This file is indexed.

/usr/share/scheme48-1.9/srfi/srfi-14.scm is in scheme48 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
; Part of Scheme 48 1.9.  See file COPYING for notices and license.

; Authors: Mike Sperber, Robert Tansom

; Copyright (c) 2005-2006 by Basis Technology Corporation. 

; This is basically a complete re-implementation, suitable for Unicode.

; Some bits and pieces from Olin's reference implementation remain,
; but none from the MIT Scheme code.  For whatever remains, the
; following copyright holds:

; Copyright (c) 1994-2003 by Olin Shivers
; 
; All rights reserved.
; 
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions
; are met:
; 1. Redistributions of source code must retain the above copyright
;    notice, this list of conditions and the following disclaimer.
; 2. Redistributions in binary form must reproduce the above copyright
;    notice, this list of conditions and the following disclaimer in the
;    documentation and/or other materials provided with the distribution.
; 3. The name of the authors may not be used to endorse or promote products
;    derived from this software without specific prior written permission.
; 
; THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
; IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
; OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
; IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
; INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
; NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
; THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(define-record-type :char-set
  (make-char-set simple i-list)
  char-set?
  ;; byte vector for the Latin-1 part
  (simple char-set-simple
	  set-char-set-simple!)
  ;; inversion list for the rest
  (i-list char-set-i-list
	  set-char-set-i-list!))

(define-record-discloser :char-set
  (lambda (cs)
    (list 'char-set
	  (char-set-size cs))))

(define (make-char-set-immutable! char-set)
  (make-immutable! char-set)
  (make-immutable! (char-set-simple char-set)))
  ; inversion lists are always immutable

;;; "Simple Csets"---we use mutable byte vectors for the Latin-1 part

(define *simple-cset-boundary* 256)

(define (simple-char? c)
  (< (char->scalar-value c) *simple-cset-boundary*))

(define (make-empty-simple-cset)
  (make-byte-vector *simple-cset-boundary* 0))

(define (make-full-simple-cset)
  (make-byte-vector *simple-cset-boundary* 1))

(define (copy-simple-cset s)
  (byte-vector-copy s))

; don't mistake these for abstractions
(define (simple-cset-code-not-member? s i) (zero? (byte-vector-ref s i)))
(define (simple-cset-code-member? s i) (not (simple-cset-code-not-member? s i)))
(define (simple-cset-ref s i) (byte-vector-ref s i))
(define (simple-cset-set! s i v) (byte-vector-set! s i v))
(define (simple-cset-remove-code! s i) (byte-vector-set! s i 0))
(define (simple-cset-adjoin-code! s i) (byte-vector-set! s i 1))

(define (simple-cset-contains? s char)
  (simple-cset-code-member? s (char->scalar-value char)))

(define (simple-cset=? s1 s2)
  (byte-vector=? s1 s2))

(define (simple-cset<=? s1 s2)
  (or (eq? s1 s2)
      (let loop ((i 0))
	(if (>= i *simple-cset-boundary*)
	    #t
	    (and (<= (simple-cset-ref s1 i) (simple-cset-ref s2 i))
		 (loop (+ 1 i)))))))

(define (simple-cset-size s)
  (let loop ((i 0) (size 0))
    (if (>= i *simple-cset-boundary*)
	size
	(loop (+ 1 i) (+ size (simple-cset-ref s i))))))

(define (simple-cset-count pred s)
  (let loop ((i 0) (count 0))
    (if (>= i *simple-cset-boundary*)
	count
	(loop (+ 1 i)
	      (if (and (simple-cset-code-member? s i) (pred (scalar-value->char i)))
		  (+ count 1)
		  count)))))

(define (simple-cset-modify! set s chars)
  (for-each (lambda (c) (set s (char->scalar-value c)))
	    chars)
  s)

(define (simple-cset-modify set s chars)
  (simple-cset-modify! set (copy-simple-cset s) chars))

(define (simple-cset-adjoin s . chars)
  (simple-cset-modify simple-cset-adjoin-code! s chars))
(define (simple-cset-adjoin! s . chars)
  (simple-cset-modify! simple-cset-adjoin-code! s chars))
(define (simple-cset-delete s . chars)
  (simple-cset-modify simple-cset-remove-code! s chars))
(define (simple-cset-delete! s . chars)
  (simple-cset-modify! simple-cset-remove-code! s chars))

;;; If we represented char sets as a bit set, we could do the following
;;; trick to pick the lowest bit out of the set: 
;;;   (count-bits (xor (- cset 1) cset))
;;; (But first mask out the bits already scanned by the cursor first.)

(define (simple-cset-cursor-next s cursor)
  (let loop ((cur cursor))
    (let ((cur (- cur 1)))
      (if (or (< cur 0) (simple-cset-code-member? s cur))
	  cur
	  (loop cur)))))

(define (end-of-simple-cset? cursor)
  (negative? cursor))

(define (simple-cset-cursor-ref cursor)
  (scalar-value->char cursor))

(define (simple-cset-for-each proc s)
  (let loop ((i 0))
    (if (< i *simple-cset-boundary*)
	(begin
	  (if (simple-cset-code-member? s i)
	      (proc (scalar-value->char i)))
	  (loop (+ 1 i))))))

(define (simple-cset-fold kons knil s)
  (let loop ((i 0) (ans knil))
    (if (>= i *simple-cset-boundary*)
	ans
	(loop (+ 1 i)
	      (if (simple-cset-code-not-member? s i)
		  ans
		  (kons (scalar-value->char i) ans))))))

(define (simple-cset-every? pred s)
  (let loop ((i 0))
    (cond
     ((>= i *simple-cset-boundary*)
      #t)
     ((or (simple-cset-code-not-member? s i)
	  (pred (scalar-value->char i)))
      (loop (+ 1 i)))
     (else
      #f))))

(define (simple-cset-any pred s)
  (let loop ((i 0))
    (cond
     ((>= i *simple-cset-boundary*) #f)
     ((and (simple-cset-code-member? s i)
	   (pred (scalar-value->char i))))
     (else
      (loop (+ 1 i))))))

(define (ucs-range->simple-cset lower upper)
  (let ((s (make-empty-simple-cset)))
    (let loop ((i lower))
      (if (< i upper)
	  (begin
	    (simple-cset-adjoin-code! s i)
	    (loop (+ 1 i)))))
    s))

; Algebra

; These do various "s[i] := s[i] op val" operations

(define (simple-cset-invert-code! s i v)
  (simple-cset-set! s i (- 1 v)))

(define (simple-cset-and-code! s i v)
  (if (zero? v)
      (simple-cset-remove-code! s i)))
(define (simple-cset-or-code! s i v)
  (if (not (zero? v))
      (simple-cset-adjoin-code! s i)))
(define (simple-cset-minus-code! s i v)
  (if (not (zero? v))
      (simple-cset-remove-code! s i)))
(define (simple-cset-xor-code! s i v)
  (if (not (zero? v))
      (simple-cset-set! s i (- 1 (simple-cset-ref s i)))))

(define (simple-cset-complement s)
  (simple-cset-complement! (copy-simple-cset s)))

(define (simple-cset-complement! s)
  (byte-vector-iter (lambda (i v) (simple-cset-invert-code! s i v)) s)
  s)

(define (simple-cset-op! s simple-csets code-op!)
  (for-each (lambda (s2)
	      (let loop ((i 0))
		(if (< i *simple-cset-boundary*)
		    (begin
		      (code-op! s i (simple-cset-ref s2 i))
		      (loop (+ 1 i))))))
	    simple-csets)
  s)

(define (simple-cset-union! s1 . ss)
  (simple-cset-op! s1 ss simple-cset-or-code!))

(define (simple-cset-union . ss)
  (if (pair? ss)
      (apply simple-cset-union!
	     (byte-vector-copy (car ss))
	     (cdr ss))
      (make-empty-simple-cset)))

(define (simple-cset-intersection! s1 . ss)
  (simple-cset-op! s1 ss simple-cset-and-code!))

(define (simple-cset-intersection . ss)
  (if (pair? ss)
      (apply simple-cset-intersection!
	     (byte-vector-copy (car ss))
	     (cdr ss))
      (make-full-simple-cset)))

(define (simple-cset-difference! s1 . ss)
  (simple-cset-op! s1 ss simple-cset-minus-code!))

(define (simple-cset-difference s1 . ss)
  (if (pair? ss)
      (apply simple-cset-difference! (copy-simple-cset s1) ss)
      (copy-simple-cset s1)))

(define (simple-cset-xor! s1 . ss)
  (simple-cset-op! s1 ss simple-cset-xor-code!))

(define (simple-cset-xor . ss)
  (if (pair? ss)
      (apply simple-cset-xor!
	     (byte-vector-copy (car ss))
	     (cdr ss))
      (make-empty-simple-cset)))

(define (simple-cset-diff+intersection! s1 s2 . ss)
  (byte-vector-iter (lambda (i v)
		       (cond
			((zero? v)
			 (simple-cset-remove-code! s2 i))
			((simple-cset-code-member? s2 i)
			 (simple-cset-remove-code! s1 i))))
		     s1)

  (for-each (lambda (s)
	      (byte-vector-iter (lambda (i v)
				  (if (and (not (zero? v))
					   (simple-cset-code-member? s1 i))
				      (begin
					(simple-cset-remove-code! s1 i)
					(simple-cset-adjoin-code! s2 i))))
				 s))
	    ss)

  (values s1 s2))



; Compute (c + 37 c + 37^2 c + ...) modulo BOUND, with sleaze thrown
; in to keep the intermediate values small. (We do the calculation
; with just enough bits to represent BOUND, masking off high bits at
; each step in calculation. If this screws up any important properties
; of the hash function I'd like to hear about it. -Olin)

(define (simple-cset-hash s bound)
  ;; The mask that will cover BOUND-1:
  (let ((mask (let loop ((i #x10000)) ; Let's skip first 16 iterations, eh?
		(if (>= i bound) (- i 1) (loop (+ i i))))))
    (let loop ((i (- *simple-cset-boundary* 1)) (ans 0))
      (if (< i 0)
	  (modulo ans bound)
	  (loop (- i 1)
	      (if (simple-cset-code-not-member? s i)
		  ans
		  (bitwise-and mask (+ (* 37 ans) i))))))))

;;; Now for the real character sets

(define (make-empty-char-set)
  (make-char-set (make-empty-simple-cset)
		 (make-empty-inversion-list *simple-cset-boundary* (+ 1 #x10ffff))))
(define (make-full-char-set)
  (make-char-set (make-full-simple-cset)
		 (range->inversion-list *simple-cset-boundary* (+ 1 #x10ffff)
					*simple-cset-boundary* (+ 1 #x10ffff))))

(define (char-set-copy cs)
  (make-char-set (copy-simple-cset (char-set-simple cs))
		 (inversion-list-copy (char-set-i-list cs))))

; n-ary version
(define (char-set= . rest)
  (or (null? rest)
      (let ((cs1  (car rest))
	    (rest (cdr rest)))
	(let loop ((rest rest))
	  (or (not (pair? rest))
	      (and (char-set=/2 cs1 (car rest))
		   (loop (cdr rest))))))))

; binary version
(define (char-set=/2 cs-1 cs-2)
  (and (simple-cset=? (char-set-simple cs-1) (char-set-simple cs-2))
       (inversion-list=? (char-set-i-list cs-1)
			 (char-set-i-list cs-2))))

; n-ary
(define (char-set<= . rest)
  (or (null? rest)
      (let ((cs1  (car rest))
	    (rest (cdr rest)))
	(let loop ((cs1 cs1)  (rest rest))
	  (or (not (pair? rest))
	      (and (char-set<=/2 cs1 (car rest))
		   (loop (car rest) (cdr rest))))))))

; binary
(define (char-set<=/2 cs-1 cs-2)
  (and (simple-cset<=? (char-set-simple cs-1) (char-set-simple cs-2))
       (inversion-list<=? (char-set-i-list cs-1)
			  (char-set-i-list cs-2))))

(define (inversion-list<=? i-list-1 i-list-2)
  (inversion-list=? i-list-1
		    (inversion-list-intersection i-list-1 i-list-2)))

;;; Hash

; We follow Olin's reference implementation:
;
; If you keep BOUND small enough, the intermediate calculations will 
; always be fixnums. How small is dependent on the underlying Scheme system; 
; we use a default BOUND of 2^22 = 4194304, which should hack it in
; Schemes that give you at least 29 signed bits for fixnums. The core 
; calculation that you don't want to overflow is, worst case,
;     (+ 65535 (* 37 (- bound 1)))
; where 65535 is the max character code. Choose the default BOUND to be the
; biggest power of two that won't cause this expression to fixnum overflow, 
; and everything will be copacetic.

(define char-set-hash
  (opt-lambda (cs (bound 4194304))
    (if (not (and (integer? bound)
		  (exact? bound)
		  (<= 0 bound)))
	(assertion-violation 'char-set-hash "invalid bound" bound))
    (let ((bound (if (zero? bound) 4194304 bound)))
      (modulo (+ (simple-cset-hash (char-set-simple cs) bound)
		 (* 37 (inversion-list-hash (char-set-i-list cs) bound)))
	      bound))))

(define (char-set-contains? cs char)
  (if (simple-char? char)
      (simple-cset-contains? (char-set-simple cs) char)
      (inversion-list-member? (char->scalar-value char)
			      (char-set-i-list cs))))

(define (char-set-size cs)
  (+ (simple-cset-size (char-set-simple cs))
     (inversion-list-size (char-set-i-list cs))))

(define (char-set-count pred cset)
  (+ (simple-cset-count pred (char-set-simple cset))
     (inversion-list-count pred (char-set-i-list cset))))

(define (inversion-list-count pred i-list)
  (inversion-list-fold/done? (lambda (v count)
			       (if (pred (scalar-value->char v))
				   (+ 1 count)
				   count))
			     0
			     (lambda (v) #f)
			     i-list))

(define (make-char-set-char-op simple-cset-op inversion-list-op)
  (lambda (cs . chars)
    (call-with-values
	(lambda () (partition-list simple-char? chars))
      (lambda (simple-chars non-simple-chars)
	(make-char-set (apply simple-cset-op (char-set-simple cs) simple-chars)
		       (apply inversion-list-op (char-set-i-list cs)
			      (map char->scalar-value non-simple-chars)))))))

(define (make-char-set-char-op! simple-cset-op! simple-cset-op
				inversion-list-op)
  (lambda (cs . chars)
    (call-with-values
	(lambda () (partition-list simple-char? chars))
      (lambda (simple-chars non-simple-chars)
	(if (null? non-simple-chars)
	    (apply simple-cset-op! (char-set-simple cs) simple-chars)
	    (begin
	      (set-char-set-simple! cs
				    (apply simple-cset-op (char-set-simple cs)
					   simple-chars))
	      (set-char-set-i-list! cs
				    (apply inversion-list-op (char-set-i-list cs)
					   (map char->scalar-value non-simple-chars)))))))
    cs))

(define char-set-adjoin
  (make-char-set-char-op simple-cset-adjoin inversion-list-adjoin))
(define char-set-adjoin!
  (make-char-set-char-op! simple-cset-adjoin! simple-cset-adjoin
			  inversion-list-adjoin))
(define char-set-delete
  (make-char-set-char-op simple-cset-delete inversion-list-remove))
(define char-set-delete!
  (make-char-set-char-op! simple-cset-delete! simple-cset-delete
			  inversion-list-remove))

;;; Cursors

; A cursor is either an integer index into the mark vector (-1 for the
; end-of-char-set cursor) as in the reference implementation, and an
; inversion-list cursor otherwise.

(define (char-set-cursor cset)
  (let ((simple-cursor
	 (simple-cset-cursor-next (char-set-simple cset) 
				  *simple-cset-boundary*)))
    (if (end-of-simple-cset? simple-cursor)
	(inversion-list-cursor (char-set-i-list cset))
	simple-cursor)))
  
(define (end-of-char-set? cursor)
  (and (inversion-list-cursor? cursor)
       (inversion-list-cursor-at-end? cursor)))

(define (char-set-ref cset cursor)
  (if (number? cursor)
      (simple-cset-cursor-ref cursor)
      (scalar-value->char (inversion-list-cursor-ref cursor))))

(define (char-set-cursor-next cset cursor)
  (cond
   ((number? cursor)
    (let ((next (simple-cset-cursor-next (char-set-simple cset) cursor)))
      (if (end-of-simple-cset? next)
	  (inversion-list-cursor (char-set-i-list cset))
	  next)))
   (else
    (inversion-list-cursor-next (char-set-i-list cset) cursor))))

(define (char-set-for-each proc cs)
  (simple-cset-for-each proc (char-set-simple cs))
  (inversion-list-fold/done? (lambda (n _)
			       (proc (scalar-value->char n))
			       (unspecific))
			     #f
			     (lambda (_) #f)
			     (char-set-i-list cs)))

; this is pretty inefficent
(define (char-set-map proc cs)
  (let ((simple-cset (make-empty-simple-cset))
	(other-scalar-values '()))
    
    (define (adjoin! c)
      (let ((c (proc c)))
	(if (simple-char? c)
	    (simple-cset-adjoin! simple-cset c)
	    (set! other-scalar-values
		  (cons (char->scalar-value c) other-scalar-values)))))

    (char-set-for-each adjoin! cs)

    (make-char-set simple-cset
		   (apply numbers->inversion-list
			  *simple-cset-boundary* (+ 1 #x10ffff)
			  other-scalar-values))))

(define (char-set-fold kons knil cs)
  (inversion-list-fold/done? (lambda (n v)
			       (kons (scalar-value->char n) v))
			     (simple-cset-fold kons knil (char-set-simple cs))
			     (lambda (_) #f)
			     (char-set-i-list cs)))

(define (char-set-every pred cs)
  (and (simple-cset-every? pred (char-set-simple cs))
       (inversion-list-fold/done? (lambda (n v)
				    (and v
					 (pred (scalar-value->char n))))
				  #t
				  not
				  (char-set-i-list cs))))

(define (char-set-any pred cs)
  (or (simple-cset-any pred (char-set-simple cs))
      (inversion-list-fold/done? (lambda (n v)
				   (or v
				       (pred (scalar-value->char n))))
				 #f
				 values
				 (char-set-i-list cs))))

(define (base-char-set maybe-base-cs)
  (if maybe-base-cs
      (char-set-copy maybe-base-cs)
      (make-empty-char-set)))

(define char-set-unfold
  (opt-lambda (p f g seed (maybe-base-cs #f))
    (char-set-unfold! p f g seed
		      (base-char-set maybe-base-cs))))

(define (char-set-unfold! p f g seed base-cs)
  (let loop ((seed seed) (cs base-cs))
    (if (p seed) cs			; P says we are done.
	(loop (g seed)			; Loop on (G SEED).
	      (char-set-adjoin! cs (f seed)))))) ; Add (F SEED) to set.

; converting from and to lists

(define (char-set . chars)
  (list->char-set chars))

(define list->char-set
  (opt-lambda (chars (maybe-base-cs #f))
    (list->char-set! chars
		     (base-char-set maybe-base-cs))))

(define (list->char-set! chars cs)
  (for-each (lambda (c)
	      (char-set-adjoin! cs c))
	    chars)
  cs)

(define (char-set->list cs)
  (char-set-fold cons '() cs))

; converting to and from strings

(define string->char-set
  (opt-lambda (str (maybe-base-cs #f))
    (string->char-set! str
		       (base-char-set maybe-base-cs))))

(define (string->char-set! str cs)
  (do ((i (- (string-length str) 1) (- i 1)))
      ((< i 0))
    (char-set-adjoin! cs (string-ref str i)))
  cs)

(define (char-set->string cs)
  (let ((ans (make-string (char-set-size cs))))
    (char-set-fold (lambda (ch i)
		     (string-set! ans i ch)
		     (+ i 1))
		   0
		   cs)
    ans))

(define ucs-range->char-set
  (opt-lambda (lower upper (error? #f) (maybe-base-cs #f))
    (ucs-range->char-set! lower upper error?
			  (base-char-set maybe-base-cs))))

(define (ucs-range->char-set! lower upper error? base-cs)
  (if (negative? lower)
      (assertion-violation 'ucs-range->char-set! "negative lower bound" lower))
  (if (> lower #x10ffff)
      (assertion-violation 'ucs-range->char-set! "invalid lower bound" lower))
  (if (negative? upper)
      (assertion-violation 'ucs-range->char-set! "negative upper bound" upper))
  (if (> upper #x110000)
      (assertion-violation 'ucs-range->char-set! "invalid lower bound" upper))
  (if (not (<= lower upper))
      (assertion-violation 'ucs-range->char-set! "decreasing bounds" lower upper))

  (let ((create-inversion-list
	 (lambda (lower upper)
	   (cond
	    ((and (>= lower #xD800)
		  (>= #xe000 upper))
	     (make-empty-inversion-list *simple-cset-boundary* (+ 1 #x10ffff)))
	    ((<= upper #xe000)
	     (range->inversion-list *simple-cset-boundary* (+ 1 #x10ffff)
				    lower (min #xd800 upper)))
	    ((>= lower #xd800)
	     (range->inversion-list *simple-cset-boundary* (+ 1 #x10ffff)
				    (max #xe000 lower) upper))
	    (else
	     ;; hole
	     (ranges->inversion-list *simple-cset-boundary* (+ 1 #x10ffff)
				     (cons lower #xd800)
				     (cons #xe000 upper)))))))
    (char-set-union!
     base-cs
     (cond
      ((>= lower *simple-cset-boundary*)
       (make-char-set (make-empty-simple-cset)
		      (create-inversion-list lower upper)))
      ((< upper *simple-cset-boundary*)
       (make-char-set (ucs-range->simple-cset lower upper)
		      (make-empty-inversion-list *simple-cset-boundary* (+ 1 #x10ffff))))
      (else
       (make-char-set (ucs-range->simple-cset lower *simple-cset-boundary*)
		      (create-inversion-list *simple-cset-boundary* upper)))))))

(define char-set-filter
  (opt-lambda (predicate domain (maybe-base-cs #f))
    (char-set-filter! predicate
		      domain
		      (base-char-set maybe-base-cs))))

(define (char-set-filter! predicate domain base-cs)
  (char-set-fold (lambda (ch _)
		   (if (predicate ch)
		       (char-set-adjoin! base-cs ch)))
		 (unspecific)
		 domain)
  base-cs)

; {string, char, char-set, char predicate} -> char-set

; This is called ->CHAR-SET in the SRFI, but that's not a valid R5RS
; identifier.

(define (x->char-set x)
  (cond ((char-set? x) x)
	((string? x) (string->char-set x))
	((char? x) (char-set x))
	(else (assertion-violation 'x->char-set "Not a charset, string or char."))))


; Set algebra

(define *surrogate-complement-i-list*
  (inversion-list-complement
   (range->inversion-list *simple-cset-boundary* (+ 1 #x10ffff)
			  #xd800 #xe000)))

(define (char-set-complement cs)
  (make-char-set (simple-cset-complement (char-set-simple cs))
		 (inversion-list-intersection
		  (inversion-list-complement (char-set-i-list cs))
		  *surrogate-complement-i-list*)))

(define (char-set-complement! cs)
  (set-char-set-simple! cs
			(simple-cset-complement! (char-set-simple cs)))
  (set-char-set-i-list! cs
			(inversion-list-intersection
			 (inversion-list-complement (char-set-i-list cs))
			 *surrogate-complement-i-list*))
  cs)

(define (make-char-set-op! simple-cset-op! inversion-list-op)
  (lambda (cset1 . csets)
    (set-char-set-simple! cset1
			  (apply simple-cset-op!
				 (char-set-simple cset1)
				 (map char-set-simple csets)))
    (set-char-set-i-list! cset1
			  (apply inversion-list-op
				 (char-set-i-list cset1)
				 (map char-set-i-list csets)))
    cset1))

(define (make-char-set-op char-set-op! make-neutral)
  (lambda csets
    (if (pair? csets)
	(apply char-set-op! (char-set-copy (car csets)) (cdr csets))
	(make-neutral))))

(define char-set-union!
  (make-char-set-op! simple-cset-union! inversion-list-union))
(define char-set-union
  (make-char-set-op char-set-union! make-empty-char-set))

(define char-set-intersection!
  (make-char-set-op! simple-cset-intersection! inversion-list-intersection))
(define char-set-intersection
  (make-char-set-op char-set-intersection! make-full-char-set))

(define char-set-difference!
  (make-char-set-op! simple-cset-difference! inversion-list-difference))

(define (char-set-difference cset1 . csets)
  (apply char-set-difference! (char-set-copy cset1) csets))

; copied from inversion-list.scm
(define (binary->n-ary proc/2)
  (lambda (arg-1 . args)
    (if (and (pair? args)
	     (null? (cdr args)))
	(proc/2 arg-1 (car args))
	(let loop ((args args)
		   (result arg-1))
	  (if (null? args)
	      result
	      (loop (cdr args) (proc/2 result (car args))))))))

(define inversion-list-xor
  (binary->n-ary
   (lambda (i-list-1 i-list-2)
     (inversion-list-union (inversion-list-intersection
			    (inversion-list-complement i-list-1)
			    i-list-2)
			   (inversion-list-intersection
			    i-list-1
			    (inversion-list-complement i-list-2))))))

; Really inefficient for things outside Latin-1
; WHO NEEDS THIS NONSENSE, ANYWAY?
(define char-set-xor!
  (make-char-set-op! simple-cset-xor! inversion-list-xor))

(define char-set-xor
  (make-char-set-op char-set-xor! make-empty-char-set))

(define (char-set-diff+intersection! cs1 cs2 . csets)
  (call-with-values
      (lambda () (apply simple-cset-diff+intersection!
			(char-set-simple cs1) (char-set-simple cs2)
			(map char-set-simple csets)))
    (lambda (simple-diff simple-intersection)
      (set-char-set-simple! cs1 simple-diff)
      (set-char-set-simple! cs2 simple-intersection)
      (let ((i-list-1 (char-set-i-list cs1))
	    (i-list-2 (char-set-i-list cs2))
	    (i-list-rest (map char-set-i-list csets)))
	(set-char-set-i-list! cs1
			      (apply inversion-list-difference
				     i-list-1 i-list-2
				     i-list-rest))
	(set-char-set-i-list! cs2
			      (inversion-list-intersection
			       i-list-1
			       (apply inversion-list-union
				      i-list-2
				      i-list-rest)))
	(values cs1 cs2)))))

(define (char-set-diff+intersection cs1 . csets)
  (apply char-set-diff+intersection!
	 (char-set-copy cs1)
	 (make-empty-char-set)
	 csets))

;; Byte vector utilities

(define (byte-vector-copy b)
  (let* ((size (byte-vector-length b))
	 (result (make-byte-vector size 0)))
    (copy-bytes! b 0 result 0 size)
    result))

;;; Apply P to each index and its char code in S: (P I VAL).
;;; Used by the set-algebra ops.

(define (byte-vector-iter p s)
  (let loop ((i (- (byte-vector-length s) 1)))
    (if (>= i 0)
	(begin
	  (p i (byte-vector-ref s i))
	  (loop (- i 1))))))

;; Utility for srfi-14-base-char-sets.scm, which follows

; The range vector is an even-sized vector with [lower, upper)
; pairs.

(define (range-vector->char-set range-vector)
  (let ((size (vector-length range-vector))
	(simple-cset (make-empty-simple-cset)))

    (let loop ((index 0) (ranges '()))
      (if (>= index size)
	  (make-char-set simple-cset
			 (apply ranges->inversion-list
				*simple-cset-boundary* (+ 1 #x10ffff)
				ranges))
	  (let ((lower (vector-ref range-vector index))
		(upper (vector-ref range-vector (+ 1 index))))
	    
	    (define (fill-simple-cset! lower upper)
	      (let loop ((scalar-value lower))
		(if (< scalar-value upper)
		    (begin
		      (simple-cset-adjoin-code! simple-cset scalar-value)
		      (loop (+ 1 scalar-value))))))

	    
	    (cond
	     ((>= lower *simple-cset-boundary*)
	      (loop (+ 2 index) (cons (cons lower upper) ranges)))
	     ((< upper *simple-cset-boundary*)
	      (fill-simple-cset! lower upper)
	      (loop (+ 2 index) ranges))
	     (else
	      (fill-simple-cset! lower *simple-cset-boundary*)
	      (loop (+ 2 index)
		    (cons (cons *simple-cset-boundary* upper) ranges)))))))))