/usr/include/swiginac/basic.i is in python-swiginac 1.5.1.1-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | /*
(c) Copyright 2003, 2004, 2005
Author: Ola Skavhaug and Ondrej Certik
This file is part of swiginac.
swiginac is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
swiginac is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with swiginac; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
Contributors: Matti Peltomäki, Martin Sandve Alnæs
*/
%newobject *::copy;
class ex { public: ex eval(int level=0) const;};
class lst {};
class ex_is_less;
class symbol;
class scalar_products;
class numeric;
class relational;
class archive_node;
class print_context;
//typedef std::vector<ex> exvector;
typedef std::map<ex, ex, ex_is_less> exmap;
struct map_function;
class basic : public refcounted
{
public:
virtual ~basic();
basic(const basic & other);
virtual basic * duplicate() const { return new basic(*this); }
virtual ex eval(int level = 0) const;
virtual ex evalf(int level = 0) const;
virtual ex evalm() const;
virtual ex eval_indexed(const basic & i) const;
virtual void dbgprint() const;
virtual void dbgprinttree() const;
virtual unsigned precedence() const;
virtual bool info(unsigned inf) const;
virtual size_t nops() const;
virtual ex op(size_t i) const;
// virtual ex operator[](const ex & index) const;
// virtual ex operator[](size_t i) const;
virtual ex & let_op(size_t i);
// virtual ex & operator[](const ex & index);
// virtual ex & operator[](size_t i);
virtual bool has(const ex & other, unsigned options=0) const;
virtual bool match(const ex & pattern, exmap & repls) const;
virtual ex subs(const exmap & m, unsigned options = 0) const;
virtual ex map(map_function & f) const;
virtual void accept(GiNaC::visitor & v) const;
virtual bool is_polynomial(const ex& var) const;
virtual int degree(const ex & s) const;
virtual int ldegree(const ex & s) const;
virtual ex coeff(const ex & s, int n = 1) const;
virtual ex expand(unsigned options = 0) const;
virtual ex collect(const ex & s, bool distributed = false) const;
virtual ex series(const relational & r, int order, unsigned options = 0) const;
virtual ex normal(exmap & repl, exmap & rev_lookup, int level = 0) const;
virtual ex to_rational(exmap & repl) const;
virtual ex to_polynomial(exmap & repl) const;
virtual numeric integer_content() const;
virtual ex smod(const numeric &xi) const;
virtual numeric max_coefficient() const;
virtual exvector get_free_indices() const;
virtual ex add_indexed(const ex & self, const ex & other) const;
virtual ex scalar_mul_indexed(const ex & self, const numeric & other) const;
virtual bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const;
virtual unsigned return_type() const;
virtual return_type_t return_type_tinfo() const;
virtual ex conjugate() const;
virtual ex real_part() const;
virtual ex imag_part() const;
void print_dispatch(const registered_class_info & ri, const print_context & c, unsigned level) const;
ex subs_one_level(const exmap & m, unsigned options) const;
ex diff(const symbol & s, unsigned nth = 1) const;
int compare(const basic & other) const;
bool is_equal(const basic & other) const;
const basic & hold() const;
unsigned gethash() const;
const basic & setflag(unsigned f) const;
const basic & clearflag(unsigned f) const;
};
extern int max_recursion_level;
template <class T> inline bool is_a(const basic &obj);
template <class T> inline bool is_exactly_a(const basic &obj);
%extend basic {
std::string printpython() {
std::ostringstream out;
(*self).print(print_python(out));
return out.str();
}
std::string printlatex() {
std::ostringstream out;
(*self).print(print_latex(out));
return out.str();
}
std::string printc() {
std::ostringstream out;
(*self).print(print_csrc_double(out));
return out.str();
}
unsigned __hash__() const {
return self->gethash();
}
bool __nonzero__() const throw(std::logic_error) {
if (is_exactly_a<relational>(*self))
return ex_to<relational>((*self).eval());
else
throw (std::logic_error("Cannot convert to bool."));
}
ex __add__(const basic &b) const { return (*self)+b; }
//ex __add__(const ex &b) const { return (*self)+b; }
ex __add__(const int &b) const { return (*self)+b; }
ex __add__(const double &b) const { return (*self)+b; }
ex __radd__(const basic &b) const { return b+(*self); }
//ex __radd__(const ex &b) const { return b+(*self); }
ex __radd__(const int &b) const { return b+(*self); }
ex __radd__(const double &b) const { return b+(*self); }
ex __sub__(const basic &b) const { return (*self)-b; }
//ex __sub__(const ex &b) const { return (*self)-b; }
ex __sub__(const int &b) const { return (*self)-b; }
ex __sub__(const double &b) const { return (*self)-b; }
ex __rsub__(const basic &b) const { return b-(*self); }
//ex __rsub__(const ex &b) const { return b-(*self); }
ex __rsub__(const int &b) const { return b-(*self); }
ex __rsub__(const double &b) const { return b-(*self); }
ex __mul__(const basic &b) const { return (*self)*b; }
//ex __mul__(const ex &b) const { return (*self)*b; }
ex __mul__(const int &b) const { return (*self)*b; }
ex __mul__(const double &b) const { return (*self)*b; }
ex __rmul__(const basic &b) const { return b*(*self); }
//ex __rmul__(const ex &b) const { return b*(*self); }
ex __rmul__(const int &b) const { return b*(*self); }
ex __rmul__(const double &b) const { return b*(*self); }
ex __div__(const basic &b) const { return (*self)/b; }
//ex __div__(const ex &b) const { return (*self)/b; }
ex __div__(const int &b) const { return (*self)/b; }
ex __div__(const double &b) const { return (*self)/b; }
ex __rdiv__(const basic &b) const { return b/(*self); }
//ex __rdiv__(const ex &b) const { return b/(*self); }
ex __rdiv__(const int &b) const { return b/(*self); }
ex __rdiv__(const double &b) const { return b/(*self); }
ex __pow__(const basic &b)const{return pow(*self,b); }
//ex __pow__(const ex &b)const{return pow(*self,b); }
ex __pow__(const int &b) const { return pow(*self,b); }
ex __pow__(const double &b) const { return pow(*self,b); }
ex __rpow__(const basic &b)const{return pow(b,*self); }
//ex __rpow__(const ex &b)const{return pow(b,*self);}
ex __rpow__(const int &b) const { return pow(b,*self); }
ex __rpow__(const double &b) const { return pow(b,*self);}
ex __pos__() const { return +(*self); }
ex __neg__() const { return -(*self); }
ex __lt__(const basic &b) const {return *self < b;}
//ex __lt__(const ex &b) const {return *self < b;}
ex __lt__(const int &b) const {return *self < b;}
ex __lt__(const double &b) const {return *self < b;}
ex __le__(const basic &b) const {return *self <= b;}
//ex __le__(const ex &b) const {return *self <= b;}
ex __le__(const int &b) const {return *self <= b;}
ex __le__(const double &b) const {return *self <= b;}
ex __eq__(const basic &b) const {return *self == b;}
//ex __eq__(const ex &b) const {return *self == b;}
ex __eq__(const int &b) const {return *self == b;}
ex __eq__(const double &b) const {return *self == b;}
ex __ne__(const basic &b) const {return *self != b;}
//ex __ne__(const ex &b) const {return *self != b;}
ex __ne__(const int &b) const {return *self != b;}
ex __ne__(const double &b) const {return *self != b;}
ex __gt__(const basic &b) const {return *self > b;}
//ex __gt__(const ex &b) const {return *self > b;}
ex __gt__(const int &b) const {return *self > b;}
ex __gt__(const double &b) const {return *self > b;}
ex __ge__(const basic &b) const {return *self >= b;}
//ex __ge__(const ex &b) const {return *self >= b;}
ex __ge__(const int &b) const {return *self >= b;}
ex __ge__(const double &b) const {return *self >= b;}
%pythoncode %{
def set_print_context(self, context_type):
if context_type == "python":
self.str = self.printpython
elif context_type == "tex":
self.str = self.printlatex
elif context_type == "c":
self.str = self.printc
def __str__(self):
if not self.__dict__.has_key("str"):
self.str = self.printpython
return self.str()
def __copy__(self):
return self.copy()
%}
//these are defined in the ex class - which we don't use in swiginac,
//so we need to define them here
ex subs(const lst & ls, const lst & lr) {
return self->eval().subs(ls,lr);
}
ex subs(const ex & e, unsigned options = 0) const {
return self->eval().subs(e,options);
}
ex normal(int level = 0) const {
return self->eval().normal(level);
}
ex denom() const {
return self->eval().denom();
};
bool is_zero() const {
return self->eval().is_zero();
}
ex content(const ex &x) const {
return self->eval().content(x);
}
ex primpart(const ex &x) const {
return self->eval().primpart(x);
}
ex unit(const ex &x) const {
return self->eval().unit(x);
}
ex simplify_indexed(unsigned options = 0) const {
return self->eval().simplify_indexed(options);
}
ex simplify_indexed(const scalar_products & sp, unsigned options = 0) const{
return self->eval().simplify_indexed(sp,options);
}
ex copy() {
return ex(*self);
}
ex * toex() {
return new ex(*self);
}
};
// vim:ft=cpp:
|