/usr/share/scheme48-1.9/big/iterate.scm is in scheme48 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 | ; Part of Scheme 48 1.9. See file COPYING for notices and license.
; Authors: Richard Kelsey, Jonathan Rees, Mike Sperber, Robert Ransom
; This builds the macro call to make the folder and constructs the arguments
; for the resulting fold procedure. The first three clauses add a loop variable
; and final expression if they are missing.
;
; I caved in and passed the body to the FOLDER macro instead of passing it in
; as a lambda to the procedure produced by the macro.
(define-syntax reduce
(syntax-rules ()
; Single state, no loop variable
((reduce (fold-vars ...) (state-var) body maybe-final ...)
(iterate loop (fold-vars ...) (state-var) (loop body) maybe-final ...))
; No state, no loop variable
((reduce (fold-vars ...) () body maybe-final ...)
(iterate loop (fold-vars ...) ()
(begin body (loop))
maybe-final ...))
; Multiple state, no loop variable
((reduce (fold-vars ...) (state-vars ...) body maybe-final ...)
(iterate loop (fold-vars ...) (state-vars ...)
(call-with-values (lambda () body) loop)
maybe-final ...))))
(define-syntax iterate
(syntax-rules ()
; No final expression
((iterate loop (fold-vars ...) ((state-var init) ...) body)
(iterate loop (fold-vars ...) ((state-var init) ...) body
(values state-var ...)))
; Weird degenerate case with no iteration variables.
((iterate loop () ((state-var init) ...) body final)
(let loop ((state-var init) ...) body))
; All there
((iterate loop
((type value-var args ...) ...)
((state-var init) ...)
body
final)
((folder ((type value-var args ...) ...) (state-var ...) loop body)
(lambda (state-var ...)
final)
args ... ...
init ...))))
; The entrance to all the rest of this. The first step is to make the lists
; of types, value variables (which will be bound to the elements of the
; sequences), and fold variables (which will be bound to the successive
; state values of the sequence producer).
(define-syntax folder
(syntax-rules ()
((folder ((type value-var args ...) ...) (state-var ...) loop body)
(var-loop ((type value-var args ...) ...)
#f () () () ()
(state-var ...) loop body))))
; If we have reached the end of the sequences we go on to FOLDER-LOOP to build
; the body of the loop. Otherwise we make new variables to match the arguments
; to the next sequence and continue.
(define-syntax var-loop
(syntax-rules ()
((var-loop () seen-synched? (type ...)
(value-var ...) ((fold-var init) ...) end-tests
(state-var ...)
body-loop
body)
(folder-loop (type ...)
(let ((body-loop (lambda (state-var ...)
(loop fold-var ... state-var ...))))
body)
()
((fold-var init) ...)
end-tests
(state-var ...)
loop
final))
((var-loop ((type value-var args ...) more ...) stuff ...)
(copy-vars (args ...) () (var-loop2 type value-var (more ...) stuff ...)))))
; This is the continuation to the COPY-VARS use above. We add the variables
; to the end of the variables list and then get the SYNC value.
(define-syntax var-loop2
(syntax-rules ()
((var-loop2 vars type value-var stuff ...)
(type sync (var-loop3 (type value-var vars stuff ...))))))
; This is the continuation to the SYNC `call' in VAR-LOOP2. We get the state
; variable names.
(define-syntax var-loop3
(syntax-rules ()
((var-loop3 sync? (type value-var vars stuff ...))
(type state-vars vars (var-loop4 (type sync? value-var vars stuff ...))))))
; This is the end of the VAR-LOOP body. We dispatch on whether TYPE, which
; has just been queried for its info, is synchronized and whether it is the
; first or a subsequent synchronized type. In all cases we add the various
; code fragments obtained from TYPE to the appropriate lists and then go back
; to the top of the loop.
(define-syntax var-loop4
(syntax-rules ()
; TYPE is the first synchronized type we have seen.
((var-loop4 ((fold-var init) ...)
(type
#t
value-var
vars
more-types
#f
(types ...) (value-vars ...) (fold-init ...) end-tests
stuff ...))
(var-loop more-types
#t
((type #t #f (fold-var ...) value-var vars)
types ...)
(value-vars ... value-var)
(fold-init ... (fold-var init) ...)
end-tests
stuff ...))
; TYPE is a synchronized type but not the first we have seen.
((var-loop4 ((fold-var init) ...)
(type
#t
value-var
vars
more-types
#t
(types ...) (value-vars ...) (fold-init ...)
end-tests
stuff ...))
(var-loop more-types
#t
((type #t #t (fold-var ...) value-var vars)
types ...)
(value-vars ... value-var)
(fold-init ... (fold-var init) ...)
((type done vars (fold-var ...)) . end-tests)
stuff ...))
; TYPE is not synchronized.
((var-loop4 ((fold-var init) ...)
(type
#f
value-var
vars
more-types
seen-synched?
(types ...) (value-vars ...) (fold-init ...) end-tests
stuff ...))
(var-loop more-types
seen-synched?
((type #f seen-synched? (fold-var ...) value-var vars)
types ...)
(value-vars ... value-var)
(fold-init ... (fold-var init) ...)
end-tests
stuff ...))))
; A loop to produce a list of fresh variables. The new variables are tacked
; onto the end of the body.
(define-syntax copy-vars
(syntax-rules ()
((copy-vars () vars (cont stuff ...))
(cont vars stuff ...))
((copy-vars (x y ...) (vars ...) cont)
(copy-vars (y ...) (vars ... a) cont))))
; Here we build up the body of the loop. When all the sequences are done we
; are done.
;
; For each sequence we do (type step stuff ...) to build the body and
; (type init vars ...) to get the initial value of the fold variable for
; that sequence. Here `step' and `init' are keywords.
;
; The actual arguments to (type step stuff ...) are:
; vars ... ; variables bound to the sequence's arguments
; fold-var ; variable bound to the last state and to be bound to the
; ; next state
; value-var ; variable to be bound to the next element
; loop-body-exp ; this expression continues the loop
; final-exp ; this expression ends the loop
(define-syntax folder-loop
(syntax-rules ()
((folder-loop () ; no more sequences
loop-body ; body so far
(args ...) ; complete list of sequence arguments
((fold-var init) ...) ; fold variables and their initial values
end-tests ; end test for first synchronized seq.
(state-var ...) ; the user's state variables
loop ; loop variable
final) ; final argument variable
(lambda (final args ... state-var ...)
(let loop ((fold-var init) ... (state-var state-var) ...)
loop-body)))
; Not synchronized
((folder-loop ((type #f synched? fold-vars value-var (vars ...)) more ...)
loop-body
args
fold-var-inits end-tests state-vars
loop final)
(folder-loop (more ...)
(type step (vars ...) fold-vars value-var
loop-body (final . state-vars))
(vars ... . args)
fold-var-inits end-tests state-vars
loop final))
; Synchronized, not first such
((folder-loop ((type #t #t fold-vars value-var (vars ...)) more ...)
loop-body
args
fold-var-inits end-tests state-vars
loop final)
(folder-loop (more ...)
(type step (vars ...) fold-vars value-var
loop-body
(begin (assertion-violation 'folder
"synchronized sequence ended early")
(values)))
(vars ... . args)
fold-var-inits end-tests state-vars
loop final))
; First synchronized sequence
((folder-loop ((type #t #f fold-vars value-var (vars ...)) more ...)
loop-body
args
fold-var-inits end-tests state-vars
loop final)
(folder-loop (more ...)
(type step (vars ...) fold-vars value-var
loop-body (if (and . end-tests)
(final . state-vars)
(begin (assertion-violation 'folder
"synchronized sequence ended early")
(values))))
(vars ... . args)
fold-var-inits end-stests state-vars
loop final))))
; Iterators
; (list* var list)
; (list-spine* var list)
; (list-spine-cycle-safe* var list on-cycle-thunk)
; (vector* var vector)
; (string* var string)
; (count* var start [end [step]])
; (bits* var integer [step-size])
; (input* var input-port reader) ; (reader port) -> value or eof-object
; (stream* var function initial-state) ; (function state) -> [value new-state]
; A new-state of #F means that the previous value was the final one.
(define-syntax list*
(syntax-rules (sync state-vars step)
((list* sync (next more))
(next #f more))
((list* state-vars (start-list) (next more))
(next ((list-var start-list)) more))
((list* step (start-list) (list-var) value-var loop-body final-exp)
(if (null? list-var)
final-exp
(let ((value-var (car list-var))
(list-var (cdr list-var)))
loop-body)))))
(define-syntax list%
(syntax-rules (sync done)
((list% sync (next more))
(next #t more))
((list% done (start-list) (list-var))
(null? list-var))
((list% stuff ...)
(list* stuff ...))))
(define-syntax list-spine*
(syntax-rules (sync state-vars step)
((list-spine* sync (next more))
(next #f more))
((list-spine* state-vars (start-list) (next more))
(next ((list-var start-list)) more))
((list-spine* step (start-list) (list-var)
value-var loop-body final-exp)
(if (null? list-var)
final-exp
(let ((value-var list-var)
(list-var (cdr list-var)))
loop-body)))))
(define-syntax list-spine%
(syntax-rules (sync done)
((list-spine% sync (next more))
(next #t more))
((list-spine% done (start-list) (list-var))
(null? list-var))
((list-spine% stuff ...)
(list-spine* stuff ...))))
(define-syntax list-spine-cycle-safe*
(syntax-rules (sync state-vars step)
((list-spine-cycle-safe* sync (next more))
(next #f more))
((list-spine-cycle-safe* state-vars
(start-list on-cycle-thunk)
(next more))
(next ((list-var start-list)
(lag-var start-list)
(move-lag? #f))
more))
((list-spine-cycle-safe* step
(start-list on-cycle-thunk)
(list-var lag-var move-lag?)
spine-var loop-body final-exp)
(if (null? list-var)
final-exp
(let ((spine-var list-var)
(list-var (cdr list-var))
(lag-var (if move-lag?
(cdr lag-var)
lag-var))
(move-lag? (not move-lag?)))
(if (eq? list-var lag-var)
(on-cycle-thunk)
loop-body))))))
(define-syntax list-spine-cycle-safe%
(syntax-rules (sync done)
((list-spine-cycle-safe% sync (next more))
(next #t more))
((list-spine-cycle-safe% done
(start-list on-cycle-thunk)
(list-var lag-var move-lag?))
(null? list-var))
((list-spine-cycle-safe% stuff ...)
(list-spine-cycle-safe* stuff ...))))
(define-syntax vector*
(syntax-rules (sync state-vars step)
((vector* sync (next more))
(next #f more))
((vector* state-vars (vector) (next more))
(next ((i 0)) more))
((vector* step (vector) (i) value-var loop-body final-exp)
(if (= i (vector-length vector))
final-exp
(let ((value-var (vector-ref vector i))
(i (+ i 1)))
loop-body)))))
(define-syntax vector%
(syntax-rules (sync done)
((vector% sync (next more))
(next #t more))
((vector% done (vector) (i))
(= i (vector-length vector)))
((vector% stuff ...)
(vector* stuff ...))))
(define-syntax string*
(syntax-rules (sync state-vars step)
((string* sync (next more))
(next #f more))
((string* state-vars (string) (next more))
(next ((i 0)) more))
((string* step (string) (i) value-var loop-body final-exp)
(if (= i (string-length string))
final-exp
(let ((value-var (string-ref string i))
(i (+ i 1)))
loop-body)))))
(define-syntax string%
(syntax-rules (sync done)
((string% sync (next more))
(next #t more))
((string% done (string) (i))
(= i (string-length string)))
((string% stuff ...)
(string* stuff ...))))
(define-syntax count*
(syntax-rules (sync state-vars step)
((count* sync (next more))
(next #f more))
((count* state-vars (start args ...) (next more))
(next ((i start)) more))
((count* step (start) (i) value-var loop-body final-exp)
(let ((value-var i)
(i (+ i 1)))
loop-body))
((count* step (start end) (i) value-var loop-body final-exp)
(count* step (start end 1) (i) value-var loop-body final-exp))
; This doesn't work because we don't see the original arguments, just variables
; bound to them.
; ((count* step (start #f increment) (i) value-var loop-body final-exp)
; (let ((value-var i)
; (i (+ i increment)))
; loop-body))
((count* step (start end increment) (i) value-var loop-body final-exp)
(if (= i end)
final-exp
(let ((value-var i)
(i (+ i increment)))
loop-body)))))
; Synchronized, so we don't allow the unbounded version.
(define-syntax count%
(syntax-rules (sync done state-vars step)
((count% sync (next more))
(next #t more))
((count% done (start end increment ...) (i))
(= end i))
((count% state-vars (start args ...) (next more))
(next ((i start)) more))
((count% step (start end) (i) value-var loop-body final-exp)
(count% step (start end 1) (i) value-var loop-body final-exp))
((count% step (start end increment) (i) value-var loop-body final-exp)
(if (= i end)
final-exp
(let ((value-var i)
(i (+ i increment)))
loop-body)))))
; I would really like to be able to lift the mask calculation out of the loop.
; There could be yet another clause in iterators that returned (VAR VAL) clauses
; to be added to a LET around the loop.
(define-syntax bits*
(syntax-rules (sync state-vars step)
((bits* sync (next more))
(next #f more))
((bits* state-vars (bit-set args ...) (next more))
(next ((i bit-set)) more))
((bits* step (bit-set) (i) value-var loop-body final-exp)
(if (= i 0)
final-exp
(let ((value-var (odd? i))
(i (arithmetic-shift i -1)))
loop-body)))
((bits* step (bit-set size) (i) value-var loop-body final-exp)
(if (= i 0)
final-exp
(let ((value-var (bitwise-and i (- (arithmetic-shift 1 size) 1)))
(i (arithmetic-shift i (- size))))
loop-body)))))
; This one is unlikely to be used much, because the termination test is
; so data dependent.
(define-syntax bits%
(syntax-rules (sync done state-vars step)
((bits% sync (next more))
(next #t more))
((bits% done values (i))
(= i 0))
((bits% more ...)
(bits* more ...))))
(define-syntax input*
(syntax-rules (sync state-vars step)
((input* sync (next more))
(next #f more))
((input* state-vars (port reader) (next more))
(next () more))
((input* step (port reader) () value-var loop-body final-exp)
(let ((value-var (reader port)))
(if (eof-object? value-var)
final-exp
loop-body)))))
(define-syntax input%
(syntax-rules (sync done)
((input% sync (next more))
(next #t more))
((input% done (port reader) ())
(eof-object? (peek-char port)))
((input% more ...)
(input* more ...))))
(define-syntax stream*
(syntax-rules (sync state-vars step)
((stream* sync (next more))
(next #f more))
((stream* state-vars (function start-state) (next more))
(next ((state start-state)) more))
((stream* step (function start-state) (state) value-var loop-body final-exp)
(call-with-values
(lambda ()
(function state))
(lambda (value-var state)
(if state
loop-body
final-exp))))))
(define-syntax stream%
(syntax-rules (sync done)
((stream% sync (next more))
(next #t more))
((stream% done (function start-state) (state))
(call-with-values
(lambda ()
(function state))
(lambda (value-var state)
(not state))))
((stream% more ...)
(stream* more ...))))
|