/usr/lib/swi-prolog/library/ordsets.pl is in swi-prolog-nox 6.6.6-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | /* Part of SWI-Prolog
Author: Jan Wielemaker
E-mail: J.Wielemaker@cs.vu.nl
WWW: http://www.swi-prolog.org
Copyright (C): 1985-2012, University of Amsterdam
VU University Amsterdam
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, if you link this library with other files,
compiled with a Free Software compiler, to produce an executable, this
library does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
:- module(ordsets,
[ is_ordset/1, % @Term
list_to_ord_set/2, % +List, -OrdSet
ord_add_element/3, % +Set, +Element, -NewSet
ord_del_element/3, % +Set, +Element, -NewSet
ord_intersect/2, % +Set1, +Set2 (test non-empty)
ord_intersect/3, % +Set1, +Set2, -Intersection
ord_intersection/3, % +Set1, +Set2, -Intersection
ord_intersection/4, % +Set1, +Set2, -Intersection, -Diff
ord_disjoint/2, % +Set1, +Set2
ord_subtract/3, % +Set, +Delete, -Remaining
ord_union/2, % +SetOfOrdSets, -Set
ord_union/3, % +Set1, +Set2, -Union
ord_union/4, % +Set1, +Set2, -Union, -New
ord_subset/2, % +Sub, +Super (test Sub is in Super)
% Non-Quintus extensions
ord_empty/1, % ?Set
ord_memberchk/2, % +Element, +Set,
ord_symdiff/3, % +Set1, +Set2, ?Diff
% SICSTus extensions
ord_seteq/2, % +Set1, +Set2
ord_intersection/2 % +PowerSet, -Intersection
]).
:- use_module(library(oset)).
:- set_prolog_flag(generate_debug_info, false).
/** <module> Ordered set manipulation
Ordered sets are lists with unique elements sorted to the standard order
of terms (see sort/2). Exploiting ordering, many of the set operations
can be expressed in order N rather than N^2 when dealing with unordered
sets that may contain duplicates. The library(ordsets) is available in a
number of Prolog implementations. Our predicates are designed to be
compatible with common practice in the Prolog community. The
implementation is incomplete and relies partly on library(oset), an
older ordered set library distributed with SWI-Prolog. New applications
are advised to use library(ordsets).
Some of these predicates match directly to corresponding list
operations. It is advised to use the versions from this library to make
clear you are operating on ordered sets. An exception is member/2. See
ord_memberchk/2.
The ordsets library is based on the standard order of terms. This
implies it can handle all Prolog terms, including variables. Note
however, that the ordering is not stable if a term inside the set is
further instantiated. Also note that variable ordering changes if
variables in the set are unified with each other or a variable in the
set is unified with a variable that is `older' than the newest variable
in the set. In practice, this implies that it is allowed to use
member(X, OrdSet) on an ordered set that holds variables only if X is a
fresh variable. In other cases one should cease using it as an ordset
because the order it relies on may have been changed.
*/
%% is_ordset(@Term) is semidet.
%
% True if Term is an ordered set. All predicates in this library
% expect ordered sets as input arguments. Failing to fullfil this
% assumption results in undefined behaviour. Typically, ordered
% sets are created by predicates from this library, sort/2 or
% setof/3.
is_ordset(Term) :-
is_list(Term),
is_ordset2(Term).
is_ordset2([]).
is_ordset2([H|T]) :-
is_ordset3(T, H).
is_ordset3([], _).
is_ordset3([H2|T], H) :-
H2 @> H,
is_ordset3(T, H2).
%% ord_empty(?List) is semidet.
%
% True when List is the empty ordered set. Simply unifies list
% with the empty list. Not part of Quintus.
ord_empty([]).
%% ord_seteq(+Set1, +Set2) is semidet.
%
% True if Set1 and Set2 have the same elements. As both are
% canonical sorted lists, this is the same as ==/2.
%
% @compat sicstus
ord_seteq(Set1, Set2) :-
Set1 == Set2.
%% list_to_ord_set(+List, -OrdSet) is det.
%
% Transform a list into an ordered set. This is the same as
% sorting the list.
list_to_ord_set(List, Set) :-
sort(List, Set).
%% ord_intersect(+Set1, +Set2) is semidet.
%
% True if both ordered sets have a non-empty intersection.
ord_intersect([H1|T1], L2) :-
ord_intersect_(L2, H1, T1).
ord_intersect_([H2|T2], H1, T1) :-
compare(Order, H1, H2),
ord_intersect__(Order, H1, T1, H2, T2).
ord_intersect__(<, _H1, T1, H2, T2) :-
ord_intersect_(T1, H2, T2).
ord_intersect__(=, _H1, _T1, _H2, _T2).
ord_intersect__(>, H1, T1, _H2, T2) :-
ord_intersect_(T2, H1, T1).
%% ord_disjoint(+Set1, +Set2) is semidet.
%
% True if Set1 and Set2 have no common elements. This is the
% negation of ord_intersect/2.
ord_disjoint(Set1, Set2) :-
\+ ord_intersect(Set1, Set2).
%% ord_intersect(+Set1, +Set2, -Intersection)
%
% Intersection holds the common elements of Set1 and Set2.
%
% @deprecated Use ord_intersection/3
ord_intersect(Set1, Set2, Intersection) :-
oset_int(Set1, Set2, Intersection).
%% ord_intersection(+PowerSet, -Intersection)
%
% Intersection of a powerset. True when Intersection is an ordered
% set holding all elements common to all sets in PowerSet.
%
% @compat sicstus
ord_intersection(PowerSet, Intersection) :-
key_by_length(PowerSet, Pairs),
keysort(Pairs, [_-S|Sorted]),
l_int(Sorted, S, Intersection).
key_by_length([], []).
key_by_length([H|T0], [L-H|T]) :-
length(H, L),
key_by_length(T0, T).
l_int([], S, S).
l_int([_-H|T], S0, S) :-
ord_intersection(S0, H, S1),
l_int(T, S1, S).
%% ord_intersection(+Set1, +Set2, -Intersection) is det.
%
% Intersection holds the common elements of Set1 and Set2.
ord_intersection(Set1, Set2, Intersection) :-
oset_int(Set1, Set2, Intersection).
%% ord_intersection(+Set1, +Set2, ?Intersection, ?Difference) is det.
%
% Intersection and difference between two ordered sets.
% Intersection is the intersection between Set1 and Set2, while
% Difference is defined by ord_subtract(Set2, Set1, Difference).
%
% @see ord_intersection/3 and ord_subtract/3.
ord_intersection([], L, [], L) :- !.
ord_intersection([_|_], [], [], []) :- !.
ord_intersection([H1|T1], [H2|T2], Intersection, Difference) :-
compare(Diff, H1, H2),
ord_intersection2(Diff, H1, T1, H2, T2, Intersection, Difference).
ord_intersection2(=, H1, T1, _H2, T2, [H1|T], Difference) :-
ord_intersection(T1, T2, T, Difference).
ord_intersection2(<, _, T1, H2, T2, Intersection, Difference) :-
ord_intersection(T1, [H2|T2], Intersection, Difference).
ord_intersection2(>, H1, T1, H2, T2, Intersection, [H2|HDiff]) :-
ord_intersection([H1|T1], T2, Intersection, HDiff).
%% ord_add_element(+Set1, +Element, ?Set2) is det.
%
% Insert an element into the set. This is the same as
% ord_union(Set1, [Element], Set2).
ord_add_element(Set1, Element, Set2) :-
oset_addel(Set1, Element, Set2).
%% ord_del_element(+Set, +Element, -NewSet) is det.
%
% Delete an element from an ordered set. This is the same as
% ord_subtract(Set, [Element], NewSet).
ord_del_element(Set, Element, NewSet) :-
oset_delel(Set, Element, NewSet).
%% ord_memberchk(+Element, +OrdSet) is semidet.
%
% True if Element is a member of OrdSet, compared using ==. Note
% that _enumerating_ elements of an ordered set can be done using
% member/2.
%
% Some Prolog implementations also provide ord_member/2, with the
% same semantics as ord_memberchk/2. We believe that having a
% semidet ord_member/2 is unacceptably inconsistent with the *_chk
% convention. Portable code should use ord_memberchk/2 or
% member/2.
%
% @author Richard O'Keefe
ord_memberchk(Item, [X1,X2,X3,X4|Xs]) :- !,
compare(R4, Item, X4),
( R4 = (>) -> ord_memberchk(Item, Xs)
; R4 = (<) ->
compare(R2, Item, X2),
( R2 = (>) -> Item == X3
; R2 = (<) -> Item == X1
;/* R2 = (=), Item == X2 */ true
)
;/* R4 = (=) */ true
).
ord_memberchk(Item, [X1,X2|Xs]) :- !,
compare(R2, Item, X2),
( R2 = (>) -> ord_memberchk(Item, Xs)
; R2 = (<) -> Item == X1
;/* R2 = (=) */ true
).
ord_memberchk(Item, [X1]) :-
Item == X1.
%% ord_subset(+Sub, +Super) is semidet.
%
% Is true if all elements of Sub are in Super
ord_subset([], _).
ord_subset([H1|T1], [H2|T2]) :-
compare(Order, H1, H2),
ord_subset_(Order, H1, T1, T2).
ord_subset_(>, H1, T1, [H2|T2]) :-
compare(Order, H1, H2),
ord_subset_(Order, H1, T1, T2).
ord_subset_(=, _, T1, T2) :-
ord_subset(T1, T2).
%% ord_subtract(+InOSet, +NotInOSet, -Diff) is det.
%
% Diff is the set holding all elements of InOSet that are not in
% NotInOSet.
ord_subtract(InOSet, NotInOSet, Diff) :-
oset_diff(InOSet, NotInOSet, Diff).
%% ord_union(+SetOfSets, -Union) is det.
%
% True if Union is the union of all elements in the superset
% SetOfSets. Each member of SetOfSets must be an ordered set, the
% sets need not be ordered in any way.
%
% @author Copied from YAP, probably originally by Richard O'Keefe.
ord_union([], []).
ord_union([Set|Sets], Union) :-
length([Set|Sets], NumberOfSets),
ord_union_all(NumberOfSets, [Set|Sets], Union, []).
ord_union_all(N, Sets0, Union, Sets) :-
( N =:= 1
-> Sets0 = [Union|Sets]
; N =:= 2
-> Sets0 = [Set1,Set2|Sets],
ord_union(Set1,Set2,Union)
; A is N>>1,
Z is N-A,
ord_union_all(A, Sets0, X, Sets1),
ord_union_all(Z, Sets1, Y, Sets),
ord_union(X, Y, Union)
).
%% ord_union(+Set1, +Set2, ?Union) is det.
%
% Union is the union of Set1 and Set2
ord_union(Set1, Set2, Union) :-
oset_union(Set1, Set2, Union).
%% ord_union(+Set1, +Set2, -Union, -New) is det.
%
% True iff ord_union(Set1, Set2, Union) and
% ord_subtract(Set2, Set1, New).
ord_union([], Set2, Set2, Set2).
ord_union([H|T], Set2, Union, New) :-
ord_union_1(Set2, H, T, Union, New).
ord_union_1([], H, T, [H|T], []).
ord_union_1([H2|T2], H, T, Union, New) :-
compare(Order, H, H2),
ord_union(Order, H, T, H2, T2, Union, New).
ord_union(<, H, T, H2, T2, [H|Union], New) :-
ord_union_2(T, H2, T2, Union, New).
ord_union(>, H, T, H2, T2, [H2|Union], [H2|New]) :-
ord_union_1(T2, H, T, Union, New).
ord_union(=, H, T, _, T2, [H|Union], New) :-
ord_union(T, T2, Union, New).
ord_union_2([], H2, T2, [H2|T2], [H2|T2]).
ord_union_2([H|T], H2, T2, Union, New) :-
compare(Order, H, H2),
ord_union(Order, H, T, H2, T2, Union, New).
%% ord_symdiff(+Set1, +Set2, ?Difference) is det.
%
% Is true when Difference is the symmetric difference of Set1 and
% Set2. I.e., Difference contains all elements that are not in the
% intersection of Set1 and Set2. The semantics is the same as the
% sequence below (but the actual implementation requires only a
% single scan).
%
% ==
% ord_union(Set1, Set2, Union),
% ord_intersection(Set1, Set2, Intersection),
% ord_subtract(Union, Intersection, Difference).
% ==
%
% For example:
%
% ==
% ?- ord_symdiff([1,2], [2,3], X).
% X = [1,3].
% ==
ord_symdiff([], Set2, Set2).
ord_symdiff([H1|T1], Set2, Difference) :-
ord_symdiff(Set2, H1, T1, Difference).
ord_symdiff([], H1, T1, [H1|T1]).
ord_symdiff([H2|T2], H1, T1, Difference) :-
compare(Order, H1, H2),
ord_symdiff(Order, H1, T1, H2, T2, Difference).
ord_symdiff(<, H1, Set1, H2, T2, [H1|Difference]) :-
ord_symdiff(Set1, H2, T2, Difference).
ord_symdiff(=, _, T1, _, T2, Difference) :-
ord_symdiff(T1, T2, Difference).
ord_symdiff(>, H1, T1, H2, Set2, [H2|Difference]) :-
ord_symdiff(Set2, H1, T1, Difference).
|