This file is indexed.

/usr/share/scheme48-1.9/big/big-util.scm is in scheme48 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
; Part of Scheme 48 1.9.  See file COPYING for notices and license.

; Authors: Richard Kelsey, Jonathan Rees, Mike Sperber, Robert Ransom

(define (concatenate-symbol . stuff)
  (string->symbol
   (apply string-append
	  (map (lambda (x)
		 (cond ((string? x) x)
		       ((symbol? x) (symbol->string x))
		       ((number? x) (number->string x))
		       (else
			(assertion-violation 'concatenate-symbol "cannot coerce to a string"
					     x))))
	       stuff))))

(define (error format-string . args)
  (if #t       ; work around a bug in the type system
      (rts-error 'error (apply format (cons #f (cons format-string args))))))

(define (breakpoint format-string . args)
  (rts-breakpoint (apply format (cons #f (cons format-string args)))))

(define (atom? x)
  (not (pair? x)))

(define (neq? x y)
  (not (eq? x y)))

(define (n= x y)
  (not (= x y)))

(define (identity x) x)

(define (no-op x) x)    ; guaranteed not to be in-lined

(define (null-list? x)
  (cond ((null? x) #t)
	((pair? x) #f)
	(else
	 (assertion-violation 'null-list? "non-list" x))))

(define (reverse! l)
  (cond ((or (null? l)
	     (null? (cdr l)))
	 l)
	(else
	 (let ((rest (cdr l)))
	   (set-cdr! l '())
	   (let loop ((l1 l) (l2 rest))
	     (cond ((null? l2)
		    l1)
		   (else
		    (let ((rest (cdr l2)))
		      (set-cdr! l2 l1)
		      (loop l2 rest)))))))))

(define (memq? x l)
  (let loop ((l l))
    (cond ((null? l)       #f)
	  ((eq? x (car l)) #t)
	  (else            (loop (cdr l))))))

(define (first pred list)
  (let loop ((list list))
    (cond ((null? list)
	   #f)
          ((pred (car list))
	   (car list))
          (else
	   (loop (cdr list))))))

(define any first)  ; ANY need not search in order, but it does anyway

(define (any? proc list)
  (let loop ((list list))
    (cond ((null? list)
	   #f)
          ((proc (car list))
	   #t)
          (else
	   (loop (cdr list))))))

(define (every? pred list)
  (let loop ((list list))
    (cond ((null? list)
	   #t)
          ((pred (car list))
	   (loop (cdr list)))
          (else
	   #f))))

(define (filter! pred list)
  (let filter! ((list list))
    (cond ((null-list? list)
	   '())
          ((pred (car list))
	   (set-cdr! list (filter! (cdr list))) list)
          (else
	   (filter! (cdr list))))))

(define (filter-map f l)
  (let loop ((l l) (r '()))
    (cond ((null? l)
	   (reverse r))
          ((f (car l))
           => (lambda (x)
                (loop (cdr l) (cons x r))))
          (else
	   (loop (cdr l) r)))))

(define (remove-duplicates list)
  (do ((list list (cdr list))
       (res  '()  (if (memq? (car list) res)
                      res
                      (cons (car list) res))))
      ((null-list? list)
       res)))

(define (partition-list pred l)
  (let loop ((l l) (yes '()) (no '()))
    (cond ((null? l)
           (values (reverse yes) (reverse no)))
          ((pred (car l))
           (loop (cdr l) (cons (car l) yes) no))
          (else
           (loop (cdr l) yes (cons (car l) no))))))

(define (partition-list! pred l)
  (let loop ((l l) (yes '()) (no '()))
    (cond ((null? l)
           (values (reverse! yes) (reverse! no)))
          ((pred (car l))
	   (let ((rest (cdr l)))
	     (set-cdr! l yes)
	     (loop rest l no)))
          (else
	   (let ((rest (cdr l)))
	     (set-cdr! l no)
	     (loop rest yes l))))))

(define (delq! object list)
  (let loop ((list list))
    (cond ((null? list)
	   '())
	  ((eq? object (car list))
	   (loop (cdr list)))
	  (else
	   (let loop ((next (cdr list)) (prev list))
	     (cond ((null? next)
		    list)
		   ((eq? (car next) object)
		    (set-cdr! prev (cdr next))
		    (loop (cdr next) prev))
		   (else
		    (loop (cdr next) next))))))))

(define (delq thing list)
  (delete (lambda (x) (eq? x thing)) list))

(define (delete pred in-list)
  (let loop ((list in-list) (res '()))
    (cond ((null? list)
	   in-list)
	  ((pred (car list))
	   (append-reverse! res (delete pred (cdr list))))
	  (else
	   (loop (cdr list) (cons (car list) res))))))

(define (append-reverse! l1 l2)
  (let loop ((list l1) (res l2))
    (cond ((null? list)
	   res)
	  (else
	   (let ((next (cdr list)))
	     (set-cdr! list res)
	     (loop next list))))))

; Copying strings.

(define (string->immutable-string string)
  (if (immutable? string)
      string
      (let ((copy (string-copy string)))
	(make-immutable! copy)
	copy)))