This file is indexed.

/usr/share/scheme48-1.9/srfi/srfi-42.scm is in scheme48 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
; <PLAINTEXT>
; Eager Comprehensions in [outer..inner|expr]-Convention
; ======================================================
;
; Copyright (C) Sebastian Egner (2003). All Rights Reserved.
; 
; Permission is hereby granted, free of charge, to any person
; obtaining a copy of this software and associated documentation files
; (the "Software"), to deal in the Software without restriction,
; including without limitation the rights to use, copy, modify, merge,
; publish, distribute, sublicense, and/or sell copies of the Software,
; and to permit persons to whom the Software is furnished to do so,
; subject to the following conditions:
; 
; The above copyright notice and this permission notice shall be
; included in all copies or substantial portions of the Software.
; 
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
; EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
; MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
; NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
; BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
; ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
; CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
; SOFTWARE.

; sebastian.egner@philips.com, Eindhoven, The Netherlands, 26-Dec-2007
; Scheme R5RS (incl. macros), SRFI-23 (error).
; 
; Loading the implementation into Scheme48 0.57:
;   ,open srfi-23
;   ,load ec.scm
;
; Loading the implementation into PLT/DrScheme 317:
;   ; File > Open ... "ec.scm", click Execute
;
; Loading the implementation into SCM 5d7:
;   (require 'macro) (require 'record) 
;   (load "ec.scm")
;
; Implementation comments:
;   * All local (not exported) identifiers are named ec-<something>.
;   * This implementation focuses on portability, performance, 
;     readability, and simplicity roughly in this order. Design
;     decisions related to performance are taken for Scheme48.
;   * Alternative implementations, Comments and Warnings are 
;     mentioned after the definition with a heading.


; ==========================================================================
; The fundamental comprehension do-ec
; ==========================================================================
;
; All eager comprehensions are reduced into do-ec and
; all generators are reduced to :do. 
;
; We use the following short names for syntactic variables
;   q    - qualifier
;   cc   - current continuation, thing to call at the end;
;          the CPS is (m (cc ...) arg ...) -> (cc ... expr ...)
;   cmd  - an expression being evaluated for its side-effects
;   expr - an expression
;   gen  - a generator of an eager comprehension
;   ob   - outer binding
;   oc   - outer command
;   lb   - loop binding
;   ne1? - not-end1? (before the payload)
;   ib   - inner binding
;   ic   - inner command
;   ne2? - not-end2? (after the payload)
;   ls   - loop step
;   etc  - more arguments of mixed type


; (do-ec q ... cmd)
;   handles nested, if/not/and/or, begin, :let, and calls generator 
;   macros in CPS to transform them into fully decorated :do.
;   The code generation for a :do is delegated to do-ec:do.

(define-syntax do-ec
  (syntax-rules (nested if not and or begin :do let)

    ; explicit nesting -> implicit nesting
    ((do-ec (nested q ...) etc ...)
     (do-ec q ... etc ...) )

    ; implicit nesting -> fold do-ec
    ((do-ec q1 q2 etc1 etc ...)
     (do-ec q1 (do-ec q2 etc1 etc ...)) )

    ; no qualifiers at all -> evaluate cmd once
    ((do-ec cmd)
     (begin cmd (if #f #f)) )

; now (do-ec q cmd) remains

    ; filter -> make conditional
    ((do-ec (if test) cmd)
     (if test (do-ec cmd)) )
    ((do-ec (not test) cmd)
     (if (not test) (do-ec cmd)) )
    ((do-ec (and test ...) cmd)
     (if (and test ...) (do-ec cmd)) )
    ((do-ec (or test ...) cmd)
     (if (or test ...) (do-ec cmd)) )

    ; begin -> make a sequence
    ((do-ec (begin etc ...) cmd)
     (begin etc ... (do-ec cmd)) )

    ; fully decorated :do-generator -> delegate to do-ec:do
    ((do-ec (:do olet lbs ne1? ilet ne2? lss) cmd)
     (do-ec:do cmd (:do olet lbs ne1? ilet ne2? lss)) )

; anything else -> call generator-macro in CPS; reentry at (*)

    ((do-ec (g arg1 arg ...) cmd)
     (g (do-ec:do cmd) arg1 arg ...) )))


; (do-ec:do cmd (:do olet lbs ne1? ilet ne2? lss))
;   generates code for a single fully decorated :do-generator
;   with cmd as payload, taking care of special cases.

(define-syntax do-ec:do
  (syntax-rules (:do let)

    ; reentry point (*) -> generate code
    ((do-ec:do cmd 
               (:do (let obs oc ...) 
                    lbs 
                    ne1? 
                    (let ibs ic ...) 
                    ne2? 
                    (ls ...) ))
     (ec-simplify
       (let obs
         oc ...
         (let loop lbs
           (ec-simplify
             (if ne1?
                 (ec-simplify
                   (let ibs
                      ic ...
                      cmd
                      (ec-simplify
                        (if ne2?
                            (loop ls ...) )))))))))) ))

    
; (ec-simplify <expression>)
;   generates potentially more efficient code for <expression>.
;   The macro handles if, (begin <command>*), and (let () <command>*)
;   and takes care of special cases.

(define-syntax ec-simplify
  (syntax-rules (if not let begin)

; one- and two-sided if

    ; literal <test>
    ((ec-simplify (if #t consequent))
     consequent )
    ((ec-simplify (if #f consequent))
     (if #f #f) )
    ((ec-simplify (if #t consequent alternate))
     consequent )
    ((ec-simplify (if #f consequent alternate))
     alternate )

    ; (not (not <test>))
    ((ec-simplify (if (not (not test)) consequent))
     (ec-simplify (if test consequent)) )
    ((ec-simplify (if (not (not test)) consequent alternate))
     (ec-simplify (if test consequent alternate)) )

; (let () <command>*) 

    ; empty <binding spec>*
    ((ec-simplify (let () command ...))
     (ec-simplify (begin command ...)) )

; begin 

    ; flatten use helper (ec-simplify 1 done to-do)
    ((ec-simplify (begin command ...))
     (ec-simplify 1 () (command ...)) )
    ((ec-simplify 1 done ((begin to-do1 ...) to-do2 ...))
     (ec-simplify 1 done (to-do1 ... to-do2 ...)) )
    ((ec-simplify 1 (done ...) (to-do1 to-do ...))
     (ec-simplify 1 (done ... to-do1) (to-do ...)) )

    ; exit helper
    ((ec-simplify 1 () ())
     (if #f #f) )
    ((ec-simplify 1 (command) ())
     command )
    ((ec-simplify 1 (command1 command ...) ())
     (begin command1 command ...) )

; anything else

    ((ec-simplify expression)
     expression )))


; ==========================================================================
; The special generators :do, :let, :parallel, :while, and :until
; ==========================================================================

(define-syntax :do
  (syntax-rules ()

    ; full decorated -> continue with cc, reentry at (*)
    ((:do (cc ...) olet lbs ne1? ilet ne2? lss)
     (cc ... (:do olet lbs ne1? ilet ne2? lss)) )

    ; short form -> fill in default values
    ((:do cc lbs ne1? lss)
     (:do cc (let ()) lbs ne1? (let ()) #t lss) )))
    

(define-syntax :let
  (syntax-rules (index)
    ((:let cc var (index i) expression)
     (:do cc (let ((var expression) (i 0))) () #t (let ()) #f ()) )
    ((:let cc var expression)
     (:do cc (let ((var expression))) () #t (let ()) #f ()) )))


(define-syntax :parallel
  (syntax-rules (:do)
    ((:parallel cc)
     cc )
    ((:parallel cc (g arg1 arg ...) gen ...)
     (g (:parallel-1 cc (gen ...)) arg1 arg ...) )))

; (:parallel-1 cc (to-do ...) result [ next ] )
;    iterates over to-do by converting the first generator into 
;    the :do-generator next and merging next into result.

(define-syntax :parallel-1  ; used as 
  (syntax-rules (:do let)

    ; process next element of to-do, reentry at (**)
    ((:parallel-1 cc ((g arg1 arg ...) gen ...) result)
     (g (:parallel-1 cc (gen ...) result) arg1 arg ...) )

    ; reentry point (**) -> merge next into result
    ((:parallel-1 
       cc 
       gens 
       (:do (let (ob1 ...) oc1 ...) 
            (lb1 ...) 
            ne1?1 
            (let (ib1 ...) ic1 ...) 
            ne2?1 
            (ls1 ...) )
       (:do (let (ob2 ...) oc2 ...) 
            (lb2 ...) 
            ne1?2 
            (let (ib2 ...) ic2 ...) 
            ne2?2 
            (ls2 ...) ))
     (:parallel-1 
       cc 
       gens 
       (:do (let (ob1 ... ob2 ...) oc1 ... oc2 ...) 
            (lb1 ... lb2 ...) 
            (and ne1?1 ne1?2) 
            (let (ib1 ... ib2 ...) ic1 ... ic2 ...) 
            (and ne2?1 ne2?2) 
            (ls1 ... ls2 ...) )))

    ; no more gens -> continue with cc, reentry at (*)
    ((:parallel-1 (cc ...) () result)
     (cc ... result) )))

(define-syntax :while
  (syntax-rules ()
    ((:while cc (g arg1 arg ...) test)
     (g (:while-1 cc test) arg1 arg ...) )))

; (:while-1 cc test (:do ...))
;    modifies the fully decorated :do-generator such that it
;    runs while test is a true value. 
;       The original implementation just replaced ne1? by
;    (and ne1? test) as follows:
;
;      (define-syntax :while-1
;        (syntax-rules (:do)
;          ((:while-1 cc test (:do olet lbs ne1? ilet ne2? lss))
;           (:do cc olet lbs (and ne1? test) ilet ne2? lss) )))
;
; Bug #1:
;    Unfortunately, this code is wrong because ne1? may depend
;    in the inner bindings introduced in ilet, but ne1? is evaluated
;    outside of the inner bindings. (Refer to the specification of
;    :do to see the structure.) 
;       The problem manifests itself (as sunnan@handgranat.org 
;    observed, 25-Apr-2005) when the :list-generator is modified:
; 
;      (do-ec (:while (:list x '(1 2)) (= x 1)) (display x)).
;
;    In order to generate proper code, we introduce temporary
;    variables saving the values of the inner bindings. The inner
;    bindings are executed in a new ne1?, which also evaluates ne1?
;    outside the scope of the inner bindings, then the inner commands
;    are executed (possibly changing the variables), and then the
;    values of the inner bindings are saved and (and ne1? test) is
;    returned. In the new ilet, the inner variables are bound and
;    initialized and their values are restored. So we construct:
;
;     (let (ob .. (ib-tmp #f) ...)
;       oc ...
;       (let loop (lb ...)
;         (if (let (ne1?-value ne1?)
;               (let ((ib-var ib-rhs) ...)
;                 ic ...
;                 (set! ib-tmp ib-var) ...)
;               (and ne1?-value test))
;             (let ((ib-var ib-tmp) ...)
;               /payload/
;               (if ne2?
;                   (loop ls ...) )))))
; 
; Bug #2:
;    Unfortunately, the above expansion is still incorrect (as Jens-Axel 
;    Soegaard pointed out, 4-Jun-2007) because ib-rhs are evaluated even
;    if ne1?-value is #f, indicating that the loop has ended.
;       The problem manifests itself in the following example:
;
;      (do-ec (:while (:list x '(1)) #t) (display x))
;
;    Which iterates :list beyond exhausting the list '(1).
;
;    For the fix, we follow Jens-Axel's approach of guarding the evaluation
;    of ib-rhs with a check on ne1?-value.

(define-syntax :while-1
  (syntax-rules (:do let)
    ((:while-1 cc test (:do olet lbs ne1? ilet ne2? lss))
     (:while-2 cc test () () () (:do olet lbs ne1? ilet ne2? lss)))))

(define-syntax :while-2
  (syntax-rules (:do let)
    ((:while-2 cc 
               test 
               (ib-let     ...)
               (ib-save    ...)
               (ib-restore ...)
               (:do olet 
                    lbs 
                    ne1? 
                    (let ((ib-var ib-rhs) ib ...) ic ...)
                    ne2? 
                    lss))
     (:while-2 cc 
               test 
               (ib-let     ... (ib-tmp #f))
               (ib-save    ... (ib-var ib-rhs))
               (ib-restore ... (ib-var ib-tmp))
               (:do olet 
                    lbs 
                    ne1? 
                    (let (ib ...) ic ... (set! ib-tmp ib-var)) 
                    ne2? 
                    lss)))
    ((:while-2 cc
               test
               (ib-let     ...)
               (ib-save    ...)
               (ib-restore ...)
               (:do (let (ob ...) oc ...) lbs ne1? (let () ic ...) ne2? lss))
     (:do cc
          (let (ob ... ib-let ...) oc ...)
          lbs
          (let ((ne1?-value ne1?))
	    (and ne1?-value
		 (let (ib-save ...)
		   ic ...
		   test)))
          (let (ib-restore ...))
          ne2?
          lss))))


(define-syntax :until
  (syntax-rules ()
    ((:until cc (g arg1 arg ...) test)
     (g (:until-1 cc test) arg1 arg ...) )))

(define-syntax :until-1
  (syntax-rules (:do)
    ((:until-1 cc test (:do olet lbs ne1? ilet ne2? lss))
     (:do cc olet lbs ne1? ilet (and ne2? (not test)) lss) )))


; ==========================================================================
; The typed generators :list :string :vector etc.
; ==========================================================================

(define-syntax :list
  (syntax-rules (index)
    ((:list cc var (index i) arg ...)
     (:parallel cc (:list var arg ...) (:integers i)) )
    ((:list cc var arg1 arg2 arg ...)
     (:list cc var (append arg1 arg2 arg ...)) )
    ((:list cc var arg)
     (:do cc
          (let ())
          ((t arg))
          (not (null? t))
          (let ((var (car t))))
          #t
          ((cdr t)) ))))


(define-syntax :string
  (syntax-rules (index)
    ((:string cc var (index i) arg)
     (:do cc
          (let ((str arg) (len 0)) 
            (set! len (string-length str)))
          ((i 0))
          (< i len)
          (let ((var (string-ref str i))))
          #t
          ((+ i 1)) ))
    ((:string cc var (index i) arg1 arg2 arg ...)
     (:string cc var (index i) (string-append arg1 arg2 arg ...)) )
    ((:string cc var arg1 arg ...)
     (:string cc var (index i) arg1 arg ...) )))

; Alternative: An implementation in the style of :vector can also
;   be used for :string. However, it is less interesting as the
;   overhead of string-append is much less than for 'vector-append'.


(define-syntax :vector
  (syntax-rules (index)
    ((:vector cc var arg)
     (:vector cc var (index i) arg) )
    ((:vector cc var (index i) arg)
     (:do cc
          (let ((vec arg) (len 0)) 
            (set! len (vector-length vec)))
          ((i 0))
          (< i len)
          (let ((var (vector-ref vec i))))
          #t
          ((+ i 1)) ))

    ((:vector cc var (index i) arg1 arg2 arg ...)
     (:parallel cc (:vector cc var arg1 arg2 arg ...) (:integers i)) )
    ((:vector cc var arg1 arg2 arg ...)
     (:do cc
          (let ((vec #f)
                (len 0)
                (vecs (ec-:vector-filter (list arg1 arg2 arg ...))) ))
          ((k 0))
          (if (< k len)
              #t
              (if (null? vecs)
                  #f
                  (begin (set! vec (car vecs))
                         (set! vecs (cdr vecs))
                         (set! len (vector-length vec))
                         (set! k 0)
                         #t )))
          (let ((var (vector-ref vec k))))
          #t
          ((+ k 1)) ))))

(define (ec-:vector-filter vecs)
  (if (null? vecs)
      '()
      (if (zero? (vector-length (car vecs)))
          (ec-:vector-filter (cdr vecs))
          (cons (car vecs) (ec-:vector-filter (cdr vecs))) )))

; Alternative: A simpler implementation for :vector uses vector->list
;   append and :list in the multi-argument case. Please refer to the
;   'design.scm' for more details.


(define-syntax :integers
  (syntax-rules (index)
    ((:integers cc var (index i))
     (:do cc ((var 0) (i 0)) #t ((+ var 1) (+ i 1))) )
    ((:integers cc var)
     (:do cc ((var 0)) #t ((+ var 1))) )))


(define-syntax :range
  (syntax-rules (index)

    ; handle index variable and add optional args
    ((:range cc var (index i) arg1 arg ...)
     (:parallel cc (:range var arg1 arg ...) (:integers i)) )
    ((:range cc var arg1)
     (:range cc var 0 arg1 1) )
    ((:range cc var arg1 arg2)
     (:range cc var arg1 arg2 1) )

; special cases (partially evaluated by hand from general case)

    ((:range cc var 0 arg2 1)
     (:do cc
          (let ((b arg2))
            (if (not (and (integer? b) (exact? b)))
                (error 
                   "arguments of :range are not exact integer "
                   "(use :real-range?)" 0 b 1 )))
          ((var 0))
          (< var b)
          (let ())
          #t
          ((+ var 1)) ))

    ((:range cc var 0 arg2 -1)
     (:do cc
          (let ((b arg2))
            (if (not (and (integer? b) (exact? b)))
                (error 
                   "arguments of :range are not exact integer "
                   "(use :real-range?)" 0 b 1 )))
          ((var 0))
          (> var b)
          (let ())
          #t
          ((- var 1)) ))

    ((:range cc var arg1 arg2 1)
     (:do cc
          (let ((a arg1) (b arg2))
            (if (not (and (integer? a) (exact? a)
                          (integer? b) (exact? b) ))
                (error 
                   "arguments of :range are not exact integer "
                   "(use :real-range?)" a b 1 )) )
          ((var a))
          (< var b)
          (let ())
          #t
          ((+ var 1)) ))

    ((:range cc var arg1 arg2 -1)
     (:do cc
          (let ((a arg1) (b arg2) (s -1) (stop 0))
            (if (not (and (integer? a) (exact? a)
                          (integer? b) (exact? b) ))
                (error 
                   "arguments of :range are not exact integer "
                   "(use :real-range?)" a b -1 )) )
          ((var a))
          (> var b)
          (let ())
          #t
          ((- var 1)) ))

; the general case

    ((:range cc var arg1 arg2 arg3)
     (:do cc
          (let ((a arg1) (b arg2) (s arg3) (stop 0))
            (if (not (and (integer? a) (exact? a)
                          (integer? b) (exact? b)
                          (integer? s) (exact? s) ))
                (error 
                   "arguments of :range are not exact integer "
                   "(use :real-range?)" a b s ))
            (if (zero? s)
                (error "step size must not be zero in :range") )
            (set! stop (+ a (* (max 0 (ceiling (/ (- b a) s))) s))) )
          ((var a))
          (not (= var stop))
          (let ())
          #t
          ((+ var s)) ))))

; Comment: The macro :range inserts some code to make sure the values
;   are exact integers. This overhead has proven very helpful for 
;   saving users from themselves.


(define-syntax :real-range
  (syntax-rules (index)

    ; add optional args and index variable
    ((:real-range cc var arg1)
     (:real-range cc var (index i) 0 arg1 1) )
    ((:real-range cc var (index i) arg1)
     (:real-range cc var (index i) 0 arg1 1) )
    ((:real-range cc var arg1 arg2)
     (:real-range cc var (index i) arg1 arg2 1) )
    ((:real-range cc var (index i) arg1 arg2)
     (:real-range cc var (index i) arg1 arg2 1) )
    ((:real-range cc var arg1 arg2 arg3)
     (:real-range cc var (index i) arg1 arg2 arg3) )

    ; the fully qualified case
    ((:real-range cc var (index i) arg1 arg2 arg3)
     (:do cc
          (let ((a arg1) (b arg2) (s arg3) (istop 0))
            (if (not (and (real? a) (real? b) (real? s)))
                (error "arguments of :real-range are not real" a b s) )
            (if (and (exact? a) (or (not (exact? b)) (not (exact? s))))
                (set! a (exact->inexact a)) )
            (set! istop (/ (- b a) s)) )
          ((i 0))
          (< i istop)
          (let ((var (+ a (* s i)))))
          #t
          ((+ i 1)) ))))

; Comment: The macro :real-range adapts the exactness of the start
;   value in case any of the other values is inexact. This is a
;   precaution to avoid (list-ec (: x 0 3.0) x) => '(0 1.0 2.0).

    
(define-syntax :char-range
  (syntax-rules (index)
    ((:char-range cc var (index i) arg1 arg2)
     (:parallel cc (:char-range var arg1 arg2) (:integers i)) )
    ((:char-range cc var arg1 arg2)
     (:do cc
          (let ((imax (char->integer arg2))))
          ((i (char->integer arg1)))
          (<= i imax)
          (let ((var (integer->char i))))
          #t
          ((+ i 1)) ))))

; Warning: There is no R5RS-way to implement the :char-range generator 
;   because the integers obtained by char->integer are not necessarily 
;   consecutive. We simply assume this anyhow for illustration.


(define-syntax :port
  (syntax-rules (index)
    ((:port cc var (index i) arg1 arg ...)
     (:parallel cc (:port var arg1 arg ...) (:integers i)) )
    ((:port cc var arg)
     (:port cc var arg read) )
    ((:port cc var arg1 arg2)
     (:do cc
          (let ((port arg1) (read-proc arg2)))
          ((var (read-proc port)))
          (not (eof-object? var))
          (let ())
          #t
          ((read-proc port)) ))))


; ==========================================================================
; The typed generator :dispatched and utilities for constructing dispatchers
; ==========================================================================

(define-syntax :dispatched
  (syntax-rules (index)
    ((:dispatched cc var (index i) dispatch arg1 arg ...)
     (:parallel cc 
                (:integers i)
                (:dispatched var dispatch arg1 arg ...) ))
    ((:dispatched cc var dispatch arg1 arg ...)
     (:do cc
          (let ((d dispatch) 
                (args (list arg1 arg ...)) 
                (g #f) 
                (empty (list #f)) )
            (set! g (d args))
            (if (not (procedure? g))
                (error "unrecognized arguments in dispatching" 
                       args 
                       (d '()) )))
          ((var (g empty)))
          (not (eq? var empty))
          (let ())
          #t
          ((g empty)) ))))

; Comment: The unique object empty is created as a newly allocated
;   non-empty list. It is compared using eq? which distinguishes
;   the object from any other object, according to R5RS 6.1.


(define-syntax :generator-proc
  (syntax-rules (:do let)

    ; call g with a variable, reentry at (**)
    ((:generator-proc (g arg ...))
     (g (:generator-proc var) var arg ...) )

    ; reentry point (**) -> make the code from a single :do
    ((:generator-proc
       var 
       (:do (let obs oc ...) 
            ((lv li) ...) 
            ne1? 
            (let ((i v) ...) ic ...) 
            ne2? 
            (ls ...)) )
     (ec-simplify 
      (let obs
          oc ...
          (let ((lv li) ... (ne2 #t))
            (ec-simplify
             (let ((i #f) ...) ; v not yet valid
               (lambda (empty)
                 (if (and ne1? ne2)
                     (ec-simplify
                      (begin 
                        (set! i v) ...
                        ic ...
                        (let ((value var))
                          (ec-simplify
                           (if ne2?
                               (ec-simplify 
                                (begin (set! lv ls) ...) )
                               (set! ne2 #f) ))
                          value )))
                     empty ))))))))

    ; silence warnings of some macro expanders
    ((:generator-proc var)
     (error "illegal macro call") )))


(define (dispatch-union d1 d2)
  (lambda (args)
    (let ((g1 (d1 args)) (g2 (d2 args)))
      (if g1
          (if g2 
              (if (null? args)
                  (append (if (list? g1) g1 (list g1)) 
                          (if (list? g2) g2 (list g2)) )
                  (error "dispatching conflict" args (d1 '()) (d2 '())) )
              g1 )
          (if g2 g2 #f) ))))


; ==========================================================================
; The dispatching generator :
; ==========================================================================

(define (make-initial-:-dispatch)
  (lambda (args)
    (case (length args)
      ((0) 'SRFI42)
      ((1) (let ((a1 (car args)))
             (cond
              ((list? a1)
               (:generator-proc (:list a1)) )
              ((string? a1)
               (:generator-proc (:string a1)) )
              ((vector? a1)
               (:generator-proc (:vector a1)) )
              ((and (integer? a1) (exact? a1))
               (:generator-proc (:range a1)) )
              ((real? a1)
               (:generator-proc (:real-range a1)) )
              ((input-port? a1)
               (:generator-proc (:port a1)) )
              (else
               #f ))))
      ((2) (let ((a1 (car args)) (a2 (cadr args)))
             (cond
              ((and (list? a1) (list? a2))
               (:generator-proc (:list a1 a2)) )
              ((and (string? a1) (string? a1))
               (:generator-proc (:string a1 a2)) )
              ((and (vector? a1) (vector? a2))
               (:generator-proc (:vector a1 a2)) )
              ((and (integer? a1) (exact? a1) (integer? a2) (exact? a2))
               (:generator-proc (:range a1 a2)) )
              ((and (real? a1) (real? a2))
               (:generator-proc (:real-range a1 a2)) )
              ((and (char? a1) (char? a2))
               (:generator-proc (:char-range a1 a2)) )
              ((and (input-port? a1) (procedure? a2))
               (:generator-proc (:port a1 a2)) )
              (else
               #f ))))
      ((3) (let ((a1 (car args)) (a2 (cadr args)) (a3 (caddr args)))
             (cond
              ((and (list? a1) (list? a2) (list? a3))
               (:generator-proc (:list a1 a2 a3)) )
              ((and (string? a1) (string? a1) (string? a3))
               (:generator-proc (:string a1 a2 a3)) )
              ((and (vector? a1) (vector? a2) (vector? a3))
               (:generator-proc (:vector a1 a2 a3)) )
              ((and (integer? a1) (exact? a1) 
                    (integer? a2) (exact? a2)
                    (integer? a3) (exact? a3))
               (:generator-proc (:range a1 a2 a3)) )
              ((and (real? a1) (real? a2) (real? a3))
               (:generator-proc (:real-range a1 a2 a3)) )
              (else
               #f ))))
      (else
       (letrec ((every? 
                 (lambda (pred args)
                   (if (null? args)
                       #t
                       (and (pred (car args))
                            (every? pred (cdr args)) )))))
         (cond
          ((every? list? args)
           (:generator-proc (:list (apply append args))) )
          ((every? string? args)
           (:generator-proc (:string (apply string-append args))) )
          ((every? vector? args)
           (:generator-proc (:list (apply append (map vector->list args)))) )
          (else
           #f )))))))

(define :-dispatch
  (make-initial-:-dispatch) )

(define (:-dispatch-ref)
  :-dispatch )

(define (:-dispatch-set! dispatch)
  (if (not (procedure? dispatch))
      (error "not a procedure" dispatch) )
  (set! :-dispatch dispatch) )

(define-syntax :
  (syntax-rules (index)
    ((: cc var (index i) arg1 arg ...)
     (:dispatched cc var (index i) :-dispatch arg1 arg ...) )
    ((: cc var arg1 arg ...)
     (:dispatched cc var :-dispatch arg1 arg ...) )))


; ==========================================================================
; The utility comprehensions fold-ec, fold3-ec
; ==========================================================================

(define-syntax fold3-ec
  (syntax-rules (nested)
    ((fold3-ec x0 (nested q1 ...) q etc1 etc2 etc3 etc ...)
     (fold3-ec x0 (nested q1 ... q) etc1 etc2 etc3 etc ...) )
    ((fold3-ec x0 q1 q2 etc1 etc2 etc3 etc ...)
     (fold3-ec x0 (nested q1 q2) etc1 etc2 etc3 etc ...) )
    ((fold3-ec x0 expression f1 f2)
     (fold3-ec x0 (nested) expression f1 f2) )

    ((fold3-ec x0 qualifier expression f1 f2)
     (let ((result #f) (empty #t))
       (do-ec qualifier
              (let ((value expression)) ; don't duplicate
                (if empty
                    (begin (set! result (f1 value))
                           (set! empty #f) )
                    (set! result (f2 value result)) )))
       (if empty x0 result) ))))


(define-syntax fold-ec
  (syntax-rules (nested)
    ((fold-ec x0 (nested q1 ...) q etc1 etc2 etc ...)
     (fold-ec x0 (nested q1 ... q) etc1 etc2 etc ...) )
    ((fold-ec x0 q1 q2 etc1 etc2 etc ...)
     (fold-ec x0 (nested q1 q2) etc1 etc2 etc ...) )
    ((fold-ec x0 expression f2)
     (fold-ec x0 (nested) expression f2) )

    ((fold-ec x0 qualifier expression f2)
     (let ((result x0))
       (do-ec qualifier (set! result (f2 expression result)))
       result ))))


; ==========================================================================
; The comprehensions list-ec string-ec vector-ec etc.
; ==========================================================================

(define-syntax list-ec
  (syntax-rules ()
    ((list-ec etc1 etc ...)
     (reverse (fold-ec '() etc1 etc ... cons)) )))

; Alternative: Reverse can safely be replaced by reverse! if you have it.
;
; Alternative: It is possible to construct the result in the correct order
;   using set-cdr! to add at the tail. This removes the overhead of copying
;   at the end, at the cost of more book-keeping.


(define-syntax append-ec
  (syntax-rules ()
    ((append-ec etc1 etc ...)
     (apply append (list-ec etc1 etc ...)) )))

(define-syntax string-ec
  (syntax-rules ()
    ((string-ec etc1 etc ...)
     (list->string (list-ec etc1 etc ...)) )))

; Alternative: For very long strings, the intermediate list may be a
;   problem. A more space-aware implementation collect the characters 
;   in an intermediate list and when this list becomes too large it is
;   converted into an intermediate string. At the end, the intermediate
;   strings are concatenated with string-append.


(define-syntax string-append-ec
  (syntax-rules ()
    ((string-append-ec etc1 etc ...)
     (apply string-append (list-ec etc1 etc ...)) )))

(define-syntax vector-ec
  (syntax-rules ()
    ((vector-ec etc1 etc ...)
     (list->vector (list-ec etc1 etc ...)) )))

; Comment: A similar approach as for string-ec can be used for vector-ec.
;   However, the space overhead for the intermediate list is much lower
;   than for string-ec and as there is no vector-append, the intermediate
;   vectors must be copied explicitly.

(define-syntax vector-of-length-ec
  (syntax-rules (nested)
    ((vector-of-length-ec k (nested q1 ...) q etc1 etc ...)
     (vector-of-length-ec k (nested q1 ... q) etc1 etc ...) )
    ((vector-of-length-ec k q1 q2             etc1 etc ...)
     (vector-of-length-ec k (nested q1 q2)    etc1 etc ...) )
    ((vector-of-length-ec k expression)
     (vector-of-length-ec k (nested) expression) )

    ((vector-of-length-ec k qualifier expression)
     (let ((len k))
       (let ((vec (make-vector len))
             (i 0) )
         (do-ec qualifier
                (if (< i len)
                    (begin (vector-set! vec i expression)
                           (set! i (+ i 1)) )
                    (error "vector is too short for the comprehension") ))
         (if (= i len)
             vec
             (error "vector is too long for the comprehension") ))))))


(define-syntax sum-ec
  (syntax-rules ()
    ((sum-ec etc1 etc ...)
     (fold-ec (+) etc1 etc ... +) )))

(define-syntax product-ec
  (syntax-rules ()
    ((product-ec etc1 etc ...)
     (fold-ec (*) etc1 etc ... *) )))

(define-syntax min-ec
  (syntax-rules ()
    ((min-ec etc1 etc ...)
     (fold3-ec (min) etc1 etc ... min min) )))

(define-syntax max-ec
  (syntax-rules ()
    ((max-ec etc1 etc ...)
     (fold3-ec (max) etc1 etc ... max max) )))

(define-syntax last-ec
  (syntax-rules (nested)
    ((last-ec default (nested q1 ...) q etc1 etc ...)
     (last-ec default (nested q1 ... q) etc1 etc ...) )
    ((last-ec default q1 q2             etc1 etc ...)
     (last-ec default (nested q1 q2)    etc1 etc ...) )
    ((last-ec default expression)
     (last-ec default (nested) expression) )

    ((last-ec default qualifier expression)
     (let ((result default))
       (do-ec qualifier (set! result expression))
       result ))))


; ==========================================================================
; The fundamental early-stopping comprehension first-ec
; ==========================================================================

(define-syntax first-ec
  (syntax-rules (nested)
    ((first-ec default (nested q1 ...) q etc1 etc ...)
     (first-ec default (nested q1 ... q) etc1 etc ...) )
    ((first-ec default q1 q2             etc1 etc ...)
     (first-ec default (nested q1 q2)    etc1 etc ...) )
    ((first-ec default expression)
     (first-ec default (nested) expression) )

    ((first-ec default qualifier expression)
     (let ((result default) (stop #f))
       (ec-guarded-do-ec 
         stop 
         (nested qualifier)
         (begin (set! result expression)
                (set! stop #t) ))
       result ))))

; (ec-guarded-do-ec stop (nested q ...) cmd)
;   constructs (do-ec q ... cmd) where the generators gen in q ... are
;   replaced by (:until gen stop).

(define-syntax ec-guarded-do-ec
  (syntax-rules (nested if not and or begin)

    ((ec-guarded-do-ec stop (nested (nested q1 ...) q2 ...) cmd)
     (ec-guarded-do-ec stop (nested q1 ... q2 ...) cmd) )

    ((ec-guarded-do-ec stop (nested (if test) q ...) cmd)
     (if test (ec-guarded-do-ec stop (nested q ...) cmd)) )
    ((ec-guarded-do-ec stop (nested (not test) q ...) cmd)
     (if (not test) (ec-guarded-do-ec stop (nested q ...) cmd)) )
    ((ec-guarded-do-ec stop (nested (and test ...) q ...) cmd)
     (if (and test ...) (ec-guarded-do-ec stop (nested q ...) cmd)) )
    ((ec-guarded-do-ec stop (nested (or test ...) q ...) cmd)
     (if (or test ...) (ec-guarded-do-ec stop (nested q ...) cmd)) )

    ((ec-guarded-do-ec stop (nested (begin etc ...) q ...) cmd)
     (begin etc ... (ec-guarded-do-ec stop (nested q ...) cmd)) )

    ((ec-guarded-do-ec stop (nested gen q ...) cmd)
     (do-ec 
       (:until gen stop) 
       (ec-guarded-do-ec stop (nested q ...) cmd) ))

    ((ec-guarded-do-ec stop (nested) cmd)
     (do-ec cmd) )))

; Alternative: Instead of modifying the generator with :until, it is
;   possible to use call-with-current-continuation:
;
;   (define-synatx first-ec 
;     ...same as above...
;     ((first-ec default qualifier expression)
;      (call-with-current-continuation 
;       (lambda (cc)
;        (do-ec qualifier (cc expression))
;        default ))) ))
;
;   This is much simpler but not necessarily as efficient.


; ==========================================================================
; The early-stopping comprehensions any?-ec every?-ec
; ==========================================================================

(define-syntax any?-ec
  (syntax-rules (nested)
    ((any?-ec (nested q1 ...) q etc1 etc ...)
     (any?-ec (nested q1 ... q) etc1 etc ...) )
    ((any?-ec q1 q2             etc1 etc ...)
     (any?-ec (nested q1 q2)    etc1 etc ...) )
    ((any?-ec expression)
     (any?-ec (nested) expression) )

    ((any?-ec qualifier expression)
     (first-ec #f qualifier (if expression) #t) )))

(define-syntax every?-ec
  (syntax-rules (nested)
    ((every?-ec (nested q1 ...) q etc1 etc ...)
     (every?-ec (nested q1 ... q) etc1 etc ...) )
    ((every?-ec q1 q2             etc1 etc ...)
     (every?-ec (nested q1 q2)    etc1 etc ...) )
    ((every?-ec expression)
     (every?-ec (nested) expression) )

    ((every?-ec qualifier expression)
     (first-ec #t qualifier (if (not expression)) #f) )))