This file is indexed.

/usr/share/perl5/Slic3r/Print/SupportMaterial.pm is in slic3r 1.1.7+dfsg-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
package Slic3r::Print::SupportMaterial;
use Moo;

use List::Util qw(sum min max);
use Slic3r::ExtrusionPath ':roles';
use Slic3r::Flow ':roles';
use Slic3r::Geometry qw(scale scaled_epsilon PI rad2deg deg2rad convex_hull);
use Slic3r::Geometry::Clipper qw(offset diff union union_ex intersection offset_ex offset2
    intersection_pl offset2_ex diff_pl);
use Slic3r::Surface ':types';

has 'print_config'      => (is => 'rw', required => 1);
has 'object_config'     => (is => 'rw', required => 1);
has 'flow'              => (is => 'rw', required => 1);
has 'first_layer_flow'  => (is => 'rw', required => 1);
has 'interface_flow'    => (is => 'rw', required => 1);

use constant DEBUG_CONTACT_ONLY => 0;

# how much we extend support around the actual contact area
use constant MARGIN => 1.5;
    
# increment used to reach MARGIN in steps to avoid trespassing thin objects
use constant MARGIN_STEP => MARGIN/3;

# generate a tree-like structure to save material
use constant PILLAR_SIZE    => 2.5;
use constant PILLAR_SPACING => 10;

sub generate {
    my ($self, $object) = @_;
    
    # Determine the top surfaces of the support, defined as:
    # contact = overhangs - clearance + margin
    # This method is responsible for identifying what contact surfaces
    # should the support material expose to the object in order to guarantee
    # that it will be effective, regardless of how it's built below.
    my ($contact, $overhang) = $self->contact_area($object);
    
    # Determine the top surfaces of the object. We need these to determine 
    # the layer heights of support material and to clip support to the object
    # silhouette.
    my ($top) = $self->object_top($object, $contact);
    
    # We now know the upper and lower boundaries for our support material object
    # (@$contact_z and @$top_z), so we can generate intermediate layers.
    my $support_z = $self->support_layers_z(
        [ sort keys %$contact ],
        [ sort keys %$top ],
        max(map $_->height, @{$object->layers})
    );
    
    # If we wanted to apply some special logic to the first support layers lying on
    # object's top surfaces this is the place to detect them
    
    my $shape = [];
    if ($self->object_config->support_material_pattern eq 'pillars') {
        $self->generate_pillars_shape($contact, $support_z, $shape);
    }
    
    # Propagate contact layers downwards to generate interface layers
    my ($interface) = $self->generate_interface_layers($support_z, $contact, $top);
    $self->clip_with_object($interface, $support_z, $object);
    $self->clip_with_shape($interface, $shape) if @$shape;
    
    # Propagate contact layers and interface layers downwards to generate
    # the main support layers.
    my ($base) = $self->generate_base_layers($support_z, $contact, $interface, $top);
    $self->clip_with_object($base, $support_z, $object);
    $self->clip_with_shape($base, $shape) if @$shape;
    
    # Install support layers into object.
    for my $i (0 .. $#$support_z) {
        push @{$object->support_layers}, Slic3r::Layer::Support->new(
            object  => $object,
            id      => $i,
            height  => ($i == 0) ? $support_z->[$i] : ($support_z->[$i] - $support_z->[$i-1]),
            print_z => $support_z->[$i],
            slice_z => -1,
            slices  => [],
        );
        if ($i >= 1) {
            $object->support_layers->[-2]->upper_layer($object->support_layers->[-1]);
            $object->support_layers->[-1]->lower_layer($object->support_layers->[-2]);
        }
    }
    
    # Generate the actual toolpaths and save them into each layer.
    $self->generate_toolpaths($object, $overhang, $contact, $interface, $base);
}

sub contact_area {
    my ($self, $object) = @_;
    
    # if user specified a custom angle threshold, convert it to radians
    my $threshold_rad;
    if ($self->object_config->support_material_threshold) {
        $threshold_rad = deg2rad($self->object_config->support_material_threshold + 1);  # +1 makes the threshold inclusive
        Slic3r::debugf "Threshold angle = %d°\n", rad2deg($threshold_rad);
    }
    
    # determine contact areas
    my %contact  = ();  # contact_z => [ polygons ]
    my %overhang = ();  # contact_z => [ polygons ] - this stores the actual overhang supported by each contact layer
    for my $layer_id (0 .. $#{$object->layers}) {
        # note $layer_id might != $layer->id when raft_layers > 0
        # so $layer_id == 0 means first object layer
        # and $layer->id == 0 means first print layer (including raft)
        
        if ($self->object_config->raft_layers == 0) {
            next if $layer_id == 0;
        } elsif (!$self->object_config->support_material) {
            # if we are only going to generate raft just check 
            # the 'overhangs' of the first object layer
            last if $layer_id > 0;
        }
        my $layer = $object->layers->[$layer_id];
        
        # detect overhangs and contact areas needed to support them
        my (@overhang, @contact) = ();
        if ($layer_id == 0) {
            # this is the first object layer, so we're here just to get the object
            # footprint for the raft
            # we only consider contours and discard holes to get a more continuous raft
            push @overhang, map $_->clone, map $_->contour, @{$layer->slices};
            push @contact, @{offset(\@overhang, scale +MARGIN)};
        } else {
            my $lower_layer = $object->layers->[$layer_id-1];
            foreach my $layerm (@{$layer->regions}) {
                my $fw = $layerm->flow(FLOW_ROLE_PERIMETER)->scaled_width;
                my $diff;
            
                # If a threshold angle was specified, use a different logic for detecting overhangs.
                if (defined $threshold_rad
                    || $layer_id < $self->object_config->support_material_enforce_layers
                    || ($self->object_config->raft_layers > 0 && $layer_id == 0)) {
                    my $d = defined $threshold_rad
                        ? scale $lower_layer->height * ((cos $threshold_rad) / (sin $threshold_rad))
                        : 0;
                
                    $diff = diff(
                        offset([ map $_->p, @{$layerm->slices} ], -$d),
                        [ map @$_, @{$lower_layer->slices} ],
                    );
                
                    # only enforce spacing from the object ($fw/2) if the threshold angle
                    # is not too high: in that case, $d will be very small (as we need to catch
                    # very short overhangs), and such contact area would be eaten by the
                    # enforced spacing, resulting in high threshold angles to be almost ignored
                    $diff = diff(
                        offset($diff, $d - $fw/2),
                        [ map @$_, @{$lower_layer->slices} ],
                    ) if $d > $fw/2;
                } else {
                    $diff = diff(
                        [ map $_->p, @{$layerm->slices} ],
                        offset([ map @$_, @{$lower_layer->slices} ], +$fw*2),
                    );
                
                    # collapse very tiny spots
                    $diff = offset2($diff, -$fw/10, +$fw/10);
                
                    # $diff now contains the ring or stripe comprised between the boundary of 
                    # lower slices and the centerline of the last perimeter in this overhanging layer.
                    # Void $diff means that there's no upper perimeter whose centerline is
                    # outside the lower slice boundary, thus no overhang
                }
                
                if ($self->object_config->dont_support_bridges) {
                    # compute the area of bridging perimeters
                    # Note: this is duplicate code from GCode.pm, we need to refactor
                    
                    my $bridged_perimeters;  # Polygons
                    {
                        my $bridge_flow = $layerm->flow(FLOW_ROLE_PERIMETER, 1);
                        
                        my $nozzle_diameter = $self->print_config->get_at('nozzle_diameter', $layerm->region->config->perimeter_extruder-1);
                        my $lower_grown_slices = offset([ map @$_, @{$lower_layer->slices} ], +scale($nozzle_diameter/2));
                        
                        # TODO: split_at_first_point() could split a bridge mid-way
                        my @overhang_perimeters =
                            map { $_->isa('Slic3r::ExtrusionLoop') ? $_->polygon->split_at_first_point : $_->polyline->clone }
                            @{$layerm->perimeters};
                        
                        # workaround for Clipper bug, see Slic3r::Polygon::clip_as_polyline()
                        $_->[0]->translate(1,0) for @overhang_perimeters;
                        @overhang_perimeters = @{diff_pl(
                            \@overhang_perimeters,
                            $lower_grown_slices,
                        )};
                        
                        # only consider straight overhangs
                        @overhang_perimeters = grep $_->is_straight, @overhang_perimeters;
                        
                        # only consider overhangs having endpoints inside layer's slices
                        foreach my $polyline (@overhang_perimeters) {
                            $polyline->extend_start($fw);
                            $polyline->extend_end($fw);
                        }
                        @overhang_perimeters = grep {
                            $layer->slices->contains_point($_->first_point) && $layer->slices->contains_point($_->last_point)
                        } @overhang_perimeters;
                        
                        # convert bridging polylines into polygons by inflating them with their thickness
                        {
                            # since we're dealing with bridges, we can't assume width is larger than spacing,
                            # so we take the largest value and also apply safety offset to be ensure no gaps
                            # are left in between
                            my $w = max($bridge_flow->scaled_width, $bridge_flow->scaled_spacing);
                            $bridged_perimeters = union([
                                map @{$_->grow($w/2 + 10)}, @overhang_perimeters
                            ]);
                        }
                    }
                    
                    if (1) {
                        # remove the entire bridges and only support the unsupported edges
                        my @bridges = map $_->expolygon,
                            grep $_->bridge_angle != -1,
                            @{$layerm->fill_surfaces->filter_by_type(S_TYPE_BOTTOMBRIDGE)};
                            
                        $diff = diff(
                            $diff,
                            [
                                (map @$_, @bridges),
                                @$bridged_perimeters,
                            ],
                            1,
                        );
                        
                        push @$diff, @{intersection(
                            [ map @{$_->grow(+scale MARGIN)}, @{$layerm->unsupported_bridge_edges} ],
                            [ map @$_, @bridges ],
                        )};
                    
                    } else {
                        # just remove bridged areas
                        $diff = diff(
                            $diff,
                            [ map @$_, @{$layerm->bridged} ],
                            1,
                        );
                    }
                }
                
                next if !@$diff;
                push @overhang, @$diff;  # NOTE: this is not the full overhang as it misses the outermost half of the perimeter width!
            
                # Let's define the required contact area by using a max gap of half the upper 
                # extrusion width and extending the area according to the configured margin.
                # We increment the area in steps because we don't want our support to overflow
                # on the other side of the object (if it's very thin).
                {
                    my @slices_margin = @{offset([ map @$_, @{$lower_layer->slices} ], +$fw/2)};
                    for ($fw/2, map {scale MARGIN_STEP} 1..(MARGIN / MARGIN_STEP)) {
                        $diff = diff(
                            offset($diff, $_),
                            \@slices_margin,
                        );
                    }
                }
                push @contact, @$diff;
            }
        }
        next if !@contact;
        
        # now apply the contact areas to the layer were they need to be made
        {
            # get the average nozzle diameter used on this layer
            my @nozzle_diameters = map $self->print_config->get_at('nozzle_diameter', $_),
                map { $_->config->perimeter_extruder-1, $_->config->infill_extruder-1 }
                @{$layer->regions};
            my $nozzle_diameter = sum(@nozzle_diameters)/@nozzle_diameters;
            
            my $contact_z = $layer->print_z - contact_distance($nozzle_diameter);
            ###$contact_z = $layer->print_z - $layer->height;
            
            # ignore this contact area if it's too low
            next if $contact_z < $self->object_config->get_value('first_layer_height');
            
            $contact{$contact_z}  = [ @contact ];
            $overhang{$contact_z} = [ @overhang ];
            
            if (0) {
                require "Slic3r/SVG.pm";
                Slic3r::SVG::output("contact_" . $contact_z . ".svg",
                    expolygons      => union_ex(\@contact),
                    red_expolygons  => union_ex(\@overhang),
                );
            }
        }
    }
    
    return (\%contact, \%overhang);
}

sub object_top {
    my ($self, $object, $contact) = @_;
    
    # find object top surfaces
    # we'll use them to clip our support and detect where does it stick
    my %top = ();  # print_z => [ expolygons ]
    my $projection = [];
    foreach my $layer (reverse @{$object->layers}) {
        if (my @top = map @{$_->slices->filter_by_type(S_TYPE_TOP)}, @{$layer->regions}) {
            # compute projection of the contact areas above this top layer
            # first add all the 'new' contact areas to the current projection
            # ('new' means all the areas that are lower than the last top layer
            # we considered)
            my $min_top = min(keys %top) // max(keys %$contact);
            # use <= instead of just < because otherwise we'd ignore any contact regions
            # having the same Z of top layers
            push @$projection, map @{$contact->{$_}}, grep { $_ > $layer->print_z && $_ <= $min_top } keys %$contact;
            
            # now find whether any projection falls onto this top surface
            my $touching = intersection($projection, [ map $_->p, @top ]);
            if (@$touching) {
                # grow top surfaces so that interface and support generation are generated
                # with some spacing from object - it looks we don't need the actual
                # top shapes so this can be done here
                $top{ $layer->print_z } = offset($touching, $self->flow->scaled_width);
            }
            
            # remove the areas that touched from the projection that will continue on 
            # next, lower, top surfaces
            $projection = diff($projection, $touching);
        }
    }
    
    return \%top;
}

sub support_layers_z {
    my ($self, $contact_z, $top_z, $max_object_layer_height) = @_;
    
    # quick table to check whether a given Z is a top surface
    my %top = map { $_ => 1 } @$top_z;
    
    # determine layer height for any non-contact layer
    # we use max() to prevent many ultra-thin layers to be inserted in case
    # layer_height > nozzle_diameter * 0.75
    my $nozzle_diameter = $self->print_config->get_at('nozzle_diameter', $self->object_config->support_material_extruder-1);
    my $support_material_height = max($max_object_layer_height, $nozzle_diameter * 0.75);
    my @z = sort { $a <=> $b } @$contact_z, @$top_z, (map $_ + $nozzle_diameter, @$top_z);
    
    # enforce first layer height
    my $first_layer_height = $self->object_config->get_value('first_layer_height');
    shift @z while @z && $z[0] <= $first_layer_height;
    unshift @z, $first_layer_height;
    
    # add raft layers by dividing the space between first layer and
    # first contact layer evenly
    if ($self->object_config->raft_layers > 1 && @z >= 2) {
        # $z[1] is last raft layer (contact layer for the first layer object)
        my $height = ($z[1] - $z[0]) / ($self->object_config->raft_layers - 1);
        splice @z, 1, 0,
            map { sprintf "%.2f", $_ }
            map { $z[0] + $height * $_ }
            0..($self->object_config->raft_layers - 1);
    }
    
    for (my $i = $#z; $i >= 0; $i--) {
        my $target_height = $support_material_height;
        if ($i > 0 && $top{ $z[$i-1] }) {
            $target_height = $nozzle_diameter;
        }
        
        # enforce first layer height
        if (($i == 0 && $z[$i] > $target_height + $first_layer_height)
            || ($z[$i] - $z[$i-1] > $target_height + Slic3r::Geometry::epsilon)) {
            splice @z, $i, 0, ($z[$i] - $target_height);
            $i++;
        }
    }
    
    # remove duplicates and make sure all 0.x values have the leading 0
    {
        my %sl = map { 1 * $_ => 1 } @z;
        @z = sort { $a <=> $b } keys %sl;
    }
    
    return \@z;
}

sub generate_interface_layers {
    my ($self, $support_z, $contact, $top) = @_;
    
    # let's now generate interface layers below contact areas
    my %interface = ();  # layer_id => [ polygons ]
    my $interface_layers_num = $self->object_config->support_material_interface_layers;
    for my $layer_id (0 .. $#$support_z) {
        my $z = $support_z->[$layer_id];
        my $this = $contact->{$z} // next;
        
        # count contact layer as interface layer
        for (my $i = $layer_id-1; $i >= 0 && $i > $layer_id-$interface_layers_num; $i--) {
            $z = $support_z->[$i];
            my @overlapping_layers = $self->overlapping_layers($i, $support_z);
            my @overlapping_z = map $support_z->[$_], @overlapping_layers;
            
            # Compute interface area on this layer as diff of upper contact area
            # (or upper interface area) and layer slices.
            # This diff is responsible of the contact between support material and
            # the top surfaces of the object. We should probably offset the top 
            # surfaces vertically before performing the diff, but this needs 
            # investigation.
            $this = $interface{$i} = diff(
                [
                    @$this,                         # clipped projection of the current contact regions
                    @{ $interface{$i} || [] },      # interface regions already applied to this layer
                ],
                [
                    (map @$_, map $top->{$_}, grep exists $top->{$_}, @overlapping_z),  # top slices on this layer
                    (map @$_, map $contact->{$_}, grep exists $contact->{$_}, @overlapping_z),  # contact regions on this layer
                ],
                1,
            );
        }
    }
    
    return \%interface;
}

sub generate_base_layers {
    my ($self, $support_z, $contact, $interface, $top) = @_;
    
    # let's now generate support layers under interface layers
    my $base = {};  # layer_id => [ polygons ]
    {
        for my $i (reverse 0 .. $#$support_z-1) {
            my $z = $support_z->[$i];
            my @overlapping_layers = $self->overlapping_layers($i, $support_z);
            my @overlapping_z = map $support_z->[$_], @overlapping_layers;
            
            # in case we have no interface layers, look at upper contact
            # (1 interface layer means we only have contact layer, so $interface->{$i+1} is empty)
            my @upper_contact = ();
            if ($self->object_config->support_material_interface_layers <= 1) {
                @upper_contact = @{ $contact->{$support_z->[$i+1]} || [] };
            }
            
            $base->{$i} = diff(
                [
                    @{ $base->{$i+1} || [] },         # support regions on upper layer
                    @{ $interface->{$i+1} || [] },    # interface regions on upper layer
                    @upper_contact,                   # contact regions on upper layer
                ],
                [
                    (map @$_, map $top->{$_}, grep exists $top->{$_}, @overlapping_z),  # top slices on this layer
                    (map @$_, map $interface->{$_}, grep exists $interface->{$_}, @overlapping_layers),  # interface regions on this layer
                    (map @$_, map $contact->{$_}, grep exists $contact->{$_}, @overlapping_z),  # contact regions on this layer
                ],
                1,
            );
        }
    }
    
    return $base;
}

# This method removes object silhouette from support material
# (it's used with interface and base only). It removes a bit more,
# leaving a thin gap between object and support in the XY plane.
sub clip_with_object {
    my ($self, $support, $support_z, $object) = @_;
    
    foreach my $i (keys %$support) {
        next if !@{$support->{$i}};
        
        my $zmax = $support_z->[$i];
        my $zmin = ($i == 0) ? 0 : $support_z->[$i-1];
        my @layers = grep { $_->print_z > $zmin && ($_->print_z - $_->height) < $zmax }
            @{$object->layers};
        
        # $layer->slices contains the full shape of layer, thus including
        # perimeter's width. $support contains the full shape of support
        # material, thus including the width of its foremost extrusion.
        # We leave a gap equal to a full extrusion width.
        $support->{$i} = diff(
            $support->{$i},
            offset([ map @$_, map @{$_->slices}, @layers ], +$self->flow->scaled_width),
        );
    }
}

sub generate_toolpaths {
    my ($self, $object, $overhang, $contact, $interface, $base) = @_;
    
    my $flow            = $self->flow;
    my $interface_flow  = $self->interface_flow;
    
    # shape of contact area
    my $contact_loops   = 1;
    my $circle_radius   = 1.5 * $interface_flow->scaled_width;
    my $circle_distance = 3 * $circle_radius;
    my $circle          = Slic3r::Polygon->new(map [ $circle_radius * cos $_, $circle_radius * sin $_ ],
                            (5*PI/3, 4*PI/3, PI, 2*PI/3, PI/3, 0));
    
    Slic3r::debugf "Generating patterns\n";
    
    # prepare fillers
    my $pattern = $self->object_config->support_material_pattern;
    my @angles = ($self->object_config->support_material_angle);
    if ($pattern eq 'rectilinear-grid') {
        $pattern = 'rectilinear';
        push @angles, $angles[0] + 90;
    } elsif ($pattern eq 'pillars') {
        $pattern = 'honeycomb';
    }
    
    my %fillers = (
        interface   => $object->fill_maker->filler('rectilinear'),
        support     => $object->fill_maker->filler($pattern),
    );
    
    my $interface_angle = $self->object_config->support_material_angle + 90;
    my $interface_spacing = $self->object_config->support_material_interface_spacing + $interface_flow->spacing;
    my $interface_density = $interface_spacing == 0 ? 1 : $interface_flow->spacing / $interface_spacing;
    my $support_spacing = $self->object_config->support_material_spacing + $flow->spacing;
    my $support_density = $support_spacing == 0 ? 1 : $flow->spacing / $support_spacing;
    
    my $process_layer = sub {
        my ($layer_id) = @_;
        my $layer = $object->support_layers->[$layer_id];
        my $z = $layer->print_z;
        
        my $overhang    = $overhang->{$z}           || [];
        my $contact     = $contact->{$z}            || [];
        my $interface   = $interface->{$layer_id}   || [];
        my $base        = $base->{$layer_id}        || [];
        
        if (DEBUG_CONTACT_ONLY) {
            $interface = [];
            $base = [];
        }
        
        if (0) {
            require "Slic3r/SVG.pm";
            Slic3r::SVG::output("layer_" . $z . ".svg",
                red_expolygons      => union_ex($contact),
                green_expolygons    => union_ex($interface),
            );
        }
        
        # islands
        $layer->support_islands->append(@{union_ex([ @$interface, @$base, @$contact ])});
        
        # contact
        my $contact_infill = [];
        if ($self->object_config->support_material_interface_layers == 0) {
            # if no interface layers were requested we treat the contact layer
            # exactly as a generic base layer
            push @$base, @$contact;
        } elsif (@$contact && $contact_loops > 0) {
            # generate the outermost loop
            
            # find centerline of the external loop (or any other kind of extrusions should the loop be skipped)
            $contact = offset($contact, -$interface_flow->scaled_width/2);
            
            my @loops0 = ();
            {
                # find centerline of the external loop of the contours
                my @external_loops = @$contact;
                
                # only consider the loops facing the overhang
                {
                    my $overhang_with_margin = offset($overhang, +$interface_flow->scaled_width/2);
                    @external_loops = grep {
                        @{intersection_pl(
                            [ $_->split_at_first_point ],
                            $overhang_with_margin,
                        )}
                    } @external_loops;
                }
                
                # apply a pattern to the loop
                my @positions = map @{Slic3r::Polygon->new(@$_)->equally_spaced_points($circle_distance)}, @external_loops;
                @loops0 = @{diff(
                    [ @external_loops ],
                    [ map { my $c = $circle->clone; $c->translate(@$_); $c } @positions ],
                )};
            }
            
            # make more loops
            my @loops = @loops0;
            for my $i (2..$contact_loops) {
                my $d = ($i-1) * $interface_flow->scaled_spacing;
                push @loops, @{offset2(\@loops0, -$d -0.5*$interface_flow->scaled_spacing, +0.5*$interface_flow->scaled_spacing)};
            }
            
            # clip such loops to the side oriented towards the object
            @loops = @{intersection_pl(
                [ map $_->split_at_first_point, @loops ],
                offset($overhang, +scale MARGIN),
            )};
            
            # add the contact infill area to the interface area
            # note that growing loops by $circle_radius ensures no tiny
            # extrusions are left inside the circles; however it creates
            # a very large gap between loops and contact_infill, so maybe another
            # solution should be found to achieve both goals
            $contact_infill = diff(
                $contact,
                [ map @{$_->grow($circle_radius*1.1)}, @loops ],
            );
            
            # transform loops into ExtrusionPath objects
            my $mm3_per_mm = $interface_flow->mm3_per_mm($layer->height);
            @loops = map Slic3r::ExtrusionPath->new(
                polyline    => $_,
                role        => EXTR_ROLE_SUPPORTMATERIAL_INTERFACE,
                mm3_per_mm  => $mm3_per_mm,
                width       => $interface_flow->width,
                height      => $layer->height,
            ), @loops;
            
            $layer->support_interface_fills->append(@loops);
        }
        
        # interface and contact infill
        if (@$interface || @$contact_infill) {
            $fillers{interface}->angle($interface_angle);
            
            # find centerline of the external loop
            $interface = offset2($interface, +scaled_epsilon, -(scaled_epsilon + $interface_flow->scaled_width/2));
            
            # join regions by offsetting them to ensure they're merged
            $interface = offset([ @$interface, @$contact_infill ], scaled_epsilon);
            
            # turn base support into interface when it's contained in our holes
            # (this way we get wider interface anchoring)
            {
                my @p = @$interface;
                @$interface = ();
                foreach my $p (@p) {
                    if ($p->is_clockwise) {
                        my $p2 = $p->clone;
                        $p2->make_counter_clockwise;
                        next if !@{diff([$p2], $base, 1)};
                    }
                    push @$interface, $p;
                }
            }
            $base = diff($base, $interface);
            
            my @paths = ();
            foreach my $expolygon (@{union_ex($interface)}) {
                my ($params, @p) = $fillers{interface}->fill_surface(
                    Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
                    density     => $interface_density,
                    flow        => $interface_flow,
                    layer_height => $layer->height,
                    complete    => 1,
                );
                my $mm3_per_mm = $params->{flow}->mm3_per_mm($layer->height);
                
                push @paths, map Slic3r::ExtrusionPath->new(
                    polyline    => Slic3r::Polyline->new(@$_),
                    role        => EXTR_ROLE_SUPPORTMATERIAL_INTERFACE,
                    mm3_per_mm  => $mm3_per_mm,
                    width       => $params->{flow}->width,
                    height      => $layer->height,
                ), @p;
            }
            
            $layer->support_interface_fills->append(@paths);
        }
        
        # support or flange
        if (@$base) {
            my $filler = $fillers{support};
            $filler->angle($angles[ ($layer_id) % @angles ]);
            my $density     = $support_density;
            my $base_flow   = $flow;
            
            # find centerline of the external loop/extrusions
            my $to_infill = offset2_ex($base, +scaled_epsilon, -(scaled_epsilon + $flow->scaled_width/2));
            
            my @paths = ();
            
            # base flange
            if ($layer_id == 0) {
                $filler = $fillers{interface};
                $filler->angle($self->object_config->support_material_angle + 90);
                $density        = 0.5;
                $base_flow      = $self->first_layer_flow;
            } else {
                # draw a perimeter all around support infill
                # TODO: use brim ordering algorithm
                my $mm3_per_mm = $flow->mm3_per_mm($layer->height);
                push @paths, map Slic3r::ExtrusionPath->new(
                    polyline    => $_->split_at_first_point,
                    role        => EXTR_ROLE_SUPPORTMATERIAL,
                    mm3_per_mm  => $mm3_per_mm,
                    width       => $flow->width,
                    height      => $layer->height,
                ), map @$_, @$to_infill;
                
                # TODO: use offset2_ex()
                $to_infill = offset_ex([ map @$_, @$to_infill ], -$flow->scaled_spacing);
            }
            
            foreach my $expolygon (@$to_infill) {
                my ($params, @p) = $filler->fill_surface(
                    Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
                    density     => $density,
                    flow        => $base_flow,
                    layer_height => $layer->height,
                    complete    => 1,
                );
                my $mm3_per_mm = $params->{flow}->mm3_per_mm($layer->height);
                
                push @paths, map Slic3r::ExtrusionPath->new(
                    polyline    => Slic3r::Polyline->new(@$_),
                    role        => EXTR_ROLE_SUPPORTMATERIAL,
                    mm3_per_mm  => $mm3_per_mm,
                    width       => $params->{flow}->width,
                    height      => $layer->height,
                ), @p;
            }
            
            $layer->support_fills->append(@paths);
        }
        
        if (0) {
            require "Slic3r/SVG.pm";
            Slic3r::SVG::output("islands_" . $z . ".svg",
                red_expolygons      => union_ex($contact),
                green_expolygons    => union_ex($interface),
                green_polylines     => [ map $_->unpack->polyline, @{$layer->support_contact_fills} ],
                polylines           => [ map $_->unpack->polyline, @{$layer->support_fills} ],
            );
        }
    };
    
    Slic3r::parallelize(
        threads => $self->print_config->threads,
        items => [ 0 .. $#{$object->support_layers} ],
        thread_cb => sub {
            my $q = shift;
            while (defined (my $layer_id = $q->dequeue)) {
                $process_layer->($layer_id);
            }
        },
        no_threads_cb => sub {
            $process_layer->($_) for 0 .. $#{$object->support_layers};
        },
    );
}

sub generate_pillars_shape {
    my ($self, $contact, $support_z, $shape) = @_;
    
    # this prevents supplying an empty point set to BoundingBox constructor
    return if !%$contact;
    
    my $pillar_size     = scale PILLAR_SIZE;
    my $pillar_spacing  = scale PILLAR_SPACING;
    
    my $grid;  # arrayref of polygons
    {
        my $pillar = Slic3r::Polygon->new(
            [0,0],
            [$pillar_size, 0],
            [$pillar_size, $pillar_size],
            [0, $pillar_size],
        );
        
        my @pillars = ();
        my $bb = Slic3r::Geometry::BoundingBox->new_from_points([ map @$_, map @$_, values %$contact ]);
        for (my $x = $bb->x_min; $x <= $bb->x_max-$pillar_size; $x += $pillar_spacing) {
            for (my $y = $bb->y_min; $y <= $bb->y_max-$pillar_size; $y += $pillar_spacing) {
                push @pillars, my $p = $pillar->clone;
                $p->translate($x, $y);
            }
        }
        $grid = union(\@pillars);
    }
    
    # add pillars to every layer
    for my $i (0..$#$support_z) {
        $shape->[$i] = [ @$grid ];
    }
    
    # build capitals
    for my $i (0..$#$support_z) {
        my $z = $support_z->[$i];
        
        my $capitals = intersection(
            $grid,
            $contact->{$z} // [],
        );
        
        # work on one pillar at time (if any) to prevent the capitals from being merged
        # but store the contact area supported by the capital because we need to make 
        # sure nothing is left
        my $contact_supported_by_capitals = [];
        foreach my $capital (@$capitals) {
            # enlarge capital tops
            $capital = offset([$capital], +($pillar_spacing - $pillar_size)/2);
            push @$contact_supported_by_capitals, @$capital;
            
            for (my $j = $i-1; $j >= 0; $j--) {
                my $jz = $support_z->[$j];
                $capital = offset($capital, -$self->interface_flow->scaled_width/2);
                last if !@$capitals;
                push @{ $shape->[$j] }, @$capital;
            }
        }
        
        # Capitals will not generally cover the whole contact area because there will be
        # remainders. For now we handle this situation by projecting such unsupported
        # areas to the ground, just like we would do with a normal support.
        my $contact_not_supported_by_capitals = diff(
            $contact->{$z} // [],
            $contact_supported_by_capitals,
        );
        if (@$contact_not_supported_by_capitals) {
            for (my $j = $i-1; $j >= 0; $j--) {
                push @{ $shape->[$j] }, @$contact_not_supported_by_capitals;
            }
        }
    }
}

sub clip_with_shape {
    my ($self, $support, $shape) = @_;
    
    foreach my $i (keys %$support) {
        # don't clip bottom layer with shape so that we 
        # can generate a continuous base flange
        # also don't clip raft layers
        next if $i == 0;
        next if $i < $self->object_config->raft_layers;
        $support->{$i} = intersection(
            $support->{$i},
            $shape->[$i],
        );
    }
}

# this method returns the indices of the layers overlapping with the given one
sub overlapping_layers {
    my ($self, $i, $support_z) = @_;
    
    my $zmax = $support_z->[$i];
    my $zmin = ($i == 0) ? 0 : $support_z->[$i-1];
    
    return grep {
        my $zmax2 = $support_z->[$_];
        my $zmin2 = ($_ == 0) ? 0 : $support_z->[$_-1];
        $zmax > $zmin2 && $zmin < $zmax2;
    } 0..$#$support_z;
}

# class method
sub contact_distance {
    my ($nozzle_diameter) = @_;
    return $nozzle_diameter * 1.5;
}

1;