This file is indexed.

/usr/include/rtd/ImageTemplates.icc is in skycat 3.1.2+starlink1~b-8+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
/*
 * E.S.O. - VLT project
 *
 * "@(#) $Id: ImageTemplates.icc,v 1.1.1.1 2009/03/31 14:11:52 cguirao Exp $" 
 *
 * ImageTemplates.C - template member functions for classes derived from
 *                    class ImageData (not C++ templates, uses cpp macros)
 *
 * See the man page ImageData(3) for a complete description of this class
 * hierarchy.
 *
 * who             when      what
 * --------------  --------  ----------------------------------------
 * Allan Brighton  05/10/95  Created
 * Peter W. Draper 29/01/97  Added FITS_LONG changes (for alpha 64 longs)
 * P.Biereichel    30/06/97  Changed parameters in getValues() for pixel table
 * Peter W. Draper 23/02/98  Changed min/max calculations to use more
 *                           pixels (too many occurences of "strange" limits).
 *                 06/03/98  Added changes to support XImage depths
 *                           greater than one byte.
 * pbiereic        22/03/99  Added on-the-fly subtraction.
 * Peter W. Draper 17/08/00  Changed getMinMax slightly. This now
 *                           checks if the total height of the image
 *                           is shown, rather than just testing
 *                           y0_. This could be wrong for zoomed
 * pbiereic        21/06/00  Fixed "array out of bounds" in getMinMax()
 * Peter W. Draper 19/03/01  Made sure that x1 and y1 in getMinMax,
 *                           never run off the edges of image.
 * pbiereic        17/02/03  Native byte order routines revised
 * Peter W. Draper 30/05/03  Skip runs of blank pixels in median estimate
 * pbiereic        18/06/04  Added experimental sampling methods
 * Peter W. Draper 01/11/06  Changed getMinMax to deal with images that
 *                           have a dimension of 1 (but not both).
 *                 08/01/07  Changed getMinMax to deal with 1x1 case too.
 *                 16/07/07  When first pixel is blank or NaN make sure
 *                           failed check for a valid pixel tests both
 *                           blank and NaN, not just NaN.
 *                 16/04/08  Added growAndShrink() to allow scales
 *                           to have positive and negative values
 *                           at the same time.
 *                 19/06/09  Change initBlankValue to use the cached
 *                           blankValue_ and make public (allows change).
 * pbiereic        12/08/07  added support for data types double and long long int
 * Peter W. Draper 17/05/12  Merged skycat double version created by pbiereic.
 *
 * This file is included in the .C files for classes derived from class
 * ImageData. The file defines a number of member functions that are
 * always the same, except for the underlying raw image data type. The
 * member functions are implemented in the derived classes for speed
 * (otherwise we would have to call virtual functions on each pixel...)
 *
 * Before including, the following #defines need to be made:
 *
 * #define CLASS_NAME <...> - as the name of the derived class
 * #define DATA_TYPE as the raw image data type (short, long, float,...)
 * #define NTOH(x)   to be just (x) if you're sure your type never requires
 *                   byte-swapping.  Otherwise leave it undefined and the
 *                   code below should do the right thing.
 * #define ISNAN(x)  Only for floating point types, returns true if x is a NAN
 */

/*
 * For all member functions within this file use the inline function getVal()
 * instead of referencing the raw image directly. getVal() returns the raw
 * image pixel value or the subtracted value if a bias frame was selected.
 * Before using getVal() initialize this function with initGetVal().
 */

#include <iostream>
#include <cassert>
#include "define.h"

// This is a no-op for non-floating point data types. This macro is
// defined as isnan(x) for floating point types.
#ifndef ISNAN
#define ISNAN(x) 0
#endif

/*
 * getVal() is an inline function which subtracts on-the-fly a
 * bias pixel if a bias frame is selected.
 * p    - is a pointer to the raw image
 * idx  - is an index to the image
 *
 * looks "big" but it isn't (gcc assembler code was checked).
 */
inline DATA_TYPE CLASS_NAME::getVal(DATA_TYPE* p, int idx)
{
    // return pixel value if bias subtraction is off
    if (! ImageData::biasInfo_->on)
        return (DATA_TYPE)NTOH(*(p + idx));

    if ( ! bias_swap_bytes_) {

	// return faster if image dimensions and types are the same
	if (ImageData::biasInfo_->sameTypeAndDims)
	    return ((DATA_TYPE)NTOH(*(p + idx)) -
		    (DATA_TYPE)((DATA_TYPE)(*((DATA_TYPE*)ImageData::biasInfo_->ptr + idx))));

	register biasINFO* bias = ImageData::biasInfo_;
	register int x = idx % width_ + startX_;
	register int y = idx / width_ + startY_;

	// if pixel is not within the boundary of the bias image return pixel value
	if (x < 0 || x >= bias->width || y < 0 || y >= bias->height)
	    return NTOH(*(p + idx));

	register int biasIdx = y * bias->width + x;

	switch (bias->type) {
	case BYTE_IMAGE:
	case X_IMAGE:
	    return (DATA_TYPE)NTOH(*(p + idx)) - (DATA_TYPE)((byte)(*((byte *)bias->ptr     + biasIdx)));
	case USHORT_IMAGE:
	    return (DATA_TYPE)NTOH(*(p + idx)) - (DATA_TYPE)((ushort)(*((ushort *)bias->ptr + biasIdx)));
	case SHORT_IMAGE:
	    return (DATA_TYPE)NTOH(*(p + idx)) - (DATA_TYPE)((short)(*((short *)bias->ptr   + biasIdx)));
	case LONG_IMAGE:
	    return (DATA_TYPE)NTOH(*(p + idx)) - (DATA_TYPE)((int)(*((int *)bias->ptr       + biasIdx)));
	case FLOAT_IMAGE:
	    return (DATA_TYPE)NTOH(*(p + idx)) - (DATA_TYPE)((float)(*((float *)bias->ptr   + biasIdx)));
	case DOUBLE_IMAGE:
	    return (DATA_TYPE)NTOH(*(p + idx)) - (DATA_TYPE)((double)(*((double *)bias->ptr + biasIdx)));
        case LONGLONG_IMAGE:
            return (DATA_TYPE)NTOH(*(p + idx)) - (DATA_TYPE)((long long)(*((long long *)bias->ptr + biasIdx)));
	default:
	    return (DATA_TYPE)NTOH(*(p + idx));
	}
    }

    else {

	register biasINFO* bias = ImageData::biasInfo_;
	register int x = idx % width_ + startX_;
	register int y = idx / width_ + startY_;

	// if pixel is not within the boundary of the bias image return pixel value
	if (x < 0 || x >= bias->width || y < 0 || y >= bias->height)
	    return NTOH(*(p + idx));

	register int biasIdx = y * bias->width + x;

	switch (bias->type) {
	case BYTE_IMAGE:
	case X_IMAGE:
	    return (DATA_TYPE)NTOH(*(p + idx)) - (DATA_TYPE)((byte)(*((byte *)bias->ptr             + biasIdx)));
	case USHORT_IMAGE:
	    return (DATA_TYPE)NTOH(*(p + idx)) - (DATA_TYPE)((ushort)SWAP16(*((ushort *)bias->ptr   + biasIdx)));
	case SHORT_IMAGE:
	    return (DATA_TYPE)NTOH(*(p + idx)) - (DATA_TYPE)((short)SWAP16(*((short *)bias->ptr     + biasIdx)));
	case LONG_IMAGE:
	    return (DATA_TYPE)NTOH(*(p + idx)) - (DATA_TYPE)((int)SWAP32(*((int *)bias->ptr         + biasIdx)));
	case FLOAT_IMAGE:
	    return (DATA_TYPE)NTOH(*(p + idx)) - (DATA_TYPE)((float)SWAP_FLOAT(*((float *)bias->ptr + biasIdx)));
        case DOUBLE_IMAGE:
            return (DATA_TYPE)NTOH(*(p + idx)) - (DATA_TYPE)((double)SWAP_DOUBLE(*((double *)bias->ptr + biasIdx)));
        case LONGLONG_IMAGE:
            return (DATA_TYPE)NTOH(*(p + idx)) - (DATA_TYPE)((long long)SWAP64(*((long long *)bias->ptr + biasIdx)));
	default:
	    return (DATA_TYPE)NTOH(*(p + idx));
	}
    }
}

/*
 * Scan the image to find the min and max values and set the member
 * variables accordingly.  To save time, only the visible area of the
 * image is examined (x0_, y0_, x1_ and y1_ are set each time the
 * image is updated, however they are initially set to the entire
 * image).
 * The result is that the member variables minValue_ and maxValue_
 * are set.
 */
void CLASS_NAME::getMinMax()
{
    DATA_TYPE* rawImage = (DATA_TYPE*)image_.dataPtr();
    int p;
    register DATA_TYPE  value;

    initGetVal();  // init flag for speeding up bias subtraction

    // use area of image that is visible.
    // if we are looking at the whole image, ignore the margin
    int w = x1_ - x0_ + 1, h = y1_ - y0_ + 1;
    int xmargin = 0, ymargin = 0;
    if (w == width_)
	xmargin = int(w * 0.02);
    if ( h == height_ )           // PWD: change here, test was y0_ == 0
	ymargin = int(h * 0.02);  

    int x0 = x0_ + xmargin;
    int y0 = y0_ + ymargin;
    int x1 = min( x1_ - xmargin, width_ - 1 ); // PWD: stop running
    int y1 = min( y1_ - ymargin, height_ - 1 );// off edges
    w = x1 - x0 + 1;
    h = y1 - y0 + 1;

    if ( w < 1 || h < 1 || ( w == 1 && h == 1 )) {
	if (area_ > 0) {
	    minValue_ = maxValue_ = getVal(rawImage, 0);
        } else {
	    minValue_ = maxValue_ = 0;
        }
	return;
    }

    // set the x, y increments so that not every pixel or line is
    // examined on large images
    int xincr = w/256;
    if (xincr == 0)
	xincr++;
    int yincr = h/256;
    if (yincr == 0)
	yincr++;

    if (x1 >= x1_ - xincr) {
	x1 = x1_ - xincr;
        if ( x1 < 0 ) {
            x1 = 1;
        }
   }

    if (y1 >= y1_ - yincr) {
	y1 = y1_ - yincr;
        if ( y1 < 0 ) {
            y1 = 1;
        }
    }

    // try to speed things up a bit on large images:
    // don't examine every pixel, just look at a few sample lines
    p = y0*width_+x0; // first pixel in region to examine
    value = getVal(rawImage, p);

    // ignore BLANK pixels. For efficiency, we only check the flag once
    int end = area_;
    if (haveBlank_) {
	// make sure starting min/max values are not the BLANK pixel
	while(value == blank_ || ISNAN(value)) {
	    p += 10;              // check another pixel
	    if (p >= end)
		break;
	    value = getVal(rawImage, p);
	}
	if (value == blank_ || ISNAN(value))
	    value = 0;
	minValue_ = maxValue_ = value;
	for (int y = y0; y <= y1; y+=yincr) {
            p = y*width_+x0;
	    if (p >= end)
		break;
	    for (int x = x0; x <= x1; x+=xincr, p+=xincr) {
                if ((value = getVal(rawImage, p)) == blank_ || ISNAN(value))
		    continue;
		if (value < minValue_)
		    minValue_ = value;
		else if (value > maxValue_)
		    maxValue_ = value;
	    }
	}
    }
    else {
	// note that for non-float types, the ISNAN call is optimized away
	while(ISNAN(value)) {
	    p += 10;              // check another pixel
	    if (p >= end)
		break;
	    value = getVal(rawImage, p);
	}
	if (ISNAN(value))
	    value = 0;
	minValue_ = maxValue_ = value;
	for (int y = y0; y <= y1; y+=yincr) {
            p = y*width_+x0;
	    if (p >= end)
		break;
	    for (int x = x0; x <= x1; x+=xincr, p+=xincr) {
                value = getVal(rawImage, p);
		if (ISNAN(value))
		    continue;
		if (value < minValue_)
		    minValue_ = value;
		else if (value > maxValue_)
		    maxValue_ = value;
	    }
	}
    }
}


/*
 * print the coordinates and raw data value at the given x,y image
 * coords to the buffer
 *
 * A "-" is printed if the x,y coords are out of range.
 * "blank" is printed if the pixel is blank.
 */
char* CLASS_NAME::getValue(char* buf, double x, double y)
{
    DATA_TYPE* rawImage = (DATA_TYPE*)image_.dataPtr();
    DATA_TYPE value;

    initGetVal();  // init flag for bias subtraction

    int ix, iy;
    if (getIndex(x, y, ix, iy) != 0)
	sprintf(buf, "%.1f %.1f -", x, y);
    else {
	value = getVal(rawImage, iy*width_+ix);
	if (haveBlank_ && value == blank_)
	    sprintf(buf, "%.1f %.1f blank", x, y);
	else
	    sprintf(buf, "%.1f %.1f %g", x, y, scaleValue(value));
    }
    return buf;
}


/*
 * return the value at the x,y image coords as a double.
 *
 * The input x,y is assumed to be in image coords.
 * If the coords are out of range, 0.0 is returned.
 */
double CLASS_NAME::getValue(double x, double y)
{
    DATA_TYPE* rawImage = (DATA_TYPE*)image_.dataPtr();
    int ix, iy;

    initGetVal();  // init flag for bias subtraction

    if (getIndex(x, y, ix, iy) != 0)
	return 0.0;
    return scaleValue(getVal(rawImage, iy*width_+ix));
}


/*
 * print the X, Y coordinates, raw data value and World Coordinates
 * at the given x,y image coords to the given buffers.
 *
 * rx and ry are the image coordinates to use to access the pixel value. This might
 * be different than x,y, since x,y are the logical image coordinates, assuming the
 * image starts at 1,1, which might not actually be the case.
 *
 * A blank value is printed if the rx,ry coords are out of range.
 *
 * note: x, y and rx,ry are expected in image coords, while in the result,
 * xStr and yStr are in "chip" coords, since they should  be displayed.
 */
void CLASS_NAME::getValues(double x, double y, double rx, double ry,
			   char* xStr, char* yStr, char* valueStr,
			   char* raStr, char* decStr, char* equinoxStr)
{
    initGetVal();  // init flag for speeding up bias subtraction

    // display chip coords for x and y
    double cx = x, cy = y;
    imageToChipCoords(cx, cy);
    sprintf(xStr, "%.1f", cx);
    sprintf(yStr, "%.1f", cy);

    *raStr = '\0';
    *decStr = '\0';
    *equinoxStr = '\0';
    if (wcs().isWcs()) {
	char buf[80];
	wcs().pix2wcs(x, y, buf, sizeof(buf), 1);
	sscanf(buf, "%s %s %s", raStr, decStr, equinoxStr);
    }

    // get integer index in raw image for pixel value
    int ix, iy;
    *valueStr = '\0';
    if (getIndex(rx, ry, ix, iy) == 0) {
	DATA_TYPE* rawImage = (DATA_TYPE*)image_.dataPtr();
	DATA_TYPE value = getVal(rawImage, iy*width_+ix);

	if (haveBlank_ && value == blank_)
	    strcpy(valueStr, "blank");
	else
	    sprintf(valueStr, "%g", scaleValue(value));
    }
}


/*
 * Fill the given array with the pixel values surrounding the given point.
 * nrows and ncols give the dimensions of the array. Any values that are outside
 * of the image or are blank (BLANK keyword) are set to -HUGE_VAL (If "flag"
 * is non-zero, values outside the image are not changed).
 *
 * Note: it is assumed that nrows and ncols are odd numbers and that the array
 * is one row and column larger (nrows+1 x ncols+1), so that it can hold the
 * X and Y index headings.
 *
 * rx and ry are the image coordinates to use to access the pixel value. This might
 * be different than x,y, since x,y are the logical image coordinates, assuming the
 * image starts at 1,1, which might not actually be the case.
 *
 * note: x, y and rx,ry are expected in image coords, however the coordinates in the
 * result are "chip" coords, since they should  be displayed.
 *
 */
void CLASS_NAME::getValues(double x, double y, double rx, double ry, double* ar,
			   int nrows, int ncols, int flag)
{
    DATA_TYPE* rawImage = (DATA_TYPE*)image_.dataPtr();

    initGetVal();  // init flag for speeding up bias subtraction

    int m = ncols/2;
    int n = nrows/2;
    int w = ncols+1;
    int i, j;

    // get pixel index
    int ix, iy;

    // insert the x coord headings
    for (i = 0; i < ncols; i++) {
	double cx = x+(i-m);
	imageToChipCoords(cx);
	ar[i+1] = cx;	// X coord top heading
    }

    for (j = 0; j < nrows; j++) {
	double cy = y+(j-n);
	imageToChipCoords(cy);
	ar[(j+1)*w] = cy; // Y coord left heading
	for (i = 0; i < ncols; i++) {
	    if (getIndex(rx+(i-m), ry+(j-n), ix, iy) == 0) {
		DATA_TYPE value = getVal(rawImage, iy*width_+ix);
		if (haveBlank_ && value == blank_)
		    ar[(j+1)*w+i+1] = -HUGE_VAL;
		else
		    ar[(j+1)*w+i+1] = scaleValue(value);
	    }
	    else if (! flag) {
		ar[(j+1)*w+i+1] = -HUGE_VAL;
	    }
	}
    }
}


/*
 * Fill the given array with the pixel values (converted to floats as needed)
 * at the given x,y image pos, width and height.
 *
 * The array should be large enough for at least (w x h) floats.
 *
 * Any values that are outside of the image are set to blank or 0, if there
 * is no blank pixel value defined (If "flag" is non-zero, values outside
 * the image are not changed).
 *
 * Note: x and y are expected in image coordinates
 */
void CLASS_NAME::getValues(double x, double y, int w, int h, float* ar, int flag)
{
    DATA_TYPE* rawImage = (DATA_TYPE*)image_.dataPtr();

    int i, j;
    int ix, iy;
    DATA_TYPE value;

    initGetVal();  // init flag for speeding up bias subtraction

    getIndex(x, y, ix, iy);

    for (j = 0; j < h; j++) {
	for (i = 0; i < w; i++) {
	    int rx = ix+i, ry = iy+j;
	    if (rx >= 0 && ry >= 0 && rx < width_ && ry < height_) {
		value = getVal(rawImage, ry*width_+rx);
		if (haveBlank_ && value == blank_) {
		    // ar[j*w+i] = 0;
		    ar[j*w+i] = blank_;
		}
		else {
		    ar[j*w+i] = scaleValue(value);
		}
	    }
	    else if (!flag) {
		ar[j*w+i] = blank_;
	    }
	}
    }
}


/*
 * Copy raw image data from this image to the given image data area,
 * starting at the image coordinates (x, y) and with the dimentions (w,h)
 * in pixels.  Since this is a copy from one raw image to another, no
 * data conversion is done.
 */
void CLASS_NAME::copyImageArea(void* data, double x, double y, int w, int h)
{
    DATA_TYPE* fromImage = (DATA_TYPE*)image_.dataPtr();
    DATA_TYPE* toImage = (DATA_TYPE*)data;

    int i, j;
    int ix, iy;

    getIndex(x, y, ix, iy);

    for (j = 0; j < h; j++) {
	for (i = 0; i < w; i++) {
	    int rx = ix+i, ry = iy+j;
	    if (rx >= 0 && ry >= 0 && rx < width_ && ry < height_) {
		toImage[j*w+i] = fromImage[ry*width_+rx];
	    }
	    else {
		toImage[j*w+i] = blank_;
	    }
	}
    }
}


/*
 * copy the raw image to the xImage
 *
 * The arguments x0, y0, x1 and y1 are the bounding box of the region of
 * the raw image that needs to be copied (origin at upper left (0,0)).
 *
 * dest_x and dest_y give the coordinates in the XImage where copying
 * should start. These are normally either (x0,y0) or (0,0).
 */
void CLASS_NAME::rawToXImage(int x0, int y0, int x1, int y1,
			     int dest_x, int dest_y)
{
    // if (verbose_)
    //	printf("%s: rawToXImage: %d,%d  %d,%d +(%d,%d), flip: %d,%d, rotate: %d\n",
    //	       name_, x0, y0, x1, y1, dest_x, dest_y, flipX_, flipY_, rotate_);

    register int i, j;

    // row/col increments
    register int src_x_inc, src_y_inc;
    register int dest_x_inc, dest_y_inc;

    // source/dest images
    register DATA_TYPE* rawImage = (DATA_TYPE*)image_.dataPtr();
    register int src;
    register byte* dest = xImageData_;

    initGetVal();  // init flag for speeding up bias subtraction

    // width of image area to update
    int w = x1 - x0 + 1;

    // set loop increments for based on current transformations
    switch (flipX_<<1|flipY_) {
    case 0: // none
	src =  (height_ - 1 - y0) * width_ + x0;
	src_x_inc = 1;
	src_y_inc = -width_ - w;
	break;
    case 1: // flipY
	src =  y0 * width_ + x0;
	src_x_inc = 1;
	src_y_inc = width_ - w;
	break;
    case 2: // flipX
	src =  (height_ - 1 - y0) * width_ + (width_ - 1 - x0);
	src_x_inc = -1;
	src_y_inc = -(width_ - w);
	break;
    case 3: // flipX and flipY
	src =  y0 * width_ + (width_ - 1 - x0);
	src_x_inc = -1;
	src_y_inc = width_ + w;
	break;
    }

    // need to take care with non-byte depths, so branch according to
    // this
    if ( xImageBytesPerPixel_ == 1 ) {

	// set args for rotate in dest image
	if (rotate_) {
	    dest_x_inc = xImageBytesPerLine_;
	    dest_y_inc = -(w * xImageBytesPerLine_ - 1);
	    dest += xImageBytesPerLine_ * dest_x  + dest_y;
	}
	else {
	    dest_x_inc = 1;
	    dest_y_inc = xImageBytesPerLine_ - w;
	    dest += xImageBytesPerLine_ * dest_y  + dest_x;
	}

	// copy the raw data to the X image...
	for (i=y0; i<=y1; i++) {
	    for (j=x0; j<=x1; j++) {
		*dest = lookup(getVal(rawImage, src));
		dest += dest_x_inc;
		src += src_x_inc;
	    }
	    src += src_y_inc;
	    dest += dest_y_inc;
	}
    }
    else {
	//  XImage has depth greater than a byte, need to take care with
	//  these (byte swapping etc. to server format)
	register int k = dest_x;
	register int l = dest_y;
	for (i=y0; i<=y1; i++) {
	    for (j=x0; j<=x1; j++) {
		if ( rotate_ ) {
		    xImage_->putpixel( l, k, llookup(getVal(rawImage, src)));
		}
		else {
		    xImage_->putpixel( k, l, llookup(getVal(rawImage, src)));
		}
		src += src_x_inc;
		k++;
	    }
	    src += src_y_inc;
	    l++;
	    k = dest_x;
	}
    }
}

/*
 * This method is called to magnify the image by factors >= 2.
 *
 * The arguments x0, y0, x1 and y1 are the bounding box of the region
 * of the raw image that needs to be copied (origin at upper left (0,0)).
 *
 * dest_x and dest_y give the coordinates in the XImage where copying
 * should start. These are normally either (x0,y0) or (0,0).
 */
void CLASS_NAME::grow(int x0, int y0, int x1, int y1,
		      int dest_x, int dest_y)
{
    register byte *p, *q;
    register byte c;
    register int i, j, n, m;
    register int xs = xScale_, ys = yScale_;

    // row/col increments
    register int src_x_inc, src_y_inc;
    register int dest_x_inc, dest_y_inc;

    // source/dest images
    register DATA_TYPE* rawImage = (DATA_TYPE*)image_.dataPtr();
    register int src;
    register byte* dest = xImageData_;
    register byte* end = xImageData_ + xImageSize_;

    initGetVal();  // init flag for speeding up bias subtraction

    // width of image area to update
    int w = x1 - x0 + 1;

    // set loop increments based on current transformations
    switch (flipX_<<1|flipY_) {
    case 0: // none
	src =  (height_ - 1 - y0) * width_ + x0;
	src_x_inc = 1;
	src_y_inc = -width_ - w;
	break;
    case 1: // flipY
	src =  y0 * width_ + x0;
	src_x_inc = 1;
	src_y_inc = width_ - w;
	break;
    case 2: // flipX
	src =  (height_ - 1 - y0) * width_ + (width_ - 1 - x0);
	src_x_inc = -1;
	src_y_inc = -(width_ - w);
	break;
    case 3: // flipX and flipY
	src =  y0 * width_ + (width_ - 1 - x0);
	src_x_inc = -1;
	src_y_inc = width_ + w;
	break;
    }

    // need to take care with non-byte depths, so branch according to
    // this
    if ( xImageBytesPerPixel_ == 1 ) {

	// set args for rotate in dest image
	if (rotate_) {
	    dest_x_inc = xImageBytesPerLine_ * xs;
	    dest_y_inc = -(w * xs * xImageBytesPerLine_ - ys);
	    dest += xImageBytesPerLine_ * xs * dest_x + dest_y * ys;
	}
	else {
	    dest_x_inc = xs;
	    dest_y_inc = xImageBytesPerLine_ * ys  -  w * xs;
	    dest += xImageBytesPerLine_ * ys * dest_y + dest_x * xs;

	}

	// copy the raw data to the X image...
	for (i=y0; i<=y1; i++) {
	    for (j=x0; j<=x1; j++) {
		c = lookup(getVal(rawImage, src));
		q = p = dest;
		src += src_x_inc;
		dest += dest_x_inc;
		// replicate the source pixel to an xs x ys box in the dest
		for (n=0; n<ys; n++) {
		    for (m=0; m<xs; m++) {
			if (p >= end) {
			    break;
			}
			*p++ = c;
		    }
		    p = q += xImageBytesPerLine_;
		}
	    }
	    src += src_y_inc;
	    dest += dest_y_inc;
	}
	return;
    }


    //  XImage has depth greater than a byte. Need to take care with
    //  these (byte swapping etc. to server format, if really
    //  pushed for performance could use ImageByteOrder() and wing it).
    int k = dest_x * xs;
    int l = dest_y * ys;
    unsigned long cl;
    int width;
    int height;
    if ( rotate_ ) {
	height = xImage_->width();
	width = xImage_->height();
    }
    else {
	width = xImage_->width();
	height = xImage_->height();
    }
    for ( i = y0; i <= y1; i++ ) {
	for ( j = x0; j <= x1; j++ ) {
	    cl = llookup(getVal(rawImage, src));
	    // replicate the source pixel to an xs x ys box
	    int maxN = min(l+ys,height), maxM = min(k+xs,width);
	    for ( n = l; n < maxN; n++ ) {
		for ( m = k; m < maxM; m++ ) {
		    if ( rotate_ ) {
			xImage_->putpixel( n, m, cl );
		    }
		    else {
			xImage_->putpixel( m, n, cl );
		    }
		}
	    }
	    k += xs;
	    src += src_x_inc;
	}
	k = dest_x * xs;
	l += ys;
	src += src_y_inc;
    }
}


/*
 * This method is called when the image scales require grow and shrink.
 *
 * The arguments x0, y0, x1 and y1 are the bounding box of the region
 * of the raw image that needs to be copied (origin at upper left (0,0)).
 *
 * dest_x and dest_y give the coordinates in the XImage where copying
 * should start. These are normally either (x0,y0) or (0,0).
 */
void CLASS_NAME::growAndShrink(int x0, int y0, int x1, int y1,
                               int dest_x, int dest_y)
{
    register int i, j, n, m;
    register int xs = xScale_, ys = yScale_;
    register int rxs = xScale_, rys = yScale_;

    //  One of these is negative, the other not. 
    if ( xs < 0 ) xs = 1;
    if ( ys < 0 ) ys = 1;

    // row/col increments
    register int src_x_inc, src_y_inc;

    // source/dest images
    register DATA_TYPE* rawImage = (DATA_TYPE*)image_.dataPtr();
    register int src;

    initGetVal();  // init flag for speeding up bias subtraction

    // width of image area to update
    int w = x1 - x0 + 1;

    // set loop increments based on current transformations
    switch (flipX_<<1|flipY_) {
    case 0: // none
        src =  (height_ - 1 - y0) * width_ + x0;
        src_x_inc = 1;
        src_y_inc = -width_ - w;
        break;
    case 1: // flipY
        src =  y0 * width_ + x0;
        src_x_inc = 1;
        src_y_inc = width_ - w;
        break;
    case 2: // flipX
        src =  (height_ - 1 - y0) * width_ + (width_ - 1 - x0);
        src_x_inc = -1;
        src_y_inc = -(width_ - w);
        break;
    case 3: // flipX and flipY
        src =  y0 * width_ + (width_ - 1 - x0);
        src_x_inc = -1;
        src_y_inc = width_ + w;
        break;
    }

    int k = dest_x * xs;
    int l = dest_y * ys;
    unsigned long cl;
    int width;
    int height;
    if ( rotate_ ) {
        height = xImage_->width();
        width = xImage_->height();
    }
    else {
        width = xImage_->width();
        height = xImage_->height();
    }

    //  For the axis that is shrank, we need to stop the pick for a number of
    //  times that gets a step along that axis of the right number.
    int yskip = 0;
    int xskip = 0;
    if ( rys < 0 ) {
        yskip = -rys;
    }
    if ( rxs < 0 ) {
        xskip = -rxs;
    }

    //  Skip counters.
    int xc = 0;
    int yc = 0;

    for ( i = y0; i <= y1; i++ ) {
        xc = 0;
        for ( j = x0; j <= x1; j++ ) {
            cl = llookup(getVal(rawImage, src));
            // replicate the source pixel to an xs x ys box
            int maxN = min(l+ys,height), maxM = min(k+xs,width);
            for ( n = l; n < maxN; n++ ) {
                for ( m = k; m < maxM; m++ ) {
                    if ( rotate_ ) {
                        xImage_->putpixel( n, m, cl );
                    }
                    else {
                        xImage_->putpixel( m, n, cl );
                    }
                }
            }

            //  When xScale_ < 0 need to use same pixel again...
            xc++;
            if ( xc >= xskip ) {
                k += xs;
                xc = 0;
            }

            src += src_x_inc;
        }
        k = dest_x * xs;

        //  When yScale_ < 0 need to use same pixel again...
        yc++;
        if ( yc >= yskip ) {
            l += ys;
            yc = 0;
        }

        src += src_y_inc;
    }
}

/*
 * get samples of a square box
 *    rawImage : input array
 *    idx      : offset in array
 *    wbox     : width of box
 *    samples  : output vector
 *    returns the number of pixels in the output array samples
 */

inline int CLASS_NAME::getBsamples(DATA_TYPE *rawImage, int idx, int wbox, DATA_TYPE *samples)
{
    int i, k, src;

    for (k = 0; k < wbox; k++) {
	src = idx + k * width_;
	for (i = 0; i < wbox; i++) {
	    *samples++ = getVal(rawImage, src++);
	}
    }
    return (wbox * wbox);
}

/*
 * get samples of a square box (only "black" values on chess-board)
 *    rawImage : input array
 *    idx      : offset in array
 *    wbox     : width of box
 *    samples  : output vector
 *    returns the number of pixels in the output array samples
 */

inline int CLASS_NAME::getCsamples(DATA_TYPE *rawImage, int idx, int wbox, DATA_TYPE *samples)
{
    int i, k, src;

    for (k = 0; k < wbox; k++) {
	src = idx + k * width_ + k%2;
	for (i = 0; i < wbox; i += 2) {
	    *samples++ = getVal(rawImage, src+i);
	}
    }
    return ((wbox * wbox) / 2 + wbox%2);
}

/*
 * get samples on a diagonal cross of a square box
 *    rawImage : input array
 *    idx      : offset in array
 *    wbox     : width of box
 *    samples  : output vector
 *    returns the number of pixels in the output array samples
 */

inline int CLASS_NAME::getXsamples(DATA_TYPE *rawImage, int idx, int wbox, DATA_TYPE *samples)
{
    int i, n = 0, m = wbox/2;
    int offs = wbox -1;
    int idxo = idx + offs;
    int woff = width_ * offs;

    if (wbox %2 != 0) {
	n++;
	*samples++ = getVal(rawImage, idx + width_ * m + m); /* center pixel of cross */
    }

    for (i = 0; i < m; i++) {
	*samples++ = getVal(rawImage, idx);
	*samples++ = getVal(rawImage, idxo);
	*samples++ = getVal(rawImage, idx + woff);
	*samples++ = getVal(rawImage, idxo + woff);
	idx += width_ + 1;
	offs -= 2;
	idxo = idx + offs;
	woff = width_ * offs;
    }
    return (n + m * 4);
}

/*
 * get median value of array samples
 *    samples  : data vector
 *    n        : number of pixels in vector samples
 *    returns the median value of vector samples
 */

inline DATA_TYPE CLASS_NAME::getMedian(DATA_TYPE *samples, int n)
{
    int i, k;
    DATA_TYPE *pi, *pk = samples, tmp;

    for (k = 0; k < n; k++, pk++) {
	pi = samples + k+1;
	for (i = k+1; i < n; i++, pi++) {
	    if (*pk < *pi) {
		tmp = *pk;
		*pk = *pi;
		*pi = tmp;
	    }
	}
    }
    return (*(samples + n/2));
}

/*
 * get RMS value of array samples
 *    samples  : data vector
 *    n        : number of pixels in vector samples
 *    returns the RMS value of vector samples
 */

inline DATA_TYPE CLASS_NAME::getRMS(DATA_TYPE *samples, int n)
{
    int i, cnt = 0;
    double sum = 0.0, sumsq = 0.0;
    DATA_TYPE value;

    for (i = 0; i < n; i++) {
        value = *samples++;
        cnt++;
        sumsq += value * value;
        sum += value;
    }
    if (cnt < 2)
        return ((DATA_TYPE) 0);
    value = (DATA_TYPE)sqrt((sumsq - ((sum * sum) / cnt)) / (cnt -1));
    return (value);
}

/*
 * get value of a shrunk image which is not subsampled
 *    rawImage : input array
 *    idx      : offset in array
 *    wbox     : width of box
 *    samples  : allocated temporary array
 *    xs       : scale factor
 *    returns the value according to the sampling method
 */

inline DATA_TYPE CLASS_NAME::getBoxVal(DATA_TYPE *rawImage, int idx, int wbox, DATA_TYPE *samples, int xs)
{
    DATA_TYPE value;
    DATA_TYPE *psamples = samples;
    int n, m;
    double sum;

    switch (sampmethod_) {

    case SAMP_METHOD_MIN:
        m = getBsamples(rawImage, idx, wbox, samples);
        for (n = 1, value = *psamples++; n < m; n++, psamples++) {
            if (*psamples < value)
                value = *psamples;
        }
        return (value);

    case SAMP_METHOD_MEAN:
        m = getBsamples(rawImage, idx, wbox, samples);
        for (n = 0, sum = 0.0; n < m; n++) {
            sum += *psamples++;
        }
        return ((DATA_TYPE) (sum / m));

    case SAMP_METHOD_MEDIAN:
        m = getBsamples(rawImage, idx, wbox, samples);
        return (getMedian(samples, m));

    case SAMP_METHOD_RMS:
        m = getBsamples(rawImage, idx, wbox, samples);
        return ((DATA_TYPE)getRMS(samples, m));

    case SAMP_METHOD_MAX_CROSS:
        m = getXsamples(rawImage, idx, wbox, samples);
        for (n = 1, value = *psamples++; n < m; n++, psamples++) {
            if (*psamples > value)
                value = *psamples;
        }
        return (value);

    case SAMP_METHOD_MIN_CROSS:
        m = getXsamples(rawImage, idx, wbox, samples);
        for (n = 1, value = *psamples++; n < m; n++, psamples++) {
            if (*psamples < value)
                value = *psamples;
        }
        return (value);

    case SAMP_METHOD_MEAN_CROSS:
        m = getXsamples(rawImage, idx, wbox, samples);
        for (n = 0, sum = 0.0; n < m; n++) {
            sum += *psamples++;
        }
        return ((DATA_TYPE) (sum / m));

    case SAMP_METHOD_MEDIAN_CROSS:
        m = getXsamples(rawImage, idx, wbox, samples);
        return (getMedian(samples, m));

    case SAMP_METHOD_MEDIAN_CHESS:
        m = getCsamples(rawImage, idx, wbox, samples);
        return (getMedian(samples, m));

    case SAMP_METHOD_MEDIAN_9:
        wbox = (xs < 3) ? 1 : 3;
        m = getBsamples(rawImage, idx, wbox, samples);
        return (getMedian(samples, m));

    default:   /* SAMP_METHOD_MAX */
        m = getBsamples(rawImage, idx, wbox, samples);
        for (n = 1, value = *psamples++; n < m; n++, psamples++) {
            if (*psamples > value)
                value = *psamples;
        }
        return (value);
    }
    return (0);
}


/*
 * This method is called to shrink the image. If subsample_ is 1, just
 * take every nth pixel as a sample, otherwise take the max of the
 * surrounding pixels
 *
 * The arguments x0, y0, x1 and y1 are the bounding box of the region
 * of the raw image that needs to be copied (origin at upper left (0,0)).
 *
 * dest_x and dest_y give the coordinates in the XImage where copying
 * should start. These are normally either (x0,y0) or (0,0).
 *
 * Note: there is a (non-fatal) bug here that shows up when dest_x,dest_y are non-zero,
 *       (the image display gets split or mixed up somehow...) - needs some
 *       testing to see what the cause is.
 */
void CLASS_NAME::shrink(int x0, int y0, int x1, int y1, int dest_x, int dest_y)
{
    int p=0, q=0;
    int i, j, n, m;
    int xs = -xScale_, ys = -yScale_;

    initGetVal();  // init flag for speeding up bias subtraction

    // for odd shrink factors, we have to be carefull about the end conditions
    x1 -= (x1-x0+1)%xs;
    y1 -= (y1-y0+1)%ys;
    int w = x1-x0+1;

    // row/col increments
    int src_x_inc, src_y_inc;
    int dest_x_inc, dest_y_inc;

    // source/dest images
    DATA_TYPE* rawImage = (DATA_TYPE*)image_.dataPtr();
    int src;
    byte* dest = xImageData_;
    byte* end = xImageData_ + xImageSize_ - 1;

    DATA_TYPE maxval = 0;

    // set loop increments based on current transformations
    switch (flipX_<<1|flipY_) {
    case 0: // none
	src =  (height_ - ys - y0) * width_ + x0;
	src_x_inc = xs;
	src_y_inc = -width_ * ys - w;
	break;
    case 1: // flipY
	src =  y0 * width_ + x0;
	src_x_inc = xs;
	src_y_inc = width_ * ys - w;
	break;
    case 2: // flipX
	src =  (height_ - ys - y0) * width_ + (width_ - xs - x0);
	src_x_inc = -xs;
	src_y_inc = -(width_ * ys - w);
	break;
    case 3: // flipX and flipY
	src =  y0 * width_ + (width_ - xs - x0);
	src_x_inc = -xs;
	src_y_inc = width_ * ys + w;
	break;
    }

    if ( xImageBytesPerPixel_ == 1 ) {
	//  use faster methods for byte xImages

	// set args for rotate in dest image
	if (rotate_) {
	    dest_x_inc = xImageBytesPerLine_;
	    dest_y_inc = -(w/xs * xImageBytesPerLine_ - 1);
	    dest += xImageBytesPerLine_ * (dest_x/xs) + (dest_y/ys);
	}
	else {
	    dest_x_inc = 1;
	    dest_y_inc = xImageBytesPerLine_ - w/xs;
	    dest += xImageBytesPerLine_ * (dest_y/ys) + (dest_x/xs);
	}

	// copy the raw data to the X image...
	if (subsample_) {
	    // use faster "subsample" algorithm
	    for (i=y0; i<=y1; i+=ys) {
		for (j=x0; j<=x1; j+=xs) {
		    if (dest > end) {
			break;
		    }
		    *dest = lookup(getVal(rawImage, src));
		    dest += dest_x_inc;
		    src += src_x_inc;
		}
		src += src_y_inc;
		dest += dest_y_inc;
	    }
	}
	else {
	    // don't subsample: take max pixel
	    for (i=y0; i<=y1; i+=ys) {
		for (j=x0; j<=x1; j+=xs) {
		    if (dest > end) {
			break;
		    }
		    q = p = src;
		    for (n=0; n<ys; n++) {
			for (m=0; m<xs; m++, p++) {
			    if (getVal(rawImage, p) > maxval)
				maxval = getVal(rawImage, p);
			}
			p = q += width_;
		    }
		    *dest = lookup(maxval);
		    maxval = 0;
		    dest += dest_x_inc;
		    src += src_x_inc;
		}
		src += src_y_inc;
		dest += dest_y_inc;
	    }
	}
	return;
    }


    //  XImage depth greater than a byte. Use careful methods to
    //  keep byte order etc. correct for server.
    int k = dest_x / xs;
    int l = dest_y / ys;

    if (subsample_ || xs < 2 || ys < 2) {
	// use faster "subsample" algorithm
	for (i=y0; i<=y1; i+=ys) {
	    for (j=x0; j<=x1; j+=xs) {
		if ( rotate_ ) {
		    xImage_->putpixel( l, k, llookup(getVal(rawImage, src)));
		}
		else {
		    xImage_->putpixel( k, l, llookup(getVal(rawImage, src)));
		}
		k++;
		src += src_x_inc;
	    }
	    src += src_y_inc;
	    k = dest_x / xs;
	    l++;
	}
	return;
    }

    // don't subsample: take pixel defined by sampling method

    DATA_TYPE *samples = new DATA_TYPE[xs * ys];
    DATA_TYPE vsamp;
    int wbox = xs < ys ? xs : ys;

    for (i = y0; i < y1; i += ys, src += src_y_inc, k = dest_x / xs, l++) {
        for (j = x0; j < x1; j += xs, src += src_x_inc) {
            vsamp = getBoxVal(rawImage, src, wbox, samples, xs);

            if ( rotate_ )
                xImage_->putpixel(l, k++, llookup(vsamp));
            else
                xImage_->putpixel(k++, l, llookup(vsamp));
        }
    }
    delete[] samples;
}


/*
 * Set the cut levels using a median filtering algorithm.
 * To save time, only a center area of the visible image is examined.
 */
void CLASS_NAME::medianFilter()
{
    getMinMax();		// get min/max pixel estimate for visible area
    DATA_TYPE *rawImage = (DATA_TYPE*)image_.dataPtr(); // image data
    const int nmed = 7;		   // length of median filter
    int xskip = nmed*3, yskip = 3; // skip pixels for speed
    int x0 = x0_ + 10;		   // ignore outside areas
    int y0 = y0_ + 10;
    int x1 = x1_ - 10;
    int y1 = y1_ - 10;
    int i, j, k, l;
    int p=0;
    DATA_TYPE tmp;
    DATA_TYPE val, lcut, hcut, medary[nmed];

    // use this value as a default in place of bad pixels (blank, NAN)
    DATA_TYPE mval = (DATA_TYPE)((minValue_ + maxValue_)/2);

    initGetVal();  // init flag for speeding up bias subtraction

    if (x1-x0 <= nmed || y1-y0 <= nmed)
	return;
    for (i=y0; i<=y1; i+=yskip) {
	for (j=x0; j<=x1; j+=xskip) {
	    p = i*width_ + j;

	    // get array for finding meadian
	    for (k=0; k < nmed; k++) {
		medary[k] = getVal(rawImage, p++);
		// ignore blank pixels and NANs
		if (ISNAN(medary[k]) || (haveBlank_ && medary[k] == blank_)) {
		    medary[k] = mval;
		}
	    }

	    // get median value
	    for (k=0; k < nmed; k++) {
		for (l=k; l < nmed; l++) {
		    if (medary[k] < medary[l]) {
			tmp = medary[l];
			medary[l] = medary[k];
			medary[k] = tmp;
		    }
		}
	    }
	    val = medary[nmed/2];

            if ( val == mval ) {
                if ( i == y0 ) {
                    lcut = hcut = 0; // To be safe.
                }
                continue; // PWD: Skip runs of blank pixels.
            }

	    if (i == y0)
		// set initial low and high cut values
		lcut = hcut = val;
	    else {
		// compare meadian with lcut, hcut
		if (val < lcut)
		    lcut = val;
		if (val > hcut)
		    hcut = val;
	    }
	}
    }

    setCutLevels(lcut, hcut, 0);
}


/*
 * Fill the given array (xyvalues) with statistics about the distribution
 * of pixels in the visible image area (given by x0_, y0_, x1_, y1_).
 * xyvalues[n*2+1] is set to the number of pixels with value at or near n.
 * The factor is used to fit the information in the given size aray.
 */
void CLASS_NAME::getPixDist(int numValues, double* xyvalues, double factor)
{
    DATA_TYPE* rawImage = (DATA_TYPE*)image_.dataPtr();
    DATA_TYPE mv = (DATA_TYPE)minValue_;
    DATA_TYPE value;

    initGetVal();  // init flag for speeding up bias subtraction

    // the Y values are the number of pixels in a given range
    // note: to save time, don't check all the pixels, just a
    // number of sample lines in the visible area of the image.
    if (x1_ <= x0_ || y1_ <= y0_)
	return;

    for (int i=y0_; i<y1_; i++) {
	for (int j=x0_; j<x1_; j++) {
	    // the code below converts an image pixel value to an index
	    // in the xyvalues array, so that we can increment the count for
	    // that pixel value range. The array is numValues*2 long, since
	    // for each pixel value, the value and the count are stored.
	    value = getVal(rawImage, i*width_+j);
	    if (ISNAN(value) || (haveBlank_ && value == blank_))
		continue;
	    int idx = int((value-mv)/factor);
	    if (idx >= 0 && idx < numValues)
		xyvalues[idx*2+1]++;
	}
    }
}


/*
 * Fill the given histogram with the distribution of pixels in the
 * visible image area (given by x0_, y0_, x1_, y1_).  h.histogram[n] is
 * set to the number of pixels with a value of n (after conversion to
 * short if needed).
 */
void CLASS_NAME::getHistogram(ImageDataHistogram& hist)
{
    DATA_TYPE* rawImage = (DATA_TYPE*)image_.dataPtr();
    DATA_TYPE value;

    initGetVal();  // init flag for speeding up bias subtraction

    // if we are looking at the whole image, ignore the margin
    int w = x1_ - x0_ + 1, h = y1_ - y0_ + 1;
    int xmargin = 0, ymargin = 0;
    if (w == width_)
	xmargin = int(w * 0.2);
    if (y0_ == 0)
	ymargin = int(h * 0.2);

    int x0 = x0_ + xmargin;
    int y0 = y0_ + ymargin;
    int x1 = x1_ - xmargin;
    int y1 = y1_ - ymargin;

    // the array values are the number of pixels in a given range
    // note: to save time, don't check all the pixels, just a
    // number of sample lines in the visible area of the image.
    if (x1 <= x0 || y1 <= y0) {
	hist.area = 0;
	return;
    }
    hist.area = (x1 - x0) * (y1 - y0);

    for (int i=y0; i<y1; i++) {
	for (int j=x0; j<x1; j++) {
	    // the code below converts an image pixel value to short and then
	    // uses it to index in the histogram array, so that we can increment the
	    // count for that pixel value.
	    value = getVal(rawImage, i*width_+j);
	    if (ISNAN(value) || (haveBlank_ && value == blank_))
		continue;
	    hist.histogram[convertToUshort(value)]++;
	}
    }
}


/*
 * If there is a special value for blank pixels, get it.
 *
 * Note that the blank pixel value is not scaled by bscale, since we
 * compare pixels values with this value before scaling.
 */
void CLASS_NAME::initBlankPixel()
{
    //  If an override for the BLANK value exists, use it.
    if ( blankValue_[0] != '\0' ) {
        haveBlank_ = parseBlank( blankValue_ );
    }
    if (!haveBlank_) {
        haveBlank_ = (image_.get("BLANK", blank_) == 0);
        if (!haveBlank_)
            haveBlank_ = (image_.get("BADPIXEL", blank_) == 0);
    }
}

#undef ISNAN