/usr/share/scheme48-1.9/srfi/srfi-1.scm is in scheme48 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 | ;;; SRFI-1 list-processing library -*- Scheme -*-
;;; Reference implementation
;;;
;;; Copyright (c) 1998, 1999 by Olin Shivers. You may do as you please with
;;; this code as long as you do not remove this copyright notice or
;;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
;;; -Olin
; Changes made for Scheme 48
;
; - CHECK-ARG is defined as a macro that does nothing.
; - replaced the one use of LET-OPTIONAL
; - added definition of :OPTIONAL
(define-syntax check-arg
(syntax-rules ()
((check-arg stuff ...) #f)))
(define (:optional maybe-value default)
(cond ((null? maybe-value)
default)
((null? (cdr maybe-value))
(car maybe-value))
(else
(assertion-violation ':optional
"too many arguments passed to :optional" maybe-value))))
;;; This is a library of list- and pair-processing functions. I wrote it after
;;; carefully considering the functions provided by the libraries found in
;;; R4RS/R5RS Scheme, MIT Scheme, Gambit, RScheme, MzScheme, slib, Common
;;; Lisp, Bigloo, guile, T, APL and the SML standard basis. It is a pretty
;;; rich toolkit, providing a superset of the functionality found in any of
;;; the various Schemes I considered.
;;; This implementation is intended as a portable reference implementation
;;; for SRFI-1. See the porting notes below for more information.
;;; Exported:
;;; xcons tree-copy make-list list-tabulate cons* list-copy
;;; proper-list? circular-list? dotted-list? not-pair? null-list? list=
;;; circular-list length+
;;; iota
;;; first second third fourth fifth sixth seventh eighth ninth tenth
;;; car+cdr
;;; take drop
;;; take-right drop-right
;;; take! drop-right!
;;; split-at split-at!
;;; last last-pair
;;; zip unzip1 unzip2 unzip3 unzip4 unzip5
;;; count
;;; append! append-reverse append-reverse! concatenate concatenate!
;;; unfold fold pair-fold reduce
;;; unfold-right fold-right pair-fold-right reduce-right
;;; append-map append-map! map! pair-for-each filter-map map-in-order
;;; filter partition remove
;;; filter! partition! remove!
;;; find find-tail any every list-index
;;; take-while drop-while take-while!
;;; span break span! break!
;;; delete delete!
;;; alist-cons alist-copy
;;; delete-duplicates delete-duplicates!
;;; alist-delete alist-delete!
;;; reverse!
;;; lset<= lset= lset-adjoin
;;; lset-union lset-intersection lset-difference lset-xor lset-diff+intersection
;;; lset-union! lset-intersection! lset-difference! lset-xor! lset-diff+intersection!
;;;
;;; In principle, the following R4RS list- and pair-processing procedures
;;; are also part of this package's exports, although they are not defined
;;; in this file:
;;; Primitives: cons pair? null? car cdr set-car! set-cdr!
;;; Non-primitives: list length append reverse cadr ... cddddr list-ref
;;; memq memv assq assv
;;; (The non-primitives are defined in this file, but commented out.)
;;;
;;; These R4RS procedures have extended definitions in SRFI-1 and are defined
;;; in this file:
;;; map for-each member assoc
;;;
;;; The remaining two R4RS list-processing procedures are not included:
;;; list-tail (use drop)
;;; list? (use proper-list?)
;;; A note on recursion and iteration/reversal:
;;; Many iterative list-processing algorithms naturally compute the elements
;;; of the answer list in the wrong order (left-to-right or head-to-tail) from
;;; the order needed to cons them into the proper answer (right-to-left, or
;;; tail-then-head). One style or idiom of programming these algorithms, then,
;;; loops, consing up the elements in reverse order, then destructively
;;; reverses the list at the end of the loop. I do not do this. The natural
;;; and efficient way to code these algorithms is recursively. This trades off
;;; intermediate temporary list structure for intermediate temporary stack
;;; structure. In a stack-based system, this improves cache locality and
;;; lightens the load on the GC system. Don't stand on your head to iterate!
;;; Recurse, where natural. Multiple-value returns make this even more
;;; convenient, when the recursion/iteration has multiple state values.
;;; Porting:
;;; This is carefully tuned code; do not modify casually.
;;; - It is careful to share storage when possible;
;;; - Side-effecting code tries not to perform redundant writes.
;;;
;;; That said, a port of this library to a specific Scheme system might wish
;;; to tune this code to exploit particulars of the implementation.
;;; The single most important compiler-specific optimisation you could make
;;; to this library would be to add rewrite rules or transforms to:
;;; - transform applications of n-ary procedures (e.g. LIST=, CONS*, APPEND,
;;; LSET-UNION) into multiple applications of a primitive two-argument
;;; variant.
;;; - transform applications of the mapping functions (MAP, FOR-EACH, FOLD,
;;; ANY, EVERY) into open-coded loops. The killer here is that these
;;; functions are n-ary. Handling the general case is quite inefficient,
;;; requiring many intermediate data structures to be allocated and
;;; discarded.
;;; - transform applications of procedures that take optional arguments
;;; into calls to variants that do not take optional arguments. This
;;; eliminates unnecessary consing and parsing of the rest parameter.
;;;
;;; These transforms would provide BIG speedups. In particular, the n-ary
;;; mapping functions are particularly slow and cons-intensive, and are good
;;; candidates for tuning. I have coded fast paths for the single-list cases,
;;; but what you really want to do is exploit the fact that the compiler
;;; usually knows how many arguments are being passed to a particular
;;; application of these functions -- they are usually explicitly called, not
;;; passed around as higher-order values. If you can arrange to have your
;;; compiler produce custom code or custom linkages based on the number of
;;; arguments in the call, you can speed these functions up a *lot*. But this
;;; kind of compiler technology no longer exists in the Scheme world as far as
;;; I can see.
;;;
;;; Note that this code is, of course, dependent upon standard bindings for
;;; the R5RS procedures -- i.e., it assumes that the variable CAR is bound
;;; to the procedure that takes the car of a list. If your Scheme
;;; implementation allows user code to alter the bindings of these procedures
;;; in a manner that would be visible to these definitions, then there might
;;; be trouble. You could consider horrible kludgery along the lines of
;;; (define fact
;;; (let ((= =) (- -) (* *))
;;; (letrec ((real-fact (lambda (n)
;;; (if (= n 0) 1 (* n (real-fact (- n 1)))))))
;;; real-fact)))
;;; Or you could consider shifting to a reasonable Scheme system that, say,
;;; has a module system protecting code from this kind of lossage.
;;;
;;; This code does a fair amount of run-time argument checking. If your
;;; Scheme system has a sophisticated compiler that can eliminate redundant
;;; error checks, this is no problem. However, if not, these checks incur
;;; some performance overhead -- and, in a safe Scheme implementation, they
;;; are in some sense redundant: if we don't check to see that the PROC
;;; parameter is a procedure, we'll find out anyway three lines later when
;;; we try to call the value. It's pretty easy to rip all this argument
;;; checking code out if it's inappropriate for your implementation -- just
;;; nuke every call to CHECK-ARG.
;;;
;;; On the other hand, if you *do* have a sophisticated compiler that will
;;; actually perform soft-typing and eliminate redundant checks (Rice's systems
;;; being the only possible candidate of which I'm aware), leaving these checks
;;; in can *help*, since their presence can be elided in redundant cases,
;;; and in cases where they are needed, performing the checks early, at
;;; procedure entry, can "lift" a check out of a loop.
;;;
;;; Finally, I have only checked the properties that can portably be checked
;;; with R5RS Scheme -- and this is not complete. You may wish to alter
;;; the CHECK-ARG parameter checks to perform extra, implementation-specific
;;; checks, such as procedure arity for higher-order values.
;;;
;;; The code has only these non-R4RS dependencies:
;;; A few calls to an ASSERTION-VIOLATION procedure;
;;; Uses of the R5RS multiple-value procedure VALUES and the m-v binding
;;; RECEIVE macro (which isn't R5RS, but is a trivial macro).
;;; Many calls to a parameter-checking procedure check-arg:
;;; (define (check-arg pred val caller)
;;; (let lp ((val val))
;;; (if (pred val) val (lp (assertion-violation 'check-arg "Bad argument" val pred caller)))))
;;; A few uses of the LET-OPTIONAL and :OPTIONAL macros for parsing
;;; optional arguments.
;;;
;;; Most of these procedures use the NULL-LIST? test to trigger the
;;; base case in the inner loop or recursion. The NULL-LIST? function
;;; is defined to be a careful one -- it raises an error if passed a
;;; non-nil, non-pair value. The spec allows an implementation to use
;;; a less-careful implementation that simply defines NULL-LIST? to
;;; be NOT-PAIR?. This would speed up the inner loops of these procedures
;;; at the expense of having them silently accept dotted lists.
;;; A note on dotted lists:
;;; I, personally, take the view that the only consistent view of lists
;;; in Scheme is the view that *everything* is a list -- values such as
;;; 3 or "foo" or 'bar are simply empty dotted lists. This is due to the
;;; fact that Scheme actually has no true list type. It has a pair type,
;;; and there is an *interpretation* of the trees built using this type
;;; as lists.
;;;
;;; I lobbied to have these list-processing procedures hew to this
;;; view, and accept any value as a list argument. I was overwhelmingly
;;; overruled during the SRFI discussion phase. So I am inserting this
;;; text in the reference lib and the SRFI spec as a sort of "minority
;;; opinion" dissent.
;;;
;;; Many of the procedures in this library can be trivially redefined
;;; to handle dotted lists, just by changing the NULL-LIST? base-case
;;; check to NOT-PAIR?, meaning that any non-pair value is taken to be
;;; an empty list. For most of these procedures, that's all that is
;;; required.
;;;
;;; However, we have to do a little more work for some procedures that
;;; *produce* lists from other lists. Were we to extend these procedures to
;;; accept dotted lists, we would have to define how they terminate the lists
;;; produced as results when passed a dotted list. I designed a coherent set
;;; of termination rules for these cases; this was posted to the SRFI-1
;;; discussion list. I additionally wrote an earlier version of this library
;;; that implemented that spec. It has been discarded during later phases of
;;; the definition and implementation of this library.
;;;
;;; The argument *against* defining these procedures to work on dotted
;;; lists is that dotted lists are the rare, odd case, and that by
;;; arranging for the procedures to handle them, we lose error checking
;;; in the cases where a dotted list is passed by accident -- e.g., when
;;; the programmer swaps a two arguments to a list-processing function,
;;; one being a scalar and one being a list. For example,
;;; (member '(1 3 5 7 9) 7)
;;; This would quietly return #f if we extended MEMBER to accept dotted
;;; lists.
;;;
;;; The SRFI discussion record contains more discussion on this topic.
;;; Constructors
;;;;;;;;;;;;;;;;
;;; Occasionally useful as a value to be passed to a fold or other
;;; higher-order procedure.
(define (xcons d a) (cons a d))
;;;; Recursively copy every cons.
;(define (tree-copy x)
; (let recur ((x x))
; (if (not (pair? x)) x
; (cons (recur (car x)) (recur (cdr x))))))
;;; Make a list of length LEN.
(define (make-list len . maybe-elt)
(check-arg (lambda (n) (and (integer? n) (>= n 0))) len make-list)
(let ((elt (cond ((null? maybe-elt) #f) ; Default value
((null? (cdr maybe-elt)) (car maybe-elt))
(else (apply assertion-violation
'make-list
"Too many arguments to MAKE-LIST"
len maybe-elt)))))
(do ((i len (- i 1))
(ans '() (cons elt ans)))
((<= i 0) ans))))
;(define (list . ans) ans) ; R4RS
;;; Make a list of length LEN. Elt i is (PROC i) for 0 <= i < LEN.
(define (list-tabulate len proc)
(check-arg (lambda (n) (and (integer? n) (>= n 0))) len list-tabulate)
(check-arg procedure? proc list-tabulate)
(do ((i (- len 1) (- i 1))
(ans '() (cons (proc i) ans)))
((< i 0) ans)))
;;; (cons* a1 a2 ... an) = (cons a1 (cons a2 (cons ... an)))
;;; (cons* a1) = a1 (cons* a1 a2 ...) = (cons a1 (cons* a2 ...))
;;;
;;; (cons first (unfold not-pair? car cdr rest values))
(define (cons* first . rest)
(let recur ((x first) (rest rest))
(if (pair? rest)
(cons x (recur (car rest) (cdr rest)))
x)))
;;; (unfold not-pair? car cdr lis values)
(define (list-copy lis)
(let recur ((lis lis))
(if (pair? lis)
(cons (car lis) (recur (cdr lis)))
lis)))
;;; IOTA count [start step] (start start+step ... start+(count-1)*step)
(define (iota count . maybe-start+step)
(check-arg integer? count iota)
(if (< count 0) (assertion-violation 'iota "Negative step count" count))
; (let-optionals maybe-start+step ((start 0) (step 1)) ...)
(receive (start step)
(case (length maybe-start+step)
((0) (values 0 1))
((2) (values (car maybe-start+step)
(cadr maybe-start+step)))
(else
(apply assertion-violation 'iota "wrong number of arguments"
count maybe-start+step)))
(check-arg number? start iota)
(check-arg number? step iota)
(let loop ((n 0) (r '()))
(if (= n count)
(reverse r)
(loop (+ 1 n)
(cons (+ start (* n step)) r))))))
;;; I thought these were lovely, but the public at large did not share my
;;; enthusiasm...
;;; :IOTA to (0 ... to-1)
;;; :IOTA from to (from ... to-1)
;;; :IOTA from to step (from from+step ...)
;;; IOTA: to (1 ... to)
;;; IOTA: from to (from+1 ... to)
;;; IOTA: from to step (from+step from+2step ...)
;(define (%parse-iota-args arg1 rest-args proc)
; (let ((check (lambda (n) (check-arg integer? n proc))))
; (check arg1)
; (if (pair? rest-args)
; (let ((arg2 (check (car rest-args)))
; (rest (cdr rest-args)))
; (if (pair? rest)
; (let ((arg3 (check (car rest)))
; (rest (cdr rest)))
; (if (pair? rest) (assertion-violation '%parse-iota-args "Too many parameters" proc arg1 rest-args)
; (values arg1 arg2 arg3)))
; (values arg1 arg2 1)))
; (values 0 arg1 1))))
;
;(define (iota: arg1 . rest-args)
; (receive (from to step) (%parse-iota-args arg1 rest-args iota:)
; (let* ((numsteps (floor (/ (- to from) step)))
; (last-val (+ from (* step numsteps))))
; (if (< numsteps 0) (assertion-violation 'iota: "Negative step count" from to step))
; (do ((steps-left numsteps (- steps-left 1))
; (val last-val (- val step))
; (ans '() (cons val ans)))
; ((<= steps-left 0) ans)))))
;
;
;(define (:iota arg1 . rest-args)
; (receive (from to step) (%parse-iota-args arg1 rest-args :iota)
; (let* ((numsteps (ceiling (/ (- to from) step)))
; (last-val (+ from (* step (- numsteps 1)))))
; (if (< numsteps 0) (assertion-violation ':iota "Negative step count" from to step))
; (do ((steps-left numsteps (- steps-left 1))
; (val last-val (- val step))
; (ans '() (cons val ans)))
; ((<= steps-left 0) ans)))))
(define (circular-list val1 . vals)
(let ((ans (cons val1 vals)))
(set-cdr! (last-pair ans) ans)
ans))
;;; <proper-list> ::= () ; Empty proper list
;;; | (cons <x> <proper-list>) ; Proper-list pair
;;; Note that this definition rules out circular lists -- and this
;;; function is required to detect this case and return false.
(define (proper-list? x)
(let lp ((x x) (lag x))
(if (pair? x)
(let ((x (cdr x)))
(if (pair? x)
(let ((x (cdr x))
(lag (cdr lag)))
(and (not (eq? x lag)) (lp x lag)))
(null? x)))
(null? x))))
;;; A dotted list is a finite list (possibly of length 0) terminated
;;; by a non-nil value. Any non-cons, non-nil value (e.g., "foo" or 5)
;;; is a dotted list of length 0.
;;;
;;; <dotted-list> ::= <non-nil,non-pair> ; Empty dotted list
;;; | (cons <x> <dotted-list>) ; Proper-list pair
(define (dotted-list? x)
(let lp ((x x) (lag x))
(if (pair? x)
(let ((x (cdr x)))
(if (pair? x)
(let ((x (cdr x))
(lag (cdr lag)))
(and (not (eq? x lag)) (lp x lag)))
(not (null? x))))
(not (null? x)))))
(define (circular-list? x)
(let lp ((x x) (lag x))
(and (pair? x)
(let ((x (cdr x)))
(and (pair? x)
(let ((x (cdr x))
(lag (cdr lag)))
(or (eq? x lag) (lp x lag))))))))
(define (not-pair? x) (not (pair? x))) ; Inline me.
;;; This is a legal definition which is fast and sloppy:
;;; (define null-list? not-pair?)
;;; but we'll provide a more careful one:
(define (null-list? l)
(cond ((pair? l) #f)
((null? l) #t)
(else (assertion-violation 'null-list? "null-list?: argument out of domain" l))))
(define (list= = . lists)
(or (null? lists) ; special case
(let lp1 ((list-a (car lists)) (others (cdr lists)))
(or (null? others)
(let ((list-b (car others))
(others (cdr others)))
(if (eq? list-a list-b) ; EQ? => LIST=
(lp1 list-b others)
(let lp2 ((list-a list-a) (list-b list-b))
(if (null-list? list-a)
(and (null-list? list-b)
(lp1 list-b others))
(and (not (null-list? list-b))
(= (car list-a) (car list-b))
(lp2 (cdr list-a) (cdr list-b)))))))))))
;;; R4RS, so commented out.
;(define (length x) ; LENGTH may diverge or
; (let lp ((x x) (len 0)) ; raise an error if X is
; (if (pair? x) ; a circular list. This version
; (lp (cdr x) (+ len 1)) ; diverges.
; len)))
(define (length+ x) ; Returns #f if X is circular.
(let lp ((x x) (lag x) (len 0))
(if (pair? x)
(let ((x (cdr x))
(len (+ len 1)))
(if (pair? x)
(let ((x (cdr x))
(lag (cdr lag))
(len (+ len 1)))
(and (not (eq? x lag)) (lp x lag len)))
len))
len)))
(define (zip list1 . more-lists) (apply map list list1 more-lists))
;;; Selectors
;;;;;;;;;;;;;
;;; R4RS non-primitives:
;(define (caar x) (car (car x)))
;(define (cadr x) (car (cdr x)))
;(define (cdar x) (cdr (car x)))
;(define (cddr x) (cdr (cdr x)))
;
;(define (caaar x) (caar (car x)))
;(define (caadr x) (caar (cdr x)))
;(define (cadar x) (cadr (car x)))
;(define (caddr x) (cadr (cdr x)))
;(define (cdaar x) (cdar (car x)))
;(define (cdadr x) (cdar (cdr x)))
;(define (cddar x) (cddr (car x)))
;(define (cdddr x) (cddr (cdr x)))
;
;(define (caaaar x) (caaar (car x)))
;(define (caaadr x) (caaar (cdr x)))
;(define (caadar x) (caadr (car x)))
;(define (caaddr x) (caadr (cdr x)))
;(define (cadaar x) (cadar (car x)))
;(define (cadadr x) (cadar (cdr x)))
;(define (caddar x) (caddr (car x)))
;(define (cadddr x) (caddr (cdr x)))
;(define (cdaaar x) (cdaar (car x)))
;(define (cdaadr x) (cdaar (cdr x)))
;(define (cdadar x) (cdadr (car x)))
;(define (cdaddr x) (cdadr (cdr x)))
;(define (cddaar x) (cddar (car x)))
;(define (cddadr x) (cddar (cdr x)))
;(define (cdddar x) (cdddr (car x)))
;(define (cddddr x) (cdddr (cdr x)))
(define first car)
(define second cadr)
(define third caddr)
(define fourth cadddr)
(define (fifth x) (car (cddddr x)))
(define (sixth x) (cadr (cddddr x)))
(define (seventh x) (caddr (cddddr x)))
(define (eighth x) (cadddr (cddddr x)))
(define (ninth x) (car (cddddr (cddddr x))))
(define (tenth x) (cadr (cddddr (cddddr x))))
(define (car+cdr pair) (values (car pair) (cdr pair)))
;;; take & drop
(define (take lis k)
(check-arg integer? k take)
(let recur ((lis lis) (k k))
(if (zero? k) '()
(cons (car lis)
(recur (cdr lis) (- k 1))))))
(define (drop lis k)
(check-arg integer? k drop)
(let iter ((lis lis) (k k))
(if (zero? k) lis (iter (cdr lis) (- k 1)))))
(define (take! lis k)
(check-arg integer? k take!)
(if (zero? k) '()
(begin (set-cdr! (drop lis (- k 1)) '())
lis)))
;;; TAKE-RIGHT and DROP-RIGHT work by getting two pointers into the list,
;;; off by K, then chasing down the list until the lead pointer falls off
;;; the end.
(define (take-right lis k)
(check-arg integer? k take-right)
(let lp ((lag lis) (lead (drop lis k)))
(if (pair? lead)
(lp (cdr lag) (cdr lead))
lag)))
(define (drop-right lis k)
(check-arg integer? k drop-right)
(let recur ((lag lis) (lead (drop lis k)))
(if (pair? lead)
(cons (car lag) (recur (cdr lag) (cdr lead)))
'())))
;;; In this function, LEAD is actually K+1 ahead of LAG. This lets
;;; us stop LAG one step early, in time to smash its cdr to ().
(define (drop-right! lis k)
(check-arg integer? k drop-right!)
(let ((lead (drop lis k)))
(if (pair? lead)
(let lp ((lag lis) (lead (cdr lead))) ; Standard case
(if (pair? lead)
(lp (cdr lag) (cdr lead))
(begin (set-cdr! lag '())
lis)))
'()))) ; Special case dropping everything -- no cons to side-effect.
;(define (list-ref lis i) (car (drop lis i))) ; R4RS
;;; These use the APL convention, whereby negative indices mean
;;; "from the right." I liked them, but they didn't win over the
;;; SRFI reviewers.
;;; K >= 0: Take and drop K elts from the front of the list.
;;; K <= 0: Take and drop -K elts from the end of the list.
;(define (take lis k)
; (check-arg integer? k take)
; (if (negative? k)
; (list-tail lis (+ k (length lis)))
; (let recur ((lis lis) (k k))
; (if (zero? k) '()
; (cons (car lis)
; (recur (cdr lis) (- k 1)))))))
;
;(define (drop lis k)
; (check-arg integer? k drop)
; (if (negative? k)
; (let recur ((lis lis) (nelts (+ k (length lis))))
; (if (zero? nelts) '()
; (cons (car lis)
; (recur (cdr lis) (- nelts 1)))))
; (list-tail lis k)))
;
;
;(define (take! lis k)
; (check-arg integer? k take!)
; (cond ((zero? k) '())
; ((positive? k)
; (set-cdr! (list-tail lis (- k 1)) '())
; lis)
; (else (list-tail lis (+ k (length lis))))))
;
;(define (drop! lis k)
; (check-arg integer? k drop!)
; (if (negative? k)
; (let ((nelts (+ k (length lis))))
; (if (zero? nelts) '()
; (begin (set-cdr! (list-tail lis (- nelts 1)) '())
; lis)))
; (list-tail lis k)))
(define (split-at x k)
(check-arg integer? k split-at)
(let recur ((lis x) (k k))
(if (zero? k) (values '() lis)
(receive (prefix suffix) (recur (cdr lis) (- k 1))
(values (cons (car lis) prefix) suffix)))))
(define (split-at! x k)
(check-arg integer? k split-at!)
(if (zero? k) (values '() x)
(let* ((prev (drop x (- k 1)))
(suffix (cdr prev)))
(set-cdr! prev '())
(values x suffix))))
(define (last lis) (car (last-pair lis)))
(define (last-pair lis)
(check-arg pair? lis last-pair)
(let lp ((lis lis))
(let ((tail (cdr lis)))
(if (pair? tail) (lp tail) lis))))
;;; Unzippers -- 1 through 5
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (unzip1 lis) (map car lis))
(define (unzip2 lis)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis) ; Use NOT-PAIR? to handle
(let ((elt (car lis))) ; dotted lists.
(receive (a b) (recur (cdr lis))
(values (cons (car elt) a)
(cons (cadr elt) b)))))))
(define (unzip3 lis)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis lis)
(let ((elt (car lis)))
(receive (a b c) (recur (cdr lis))
(values (cons (car elt) a)
(cons (cadr elt) b)
(cons (caddr elt) c)))))))
(define (unzip4 lis)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis lis lis)
(let ((elt (car lis)))
(receive (a b c d) (recur (cdr lis))
(values (cons (car elt) a)
(cons (cadr elt) b)
(cons (caddr elt) c)
(cons (cadddr elt) d)))))))
(define (unzip5 lis)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis lis lis lis)
(let ((elt (car lis)))
(receive (a b c d e) (recur (cdr lis))
(values (cons (car elt) a)
(cons (cadr elt) b)
(cons (caddr elt) c)
(cons (cadddr elt) d)
(cons (car (cddddr elt)) e)))))))
;;; append! append-reverse append-reverse! concatenate concatenate!
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (append! . lists)
;; First, scan through lists looking for a non-empty one.
(let lp ((lists lists) (prev '()))
(if (not (pair? lists)) prev
(let ((first (car lists))
(rest (cdr lists)))
(if (not (pair? first)) (lp rest first)
;; Now, do the splicing.
(let lp2 ((tail-cons (last-pair first))
(rest rest))
(if (pair? rest)
(let ((next (car rest))
(rest (cdr rest)))
(set-cdr! tail-cons next)
(lp2 (if (pair? next) (last-pair next) tail-cons)
rest))
first)))))))
;;; APPEND is R4RS.
;(define (append . lists)
; (if (pair? lists)
; (let recur ((list1 (car lists)) (lists (cdr lists)))
; (if (pair? lists)
; (let ((tail (recur (car lists) (cdr lists))))
; (fold-right cons tail list1)) ; Append LIST1 & TAIL.
; list1))
; '()))
;(define (append-reverse rev-head tail) (fold cons tail rev-head))
;(define (append-reverse! rev-head tail)
; (pair-fold (lambda (pair tail) (set-cdr! pair tail) pair)
; tail
; rev-head))
;;; Hand-inline the FOLD and PAIR-FOLD ops for speed.
(define (append-reverse rev-head tail)
(let lp ((rev-head rev-head) (tail tail))
(if (null-list? rev-head) tail
(lp (cdr rev-head) (cons (car rev-head) tail)))))
(define (append-reverse! rev-head tail)
(let lp ((rev-head rev-head) (tail tail))
(if (null-list? rev-head) tail
(let ((next-rev (cdr rev-head)))
(set-cdr! rev-head tail)
(lp next-rev rev-head)))))
(define (concatenate lists) (reduce-right append '() lists))
(define (concatenate! lists) (reduce-right append! '() lists))
;;; Fold/map internal utilities
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; These little internal utilities are used by the general
;;; fold & mapper funs for the n-ary cases . It'd be nice if they got inlined.
;;; One the other hand, the n-ary cases are painfully inefficient as it is.
;;; An aggressive implementation should simply re-write these functions
;;; for raw efficiency; I have written them for as much clarity, portability,
;;; and simplicity as can be achieved.
;;;
;;; I use the dreaded call/cc to do local aborts. A good compiler could
;;; handle this with extreme efficiency. An implementation that provides
;;; a one-shot, non-persistent continuation grabber could help the compiler
;;; out by using that in place of the call/cc's in these routines.
;;;
;;; These functions have funky definitions that are precisely tuned to
;;; the needs of the fold/map procs -- for example, to minimize the number
;;; of times the argument lists need to be examined.
;;; Return (map cdr lists).
;;; However, if any element of LISTS is empty, just abort and return '().
(define (%cdrs lists)
(call-with-current-continuation
(lambda (abort)
(let recur ((lists lists))
(if (pair? lists)
(let ((lis (car lists)))
(if (null-list? lis) (abort '())
(cons (cdr lis) (recur (cdr lists)))))
'())))))
(define (%cars+ lists last-elt) ; (append! (map car lists) (list last-elt))
(let recur ((lists lists))
(if (pair? lists) (cons (caar lists) (recur (cdr lists))) (list last-elt))))
;;; LISTS is a (not very long) non-empty list of lists.
;;; Return two lists: the cars & the cdrs of the lists.
;;; However, if any of the lists is empty, just abort and return [() ()].
(define (%cars+cdrs lists)
(call-with-current-continuation
(lambda (abort)
(let recur ((lists lists))
(if (pair? lists)
(receive (list other-lists) (car+cdr lists)
(if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
(receive (a d) (car+cdr list)
(receive (cars cdrs) (recur other-lists)
(values (cons a cars) (cons d cdrs))))))
(values '() '()))))))
;;; Like %CARS+CDRS, but we pass in a final elt tacked onto the end of the
;;; cars list. What a hack.
(define (%cars+cdrs+ lists cars-final)
(call-with-current-continuation
(lambda (abort)
(let recur ((lists lists))
(if (pair? lists)
(receive (list other-lists) (car+cdr lists)
(if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
(receive (a d) (car+cdr list)
(receive (cars cdrs) (recur other-lists)
(values (cons a cars) (cons d cdrs))))))
(values (list cars-final) '()))))))
;;; Like %CARS+CDRS, but blow up if any list is empty.
(define (%cars+cdrs/no-test lists)
(let recur ((lists lists))
(if (pair? lists)
(receive (list other-lists) (car+cdr lists)
(receive (a d) (car+cdr list)
(receive (cars cdrs) (recur other-lists)
(values (cons a cars) (cons d cdrs)))))
(values '() '()))))
;;; count
;;;;;;;;;
(define (count pred list1 . lists)
(check-arg procedure? pred count)
(if (pair? lists)
;; N-ary case
(let lp ((list1 list1) (lists lists) (i 0))
(if (null-list? list1) i
(receive (as ds) (%cars+cdrs lists)
(if (null? as) i
(lp (cdr list1) ds
(if (apply pred (car list1) as) (+ i 1) i))))))
;; Fast path
(let lp ((lis list1) (i 0))
(if (null-list? lis) i
(lp (cdr lis) (if (pred (car lis)) (+ i 1) i))))))
;;; fold/unfold
;;;;;;;;;;;;;;;
(define (unfold-right p f g seed . maybe-tail)
(check-arg procedure? p unfold-right)
(check-arg procedure? f unfold-right)
(check-arg procedure? g unfold-right)
(let lp ((seed seed) (ans (:optional maybe-tail '())))
(if (p seed) ans
(lp (g seed)
(cons (f seed) ans)))))
(define (unfold p f g seed . maybe-tail-gen)
(check-arg procedure? p unfold)
(check-arg procedure? f unfold)
(check-arg procedure? g unfold)
(if (pair? maybe-tail-gen)
(let ((tail-gen (car maybe-tail-gen)))
(if (pair? (cdr maybe-tail-gen))
(apply assertion-violation 'unfold
"Too many arguments"
p f g seed maybe-tail-gen)
(let recur ((seed seed))
(if (p seed) (tail-gen seed)
(cons (f seed) (recur (g seed)))))))
(let recur ((seed seed))
(if (p seed) '()
(cons (f seed) (recur (g seed)))))))
(define (fold kons knil lis1 . lists)
(check-arg procedure? kons fold)
(if (pair? lists)
(let lp ((lists (cons lis1 lists)) (ans knil)) ; N-ary case
(receive (cars+ans cdrs) (%cars+cdrs+ lists ans)
(if (null? cars+ans) ans ; Done.
(lp cdrs (apply kons cars+ans)))))
(let lp ((lis lis1) (ans knil)) ; Fast path
(if (null-list? lis) ans
(lp (cdr lis) (kons (car lis) ans))))))
(define (fold-right kons knil lis1 . lists)
(check-arg procedure? kons fold-right)
(if (pair? lists)
(let recur ((lists (cons lis1 lists))) ; N-ary case
(let ((cdrs (%cdrs lists)))
(if (null? cdrs) knil
(apply kons (%cars+ lists (recur cdrs))))))
(let recur ((lis lis1)) ; Fast path
(if (null-list? lis) knil
(let ((head (car lis)))
(kons head (recur (cdr lis))))))))
(define (pair-fold-right f zero lis1 . lists)
(check-arg procedure? f pair-fold-right)
(if (pair? lists)
(let recur ((lists (cons lis1 lists))) ; N-ary case
(let ((cdrs (%cdrs lists)))
(if (null? cdrs) zero
(apply f (append! lists (list (recur cdrs)))))))
(let recur ((lis lis1)) ; Fast path
(if (null-list? lis) zero (f lis (recur (cdr lis)))))))
(define (pair-fold f zero lis1 . lists)
(check-arg procedure? f pair-fold)
(if (pair? lists)
(let lp ((lists (cons lis1 lists)) (ans zero)) ; N-ary case
(let ((tails (%cdrs lists)))
(if (null? tails) ans
(lp tails (apply f (append! lists (list ans)))))))
(let lp ((lis lis1) (ans zero))
(if (null-list? lis) ans
(let ((tail (cdr lis))) ; Grab the cdr now,
(lp tail (f lis ans))))))) ; in case F SET-CDR!s LIS.
;;; REDUCE and REDUCE-RIGHT only use RIDENTITY in the empty-list case.
;;; These cannot meaningfully be n-ary.
(define (reduce f ridentity lis)
(check-arg procedure? f reduce)
(if (null-list? lis) ridentity
(fold f (car lis) (cdr lis))))
(define (reduce-right f ridentity lis)
(check-arg procedure? f reduce-right)
(if (null-list? lis) ridentity
(let recur ((head (car lis)) (lis (cdr lis)))
(if (pair? lis)
(f head (recur (car lis) (cdr lis)))
head))))
;;; Mappers: append-map append-map! pair-for-each map! filter-map map-in-order
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (append-map f lis1 . lists)
(really-append-map append-map append f lis1 lists))
(define (append-map! f lis1 . lists)
(really-append-map append-map! append! f lis1 lists))
(define (really-append-map who appender f lis1 lists)
(check-arg procedure? f who)
(if (pair? lists)
(receive (cars cdrs) (%cars+cdrs (cons lis1 lists))
(if (null? cars) '()
(let recur ((cars cars) (cdrs cdrs))
(let ((vals (apply f cars)))
(receive (cars2 cdrs2) (%cars+cdrs cdrs)
(if (null? cars2) vals
(appender vals (recur cars2 cdrs2))))))))
;; Fast path
(if (null-list? lis1) '()
(let recur ((elt (car lis1)) (rest (cdr lis1)))
(let ((vals (f elt)))
(if (null-list? rest) vals
(appender vals (recur (car rest) (cdr rest)))))))))
(define (pair-for-each proc lis1 . lists)
(check-arg procedure? proc pair-for-each)
(if (pair? lists)
(let lp ((lists (cons lis1 lists)))
(let ((tails (%cdrs lists)))
(if (pair? tails)
(begin (apply proc lists)
(lp tails)))))
;; Fast path.
(let lp ((lis lis1))
(if (not (null-list? lis))
(let ((tail (cdr lis))) ; Grab the cdr now,
(proc lis) ; in case PROC SET-CDR!s LIS.
(lp tail))))))
;;; We stop when LIS1 runs out, not when any list runs out.
(define (map! f lis1 . lists)
(check-arg procedure? f map!)
(if (pair? lists)
(let lp ((lis1 lis1) (lists lists))
(if (not (null-list? lis1))
(receive (heads tails) (%cars+cdrs/no-test lists)
(set-car! lis1 (apply f (car lis1) heads))
(lp (cdr lis1) tails))))
;; Fast path.
(pair-for-each (lambda (pair) (set-car! pair (f (car pair)))) lis1))
lis1)
;;; Map F across L, and save up all the non-false results.
(define (filter-map f lis1 . lists)
(check-arg procedure? f filter-map)
(if (pair? lists)
(let recur ((lists (cons lis1 lists)))
(receive (cars cdrs) (%cars+cdrs lists)
(if (pair? cars)
(cond ((apply f cars) => (lambda (x) (cons x (recur cdrs))))
(else (recur cdrs))) ; Tail call in this arm.
'())))
;; Fast path.
(let recur ((lis lis1))
(if (null-list? lis) lis
(let ((tail (recur (cdr lis))))
(cond ((f (car lis)) => (lambda (x) (cons x tail)))
(else tail)))))))
;;; Map F across lists, guaranteeing to go left-to-right.
;;; NOTE: Some implementations of R5RS MAP are compliant with this spec;
;;; in which case this procedure may simply be defined as a synonym for MAP.
(define (map-in-order f lis1 . lists)
(check-arg procedure? f map-in-order)
(if (pair? lists)
(let recur ((lists (cons lis1 lists)))
(receive (cars cdrs) (%cars+cdrs lists)
(if (pair? cars)
(let ((x (apply f cars))) ; Do head first,
(cons x (recur cdrs))) ; then tail.
'())))
;; Fast path.
(let recur ((lis lis1))
(if (null-list? lis) lis
(let ((tail (cdr lis))
(x (f (car lis)))) ; Do head first,
(cons x (recur tail))))))) ; then tail.
;;; We extend MAP to handle arguments of unequal length.
(define map map-in-order)
;;; Apply F across lists, guaranteeing to go left-to-right.
;;; NOTE: Some implementations of R5RS MAP are compliant with this spec;
;;; in which case this procedure may simply be defined as a synonym for FOR-EACH.
(define (for-each f lis1 . lists)
(check-arg procedure? f for-each)
(if (pair? lists)
(let recur ((lists (cons lis1 lists)))
(receive (cars cdrs) (%cars+cdrs lists)
(if (pair? cars)
(begin
(apply f cars) ; Do head first,
(recur cdrs))))) ; then tail.
;; Fast path.
(let recur ((lis lis1))
(if (not (null-list? lis))
(begin
(f (car lis)) ; Do head first,
(recur (cdr lis))))))) ; then tail.
;;; filter, remove, partition
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; FILTER, REMOVE, PARTITION and their destructive counterparts do not
;;; disorder the elements of their argument.
;; This FILTER shares the longest tail of L that has no deleted elements.
;; If Scheme had multi-continuation calls, they could be made more efficient.
(define (filter pred lis) ; Sleazing with EQ? makes this
(check-arg procedure? pred filter) ; one faster.
(let recur ((lis lis))
(if (null-list? lis) lis ; Use NOT-PAIR? to handle dotted lists.
(let ((head (car lis))
(tail (cdr lis)))
(if (pred head)
(let ((new-tail (recur tail))) ; Replicate the RECUR call so
(if (eq? tail new-tail) lis
(cons head new-tail)))
(recur tail)))))) ; this one can be a tail call.
;;; Another version that shares longest tail.
;(define (filter pred lis)
; (receive (ans no-del?)
; ;; (recur l) returns L with (pred x) values filtered.
; ;; It also returns a flag NO-DEL? if the returned value
; ;; is EQ? to L, i.e. if it didn't have to delete anything.
; (let recur ((l l))
; (if (null-list? l) (values l #t)
; (let ((x (car l))
; (tl (cdr l)))
; (if (pred x)
; (receive (ans no-del?) (recur tl)
; (if no-del?
; (values l #t)
; (values (cons x ans) #f)))
; (receive (ans no-del?) (recur tl) ; Delete X.
; (values ans #f))))))
; ans))
;(define (filter! pred lis) ; Things are much simpler
; (let recur ((lis lis)) ; if you are willing to
; (if (pair? lis) ; push N stack frames & do N
; (cond ((pred (car lis)) ; SET-CDR! writes, where N is
; (set-cdr! lis (recur (cdr lis))); the length of the answer.
; lis)
; (else (recur (cdr lis))))
; lis)))
;;; This implementation of FILTER!
;;; - doesn't cons, and uses no stack;
;;; - is careful not to do redundant SET-CDR! writes, as writes to memory are
;;; usually expensive on modern machines, and can be extremely expensive on
;;; modern Schemes (e.g., ones that have generational GC's).
;;; It just zips down contiguous runs of in and out elts in LIS doing the
;;; minimal number of SET-CDR!s to splice the tail of one run of ins to the
;;; beginning of the next.
(define (filter! pred lis)
(check-arg procedure? pred filter!)
(let lp ((ans lis))
(cond ((null-list? ans) ans) ; Scan looking for
((not (pred (car ans))) (lp (cdr ans))) ; first cons of result.
;; ANS is the eventual answer.
;; SCAN-IN: (CDR PREV) = LIS and (CAR PREV) satisfies PRED.
;; Scan over a contiguous segment of the list that
;; satisfies PRED.
;; SCAN-OUT: (CAR PREV) satisfies PRED. Scan over a contiguous
;; segment of the list that *doesn't* satisfy PRED.
;; When the segment ends, patch in a link from PREV
;; to the start of the next good segment, and jump to
;; SCAN-IN.
(else (letrec ((scan-in (lambda (prev lis)
(if (pair? lis)
(if (pred (car lis))
(scan-in lis (cdr lis))
(scan-out prev (cdr lis))))))
(scan-out (lambda (prev lis)
(let lp ((lis lis))
(if (pair? lis)
(if (pred (car lis))
(begin (set-cdr! prev lis)
(scan-in lis (cdr lis)))
(lp (cdr lis)))
(set-cdr! prev lis))))))
(scan-in ans (cdr ans))
ans)))))
;;; Answers share common tail with LIS where possible;
;;; the technique is slightly subtle.
(define (partition pred lis)
(check-arg procedure? pred partition)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis) ; Use NOT-PAIR? to handle dotted lists.
(let ((elt (car lis))
(tail (cdr lis)))
(receive (in out) (recur tail)
(if (pred elt)
(values (if (pair? out) (cons elt in) lis) out)
(values in (if (pair? in) (cons elt out) lis))))))))
;(define (partition! pred lis) ; Things are much simpler
; (let recur ((lis lis)) ; if you are willing to
; (if (null-list? lis) (values lis lis) ; push N stack frames & do N
; (let ((elt (car lis))) ; SET-CDR! writes, where N is
; (receive (in out) (recur (cdr lis)) ; the length of LIS.
; (cond ((pred elt)
; (set-cdr! lis in)
; (values lis out))
; (else (set-cdr! lis out)
; (values in lis))))))))
;;; This implementation of PARTITION!
;;; - doesn't cons, and uses no stack;
;;; - is careful not to do redundant SET-CDR! writes, as writes to memory are
;;; usually expensive on modern machines, and can be extremely expensive on
;;; modern Schemes (e.g., ones that have generational GC's).
;;; It just zips down contiguous runs of in and out elts in LIS doing the
;;; minimal number of SET-CDR!s to splice these runs together into the result
;;; lists.
(define (partition! pred lis)
(check-arg procedure? pred partition!)
(if (null-list? lis) (values lis lis)
;; This pair of loops zips down contiguous in & out runs of the
;; list, splicing the runs together. The invariants are
;; SCAN-IN: (cdr in-prev) = LIS.
;; SCAN-OUT: (cdr out-prev) = LIS.
(letrec ((scan-in (lambda (in-prev out-prev lis)
(let lp ((in-prev in-prev) (lis lis))
(if (pair? lis)
(if (pred (car lis))
(lp lis (cdr lis))
(begin (set-cdr! out-prev lis)
(scan-out in-prev lis (cdr lis))))
(set-cdr! out-prev lis))))) ; Done.
(scan-out (lambda (in-prev out-prev lis)
(let lp ((out-prev out-prev) (lis lis))
(if (pair? lis)
(if (pred (car lis))
(begin (set-cdr! in-prev lis)
(scan-in lis out-prev (cdr lis)))
(lp lis (cdr lis)))
(set-cdr! in-prev lis)))))) ; Done.
;; Crank up the scan&splice loops.
(if (pred (car lis))
;; LIS begins in-list. Search for out-list's first pair.
(let lp ((prev-l lis) (l (cdr lis)))
(cond ((not (pair? l)) (values lis l))
((pred (car l)) (lp l (cdr l)))
(else (scan-out prev-l l (cdr l))
(values lis l)))) ; Done.
;; LIS begins out-list. Search for in-list's first pair.
(let lp ((prev-l lis) (l (cdr lis)))
(cond ((not (pair? l)) (values l lis))
((pred (car l))
(scan-in l prev-l (cdr l))
(values l lis)) ; Done.
(else (lp l (cdr l)))))))))
;;; Inline us, please.
(define (remove pred l) (filter (lambda (x) (not (pred x))) l))
(define (remove! pred l) (filter! (lambda (x) (not (pred x))) l))
;;; Here's the taxonomy for the DELETE/ASSOC/MEMBER functions.
;;; (I don't actually think these are the world's most important
;;; functions -- the procedural FILTER/REMOVE/FIND/FIND-TAIL variants
;;; are far more general.)
;;;
;;; Function Action
;;; ---------------------------------------------------------------------------
;;; remove pred lis Delete by general predicate
;;; delete x lis [=] Delete by element comparison
;;;
;;; find pred lis Search by general predicate
;;; find-tail pred lis Search by general predicate
;;; member x lis [=] Search by element comparison
;;;
;;; assoc key lis [=] Search alist by key comparison
;;; alist-delete key alist [=] Alist-delete by key comparison
(define (delete x lis . maybe-=)
(let ((= (:optional maybe-= equal?)))
(filter (lambda (y) (not (= x y))) lis)))
(define (delete! x lis . maybe-=)
(let ((= (:optional maybe-= equal?)))
(filter! (lambda (y) (not (= x y))) lis)))
;;; Extended from R4RS to take an optional comparison argument.
(define (member x lis . maybe-=)
(let ((= (:optional maybe-= equal?)))
(find-tail (lambda (y) (= x y)) lis)))
;;; R4RS, hence we don't bother to define.
;;; The MEMBER and then FIND-TAIL call should definitely
;;; be inlined for MEMQ & MEMV.
;(define (memq x lis) (member x lis eq?))
;(define (memv x lis) (member x lis eqv?))
;;; right-duplicate deletion
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; delete-duplicates delete-duplicates!
;;;
;;; Beware -- these are N^2 algorithms. To efficiently remove duplicates
;;; in long lists, sort the list to bring duplicates together, then use a
;;; linear-time algorithm to kill the dups. Or use an algorithm based on
;;; element-marking. The former gives you O(n lg n), the latter is linear.
(define (delete-duplicates lis . maybe-=)
(let ((elt= (:optional maybe-= equal?)))
(check-arg procedure? elt= delete-duplicates)
(let recur ((lis lis))
(if (null-list? lis) lis
(let* ((x (car lis))
(tail (cdr lis))
(new-tail (recur (delete x tail elt=))))
(if (eq? tail new-tail) lis (cons x new-tail)))))))
(define (delete-duplicates! lis . maybe-=)
(let ((elt= (:optional maybe-= equal?)))
(check-arg procedure? elt= delete-duplicates!)
(let recur ((lis lis))
(if (null-list? lis) lis
(let* ((x (car lis))
(tail (cdr lis))
(new-tail (recur (delete! x tail elt=))))
(if (eq? tail new-tail) lis (cons x new-tail)))))))
;;; alist stuff
;;;;;;;;;;;;;;;
;;; Extended from R4RS to take an optional comparison argument.
(define (assoc x lis . maybe-=)
(let ((= (:optional maybe-= equal?)))
(find (lambda (entry) (= x (car entry))) lis)))
(define (alist-cons key datum alist) (cons (cons key datum) alist))
(define (alist-copy alist)
(map (lambda (elt) (cons (car elt) (cdr elt)))
alist))
(define (alist-delete key alist . maybe-=)
(let ((= (:optional maybe-= equal?)))
(filter (lambda (elt) (not (= key (car elt)))) alist)))
(define (alist-delete! key alist . maybe-=)
(let ((= (:optional maybe-= equal?)))
(filter! (lambda (elt) (not (= key (car elt)))) alist)))
;;; find find-tail take-while drop-while span break any every list-index
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (find pred list)
(cond ((find-tail pred list) => car)
(else #f)))
(define (find-tail pred list)
(check-arg procedure? pred find-tail)
(let lp ((list list))
(and (not (null-list? list))
(if (pred (car list)) list
(lp (cdr list))))))
(define (take-while pred lis)
(check-arg procedure? pred take-while)
(let recur ((lis lis))
(if (null-list? lis) '()
(let ((x (car lis)))
(if (pred x)
(cons x (recur (cdr lis)))
'())))))
(define (drop-while pred lis)
(check-arg procedure? pred drop-while)
(let lp ((lis lis))
(if (null-list? lis) '()
(if (pred (car lis))
(lp (cdr lis))
lis))))
(define (take-while! pred lis)
(check-arg procedure? pred take-while!)
(if (or (null-list? lis) (not (pred (car lis)))) '()
(begin (let lp ((prev lis) (rest (cdr lis)))
(if (pair? rest)
(let ((x (car rest)))
(if (pred x) (lp rest (cdr rest))
(set-cdr! prev '())))))
lis)))
(define (span pred lis)
(check-arg procedure? pred span)
(let recur ((lis lis))
(if (null-list? lis) (values '() '())
(let ((x (car lis)))
(if (pred x)
(receive (prefix suffix) (recur (cdr lis))
(values (cons x prefix) suffix))
(values '() lis))))))
(define (span! pred lis)
(check-arg procedure? pred span!)
(if (or (null-list? lis) (not (pred (car lis)))) (values '() lis)
(let ((suffix (let lp ((prev lis) (rest (cdr lis)))
(if (null-list? rest) rest
(let ((x (car rest)))
(if (pred x) (lp rest (cdr rest))
(begin (set-cdr! prev '())
rest)))))))
(values lis suffix))))
(define (break pred lis) (span (lambda (x) (not (pred x))) lis))
(define (break! pred lis) (span! (lambda (x) (not (pred x))) lis))
(define (any pred lis1 . lists)
(check-arg procedure? pred any)
(if (pair? lists)
;; N-ary case
(receive (heads tails) (%cars+cdrs (cons lis1 lists))
(and (pair? heads)
(let lp ((heads heads) (tails tails))
(receive (next-heads next-tails) (%cars+cdrs tails)
(if (pair? next-heads)
(or (apply pred heads) (lp next-heads next-tails))
(apply pred heads)))))) ; Last PRED app is tail call.
;; Fast path
(and (not (null-list? lis1))
(let lp ((head (car lis1)) (tail (cdr lis1)))
(if (null-list? tail)
(pred head) ; Last PRED app is tail call.
(or (pred head) (lp (car tail) (cdr tail))))))))
;(define (every pred list) ; Simple definition.
; (let lp ((list list)) ; Doesn't return the last PRED value.
; (or (not (pair? list))
; (and (pred (car list))
; (lp (cdr list))))))
(define (every pred lis1 . lists)
(check-arg procedure? pred every)
(if (pair? lists)
;; N-ary case
(receive (heads tails) (%cars+cdrs (cons lis1 lists))
(or (not (pair? heads))
(let lp ((heads heads) (tails tails))
(receive (next-heads next-tails) (%cars+cdrs tails)
(if (pair? next-heads)
(and (apply pred heads) (lp next-heads next-tails))
(apply pred heads)))))) ; Last PRED app is tail call.
;; Fast path
(or (null-list? lis1)
(let lp ((head (car lis1)) (tail (cdr lis1)))
(if (null-list? tail)
(pred head) ; Last PRED app is tail call.
(and (pred head) (lp (car tail) (cdr tail))))))))
(define (list-index pred lis1 . lists)
(check-arg procedure? pred list-index)
(if (pair? lists)
;; N-ary case
(let lp ((lists (cons lis1 lists)) (n 0))
(receive (heads tails) (%cars+cdrs lists)
(and (pair? heads)
(if (apply pred heads) n
(lp tails (+ n 1))))))
;; Fast path
(let lp ((lis lis1) (n 0))
(and (not (null-list? lis))
(if (pred (car lis)) n (lp (cdr lis) (+ n 1)))))))
;;; Reverse
;;;;;;;;;;;
;R4RS, so not defined here.
;(define (reverse lis) (fold cons '() lis))
;(define (reverse! lis)
; (pair-fold (lambda (pair tail) (set-cdr! pair tail) pair) '() lis))
(define (reverse! lis)
(let lp ((lis lis) (ans '()))
(if (null-list? lis) ans
(let ((tail (cdr lis)))
(set-cdr! lis ans)
(lp tail lis)))))
;;; Lists-as-sets
;;;;;;;;;;;;;;;;;
;;; This is carefully tuned code; do not modify casually.
;;; - It is careful to share storage when possible;
;;; - Side-effecting code tries not to perform redundant writes.
;;; - It tries to avoid linear-time scans in special cases where constant-time
;;; computations can be performed.
;;; - It relies on similar properties from the other list-lib procs it calls.
;;; For example, it uses the fact that the implementations of MEMBER and
;;; FILTER in this source code share longest common tails between args
;;; and results to get structure sharing in the lset procedures.
(define (%lset2<= = lis1 lis2) (every (lambda (x) (member x lis2 =)) lis1))
(define (lset<= = . lists)
(check-arg procedure? = lset<=)
(or (not (pair? lists)) ; 0-ary case
(let lp ((s1 (car lists)) (rest (cdr lists)))
(or (not (pair? rest))
(let ((s2 (car rest)) (rest (cdr rest)))
(and (or (eq? s2 s1) ; Fast path
(%lset2<= = s1 s2)) ; Real test
(lp s2 rest)))))))
(define (lset= = . lists)
(check-arg procedure? = lset=)
(or (not (pair? lists)) ; 0-ary case
(let lp ((s1 (car lists)) (rest (cdr lists)))
(or (not (pair? rest))
(let ((s2 (car rest))
(rest (cdr rest)))
(and (or (eq? s1 s2) ; Fast path
(and (%lset2<= = s1 s2) (%lset2<= = s2 s1))) ; Real test
(lp s2 rest)))))))
(define (lset-adjoin = lis . elts)
(check-arg procedure? = lset-adjoin)
(fold (lambda (elt ans) (if (member elt ans =) ans (cons elt ans)))
lis elts))
(define (lset-union = . lists)
(check-arg procedure? = lset-union)
(reduce (lambda (lis ans) ; Compute ANS + LIS.
(cond ((null? lis) ans) ; Don't copy any lists
((null? ans) lis) ; if we don't have to.
((eq? lis ans) ans)
(else
(fold (lambda (elt ans) (if (any (lambda (x) (= x elt)) ans)
ans
(cons elt ans)))
ans lis))))
'() lists))
(define (lset-union! = . lists)
(check-arg procedure? = lset-union!)
(reduce (lambda (lis ans) ; Splice new elts of LIS onto the front of ANS.
(cond ((null? lis) ans) ; Don't copy any lists
((null? ans) lis) ; if we don't have to.
((eq? lis ans) ans)
(else
(pair-fold (lambda (pair ans)
(let ((elt (car pair)))
(if (any (lambda (x) (= x elt)) ans)
ans
(begin (set-cdr! pair ans) pair))))
ans lis))))
'() lists))
(define (lset-intersection = lis1 . lists)
(check-arg procedure? = lset-intersection)
(let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
(cond ((any null-list? lists) '()) ; Short cut
((null? lists) lis1) ; Short cut
(else (filter (lambda (x)
(every (lambda (lis) (member x lis =)) lists))
lis1)))))
(define (lset-intersection! = lis1 . lists)
(check-arg procedure? = lset-intersection!)
(let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
(cond ((any null-list? lists) '()) ; Short cut
((null? lists) lis1) ; Short cut
(else (filter! (lambda (x)
(every (lambda (lis) (member x lis =)) lists))
lis1)))))
(define (lset-difference = lis1 . lists)
(check-arg procedure? = lset-difference)
(let ((lists (filter pair? lists))) ; Throw out empty lists.
(cond ((null? lists) lis1) ; Short cut
((memq lis1 lists) '()) ; Short cut
(else (filter (lambda (x)
(every (lambda (lis) (not (member x lis =)))
lists))
lis1)))))
(define (lset-difference! = lis1 . lists)
(check-arg procedure? = lset-difference!)
(let ((lists (filter pair? lists))) ; Throw out empty lists.
(cond ((null? lists) lis1) ; Short cut
((memq lis1 lists) '()) ; Short cut
(else (filter! (lambda (x)
(every (lambda (lis) (not (member x lis =)))
lists))
lis1)))))
(define (lset-xor = . lists)
(check-arg procedure? = lset-xor)
(reduce (lambda (b a) ; Compute A xor B:
;; Note that this code relies on the constant-time
;; short-cuts provided by LSET-DIFF+INTERSECTION,
;; LSET-DIFFERENCE & APPEND to provide constant-time short
;; cuts for the cases A = (), B = (), and A eq? B. It takes
;; a careful case analysis to see it, but it's carefully
;; built in.
;; Compute a-b and a^b, then compute b-(a^b) and
;; cons it onto the front of a-b.
(receive (a-b a-int-b) (lset-diff+intersection = a b)
(cond ((null? a-b) (lset-difference = b a))
((null? a-int-b) (append b a))
(else (fold (lambda (xb ans)
(if (member xb a-int-b =) ans (cons xb ans)))
a-b
b)))))
'() lists))
(define (lset-xor! = . lists)
(check-arg procedure? = lset-xor!)
(reduce (lambda (b a) ; Compute A xor B:
;; Note that this code relies on the constant-time
;; short-cuts provided by LSET-DIFF+INTERSECTION,
;; LSET-DIFFERENCE & APPEND to provide constant-time short
;; cuts for the cases A = (), B = (), and A eq? B. It takes
;; a careful case analysis to see it, but it's carefully
;; built in.
;; Compute a-b and a^b, then compute b-(a^b) and
;; cons it onto the front of a-b.
(receive (a-b a-int-b) (lset-diff+intersection! = a b)
(cond ((null? a-b) (lset-difference! = b a))
((null? a-int-b) (append! b a))
(else (pair-fold (lambda (b-pair ans)
(if (member (car b-pair) a-int-b =) ans
(begin (set-cdr! b-pair ans) b-pair)))
a-b
b)))))
'() lists))
(define (lset-diff+intersection = lis1 . lists)
(check-arg procedure? = lset-diff+intersection)
(cond ((every null-list? lists) (values lis1 '())) ; Short cut
((memq lis1 lists) (values '() lis1)) ; Short cut
(else (partition (lambda (elt)
(not (any (lambda (lis) (member elt lis =))
lists)))
lis1))))
(define (lset-diff+intersection! = lis1 . lists)
(check-arg procedure? = lset-diff+intersection!)
(cond ((every null-list? lists) (values lis1 '())) ; Short cut
((memq lis1 lists) (values '() lis1)) ; Short cut
(else (partition! (lambda (elt)
(not (any (lambda (lis) (member elt lis =))
lists)))
lis1))))
|