This file is indexed.

/usr/lib/x86_64-linux-gnu/scilab-getfem++/macros/gf_solve.sci is in scilab-getfem++ 4.2.1~beta1~svn4635~dfsg-3+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
///////////////////
// eval_asm_data //
///////////////////

function pde = eval_asm_data(in_pde,dname,default_value,mf)
[nargout,nargin] = argn();

pde = in_pde;
if (nargin == 3) then
  mf = pde('mf_d');
end
if (or(getfield(1,pde)==dname)) & ~isempty(pde(dname)) then
  z = pde(dname);      
else
  warning('you did not define the ''' + dname + ''' data for the ' + pde('type') + ' pde struct');
  disp('setting ''' + dname + ''' to its default value of ');
  disp(default_value);
  z = default_value;
end

if (typeof(z)=='list') then 
  //z = matrix(z(:),length(z),1); 
  for i=1:length(z)
    tmp(i,:) = z(i)(:);
  end
  z = tmp(:);
end
pde('asm')(dname) = gf_mesh_fem_get_eval(mf, z); // YC: pb ici quand z est numeric ...
endfunction

/////////////////////////////////
// solves the scalar laplacian //
/////////////////////////////////

function [U,pde] = do_laplacian(in_pde)
pde = in_pde; U=[];
assert_field(pde, 'mf_u','mf_d');
pde = eval_asm_data(pde,'lambda', list(1));
if isempty(pde('asm')('K')) then
  pde('asm')('K') = gf_asm('laplacian',pde('mim'), pde('mf_u'), pde('mf_d'), pde('asm')('lambda'));
end
pde = do_classical_bc(pde);
[U,pde] = do_classical_solve(pde);
endfunction

//////////////////////////////
// solves linear elasticity //
//////////////////////////////

function [U,pde] = do_linear_elasticity(in_pde)
pde = in_pde; U=[];
assert_field(pde, 'mf_u','mf_d');
if (~has_field(pde('asm'),'lambda','mu')) then
  if (has_field(pde,'lambda', 'mu')),
    pde = eval_asm_data(pde,'lambda', list(1));
    pde = eval_asm_data(pde,'mu', list(1));
  elseif (~isempty(pde('E')) & ~isempty(pde('PR'))) then // young modulus and poisson ratio
    tmpE  = gf_mesh_fem_get_eval(pde('mf_d'), pde('E'));
    tmpnu = gf_mesh_fem_get_eval(pde('mf_d'), pde('PR'));
    pde('asm')('lambda') = tmpE .* tmpnu ./ ((1+tmpnu) .* (1-2*tmpnu)); 
    pde('asm')('mu')     = tmpE ./ (2*(1+tmpnu)); // shear modulus
    // if (is_plane_stress) then
    //   lambda = 2*lambda.*mu./(lambda+2*mu);
    // end;      
  else
    error('no description of either (young modulus E and poisson ratio nu) or (mu and lambda) in pde structure');
  end
end
if (isempty(pde('asm')('K'))) then
  pde('asm')('K') = gf_asm('linear elasticity',pde('mim'),pde('mf_u'), pde('mf_d'), pde('asm')('lambda'),pde('asm')('mu'));
end
pde = do_classical_bc(pde);

//at this point, the boundary conditions and volumic source term should have been assembled
[U,pde] = do_classical_solve(pde);
endfunction

////////////////
// do_stokes //
////////////////

function [U,P,pde] = do_stokes(in_pde)
pde = in_pde; U=[]; P=[];
assert_field(pde, 'mf_u','mf_d');
pde = eval_asm_data(pde, 'viscos', list(1));
if (isempty(pde('asm')('K'))) then
  [pde('asm')('K'),pde('asm')('B')] = gf_asm('stokes',pde('mim'),pde('mf_u'), pde('mf_p'), pde('mf_d'), pde('asm')('viscos'));
  if (nnz(pde('asm')('K')-pde('asm')('K')')) then
    error('K not symetric, you found a bug!');
  end
end
pde = do_classical_bc(pde);
[U,P,pde] = do_stokes_solve(pde);
endfunction

/////////////////////
// do_stokes_solve //
/////////////////////

function [U,P,pde] = do_stokes_solve(in_pde)
pde = in_pde; 
U   = [];
P   = [];
assert_field(pde('asm'), 'H','R','K','Q','F','G');  
[_null,ud] = gf_spmat_get(pde('asm')('H'),'dirichlet nullspace', pde('asm')('R'));
K = pde('asm')('K') + pde('asm')('Q');
if nnz(K-K') then
  sym=0; disp('non symmetric matrix, aborting; pause mode'); pause;
else
  sym=1;
end    
Fu = _null'*((pde('asm')('F')(:)+pde('asm')('G')(:))-K*ud(:));
Fp = -pde('asm')('B')'*ud(:);
K  = _null'*K*_null;
B  = _null'*pde('asm')('B');
K  = (K+K')/2; // make sure that the matrix is absolutely symetric
               //  pde('solver')('type') = 'cg';
               //  pde('solver')         = set_default_values(pde('solver'),'type','cg','maxiter',1000,'residu',1e-6);
if (pde('solver')=='brute_stokes') then
  [U,P] = do_solve_stokes_cg2(K,B,Fu(:),Fp(:));
else
  //[U,P] = do_solve_stokes_cg(K,B,Fu(:),Fp(:));
  [U,P] = do_solve_stokes_cg2(K,B,Fu(:),Fp(:)); // YC: gmres not defined as in Matlab
end
U = _null*U+ud(:);
U = U(:)';
P = -P(:)';
endfunction

/////////////////////
// do_classical_bc //
/////////////////////

function pde = do_classical_bc(pde)
q_dim = gf_mesh_fem_get(pde('mf_u'), 'qdim');
do_F = isempty(pde('asm')('F'));
do_H = isempty(pde('asm')('H'));
do_R = isempty(pde('asm')('R'));
do_Q = isempty(pde('asm')('Q'));
do_G = isempty(pde('asm')('G'));
disp(pde('mim'))
if (do_F) then
  //pde = eval_asm_data(pde,'F', num2cell(zeros(q_dim,1)));
  pde = eval_asm_data(pde,'F', list(zeros(q_dim,1))); // YC: pb ici ??
  pde('asm')('F') = gf_asm('volumic source', pde('mim'), pde('mf_u'), pde('mf_d'), pde('asm')('F'));
end
if (~isempty(pde('pdetool')('e')) & ~isempty(pde('pdetool')('b'))) then
  [pde('asm')('Q'),pde('asm')('G'),pde('asm')('H'),pde('asm')('R')] = gf_asm('pdetool boundary conditions',...
                                             pde('mim'),pde('mf_u'),pde('mf_d'),pde('pdetool')('b'),pde('pdetool')('e'));
else
  assert_field(pde,'bound');
  q_dim   = gf_mesh_fem_get(pde('mf_u'), 'qdim');
  u_nbdof = gf_mesh_fem_get(pde('mf_u'), 'nbdof');
  d_nbdof = gf_mesh_fem_get(pde('mf_d'), 'nbdof');
  if (do_H) then pde('asm')('H') = spzeros(u_nbdof, u_nbdof); end;
  if (do_Q) then pde('asm')('Q') = spzeros(u_nbdof, u_nbdof); end;
  if (do_R) then pde('asm')('R') = zeros(u_nbdof,1); end;
  if (do_G) then pde('asm')('G') = zeros(u_nbdof,1); end;
  for bnum=1:length(pde('bound')),
    assert_field(pde('bound')(bnum),'type');
    is_dirichlet = 0; is_neumann = 0;
    select (pde('bound')(bnum)('type'))
      case 'None' then
      case 'Dirichlet' then
        is_dirichlet=1;
      case 'Neumann' then
        is_neumann=1;
      case 'Mixed' then
        is_dirichlet=1; is_neumann=1;
      else
        disp('bc type ' + pde('bound')(bnum)('type') + 'unhandled');
    end
  
    if (is_dirichlet) then
      assert_field(pde('bound')(bnum),'R');
      if (do_R | do_H) then
        disp(list(pde('bound')(bnum)('R')(:)))
        vR = gf_mesh_fem_get_eval(pde('mf_d'), list(list(pde('bound')(bnum)('R')(:))));
        if (~isempty(pde('bound')(bnum)('H'))) then
          disp(list(pde('bound')(bnum)('H')(:)))
          vH = gf_mesh_fem_get_eval(pde('mf_d'), list(list(pde('bound')(bnum)('H')(:))));
        else 
          //h = num2cell(eye(q_dim,q_dim));  // YC: numtocell a changer
//          h = list();
//          tmp = eye(q_dim,q_dim);
//          for i=1:q_dim
//            h(i) = list();
//            for j=1:q_dim
//              h(i)(j) = tmp(i,j);
//            end
//          end
//          clear tmp;
          h = eye(q_dim, q_dim);
          vH = gf_mesh_fem_get_eval(pde('mf_d'), h(:)); 
        end
        //           Matlab  Scilab
        // vR:      2 * 102  2 * 102
        // vH:      4 * 102  2 * 102
        // q_dim:   2        2
        // d_nbdof: 102      102
        [bH,bR] = gf_asm('dirichlet', bnum, pde('mim'),pde('mf_u'), pde('mf_d'), matrix(vH,q_dim*q_dim,d_nbdof), vR);
      end
      if (do_R) then pde('asm')('R') = pde('asm')('R') + bR; end;
      if (do_H) then pde('asm')('H') = pde('asm')('H') + bH; end;
    end
  
    if (is_neumann) then
      assert_field(pde('bound')(bnum),'G');
      if (do_G) then
        vG = gf_mesh_fem_get_eval(pde('mf_d'), list(list(pde('bound')(bnum)('G')(:))));
        vG = gf_asm('boundary source', bnum, pde('mim'),pde('mf_u'), pde('mf_d'), vG);	
        pde('asm')('G') = pde('asm')('G') + vG; 
      end;
      if (do_Q) then
        if (~isempty(pde('bound')(bnum)('Q'))) then
          vQ = gf_mesh_fem_get_eval(pde('mf_d'), list(list(pde('bound')(num)('Q')(:))));
        else 
          //q = num2cell(eye(q_dim,q_dim));  // YC: num2cell a changer
          q  = list(eye(q_dim,q_dim));
          vQ = gf_mesh_fem_get_eval(pde('mf_d'), list(list(q(:))));
        end
        bQ = gf_asm('boundary qu term',bnum,pde('mim'),pde('mf_u'),pde('mf_d'), matrix(vQ,q_dim*q_dim,d_nbdof));
        pde('asm')('Q') = pde('asm')('Q') + bQ;
      end
    end
  end
end
endfunction

/////////////
// solvers //
/////////////
  
// solves (K+Q)U=F+G
// under constraint HU=R
function [U,pde] = do_classical_solve(in_pde)
pde = in_pde;
assert_field(pde('asm'),'K','Q','G','H','R','F');
[_null,ud] = gf_spmat_get(pde('asm')('H'),'dirichlet nullspace', pde('asm')('R'));
RK = pde('asm')('K')+pde('asm')('Q');
if nnz(RK-RK') then
  sym=0; disp('non symmetric matrix');
else
  sym=1; 
end
RF=_null'*((pde('asm')('F')(:)+pde('asm')('G')(:))-RK*ud(:));
RK=_null'*RK*_null;
if sym then
  RK=(RK+RK')/2;
end
pde('asm')('RK') = RK;
RB = _null;
U = RB*(RK\RF)+ud(:);
U = U(:)'; // row vector
endfunction

////////////////////////
// do_solve_stokes_cg //
////////////////////////

// solves [K  B][U] = [Fu]
//        [B' 0][P]   [Fp]
// with K *positive* definite
function [U,P] = do_solve_stokes_cg(K,B,Fu,Fp)
verbos_disp_start(sprintf('factorizing K (n=%d,nnz=%d)',size(K,1),nnz(K)));
R = sp_chol(K);
verbos_disp_end;
verbos_disp(sprintf('K factored, nnz(R)=%d',nnz(R)));
// we have to avoid transpositions on sparse matrix since this
// operation has high cost of n*(nnz/n)*log((nnz/n)) ESPECIALY
// for triangular matrices from factorisations: the cost of the
// transposition is greater than the cost of a triangular 
// solve which is n*(nnz/n).
F   = ((R\(Fu'/R)')'*B)' - Fp;
tol = 1e-8;
verbos_disp_start('running Conjugate gradientG');
//  P = cg(F,R,B,10000,1e-6);
//[P,flag,relres,iter,resvec] = pcg(@multA, F, tol, 500, @multM, @multM, [], R, B);

x = ones(F);
[P,flag,relres,iter,resvec] = gmres(eval(multA,x,R,B), F, 100, tol, 50, eval(multM,x,R,B)*eval(multM,x,R,B));

//[P,flag,relres,iter,resvec] = gmres(multA, F, 100, tol, 50, multM, multM, [], R, B);
//  figure(5); plot(resvec);
//  disp(sprintf('    .. flag = %d, relres=%g, iter=%d',flag, relres, iter));

verbos_disp_end;
if (flag) then
  warning(sprintf('conjugate gradient did not converge! flag=%d, res=%g, iter=%d',flag,relres,iter));
else
  verbos_disp(sprintf('pcg: flag=%d, res=%g, iter=%d', flag, relres, iter));
end
U = R\(((Fu-B*P)'/R)');
verbos_disp('do_solve_stokes_cg all done');
endfunction


/////////////////////////
// do_solve_stokes_cg3 //
/////////////////////////

// solves [K  B][U] = [Fu]
//        [B' 0][P]   [Fp]
// with K *positive* definite
function [U,P] = do_solve_stokes_cg3(K,B,Fu,Fp)
nu = size(K,2);
np = size(B,2);

disp('solve stokes uzawa cholinc');
//[pcB] = sp_cholinc(K,'0'); YC: '0' option ??
[pcB] = sp_cholinc(K);
pcBt = pcB';
disp('solve stokes uzawa first pcg');
P = zeros(np,1);
U = pcg(K,Fu - B*P,1e-6,100,pcBt,pcB); // YC: ??
disp('solve stokes uzawa : got U');
for k=1:10000,
  r = Fp - B'*U;
  res = norm(r);
  if (res < 1e-10) then break; end;
  disp(sprintf('solve stokes : iter=%d res=%g',k, res));
  z = pcg(K, B*r, 1e-6, 100, pcBt, pcB);
  rho = res*res/dot(r,(B'*z));
  P = P - rho*r;
  U = U + rho*z;
end
endfunction

/////////////////////////
// do_solve_stokes_cg2 //
/////////////////////////

// try to apply gmres to the global system
function [U,P] = do_solve_stokes_cg2(K,B,Fu,Fp)
tic;
nu = size(K,2); np = size(B,2);
Z  = [K B; B' spzeros(np,np)];
Z2 = Z + [spzeros(nu,nu) spzeros(nu,np); spzeros(np,nu) sparse(diag(0.001*ones(np,1)))];
disp(sprintf('begin luinc [nu=%d,np=%d, nnz=%d]', nu, np, nnz(Z2)));
//[L,U] = sp_luinc(Z2,'0'); // YC: '0' option ??
//[L,U] = sp_luinc(Z2);
disp('begin gmres');
// [x, flag, resNorm, iter, resVec] = gmres( A, b, x, M, restrt, max_it, tol )

[UP,FLAG,RELRES,ITER,RESVEC] = gmres(Z,[Fu;Fp],50,1e-9,1000,Z2); // Z2 = L*U;
U = UP(1:nu);
P = UP((nu+1):(nu+np));
disp(sprintf('do_solve_stokes_cg2 done in %g sec (%d iter, flag=%d)',toc(),ITER,FLAG));
resU = norm(K*U+B*P-Fu,2);
resP = norm(B'*U-Fp,2);
disp(sprintf('resU=%g, resP=%g',resU,resP));  
endfunction

//////////////////////////////
// do_solve_stokes_cg2_test //
//////////////////////////////

// try to apply gmres to the global system
function [U,P] = do_solve_stokes_cg2_test(K,B,Fu,Fp)
tic;
nu = size(K,2); np = size(B,2);
Z  = [K B; B' spzeros(np,np)];
Z2 = Z + [spzeros(nu,nu) spzeros(nu,np); spzeros(np,nu) sparse(diag(0.001*ones(np,1)))];
disp(sprintf('begin luinc [nu=%d,np=%d, nnz=%d]', nu, np, nnz(Z2)));

pause;

//[L,U] = sp_luinc(Z2,'0'); // YC: '0' option ??
[L,U] = sp_luinc(Z2);
disp('begin gmres');
[UP,FLAG,RELRES,ITER,RESVEC] = gmres(Z,[Fu;Fp],50,1e-9,1000,L,U);
U = UP(1:nu); 
P = UP((nu+1):(nu+np));
disp(sprintf('do_solve_stokes_cg2 done in %g sec (%d iter, flag=%d)',toc(),ITER,FLAG));
resU = norm(K*U+B*P-Fu,2);
resP = norm(B'*U-Fp,2);
disp(sprintf('resU=%g, resP=%g',resU,resP));  
endfunction

/////////////////////////////
// do_solve_stokes_cg2_old //
/////////////////////////////

function [U,P] = do_solve_stokes_cg2_old(K,B,Fu,Fp)
alpha=1e-6;
tic;
if (0) then
  R  = sp_chol(K);
  RB = full(R'\B);
  T  = (alpha*speye(size(B,2),size(B,2))-RB'*RB); 
  P  = T\(Fp-B'*(K\Fu));
  U  = R\(((Fu-B*P)'/R)');
else
  // unfortunately, the basic stokes solver is very slow...
  // on small 3D problems, the fastest way is to reduce to a (full) linear system on the pression...
  // drawback: it eats a lot of memory..
  disp('using the ''brute force'' solver for stokes..');
  R  = sp_chol(K);
  RB = full(R'\B);
  T  = (-RB'*RB);
  F  = (Fp-B'*(K\Fu));
  T(1,:)=0; T(1,1)=1;F(1)=0;
  P  = T\F;
  U  = R\(((Fu-B*P)'/R)');
end;
disp(sprintf('do_solve_stokes_cg2 done in %g sec',toc()));
resU = norm(K*U+B*P-Fu,2);
resP = norm(B'*U-Fp,2);
disp(sprintf('resU=%g, resP=%g',resU,resP));
endfunction

/////////////
// multlup //
/////////////

function Y = multlup(X,L,U,P)
Y = U\(L\(P*X));
endfunction

////////
// cg //
////////

// DO NOT USE THIS ONE... BROKEN
function X = cg(F,R,B,maxit,tol)
X = rand(F);
r = F-multA(X,R,B);
nr0 = norm(r,2);
nr  = nr0;
d   = r;
it  = 1;
while (nr/nr0 > tol & it < maxit)
  Ad = multA(d,R,B);
  lambda = (nr^2)/(dot(d, Ad));
  X = X + lambda*d;
  r = r - lambda*Ad;
  nrp = nr;
  nr  = norm(r,2);
  _beta = (nr*nr)/(nrp*nrp);
  d  = r + _beta*d;
  it = it+1;
end
disp(sprintf('iterations: %d , res=%g', it, nr/nr0));
endfunction

///////////
// multA //
///////////

function AX = multA(X,R,B)
tic;
//  AX=B'*(R\(R'\(B*X)));
BX   = (B*X)';
BXR  = (BX/R)';
RBXR = R\BXR;
AX   = (RBXR'*B)';
//  AX=((R\((B*X)'/R)')'*B)';
t = toc;
verbos_disp(sprintf('iter : %f sec r=%g',t,norm(AX,2)));
endfunction

///////////
// multM //
///////////

function MX = multM(X,R,B)
MX = X;
endfunction 

/////////////////
// verbos_disp //
/////////////////

function verbos_disp(_what)
global verbosity
if (verbosity > 0) then
  disp(_what);
end
endfunction

///////////////////////
// verbos_disp_start //
///////////////////////

function verbos_disp_start(_what)
global verbosity
if (verbosity > 0) then
  disp(_what + '...'); tic;
end
endfunction

/////////////////////
// verbos_disp_end //
/////////////////////

function verbos_disp_end()
global verbosity
if (verbosity > 0) then
  disp(sprintf('done (%2.3f sec)', toc()));
end
endfunction

//////////////
// gf_solve //
//////////////

function [varargout] = gf_solve(varargin)
// function varargout=gf_solve(what, varargin)
// General solver for getfem PDE
// OBSOLETE FUNCTION used in some old scripts. Kept for compatibility reason.
// It solve a few set of pde. DO NOT USE ANYMORE.

[nargout,nargin] = argn();

if (nargin==0) then error('not enough input arguments'); end;

//pde = build_options_list(varargin(:));
pde = varargin(1);

if isempty(pde('verbosity')) then
  pde('verbosity') = 0;
end
if isempty(pde('mim')) then
  error('since v2.0, the pde structure for gf_solve should contain a mesh_im object in its ''mim'' field');
end
if isempty(pde('type')) then
  error('the pde mlist should have a ''type'' field');
end
if isempty(pde('asm')) then
  pde('asm') = list(); 
end; 
if isempty(pde('solver')) then
  pde('solver') = 'default';
end

nout = max(nargout,1);
list_out = list();
str_eval = '[list_out(1)';
for i=2:nout
  str_eval = str_eval + ',list_out(' + string(i) + ')';
end
str_eval = str_eval + '] = ';

select pde('type')
  case 'laplacian' then
    // YC: varargout ne peut pas etre utilisé de cette façon [varargout(1:nout)]=do_laplacian(pde);
    str_eval = str_eval + 'do_laplacian(pde)';
    execstr(str_eval);
  case 'linear elasticity' then
    // YC: varargout ne peut pas etre utilisé de cette façon [varargout(1:nout)]=do_linear_elasticity(pde);
    str_eval = str_eval + 'do_linear_elasticity(pde)';
    execstr(str_eval);
  case 'stokes' then
    // YC: varargout ne peut pas etre utilisé de cette façon [varargout(1:nout)]=do_stokes(pde);
    str_eval = str_eval + 'do_stokes(pde)';
    execstr(str_eval);
  else
    error('unhandled PDE(''type'') : ' + pde('type'));
end
varargout = list();
for i=1:nargout
  varargout(i) = list_out(i);
end
endfunction