, moving back to
``start``.
Check out the ``extend_modes.py`` example to see all four side by side.
If any required values are omitted, ``lerp`` will return an
``IncompleteInterpolateAnim`` instance, which will have the missing values
filled in when assigned to an anim slot. So instead of doing this:
.. sourcecode:: python
# long way:
sprite.x = lerp(start=sprite.x, end=10, startt=get_time(), dt=1)
... you could do this:
.. sourcecode:: python
# shortcut with same result:
sprite.x = lerp(end=10, dt=1)
Both ``start`` and ``startt`` are missing, so ``lerp`` returns an incomplete
anim. When it is assigned to ``sprite.x``, ``start`` is filled in with
the previous value of ``sprite.x`` and ``startt`` is filled in with the
current time.
``start`` and ``end`` can either be numbers, or tuples of numbers. If
they are tuples, a tuple of anims will be returned. For example, this
line:
.. sourcecode:: python
sprite.rgba = lerp((0,1,0,.5), (1,0,1,1), dt=1)
is equivalent to this:
.. sourcecode:: python
sprite.red = lerp(0, 1, dt=1)
sprite.green = lerp(1, 0, dt=1)
sprite.blue = lerp(0, 1, dt=1)
sprite.alpha = lerp(.5,1, dt=1)
TODO document t [startt and endt (mostly) ignored when used]
"""
return _interpolate("lerp", start, end, startt, endt, dt, t, extend)
def ease(start=None, end=None, startt=None, endt=None, dt=None, t=None,
extend="constant", method="sine"):
"""
``ease(start, end, [startt,] [endt,] [dt,] [t,] [extend,] [method,])``
Interpolates between ``start`` and ``end``, easing in and out of the
transition.
``method`` is the easing method to use. It defaults to "sine". See the
"interpolation.py" example in the rabbyt source distribution for more.
TODO List the valid interpolation methods here (perhaps with descriptions.)
All other argments are identical to ``lerp``.
"""
# TODO validate method here. (Give a better exception than a KeyError.)
return _interpolate("ease_"+method, start, end, startt, endt, dt, t, extend)
def ease_in(start=None, end=None, startt=None, endt=None, dt=None, t=None,
extend="constant", method="sine"):
"""
``ease_in(start, end, [startt,] [endt,] [dt,] [t,] [extend,] [method,])``
Interpolates between ``start`` and ``end``, easing into the
transition. (So the movement starts out slow.)
See the docs for ``ease`` for more information.
"""
return _interpolate("ease_in_"+method, start, end, startt, endt, dt, t,
extend)
def ease_out(start=None, end=None, startt=None, endt=None, dt=None, t=None,
extend="constant", method="sine"):
"""
``ease_out(start, end, [startt,] [endt,] [dt,] [t,] [extend,] [method,])``
Interpolates between ``start`` and ``end``, easing out of the
transition. (The movement starts fast and ends slow.)
See the docs for ``ease`` for more information.
"""
return _interpolate("ease_out_"+method, start, end, startt, endt, dt, t,
extend)
def exponential(start=None, end=None, startt=None, endt=None, dt=None, t=None,
extend="constant"):
"""
``exponential`` is deprecated. Use ``ease_in(... method='exponential')``
instead.
"""
warnings.warn("exponential is deprecated. Use "
"ease_in(... method='exponential') instead.", stacklevel=2)
return ease_in(start, end, startt, endt, dt, t, extend, 'exponential')
def cosine(start=None, end=None, startt=None, endt=None, dt=None, t=None,
extend="constant"):
"""
``cosine`` is deprecated. Use ``ease_out`` instead.
"""
warnings.warn("cosine is deprecated. Use ease_out instead.", stacklevel=2)
return ease_out(start, end, startt, endt, dt, t, extend, "sine")
def sine(start=None, end=None, startt=None, endt=None, dt=None, t=None,
extend="constant"):
"""
``sine`` is deprecated. Use ``ease_in`` instead.
"""
warnings.warn("sine is deprecated. Use ease_in instead.", stacklevel=2)
return ease_in(start, end, startt, endt, dt, t, extend, "sine")
def wrap(bounds, parent, static=True):
"""
``wrap(bounds, parent, static=True) -> AnimWrap or tuple of AnimWraps``
Wraps a parent ``Anim`` to fit within ``bounds``. ``bounds`` should be an
object that supports item access for at least ``bounds[0]`` and
``bounds[1]``. (A list or tuple with a length of 2 would work great.)
If ``static`` is ``True``, ``bounds`` is only read once and stored in C
variables for fast access. This is much faster, but doesn't work if
``bounds`` is an object you wish to mutate.
If ``parent`` is a iterable, a tuple of anims will be returned instead
of a single one. (This is similar to ``lerp()``.)
"""
try:
iter(parent)
except TypeError:
return AnimWrap(bounds, parent, static)
else:
return tuple([AnimWrap(bounds, p, static) for p in parent])
def bezier3(p0, p1, p2, p3, startt=None, endt=None, dt=None, t=None,
extend="constant"):
"""
``bezier3(p0, p1, p2, p3, [startt,] [endt,] [dt,] [t,] [extend])``
Interpolates along a cubic bezier curve as defined by ``p0``, ``p1``,
``p2``, and ``p3``.
``startt``, ``endt``, ``dt``, ``t``, and ``extend`` work as in ``lerp()``.
``p0``, ``p1``, ``p2``, and ``p3`` can be tuples, but they must all be the
same length.
"""
extend = extend_types[extend]
# TODO make filling in startt consistant with lerp.
if t is None:
startt, endt = _handle_time_args(startt, endt, dt)
else:
startt = endt = 0
try:
[iter(p) for p in [p0,p1,p2,p3]]
except TypeError:
return AnimStaticCubicBezier(p0, p1, p2, p3, startt, endt, t, extend)
else:
return [AnimStaticCubicBezier(p0, p1, p2, p3, startt, endt, t, extend)
for p0, p1, p2, p3 in zip(p0, p1, p2, p3)]
class IncompleteChainAnim(IncompleteAnimBase):
def __init__(self, anims):
self.anims = anims
def complete(self, **new_args):
anims = []
complete = True
for anim in self.anims:
if isinstance(anim, IncompleteAnimBase):
anim = anim.complete(**new_args)
# We want to pass this anim's end and endt to the next anim as
# start and startt.
if isinstance(anim, IncompleteAnimBase):
if 'end' in anim.kwargs:
new_args['start'] = anim.kwargs['end']
else:
# If this anim doesn't have end yet, we don't want to give
# a start value to the next anim.
new_args.pop('start', None)
if 'endt' in anim.kwargs:
new_args['startt'] = anim.kwargs['endt']
else:
new_args.pop('startt', None)
# If this anim is still incomplete, we want the entire chain to
# remain incomplete.
complete = False
else:
new_args['start'] = anim.end
new_args['startt'] = anim.endt
anims.append(anim)
# TODO Should we try to fill in end and endt from the next anim's start
# and startt? (Looping through the list backwards.)
# We only want to return a ChainAnim if *all* of the anims are complete.
if complete:
return ChainAnim(anims)
else:
return IncompleteChainAnim(anims)
def force_complete(self, **new_args):
if "startt" not in new_args:
new_args['startt'] = get_time()
chain = self.complete(**new_args)
if isinstance(chain, IncompleteAnimBase):
# TODO tell the user *why* the chain couldn't be completed.
raise ValueError("Unable to complete chain")
else:
return chain
def chain(*anims):
"""
``chain(...)``
``chain`` provides a way to automatically run anims in a sequence. For
example, you can move a sprite in a square like this::
now = get_time()
sprite.xy = chain(
lerp(( 0, 0), (10, 0), now, now+10),
lerp((10, 0), (10,10), now+10, now+20),
lerp((10,10), ( 0,10), now+20, now+30),
lerp(( 0,10), ( 0, 0), now+30, now+40))
If you ommit the ``start`` and ``startt`` arguments of lerp, they will
be filled in from ``end`` and ``endt`` of the the previous lerp. So
this is a less verbose way to do the same thing as above::
sprite.xy = chain(
lerp((0,0), (10, 0), dt=10),
lerp(end=(10,10), dt=10),
lerp(end=( 0,10), dt=10),
lerp(end=( 0, 0), dt=10))
Currently, ``lerp``, ``ease``, ``ease_in``, and ``ease_out`` are the only
anims that can be used with ``chain``.
"""
# TODO support nested chains
# Check if we are using sequences (multi-dimensional anims.)
sequence_count = 0
sequence_lens = set()
for anim in anims:
try:
sequence_lens.add(len(anim))
sequence_count += 1
except TypeError: # len(anim) failed.
pass
if sequence_count:
if sequence_count != len(anims):
raise ValueError(("Arguments must be either all Anims or all "
"sequences! (%d out of %d passed arguments were "
"sequences.)" )% (sequence_count, len(anims)))
if len(sequence_lens) != 1:
raise ValueError("All sequence arguments must be the same length! "
"(Lengths found were: %r)" % tuple(sequence_lens))
count = sequence_lens.pop()
return tuple(chain(*(a[i] for a in anims)) for i in range(count))
return IncompleteChainAnim(anims).complete()
def rate(target):
"""
``rate(anim)``
Returns an anim that tracks the rate of change in another anim.
TODO example and full disclosure of deficiencies
"""
# TODO validate target here.
# TODO support tuples
return AnimRate(target)
__docs_all__ = ('set_time get_time add_time '
'lerp ease ease_in ease_out chain wrap '
'Anim AnimConst AnimPyFunc AnimProxy '
).split()
|