This file is indexed.

/usr/share/scheme48-1.9/big/lu-decomp.scm is in scheme48 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
; Part of Scheme 48 1.9.  See file COPYING for notices and license.

; Authors: Richard Kelsey, Jonathan Rees, Mike Sperber

; LU Decomposition (a rewriting of a Pascal program from `Numerical Recipes
; in Pascal'; look there for a detailed description of what is going on).

; A is an NxN matrix that is updated in place.
; This returns a row permutation vector and the sign of that vector.

(define *lu-decomposition-epsilon* 1.0e-20)

(define (lu-decomposition a)
  (let* ((n (car (array-shape a)))
	 (indx (make-vector n))
	 (sign 1.0)
	 (vv (make-vector n)))

    (do ((i 0 (+ i 1)))
	((>= i n))
      (do ((j 0 (+ j 1))
	   (big 0.0 (max big (abs (array-ref a i j)))))
	  ((>= j n)
	   (if (= big 0.0)
	       (assertion-violation 'lu-decomposition "matrix has a zero row" a i))
	   (vector-set! vv i (/ big)))))

    (do ((j 0 (+ j 1)))
	((>= j n))
      (let ()
	(define (sum-elts i end)	  
	  (do ((k 0 (+ k 1))
	       (sum (array-ref a i j)
		    (- sum (* (array-ref a i k)
			      (array-ref a k j)))))
	      ((>= k end)
	       sum)))

	(do ((i 0 (+ i 1)))
	    ((>= i j))
	  (array-set! a (sum-elts i i) i j))

	(receive (big imax)
	    (let loop ((i j) (big 0.0) (imax 0))
	      (if (>= i n)
		  (values big imax)
		  (let ((sum (sum-elts i j)))
		    (array-set! a sum i j)
		    (let ((temp (* (vector-ref vv i) (abs sum))))
		      (if (>= temp big)
			  (loop (+ i 1) temp i)
			  (loop (+ i 1) big imax))))))
	
	  (if (not (= j imax))
	      (begin
		(do ((k 0 (+ k 1)))
		    ((>= k n))
		  (let ((temp (array-ref a imax k)))
		    (array-set! a (array-ref a j k) imax k)
		    (array-set! a temp j k)))
		(set! sign (- sign))
		(vector-set! vv imax (vector-ref vv j))))
	  
	  (vector-set! indx j imax)
	  
	  (if (= (array-ref a j j) 0.0)
	      (array-set! a *lu-decomposition-epsilon* j j))
	  
	  (if (not (= j (- n 1)))
	      (let ((temp (/ (array-ref a j j))))
		(do ((i (+ j 1) (+ i 1)))
		    ((>= i n))
		  (array-set! a (* (array-ref a i j) temp) i j)))))))
      
      (values indx sign)))

(define (lu-back-substitute a indx b)
  (let ((n (car (array-shape a))))
	  
    (let loop ((i 0) (ii #f))
      (if (< i n)
	  (let* ((ip (vector-ref indx i))
		 (temp (vector-ref b ip)))
	    (vector-set! b ip (vector-ref b i))
	    (let ((new (if ii
			   (do ((j ii (+ j 1))
				(sum temp (- sum (* (array-ref a i j)
						    (vector-ref b j)))))
			       ((>= j i)
				sum))
			   temp)))
	      (vector-set! b i new)
	      (loop (+ i 1)
		    (if (or ii (= temp 0.0)) ii i))))))

    (do ((i (- n 1) (- i 1)))
	((< i 0))
      (do ((j (+ i 1) (+ j 1))
	   (sum (vector-ref b i) (- sum (* (array-ref a i j)
					   (vector-ref b j)))))
	  ((>= j n)
	   (vector-set! b i (/ sum (array-ref a i i))))))))

;(define m
;  (array '(4 4)
;         1.0  2.0 3.0 -2.0
;         8.0 -6.0 6.0  1.0
;         3.0 -2.0 0.0 -7.0
;         4.0  7.0 2.0 -1.0))
;
;(define b '#(2.0 1.0 3.0 -2.0))
;
;(define (test m b)
;  (let* ((a (copy-array m))
;         (n (car (array-shape m)))
;         (x (make-vector n)))
;
;    (do ((i 0 (+ i 1)))
;        ((>= i n))
;      (vector-set! x i (vector-ref b i)))
;
;    (display "b = ")
;    (display b)
;    (newline)
;
;    (call-with-values
;     (lambda ()
;       (lu-decomposition a))
;     (lambda (indx sign)
;       (lu-back-substitute a indx x)
;
;       (display "x = ")
;       (display x)
;       (newline)
;
;       (let ((y (make-vector (vector-length b))))
;         (do ((i 0 (+ i 1)))
;             ((>= i n))
;           (do ((j 0 (+ j 1))
;                (t 0.0 (+ t (* (array-ref m i j) (vector-ref x j)))))
;               ((>= j n)
;                (vector-set! y i t))))
;
;         (display "a * x =")
;         (display y)
;         (newline))))))