This file is indexed.

/usr/lib/R/site-library/spatstat/DESCRIPTION is in r-cran-spatstat 1.37-0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
Package: spatstat
Version: 1.37-0
Nickname: Model Prisoner
Date: 2014-05-09
Title: Spatial Point Pattern analysis, model-fitting, simulation, tests
Author: Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>,
	Rolf Turner <r.turner@auckland.ac.nz> 
        and Ege Rubak <rubak@math.aau.dk>,
	with substantial contributions of code by 
	Kasper Klitgaard Berthelsen;
	Abdollah Jalilian;
	Marie-Colette van Lieshout;
	Dominic Schuhmacher;
	and 
	Rasmus Waagepetersen.
	Additional contributions 
	by Q.W. Ang; 
	S. Azaele; 
	C. Beale; 
	M. Bell;
	R. Bernhardt; 
	T. Bendtsen;
	A. Bevan;
	B. Biggerstaff;
	L. Bischof;
	R. Bivand;
	J.M. Blanco Moreno;
	F. Bonneu;
	J. Burgos; 
	S. Byers; 
	Y.M. Chang; 
	J.B. Chen; 
	I. Chernayavsky; 
	Y.C. Chin; 
	B. Christensen; 
	J.-F. Coeurjolly;
	R. Corria Ainslie;
	M. de la Cruz; 
	P. Dalgaard; 
        S. Das;
	P.J. Diggle; 
	P. Donnelly;
	I. Dryden; 
	S. Eglen; 
        O. Flores;
        P. Forbes;
	N. Funwi-Gabga;
	O. Garcia;
	A. Gault; 
	M. Genton;
	J. Gilbey;
	J. Goldstick;
	P. Grabarnik; 
	C. Graf; 
	J. Franklin; 
	U. Hahn; 
	A. Hardegen; 
	M. Hering; 
	M.B. Hansen; 
	M. Hazelton; 
	J. Heikkinen; 
	K. Hornik; 
	R. Ihaka; 
	A. Jammalamadaka;
	R. John-Chandran; 
	D. Johnson; 
	M. Kuhn; 
	J. Laake; 
	F. Lavancier;
	T. Lawrence; 
	R.A. Lamb; 
	J. Lee; 
	G.P. Leser; 
	H.T. Li;
	G. Limitsios;
	B. Madin;
	J. Marcus;
	K. Marchikanti; 
	R. Mark; 
	J. Mateu;
	P. McCullagh; 
	U. Mehlig;
	S. Meyer; 
	X.C. Mi;
	J. Moller; 
	E. Mudrak;
	L.S. Nielsen; 
	F. Nunes; 
	J. Oehlschlaegel;
	T. Onkelinx;
	S. O'Riordan;
	E. Parilov; 
	J. Picka; 
	N. Picard; 
	S. Protsiv;
	A. Raftery; 
	M. Reiter; 
	T.O. Richardson;  
	B.D. Ripley;  
	E. Rosenbaum; 
	B. Rowlingson; 
	J. Rudge; 
	F. Safavimanesh;
	A. Sarkka; 
	K. Schladitz; 
	B.T. Scott; 
	G.C. Shen;
	V. Shcherbakov;
	I.-M. Sintorn; 
	Y. Song; 
	M. Spiess; 
	M. Stevenson; 
	K. Stucki; 
	M. Sumner; 
	P. Surovy; 
	B. Taylor; 
	T. Thorarinsdottir;
	B. Turlach; 
        K. Ummer;
	A. van Burgel; 
	T. Verbeke; 
        M. Vihtakari;
	A. Villers; 
        F. Vinatier;
	H. Wang; 
	H. Wendrock; 
	J. Wild;
	S. Wong;
	M.E. Zamboni
	and
	A. Zeileis.
Maintainer: Adrian Baddeley <Adrian.Baddeley@uwa.edu.au>
Depends: R (>= 3.0.2), stats, graphics, grDevices, utils
Imports: mgcv, deldir (>= 0.0-21), abind, tensor, polyclip (>= 1.3-0)
Suggests: sm, maptools, gsl, locfit, spatial, rpanel, tkrplot,
        scatterplot3d, RandomFields (>= 3.0.0)
Description: A package for analysing spatial data, mainly Spatial Point	Patterns, including multitype/marked points and spatial covariates, in any two-dimensional spatial region. Also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, and point patterns on a linear network. 
	Contains over 1500 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference. 
	Data types include point patterns, line segment patterns, spatial windows, pixel images, tessellations, and linear networks. 
	Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Diggle-Cressie-Loosmore-Ford, Dao-Genton) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov) are also supported.
	Parametric models can be fitted to point pattern data using the functions ppm, kppm, slrm similar to glm. Types of models include Poisson, Gibbs, Cox and cluster point processes. Models may involve dependence on covariates, interpoint interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods. 
	Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise, AIC). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.
License: GPL (>= 2)
URL: http://www.spatstat.org
LazyData: true
NeedsCompilation: yes
ByteCompile: true
Packaged: 2014-05-09 02:56:49 UTC; adrian
Repository: CRAN
Date/Publication: 2014-05-09 11:24:31
Built: R 3.1.0; x86_64-pc-linux-gnu; 2014-06-23 12:49:48 UTC; unix