/usr/lib/swi-prolog/library/terms.pl is in swi-prolog-nox 6.6.6-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 | /* Part of SWI-Prolog
Author: Jan Wielemaker
E-mail: J.Wielemaker@cs.vu.nl
WWW: http://www.swi-prolog.org
Copyright (C): 2010, University of Amsterdam, VU University Amsterdam
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, if you link this library with other files,
compiled with a Free Software compiler, to produce an executable, this
library does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
:- module(terms,
[ term_hash/2, % @Term, -HashKey
term_hash/4, % @Term, +Depth, +Range, -HashKey
term_variables/2, % @Term, -Variables
term_variables/3, % @Term, -Variables, +Tail
variant/2, % @Term1, @Term2
subsumes/2, % +Generic, @Specific
subsumes_chk/2, % +Generic, @Specific
cyclic_term/1, % @Term
acyclic_term/1, % @Term
term_subsumer/3, % +Special1, +Special2, -General
term_factorized/3 % +Term, -Skeleton, -Subsitution
]).
:- use_module(library(rbtrees)).
/** <module> Term manipulation
Compatibility library for term manipulation predicates. Most predicates
in this library are provided as SWI-Prolog built-ins.
@compat YAP, SICStus, Quintus. Not all versions of this library define
exactly the same set of predicates, but defined predicates are
compatible.
*/
%% variant(@Term1, @Term2) is semidet.
%
% Same as SWI-Prolog =|Term1 =@= Term2|=.
variant(X, Y) :-
X =@= Y.
%% subsumes_chk(@Generic, @Specific)
%
% True if Generic can be made equivalent to Specific without
% changing Specific.
%
% @deprecated Replace by subsumes_term/2.
subsumes_chk(Generic, Specific) :-
subsumes_term(Generic, Specific).
%% subsumes(+Generic, @Specific)
%
% True if Generic is unified to Specific without changing
% Specific.
%
% @deprecated It turns out that calls to this predicate almost
% always should have used subsumes_term/2. Also the name is
% misleading. In case this is really needed, one is adviced to
% follow subsumes_term/2 with an explicit unification.
subsumes(Generic, Specific) :-
subsumes_term(Generic, Specific),
Generic = Specific.
%% term_subsumer(+Special1, +Special2, -General) is det.
%
% General is the most specific term that is a generalisation of
% Special1 and Special2. The implementation can handle cyclic
% terms.
%
% @compat SICStus
% @author Inspired by LOGIC.PRO by Stephen Muggleton
% It has been rewritten by Jan Wielemaker to use the YAP-based
% red-black-trees as mapping rather than flat lists and use arg/3
% to map compound terms rather than univ and lists.
term_subsumer(S1, S2, G) :-
cyclic_term(S1),
cyclic_term(S2), !,
rb_empty(Map),
lgg_safe(S1, S2, G, Map, _).
term_subsumer(S1, S2, G) :-
rb_empty(Map),
lgg(S1, S2, G, Map, _).
lgg(S1, S2, G, Map0, Map) :-
( S1 == S2
-> G = S1,
Map = Map0
; compound(S1),
compound(S2),
functor(S1, Name, Arity),
functor(S2, Name, Arity)
-> functor(G, Name, Arity),
lgg(0, Arity, S1, S2, G, Map0, Map)
; rb_lookup(S1+S2, G0, Map0)
-> G = G0,
Map = Map0
; rb_insert(Map0, S1+S2, G, Map)
).
lgg(Arity, Arity, _, _, _, Map, Map) :- !.
lgg(I0, Arity, S1, S2, G, Map0, Map) :-
I is I0 + 1,
arg(I, S1, Sa1),
arg(I, S2, Sa2),
arg(I, G, Ga),
lgg(Sa1, Sa2, Ga, Map0, Map1),
lgg(I, Arity, S1, S2, G, Map1, Map).
%% lgg_safe(+S1, +S2, -G, +Map0, -Map) is det.
%
% Cycle-safe version of the above. The difference is that we
% insert compounds into the mapping table and check the mapping
% table before going into a compound.
lgg_safe(S1, S2, G, Map0, Map) :-
( S1 == S2
-> G = S1,
Map = Map0
; rb_lookup(S1+S2, G0, Map0)
-> G = G0,
Map = Map0
; compound(S1),
compound(S2),
functor(S1, Name, Arity),
functor(S2, Name, Arity)
-> functor(G, Name, Arity),
rb_insert(Map0, S1+S2, G, Map1),
lgg_safe(0, Arity, S1, S2, G, Map1, Map)
; rb_insert(Map0, S1+S2, G, Map)
).
lgg_safe(Arity, Arity, _, _, _, Map, Map) :- !.
lgg_safe(I0, Arity, S1, S2, G, Map0, Map) :-
I is I0 + 1,
arg(I, S1, Sa1),
arg(I, S2, Sa2),
arg(I, G, Ga),
lgg_safe(Sa1, Sa2, Ga, Map0, Map1),
lgg_safe(I, Arity, S1, S2, G, Map1, Map).
%% term_factorized(+Term, -Skeleton, -Substiution)
%
% Is true when Skeleton is Term where all subterms that appear
% multiple times are replaced by a variable and Substitution is a
% list of Var=Value that provides the subterm at the location Var.
% I.e., After unifying all substitutions in Substiutions, Term ==
% Skeleton. Term may be cyclic. For example:
%
% ==
% ?- X = a(X), term_factorized(b(X,X), Y, S).
% Y = b(_G255, _G255),
% S = [_G255=a(_G255)].
% ==
term_factorized(Term, Skeleton, Substitutions) :-
rb_new(Map0),
add_map(Term, Map0, Map),
rb_visit(Map, Counts),
common_terms(Counts, Common),
( Common == []
-> Skeleton = Term,
Substitutions = []
; ord_list_to_rbtree(Common, SubstAssoc),
insert_vars(Term, Skeleton, SubstAssoc),
mk_subst(Common, Substitutions, SubstAssoc)
).
add_map(Term, Map0, Map) :-
( primitive(Term)
-> Map = Map0
; rb_update(Map0, Term, Old, New, Map)
-> New is Old+1
; rb_insert(Map0, Term, 1, Map1),
assoc_arg_map(1, Term, Map1, Map)
).
assoc_arg_map(I, Term, Map0, Map) :-
arg(I, Term, Arg), !,
add_map(Arg, Map0, Map1),
I2 is I + 1,
assoc_arg_map(I2, Term, Map1, Map).
assoc_arg_map(_, _, Map, Map).
primitive(Term) :-
var(Term), !.
primitive(Term) :-
atomic(Term), !.
primitive('$VAR'(_)).
common_terms([], []).
common_terms([H-Count|T], List) :- !,
( Count == 1
-> common_terms(T, List)
; List = [H-_NewVar|Tail],
common_terms(T, Tail)
).
insert_vars(T0, T, _) :-
primitive(T0), !,
T = T0.
insert_vars(T0, T, Subst) :-
rb_lookup(T0, S, Subst), !,
T = S.
insert_vars(T0, T, Subst) :-
functor(T0, Name, Arity),
functor(T, Name, Arity),
insert_arg_vars(1, T0, T, Subst).
insert_arg_vars(I, T0, T, Subst) :-
arg(I, T0, A0), !,
arg(I, T, A),
insert_vars(A0, A, Subst),
I2 is I + 1,
insert_arg_vars(I2, T0, T, Subst).
insert_arg_vars(_, _, _, _).
mk_subst([], [], _).
mk_subst([Val0-Var|T0], [Var=Val|T], Subst) :-
functor(Val0, Name, Arity),
functor(Val, Name, Arity),
insert_arg_vars(1, Val0, Val, Subst),
mk_subst(T0, T, Subst).
|