This file is indexed.

/usr/include/ableton/link/Kalman.hpp is in ableton-link-dev 1.0.0+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/* Copyright 2016, Ableton AG, Berlin. All rights reserved.
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  If you would like to incorporate Link into a proprietary software application,
 *  please contact <link-devs@ableton.com>.
 */

#pragma once

#include <array>
#include <cfloat>
#include <cmath>
#include <limits>

#if LINK_PLATFORM_WINDOWS
// Windows.h (or more specifically, minwindef.h) define the max(a, b) macro
// which conflicts with the symbol provided by std::numeric_limits.
#ifdef max
#undef max
#endif
#endif

namespace ableton
{
namespace link
{

template <std::size_t n>
struct Kalman
{
  Kalman()
    : mValue(0)
    , mGain(0)
    , mVVariance(1)
    , mWVariance(1)
    , mCoVariance(1)
    , mVarianceLength(n)
    , mCounter(mVarianceLength)
  {
  }

  double getValue()
  {
    return mValue;
  }

  double calculateVVariance()
  {
    auto vVar = 0.;
    auto meanOfDiffs = 0.;

    for (size_t k = 0; k < (mVarianceLength); k++)
    {
      meanOfDiffs += (mMeasuredValues[k] - mFilterValues[k]);
    }

    meanOfDiffs /= (mVarianceLength);

    for (size_t i = 0; i < (mVarianceLength); i++)
    {
      vVar += (pow(mMeasuredValues[i] - mFilterValues[i] - meanOfDiffs, 2.0));
    }

    vVar /= (mVarianceLength - 1);

    return vVar;
  }

  double calculateWVariance()
  {
    auto wVar = 0.;
    auto meanOfDiffs = 0.;

    for (size_t k = 0; k < (mVarianceLength); k++)
    {
      meanOfDiffs += (mFilterValues[(mCounter - k - 1) % mVarianceLength]
                      - mFilterValues[(mCounter - k - 2) % mVarianceLength]);
    }

    meanOfDiffs /= (mVarianceLength);

    for (size_t i = 0; i < (mVarianceLength); i++)
    {
      wVar += (pow(mFilterValues[(mCounter - i - 1) % mVarianceLength]
                     - mFilterValues[(mCounter - i - 2) % mVarianceLength] - meanOfDiffs,
        2.0));
    }

    wVar /= (mVarianceLength - 1);

    return wVar;
  }

  void iterate(const double value)
  {
    const std::size_t currentIndex = mCounter % mVarianceLength;
    mMeasuredValues[currentIndex] = value;

    if (mCounter < (mVarianceLength + mVarianceLength))
    {
      if (mCounter == mVarianceLength)
      {
        mValue = value;
      }
      else
      {
        mValue = (mValue + value) / 2;
      }
    }
    else
    {
      // prediction equations
      const double prevFilterValue = mFilterValues[(mCounter - 1) % mVarianceLength];
      mFilterValues[currentIndex] = prevFilterValue;
      mWVariance = calculateWVariance();
      const double coVarianceEstimation = mCoVariance + mWVariance;

      // update equations
      mVVariance = calculateVVariance();
      if ((coVarianceEstimation + mVVariance) != 0)
      {
        mGain = coVarianceEstimation / (coVarianceEstimation + mVVariance);
      }
      else
      {
        mGain = std::numeric_limits<double>::max();
      }
      mValue = prevFilterValue + mGain * (value - prevFilterValue);
      mCoVariance = (1 - mGain) * coVarianceEstimation;
    }
    mFilterValues[currentIndex] = mValue;

    ++mCounter;
  }

  double mValue;
  double mGain;
  double mVVariance;
  double mWVariance;
  double mCoVariance;
  size_t mVarianceLength;
  size_t mCounter;
  std::array<double, n> mFilterValues;
  std::array<double, n> mMeasuredValues;
};

} // namespace link
} // namespace ableton