/usr/share/acl2-7.2dfsg/basis-b.lisp is in acl2-source 7.2dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 | ; ACL2 Version 7.2 -- A Computational Logic for Applicative Common Lisp
; Copyright (C) 2016, Regents of the University of Texas
; This version of ACL2 is a descendent of ACL2 Version 1.9, Copyright
; (C) 1997 Computational Logic, Inc. See the documentation topic NOTE-2-0.
; This program is free software; you can redistribute it and/or modify
; it under the terms of the LICENSE file distributed with ACL2.
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; LICENSE for more details.
; Written by: Matt Kaufmann and J Strother Moore
; email: Kaufmann@cs.utexas.edu and Moore@cs.utexas.edu
; Department of Computer Science
; University of Texas at Austin
; Austin, TX 78712 U.S.A.
; When we are ready to verify termination in this and later files, we should
; consider changing null to endp in a number of functions.
(in-package "ACL2")
(defun enforce-redundancy-er-args (event-form-var wrld-var)
(list "Enforce-redundancy is active; see :DOC set-enforce-redundancy and ~
see :DOC redundant-events. However, the following event ~@0:~|~%~x1"
`(if (and (symbolp (cadr ,event-form-var))
(decode-logical-name (cadr ,event-form-var) ,wrld-var))
"conflicts with an existing event of the same name"
"is not redundant")
event-form-var))
(defmacro enforce-redundancy (event-form ctx wrld form)
(let ((var 'redun-check-var))
`(let ((,var (and (not (eq (ld-skip-proofsp state)
'include-book))
(cdr (assoc-eq :enforce-redundancy
(table-alist 'acl2-defaults-table
,wrld))))))
(cond ((eq ,var t)
(check-vars-not-free
(,var)
(er soft ,ctx
,@(enforce-redundancy-er-args
event-form wrld))))
(t (pprogn (cond (,var (check-vars-not-free
(,var)
(warning$ ,ctx "Enforce-redundancy"
,@(enforce-redundancy-er-args
event-form wrld))))
(t state))
(check-vars-not-free
(,var)
,form)))))))
(defun global-set (var val wrld)
(declare (xargs :guard (and (symbolp var)
(plist-worldp wrld))))
(putprop var 'global-value val wrld))
(defun tilde-@-illegal-variable-or-constant-name-phrase (name)
; Assume that legal-variable-or-constant-namep has failed on name.
; We return a phrase that when printed with ~@0 will complete the
; sentence "Variable names must ...". Observe that the sentence
; could be "Constant names must ...".
(cond ((not (symbolp name)) "be symbols")
((keywordp name) "not be in the KEYWORD package")
((and (legal-constantp1 name)
(equal (symbol-package-name name) *main-lisp-package-name*))
(cons "not be in the main Lisp package, ~x0"
(list (cons #\0 *main-lisp-package-name*))))
((and (> (length (symbol-name name)) 0)
(eql (char (symbol-name name) 0) #\&))
"not start with ampersands")
((and (not (legal-constantp1 name))
(member-eq name *common-lisp-specials-and-constants*))
"not be among certain symbols from the main Lisp package, namely, the ~
value of the list *common-lisp-specials-and-constants*")
((and (not (legal-constantp1 name))
(equal (symbol-package-name name) *main-lisp-package-name*)
(not (member-eq name *common-lisp-symbols-from-main-lisp-package*)))
"either not be in the main Lisp package, or else must be among the ~
imports into ACL2 from that package, namely, the list ~
*common-lisp-symbols-from-main-lisp-package*")
(t "be approved by LEGAL-VARIABLE-OR-CONSTANT-NAMEP and this ~
one wasn't, even though it passes all the checks known to ~
the diagnostic function ~
TILDE-@-ILLEGAL-VARIABLE-OR-CONSTANT-NAME-PHRASE")))
(defun legal-constantp (name)
; A name may be declared as a constant if it has the syntax of a
; variable or constant (see legal-variable-or-constant-namep) and
; starts and ends with a *.
; WARNING: Do not confuse this function with defined-constant.
(eq (legal-variable-or-constant-namep name) 'constant))
(defun genvar1 (pkg-witness char-lst avoid-lst cnt)
; This function generates a symbol in the same package as the symbol
; pkg-witness that is guaranteed to be a legal-variablep and not in avoid-lst.
; We form a symbol by concatenating char-lst and the decimal representation of
; the natural number cnt. Observe the guard below. Since guards are not
; checked in :program code, the user must ensure upon calling this
; function that pkg-witness is a symbol in some package other than the main
; lisp package or the keyword package and that char-lst is a list of characters
; not beginning with * or &. Given that guard, there must exist a sufficiently
; large cnt to make our generated symbol be in the package of pkg-witness (a
; finite number of generated symbols might have been interned in one of the
; non-variable packages).
(declare (xargs :guard (and (let ((p (symbol-package-name pkg-witness)))
(and (not (equal p "KEYWORD"))
(not (equal p *main-lisp-package-name*))))
(consp char-lst)
(not (eql (car char-lst) #\*))
(not (eql (car char-lst) #\&)))))
(let ((sym (intern-in-package-of-symbol
(coerce
(append char-lst
(explode-nonnegative-integer cnt 10 nil))
'string)
pkg-witness)))
(cond ((or (member sym avoid-lst)
; The following call of legal-variablep could soundly be replaced by
; legal-variable-or-constant-namep, given the guard above, but we keep it
; as is for robustness.
(not (legal-variablep sym)))
(genvar1 pkg-witness char-lst avoid-lst (1+ cnt)))
(t sym))))
(defun genvar (pkg-witness prefix n avoid-lst)
; This is THE function that ACL2 uses to generate new variable names.
; Prefix is a string and n is either nil or a natural number. Together we
; call prefix and n the "root" of the variable we generate.
; We generate from prefix a legal variable symbol in the same package as
; pkg-witness that does not occur in avoid-lst. If n is nil, we first try the
; symbol with symbol-name prefix first and otherwise suffix prefix with
; increasingly large naturals (starting from 0) to find a suitable variable.
; If n is non-nil it had better be a natural and we immediately begin trying
; suffixes from there. Since no legal variable begins with #\* or #\&, we tack
; a #\V on the front of our prefix if prefix starts with one of those chars.
; If prefix is empty, we use "V".
; Note: This system will eventually contain a lot of code to generate
; "suggestive" variable names. However, we make the convention that
; in the end every variable name generated is generated by this
; function. Thus, all other code associated with variable name
; generation is heuristic if this one is correct.
(let* ((pkg-witness (cond ((let ((p (symbol-package-name pkg-witness)))
(or (equal p "KEYWORD")
(equal p *main-lisp-package-name*)))
; If pkg-witness is in an inappropriate package, we default it to the
; "ACL2" package.
'genvar)
(t pkg-witness)))
(sym (if (null n) (intern-in-package-of-symbol prefix pkg-witness) nil))
(cnt (if n n 0)))
(cond ((and (null n)
(legal-variablep sym)
(not (member sym avoid-lst)))
sym)
(t (let ((prefix (coerce prefix 'list)))
(cond ((null prefix) (genvar1 pkg-witness '(#\V) avoid-lst cnt))
((and (consp prefix)
(or (eql (car prefix) #\*)
(eql (car prefix) #\&)))
(genvar1 pkg-witness (cons #\V prefix) avoid-lst cnt))
(t (genvar1 pkg-witness prefix avoid-lst cnt))))))))
(defun gen-formals-from-pretty-flags1 (pretty-flags i avoid)
(cond ((endp pretty-flags) nil)
((eq (car pretty-flags) '*)
(let ((xi (pack2 'x i)))
(cond ((member-eq xi avoid)
(let ((new-var (genvar 'genvar ;;; ACL2 package
"GENSYM"
1
avoid)))
(cons new-var
(gen-formals-from-pretty-flags1
(cdr pretty-flags)
(+ i 1)
(cons new-var avoid)))))
(t (cons xi
(gen-formals-from-pretty-flags1
(cdr pretty-flags)
(+ i 1)
avoid))))))
(t (cons (car pretty-flags)
(gen-formals-from-pretty-flags1
(cdr pretty-flags)
(+ i 1)
avoid)))))
(defun gen-formals-from-pretty-flags (pretty-flags)
; Given a list of prettyified stobj flags, e.g., '(* * $S * STATE) we
; generate a proposed list of formals, e.g., '(X1 X2 $S X4 STATE). We
; guarantee that the result is a list of symbols as long as
; pretty-flags. Furthermore, a non-* in pretty-flags is preserved in
; the same slot in the output. Furthermore, the symbol generated for
; each * in pretty-flags is unique and not among the symbols in
; pretty-flags. Finally, STATE is not among the symbols we generate.
(gen-formals-from-pretty-flags1 pretty-flags 1 pretty-flags))
(defun defstub-body (output)
; This strange little function is used to turn an output signature
; spec (in either the old or new style) into a term. It never causes
; an error, even if output is ill-formed! What it returns in that
; case is irrelevant. If output is well-formed, i.e., is one of:
; output result
; * nil
; x x
; state state
; (mv * state *) (mv nil state nil)
; (mv x state y) (mv x state y)
; it replaces the *'s by nil and otherwise doesn't do anything.
(cond ((atom output)
(cond ((equal output '*) nil)
(t output)))
((equal (car output) '*)
(cons nil (defstub-body (cdr output))))
(t (cons (car output) (defstub-body (cdr output))))))
(defun collect-non-x (x lst)
; This function preserves possible duplications of non-x elements in lst.
; We use this fact when we check the legality of signatures.
(declare (xargs :guard (true-listp lst)))
(cond ((endp lst) nil)
((equal (car lst) x)
(collect-non-x x (cdr lst)))
(t (cons (car lst) (collect-non-x x (cdr lst))))))
#+acl2-loop-only
(defmacro defproxy (name args-sig arrow body-sig)
(cond
((not (and (symbol-listp args-sig)
(symbolp arrow)
(equal (symbol-name arrow) "=>")))
(er hard 'defproxy
"Defproxy must be of the form (proxy name args-sig => body-sig), ~
where args-sig is a true-list of symbols. See :DOC defproxy."))
(t
(let ((formals (gen-formals-from-pretty-flags args-sig))
(body (defstub-body body-sig))
(stobjs (collect-non-x '* args-sig)))
`(defun ,name ,formals
(declare (xargs :non-executable :program
:mode :program
,@(and stobjs `(:stobjs ,stobjs)))
(ignorable ,@formals))
; The form of the body below is dictated by function throw-nonexec-error-p.
; Notice that we do not pass the formals to throw-nonexec-error as we do in
; defun-nx-fn, because if the formals contain a stobj then we would violate
; stobj restrictions, which are checked for non-executable :program mode
; functions.
(prog2$ (throw-nonexec-error ',name nil)
,body))))))
#-acl2-loop-only
(defmacro defproxy (name args-sig arrow body-sig)
; Note that a defproxy redefined using encapsulate can generate a warning in
; CLISP (see comment about CLISP in with-redefinition-suppressed), because
; indeed there are two definitions being made for the same name. However, the
; definition generated for a function by encapsulate depends only on the
; function's signature, up to renaming of formals; see the #-acl2-loop-only
; definition of encapsulate. So this redefinition is as benign as the
; redefinition that occurs in raw Lisp with a redundant defun.
`(defstub ,name ,args-sig ,arrow ,body-sig))
; We now use encapsulate to implement defstub. It is handy to do so here,
; rather than in other-events.lisp, since the raw Lisp definition of defproxy
; uses defstub.
(defun defstub-ignores (formals body)
; The test below is sufficient to ensure that the set-difference-equal
; used to compute the ignored vars will not cause an error. We return
; a true list. The formals and body will be checked thoroughly by the
; encapsulate, provided we generate it! Provided they check out, the
; result returned is the list of ignored formals.
(if (and (symbol-listp formals)
(or (symbolp body)
(and (consp body)
(symbol-listp (cdr body)))))
(set-difference-equal
formals
(if (symbolp body)
(list body)
(cdr body)))
nil))
(defmacro defstub (name &rest args)
(cond
((not (or (equal (length args) 2)
(and (equal (length args) 3)
(symbol-listp (car args))
(symbolp (cadr args))
(equal (symbol-name (cadr args)) "=>"))))
`(er soft 'defstub
"Defstub must be of the form (defstub name formals body) or (defstub ~
name args-sig => body-sig), where args-sig is a true-list of ~
symbols. See :DOC defstub."))
((equal (length args) 2)
; Old style
(let* ((formals (car args))
(body (cadr args))
(ignores (defstub-ignores formals body)))
`(encapsulate
((,name ,formals ,body))
(logic)
(local
(defun ,name ,formals
(declare (ignore ,@ignores))
,body))
,@(and (consp body)
(eq (car body) 'mv)
`((defthm ,(packn-pos (list "TRUE-LISTP-" name)
name)
(true-listp (,name ,@formals))
:rule-classes :type-prescription))))))
(t (let* ((args-sig (car args))
(body-sig (caddr args))
(formals (gen-formals-from-pretty-flags args-sig))
(body (defstub-body body-sig))
(ignores (defstub-ignores formals body))
(stobjs (collect-non-x '* args-sig)))
`(encapsulate
(((,name ,@args-sig) => ,body-sig))
(logic)
(local
(defun ,name ,formals
(declare (ignore ,@ignores)
(xargs :stobjs ,stobjs))
,body))
,@(and (consp body-sig)
(eq (car body-sig) 'mv)
`((defthm ,(packn-pos (list "TRUE-LISTP-" name)
name)
(true-listp (,name ,@formals))
:rule-classes :type-prescription))))))))
;; RAG - I changed the primitive guard for the < function, and the
;; complex function. Added the functions complexp, realp, and floor1.
;; RAG - I subsequently changed this to add the non-standard functions
;; standardp, standard-part and i-large-integer. I had some
;; questions as to whether these functions should appear on this list
;; or not. After considering carefully, I decided that was the right
;; course of action. In addition to adding them to the list below, I
;; also add them to *non-standard-primitives* which is a special list
;; of non-standard primitives. Functions in this list are considered
;; to be constrained. Moreover, they are given the value t for the
;; property 'unsafe-induction so that recursion and induction are
;; turned off for terms built from these functions.
(defconst *primitive-formals-and-guards*
; Keep this in sync with ev-fncall-rec-logical and type-set-primitive, and with
; the documentation and "-completion" axioms of the primitives. Also be sure
; to define a *1* function for each function in this list that is not a member
; of *oneify-primitives*.
; WARNING: for each primitive below, primordial-world puts a 'stobjs-in that is
; a list of nils of the same length as its formals, and a 'stobjs-out of
; '(nil). Revisit that code if you add a primitive that involves stobjs!
; WARNING: Just below you will find another list, *primitive-monadic-booleans*
; that lists the function names from this list that are monadic booleans. The
; names must appear in the same order as here!
'((acl2-numberp (x) 't)
(bad-atom<= (x y) (if (bad-atom x) (bad-atom y) 'nil))
(binary-* (x y) (if (acl2-numberp x) (acl2-numberp y) 'nil))
(binary-+ (x y) (if (acl2-numberp x) (acl2-numberp y) 'nil))
(unary-- (x) (acl2-numberp x))
(unary-/ (x) (if (acl2-numberp x) (not (equal x '0)) 'nil))
(< (x y)
; We avoid the temptation to use real/rationalp below, since it is a macro.
(if #+:non-standard-analysis (realp x)
#-:non-standard-analysis (rationalp x)
#+:non-standard-analysis (realp y)
#-:non-standard-analysis (rationalp y)
'nil))
(car (x) (if (consp x) 't (equal x 'nil)))
(cdr (x) (if (consp x) 't (equal x 'nil)))
(char-code (x) (characterp x))
(characterp (x) 't)
(code-char (x) (if (integerp x) (if (< x '0) 'nil (< x '256)) 'nil))
(complex (x y)
(if #+:non-standard-analysis (realp x)
#-:non-standard-analysis (rationalp x)
#+:non-standard-analysis (realp y)
#-:non-standard-analysis (rationalp y)
'nil))
(complex-rationalp (x) 't)
#+:non-standard-analysis
(complexp (x) 't)
(coerce (x y)
(if (equal y 'list)
(stringp x)
(if (equal y 'string)
(character-listp x)
'nil)))
(cons (x y) 't)
(consp (x) 't)
(denominator (x) (rationalp x))
(equal (x y) 't)
#+:non-standard-analysis
(floor1 (x) (realp x))
(if (x y z) 't)
(imagpart (x) (acl2-numberp x))
(integerp (x) 't)
(intern-in-package-of-symbol (str sym) (if (stringp str) (symbolp sym) 'nil))
(numerator (x) (rationalp x))
(pkg-imports (pkg) (stringp pkg))
(pkg-witness (pkg) (if (stringp pkg) (not (equal pkg '"")) 'nil))
(rationalp (x) 't)
#+:non-standard-analysis
(realp (x) 't)
(realpart (x) (acl2-numberp x))
(stringp (x) 't)
(symbol-name (x) (symbolp x))
(symbol-package-name (x) (symbolp x))
(symbolp (x) 't)
#+:non-standard-analysis
(standardp (x) 't)
#+:non-standard-analysis
(standard-part (x) ; If (x) is changed here, change cons-term1-cases.
(acl2-numberp x))
#+:non-standard-analysis
(i-large-integer () 't)))
(defconst *primitive-monadic-booleans*
; This is the list of primitive monadic boolean function symbols. Each
; function must be listed in *primitive-formals-and-guards* and they should
; appear in the same order. (The reason order matters is simply to make it
; easier to check at the end of boot-strap that we have included all the
; monadic booleans.)
'(acl2-numberp
characterp
complex-rationalp
#+:non-standard-analysis
complexp
consp
integerp
rationalp
#+:non-standard-analysis
realp
stringp
symbolp
#+:non-standard-analysis
standardp))
#+:non-standard-analysis
(defconst *non-standard-primitives*
'(standardp
standard-part
i-large-integer))
(defun cons-term1-cases (alist)
; Initially, alist is *primitive-formals-and-guards*.
(cond ((endp alist) nil)
((member-eq (caar alist)
'(if ; IF is handled directly in cons-term1-body.
bad-atom<= pkg-imports pkg-witness))
(cons-term1-cases (cdr alist)))
(t (cons (let* ((trip (car alist))
(fn (car trip))
(formals (cadr trip))
(guard (caddr trip)))
(list
fn
(cond #+:non-standard-analysis
((eq fn 'i-large-integer)
nil) ; fall through in cons-term1-body
#+:non-standard-analysis
((eq fn 'standardp)
'(kwote t))
#+:non-standard-analysis
((eq fn 'standard-part)
(assert$
(eq (car formals) 'x)
`(and ,guard ; a term in variable x
(kwote ,@formals))))
((equal guard *t*)
`(kwote (,fn ,@formals)))
((or (equal formals '(x))
(equal formals '(x y)))
`(and ,guard
(kwote (,fn ,@formals))))
(t (case-match formals
((f1)
`(let ((,f1 x))
(and ,guard
(kwote (,fn ,@formals)))))
((f1 f2)
`(let ((,f1 x)
(,f2 y))
(and ,guard
(kwote (,fn ,@formals)))))
(& (er hard! 'cons-term1-cases
"Unexpected formals, ~x0"
formals)))))))
(cons-term1-cases (cdr alist))))))
(defconst *cons-term1-alist*
(cons-term1-cases *primitive-formals-and-guards*))
(defmacro cons-term1-body ()
`(let ((x (unquote (car args)))
(y (unquote (cadr args))))
(or (case fn
,@*cons-term1-alist*
(if (kwote (if x y (unquote (caddr args)))))
(not (kwote (not x))))
(cons fn args))))
(defun quote-listp (l)
(declare (xargs :guard (true-listp l)))
(cond ((null l) t)
(t (and (quotep (car l))
(quote-listp (cdr l))))))
(defun cons-term1 (fn args)
(declare (xargs :guard (and (pseudo-term-listp args)
(quote-listp args))))
(cons-term1-body))
(defun cons-term (fn args)
(declare (xargs :guard (pseudo-term-listp args)))
(cond ((quote-listp args)
(cons-term1 fn args))
(t (cons fn args))))
(defmacro cons-term* (fn &rest args)
`(cons-term ,fn (list ,@args)))
(defmacro mcons-term (fn args)
; The "m" in "mcons-term" is for "maybe fast". Some calls of this macro can
; probably be replaced with fcons-term.
`(cons-term ,fn ,args))
(defmacro mcons-term* (fn &rest args)
; The "m" in "mcons-term*" is for "maybe fast". Some of calls of this macro
; can probably be replaced with fcons-term*.
`(cons-term* ,fn ,@args))
(defmacro fcons-term (fn args)
; ; Start experimental code mod, to check that calls of fcons-term are legitimate
; ; shortcuts in place of the corresponding known-correct calls of cons-term.
; #-acl2-loop-only
; `(let* ((fn-used-only-in-fcons-term ,fn)
; (args-used-only-in-fcons-term ,args)
; (result (cons fn-used-only-in-fcons-term
; args-used-only-in-fcons-term)))
; (assert$ (equal result (cons-term fn-used-only-in-fcons-term
; args-used-only-in-fcons-term))
; result))
; #+acl2-loop-only
; ; End experimental code mod.
(list 'cons fn args))
(defun fargn1 (x n)
(declare (xargs :guard (and (integerp n)
(> n 0))))
(cond ((eql n 1) (list 'cdr x))
(t (list 'cdr (fargn1 x (- n 1))))))
(defmacro fargn (x n)
(list 'car (fargn1 x n)))
(defun cdr-nest (n v)
(cond ((equal n 0) v)
(t (fargn1 v n))))
(defun stobj-print-name (name)
(coerce
(cons #\<
(append (string-downcase1 (coerce (symbol-name name) 'list))
'(#\>)))
'string))
(defun evisceration-stobj-mark (name inputp)
; NAME is a stobj name. We return an evisceration mark that prints as
; ``<name>''. We make a special case out of STATE.
(cond
(inputp name)
((eq name 'STATE)
*evisceration-state-mark*)
(t
(cons *evisceration-mark* (stobj-print-name name)))))
(defun evisceration-stobj-marks1 (stobjs-flags inputp)
; See the comment in eviscerate-stobjs, below.
(cond ((null stobjs-flags) nil)
((car stobjs-flags)
(cons (evisceration-stobj-mark (car stobjs-flags) inputp)
(evisceration-stobj-marks1 (cdr stobjs-flags) inputp)))
(t
(cons nil
(evisceration-stobj-marks1 (cdr stobjs-flags) inputp)))))
(defconst *error-triple-sig*
'(nil nil state))
(defconst *cmp-sig*
'(nil nil))
(defun evisceration-stobj-marks (stobjs-flags inputp)
(cond ((equal stobjs-flags *error-triple-sig*)
(if inputp
*error-triple-sig*
*evisceration-error-triple-marks*))
((equal stobjs-flags '(nil)) '(nil))
(t (evisceration-stobj-marks1 stobjs-flags inputp))))
(defun eviscerate-stobjs1 (estobjs-out lst print-level print-length
alist evisc-table hiding-cars
iprint-alist)
(cond
((null estobjs-out) (mv nil iprint-alist))
((car estobjs-out)
(mv-let (rest iprint-alist)
(eviscerate-stobjs1 (cdr estobjs-out) (cdr lst)
print-level print-length
alist evisc-table hiding-cars iprint-alist)
(mv (cons (car estobjs-out) rest)
iprint-alist)))
(t (mv-let (first iprint-alist)
(eviscerate (car lst) print-level print-length
alist evisc-table hiding-cars iprint-alist)
(mv-let (rest iprint-alist)
(eviscerate-stobjs1 (cdr estobjs-out) (cdr lst)
print-level print-length alist
evisc-table hiding-cars iprint-alist)
(mv (cons first rest) iprint-alist))))))
(defun eviscerate-stobjs (estobjs-out lst print-level print-length
alist evisc-table hiding-cars
iprint-alist)
; See also eviscerate-stobjs-top, which takes iprint-ar from the state and
; installs a new iprint-ar in the state.
; Warning: Right now, we abbreviate all stobjs with the <name> convention. I
; have toyed with the idea of allowing the user to specify how a stobj is to be
; abbreviated on output. This is awkward. See the Essay on Abbreviating Live
; Stobjs below.
; We wish to eviscerate lst with the given print-level, etc., but respecting
; stobjs that we may find in lst. Estobjs-out describes the shape of lst as a
; multiple value vector: if estobjs-out is of length 1, then lst is the single
; result; otherwise, lst is a list of as many elements as estobjs-out is long.
; The non-nil elements of stobjs name the stobjs in lst -- EXCEPT that unlike
; an ordinary ``stobjs-out'', the elements of estobjs-out are evisceration
; marks we are to ``print!'' For example corresponding to the stobjs-out
; setting of '(NIL $MY-STOBJ NIL STATE) is the estobjs-out
; '(NIL
; (:EVISCERATION-MARK . "<$my-stobj>")
; NIL
; (:EVISCERATION-MARK . "<state>"))
; Here, we assume *evisceration-mark* is :EVISCERATION-MARK.
(cond
((null estobjs-out)
; Lst is either a single non-stobj output or a list of n non-stobj outputs. We
; eviscerate it without regard for stobjs.
(eviscerate lst print-level print-length alist evisc-table hiding-cars
iprint-alist))
((null (cdr estobjs-out))
; Lst is a single output, which is either a stobj or not depending on whether
; (car stobjs-out) is non-nil.
(cond
((car estobjs-out)
(mv (car estobjs-out) iprint-alist))
(t (eviscerate lst print-level print-length alist evisc-table
hiding-cars iprint-alist))))
(t (eviscerate-stobjs1 estobjs-out lst print-level print-length
alist evisc-table hiding-cars iprint-alist))))
(defun eviscerate-stobjs-top (estobjs-out lst print-level print-length
alist evisc-table hiding-cars
state)
; See eviscerate-stobjs.
(mv-let (result iprint-alist)
(eviscerate-stobjs estobjs-out lst print-level print-length alist
evisc-table hiding-cars
(and (iprint-enabledp state)
(iprint-last-index state)))
(let ((state (cond ((eq iprint-alist t)
(f-put-global 'evisc-hitp-without-iprint t state))
((atom iprint-alist) state)
(t (update-iprint-ar iprint-alist state)))))
(mv result state))))
; Essay on Abbreviating Live Stobjs
; Right now the live state is abbreviated as <state> when it is printed, and
; the user's live stobj $s is abbreviated as <$s>. It would be cool if the
; user could specify how he or she wants a stobj displayed, e.g., by selecting
; key components for printing or by providing a function which maps the stobj
; to some non-stobj ``stand-in'' or eviscerated object for printing.
; I have given this matter several hours' thought and abandoned it for the
; moment. I am not convinced it is worth the trouble. It IS a lot of trouble.
; We eviscerate stobjs in the read-eval-print loop. (Through Version_4.3, we
; also eviscerated stobjs in a very low-level place: ev-fncall-msg (and its
; more pervasive friend, ev-fncall-guard-er), used to print stobjs involved in
; calls of functions on args that violate a guard.)
; Every stobj must have some ``stand-in transformer'' function, fn. We will
; typically be holding a stobj name, e.g., $S, and a live value, val, e.g.,
; (#(777) #(1 2 3 ...)), and wish to obtain some ACL2 object to print in place
; of the value. This value is obtained by applying fn to val. The two main
; issues I see are
; (a) where do we find fn? The candidate places are state, world, and val
; itself. But we do not have state available in the low-level code.
; (b) how do we apply fn to val? The obvious thing is to call trans-eval or do
; an ev-fncall. Again, we need state. Furthermore, depending on how we do it,
; we have to fight a syntactic battle of ``casting'' an arbitrary object, val,
; to a stobj of type name, to apply a function which has a STOBJS-IN of (name).
; A more important problem is the one of order-of-definition. Which is defined
; first: how to eviscerate a stobj or how to evaluate a form? Stobj
; evisceration calls evaluation to apply fn, but evaluation calls stobj
; evisceration to report guard errors.
; Is user-specified stobj abbreviation really worth the trouble?
; One idea that presents itself is that val ``knows how to abbreviate itself.''
; I think this is akin to the idea of having a :program mode function, say
; stobj-standin, which syntactically takes a non-stobj and returns a non-stobj.
; Actually, stobj-standin would be called on val. It is clear that I could
; define this function in raw lisp: look in *the-live-state* to determine how
; to abbreviate val and then just do it. But what would be the logical
; definition of it? We could leave it undefined, or defined to be an undefined
; function. Until we admit the whole ACL2 system :logically, we could even
; define it in the logic to be t even though it really returned something else,
; since as a :program its logical definition is irrelevant. But at the moment
; I don't think ACL2 has a precedent for such a function and I don't think
; user-specified stobj abbreviation is justification enough for doing it.
; End of Essay on Abbreviating Live Stobjs
(defmacro flambda-applicationp (term)
; Term is assumed to be nvariablep.
`(consp (car ,term)))
(defabbrev lambda-applicationp (term)
(and (consp term)
(flambda-applicationp term)))
(defmacro flambdap (fn)
; Fn is assumed to be the fn-symb of some term.
`(consp ,fn))
(defmacro lambda-formals (x) `(cadr ,x))
(defmacro lambda-body (x) `(caddr ,x))
(defmacro make-lambda (args body)
`(list 'lambda ,args ,body))
(defmacro make-let (bindings body)
`(list 'let ,bindings ,body))
(defun doubleton-list-p (x)
(cond ((atom x) (equal x nil))
(t (and (true-listp (car x))
(eql (length (car x)) 2)
(doubleton-list-p (cdr x))))))
(defmacro er-let* (alist body)
; This macro introduces the variable er-let-star-use-nowhere-else.
; The user who uses that variable in his forms is likely to be
; disappointed by the fact that we rebind it.
; Keep in sync with er-let*@par.
(declare (xargs :guard (and (doubleton-list-p alist)
(symbol-alistp alist))))
(cond ((null alist)
(list 'check-vars-not-free
'(er-let-star-use-nowhere-else)
body))
(t (list 'mv-let
(list 'er-let-star-use-nowhere-else
(caar alist)
'state)
(cadar alist)
(list 'cond
(list 'er-let-star-use-nowhere-else
(list 'mv
'er-let-star-use-nowhere-else
(caar alist)
'state))
(list t (list 'er-let* (cdr alist) body)))))))
#+acl2-par
(defmacro er-let*@par (alist body)
; Keep in sync with er-let*.
; This macro introduces the variable er-let-star-use-nowhere-else.
; The user who uses that variable in his forms is likely to be
; disappointed by the fact that we rebind it.
(declare (xargs :guard (and (doubleton-list-p alist)
(symbol-alistp alist))))
(cond ((null alist)
(list 'check-vars-not-free
'(er-let-star-use-nowhere-else)
body))
(t (list 'mv-let
(list 'er-let-star-use-nowhere-else
(caar alist))
(cadar alist)
(list 'cond
(list 'er-let-star-use-nowhere-else
(list 'mv
'er-let-star-use-nowhere-else
(caar alist)))
(list t (list 'er-let*@par (cdr alist) body)))))))
(defmacro match (x pat)
(list 'case-match x (list pat t)))
(defmacro match! (x pat)
(list 'or (list 'case-match x
(list pat '(value nil)))
(list 'er 'soft nil
"The form ~x0 was supposed to match the pattern ~x1."
x (kwote pat))))
(defun def-basic-type-sets1 (lst i)
(declare (xargs :guard (and (integerp i)
(true-listp lst))))
(cond ((null lst) nil)
(t (cons (list 'defconst (car lst) (list 'the-type-set (expt 2 i)))
(def-basic-type-sets1 (cdr lst) (+ i 1))))))
(defmacro def-basic-type-sets (&rest lst)
(let ((n (length lst)))
`(progn
(defconst *actual-primitive-types* ',lst)
(defconst *min-type-set* (- (expt 2 ,n)))
(defconst *max-type-set* (- (expt 2 ,n) 1))
(defmacro the-type-set (x)
; Warning: Keep this definition in sync with the type declaration in
; ts-subsetp0 and ts-subsetp.
`(the (integer ,*min-type-set* ,*max-type-set*) ,x))
,@(def-basic-type-sets1 lst 0))))
(defun list-of-the-type-set (x)
(cond ((consp x)
(cons (list 'the-type-set (car x))
(list-of-the-type-set (cdr x))))
(t nil)))
(defmacro ts= (a b)
(list '= (list 'the-type-set a) (list 'the-type-set b)))
; We'll create fancier versions of ts-complement0, ts-union0, and
; ts-intersection0 once we have defined the basic type sets.
(defmacro ts-complement0 (x)
(list 'the-type-set (list 'lognot (list 'the-type-set x))))
(defmacro ts-complementp (x)
(list 'minusp x))
(defun ts-union0-fn (x)
(list 'the-type-set
(cond ((null x) '*ts-empty*)
((null (cdr x)) (car x))
(t (xxxjoin 'logior
(list-of-the-type-set x))))))
(defmacro ts-union0 (&rest x)
(declare (xargs :guard (true-listp x)))
(ts-union0-fn x))
(defmacro ts-intersection0 (&rest x)
(list 'the-type-set
(cons 'logand (list-of-the-type-set x))))
(defmacro ts-disjointp (&rest x)
(list 'ts= (cons 'ts-intersection x) '*ts-empty*))
(defmacro ts-intersectp (&rest x)
(list 'not (list 'ts= (cons 'ts-intersection x) '*ts-empty*)))
; We do not define ts-subsetp0, both because we don't need it and because if we
; do define it, we will be tempted to add the declaration found in ts-subsetp,
; yet we have not yet defined *min-type-set* or *max-type-set*.
(defun ts-builder-case-listp (x)
; A legal ts-builder case list is a list of the form
; ((key1 val1 ...) (key2 val2 ...) ... (keyk valk ...))
; where none of the keys is 'otherwise or 't except possibly keyk and
; every key is a symbolp if keyk is 'otherwise or 't.
; This function returns t, nil, or 'otherwise. A non-nil value means
; that x is a legal ts-builder case list. If it returns 'otherwise,
; it means keyk is an 'otherwise or a 't clause. That aspect of the
; function is not used outside of its definition, but it is used in
; the definition below.
; If keyk is an 'otherwise or 't then each of the other keys will
; occur twice in the expanded form of the ts-builder expression and
; hence those keys must all be symbols.
(cond ((atom x) (eq x nil))
((and (consp (car x))
(true-listp (car x))
(not (null (cdr (car x)))))
(cond ((or (eq t (car (car x)))
(eq 'otherwise (car (car x))))
(cond ((null (cdr x)) 'otherwise)
(t nil)))
(t (let ((ans (ts-builder-case-listp (cdr x))))
(cond ((eq ans 'otherwise)
(cond ((symbolp (car (car x)))
'otherwise)
(t nil)))
(t ans))))))
(t nil)))
(defun ts-builder-macro1 (x case-lst seen)
(declare (xargs :guard (and (symbolp x)
(ts-builder-case-listp case-lst))))
(cond ((null case-lst) nil)
((or (eq (caar case-lst) t)
(eq (caar case-lst) 'otherwise))
(sublis (list (cons 'x x)
(cons 'seen seen)
(cons 'ts2 (cadr (car case-lst))))
'((cond ((ts-intersectp x (ts-complement0 (ts-union0 . seen)))
ts2)
(t *ts-empty*)))))
(t (cons (sublis (list (cons 'x x)
(cons 'ts1 (caar case-lst))
(cons 'ts2 (cadr (car case-lst))))
'(cond ((ts-intersectp x ts1) ts2)
(t *ts-empty*)))
(ts-builder-macro1 x (cdr case-lst) (cons (caar case-lst)
seen))))))
(defun ts-builder-macro (x case-lst)
(declare (xargs :guard (and (symbolp x)
(ts-builder-case-listp case-lst))))
(cons 'ts-union
(ts-builder-macro1 x case-lst nil)))
(defmacro ts-builder (&rest args)
; (declare (xargs :guard (and (consp args)
; (symbolp (car args))
; (ts-builder-case-listp (cdr args)))))
(ts-builder-macro (car args) (cdr args)))
(defmacro ffn-symb-p (term sym)
; Term and sym should be expressions that evaluate to a pseudo-termp and a
; symbol, respectively.
(cond
((symbolp term)
`(and (nvariablep ,term)
; (not (fquotep ,term))
(eq (ffn-symb ,term) ,sym)))
; If we bind term then in general, we need to bind sym too, even though it only
; occurs once below. Consider for example the expansion of (ffn-symb-p x (foo
; term)), where presumably term is bound above. We need to avoid capturing the
; occurrence of term in (foo term), which is solved by binding sym here. Of
; course, if sym is of the form (quote v) then this isn't an issue.
((and (consp sym)
(eq (car sym) 'quote))
`(let ((term ,term))
(and (nvariablep term)
; (not (fquotep term))
(eq (ffn-symb term) ,sym))))
(t
`(let ((term ,term)
(sym ,sym))
(and (nvariablep term)
; (not (fquotep term))
(eq (ffn-symb term) sym))))))
(defabbrev strip-not (term)
; A typical use of this macro is:
; (mv-let (not-flg atm) (strip-not term)
; ...body...)
; which has the effect of binding not-flg to T and atm to x if term
; is of the form (NOT x) and binding not-flg to NIL and atm to term
; otherwise.
(cond ((ffn-symb-p term 'not)
(mv t (fargn term 1)))
(t (mv nil term))))
(defmacro equalityp (term)
; Note that the fquotep below is commented out. This function violates
; our standard rules on the use of ffn-symb but is ok since we are looking
; for 'equal and not for 'quote or any constructor that might be hidden
; inside a quoted term.
`(ffn-symb-p ,term 'equal))
(defmacro inequalityp (term)
; Note that the fquotep below is commented out. This function violates
; our standard rules on the use of ffn-symb but is ok since we are looking
; for 'equal and not for 'quote or any constructor that might be hidden
; inside a quoted term.
`(ffn-symb-p ,term '<))
(defmacro consityp (term)
; Consityp is to cons what equalityp is equal: it recognizes terms
; that are non-evg cons expressions.
`(ffn-symb-p ,term 'cons))
(defun print-current-idate (channel state)
(mv-let (d state)
(read-idate state)
(print-idate d channel state)))
(defun skip-when-logic (str state)
(pprogn
(observation 'top-level
"~s0 events are skipped when the default-defun-mode is ~x1."
str
(default-defun-mode-from-state state))
(mv nil nil state)))
(defun chk-inhibit-output-lst (lst ctx state)
(cond ((not (true-listp lst))
(er soft ctx
"The argument to set-inhibit-output-lst must evaluate to a ~
true-listp, unlike ~x0."
lst))
((not (subsetp-eq lst *valid-output-names*))
(er soft ctx
"The argument to set-inhibit-output-lst must evaluate to a ~
subset of the list ~X01, but ~x2 contains ~&3."
*valid-output-names*
nil
lst
(set-difference-eq lst *valid-output-names*)))
(t (let ((lst (if (member-eq 'warning! lst)
(add-to-set-eq 'warning lst)
lst)))
(pprogn (cond ((and (member-eq 'prove lst)
(not (member-eq 'proof-tree lst))
(member-eq 'proof-tree
(f-get-global 'inhibit-output-lst
state)))
(warning$ ctx nil
"The printing of proof-trees is being ~
enabled while the printing of proofs ~
is being disabled. You may want to ~
execute :STOP-PROOF-TREE in order to ~
inhibit proof-trees as well."))
(t state))
(value lst))))))
; With er defined, we may now define chk-ld-skip-proofsp.
(defconst *ld-special-error*
"~x1 is an illegal value for the state global variable ~x0. See ~
:DOC ~x0.")
(defun chk-ld-skip-proofsp (val ctx state)
(declare (xargs :mode :program))
(cond ((member-eq val
'(t nil include-book
initialize-acl2 include-book-with-locals))
(value nil))
(t (er soft ctx
*ld-special-error*
'ld-skip-proofsp val))))
(defun set-ld-skip-proofsp (val state)
(declare (xargs :mode :program))
(er-progn
(chk-ld-skip-proofsp val 'set-ld-skip-proofsp state)
(pprogn
(f-put-global 'ld-skip-proofsp val state)
(value val))))
(defmacro set-ld-skip-proofs (val state)
; Usually the names of our set utilities do not end in "p". We leave
; set-ld-skip-proofsp for backward compatibility, but we add this version
; for consistency.
(declare (ignore state)) ; avoid a stobj problem
`(set-ld-skip-proofsp ,val state))
(defun set-write-acl2x (val state)
(declare (xargs :guard (state-p state)))
(er-progn
(cond ((member-eq val '(t nil)) (value nil))
((and (consp val) (null (cdr val)))
(chk-ld-skip-proofsp (car val) 'set-write-acl2x state))
(t (er soft 'set-write-acl2x
"Illegal value for set-write-acl2x, ~x0. See :DOC ~
set-write-acl2x."
val)))
(pprogn (f-put-global 'write-acl2x val state)
(value val))))
; CHECK SUMS
; We begin by developing code to compute checksums for files, culminating in
; function check-sum. (Later we will consider checksums for objects.)
; We can choose any two nonnegative integers for the following two
; constants and still have a check-sum algorithm, provided, (a) that
; (< (* 127 *check-length-exclusive-maximum*) *check-sum-exclusive-maximum*)
; and provided (b) that (* 2 *check-sum-exclusive-maximum*) is of type
; (signed-byte 32). The first condition assures that the intermediate
; sum we obtain by adding to a running check-sum the product of a
; character code with the current location can be reduced modulo
; *check-sum-exclusive-maximum* by subtracting *check-sum-exclusive-maximum*.
; Choosing primes, as we do, may help avoid some loss of information
; due to cancellation. Choosing primes that are smaller may lead to
; check sums with less information.
(defconst *check-sum-exclusive-maximum* 268435399
"268435399 is the first prime below 2^28. We use integers
modulo this number as check sums.")
(defconst *check-length-exclusive-maximum* 2097143
"2097143 is the first prime below 2^21. We use integers
modulo this number as indices into the stream we are
check summing.")
; We actually return check-sums which are in (mod
; *check-sum-exclusive-maximum*).
(defconst *-check-sum-exclusive-maximum* (- *check-sum-exclusive-maximum*))
(defconst *1-check-length-exclusive-maximum*
(1- *check-length-exclusive-maximum*))
(defun ascii-code! (x)
(let ((y (char-code x)))
(cond
((or (= y 0) (= y 128))
1)
((< 127 y)
(- y 128))
(t y))))
(defun check-sum1 (sum len channel state)
(declare (type (signed-byte 32) sum len))
(let ((len (cond ((= len 0) *1-check-length-exclusive-maximum*)
(t (the (signed-byte 32) (1- len))))))
(declare (type (signed-byte 32) len))
(mv-let (x state)
(read-char$ channel state)
(cond ((not (characterp x)) (mv sum state))
(t (let ((inc (ascii-code! x)))
(declare (type (unsigned-byte 7) inc))
(cond ((and (= inc 0)
(not (eql x #\Tab)))
(mv x state))
(t (let ((inc (the (unsigned-byte 7)
(cond ((= inc 0) 9) (t inc)))))
(declare (type (unsigned-byte 7) inc))
(let ((sum (+ sum (the (signed-byte 32)
(* inc len)))))
(declare (type (signed-byte 32) sum))
(check-sum1
(cond ((>= sum *check-sum-exclusive-maximum*)
(the (signed-byte 32)
(+ sum *-check-sum-exclusive-maximum*)))
(t sum))
len channel state)))))))))))
(defun check-sum (channel state)
; This function returns a check-sum on the characters in a stream.
; This function also checks that every character read is either
; #\Newline, #\Tab, or #\Space, or a printing Ascii character. If the
; first value returned is a character, that character was not legal.
; Otherwise, the first value returned is an integer, the check-sum.
(check-sum1 0 *1-check-length-exclusive-maximum* channel state))
; We now develop code for computing checksums of objects. There are two
; separate algorithms, culminating respectively in functions old-check-sum-obj
; and fchecksum-obj. The first development was used up through ACL2
; Version_3.4, which uses an algorithm similar to that of our file-based
; function, check-sum. However, the #+hons version of ACL2 was being used on
; large cons trees with significant subtree sharing. These "galactic" trees
; could have relatively few distinct cons cells but a huge naive node count.
; It was thus desirable to memoize the computation of checksums, which was
; impossible using the existing algorithm because it modified state.
; The second development was contributed by Jared Davis (and is now maintained
; by the ACL2 developers, who are responsible for any errors). It is amenable
; to memoization and, indeed, fchecksum-obj is memoized in the #+hons version
; of ACL2. We say more after developing the code for the first algorithm,
; culminating in function check-sum-obj1.
; We turn now to the first development (which is no longer used in ACL2).
(defun check-sum-inc (n state)
(declare (type (unsigned-byte 7) n))
(let ((top
(32-bit-integer-stack-length state)))
(declare (type (signed-byte 32) top))
(let ((sum-loc (the (signed-byte 32) (+ top -1)))
(len-loc (the (signed-byte 32) (+ top -2))))
(declare (type (signed-byte 32) sum-loc len-loc))
(let ((sum
(aref-32-bit-integer-stack sum-loc state)))
(declare (type (signed-byte 32) sum))
(let ((len
(aref-32-bit-integer-stack len-loc state)))
(declare (type (signed-byte 32) len))
(let ((len (cond ((= 0 len) *1-check-length-exclusive-maximum*)
(t (the (signed-byte 32) (+ len -1))))))
(declare (type (signed-byte 32) len))
(let ((state
(aset-32-bit-integer-stack len-loc len state)))
(let ((new-sum
(the (signed-byte 32)
(+ sum (the (signed-byte 32) (* n len))))))
(declare (type (signed-byte 32) new-sum))
(let ((new-sum
(cond ((>= new-sum *check-sum-exclusive-maximum*)
(the (signed-byte 32)
(+ new-sum *-check-sum-exclusive-maximum*)))
(t new-sum))))
(declare (type (signed-byte 32) new-sum))
(aset-32-bit-integer-stack sum-loc new-sum state))))))))))
(defun check-sum-natural (n state)
(declare (type unsigned-byte n))
(cond ((<= n 127)
(check-sum-inc (the (unsigned-byte 7) n) state))
(t (pprogn (check-sum-inc (the (unsigned-byte 7) (rem n 127)) state)
(check-sum-natural (truncate n 127) state)))))
(defun check-sum-string1 (str i len state)
(declare (type string str))
(declare (type (signed-byte 32) i len))
(cond ((= i len) state)
(t (let ((chr (char str i)))
(declare (type character chr))
(let ((code (ascii-code! chr)))
(declare (type (unsigned-byte 7) code))
(cond ((> code 127)
(f-put-global
'check-sum-weirdness (cons str i) state))
(t (pprogn (check-sum-inc code state)
(check-sum-string1
str
(the (signed-byte 32) (1+ i))
len
state)))))))))
(defun check-sum-string2 (str i len state)
; This function serves the same purpose as check-sum-string1 except
; that no assumption is made that i or len fit into 32 bits. It
; seems unlikely that this function will ever be called, since it
; seems unlikely that any Lisp will support strings of length 2 billion
; or more, but who knows.
(declare (type string str))
(cond ((= i len) state)
(t (let ((chr (char str i)))
(let ((code (ascii-code! chr)))
(cond ((> code 127)
(f-put-global
'check-sum-weirdness (cons str i) state))
(t (pprogn (check-sum-inc code state)
(check-sum-string2
str
(1+ i)
len
state)))))))))
(defun check-sum-string (str state)
(let ((len (the integer (length (the string str)))))
(cond ((32-bit-integerp len)
(check-sum-string1 str 0 (the (signed-byte 32) len) state))
(t (check-sum-string2 str 0 len state)))))
(defun check-sum-obj1 (obj state)
(cond ((symbolp obj)
(pprogn (check-sum-inc 1 state)
(check-sum-string (symbol-name obj) state)))
((stringp obj)
(pprogn (check-sum-inc 2 state)
(check-sum-string obj state)))
((rationalp obj)
(cond ((integerp obj)
(cond ((< obj 0)
(pprogn (check-sum-inc 3 state)
(check-sum-natural (- obj) state)))
(t (pprogn (check-sum-inc 4 state)
(check-sum-natural obj state)))))
(t (let ((n (numerator obj)))
(pprogn (check-sum-inc 5 state)
(check-sum-natural (if (< n 0) (1- (- n)) n) state)
(check-sum-natural (denominator obj) state))))))
((consp obj)
(pprogn (check-sum-inc 6 state)
(check-sum-obj1 (car obj) state)
(cond ((atom (cdr obj))
(cond ((cdr obj)
(pprogn (check-sum-inc 7 state)
(check-sum-obj1 (cdr obj) state)))
(t (check-sum-inc 8 state))))
(t (check-sum-obj1 (cdr obj) state)))))
((characterp obj)
(pprogn (check-sum-inc 9 state)
(let ((n (ascii-code! obj)))
(cond ((< n 128)
(check-sum-inc (ascii-code! obj) state))
(t (f-put-global
'check-sum-weirdness obj state))))))
((complex-rationalp obj)
(pprogn (check-sum-inc 14 state)
(check-sum-obj1 (realpart obj) state)
(check-sum-obj1 (imagpart obj) state)))
(t (f-put-global
'check-sum-weirdness obj state))))
(defun old-check-sum-obj (obj state)
; This function became obsolete after Version_3.4 but we include it in case
; there are situations where it becomes useful again. It is the culmination of
; our first development of checksums for objects (as discussed above).
; We return a check-sum on obj, using an algorithm similar to that of
; check-sum. We return a non-integer as the first value if (and only if) the
; obj is not composed entirely of conses, symbols, strings, rationals, complex
; rationals, and characters. If the first value is not an integer, it is one of
; the offending objects encoutered.
; We typically use this function to compute check sums of cert-obj records and
; of objects of the form (cons expansion-alist ev-lst) where ev-lst is the list
; of forms in a book, including the initial in-package, and expansion-alist
; comes from make-event expansion.
(pprogn
(extend-32-bit-integer-stack 2 0 state)
(let ((top
(32-bit-integer-stack-length state)))
(let ((sum-loc (+ top -1))
(len-loc (+ top -2)))
(pprogn
(aset-32-bit-integer-stack sum-loc 0 state)
(aset-32-bit-integer-stack len-loc *1-check-length-exclusive-maximum*
state)
(f-put-global 'check-sum-weirdness nil state)
(check-sum-obj1 obj state)
(let ((ans (aref-32-bit-integer-stack sum-loc state)))
(pprogn (shrink-32-bit-integer-stack 2 state)
(let ((x (f-get-global 'check-sum-weirdness state)))
(cond (x (pprogn (f-put-global
'check-sum-weirdness nil state)
(mv x state)))
(t (mv ans state)))))))))))
; We now develop code for the second checksum algorithm, contributed by Jared
; Davis (now maintained by the ACL2 developers, who are responsible for any
; errors). See also the long comment after check-sum-obj, below.
; Our initial attempts however were a problem for GCL, which boxes fixnums
; unless one is careful. A regression took about 44 or 45 minutes instead of
; 35 or 36 minutes, which is really significant considering that (probably)
; only the checksum code was changed, and one would expect checksums to take a
; trivial fraction of time during a regression. Therefore, we developed code
; to avoid boxing fixnums in GCL during a common operation: multiplication mod
; M31 = #x7fffffff. The code below is developed only for defining that
; operation, times-mod-m31; so we could conditionalize with #+gcl all
; definitions below up to times-mod-m31. We believe that the following is a
; theorem, but we have not proved it (nor even admitted the relevant functions
; into :logic mode):
; (implies (and (natp x) (< x #x7fffffff)
; (natp y) (< y #x7fffffff))
; (equal (times-mod-m31 x y)
; (rem (* x y) #x7fffffff)))
; We considered using our fancy times-mod-m31 and its subfunctions for other
; than GCL. The time loss for ACL2h built on CCL 1.2 (actually
; 1.2-r10991M-trunk) on DarwinX8664 was only about 3.2%, which seems worth the
; cost in order to avoid having Lisp-specific code. However, regression runs
; with ACL2 built on Allegro CL exhibited intermittent checksumming errors. We
; wonder about a possible compiler bug, since neither heavy addition of checks,
; nor running with safety 3 (both ACL2h on CCL and ACL2 on Allegro CL) showed
; any inappropriate type declarations in the code below, and there were no
; checksumming problems exhibited with CCL, GCL, or SBCL. Moreover, Allegro CL
; showed significant slow down with the fancy times-mod-m31, not surprisingly
; since Allegro CL supports fixnums of less than 32 bits. Therefore, we
; decided to use a much simpler times-mod-m31 for all Lisps except GCL.
(defun plus-mod-m31 (u v)
; Add u and v mod M31 = #x7fffffff.
(declare (type (signed-byte 32) u v))
(the (signed-byte 32)
(let ((u (min u v))
(v (max u v)))
(declare (type (signed-byte 32) u v))
(cond ((< u #x40000000) ; 2^30
(cond ((< v #x40000000) ; 2^30
(the (signed-byte 32) (+ u v)))
(t
(let ((part (+ (the (signed-byte 32)
(logand v #x3FFFFFFF)) ; v - 2^30
u)))
(declare (type (signed-byte 32) part))
(cond ((< part #x3FFFFFFF)
(the (signed-byte 32)
(logior part #x40000000)))
((eql part #x3FFFFFFF)
0)
(t ; part + 2^30 = part' + 2^31
(the (signed-byte 32)
(1+ (the (signed-byte 32)
(logxor part #x40000000))))))))))
(t (the (signed-byte 32)
(- #x7FFFFFFF
(the (signed-byte 32)
(+ (the (signed-byte 32)
(- #x7FFFFFFF u))
(the (signed-byte 32)
(- #x7FFFFFFF v)))))))))))
(defun double-mod-m31 (x)
; This is an optimization of (plus-mod-m31 x x).
(declare (type (signed-byte 32) x))
(the (signed-byte 32)
(cond ((< x #x40000000) ; 2^30
(the (signed-byte 32) (ash x 1)))
(t (the (signed-byte 32)
(- #x7FFFFFFF
(the (signed-byte 32)
(ash (the (signed-byte 32)
(- #x7FFFFFFF x))
1))))))))
(defun times-expt-2-16-mod-m31 (x)
; Given x < M31 = #x7fffffff, we compute 2^16*x mod M31. The idea is to view x
; as the concatenation of 15-bit chunk H (high) to 16-bit chunk L (low), so
; that reasoning mod M31, 2^16*x = 2^32*H + 2^16*L = 2*H + 2^16*L. Note that
; if L has its high (15th) bit set, then writing L# for the result of masking
; out that bit, we have [mod M31] 2^16*L = 2^16(2^15 + L#) = 2^31 + 2^16 * L#.
; = 1 + 2^16 * L#.
; We can test this function in CCL, in raw Lisp, as follows. (It may be too
; slow to do this in GCL since some intermediate results might not be fixnums.)
; It took us about 3.5 minutes (late 2008).
; (defun test ()
; (loop for i from 0 to #x7ffffffe
; when (not (eql (times-expt-2-16-mod-m31 i)
; (mod (* #x10000 i) #x7fffffff)))
; do (return i)))
; (test)
(declare (type (signed-byte 32) x))
(the (signed-byte 32)
(let ((hi (ash x -16))
(lo (logand x #x0000ffff)))
(declare (type (signed-byte 32) hi lo))
(cond ((eql 0
(the (signed-byte 32)
(logand lo #x8000))) ; logbitp in GCL seems to box!
(the (signed-byte 32)
(plus-mod-m31 (double-mod-m31 hi)
(the (signed-byte 32)
(ash lo 16)))))
(t
(the (signed-byte 32)
(plus-mod-m31 (double-mod-m31 hi)
(the (signed-byte 32)
(logior
#x1
(the (signed-byte 32)
(ash (the (signed-byte 32)
(logand lo #x7fff))
16)))))))))))
#+(and (not gcl) (not acl2-loop-only))
(declaim (inline times-mod-m31))
(defun times-mod-m31 (u v)
; Note that u or v (or both) can be #x7fffffff, not just less than that number;
; this code will still give the correct result, 0.
; See the comment above about "using our fancy times-mod-m31" for GCL only.
(declare (type (signed-byte 32) u v))
(the (signed-byte 32)
#+(or (not gcl) acl2-loop-only)
(rem (the (signed-byte 64) (* u v))
#x7fffffff)
#+(and gcl (not acl2-loop-only))
; We want to avoid boxing, where we have 32-bit fixnums u and v. We compute as
; follows:
; u * v
; = (2^16 u-hi + u-lo) * (2^16 v-hi + v-lo)
; = 2^32 u-hi v-hi + 2^16 u-hi v-lo + 2^16 u-lo v-hi + u-lo v-lo
; = [mod M31 = #x7fffffff]
; 2 u-hi v-hi + 2^16(u-hi*v-lo + u-lo*v-hi) + u-lo*v-lo
; Now u-hi and v-hi are less than 2^15, while u-lo and v-lo are less than
; 2^16. So we need to be careful with the term u-lo*v-lo.
(let ((u-hi (ash u -16))
(u-lo (logand u #x0000ffff))
(v-hi (ash v -16))
(v-lo (logand v #x0000ffff)))
(declare (type (signed-byte 32) u-hi u-lo v-hi v-lo))
(let ((term1 (double-mod-m31 (the (signed-byte 32)
(* u-hi v-hi))))
(term2 (times-expt-2-16-mod-m31
(plus-mod-m31 (the (signed-byte 32) (* u-hi v-lo))
(the (signed-byte 32) (* u-lo v-hi)))))
(term3 (cond ((or (eql (the (signed-byte 32)
(logand u-lo #x8000))
0)
(eql (the (signed-byte 32)
(logand v-lo #x8000))
0))
(the (signed-byte 32)
(* u-lo v-lo)))
(t
; Let H = 2^15, and let u0 and v0 be the results of masking out the high bits
; of u-lo and v-lo, respectively. So:
; u-lo * v-lo
; = (H + u0) * (H + v0)
; = H^2 + H*(u0 + v0) + u0*v0
(let ((u0 (logand u #x7fff))
(v0 (logand v #x7fff)))
(declare (type (signed-byte 32) u0 v0))
(plus-mod-m31 #x40000000 ; 2^30
(plus-mod-m31
(the (signed-byte 32)
(* #x8000 ; 2^15
(the (signed-byte 32)
(+ u0 v0))))
(the (signed-byte 32)
(* u0 v0)))))))))
(declare (type (signed-byte 32) term1 term2 term3))
(plus-mod-m31 term1
(plus-mod-m31 term2 term3))))))
; Now we can include (our latest version of) Jared's code.
(defun fchecksum-natural-aux (n ans)
; A "functional" checksum for natural numbers.
;
; N is the natural number we want to checksum.
; ANS is the answer we have accumulated so far.
;
; Let M31 be 2^31 - 1. This happens to be the largest representable 32-bit
; signed number using 2's complement arithmetic. It is also a Mersenne prime.
; Furthermore, let P1 be 392894102, which is a nice, large primitive root of
; M31. From number theory, we can construct a basic pseudorandom number
; generator as follows:
;
; rnd0 = seed
; rnd1 = (rnd0 * P1) mod M31
; rnd2 = (rnd1 * P1) mod M31
; ...
;
; And our numbers will not repeat until 2^31 - 1. In fact, such a generator
; is found in the community book "misc/random."
;
; Our checksum algorithm uses this idea in a slightly different way. Given a
; 31-bit natural number, K, think of (K * P1) mod M31 as a way to "shuffle" the
; bits of K around in a fairly random manner. Then, to checksum a (potentially
; large) integer n, we break n up into 31-bit chunks, call them K1, K2, ...,
; Km. We then compute (Ki * P1) mod M31 for each i, and xor the results all
; together to compute a new, 31-bit checksum.
; A couple of other notes.
;
; - M31 may be written as #x7FFFFFFF.
;
; - We recur using (ash n -31), but this computes the same thing as (truncate
; n (expt 2 31)).
;
; - We split n into Ki by using (logand n #x7FFFFFFF), which is the same as
; (rem n (expt 2 31)).
(declare (type (integer 0 *) n))
(declare (type (signed-byte 32) ans))
(the (signed-byte 32)
(if (eql n 0)
ans
(fchecksum-natural-aux (the (integer 0 *) (ash n -31))
(the (signed-byte 32)
(logxor ans
(the (signed-byte 32)
(times-mod-m31
(logand n #x7FFFFFFF)
392894102))))))))
(defun fchecksum-natural (n)
(declare (type (integer 0 *) n))
(the (signed-byte 32)
(fchecksum-natural-aux n 28371987)))
(defun fchecksum-string1 (str i len ans)
; A "functional" checksum for strings.
;
; This is similar to the case for natural numbers.
;
; We consider the string in 31-bit pieces; each character in the string has,
; associated with it, an 8-bit character code, so we can combine four of these
; codes together to create a 32 bit chunk. We then simply drop the highest
; resulting bit (which should typically not matter because the character codes
; above 127 are so rarely used). The remaining 31-bits are be treated just as
; the 31-bit chunks of integers are, but the only twist is that we will use a
; different primitive root so that we come up with different numbers. In
; particular, we will use 506249751.
; WARNING: Keep this in sync with fchecksum-string2.
(declare (type string str))
(declare (type (signed-byte 32) i len ans))
(the (signed-byte 32)
(if (>= i len)
ans
(let* ((c0 (logand #x7F (the (signed-byte 32)
(char-code (the character (char str i))))))
(i (+ i 1))
(c1 (if (>= i len)
0
(char-code (the character (char str i)))))
(i (+ i 1))
(c2 (if (>= i len)
0
(char-code (the character (char str i)))))
(i (+ i 1))
(c3 (if (>= i len)
0
(char-code (the character (char str i)))))
(bits
; GCL 2.6.7 does needless boxing when we call logior on the four arguments,
; even when each of them is of the form (the (signed-byte 32) xxx). So the
; code is a bit ugly below.
(logior (the (signed-byte 32) (ash c0 24))
(the (signed-byte 32)
(logior (the (signed-byte 32) (ash c1 16))
(the (signed-byte 32)
(logior (the (signed-byte 32)
(ash c2 8))
(the (signed-byte 32)
c3))))))))
(declare (type (signed-byte 32) c0 i c1 c2 c3 bits))
(fchecksum-string1
str i len
(the (signed-byte 32)
(logxor ans
(the (signed-byte 32)
(times-mod-m31 bits 506249751)))))))))
(defun fchecksum-string2 (str i len ans)
; Same as above, but we don't assume i, len are (signed-byte 32)'s.
; WARNING: Keep this in sync with fchecksum-string1.
(declare (type string str))
(declare (type (signed-byte 32) ans))
(declare (type (integer 0 *) i len))
(the (signed-byte 32)
(if (>= i len)
ans
(let* ((c0 (logand #x7F (the (signed-byte 32)
(char-code (the character (char str i))))))
(i (+ i 1))
(c1 (if (>= i len)
0
(char-code (the character (char str i)))))
(i (+ i 1))
(c2 (if (>= i len)
0
(char-code (the character (char str i)))))
(i (+ i 1))
(c3 (if (>= i len)
0
(char-code (the character (char str i)))))
(bits ; see comment in fchecksum-string1 about ugly code below
(logior (the (signed-byte 32) (ash c0 24))
(the (signed-byte 32)
(logior (the (signed-byte 32) (ash c1 16))
(the (signed-byte 32)
(logior (the (signed-byte 32)
(ash c2 8))
(the (signed-byte 32)
c3))))))))
(declare (type (signed-byte 32) c0 c1 c2 c3 bits)
(type (integer 0 *) i))
(fchecksum-string2
str i len
(the (signed-byte 32)
(logxor ans
(the (signed-byte 32)
(times-mod-m31 bits 506249751)))))))))
(defun fchecksum-string (str)
(declare (type string str))
(the (signed-byte 32)
(let ((length (length str)))
(declare (type (integer 0 *) length))
(cond ((< length 2147483647) ; so (+ 1 length) is (signed-byte 32)
(fchecksum-string1 str 0 length
; We scramble the length in order to get a seed. This number is just another
; primitive root.
(times-mod-m31 (the (signed-byte 32)
(+ 1 length))
718273893)))
(t
(fchecksum-string2 str 0 length
; As above, but WARNING: Do not use times-mod-m31 here, because length need not
; be a fixnum.
(rem (the integer (* (+ 1 length)
718273893))
#x7FFFFFFF)))))))
#-(or acl2-loop-only hons)
(defvar *fchecksum-symbol-memo*
nil)
(defun fchecksum-atom (x)
; X is any atom. We compute a "functional checksum" of X.
;
; This is pretty straightforward. For naturals and strings, we just call the
; functions we've developed above. Otherwise, the object is composed out of
; naturals and strings. We compute the component-checksums, then "scramble"
; them by multiplying with another primitive root. Since it is easy to find
; primitive roots, it is easy to scramble in many different ways based on the
; different types we are looking at.
(the (signed-byte 32)
(cond ((natp x)
(fchecksum-natural x))
((integerp x)
; It's not a natural, so it's negative. We compute the code for the absolute
; value, then scramble it with yet another primitive root.
(let ((abs-code (fchecksum-natural (- x))))
(declare (type (signed-byte 32) abs-code))
(times-mod-m31 abs-code 283748912)))
((symbolp x)
(cond
#-(or hons acl2-loop-only)
((and *fchecksum-symbol-memo*
(gethash x *fchecksum-symbol-memo*)))
(t
(let* ((pkg-code (fchecksum-string (symbol-package-name x)))
(sym-code (fchecksum-string (symbol-name x)))
(pkg-code-scramble
; We scramble the bits of pkg-code so that it matters that they are in order.
; To do this, we multiply by another primitive root and mod out by M31.
(times-mod-m31 pkg-code 938187814)))
(declare (type (signed-byte 32)
pkg-code sym-code pkg-code-scramble))
(cond #-(or hons acl2-loop-only)
(*fchecksum-symbol-memo*
(setf (gethash x *fchecksum-symbol-memo*)
(logxor pkg-code-scramble sym-code)))
(t (logxor pkg-code-scramble sym-code)))))))
((stringp x)
(fchecksum-string x))
((characterp x) ; just scramble using another primitive root
(times-mod-m31 (char-code x) 619823821))
((rationalp x)
(let* ((num-code (fchecksum-atom (numerator x)))
(den-code (fchecksum-natural (denominator x)))
(num-scramble
(times-mod-m31 num-code 111298397))
(den-scramble
(times-mod-m31 den-code 391892127)))
(declare (type (signed-byte 32)
num-code den-code num-scramble den-scramble))
(logxor num-scramble den-scramble)))
((complex-rationalp x)
(let* ((imag-code (fchecksum-atom (imagpart x)))
(real-code (fchecksum-atom (realpart x)))
(imag-scramble
(times-mod-m31 imag-code 18783723))
(real-scramble
(times-mod-m31 real-code 981827319)))
(declare (type (signed-byte 32)
imag-code real-code imag-scramble real-scramble))
(logxor imag-scramble real-scramble)))
(t
(prog2$ (er hard 'fchecksum-atom "Bad atom, ~x0"
x)
0)))))
(defun fchecksum-obj (x)
; Finally, we just use the same idea to scramble cars and cdrs on conses. To
; make this efficient on structure-shared objects, it ought to be memoized. We
; do this explicitly in memoize-raw.lisp (for ACL2h).
; Note that we could make this partially tail-recursive by accumulating from
; the cdr, but this would ruin memoization. If we find performance problems
; with non-hons versions, we could consider having two versions of
; fchecksum-obj, and passing state into check-sum-obj to decide which one to
; call depending on whether or not fchecksum-obj is memoized.
(declare (xargs :guard t))
(the (signed-byte 32)
(if (atom x)
(fchecksum-atom x)
(let* ((car-code (fchecksum-obj (car x)))
(cdr-code (fchecksum-obj (cdr x)))
(car-scramble
(times-mod-m31 car-code 627718124))
(cdr-scramble
(times-mod-m31 cdr-code 278917287)))
(declare (type (signed-byte 32)
car-code cdr-code car-scramble cdr-scramble))
(logxor car-scramble cdr-scramble)))))
#-acl2-loop-only
(declaim (notinline check-sum-obj)) ; see comment below for old code
(defun check-sum-obj (obj)
(declare (xargs :guard t))
(fchecksum-obj obj))
; ; To use old check-sum-obj code, but then add check-sum-obj to
; ; *PRIMITIVE-PROGRAM-FNS-WITH-RAW-CODE* if doing this for a build:
; (defun check-sum-obj (obj)
; #-acl2-loop-only
; (return-from check-sum-obj
; (mv-let (val state)
; (old-check-sum-obj obj *the-live-state*)
; (declare (ignore state))
; val))
; #+acl2-loop-only
; (declare (ignore obj))
; (er hard 'check-sum-obj "ran *1* code for check-sum-obj"))
; Here are some examples.
;
; (fchecksum-obj 0)
; (fchecksum-obj 19)
; (fchecksum-obj 1892)
; (fchecksum-obj "foo")
; (fchecksum-obj "bfdkja")
; (fchecksum-obj #\a)
; (fchecksum-obj "a")
; (fchecksum-obj #\b)
; (fchecksum-obj #\c)
; (fchecksum-obj 189)
; (fchecksum-obj -189)
; (fchecksum-obj -19189)
; (fchecksum-obj -19283/188901)
; (fchecksum-obj 19283/188901)
; (fchecksum-obj 19283/2)
; (fchecksum-obj 2/19283)
; (fchecksum-obj 19283)
; (fchecksum-obj #c(19283 198))
; (fchecksum-obj #c(198 19283))
; (fchecksum-obj #c(-19283/1238 198))
;
; (fchecksum-obj 3)
; (fchecksum-obj '(3 . nil))
; (fchecksum-obj '(nil . 3))
;
; (fchecksum-obj nil)
; (fchecksum-obj '(nil))
; (fchecksum-obj '(nil nil))
; (fchecksum-obj '(nil nil nil))
; (fchecksum-obj '(nil nil nil nil))
;
; ; And here are some additional comments. If you want to generate more
; ; primitive roots, or verify that the ones we have picked are primitive roots,
; ; try this:
;
; (include-book "arithmetic-3/floor-mod/mod-expt-fast" :dir :system)
; (include-book "make-event/assert" :dir :system)
;
; ; Here we establish that the factors of M31-1 are 2, 3, 7, 11, 31, 151, and
; ; 331.
;
; (assert! (equal (- #x7FFFFFFF 1)
; (* 2 3 3 7 11 31 151 331)))
;
; ;; And so the following is sufficient to establish that n is a primitive
; ;; root.
;
; (defund primitive-root-p (n)
; (let* ((m31 #x7FFFFFFF)
; (m31-1 (- m31 1)))
; (and (not (equal (mod-expt-fast n (/ m31-1 2) m31) 1))
; (not (equal (mod-expt-fast n (/ m31-1 3) m31) 1))
; (not (equal (mod-expt-fast n (/ m31-1 7) m31) 1))
; (not (equal (mod-expt-fast n (/ m31-1 11) m31) 1))
; (not (equal (mod-expt-fast n (/ m31-1 31) m31) 1))
; (not (equal (mod-expt-fast n (/ m31-1 151) m31) 1))
; (not (equal (mod-expt-fast n (/ m31-1 331) m31) 1)))))
;
; ; And here are some primitive roots that we found. There are lots of
; ; them. If you want a new one, just pick a number and start incrementing
; ; or decrementing until it says T.
;
; (primitive-root-p 506249751)
; (primitive-root-p 392894102)
; (primitive-root-p 938187814)
; (primitive-root-p 718273893)
; (primitive-root-p 619823821)
; (primitive-root-p 283748912)
; (primitive-root-p 111298397)
; (primitive-root-p 391892127)
; (primitive-root-p 18783723)
; (primitive-root-p 981827319)
;
; (primitive-root-p 627718124)
; (primitive-root-p 278917287)
;
; ; At one point I [Jared] used this function to analyze different
; ; implementations of fchecksum-natural. You might find it useful if you want
; ; to write an alternate implementation. You want to produce a fast routine
; ; that doesn't have many collisions.
;
; (defun analyze-fchecksum-natural (n)
; (let (table ones twos more)
; ;; Table is a mapping from sums to the number of times they are hit.
; (setq table (make-hash-table))
; (loop for i from 1 to n do
; (let ((sum (fchecksum-natural i)))
; (setf (gethash sum table)
; (+ 1 (nfix (gethash sum table))))))
; ;; Now we will walk the table and see how many sums are hit once,
; ;; twice, or more often than that.
; (setq ones 0)
; (setq twos 0)
; (setq more 0)
; (maphash (lambda (key val)
; (declare (ignore key))
; (cond ((= val 1) (incf ones val))
; ((= val 2) (incf twos val))
; (t (incf more val))))
; table)
; (format t "~a~%" (list ones twos more))
; (format t "Unique mappings: ~5,2F%~%"
; (* 100 (/ (coerce ones 'float) n)))
; (format t "2-ary collisions: ~5,2F%~%"
; (* 100 (/ (coerce twos 'float) n)))
; (format t "3+-ary collisions: ~5,2F%~%"
; (* 100 (/ (coerce more 'float) n)))))
;
; (analyze-fchecksum-natural 1000)
; (analyze-fchecksum-natural 10000)
; (analyze-fchecksum-natural 100000)
; (analyze-fchecksum-natural 1000000)
; (analyze-fchecksum-natural 10000000)
; End of checksum code.
(defun read-file-iterate (channel acc state)
(mv-let (eof obj state)
(read-object channel state)
(cond (eof
(mv (reverse acc) state))
(t (read-file-iterate channel (cons obj acc) state)))))
(defun read-file (name state)
(mv-let (channel state)
(open-input-channel name :object state)
(cond (channel
(mv-let (ans state)
(read-file-iterate channel nil state)
(pprogn (close-input-channel channel state)
(mv nil ans state))))
(t (er soft 'read-file "No file found ~x0." name)))))
(defun formals (fn w)
(declare (xargs :guard (and (symbolp fn)
(plist-worldp w))))
(cond ((flambdap fn)
(lambda-formals fn))
(t (let ((temp (getpropc fn 'formals t w)))
(cond ((eq temp t)
(er hard? 'formals
"Every function symbol is supposed to have a ~
'FORMALS property but ~x0 does not!"
fn))
(t temp))))))
(defun plist-worldp-with-formals (alist)
; This function is like the system function PLIST-WORLDP except that here we
; additionally require that every FORMALS property have either a true-list or
; *ACL2-PROPERTY-UNBOUND* as its value. This is used in the guards for ARITY
; and TERMP. We expect this function to hold on (w state).
(declare (xargs :guard t))
(cond ((atom alist) (eq alist nil))
(t (and (consp (car alist))
(symbolp (car (car alist)))
(consp (cdr (car alist)))
(symbolp (cadr (car alist)))
(or (not (eq (cadr (car alist)) 'FORMALS))
(eq (cddr (car alist)) *ACL2-PROPERTY-UNBOUND*)
(true-listp (cddr (car alist))))
(plist-worldp-with-formals (cdr alist))))))
(defun arity (fn w)
(declare (xargs :guard (and (or (and (consp fn)
(consp (cdr fn))
(true-listp (cadr fn)))
(symbolp fn))
(plist-worldp-with-formals w))))
(cond ((flambdap fn) (length (lambda-formals fn)))
(t (let ((temp (getpropc fn 'formals t w)))
(cond ((eq temp t) nil)
(t (length temp)))))))
(defun arities-okp (user-table w)
(declare (xargs :guard (and (symbol-alistp user-table)
(plist-worldp-with-formals w))))
(cond
((endp user-table) t)
(t (and (equal (arity (car (car user-table)) w)
(cdr (car user-table)))
(arities-okp (cdr user-table) w)))))
(defconst *user-defined-functions-table-keys*
; Although it would be very odd to add return-last to this list, we state here
; explicitly that it is illegal to do so, because user-defined-functions-table
; has a :guard that relies on this in order to avoid applying stobjs-out to
; return-last.
'(untranslate untranslate-lst untranslate-preprocess))
(table user-defined-functions-table nil nil
:guard
(and (member-eq key *user-defined-functions-table-keys*)
(symbolp val)
(not (eq (getpropc val 'formals t world)
t))
(all-nils (stobjs-out val world))))
(defrec def-body
; Use the 'recursivep property, not this :recursivep field, when referring to
; the original definition, as is necessary for verify-guards,
; verify-termination, and handling of *1* functions.
((nume
hyp ; nil if there are no hypotheses
.
concl)
.
(recursivep formals rune . controller-alist))
t)
(defun latest-body (fncall hyp concl)
(if hyp
(fcons-term* 'if hyp concl
(fcons-term* 'hide fncall))
concl))
(defun def-body (fn wrld)
(car (getpropc fn 'def-bodies nil wrld)))
(defun body (fn normalp w)
; The safe way to call this function is with normalp = nil, which yields the
; actual original body of fn. The normalized body is provably equal to the
; unnormalized body, but that is not a strong enough property in some cases.
; Consider for example the following definition: (defun foo () (car 3)). Then
; (body 'foo nil (w state)) is (CAR '3), so guard verification for foo will
; fail, as it should. But (body 'foo t (w state)) is 'NIL, so we had better
; scan the unnormalized body when generating the guard conjecture rather than
; the normalized body. Functional instantiation may also be problematic if
; constraints are gathered using the normalized body, although we do not yet
; have an example showing that this is critical.
; WARNING: If normalp is non-nil, then we are getting the most recent body
; installed by a :definition rule with non-nil :install-body value. Be careful
; that this is really what is desired; and if so, be aware that we are not
; returning the corresponding def-body rune.
(cond ((flambdap fn)
(lambda-body fn))
(normalp (let ((def-body (def-body fn w)))
(latest-body (fcons-term fn
(access def-body def-body
:formals))
(access def-body def-body :hyp)
(access def-body def-body :concl))))
(t (getpropc fn 'unnormalized-body nil w))))
(defun symbol-class (sym wrld)
; The symbol-class of a symbol is one of three keywords:
; :program - not defined within the logic
; :ideal - defined in the logic but not known to be CL compliant
; :common-lisp-compliant - defined in the logic and known to be compliant with
; Common Lisp
; Convention: We never print the symbol-classes to the user. We would prefer
; the user not to think about these classes per se. It encourages a certain
; confusion, we think, because users want everything to be
; common-lisp-compliant and start thinking of it as a mode, sort of like "super
; :logic" or something. So we are keeping these names to ourselves by not
; using them in error messages and documentation. Typically used English
; phrases are such and such is "compliant with Common Lisp" or "is not known to
; be compliant with Common Lisp."
; Historical Note: :Program function symbols were once called "red", :ideal
; symbols were once called "blue", and :common-lisp-compliant symbols were once
; called "gold."
; Before we describe the storage scheme, let us make a few observations.
; First, most function symbols have the :program symbol-class, because until
; ACL2 is admitted into the logic, the overwhelming majority of the function
; symbols will be system functions. Second, all :logic function symbols have
; symbol-class :ideal or :common-lisp-compliant. Third, this function,
; symbol-class, is most often applied to :logic function symbols, because most
; often we use it to sweep through the function symbols in a term before
; verify-guards. Finally, theorem names are very rarely of interest here but
; they are always either :ideal or (very rarely) :common-lisp-compliant.
; Therefore, our storage scheme is that every :logic function will have a
; symbol-class property that is either :ideal or :common-lisp-compliant. We
; will not store a symbol-class property for :program but just rely on the
; absence of the property (and the fact that the symbol is recognized as a
; function symbol) to default its symbol-class to :program. Thus, system
; functions take no space but are slow to answer. Finally, theorems will
; generally have no stored symbol-class (so it will default to :ideal for them)
; but when it is stored it will be :common-lisp-compliant.
; Note that the defun-mode of a symbol is actually determined by looking at its
; symbol-class. We only store the symbol-class. That is more often the
; property we need to look at. But we believe it is simpler for the user to
; think in terms of :mode and :verify-guards.
(declare (xargs :guard (and (symbolp sym)
(plist-worldp wrld))))
(or (getpropc sym 'symbol-class nil wrld)
(if (getpropc sym 'theorem nil wrld)
:ideal
:program)))
(defmacro fdefun-mode (fn wrld)
; Fn must be a symbol and a function-symbol of wrld.
`(if (eq (symbol-class ,fn ,wrld) :program)
:program
:logic))
(defmacro programp (fn wrld)
`(eq (symbol-class ,fn ,wrld) :program))
(defmacro logicalp (fn wrld)
`(not (eq (symbol-class ,fn ,wrld) :program)))
(mutual-recursion
(defun program-termp (term wrld)
(cond ((variablep term) nil)
((fquotep term) nil)
((flambdap (ffn-symb term))
(or (program-termp (lambda-body (ffn-symb term)) wrld)
(program-term-listp (fargs term) wrld)))
((programp (ffn-symb term) wrld) t)
(t (program-term-listp (fargs term) wrld))))
(defun program-term-listp (lst wrld)
(cond ((null lst) nil)
(t (or (program-termp (car lst) wrld)
(program-term-listp (cdr lst) wrld)))))
)
(defun defun-mode (name wrld)
; Only function symbols have defun-modes. For all other kinds of names
; e.g., package names and macro names, the "defun-mode" is nil.
; Implementation Note: We do not store the defun-mode of a symbol on the
; property list of the symbol. We compute the defun-mode from the symbol-class.
(cond ((and (symbolp name)
(function-symbolp name wrld))
(fdefun-mode name wrld))
(t nil)))
; Rockwell Addition: Consider the guard conjectures for a stobj-using
; function. Every accessor and updater application will generate the
; obligation to prove (stp st), where stp is the recognizer for the
; stobj st. But this is guaranteed to be true for bodies that have
; been translated as defuns, because of the syntactic restrictions on
; stobjs. So in this code we are concerned with optimizing these
; stobj recognizer expressions away, by replacing them with T.
(defun get-stobj-recognizer (stobj wrld)
; If stobj is a stobj name, return the name of its recognizer; else nil. The
; value of the 'stobj property is always (*the-live-var* recognizer creator
; ...), for all user defined stobj names. The value is '(*the-live-state*) for
; STATE and is nil for all other names.
(cond ((eq stobj 'state)
'state-p)
(t (cadr (getpropc stobj 'stobj nil wrld)))))
(defun stobj-recognizer-terms (known-stobjs wrld)
; Given a list of stobjs, return the list of recognizer applications.
; E.g., given (STATE MY-ST) we return ((STATE-P STATE) (MY-STP MY-ST)).
(cond ((null known-stobjs) nil)
(t (cons (fcons-term* (get-stobj-recognizer (car known-stobjs) wrld)
(car known-stobjs))
(stobj-recognizer-terms (cdr known-stobjs) wrld)))))
(defun mcons-term-smart (fn args)
; The following function is guaranteed to create a term provably equal to (cons
; fn args). If we find other optimizations to make here, we should feel free
; to do so.
(if (and (eq fn 'if)
(equal (car args) *t*))
(cadr args)
(cons-term fn args)))
(mutual-recursion
(defun optimize-stobj-recognizers1 (known-stobjs recog-terms term)
(cond
((variablep term) term)
((fquotep term) term)
((flambda-applicationp term)
; We optimize the stobj recognizers in the body of the lambda. We do
; not have to watch out of variable name changes, since if a stobj
; name is passed into a lambda it is passed into a local of the same
; name. We need not optimize the body if no stobj name is used as a
; formal. But we have to optimize the args in either case.
(let ((formals (lambda-formals (ffn-symb term)))
(body (lambda-body (ffn-symb term))))
(cond
((intersectp-eq known-stobjs formals)
(fcons-term
(make-lambda formals
(optimize-stobj-recognizers1
known-stobjs
recog-terms
body))
(optimize-stobj-recognizers1-lst known-stobjs
recog-terms
(fargs term))))
(t (fcons-term (ffn-symb term)
(optimize-stobj-recognizers1-lst known-stobjs
recog-terms
(fargs term)))))))
((and (null (cdr (fargs term)))
(member-equal term recog-terms))
; If the term is a recognizer call, e.g., (MY-STP MY-ST), we replace
; it by T. The first conjunct above is just a quick test: If the term
; has 2 or more args, then don't bother to do the member-equal. If
; the term has 1 or 0 (!) args we do. We won't find it if it has 0
; args.
*t*)
(t (mcons-term-smart (ffn-symb term)
(optimize-stobj-recognizers1-lst known-stobjs
recog-terms
(fargs term))))))
(defun optimize-stobj-recognizers1-lst (known-stobjs recog-terms lst)
(cond
((endp lst) nil)
(t (cons (optimize-stobj-recognizers1 known-stobjs recog-terms (car lst))
(optimize-stobj-recognizers1-lst known-stobjs
recog-terms
(cdr lst)))))))
(defun optimize-stobj-recognizers (known-stobjs term wrld)
; Term is a term. We scan it and find every call of the form (st-p
; st) where st is a member of known-stobjs and st-p is the stobj
; recognizer function for st. We replace each such call by T. The
; idea is that we have simplified term under the assumption that each
; (st-p st) is non-nil. This simplification preserves equivalence
; with term PROVIDED all stobj recognizers are Boolean valued!
(cond
((null known-stobjs) term)
(t (optimize-stobj-recognizers1
known-stobjs
(stobj-recognizer-terms known-stobjs wrld)
term))))
; Rockwell Addition: The new flag, stobj-optp, determines whether the
; returned guard has had all the stobj recognizers optimized away. Of
; course, whether you should call this with stobj-optp t or nil
; depends on the expression you're exploring: if it has been suitably
; translated, you can use t, else you must use nil. Every call of
; guard (and all the functions that call those) has been changed to
; pass down this flag. I won't mark every such place, but they'll
; show up in the compare-windows.
(defun guard (fn stobj-optp w)
; This function is just the standard way to obtain the guard of fn in
; world w.
; If stobj-optp is t, we optimize the returned term, simplifying it
; under the assumption that every stobj recognizer in it is true. If
; fn traffics in stobjs, then it was translated under the stobj
; syntactic restrictions. Let st be a known stobj for fn (i.e.,
; mentioned in its stobjs-in) and let st-p be the corresponding
; recognizer. This function should only be called with stobj-optp = t
; if you know (st-p st) to be true in the context of that call.
; The documentation string below addresses the general notion of
; guards in ACL2, rather than explaining this function.
(cond ((flambdap fn) *t*)
((or (not stobj-optp)
(all-nils (stobjs-in fn w)) )
(getpropc fn 'guard *t* w))
(t
; If we have been told to optimize the stobj recognizers (stobj-optp =
; t) and there are stobjs among the arguments of fn, then fn was
; translated with the stobj syntactic restrictions enforced for those
; names. That means we can optimize the guard of the function
; appropriately.
(optimize-stobj-recognizers
(collect-non-x 'nil (stobjs-in fn w))
(or (getpropc fn 'guard *t* w)
; Once upon a time we found a guard of nil, and it took awhile to track down
; the source of the ensuing error.
(illegal 'guard "Found a nil guard for ~x0."
(list (cons #\0 fn))))
w))))
(defun guard-lst (fns stobj-optp w)
(cond ((null fns) nil)
(t (cons (guard (car fns) stobj-optp w)
(guard-lst (cdr fns) stobj-optp w)))))
(defmacro equivalence-relationp (fn w)
; See the Essay on Equivalence, Refinements, and Congruence-based
; Rewriting.
; (Note: At the moment, the fact that fn is an equivalence relation is
; encoded merely by existence of a non-nil 'coarsenings property. No
; :equivalence rune explaining why fn is an equivalence relation is to
; be found there -- though such a rune does exist and is indeed found
; among the 'congruences of fn itself. We do not track the use of
; equivalence relations, we just use them anonymously. It would be
; good to track them and report them. When we do that, read the Note
; on Tracking Equivalence Runes in subst-type-alist1.)
`(let ((fn ,fn))
; While both equal and iff have non-nil coarsenings properties, we make
; special cases of them here because they are common and we wish to avoid
; the getprop.
(or (eq fn 'equal)
(eq fn 'iff)
(and (not (flambdap fn))
(getpropc fn 'coarsenings nil ,w)))))
(defun >=-len (x n)
(declare (xargs :guard (and (integerp n) (<= 0 n))))
(if (= n 0)
t
(if (atom x)
nil
(>=-len (cdr x) (1- n)))))
(defun all->=-len (lst n)
(declare (xargs :guard (and (integerp n) (<= 0 n))))
(if (atom lst)
(eq lst nil)
(and (>=-len (car lst) n)
(all->=-len (cdr lst) n))))
(defun strip-cadrs (x)
(declare (xargs :guard (all->=-len x 2)))
(cond ((endp x) nil)
(t (cons (cadar x) (strip-cadrs (cdr x))))))
; Rockwell Addition: Just moved from other-events.lisp
(defun strip-cddrs (x)
(declare (xargs :guard (all->=-len x 2)))
(cond ((endp x) nil)
(t (cons (cddar x) (strip-cddrs (cdr x))))))
(defun global-set-lst (alist wrld)
(cond ((null alist) wrld)
(t (global-set-lst (cdr alist)
(global-set (caar alist)
(cadar alist)
wrld)))))
(defmacro cons-term1-body-mv2 ()
`(let ((x (unquote (car args)))
(y (unquote (cadr args))))
(let ((evg (case fn
,@*cons-term1-alist*
(if (kwote (if x y (unquote (caddr args)))))
(not (kwote (not x))))))
(cond (evg (mv t evg))
(t (mv nil form))))))
(defun cons-term1-mv2 (fn args form)
(declare (xargs :guard (and (pseudo-term-listp args)
(quote-listp args))))
(cons-term1-body-mv2))
(mutual-recursion
(defun sublis-var1 (alist form)
(declare (xargs :guard (and (symbol-alistp alist)
(pseudo-term-listp (strip-cdrs alist))
(pseudo-termp form))))
(cond ((variablep form)
(let ((a (assoc-eq form alist)))
(cond (a (mv (not (eq form (cdr a)))
(cdr a)))
(t (mv nil form)))))
((fquotep form)
(mv nil form))
(t (mv-let (changedp lst)
(sublis-var1-lst alist (fargs form))
(let ((fn (ffn-symb form)))
(cond (changedp (mv t (cons-term fn lst)))
((and (symbolp fn) ; optimization
(quote-listp lst))
(cons-term1-mv2 fn lst form))
(t (mv nil form))))))))
(defun sublis-var1-lst (alist l)
(declare (xargs :guard (and (symbol-alistp alist)
(pseudo-term-listp (strip-cdrs alist))
(pseudo-term-listp l))))
(cond ((endp l)
(mv nil l))
(t (mv-let (changedp1 term)
(sublis-var1 alist (car l))
(mv-let (changedp2 lst)
(sublis-var1-lst alist (cdr l))
(cond ((or changedp1 changedp2)
(mv t (cons term lst)))
(t (mv nil l))))))))
)
(defun sublis-var (alist form)
; Call this function with alist = nil to put form into quote-normal form so
; that for example if form is (cons '1 '2) then '(1 . 2) is returned. The
; following two comments come from the nqthm version of this function.
; In REWRITE-WITH-LEMMAS we use this function with the nil alist
; to put form into quote normal form. Do not optimize this
; function for the nil alist.
; This is the only function in the theorem prover that we
; sometimes call with a "term" that is not in quote normal form.
; However, even this function requires that form be at least a
; pseudo-termp.
; We rely on quote-normal form for the return value, for example in calls of
; sublis-var in rewrite-with-lemma and in apply-top-hints-clause1.
(declare (xargs :guard (and (symbol-alistp alist)
(pseudo-term-listp (strip-cdrs alist))
(pseudo-termp form))))
(mv-let (changedp val)
(sublis-var1 alist form)
(declare (ignore changedp))
val))
(defun sublis-var-lst (alist l)
(declare (xargs :guard (and (symbol-alistp alist)
(pseudo-term-listp (strip-cdrs alist))
(pseudo-term-listp l))))
(mv-let (changedp val)
(sublis-var1-lst alist l)
(declare (ignore changedp))
val))
(defun subcor-var1 (vars terms var)
(declare (xargs :guard (and (symbol-listp vars)
(pseudo-term-listp terms)
(equal (length vars) (length terms))
(variablep var))))
(cond ((endp vars) var)
((eq var (car vars)) (car terms))
(t (subcor-var1 (cdr vars) (cdr terms) var))))
(mutual-recursion
(defun subcor-var (vars terms form)
; "Subcor" stands for "substitute corresponding elements". Vars and terms are
; in 1:1 correspondence, and we substitute terms for corresponding vars into
; form. This function was called sub-pair-var in nqthm.
(declare (xargs :guard (and (symbol-listp vars)
(pseudo-term-listp terms)
(equal (length vars) (length terms))
(pseudo-termp form))))
(cond ((variablep form)
(subcor-var1 vars terms form))
((fquotep form) form)
(t (cons-term (ffn-symb form)
(subcor-var-lst vars terms (fargs form))))))
(defun subcor-var-lst (vars terms forms)
(declare (xargs :guard (and (symbol-listp vars)
(pseudo-term-listp terms)
(equal (length vars) (length terms))
(pseudo-term-listp forms))))
(cond ((endp forms) nil)
(t (cons (subcor-var vars terms (car forms))
(subcor-var-lst vars terms (cdr forms))))))
)
; We now develop the code to take a translated term and "untranslate"
; it into something more pleasant to read.
(defun make-reversed-ad-list (term ans)
; We treat term as a CAR/CDR nest around some ``base'' and return (mv ad-lst
; base), where ad-lst is the reversed list of #\A and #\D characters and base
; is the base of the CAR/CDR nest. Thus, (CADDR B) into (mv '(#\D #\D #\A) B).
; If term is not a CAR/CDR nest, adr-lst is nil.
(cond ((variablep term)
(mv ans term))
((fquotep term)
(mv ans term))
((eq (ffn-symb term) 'CAR)
(make-reversed-ad-list (fargn term 1) (cons '#\A ans)))
((eq (ffn-symb term) 'CDR)
(make-reversed-ad-list (fargn term 1) (cons '#\D ans)))
(t (mv ans term))))
(defun car-cdr-abbrev-name (adr-lst)
; Given an adr-lst we turn it into one of the CAR/CDR abbreviation names. We
; assume the adr-lst corresponds to a legal name, e.g., its length is no
; greater than five (counting the #\R).
(intern (coerce (cons #\C adr-lst) 'string) "ACL2"))
(defun pretty-parse-ad-list (ad-list dr-list n base)
(cond
((eql n 5)
(pretty-parse-ad-list ad-list '(#\R) 1
(list (car-cdr-abbrev-name dr-list) base)))
((endp ad-list)
(cond ((eql n 1) base)
(t (list (car-cdr-abbrev-name dr-list) base))))
((eql (car ad-list) #\A)
(pretty-parse-ad-list (cdr ad-list) '(#\R) 1
(list (car-cdr-abbrev-name (cons #\A dr-list)) base)))
(t ; (eql (car ad-list) '#\D)
(pretty-parse-ad-list (cdr ad-list) (cons #\D dr-list) (+ 1 n) base))))
(defun untranslate-car-cdr-nest (term)
; This function is not actually used, but it illustrates how car-cdr nests are
; untranslated. See community book books/system/untranslate-car-cdr.lisp for
; documentation and a correctness proof.
; Examples:
; (untranslate-car-cdr-nest '(car (cdr (car b))))
; ==> (CADR (CAR B))
; (untranslate-car-cdr-nest '(car (cdr (cdr b))))
; ==> (CADDR B)
; (untranslate-car-cdr-nest '(car (car (cdr (cdr b)))))
; ==> (CAR (CADDR B))
(mv-let (ad-list base)
(make-reversed-ad-list term nil)
(cond
((null ad-list) base)
(t (pretty-parse-ad-list ad-list '(#\R) 1 base)))))
(defun collect-non-trivial-bindings (vars vals)
(cond ((null vars) nil)
((eq (car vars) (car vals))
(collect-non-trivial-bindings (cdr vars) (cdr vals)))
(t (cons (list (car vars) (car vals))
(collect-non-trivial-bindings (cdr vars) (cdr vals))))))
(defun untranslate-and (p q iff-flg)
; The following theorem illustrates the various cases:
; (thm (and (equal (and t q) q)
; (iff (and p t) p)
; (equal (and p (and q1 q2)) (and p q1 q2))))
; Warning: Keep this in sync with and-addr.
(cond ((eq p t) q)
((and iff-flg (eq q t)) p)
((and (consp q)
(eq (car q) 'and))
(cons 'and (cons p (cdr q))))
(t (list 'and p q))))
(defun untranslate-or (p q)
; The following theorem illustrates the various cases:
; (thm (equal (or p (or q1 q2)) (or p q1 q2))))
(cond ((and (consp q)
(eq (car q) 'or))
(cons 'or (cons p (cdr q))))
(t (list 'or p q))))
(defun case-length (key term)
; Key is either nil or a variablep symbol. Term is a term. We are
; imagining printing term as a case on key. How long is the case
; statement? Note that every term can be printed as (case key
; (otherwise term)) -- a case of length 1. If key is nil we choose it
; towards extending the case-length.
(case-match term
(('if ('equal key1 ('quote val)) & y)
(cond ((and (if (null key)
(variablep key1)
(eq key key1))
(eqlablep val))
(1+ (case-length key1 y)))
(t 1)))
(('if ('eql key1 ('quote val)) & y)
(cond ((and (if (null key)
(variablep key1)
(eq key key1))
(eqlablep val))
(1+ (case-length key1 y)))
(t 1)))
(('if ('member key1 ('quote val)) & y)
(cond ((and (if (null key)
(variablep key1)
(eq key key1))
(eqlable-listp val))
(1+ (case-length key1 y)))
(t 1)))
(& 1)))
; And we do a similar thing for cond...
(defun cond-length (term)
(case-match term
(('if & & z) (1+ (cond-length z)))
(& 1)))
; In general the following list should be set to contain all the boot-strap
; functions that have boolean type set.
(defconst *untranslate-boolean-primitives*
'(equal))
(defun right-associated-args (fn term)
; Fn is a function symbol of two arguments. Term is a call of fn.
; E.g., fn might be 'BINARY-+ and term might be '(BINARY-+ A (BINARY-+
; B C)). We return the list of arguments in the right-associated fn
; nest, e.g., '(A B C).
(let ((arg2 (fargn term 2)))
(cond ((and (nvariablep arg2)
(not (fquotep arg2))
(eq fn (ffn-symb arg2)))
(cons (fargn term 1) (right-associated-args fn arg2)))
(t (fargs term)))))
(defun dumb-negate-lit (term)
(declare (xargs :guard (pseudo-termp term)))
(cond ((variablep term)
(fcons-term* 'not term))
((fquotep term)
(cond ((equal term *nil*) *t*)
(t *nil*)))
((eq (ffn-symb term) 'not)
(fargn term 1))
((and (eq (ffn-symb term) 'equal)
(or (equal (fargn term 2) *nil*)
(equal (fargn term 1) *nil*)))
(if (equal (fargn term 2) *nil*)
(fargn term 1)
(fargn term 2)))
(t (fcons-term* 'not term))))
(defun dumb-negate-lit-lst (lst)
(cond ((endp lst) nil)
(t (cons (dumb-negate-lit (car lst))
(dumb-negate-lit-lst (cdr lst))))))
(mutual-recursion
(defun term-stobjs-out-alist (vars args alist wrld)
(if (endp vars)
nil
(let ((st (term-stobjs-out (car args) alist wrld))
(rest (term-stobjs-out-alist (cdr vars) (cdr args) alist wrld)))
(if (and st (symbolp st))
(acons (car vars) st rest)
rest))))
(defun term-stobjs-out (term alist wrld)
; Warning: This function currently has heuristic application only. We need to
; think harder about it if we are to rely on it for soundness.
(cond
((variablep term)
(or (cdr (assoc term alist))
(and (getpropc term 'stobj nil wrld)
term)))
((fquotep term)
nil)
((eq (ffn-symb term) 'return-last)
(term-stobjs-out (car (last (fargs term))) alist wrld))
(t (let ((fn (ffn-symb term)))
(cond
((member-eq fn '(nth mv-nth))
(let* ((arg1 (fargn term 1))
(n (and (quotep arg1) (cadr arg1))))
(and (integerp n)
(<= 0 n)
(let ((term-stobjs-out
(term-stobjs-out (fargn term 2) alist wrld)))
(and (consp term-stobjs-out)
(nth n term-stobjs-out))))))
((eq fn 'update-nth)
(term-stobjs-out (fargn term 3) alist wrld))
((flambdap fn) ; (fn args) = ((lambda vars body) args)
(let ((vars (lambda-formals fn))
(body (lambda-body fn)))
(term-stobjs-out body
(term-stobjs-out-alist vars (fargs term) alist wrld)
wrld)))
((eq fn 'if)
(or (term-stobjs-out (fargn term 2) alist wrld)
(term-stobjs-out (fargn term 3) alist wrld)))
(t
(let ((lst (stobjs-out fn wrld)))
(cond ((and (consp lst) (null (cdr lst)))
(car lst))
(t lst)))))))))
)
(defun accessor-root (n term wrld)
; When term is a stobj name, say st, ac is the accessor function for st defined
; to return (nth n st), then untranslate maps (nth n st) to (nth *ac* st).
; The truth is that the 'accessor-names property of st is used to carry this
; out. Update-nth gets similar consideration.
; But what about (nth 0 (run st n)), where run returns a stobj st? Presumably
; we would like to print that as (nth *b* (run st n)) where b is the 0th field
; accessor function for st. We would also like to handle terms such as (nth 1
; (mv-nth 3 (run st n))). These more general cases are likely to be important
; to making stobj proofs palatable. There is yet another consideration, which
; is that during proofs, the user may use variable names other than stobj names
; to refer to stobjs. For example, there may be a theorem of the form
; (... st st0 ...), which could generate a term (nth n st0) during a proof that
; the user would prefer to see printed as (nth *b* st0).
; The present function returns the field name to be returned in place of n when
; untranslating (nth n term) or (update-nth n val term). Wrld is, of course,
; an ACL2 world.
(let ((st (term-stobjs-out term
(table-alist 'nth-aliases-table wrld)
wrld)))
(and st
(symbolp st)
(let ((accessor-names
(getpropc st 'accessor-names nil wrld)))
(and accessor-names
(< n (car (dimensions st accessor-names)))
(aref1 st accessor-names n))))))
; We define progn! here so that it is available before its call in redef+. But
; first we define observe-raw-mode-setting, a call of which is laid down by the
; use of f-put-global on 'acl2-raw-mode-p in the definition of progn!.
#-acl2-loop-only
(defun observe-raw-mode-setting (v state)
; We are about to set state global 'acl2-raw-mode-p to v. We go through some
; lengths here to maintain the values of state globals
; 'raw-include-book-dir-alist and 'raw-include-book-dir!-alist, and warn when
; the value of either of these variables is discarded as we leave raw mode. We
; are thus violating the semantics of put-global, by sometimes setting these
; two variables when only 'acl2-raw-mode-p is to be set -- but all bets are off
; when using raw mode, so this violation is tolerable.
(let ((old-raw-mode (f-get-global 'acl2-raw-mode-p state))
(old-raw-include-book-dir-alist
(f-get-global 'raw-include-book-dir-alist state))
(old-raw-include-book-dir!-alist
(f-get-global 'raw-include-book-dir!-alist state))
(ctx 'observe-raw-mode-setting))
(cond
((or (iff v old-raw-mode)
; If we are executing a raw-Lisp include-book on behalf of include-book-fn,
; then a change in the status of raw mode is not important, as we will continue
; to maintain and use the values of state globals 'raw-include-book-dir-alist
; and 'raw-include-book-dir!-alist to compute the value of function
; include-book-dir. The former state global is bound by state-global-let* in
; load-compiled-book, which in turn is called by include-book under
; include-book-fn. The latter state global is set to an alist value (i.e., not
; :ignore) in include-book-raw-top, which in turn is called when doing early
; loads of compiled files by include-book-top, under include-book-fn, under
; include-book.
*load-compiled-stack*)
state)
((eq (not old-raw-mode)
(raw-include-book-dir-p state))
; Clearly the two arguments of iff can't both be nil, since the value of
; 'raw-include-book-dir-alist is not ignored (it is never :ignore) in raw-mode.
; Can they both be t? Assuming old-raw-mode is nil, then since (iff v
; old-raw-mode) is false, we are about to go into raw mode. Also, since we are
; not in the previous case, we are not currently under include-book-fn. But
; since we are currently not in raw mode and not under include-book-fn, we
; expect old-raw-include-book-dir-alist to be :ignore, as per the Essay on
; Include-book-dir-alist: "We maintain the invariant that :ignore is the value
; [of 'include-book-dir-alist] except when in raw-mode or during evaluation of
; include-book-fn."
(prog2$ (er hard! ctx
"Implementation error: Transitioning from ~x0 = ~x1 and yet ~
the value of state global variable ~x2 is ~x3! ~
Implementors should see the comment just above this ~
message in observe-raw-mode-setting."
'acl2-raw-mode-p
old-raw-mode
'raw-include-book-dir-alist
old-raw-include-book-dir-alist)
state))
(t
(let* ((wrld (w state))
(old-table-include-book-dir-alist
(cdr (assoc-eq :include-book-dir-alist
(table-alist 'acl2-defaults-table wrld))))
(old-table-include-book-dir!-alist
(table-alist 'include-book-dir!-table wrld)))
(pprogn
(cond
((and
old-raw-mode
; The warning below is probably irrelevant for a context such that
; acl2-defaults-table will ultimately be discarded, because even without
; raw-mode we will be discarding include-book-dir-alist changes.
(not (acl2-defaults-table-local-ctx-p state))
(or (not (equal old-raw-include-book-dir-alist
old-table-include-book-dir-alist))
(not (equal old-raw-include-book-dir!-alist
old-table-include-book-dir!-alist))))
(warning$ ctx "Raw-mode"
"The set of legal values for the :DIR argument of ~
include-book and ld appears to have changed when ~v0 ~
was executed in raw-mode. Changes are being discarded ~
as we exit raw-mode."
(append
(and (not (equal old-table-include-book-dir-alist
old-raw-include-book-dir-alist))
'(add-include-book-dir
delete-include-book-dir))
(and (not (equal old-table-include-book-dir!-alist
old-raw-include-book-dir!-alist))
'(add-include-book-dir!
delete-include-book-dir!)))))
(t state))
(f-put-global 'raw-include-book-dir-alist
(cond (old-raw-mode
; We are leaving raw-mode and are not under include-book-fn.
:ignore)
(t old-table-include-book-dir-alist))
state)
(f-put-global 'raw-include-book-dir!-alist
(cond (old-raw-mode
; We are leaving raw-mode and are not under include-book-fn.
:ignore)
(t old-table-include-book-dir!-alist))
state)))))))
#+acl2-loop-only
(defmacro progn! (&rest r)
(declare (xargs :guard (or (not (symbolp (car r)))
(eq (car r) :state-global-bindings))))
(cond
((and (consp r)
(eq (car r) :state-global-bindings))
`(state-global-let* ,(cadr r)
(progn!-fn ',(cddr r) ',(cadr r) state)))
(t `(progn!-fn ',r nil state))))
#-acl2-loop-only
(defmacro progn! (&rest r)
(let ((sym (gensym)))
`(let ((state *the-live-state*)
(,sym (f-get-global 'acl2-raw-mode-p *the-live-state*)))
(declare (ignorable state))
,@(cond ((eq (car r) :state-global-bindings)
(cddr r))
(t r))
; Notice that we don't need to use state-global-let* to protect against the
; possibility that the resetting of acl2-raw-mode-p never gets executed below.
; There are two reasons. First, ACL2's unwind protection mechanism doesn't
; work except inside the ACL2 loop, and although it may be that we always
; execute progn! forms from (ultimately) inside the ACL2 loop, it is preferable
; not to rely on that assumption. The other reason is that we assume that
; there are no errors during the execution of r in raw Lisp, since presumably
; the progn! form was already admitted in the loop. There are flaws in this
; assumption, of course: the user may abort or may be submitting the progn! in
; raw mode (in which case progn!-fn was not executed first). So we may want to
; revisit the resetting of acl2-raw-mode-p, but in that case we need to
; consider whether we need our solution to work outside the ACL2 loop, and if
; so, then whether it actually does work.
(f-put-global 'acl2-raw-mode-p ,sym state)
(value nil))))
; The LD Specials
; The function LD will "bind" some state globals in the sense that it will
; smash their global values and then restore the old values upon completion.
; These state globals are called "LD specials". The LD read-eval-print loop
; will reference these globals. The user is permitted to set these globals
; with commands executed in LD -- with the understanding that the values are
; lost when LD is exited and the pop occurs.
; To make it easy to reference them and to ensure that they are set to legal
; values, we will define access and update functions for them. We define the
; functions here rather than in ld.lisp so that we may use them freely in our
; code.
(defun ld-redefinition-action (state)
(f-get-global 'ld-redefinition-action state))
(defun chk-ld-redefinition-action (val ctx state)
(cond ((or (null val)
(and (consp val)
(member-eq (car val) '(:query :warn :doit :warn! :doit!))
(member-eq (cdr val) '(:erase :overwrite))))
(value nil))
(t (er soft ctx *ld-special-error* 'ld-redefinition-action val))))
(defun set-ld-redefinition-action (val state)
(er-progn
(chk-ld-redefinition-action val 'set-ld-redefinition-action state)
(pprogn
(f-put-global 'ld-redefinition-action val state)
(value val))))
(defmacro redef nil
'(set-ld-redefinition-action '(:query . :overwrite) state))
(defmacro redef! nil
'(set-ld-redefinition-action '(:warn! . :overwrite) state))
(defmacro redef+ nil
; WARNING: Keep this in sync with redef-.
#-acl2-loop-only
nil
#+acl2-loop-only
`(with-output
:off (summary event)
(progn
(defttag :redef+)
(progn!
(set-ld-redefinition-action '(:warn! . :overwrite)
state)
(program)
(set-temp-touchable-vars t state)
(set-temp-touchable-fns t state)
(f-put-global 'redundant-with-raw-code-okp t state)
(set-state-ok t)))))
(defmacro redef- nil
; WARNING: Keep this in sync with redef+.
#-acl2-loop-only
nil
#+acl2-loop-only
`(with-output
:off (summary event)
(progn
(redef+) ; to allow forms below
(progn! (f-put-global 'redundant-with-raw-code-okp nil state)
(set-temp-touchable-vars nil state)
(set-temp-touchable-fns nil state)
(defttag nil)
(logic)
(set-ld-redefinition-action nil state)
(set-state-ok nil)))))
(defun chk-current-package (val ctx state)
(cond ((find-non-hidden-package-entry val (known-package-alist state))
(value nil))
(t (er soft ctx *ld-special-error* 'current-package val))))
(defun set-current-package (val state)
; This function is equivalent to in-package-fn except for the
; error message generated.
(er-progn
(chk-current-package val 'set-current-package state)
(pprogn
(f-put-global 'current-package val state)
(value val))))
(defun standard-oi (state)
(f-get-global 'standard-oi state))
(defun read-standard-oi (state)
; We let LD take a true-listp as the "input file" and so we here implement
; the generalized version of (read-object (standard-oi state) state).
(let ((standard-oi (standard-oi state)))
(cond ((consp standard-oi)
(let ((state (f-put-global 'standard-oi (cdr standard-oi) state)))
(mv nil (car standard-oi) state)))
((null standard-oi)
(mv t nil state))
(t (read-object standard-oi state)))))
(defun chk-standard-oi (val ctx state)
(cond
((and (symbolp val)
(open-input-channel-p val :object state))
(value nil))
((true-listp val)
(value nil))
((and (consp val)
(symbolp (cdr (last val)))
(open-input-channel-p (cdr (last val)) :object state))
(value nil))
(t (er soft ctx *ld-special-error* 'standard-oi val))))
(defun set-standard-oi (val state)
(er-progn (chk-standard-oi val 'set-standard-oi state)
(pprogn
(f-put-global 'standard-oi val state)
(value val))))
(defun chk-standard-co (val ctx state)
(cond
((and (symbolp val)
(open-output-channel-p val :character state))
(value nil))
(t (er soft ctx *ld-special-error* 'standard-co val))))
(defun set-standard-co (val state)
(er-progn
(chk-standard-co val 'set-standard-co state)
(pprogn
(f-put-global 'standard-co val state)
(value val))))
(defun proofs-co (state)
(f-get-global 'proofs-co state))
(defun chk-proofs-co (val ctx state)
(cond
((and (symbolp val)
(open-output-channel-p val :character state))
(value nil))
(t (er soft ctx *ld-special-error* 'proofs-co val))))
(defun set-proofs-co (val state)
(er-progn
(chk-proofs-co val 'set-proofs-co state)
(pprogn
(f-put-global 'proofs-co val state)
(value val))))
(defun ld-prompt (state)
(f-get-global 'ld-prompt state))
(defun chk-ld-prompt (val ctx state)
(cond ((or (null val)
(eq val t)
(let ((wrld (w state)))
(and (symbolp val)
(equal (arity val wrld) 2)
(equal (stobjs-in val wrld) '(nil state))
(equal (stobjs-out val wrld) '(nil state)))))
(value nil))
(t (er soft ctx *ld-special-error* 'ld-prompt val))))
(defun set-ld-prompt (val state)
(er-progn
(chk-ld-prompt val 'set-ld-prompt state)
(pprogn
(f-put-global 'ld-prompt val state)
(value val))))
(defun ld-keyword-aliases (state)
(table-alist 'ld-keyword-aliases (w state)))
(defun ld-keyword-aliasesp (key val wrld)
(and (keywordp key)
(true-listp val)
(int= (length val) 2)
(let ((n (car val))
(fn (cadr val)))
(and (natp n)
(cond
((and (symbolp fn)
(function-symbolp fn wrld))
(equal (arity fn wrld) n))
((and (symbolp fn)
(getpropc fn 'macro-body nil wrld))
t)
(t (and (true-listp fn)
(>= (length fn) 3)
(<= (length fn) 4)
(eq (car fn) 'lambda)
(arglistp (cadr fn))
(int= (length (cadr fn)) n))))))))
(table ld-keyword-aliases nil nil
:guard
(ld-keyword-aliasesp key val world))
#+acl2-loop-only
(defmacro add-ld-keyword-alias! (key val)
`(with-output
:off (event summary)
(progn (table ld-keyword-aliases ,key ,val)
(table ld-keyword-aliases))))
#-acl2-loop-only
(defmacro add-ld-keyword-alias! (key val)
(declare (ignore key val))
nil)
(defmacro add-ld-keyword-alias (key val)
`(local (add-ld-keyword-alias! ,key ,val)))
#+acl2-loop-only
(defmacro set-ld-keyword-aliases! (alist)
`(with-output
:off (event summary)
(progn (table ld-keyword-aliases nil ',alist :clear)
(table ld-keyword-aliases))))
#-acl2-loop-only
(defmacro set-ld-keyword-aliases! (alist)
(declare (ignore alist))
nil)
(defmacro set-ld-keyword-aliases (alist &optional state)
; We add state (optionally) just for backwards compatibility through
; Version_6.2. We might eliminate it after Version_6.3.
(declare (ignore state))
`(local (set-ld-keyword-aliases! ,alist)))
(defun ld-missing-input-ok (state)
(f-get-global 'ld-missing-input-ok state))
(defun msgp (x)
(declare (xargs :guard t))
(or (stringp x)
(and (true-listp x)
(stringp (car x)))))
(defun chk-ld-missing-input-ok (val ctx state)
(cond ((or (member-eq val '(t nil :warn))
(msgp val) ; admittedly, a weak check
)
(value nil))
(t (er soft ctx *ld-special-error* 'ld-missing-input-ok val))))
(defun set-ld-missing-input-ok (val state)
(er-progn
(chk-ld-missing-input-ok val 'set-ld-missing-input-ok state)
(pprogn
(f-put-global 'ld-missing-input-ok val state)
(value val))))
(defun ld-pre-eval-filter (state)
(f-get-global 'ld-pre-eval-filter state))
(defun new-namep (name wrld)
; We determine if name has properties on world wrld. Once upon a time
; this was equivalent to just (not (assoc-eq name wrld)). However, we
; have decided to ignore certain properties:
; * 'global-value - names with this property are just global variables
; in our code; we permit the user to define functions
; with those names.
; * 'table-alist - names with this property are being used as tables
; * 'table-guard - names with this property are being used as tables
; WARNING: If this list of properties is changed, change renew-name/erase.
; Additionally, if name has a non-nil 'redefined property name is treated as
; new if all of its other properties are as set by renew-name/erase or
; renew-name/overwrite, as appropriate. The 'redefined property is set by
; renew-name to be (renewal-mode . old-sig) where renewal-mode is :erase,
; :overwrite, or :reclassifying-overwrite.
(let ((redefined (getpropc name 'redefined nil wrld)))
(cond
((and (consp redefined)
(eq (car redefined) :erase))
; If we erased the properties of name and they are still erased, then we
; will find no non-nil properties except for those left by
; renew-name/erase and renew-name.
(not (has-propsp name
'(REDEFINED
GLOBAL-VALUE
TABLE-ALIST
TABLE-GUARD)
'current-acl2-world
wrld
nil)))
((and (consp redefined)
(or (eq (car redefined) :overwrite)
(eq (car redefined) :reclassifying-overwrite)))
; We make a check analogous to that for erasure, allowing arbitrary non-nil
; values on all the properties untouched by renew-name/overwrite and insisting
; that all the properties erased by that function are still gone. Technically
; we should confirm that the lemmas property has been cleansed of all
; introductory rules, but in fact we allow it to have an arbitrary non-nil
; value. This is correct because if 'formals is gone then we cleansed 'lemmas
; and nothing could have been put back there since name is not yet a function
; symbol again.
(not (has-propsp name
'(REDEFINED
LEMMAS
GLOBAL-VALUE
LABEL
LINEAR-LEMMAS
FORWARD-CHAINING-RULES
ELIMINATE-DESTRUCTORS-RULE
COARSENINGS
CONGRUENCES
PEQUIVS
INDUCTION-RULES
THEOREM
UNTRANSLATED-THEOREM
CLASSES
CONST
THEORY
TABLE-GUARD
TABLE-ALIST
MACRO-BODY
MACRO-ARGS
PREDEFINED
TAU-PAIR
POS-IMPLICANTS
NEG-IMPLICANTS
UNEVALABLE-BUT-KNOWN
SIGNATURE-RULES-FORM-1
SIGNATURE-RULES-FORM-2
BIG-SWITCH
TAU-BOUNDERS-FORM-1
TAU-BOUNDERS-FORM-2
)
'current-acl2-world
wrld
nil)))
(t (not (has-propsp name
'(GLOBAL-VALUE
TABLE-ALIST
TABLE-GUARD)
'current-acl2-world
wrld
nil))))))
(defun chk-ld-pre-eval-filter (val ctx state)
(cond ((or (member-eq val '(:all :query))
(and (symbolp val)
(not (keywordp val))
(not (equal (symbol-package-name val)
*main-lisp-package-name*))
(new-namep val (w state))))
(value nil))
(t (er soft ctx *ld-special-error* 'ld-pre-eval-filter val))))
(defun set-ld-pre-eval-filter (val state)
(er-progn
(chk-ld-pre-eval-filter val 'set-ld-pre-eval-filter state)
(pprogn
(f-put-global 'ld-pre-eval-filter val state)
(value val))))
(defun ld-pre-eval-print (state)
(f-get-global 'ld-pre-eval-print state))
(defun chk-ld-pre-eval-print (val ctx state)
(cond ((member-eq val '(nil t :never))
(value nil))
(t (er soft ctx *ld-special-error* 'ld-pre-eval-print val))))
(defun set-ld-pre-eval-print (val state)
(er-progn
(chk-ld-pre-eval-print val 'set-ld-pre-eval-print state)
(pprogn
(f-put-global 'ld-pre-eval-print val state)
(value val))))
(defun ld-post-eval-print (state)
(f-get-global 'ld-post-eval-print state))
(defun chk-ld-post-eval-print (val ctx state)
(cond ((member-eq val '(nil t :command-conventions))
(value nil))
(t (er soft ctx *ld-special-error* 'ld-post-eval-print val))))
(defun set-ld-post-eval-print (val state)
(er-progn
(chk-ld-post-eval-print val 'set-ld-post-eval-print state)
(pprogn
(f-put-global 'ld-post-eval-print val state)
(value val))))
(defun ld-error-triples (state)
(f-get-global 'ld-error-triples state))
(defun chk-ld-error-triples (val ctx state)
(cond ((member-eq val '(nil t))
(value nil))
(t (er soft ctx *ld-special-error* 'ld-error-triples val))))
(defun set-ld-error-triples (val state)
(er-progn
(chk-ld-error-triples val 'set-ld-error-triples state)
(pprogn
(f-put-global 'ld-error-triples val state)
(value val))))
(defun ld-error-action (state)
(f-get-global 'ld-error-action state))
(defun chk-ld-error-action (val ctx state)
(cond ((member-eq val '(:continue :return :return! :error))
(value nil))
((and (consp val)
(eq (car val) :exit)
(consp (cdr val))
(natp (cadr val))
(null (cddr val)))
(value nil))
(t (er soft ctx *ld-special-error* 'ld-error-action val))))
(defun set-ld-error-action (val state)
(er-progn
(chk-ld-error-action val 'set-ld-error-action state)
(pprogn
(f-put-global 'ld-error-action val state)
(value val))))
(defun ld-query-control-alist (state)
(f-get-global 'ld-query-control-alist state))
(defun ld-query-control-alistp (val)
(cond ((atom val) (or (eq val nil)
(eq val t)))
((and (consp (car val))
(symbolp (caar val))
(or (eq (cdar val) nil)
(eq (cdar val) t)
(keywordp (cdar val))
(and (consp (cdar val))
(keywordp (cadar val))
(null (cddar val)))))
(ld-query-control-alistp (cdr val)))
(t nil)))
(defun cdr-assoc-query-id (id alist)
(cond ((atom alist) alist)
((eq id (caar alist)) (cdar alist))
(t (cdr-assoc-query-id id (cdr alist)))))
(defun chk-ld-query-control-alist (val ctx state)
(cond
((ld-query-control-alistp val)
(value nil))
(t (er soft ctx *ld-special-error* 'ld-query-control-alist val))))
(defun set-ld-query-control-alist (val state)
(er-progn
(chk-ld-query-control-alist val 'set-ld-query-control-alist state)
(pprogn
(f-put-global 'ld-query-control-alist val state)
(value val))))
(defun ld-verbose (state)
(f-get-global 'ld-verbose state))
(defun chk-ld-verbose (val ctx state)
(cond ((or (stringp val)
(and (consp val)
(stringp (car val))))
(value nil))
((member-eq val '(nil t))
(value nil))
(t (er soft ctx *ld-special-error* 'ld-verbose val))))
(defun set-ld-verbose (val state)
(er-progn
(chk-ld-verbose val 'set-ld-verbose state)
(pprogn
(f-put-global 'ld-verbose val state)
(value val))))
(defconst *nqthm-to-acl2-primitives*
; Keep this list in sync with documentation for nqthm-to-acl2.
'((ADD1 1+)
(ADD-TO-SET ADD-TO-SET-EQUAL ADD-TO-SET-EQ)
(AND AND)
(APPEND APPEND BINARY-APPEND)
(APPLY-SUBR . "Doesn't correspond to anything in ACL2, really.
See the documentation for DEFEVALUATOR and META.")
(APPLY$ . "See the documentation for DEFEVALUATOR and META.")
(ASSOC ASSOC-EQUAL ASSOC ASSOC-EQ)
(BODY . "See the documentation for DEFEVALUATOR and META.")
(CAR CAR)
(CDR CDR)
(CONS CONS)
(COUNT ACL2-COUNT)
(DIFFERENCE -)
(EQUAL EQUAL EQ EQL =)
(EVAL$ . "See the documentation for DEFEVALUATOR and META.")
(FALSE . "Nqthm's F corresponds to the ACL2 symbol NIL.")
(FALSEP NOT NULL)
;;(FIX)
;;(FIX-COST)
;;(FOR)
(FORMALS . "See the documentation for DEFEVALUATOR and META.")
(GEQ >=)
(GREATERP >)
(IDENTITY IDENTITY)
(IF IF)
(IFF IFF)
(IMPLIES IMPLIES)
(LEQ <=)
(LESSP <)
(LISTP CONSP)
(LITATOM SYMBOLP)
(MAX MAX)
(MEMBER MEMBER-EQUAL MEMBER MEMBER-EQ)
(MINUS - UNARY--)
(NEGATIVEP MINUSP)
(NEGATIVE-GUTS ABS)
(NLISTP ATOM)
(NOT NOT)
(NUMBERP ACL2-NUMBERP INTEGERP RATIONALP)
(OR OR)
(ORDINALP O-P)
(ORD-LESSP O<)
(PACK . "See INTERN and COERCE.")
(PAIRLIST PAIRLIS$)
(PLUS + BINARY-+)
;;(QUANTIFIER-INITIAL-VALUE)
;;(QUANTIFIER-OPERATION)
(QUOTIENT /)
(REMAINDER REM MOD)
(STRIP-CARS STRIP-CARS)
(SUB1 1-)
;;(SUBRP)
;;(SUM-CDRS)
(TIMES * BINARY-*)
(TRUE . "The symbol T.")
;;(TRUEP)
(UNION UNION-EQUAL UNION-EQ)
(UNPACK . "See SYMBOL-NAME and COERCE.")
(V&C$ . "See the documentation for DEFEVALUATOR and META.")
(V&C-APPLY$ . "See the documentation for DEFEVALUATOR and META.")
(ZERO . "The number 0.")
(ZEROP ZEROP)))
(defconst *nqthm-to-acl2-commands*
; Keep this list in sync with documentation for nqthm-to-acl2.
'((ACCUMULATED-PERSISTENCE ACCUMULATED-PERSISTENCE)
(ADD-AXIOM DEFAXIOM)
(ADD-SHELL . "There is no shell principle in ACL2.")
(AXIOM DEFAXIOM)
(BACKQUOTE-SETTING .
"Backquote is supported in ACL2, but not
currently documented.")
(BOOT-STRAP GROUND-ZERO)
(BREAK-LEMMA MONITOR)
(BREAK-REWRITE BREAK-REWRITE)
(CH PBT . "See also :DOC history.")
(CHRONOLOGY PBT .
"See also :DOC history.")
(COMMENT DEFLABEL)
(COMPILE-UNCOMPILED-DEFNS COMP)
(CONSTRAIN . "See :DOC encapsulate and :DOC local.")
(DATA-BASE . "Perhaps the closest ACL2 analogue of DATA-BASE
is PROPS. But see :DOC history for a collection
of commands for querying the ACL2 database
(``world''). Note that the notions of
supporters and dependents are not supported in
ACL2.")
(DCL DEFSTUB)
(DEFN DEFUN DEFMACRO)
(DEFTHEORY DEFTHEORY)
(DISABLE DISABLE)
(DISABLE-THEORY .
"See :DOC theories. The Nqthm command
(DISABLE-THEORY FOO) corresponds roughly to the
ACL2 command
(in-theory (set-difference-theories
(current-theory :here)
(theory 'foo))).")
(DO-EVENTS LD)
(DO-FILE LD)
(ELIM ELIM)
(ENABLE ENABLE)
(ENABLE-THEORY .
"See :DOC theories. The Nqthm command
(ENABLE-THEORY FOO) corresponds roughly to the
ACL2 command
(in-theory (union-theories
(theory 'foo)
(current-theory :here))).")
(EVENTS-SINCE PBT)
(FUNCTIONALLY-INSTANTIATE .
"ACL2 provides a form of the :USE hint that
corresponds roughly to the
FUNCTIONALLY-INSTANTIATE event of Nqthm. See
:DOC lemma-instance.")
(GENERALIZE GENERALIZE)
(HINTS HINTS)
(LEMMA DEFTHM)
(MAINTAIN-REWRITE-PATH BRR)
(MAKE-LIB . "There is no direct analogue of Nqthm's notion of
``library.'' See :DOC books for a description
of ACL2's mechanism for creating and saving
collections of events.")
(META META)
(NAMES NAME)
(NOTE-LIB INCLUDE-BOOK)
(PPE PE)
(PROVE THM)
(PROVEALL . "See :DOC ld and :DOC certify-book. The latter
corresponds to Nqthm's PROVE-FILE,which may be
what you're interested in, really.")
(PROVE-FILE CERTIFY-BOOK)
(PROVE-FILE-OUT CERTIFY-BOOK)
(PROVE-LEMMA DEFTHM .
"See also :DOC hints.")
(R-LOOP . "The top-level ACL2 loop is an evaluation loop as
well, so no analogue of R-LOOP is necessary.")
(REWRITE REWRITE)
(RULE-CLASSES RULE-CLASSES)
(SET-STATUS IN-THEORY)
(SKIM-FILE LD-SKIP-PROOFSP)
(TOGGLE IN-THEORY)
(TOGGLE-DEFINED-FUNCTIONS EXECUTABLE-COUNTERPART-THEORY)
(TRANSLATE TRANS TRANS1)
(UBT UBT U)
(UNBREAK-LEMMA UNMONITOR)
(UNDO-BACK-THROUGH UBT)
(UNDO-NAME . "See :DOC ubt. There is no way to undo names in
ACL2 without undoing back through such names.
However, see :DOC ld-skip-proofsp for
information about how to quickly recover the
state.")))
(defun nqthm-to-acl2-fn (name state)
(declare (xargs :guard (symbolp name)))
(io? temporary nil (mv erp val state)
(name)
(let ((prims (cdr (assoc-eq name *nqthm-to-acl2-primitives*)))
(comms (cdr (assoc-eq name *nqthm-to-acl2-commands*))))
(pprogn
(cond
(prims
(let ((syms (fix-true-list prims))
(info (if (consp prims) (cdr (last prims)) prims)))
(pprogn
(if syms
(fms "Related ACL2 primitives (use :PE or see documentation ~
to learn more): ~&0.~%"
(list (cons #\0 syms))
*standard-co*
state
nil)
state)
(if info
(pprogn (fms info
(list (cons #\0 syms))
*standard-co*
state
nil)
(newline *standard-co* state))
state))))
(t state))
(cond
(comms
(let ((syms (fix-true-list comms))
(info (if (consp comms) (cdr (last comms)) comms)))
(pprogn
(if syms
(fms "Related ACL2 commands (use :PE or see documentation ~
to learn more): ~&0.~%"
(list (cons #\0 syms))
*standard-co*
state
nil)
state)
(if info
(pprogn (fms info
(list (cons #\0 syms))
*standard-co*
state
nil)
(newline *standard-co* state))
state))))
(t state))
(if (or prims comms)
(value :invisible)
(pprogn
(fms "Sorry, but there seems to be no ACL2 notion corresponding ~
to the alleged Nqthm notion ~x0.~%"
(list (cons #\0 name))
*standard-co*
state
nil)
(value :invisible)))))))
; Here are functions that can be defined to print out the last part of the
; documentation string for nqthm-to-acl2, using (print-nqthm-to-acl2-doc
; state).
; (defun print-nqthm-to-acl2-doc1 (alist state)
; (cond
; ((null alist) state)
; (t (let* ((x (fix-true-list (cdar alist)))
; (s (if (atom (cdar alist))
; (cdar alist)
; (cdr (last (cdar alist))))))
; (mv-let
; (col state)
; (fmt1 " ~x0~t1--> "
; (list (cons #\0 (caar alist))
; (cons #\1 16))
; 0 *standard-co* state nil)
; (declare (ignore col))
; (mv-let
; (col state)
; (fmt1 " ~&0"
; (list (cons #\0 x))
; 0 *standard-co* state nil)
; (declare (ignore col))
; (pprogn
; (if (or (null x) (null s))
; state
; (fms "~t0" (list (cons #\0 21)) *standard-co* state nil))
; (if s
; (mv-let
; (col state)
; (fmt1 "~@0~%" ; Here % was vertical bar, but emacs 19 has trouble...
; (list (cons #\0 s)) 0 *standard-co* state nil)
; (declare (ignore col))
; state)
; (newline *standard-co* state))
; (print-nqthm-to-acl2-doc1 (cdr alist) state))))))))
;
; (defun print-nqthm-to-acl2-doc (state)
; (pprogn
; (princ$ " ~bv[]" *standard-co* state)
; (fms " Nqthm functions --> ACL2"
; nil *standard-co* state nil)
; (fms " ----------------------------------------~%"
; nil *standard-co* state nil)
; (print-nqthm-to-acl2-doc1 *nqthm-to-acl2-primitives* state)
; (fms " ========================================~%"
; nil *standard-co* state nil)
; (fms " Nqthm commands --> ACL2"
; nil *standard-co* state nil)
; (fms " ----------------------------------------~%"
; nil *standard-co* state nil)
; (print-nqthm-to-acl2-doc1 *nqthm-to-acl2-commands* state)
; (princ$ " ~ev[]" *standard-co* state)
; (newline *standard-co* state)
; (value :invisible)))
(defmacro nqthm-to-acl2 (x)
; Keep documentation for this function in sync with *nqthm-to-acl2-primitives*
; and *nqthm-to-acl2-commands*. See comment above for how some of this
; documentation was generated.
(declare (xargs :guard (and (true-listp x)
(equal (length x) 2)
(eq (car x) 'quote)
(symbolp (cadr x)))))
`(nqthm-to-acl2-fn ,x state))
#+(and gcl (not acl2-loop-only))
(progn
(defvar *current-allocated-fixnum-lo* 0)
(defvar *current-allocated-fixnum-hi* 0))
(defun allocate-fixnum-range (fixnum-lo fixnum-hi)
(declare (xargs :guard (and (integerp fixnum-lo)
(integerp fixnum-hi)
(>= fixnum-hi fixnum-lo)))
(type (signed-byte 30) fixnum-lo fixnum-hi))
; This function is simply NIL in the logic but allocates a range of fixnums
; (from fixnum-lo to fixnum-hi) in GCL as a side effect (a side effect which
; should only affect the speed with which ACL2 computes a value, but not the
; value itself up to EQUALity). In GCL, there is a range of pre-allocated
; fixnums which are fixed to be -1024 to +1023.
(let ((tmp (- fixnum-hi fixnum-lo)))
(declare (ignore tmp))
#+(and gcl (not acl2-loop-only))
(cond ((or (> fixnum-hi *current-allocated-fixnum-hi*)
(< fixnum-lo *current-allocated-fixnum-lo*))
(fms "NOTE: Allocating bigger fixnum table in GCL.~|"
nil (standard-co *the-live-state*) *the-live-state*
nil)
(system::allocate-bigger-fixnum-range fixnum-lo (1+ fixnum-hi))
(setq *current-allocated-fixnum-lo* fixnum-lo)
(setq *current-allocated-fixnum-hi* fixnum-hi))
(t
(fms "No further fixnum allocation done:~| Previous fixnum table ~
encompasses desired allocation.~|"
nil (standard-co *the-live-state*) *the-live-state*
nil)))
#+(and (not gcl) (not acl2-loop-only))
(fms "Fixnum allocation is only performed in GCL.~|"
nil (standard-co *the-live-state*) *the-live-state*
nil)
nil))
; It has been found useful to allocate new space very gradually in Allegro CL
; 6.1 for at least one unusually large job on a version of RedHat Linux (over
; 600MB without this caused GC error; with this call, the corresponding image
; size was cut by very roughly one third and there was no GC error). However,
; the problem seems to disappear in Allegro CL 6.2. So we won't advertise
; (document) this utility.
#+allegro
(defmacro allegro-allocate-slowly (&key (free-bytes-new-other '1024)
(free-bytes-new-pages '1024)
(free-percent-new '3)
(expansion-free-percent-old '3)
(expansion-free-percent-new '3))
`(allegro-allocate-slowly-fn ,free-bytes-new-other ,free-bytes-new-pages
,free-percent-new ,expansion-free-percent-old
,expansion-free-percent-new))
(defun allegro-allocate-slowly-fn (free-bytes-new-other
free-bytes-new-pages
free-percent-new
expansion-free-percent-old
expansion-free-percent-new)
#-(and allegro (not acl2-loop-only))
(declare (ignore free-bytes-new-other free-bytes-new-pages free-percent-new
expansion-free-percent-old expansion-free-percent-new))
#+(and allegro (not acl2-loop-only))
(progn
(setf (sys:gsgc-parameter :free-bytes-new-other) free-bytes-new-other)
(setf (sys:gsgc-parameter :free-bytes-new-pages) free-bytes-new-pages)
(setf (sys:gsgc-parameter :free-percent-new) free-percent-new)
(setf (sys:gsgc-parameter :expansion-free-percent-old)
expansion-free-percent-old)
(setf (sys:gsgc-parameter :expansion-free-percent-new)
expansion-free-percent-new))
nil)
; All code for the pstack feature occurs immediately below. When a form is
; wrapped in (pstk form), form will be pushed onto *pstk-stack* during its
; evaluation. The stack can be evaluated (during a break or after an
; interrupted proof) by evaluating the form (pstack), and it is
; initialized at the beginning of each new proof attempt (in prove-loop, since
; that is the prover's entry point under both prove and pc-prove).
#-acl2-loop-only
(progn
(defparameter *pstk-stack* nil)
(defvar *verbose-pstk* nil)
; The following are only of interest when *verbose-pstk* is true.
(defparameter *pstk-level* 1)
(defparameter *pstk-start-time-stack* nil))
(defmacro clear-pstk ()
#+acl2-loop-only nil
#-acl2-loop-only
'(progn (setq *pstk-stack* nil)
(setq *pstk-level* 1)
(setq *pstk-start-time-stack* nil)))
(defconst *pstk-vars*
'(pstk-var-0
pstk-var-1
pstk-var-2
pstk-var-3
pstk-var-4
pstk-var-5
pstk-var-6
pstk-var-7
pstk-var-8
pstk-var-9
pstk-var-10
pstk-var-11
pstk-var-12))
(defun pstk-bindings-and-args (args vars)
; We return (mv bindings new-args fake-args). Here new-args is a symbol-listp
; and of the same length as args, where each element of args is either a symbol
; or is the value of the corresponding element of new-args in bindings.
; Fake-args is the same as new-args except that state has been replaced by
; <state>.
(cond
((endp args)
(mv nil nil nil))
((endp vars)
(mv (er hard 'pstk-bindings-and-args
"The ACL2 sources need *pstk-vars* to be extended.")
nil nil))
(t
(mv-let (bindings rest-args fake-args)
(pstk-bindings-and-args (cdr args) (cdr vars))
(cond
((eq (car args) 'state)
(mv bindings
(cons (car args) rest-args)
(cons ''<state> rest-args)))
((symbolp (car args))
(mv bindings
(cons (car args) rest-args)
(cons (car args) fake-args)))
(t
(mv (cons (list (car vars) (car args)) bindings)
(cons (car vars) rest-args)
(cons (car vars) fake-args))))))))
(defmacro pstk (form)
(declare (xargs :guard (consp form)))
#+acl2-loop-only
`(check-vars-not-free
,*pstk-vars*
,form)
#-acl2-loop-only
(mv-let (bindings args fake-args)
(pstk-bindings-and-args (cdr form) *pstk-vars*)
`(let ,bindings
(setq *pstk-stack*
(cons ,(list* 'list (kwote (car form)) fake-args)
*pstk-stack*))
(dmr-display)
(when (and *verbose-pstk*
(or (eq *verbose-pstk* t)
(not (member-eq ',(car form) *verbose-pstk*))))
(setq *pstk-start-time-stack*
(cons (get-internal-time) *pstk-start-time-stack*))
(format t "~V@TCP~D> ~S~%"
(* 2 *pstk-level*)
*pstk-level*
',(car form))
(setq *pstk-level* (1+ *pstk-level*)))
(our-multiple-value-prog1
,(cons (car form) args)
; Careful! We must be careful not to smash any mv-ref value in the forms
; below, in case form returns a multiple value. So, for example, we use format
; rather than fmt1.
(when (and *verbose-pstk*
(or (eq *verbose-pstk* t)
(not (member-eq ',(car form) *verbose-pstk*))))
(setq *pstk-level* (1- *pstk-level*))
(format t "~V@TCP~D< ~S [~,2F seconds]~%"
(* 2 *pstk-level*)
*pstk-level*
',(car form)
(/ (- (get-internal-time)
(pop *pstk-start-time-stack*))
(float internal-time-units-per-second))))
(setq *pstk-stack* (cdr *pstk-stack*))
,@(and (not (eq (car form) 'ev-fncall-meta)) ; overkill in that case
'((dmr-display)))
,@(and (eq (car form) 'rewrite-atm)
'((setq *deep-gstack* nil)))))))
(defun pstack-fn (allp state)
#+acl2-loop-only
(declare (ignore allp))
#-acl2-loop-only
(cond ((and allp (not (eq allp :all)))
(fmt-abbrev "~%~p0"
(list (cons #\0 (if allp
*pstk-stack*
(strip-cars *pstk-stack*))))
0 *standard-co* state "~|"))
(t
(fms "~p0~|"
(list (cons #\0 (if allp *pstk-stack* (strip-cars *pstk-stack*))))
*standard-co*
state
(and allp ; (eq allp :all)
(cons (world-evisceration-alist state nil)
'(nil nil nil))))))
#-acl2-loop-only
(if (assoc-eq 'preprocess-clause *pstk-stack*)
(cw "NOTE: You may find the hint :DO-NOT '(PREPROCESS) helpful.~|"))
(value :invisible))
(defmacro pstack (&optional allp)
`(pstack-fn ,allp state))
(defun verbose-pstack (flg-or-list)
(declare (xargs :guard (or (eq flg-or-list t)
(eq flg-or-list nil)
(symbol-listp flg-or-list))))
#+acl2-loop-only
flg-or-list
#-acl2-loop-only
(setq *verbose-pstk* flg-or-list))
; End of pstack code.
; The following two functions could go in axioms.lisp, but it seems not worth
; putting them in :logic mode so we might as well put them here.
(defun pop-inhibit-output-lst-stack (state)
(let ((stk (f-get-global 'inhibit-output-lst-stack state)))
(cond ((null stk) state)
(t (pprogn (f-put-global 'inhibit-output-lst
(car stk)
state)
(f-put-global 'inhibit-output-lst-stack
(cdr stk)
state))))))
(defun push-inhibit-output-lst-stack (state)
(f-put-global 'inhibit-output-lst-stack
(cons (f-get-global 'inhibit-output-lst state)
(f-get-global 'inhibit-output-lst-stack state))
state))
(defun set-gc-threshold$-fn (new-threshold verbose-p)
; This function is used to manage garbage collection in a way that is friendly
; to ACL2(p). As suggested by its name, it sets (in supported Lisps), to
; new-threshold, the number of bytes to be allocated before the next garbage
; collection. It may set other gc-related behavior as well.
(declare (ignorable verbose-p))
(let ((ctx 'set-gc-threshold$))
(cond
((not (posp new-threshold))
(er hard ctx
"The argument to set-gc-threshold$ must be a positive integer, so ~
the value ~x0 is illegal."
new-threshold))
(t
#-acl2-loop-only
(progn
#+ccl
(ccl:set-lisp-heap-gc-threshold ; CCL requires a fixnum.
(cond ((> new-threshold most-positive-fixnum)
(progn (cw "Requested value for set-gc-threshold$ must be a ~
fixnum in CeCL, but ~x0 is greater than ~
most-positive-fixnum (which is ~x1). Setting to ~
most-positive-fixnum instead.~|"
new-threshold most-positive-fixnum)
most-positive-fixnum))
(t new-threshold)))
#+(and ccl acl2-par)
(progn (cw "Disabling the CCL Ephemeral GC for ACL2(p)~%")
(ccl:egc nil))
#+sbcl
(setf (sb-ext:bytes-consed-between-gcs) (1- new-threshold))
#+(and lispworks lispworks-64bit)
(let
; In the case of 64-bit LispWorks, we set the threshold to at least 2^20 (1 MB)
; for generation 3, since we believe that any smaller might not provide good
; performance, and we set proportionally smaller thresholds for generations 1
; and 2.
((gen0-threshold
; For generation 0, we want to reduce the generation-3 threshold by a factor
; off 2^10. The corresponding value for dividing the minimum new-threshold of
; 2^20 would thus be 2^20/2^10 = 2^10. However, LispWorks requires a larger
; minimum value for system:set-gen-num-gc-threshold; since 2^13 was even too
; small, we have chosen 2^14. But we still attempt to divide new-threshold by
; 2^10.
(max (expt 2 14) (floor new-threshold (expt 2 10))))
(gen1-threshold
(max (expt 2 17) (floor new-threshold (expt 2 3))))
(gen2-threshold
(max (expt 2 18) (floor new-threshold (expt 2 2))))
(gen3-threshold
(max (expt 2 20) new-threshold)))
(when (< new-threshold (expt 2 20))
(let ((state *the-live-state*))
; Avoid warning$-cw, since this function is called by LP outside the loop.
(warning$ 'set-gc-threshold$ nil
"Using default thresholds that are greater than the ~
requested value ~x0, as follows for generations 0, ~
1, 2 and 3, respectively: ~&1."
new-threshold
(list gen0-threshold
gen1-threshold
gen2-threshold
gen3-threshold))))
; Calling set-gen-num-gc-threshold sets the GC threshold for the given
; generation of garbage.
(system:set-gen-num-gc-threshold 0 gen0-threshold)
(system:set-gen-num-gc-threshold 1 gen1-threshold)
(system:set-gen-num-gc-threshold 2 gen2-threshold)
; This call to set-blocking-gen-num accomplishes two things: (1) It sets the
; third generation as the "final" generation -- nothing can be promoted to
; generation four or higher. (2) It sets the GC threshold for generation 3.
(system:set-blocking-gen-num 3 :gc-threshold gen3-threshold))
#-(or ccl sbcl (and lispworks lispworks-64bit))
(when verbose-p
(let ((state *the-live-state*))
; Avoid warning$-cw, since this function is called by LP outside the loop.
(warning$ 'set-gc-threshold$ nil
"We have not yet implemented setting the garbage ~
collection threshold for this Lisp. Contact the ACL2 ~
implementors to request such an implementation."))))
t))))
(defmacro set-gc-threshold$ (new-threshold &optional (verbose-p 't))
; See comments in set-gc-threshold$-fn.
`(set-gc-threshold$-fn ,new-threshold ,verbose-p))
|