/usr/lib/R/site-library/spatstat/DESCRIPTION is in r-cran-spatstat 1.37-0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | Package: spatstat
Version: 1.37-0
Nickname: Model Prisoner
Date: 2014-05-09
Title: Spatial Point Pattern analysis, model-fitting, simulation, tests
Author: Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>,
Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>,
with substantial contributions of code by
Kasper Klitgaard Berthelsen;
Abdollah Jalilian;
Marie-Colette van Lieshout;
Dominic Schuhmacher;
and
Rasmus Waagepetersen.
Additional contributions
by Q.W. Ang;
S. Azaele;
C. Beale;
M. Bell;
R. Bernhardt;
T. Bendtsen;
A. Bevan;
B. Biggerstaff;
L. Bischof;
R. Bivand;
J.M. Blanco Moreno;
F. Bonneu;
J. Burgos;
S. Byers;
Y.M. Chang;
J.B. Chen;
I. Chernayavsky;
Y.C. Chin;
B. Christensen;
J.-F. Coeurjolly;
R. Corria Ainslie;
M. de la Cruz;
P. Dalgaard;
S. Das;
P.J. Diggle;
P. Donnelly;
I. Dryden;
S. Eglen;
O. Flores;
P. Forbes;
N. Funwi-Gabga;
O. Garcia;
A. Gault;
M. Genton;
J. Gilbey;
J. Goldstick;
P. Grabarnik;
C. Graf;
J. Franklin;
U. Hahn;
A. Hardegen;
M. Hering;
M.B. Hansen;
M. Hazelton;
J. Heikkinen;
K. Hornik;
R. Ihaka;
A. Jammalamadaka;
R. John-Chandran;
D. Johnson;
M. Kuhn;
J. Laake;
F. Lavancier;
T. Lawrence;
R.A. Lamb;
J. Lee;
G.P. Leser;
H.T. Li;
G. Limitsios;
B. Madin;
J. Marcus;
K. Marchikanti;
R. Mark;
J. Mateu;
P. McCullagh;
U. Mehlig;
S. Meyer;
X.C. Mi;
J. Moller;
E. Mudrak;
L.S. Nielsen;
F. Nunes;
J. Oehlschlaegel;
T. Onkelinx;
S. O'Riordan;
E. Parilov;
J. Picka;
N. Picard;
S. Protsiv;
A. Raftery;
M. Reiter;
T.O. Richardson;
B.D. Ripley;
E. Rosenbaum;
B. Rowlingson;
J. Rudge;
F. Safavimanesh;
A. Sarkka;
K. Schladitz;
B.T. Scott;
G.C. Shen;
V. Shcherbakov;
I.-M. Sintorn;
Y. Song;
M. Spiess;
M. Stevenson;
K. Stucki;
M. Sumner;
P. Surovy;
B. Taylor;
T. Thorarinsdottir;
B. Turlach;
K. Ummer;
A. van Burgel;
T. Verbeke;
M. Vihtakari;
A. Villers;
F. Vinatier;
H. Wang;
H. Wendrock;
J. Wild;
S. Wong;
M.E. Zamboni
and
A. Zeileis.
Maintainer: Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
Depends: R (>= 3.0.2), stats, graphics, grDevices, utils
Imports: mgcv, deldir (>= 0.0-21), abind, tensor, polyclip (>= 1.3-0)
Suggests: sm, maptools, gsl, locfit, spatial, rpanel, tkrplot,
scatterplot3d, RandomFields (>= 3.0.0)
Description: A package for analysing spatial data, mainly Spatial Point Patterns, including multitype/marked points and spatial covariates, in any two-dimensional spatial region. Also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, and point patterns on a linear network.
Contains over 1500 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference.
Data types include point patterns, line segment patterns, spatial windows, pixel images, tessellations, and linear networks.
Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Diggle-Cressie-Loosmore-Ford, Dao-Genton) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov) are also supported.
Parametric models can be fitted to point pattern data using the functions ppm, kppm, slrm similar to glm. Types of models include Poisson, Gibbs, Cox and cluster point processes. Models may involve dependence on covariates, interpoint interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods.
Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise, AIC). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.
License: GPL (>= 2)
URL: http://www.spatstat.org
LazyData: true
NeedsCompilation: yes
ByteCompile: true
Packaged: 2014-05-09 02:56:49 UTC; adrian
Repository: CRAN
Date/Publication: 2014-05-09 11:24:31
Built: R 3.1.0; x86_64-pc-linux-gnu; 2014-06-23 12:49:48 UTC; unix
|