This file is indexed.

/usr/share/acl2-7.2dfsg/defthm.lisp is in acl2-source 7.2dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
; ACL2 Version 7.2 -- A Computational Logic for Applicative Common Lisp
; Copyright (C) 2016, Regents of the University of Texas

; This version of ACL2 is a descendent of ACL2 Version 1.9, Copyright
; (C) 1997 Computational Logic, Inc.  See the documentation topic NOTE-2-0.

; This program is free software; you can redistribute it and/or modify
; it under the terms of the LICENSE file distributed with ACL2.

; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
; LICENSE for more details.

; Written by:  Matt Kaufmann               and J Strother Moore
; email:       Kaufmann@cs.utexas.edu      and Moore@cs.utexas.edu
; Department of Computer Science
; University of Texas at Austin
; Austin, TX 78712 U.S.A.

(in-package "ACL2")

; This file contains the functions that check the acceptable forms for
; the various classes of rules, the functions that generate the rules
; from the forms, and finally the functions that actually do the adding.
; It also contains various history management and command facilities whose
; implementation is intertwined with the storage of rules, e.g., :pr and
; some monitoring stuff.

; The structure of the file is that we first define the checkers and
; generators for each class of rule.  Each such section has a header
; like that shown below.  When we finish all the individual classes
; we enter the final sections, headed

; Section:  Handling a List of Classes
; Section:  More History Management and Command Stuff
; Section:  The DEFAXIOM Event
; Section:  The DEFTHM Event
; Section:  Some Convenient Abbreviations for Defthm

;---------------------------------------------------------------------------
; Section:  :REWRITE Rules

; In this section we develop the function chk-acceptable-
; rewrite-rule, which checks that all the :REWRITE rules generated
; from a term are legal.  We then develop add-rewrite-rule which does
; the actual generation and addition of the rules to the world.

(mutual-recursion

(defun remove-lambdas (term)
  (if (or (variablep term)
          (fquotep term))
      term
    (let ((args (remove-lambdas-lst (fargs term)))
          (fn (ffn-symb term)))
      (if (flambdap fn)
          (subcor-var (lambda-formals fn) args (remove-lambdas (lambda-body fn)))
        (cons-term fn args)))))

(defun remove-lambdas-lst (termlist)
  (if termlist
      (cons (remove-lambdas (car termlist))
            (remove-lambdas-lst (cdr termlist)))
    nil))

)

; We use the following functions to determine the sense of the conclusion
; as a :REWRITE rule.

(defun interpret-term-as-rewrite-rule2 (name hyps lhs rhs wrld)
  (cond
   ((equal lhs rhs)
    (msg
     "A :REWRITE rule generated from ~x0 is illegal because it rewrites the ~
      term ~x1 to itself!  This can happen even when you submit a rule whose ~
      left and right sides appear to be different, in the case that those two ~
      sides represent the same term (in particular, after macroexpansion).  ~
      For general information about rewrite rules in ACL2, see :DOC rewrite. ~
      ~ You may wish to consider submitting a DEFTHM event ending with ~
      :RULE-CLASSES NIL."
     name
     lhs))
   ((or (variablep lhs)
        (fquotep lhs)
        (flambda-applicationp lhs)
        (eq (ffn-symb lhs) 'if))
    (msg
     "A :REWRITE rule generated from ~x0 is illegal because it rewrites the ~
      ~@1 ~x2.  For general information about rewrite rules in ACL2, see :DOC ~
      rewrite."
     name
     (cond ((variablep lhs) "variable symbol")
           ((fquotep lhs) "quoted constant")
           ((flambda-applicationp lhs) "LET-expression")
           (t "IF-expression"))
     lhs))
   (t (let ((bad-synp-hyp-msg (bad-synp-hyp-msg
                               hyps (all-vars lhs) nil wrld)))
        (cond
         (bad-synp-hyp-msg
          (msg
           "A rewrite rule generated from ~x0 is illegal because ~@1"
           name
           bad-synp-hyp-msg))
         (t nil))))))

(defun interpret-term-as-rewrite-rule1 (term equiv-okp ens wrld)

; Here we do the work described in interpret-term-as-rewrite-rule.  If
; equiv-okp is nil, then no special treatment is given to equivalence relations
; other than equal, iff, and members of *equality-aliases*.

  (cond ((variablep term) (mv 'iff term *t* nil))
        ((fquotep term) (mv 'iff term *t* nil))
        ((member-eq (ffn-symb term) *equality-aliases*)
         (mv 'equal (fargn term 1) (fargn term 2) nil))
        ((if equiv-okp
             (equivalence-relationp (ffn-symb term) wrld)
           (member-eq (ffn-symb term) '(equal iff)))
         (mv-let (equiv ttree)
                 (cond ((eq (ffn-symb term) 'iff)
                        (mv-let
                         (ts ttree)
                         (type-set (fargn term 1) nil nil nil ens wrld nil
                                   nil nil)
                         (cond ((ts-subsetp ts *ts-boolean*)
                                (mv-let
                                 (ts ttree)
                                 (type-set (fargn term 2) nil nil nil ens
                                           wrld ttree nil nil)
                                 (cond ((ts-subsetp ts *ts-boolean*)
                                        (mv 'equal ttree))
                                       (t (mv 'iff nil)))))
                               (t (mv 'iff nil)))))
                       (t (mv (ffn-symb term) nil)))
                 (mv equiv (fargn term 1) (fargn term 2) ttree)))
        ((eq (ffn-symb term) 'not) (mv 'equal (fargn term 1) *nil* nil))
        (t (mv-let (ts ttree)
                   (type-set term nil nil nil ens wrld nil nil nil)
                   (cond ((ts-subsetp ts *ts-boolean*)
                          (mv 'equal term *t* ttree))
                         (t (mv 'iff term *t* nil)))))))

(defun interpret-term-as-rewrite-rule (name hyps term ens wrld)

; This function returns five values.  The first can be a msg for printing an
; error message.  Otherwise the first is nil, in which case the second is an
; equivalence relation, eqv; the next two are terms, lhs and rhs, such that
; (eqv lhs rhs) is propositionally equivalent to term; and the last is an
; 'assumption-free ttree justifying the claim.

  (let ((term (remove-lambdas term)))
    (mv-let
     (eqv lhs rhs ttree)
     (interpret-term-as-rewrite-rule1 term t ens wrld)
     (let ((msg (interpret-term-as-rewrite-rule2 name hyps lhs rhs wrld)))
       (cond
        (msg

; We try again, this time with equiv-okp = nil to avoid errors for a form such
; as the following.  Its evaluation caused a hard Lisp error in Version_4.3
; during the second pass of the encapsulate at the final defthm, and is based
; closely on an example sent to us by Jared Davis.

;   (encapsulate
;    ()
;    (defun my-equivp (x y)
;      (equal (nfix x) (nfix y)))
;    (local
;     (defthm my-equivp-reflexive
;       (my-equivp x x)))
;    (defequiv my-equivp)
;    (defthm my-equivp-reflexive
;      (my-equivp x x)))

         (mv-let
          (eqv2 lhs2 rhs2 ttree2)
          (interpret-term-as-rewrite-rule1 term nil ens wrld)
          (cond
           ((interpret-term-as-rewrite-rule2 name hyps lhs2 rhs2 wrld)
            (mv msg eqv lhs rhs ttree))
           (t (mv nil eqv2 lhs2 rhs2 ttree2)))))
        (t (mv nil eqv lhs rhs ttree)))))))

; We inspect the lhs and some hypotheses with the following function
; to determine if non-recursive defuns will present a problem to the
; user.

(mutual-recursion

(defun non-recursive-fnnames (term ens wrld)
  (cond ((variablep term) nil)
        ((fquotep term) nil)
        ((flambda-applicationp term)
         (add-to-set-equal (ffn-symb term)
                           (non-recursive-fnnames-lst (fargs term) ens wrld)))
        ((let ((def-body (def-body (ffn-symb term) wrld)))
           (and def-body
                (enabled-numep (access def-body def-body :nume)
                               ens)
                (not (access def-body def-body :recursivep))))
         (add-to-set-eq (ffn-symb term)
                        (non-recursive-fnnames-lst (fargs term) ens wrld)))
        (t (non-recursive-fnnames-lst (fargs term) ens wrld))))

(defun non-recursive-fnnames-lst (lst ens wrld)
  (cond ((null lst) nil)
        (t (union-equal (non-recursive-fnnames (car lst) ens wrld)
                        (non-recursive-fnnames-lst (cdr lst) ens wrld)))))

)

; The list just constructed is odd because it may contain some lambda
; expressions posing as function symbols.  We use the following function
; to transform those into let's just for printing purposes...

(defun hide-lambdas1 (formals)

; CLTL uses # as the "too deep to show" symbol.  But if we use it, we
; print vertical bars around it.  Until we modify the printer to support
; some kind of hiding, we'll use Interlisp's ampersand.

  (cond ((null formals) nil)
        (t (cons (list (car formals) '&)
                 (hide-lambdas1 (cdr formals))))))

(defun hide-lambdas (lst)
  (cond ((null lst) nil)
        (t (cons (if (flambdap (car lst))
                     (list 'let (hide-lambdas1 (lambda-formals (car lst)))
                           (lambda-body (car lst)))
                   (car lst))
                 (hide-lambdas (cdr lst))))))

; Now we develop the stuff to determine if we have a permutative :REWRITE rule.

(defun variantp (term1 term2)

; This function returns two values:  A flag indicating whether the two
; terms are variants and the substitution which when applied to term1
; yields term2.

  (mv-let (ans unify-subst)
    (one-way-unify term1 term2)
    (cond
     (ans
      (let ((range (strip-cdrs unify-subst)))
        (mv (and (symbol-listp range)
                 (no-duplicatesp-equal range))
            unify-subst)))
     (t (mv nil nil)))))

(mutual-recursion

(defun surrounding-fns1 (vars term fn acc)

; See surrounding-fns for the definition of the notions used below.

; Vars is a list of variables.  Term is a term that occurs as an argument in
; some (here unknown) application of the function fn.  Acc is either a list of
; function symbols or the special token 'has-lambda.  Observe that if term is a
; var in vars, then fn surrounds some var in vars in whatever larger term
; contained the application of fn.

; If term is a var in vars, we collect fn into acc.  If term is not a var, we
; collect into acc all the function symbols surrounding any element of vars.
; However, if we ever encounter a lambda application surrounding a var in vars
; (including fn), we set acc to the special token 'has-lambda, and collections
; cease thereafter.

  (cond
   ((variablep term)
    (cond
     ((member-eq term vars)
      (if (or (eq acc 'has-lambda)
              (not (symbolp fn)))
          'has-lambda
          (add-to-set-eq fn acc)))
     (t acc)))
   ((fquotep term) acc)
   (t (surrounding-fns-lst vars (fargs term) (ffn-symb term) acc))))

(defun surrounding-fns-lst (vars term-list fn acc)
  (cond
   ((null term-list) acc)
   (t (surrounding-fns-lst vars (cdr term-list) fn
                           (surrounding-fns1 vars (car term-list) fn acc)))))

)

(defun surrounding-fns (vars term)

; This function returns the list of all functions fn surrounding, in term, any
; var in vars, except that if that list includes a lambda expression we return
; nil.

; We make this precise as follows.  Let us say a function symbol or lambda
; expression, fn, ``surrounds'' a variable v in term if there is a subterm of
; term that is an application of fn and v is among the actuals of that
; application.  Thus, in the term (fn (g x) (h (d x)) y), g and d both surround
; x and fn surrounds y.  Note that h surrounds no variable.

; Consider the set, s, of all functions fn such that fn surrounds a variable
; var in term, where var is a member of the list of variables var.  If s
; contains a lambda expression, we return nil; otherwise we return s.

  (cond
   ((or (variablep term)
        (fquotep term))
    nil)
   (t
    (let ((ans (surrounding-fns-lst vars (fargs term) (ffn-symb term) nil)))
      (if (eq ans 'has-lambda)
          nil
        ans)))))

(defun loop-stopper1 (alist vars lhs)
  (cond ((null alist) nil)
        ((member-eq (car (car alist))
                    (cdr (member-eq (cdr (car alist)) vars)))
         (cons (list* (caar alist)
                      (cdar alist)
                      (surrounding-fns (list (caar alist) (cdar alist)) lhs))
               (loop-stopper1 (cdr alist) vars lhs)))
        (t (loop-stopper1 (cdr alist) vars lhs))))

(defun loop-stopper (lhs rhs)

; If lhs and rhs are variants, we return the "expansion" (see next
; paragraph) of the subset of the unifying substitution containing
; those pairs (x . y) in which a variable symbol (y) is being moved
; forward (to the position of x) in the print representation of the
; term.  For example, suppose lhs is (foo x y z) and rhs is (foo y z
; x).  Then both y and z are moved forward, so the loop-stopper is the
; "expansion" of '((y . z) (x . y)).  This function exploits the fact
; that all-vars returns the set of variables listed in reverse
; print-order.

; In the paragraph above, the "expansion" of a substitution ((x1 .
; y1) ... (xn . yn)) is the list ((x1 y1 . fns-1) ... (xn yn .
; fns-n)), where fns-i is the list of function symbols of subterms of
; lhs that contain xi or yi (or both) as a top-level argument.
; Exception: If any such "function symbol" is a LAMBDA, then fns-i is
; nil.

; Note: John Cowles first suggested the idea that led to the idea of
; invisible function symbols as implemented here.  Cowles observation
; was that it would be very useful if x and (- x) were moved into
; adjacency by permutative rules.  His idea was to redefine term-order
; so that those two terms were of virtually equal weight.  Our notion
; of invisible function symbols and the handling of loop-stopper is
; meant to address Cowles original concern without complicating
; term-order, which is used in places besides permutative rewriting.

  (mv-let (ans unify-subst)
    (variantp lhs rhs)
    (cond (ans (loop-stopper1 unify-subst (all-vars lhs) lhs))
          (t nil))))

(defun remove-irrelevant-loop-stopper-pairs (pairs vars)

; Keep this in sync with irrelevant-loop-stopper-pairs.

  (if pairs
      (if (and (member-eq (caar pairs) vars)
               (member-eq (cadar pairs) vars))

; Note that the use of loop-stopper1 by loop-stopper guarantees that
; machine-constructed loop-stoppers only contain pairs (u v . fns) for
; which u and v both occur in the lhs of the rewrite rule.  Hence, it
; is reasonable to include the test above.

          (cons (car pairs)
                (remove-irrelevant-loop-stopper-pairs (cdr pairs) vars))
        (remove-irrelevant-loop-stopper-pairs (cdr pairs) vars))
    nil))

(defun put-match-free-value (match-free-value rune wrld)
  (cond
   ((eq match-free-value :all)
    (global-set 'free-var-runes-all
                (cons rune (global-val 'free-var-runes-all wrld))
                wrld))
   ((eq match-free-value :once)
    (global-set 'free-var-runes-once
                (cons rune (global-val 'free-var-runes-once wrld))
                wrld))
   ((null match-free-value)
    wrld)
   (t
    (er hard 'put-match-free-value
        "Internal ACL2 error (called put-match-free-value with ~
         match-free-value equal to ~x0).  Please contact the ACL2 implementors."
        match-free-value))))

(defun free-vars-in-hyps (hyps bound-vars wrld)

; Let hyps be a list of terms -- the hypotheses to some :REWRITE rule.
; Let bound-vars be a list of variables.  We find all the variables that
; will be free-vars in hyps when each variable in bound-vars is bound.
; This would be just (set-difference-eq (all-vars1-lst hyps) bound-vars)
; were it not for the fact that relieve-hyps interprets the hypothesis
; (equal v term), where v is free and does not occur in term, as
; a "let v be term..." instead of as a genuine free variable to be found
; by search.

; Warning: Keep this function and free-vars-in-hyps-considering-bind-free
; in sync.

  (cond ((null hyps) nil)
        (t (mv-let
            (forcep flg)
            (binding-hyp-p (car hyps)
                           (pairlis$ bound-vars bound-vars)
                           wrld)

; The odd pairlis$ above just manufactures a substitution with bound-vars as
; bound vars so we can use free-varsp to answer the question, "does
; the rhs of the equality contain any free variables?"  The range of
; the subsitution is irrelevant.  If the conjunction above is true, then
; the current hyp is of the form (equiv v term) and v will be chosen
; by rewriting term.  V is not a "free variable".

            (cond ((and flg (not forcep))
                   (free-vars-in-hyps (cdr hyps)
                                      (cons (fargn (car hyps) 1)
                                            bound-vars)
                                      wrld))
                  (t (let ((hyp-vars (all-vars (car hyps))))
                       (union-eq
                        (set-difference-eq hyp-vars bound-vars)
                        (free-vars-in-hyps (cdr hyps)
                                           (union-eq hyp-vars bound-vars)
                                           wrld)))))))))

(defun free-vars-in-hyps-simple (hyps bound-vars)

; This is a simpler variant of free-vars-in-hyps that does not give special
; treatment to terms (equal variable term).

  (cond ((null hyps) nil)
        (t (let ((hyp-vars (all-vars (car hyps))))
             (union-eq (set-difference-eq hyp-vars bound-vars)
                       (free-vars-in-hyps-simple (cdr hyps)
                                                 (union-eq hyp-vars
                                                           bound-vars)))))))

(defun free-vars-in-fc-hyps (triggers hyps concls)

; This function determines whether a rule has free variables, given the
; triggers, hyps and conclusions of the rule.

  (if (endp triggers)
      nil
    (let ((vars (all-vars (car triggers))))
      (or (free-vars-in-hyps-simple hyps vars)
          (or (free-vars-in-hyps-simple concls vars)
              (free-vars-in-fc-hyps (cdr triggers) hyps concls))))))

(defun free-vars-in-hyps-considering-bind-free (hyps bound-vars wrld)

; This function is similar to the above free-vars-in-hyps.  It
; differs in that it takes into account the effects of bind-free.

; Note that a bind-free hypothesis expands to a call to synp in
; which the first arg denotes the vars that are potentially bound
; by the hyp.  This first arg will be either a quoted list of vars
; or 't which we interpret to mean all the otherwise free vars.
; Vars that are potentially bound by a bind-free hyp are not considered
; to be free vars for the purposes of this function.

; Note that a syntaxp hypothesis also expands to a call of synp,
; but that in this case the first arg is 'nil.

; Warning: Keep this function and free-vars-in-hyps in sync.

  (cond ((null hyps) nil)
        (t (mv-let
            (forcep flg)
            (binding-hyp-p (car hyps)
                           (pairlis$ bound-vars bound-vars)
                           wrld)

; The odd pairlis$ above just manufactures a substitution with bound-vars as
; bound vars so we can use free-varsp to answer the question, "does
; the rhs of the equality contain any free variables?"  The range of
; the subsitution is irrelevant.  If the conjunction above is true, then
; the current hyp is of the form (equiv v term) and v will be chosen
; by rewriting term.  V is not a "free variable".

            (cond
             ((and flg (not forcep))
              (free-vars-in-hyps-considering-bind-free
               (cdr hyps)
               (cons (fargn (car hyps) 1) bound-vars)
               wrld))
             ((and (ffn-symb-p (car hyps) 'synp)
                   (not (equal (fargn (car hyps) 1) *nil*))) ; not syntaxp hyp
              (cond
               ((equal (fargn (car hyps) 1) *t*)

; All free variables are potentially bound.  The user will presumably not want
; to see a warning in this case.

                nil)
               ((and (quotep (fargn (car hyps) 1))
                     (not (collect-non-legal-variableps
                           (cadr (fargn (car hyps) 1)))))
                (free-vars-in-hyps-considering-bind-free
                 (cdr hyps)
                 (union-eq (cadr (fargn (car hyps) 1)) bound-vars)
                 wrld))
               (t (er hard 'free-vars-in-hyps-considering-bind-free
                      "We thought the first argument of synp in this context ~
                       was either 'NIL, 'T, or else a quoted true list of ~
                       variables, but ~x0 is not!"
                      (fargn (car hyps) 1)))))
             (t (let ((hyp-vars (all-vars (car hyps))))
                  (union-eq (set-difference-eq hyp-vars bound-vars)
                            (free-vars-in-hyps-considering-bind-free
                             (cdr hyps)
                             (union-eq hyp-vars bound-vars)
                             wrld)))))))))

(defun all-vars-in-hyps (hyps)

; We return a list of all the vars mentioned in hyps or, if there is
; a synp hyp whose var-list is 't, we return t.

  (cond ((null hyps)
         nil)
        ((variablep (car hyps))
         (add-to-set-eq (car hyps)
                        (all-vars-in-hyps (cdr hyps))))
        ((fquotep (car hyps))
         (all-vars-in-hyps (cdr hyps)))
        ((eq (ffn-symb (car hyps)) 'synp)
         (cond ((equal (fargn (car hyps) 1) *nil*)
                (all-vars-in-hyps (cdr hyps)))
               ((equal (fargn (car hyps) 1) *t*)
                t)
               ((and (quotep (fargn (car hyps) 1))
                     (not (collect-non-legal-variableps
                           (cadr (fargn (car hyps) 1)))))
                (union-eq (cadr (fargn (car hyps) 1))
                          (all-vars-in-hyps (cdr hyps))))
               (t (er hard 'free-vars-in-hyps-considering-bind-free
                      "We thought the first argument of synp in this context ~
                       was either 'NIL, 'T, or else a quoted true list of ~
                       variables, but ~x0 is not!"
                      (fargn (car hyps) 1)))))
        (t
         (union-eq (all-vars (car hyps))
                   (all-vars-in-hyps (cdr hyps))))))

(defun match-free-value (match-free hyps pat wrld)
  (or match-free
      (and (free-vars-in-hyps hyps (all-vars pat) wrld)
           (or (match-free-default wrld)

; We presumably already caused an error if at this point we would find a value
; of t for state global match-free-error.

               :all))))

(defun match-free-fc-value (match-free hyps concls triggers wrld)

; This function, based on match-free-value, uses free-vars-in-fc-hyps to
; determine whether free-vars are present in a forward-chaining rule (if so it
; returns nil).  If free-vars are not present then it uses the match-free value
; of the rule (given by the match-free arg) or the match-free default value of
; the world to determine the correct match-free value for this particular rule.

  (or match-free
      (and (free-vars-in-fc-hyps triggers hyps concls)
           (or (match-free-default wrld)
               :all))))

(defun rule-backchain-limit-lst (backchain-limit-lst hyps wrld flg)
  (cond (backchain-limit-lst (cadr backchain-limit-lst))
        (t (let ((limit (default-backchain-limit wrld flg)))
             (and limit
                  (cond ((eq flg :meta) limit)
                        (t (make-list (length hyps)
                                      :initial-element
                                      limit))))))))

(defun create-rewrite-rule (rune nume hyps equiv lhs rhs loop-stopper-lst
                                 backchain-limit-lst match-free-value wrld)

; This function creates a :REWRITE rule of subclass 'backchain or
; 'abbreviation from the basic ingredients, preprocessing the hyps and
; computing the loop-stopper.  Equiv is an equivalence relation name.

  (let ((hyps (preprocess-hyps hyps))
        (loop-stopper (if loop-stopper-lst
                          (remove-irrelevant-loop-stopper-pairs
                           (cadr loop-stopper-lst)
                           (all-vars lhs))
                        (loop-stopper lhs rhs))))
    (make rewrite-rule
          :rune rune
          :nume nume
          :hyps hyps
          :equiv equiv
          :lhs lhs
          :var-info (free-varsp lhs nil)
          :rhs rhs
          :subclass (cond ((and (null hyps)
                                (null loop-stopper)
                                (abbreviationp nil
                                               (all-vars-bag lhs nil)
                                               rhs))
                           'abbreviation)
                          (t 'backchain))
          :heuristic-info loop-stopper

; If backchain-limit-lst is given, then it is a keyword-alist whose second
; element is a list of values of length (length hyps), and we use this value.
; Otherwise we use the default.  This will be either nil -- used directly -- or
; an integer which we expand to a list of (length hyps) copies.

          :backchain-limit-lst
          (rule-backchain-limit-lst backchain-limit-lst hyps wrld :rewrite)
          :match-free match-free-value)))

; The next subsection of our code develops various checkers to help the
; user manage his collection of rules.

(defun hyps-that-instantiate-free-vars (free-vars hyps)

; We determine the hyps in hyps that will be used to instantiate
; the free variables, free-vars, of some rule.  Here, variables "bound" by
; calls of bind-free are not considered free in the case of rewrite and linear
; rules, so would not appear among free-vars in those cases.

  (cond ((null free-vars) nil)
        ((intersectp-eq free-vars (all-vars (car hyps)))
         (cons (car hyps)
               (hyps-that-instantiate-free-vars
                (set-difference-eq free-vars (all-vars (car hyps)))
                (cdr hyps))))
        (t (hyps-that-instantiate-free-vars free-vars (cdr hyps)))))

(mutual-recursion

(defun maybe-one-way-unify (pat term alist)

; We return t if "it is possible" that pat matches term.  More accurately, if
; we return nil, then (one-way-unify1 pat term alist) definitely fails.  Thus,
; the answer t below is always safe.  The answer nil means there is no
; substitution, s extending alist such that pat/s is term.

  (cond ((variablep pat)
         (let ((pair (assoc-eq pat alist)))
           (or (not pair)
               (eq pat (cdr pair)))))
        ((fquotep pat) (equal pat term))
        ((variablep term) nil)
        ((fquotep term) t)
        ((equal (ffn-symb pat) (ffn-symb term))
         (maybe-one-way-unify-lst (fargs pat) (fargs term) alist))
        (t nil)))

(defun maybe-one-way-unify-lst (pat-lst term-lst alist)
  (cond ((endp pat-lst) t)
        (t (and (maybe-one-way-unify (car pat-lst) (car term-lst) alist)
                (maybe-one-way-unify-lst (cdr pat-lst) (cdr term-lst)
                                         alist)))))
)

(defun maybe-one-way-unify-with-some (pat term-lst alist)

; If we return nil, then there is no term in term-lst such that (one-way-unify
; pat term alist).  If we return t, then pat might unify with some member.

  (cond ((endp term-lst) nil)
        ((maybe-one-way-unify pat (car term-lst) alist) t)
        (t (maybe-one-way-unify-with-some pat (cdr term-lst) alist))))

(defun maybe-subsumes (cl1 cl2 alist)

; We return t if it is possible that the instance of cl1 via alist subsumes
; cl2.  More accurately, if we return nil then cl1 does not subsume cl2.
; Recall what it means for (subsumes cl1 cl2 alist) to return t: cl1/alist' is
; a subset of cl2, where alist' is an extension of alist.  Observe that the
; subset check would fail if cl1 contained a literal (P X) and there is no
; literal beginning with P in cl2.  More generally, suppose there is a literal
; of cl1 (e.g., (P X)) that unifies with no literal of cl2.  Then cl1 could not
; possibly subsume cl2.

; For a discussion of the origin of this function, see subsumes-rewrite-rule.
; It was made more efficient after Version_3.0, by adding an alist argument to
; eliminate the possibility of subsumption in more cases.

; Note that this function does not give special treatment for literals
; satisfying extra-info-lit-p.  We intend this function for use in checking
; subsumption of rewrite rules, and extra-info-lit-p has no special role for
; the rewriter.

  (cond ((null cl1) t)
        ((maybe-one-way-unify-with-some (car cl1) cl2 alist)
         (maybe-subsumes (cdr cl1) cl2 alist))
        (t nil)))

(defun subsumes-rewrite-rule (rule1 rule2 wrld)

; We answer the question:  does rule1 subsume rule2?  I.e., can rule1
; (probably) be applied whenever rule2 can be?  Since we don't check
; the loop-stoppers, the "probably" is warranted.  There may be other
; reasons it is warranted.  But this is just a heuristic check performed
; as a service to the user.

; One might ask why we do the maybe-subsumes.  We do the subsumes
; check on the hyps of two rules with matching :lhs.  In a hardware
; related file we were once confronted with a rule1 having :hyps

; ((BOOLEANP A0) (BOOLEANP B0) (BOOLEANP S0) (BOOLEANP C0_IN)
;  (BOOLEANP A1) (BOOLEANP B1) (BOOLEANP S1) (BOOLEANP C1_IN)
;  ...
;  (S_REL A0 B0 C0_IN S0)
;  ...)

; and a rule2 with :hyps

; ((BOOLEANP A0) (BOOLEANP B0) (BOOLEANP S0)
;  (BOOLEANP A1) (BOOLEANP B1) (BOOLEANP S1)
;  ...)

; The subsumes computation ran for over 30 minutes (and was eventually
; aborted).  The problem is that the extra variables in rule1, e.g.,
; C0_IN, were matchable in many different ways, e.g., C0_IN <- A0,
; C0_IN <- B0, etc., all of which must be tried in a subsumption
; check.  But no matter how you get rid of (BOOLEANP C0_IN) by
; choosing C0_IN, you will eventually run into the S_REL hypothesis in
; rule1 which has no counterpart in rule2.  Thus we installed the
; relatively quick maybe-subsumes check.  The check scans the :hyps of
; the first rule and determines whether there is some hypothesis that
; cannot possibly be matched against the hyps of the other rule.

  (and (refinementp (access rewrite-rule rule1 :equiv)
                    (access rewrite-rule rule2 :equiv)
                    wrld)
       (mv-let (ans unify-subst)
         (one-way-unify (access rewrite-rule rule1 :lhs)
                        (access rewrite-rule rule2 :lhs))
         (and ans
              (maybe-subsumes
               (access rewrite-rule rule1 :hyps)
               (access rewrite-rule rule2 :hyps)
               unify-subst)
              (eq (subsumes *init-subsumes-count*
                            (access rewrite-rule rule1 :hyps)
                            (access rewrite-rule rule2 :hyps)
                            unify-subst)
                  t)))))

(defun find-subsumed-rule-names (lst rule ens wrld)

; Lst is a list of rewrite-rules.  Rule is a rewrite-rule.  We return
; the names of those elements of lst that are subsumed by rule.  We
; skip those rules in lst that are disabled in the global enabled structure
; and those that are META or DEFINITION rules.

  (cond ((null lst) nil)
        ((and (enabled-numep (access rewrite-rule (car lst) :nume)
                             ens)
              (not (eq (access rewrite-rule (car lst) :subclass) 'meta))
              (not (eq (access rewrite-rule (car lst) :subclass) 'definition))
              (subsumes-rewrite-rule rule (car lst) wrld))
         (cons (base-symbol (access rewrite-rule (car lst) :rune))
               (find-subsumed-rule-names (cdr lst) rule ens wrld)))
        (t (find-subsumed-rule-names (cdr lst) rule ens wrld))))

(defun find-subsuming-rule-names (lst rule ens wrld)

; Lst is a list of rewrite-rules.  Rule is a rewrite-rule.  We return
; the names of those elements of lst that subsume rule.  We skip those
; rules in lst that are disabled and that are META or DEFINITION rules.

  (cond ((null lst) nil)
        ((and (enabled-numep (access rewrite-rule (car lst) :nume)
                             ens)
              (not (eq (access rewrite-rule (car lst) :subclass) 'meta))
              (not (eq (access rewrite-rule (car lst) :subclass) 'definition))
              (subsumes-rewrite-rule (car lst) rule wrld))
         (cons (base-symbol (access rewrite-rule (car lst) :rune))
               (find-subsuming-rule-names (cdr lst) rule ens wrld)))
        (t (find-subsuming-rule-names (cdr lst) rule ens wrld))))

(defun forced-hyps (lst)
  (cond ((null lst) nil)
        ((and (nvariablep (car lst))
;             (not (fquotep (car lst)))
              (or (eq (ffn-symb (car lst)) 'force)
                  (eq (ffn-symb (car lst)) 'case-split)))
         (cons (car lst) (forced-hyps (cdr lst))))
        (t (forced-hyps (cdr lst)))))

(defun strip-top-level-nots-and-forces (hyps)
  (cond
   ((null hyps)
    nil)
   (t (mv-let (not-flg atm)
              (strip-not (if (and (nvariablep (car hyps))
;                                 (not (fquotep (car hyps)))
                                  (or (eq (ffn-symb (car hyps)) 'force)
                                      (eq (ffn-symb (car hyps)) 'case-split)))
                             (fargn (car hyps) 1)
                           (car hyps)))
              (declare (ignore not-flg))
              (cons atm (strip-top-level-nots-and-forces (cdr hyps)))))))

(defun free-variable-error? (token name ctx wrld state)
  (if (and (null (match-free-default wrld))
           (f-get-global 'match-free-error state))
      (er soft ctx
          "The warning above has caused this error in order to make it clear ~
           that there are free variables in ~s0 of a ~x1 rule generated from ~
           ~x2.  This error can be suppressed for the rest of this ACL2 ~
           session by submitting the following form:~|~%~x3~|~%However, you ~
           are advised not to do so until you have read the documentation on ~
           ``free variables'' (see :DOC free-variables) in order to understand ~
           the issues.  In particular, you can supply a :match-free value for ~
           the :rewrite rule class (see :DOC rule-classes) or a default for ~
           the book under development (see :DOC set-match-free-default)."
          (if (eq token :forward-chaining)
              "some trigger term"
            "the hypotheses")
          token name '(set-match-free-error nil))
    (value nil)))

(defun extend-geneqv-alist (var geneqv alist wrld)

; For each pair (x . y) in alist, x is a variable and y is a geneqv.  The
; result extends alist by associating variable var with geneqv, thus extending
; the generated equivalence relation already associated with var in alist.

  (put-assoc-eq var
                (union-geneqv geneqv (cdr (assoc-eq var alist)) wrld)
                alist))

(mutual-recursion

(defun covered-geneqv-alist (term geneqv alist wrld)

; Extends alist, an accumulator, as follows.  The result associates, with each
; variable bound in term, a geneqv representing the list of all equivalence
; relations that are sufficient to preserve at one or more free occurrences of
; that variable in term, in order to preserve the given geneqv at term.  This
; function creates the initial bound-vars-alist for
; double-rewrite-opportunities; see also the comment there.

; Alist is an accumulator with entries of the form (variable . geneqv).

  (cond ((variablep term)
         (extend-geneqv-alist term geneqv alist wrld))
        ((fquotep term)
         alist)
        (t
         (covered-geneqv-alist-lst (fargs term)
                                   (geneqv-lst (ffn-symb term) geneqv nil wrld)
                                   alist
                                   wrld))))

(defun covered-geneqv-alist-lst (termlist geneqv-lst alist wrld)
  (cond ((endp termlist)
         alist)
        (t (covered-geneqv-alist-lst (cdr termlist)
                                     (cdr geneqv-lst)
                                     (covered-geneqv-alist (car termlist) (car geneqv-lst)
                                                           alist wrld)
                                     wrld))))
)

(defun uncovered-equivs (geneqv covered-geneqv wrld)
  (cond ((endp geneqv) nil)
        (t (let ((equiv (access congruence-rule (car geneqv) :equiv))
                 (rst (uncovered-equivs (cdr geneqv) covered-geneqv wrld)))
             (cond ((geneqv-refinementp equiv covered-geneqv wrld)
                    rst)
                   (t (cons equiv rst)))))))

(mutual-recursion

(defun uncovered-equivs-alist (term geneqv var-geneqv-alist var-geneqv-alist0
                                    obj-not-? acc-equivs acc-counts wrld)

; Accumulator acc-equiv is an alist that associates variables with lists of
; equivalence relations, and accumulator acc-counts associates variables with
; natural numbers.  We are given a term whose value is to be maintained with
; respect to the given geneqv, along with var-geneqv-alist, which associates
; variables with ilsts of equivalence relations.  We return extensions of
; acc-equivs, acc-counts, and var-geneqv-alist as follows.

; Consider a bound (by var-geneqv-alist) variable occurrence in term.  Its
; context is known to preserve certain equivalence relations; but some of these
; may be "uncovered", i.e., not among the ones associated with this variable in
; var-geneqv-alist.  If that is the case, then add those "uncovered"
; equivalence relations to the list associated with this variable in
; acc-equivs, and increment the value of this variable in acc-counts by 1.

; However, we skip the above analysis for the case that geneqv is *geneqv-iff*
; and we are at the top level of the IF-structure of the top-level term (not
; including the tests).  This function is used for creating warnings that
; suggest the use of double-rewrite, which however is generally not necessary
; in such situations; see rewrite-solidify-plus.

; For a free variable occurrence in term, we leave acc-equivs and acc-counts
; unchanged, and instead extend var-geneqv-alist by associating this variable
; with the geneqv for its context.  Var-geneqv-alist0 is left unchanged by this
; process, for purposes of checking free-ness.

  (cond
   ((variablep term)
    (let ((binding (assoc-eq term var-geneqv-alist0)))
      (cond ((null binding)
             (mv acc-equivs
                 acc-counts
                 (extend-geneqv-alist term geneqv var-geneqv-alist wrld)))
            ((and obj-not-?
                  (equal geneqv *geneqv-iff*))

; The call of rewrite-solidify-plus in rewrite makes it unnecessary to warn
; when the objective is other than '? and the given geneqv is *geneqv-iff*.

             (mv acc-equivs acc-counts var-geneqv-alist))
            (t (let* ((covered-geneqv (cdr binding))
                      (uncovered-equivs
                       (uncovered-equivs geneqv covered-geneqv wrld)))
                 (cond (uncovered-equivs
                        (mv (put-assoc-eq
                             term
                             (union-eq uncovered-equivs
                                       (cdr (assoc-eq term acc-equivs)))
                             acc-equivs)
                            (put-assoc-eq
                             term
                             (1+ (or (cdr (assoc-eq term acc-counts))
                                     0))
                             acc-counts)
                            var-geneqv-alist))
                       (t (mv acc-equivs acc-counts var-geneqv-alist))))))))
   ((or (fquotep term)
        (eq (ffn-symb term) 'double-rewrite))
    (mv acc-equivs acc-counts var-geneqv-alist))
   ((and obj-not-?
         (eq (ffn-symb term) 'if))
    (mv-let (acc-equivs acc-counts var-geneqv-alist)
            (uncovered-equivs-alist
             (fargn term 3)
             geneqv
             var-geneqv-alist
             var-geneqv-alist0
             t
             acc-equivs acc-counts
             wrld)
            (mv-let (acc-equivs acc-counts var-geneqv-alist)
                    (uncovered-equivs-alist
                     (fargn term 2)
                     geneqv
                     var-geneqv-alist
                     var-geneqv-alist0
                     t
                     acc-equivs acc-counts
                     wrld)
                    (uncovered-equivs-alist
                     (fargn term 1)
                     *geneqv-iff*
                     var-geneqv-alist
                     var-geneqv-alist0
                     nil
                     acc-equivs acc-counts
                     wrld))))
   (t (uncovered-equivs-alist-lst
       (fargs term)
       (geneqv-lst (ffn-symb term) geneqv nil wrld)
       var-geneqv-alist var-geneqv-alist0 acc-equivs acc-counts wrld))))

(defun uncovered-equivs-alist-lst (termlist geneqv-lst var-geneqv-alist
                                            var-geneqv-alist0 acc-equivs
                                            acc-counts wrld)
  (cond ((endp termlist)
         (mv acc-equivs acc-counts var-geneqv-alist))
        (t (mv-let (acc-equivs acc-counts var-geneqv-alist)
             (uncovered-equivs-alist (car termlist)
                                     (car geneqv-lst)
                                     var-geneqv-alist
                                     var-geneqv-alist0
                                     nil
                                     acc-equivs acc-counts
                                     wrld)
             (uncovered-equivs-alist-lst (cdr termlist) (cdr geneqv-lst)
                                         var-geneqv-alist
                                         var-geneqv-alist0
                                         acc-equivs acc-counts
                                         wrld)))))
)

(defun double-rewrite-opportunities (hyp-index hyps var-geneqv-alist
                                     final-term final-location final-geneqv
                                     wrld)

; We return an alist having entries (location var-equiv-alist
; . var-count-alist), where location is a string identifying a term (either the
; hyp-index_th member of the original hyps, or the final-term), var-equiv-alist
; associates variables of that term with their "uncovered equivs" as defined
; below, and var-count-alist associates variables of that term with the number
; of occurrences of a given variable that have at least one "uncovered" equiv.

; This function is called only for the purpose of producing a warning when
; there is a missed opportunity for a potentially useful call of
; double-rewrite.  Consider a variable occurrence in hyps, the hypotheses of a
; rule, in a context where it is sufficient to preserve equiv.  If that
; variable occurs in the left-hand side of a rewrite rule (or the max-term of a
; linear rule) in at least one context where it is sufficient to preserve
; equiv, that would give us confidence that the value associated with that
; occurrence (in the unifying substitution) had been fully rewritten with
; respect to equiv.  But otherwise, we want to note this "uncovered" equiv for
; that variable in that hyp.

; We give similar treatment for the right-hand side of a rewrite rule and
; conclusion of a linear rule, using the parameters final-xxx.

; Var-geneqv-alist is an alist that binds variables to geneqvs.  Initially, the
; keys are exactly the bound variables of the unifying substitution.  Each key
; is associated with a geneqv that represents the equivalence relation
; generated by all equivalence relations known to be preserved for at least one
; variable occurrence in the pattern that was matched to give the unifying
; substitution (the left left-hand side of a rewrite rule or max-term of a
; linear rule).  As we move through hyps, we may encounter a hypothesis (equal
; var term) or (equiv var (double-rewrite term)) that binds a variable, var, in
; which case we will extend var-geneqv-alist for var at that point.  Note that
; we do not extend var-geneqv-alist for other free variables in hypotheses,
; because we do not know the equivalence relations that were maintained when
; creating the rewritten terms to which the free variables are bound.

  (cond ((endp hyps)
         (mv-let (var-equivs-alist var-counts var-geneqv-alist)
                 (uncovered-equivs-alist final-term final-geneqv
                                         var-geneqv-alist var-geneqv-alist
                                         nil nil nil wrld)
                 (declare (ignore var-geneqv-alist))
                 (if var-equivs-alist
                     (list (list* final-location var-equivs-alist var-counts))
                   nil)))
        (t
         (mv-let
           (forcep bind-flg)
           (binding-hyp-p (car hyps) var-geneqv-alist wrld)
           (let ((hyp (if forcep (fargn (car hyps) 1) (car hyps))))
             (cond (bind-flg
                    (let* ((equiv (ffn-symb hyp))
                           (var (fargn hyp 1))
                           (term0 (fargn hyp 2))
                           (term (if (ffn-symb-p term0 'double-rewrite)
                                     (fargn term0 1)
                                   term0))
                           (new-geneqv (cadr (geneqv-lst equiv
                                                         *geneqv-iff*
                                                         nil
                                                         wrld))))
                      (double-rewrite-opportunities
                       (1+ hyp-index)
                       (cdr hyps)
                       (covered-geneqv-alist term
                                             new-geneqv
                                             (assert$ (variablep var)
                                                      (extend-geneqv-alist
                                                       var new-geneqv
                                                       var-geneqv-alist wrld))
                                             wrld)
                       final-term final-location final-geneqv
                       wrld)))
                   (t (mv-let (var-equivs-alist var-counts var-geneqv-alist)
                              (uncovered-equivs-alist (car hyps)
                                                      *geneqv-iff*
                                                      var-geneqv-alist
                                                      var-geneqv-alist
                                                      t
                                                      nil nil
                                                      wrld)
                        (let ((cdr-result
                               (double-rewrite-opportunities (1+ hyp-index)
                                                             (cdr hyps)
                                                             var-geneqv-alist
                                                             final-term
                                                             final-location
                                                             final-geneqv
                                                             wrld)))
                          (if var-equivs-alist
                              (cons (list* (msg "the ~n0 hypothesis"
                                                (list hyp-index))
                                           var-equivs-alist var-counts)
                                    cdr-result)
                            cdr-result))))))))))

(defun show-double-rewrite-opportunities1 (location var-equivs-alist
                                                    var-count-alist token name
                                                    max-term-msg ctx state)

; This should only be called in a context where we know that double-rewrite
; warnings are enabled.  Otherwise we lose efficiency, and anyhow warning$ is
; called below with ("Double-rewrite").

  (cond ((endp var-equivs-alist)
         state)
        (t (pprogn (let* ((var (caar var-equivs-alist))
                          (count (let ((pair (assoc-eq var var-count-alist)))
                                   (assert$ pair (cdr pair)))))
                     (warning$ ctx ("Double-rewrite")
                               `("In a ~x0 rule generated from ~x1~@2, ~
                                  equivalence relation~#3~[ ~&3~ is~/s ~&3 ~
                                  are~] maintained at ~n4 problematic ~
                                  occurrence~#5~[~/s~] of variable ~x6 in ~
                                  ~@7, but not at any binding occurrence of ~
                                  ~x6.  Consider replacing ~#5~[that ~
                                  occurrence~/those ~n4 occurrences~] of ~x6 ~
                                  in ~@7 with ~x8.  See :doc double-rewrite ~
                                  for more information on this issue."
                                 (:doc double-rewrite)
                                 (:equivalence-relations
                                  ,(cdar var-equivs-alist))
                                 (:location ,location)
                                 ,@(and (not (equal max-term-msg ""))
                                        `((:max-term-msg ,max-term-msg)))
                                 (:new-rule ,name)
                                 (:number-of-problematic-occurrences ,count)
                                 (:rule-class ,token)
                                 (:variable ,var))
                               token name
                               max-term-msg
                               (cdar var-equivs-alist)
                               count
                               (if (eql count 1) 0 1)
                               var
                               location
                               (list 'double-rewrite var)))
                   (show-double-rewrite-opportunities1
                    location (cdr var-equivs-alist) var-count-alist
                    token name max-term-msg ctx state)))))

(defun show-double-rewrite-opportunities (hyp-var-equivs-counts-alist-pairs
                                          token name max-term-msg ctx state)

; Hyp-var-equivs-counts-alist-pairs is an alist as returned by
; double-rewrite-opportunities; see the comment there.  Final-term,
; final-location, final-var-equivs-alist, and final-var-count-alist are the
; analog of one entry of that alist, but for the right-hand side of a rewrite
; rule or the conclusion of a linear rule.

; For efficiency, check warning-disabled-p before calling this function.

  (cond ((endp hyp-var-equivs-counts-alist-pairs)
         state)
        (t (pprogn (show-double-rewrite-opportunities1
                    (caar hyp-var-equivs-counts-alist-pairs)
                    (cadar hyp-var-equivs-counts-alist-pairs)
                    (cddar hyp-var-equivs-counts-alist-pairs)
                    token name max-term-msg ctx state)
                   (show-double-rewrite-opportunities
                    (cdr hyp-var-equivs-counts-alist-pairs)
                    token name max-term-msg ctx state)))))

(defun irrelevant-loop-stopper-pairs (pairs vars)

; Keep this in sync with remove-irrelevant-loop-stopper-pairs.

  (if pairs
      (if (and (member-eq (caar pairs) vars)
               (member-eq (cadar pairs) vars))
          (irrelevant-loop-stopper-pairs (cdr pairs) vars)
        (cons (car pairs)
              (irrelevant-loop-stopper-pairs (cdr pairs) vars)))
    nil))

(defun chk-rewrite-rule-warnings (name match-free loop-stopper rule ctx ens
                                       wrld state)
  (let* ((token (if (eq (access rewrite-rule rule :subclass)
                        'definition)
                    :definition
                  :rewrite))
         (hyps (access rewrite-rule rule :hyps))
         (lhs (access rewrite-rule rule :lhs))
         (non-rec-fns-lhs (non-recursive-fnnames lhs ens wrld))
         (lhs-vars (all-vars lhs))
         (rhs-vars (all-vars (access rewrite-rule rule :rhs)))
         (free-vars (free-vars-in-hyps-considering-bind-free
                     hyps
                     lhs-vars
                     wrld))
         (inst-hyps (hyps-that-instantiate-free-vars free-vars hyps))
         (non-rec-fns-inst-hyps
          (non-recursive-fnnames-lst
           (strip-top-level-nots-and-forces inst-hyps) ens wrld))
         (subsume-check-enabled (not (warning-disabled-p "Subsume")))
         (subsumed-rule-names
          (and subsume-check-enabled
               (find-subsumed-rule-names (getpropc (ffn-symb lhs) 'lemmas nil
                                                   wrld)
                                         rule ens wrld)))
         (subsuming-rule-names
          (and subsume-check-enabled
               (find-subsuming-rule-names (getpropc (ffn-symb lhs) 'lemmas nil
                                                    wrld)
                                          rule ens wrld)))
         (equiv (access rewrite-rule rule :equiv))
         (double-rewrite-opportunities
          (and (not (warning-disabled-p "Double-rewrite"))
               (double-rewrite-opportunities
                1
                hyps
                (covered-geneqv-alist
                 lhs
                 (cadr (geneqv-lst equiv nil nil wrld)) ; geneqv
                 nil wrld)
                (access rewrite-rule rule :rhs)
                "the right-hand side"
                (cadr (geneqv-lst (access rewrite-rule rule :equiv) nil nil wrld))
                wrld))))
    (pprogn
     (cond (double-rewrite-opportunities
            (show-double-rewrite-opportunities double-rewrite-opportunities
                                               token name "" ctx state))
           (t state))
     (cond
      (non-rec-fns-lhs
       (warning$ ctx "Non-rec"
                 `("A ~x0 rule generated from ~x1 will be triggered only by ~
                    terms containing the non-recursive function symbol~#2~[ ~
                    ~&2.  Unless this function is~/s ~&2.  Unless these ~
                    functions are~] disabled, this rule is unlikely ever to ~
                    be used."
                   (:non-recursive-fns-lhs ,(hide-lambdas non-rec-fns-lhs))
                   (:name ,name)
                   (:rule-class ,token))
                 token name (hide-lambdas non-rec-fns-lhs)))
      (t state))
     (er-progn
      (cond
       ((and free-vars (null match-free))
        (pprogn
         (warning$ ctx "Free"
                   `("A ~x0 rule generated from ~x1 contains the free ~
                    variable~#2~[ ~&2.  This variable~/s ~&2.  These ~
                    variables~] will be chosen by searching for ~#3~[an ~
                    instance~/instances~] of ~*4 in the context of the term ~
                    being rewritten.  This is generally a severe restriction ~
                    on the applicability of a ~x0 rule.  See :DOC ~
                    free-variables."
                     (:doc free-variables)
                     (:free-variables ,free-vars)
                     (:instantiated-hyps ,(untranslate-lst inst-hyps t wrld))
                     (:name ,name)
                     (:rule-class ,token))
                   token name free-vars
                   inst-hyps
                   (tilde-*-untranslate-lst-phrase inst-hyps t wrld))
         (free-variable-error? token name ctx wrld state)))
       (t (value nil)))
      (pprogn
       (cond
        ((and free-vars
              (forced-hyps inst-hyps))
         (warning$ ctx "Free"
                   "For the forced ~#0~[hypothesis~/hypotheses~], ~*1, used ~
                    to instantiate free variables we will search for ~#0~[an ~
                    instance of the argument~/instances of the arguments~] ~
                    rather than ~#0~[an instance~/instances~] of the FORCE or ~
                    CASE-SPLIT ~#0~[term itself~/terms themselves~].  If a ~
                    search fails for such a hypothesis, we will cause a case ~
                    split on the partially instantiated hypothesis.  Note ~
                    that this case split will introduce a ``free variable'' ~
                    into the conjecture.  While sound, this will establish a ~
                    goal almost certain to fail since the restriction ~
                    described by this apparently necessary hypothesis ~
                    constrains a variable not involved in the problem.  To ~
                    highlight this oddity, we will rename the free variables ~
                    in such forced hypotheses by prefixing them with ~
                    ``UNBOUND-FREE-''.  This is not guaranteed to generate a ~
                    new variable but at least it generates an unusual one.  ~
                    If you see such a variable in a subsequent proof (and did ~
                    not introduce them yourself) you should consider the ~
                    possibility that the free variables of this rewrite rule ~
                    were forced into the conjecture."
                   (if (null (cdr (forced-hyps inst-hyps))) 0 1)
                   (tilde-*-untranslate-lst-phrase (forced-hyps inst-hyps) t
                                                   wrld)))
        (t state))
       (cond
        ((set-difference-eq rhs-vars lhs-vars)

; Usually the above will be nil.  If not, the recomputation below is no big
; deal.

         (cond
          ((set-difference-eq rhs-vars
                              (all-vars1-lst hyps lhs-vars))
           (warning$ ctx "Free"
                     "A ~x0 rule generated from ~x1 contains the the free ~
                      variable~#2~[~/s~] ~&2 on the right-hand side of the ~
                      rule, which ~#2~[is~/are~] not bound on the left-hand ~
                      side~#3~[~/ or in the hypothesis~/ or in any ~
                      hypothesis~].  This can cause new variables to be ~
                      introduced into the proof, which may surprise you."
                     token name
                     (set-difference-eq rhs-vars
                                        (all-vars1-lst hyps lhs-vars))
                     (zero-one-or-more hyps)))
          (t state)))
        (t state))
       (cond
        (non-rec-fns-inst-hyps
         (warning$ ctx "Non-rec"
                   `("As noted, we will instantiate the free ~
                      variable~#0~[~/s~], ~&0, of a ~x1 rule generated from ~
                      ~x2, by searching for the ~#3~[hypothesis~/set of ~
                      hypotheses~] shown above.  However, ~#3~[this ~
                      hypothesis mentions~/these hypotheses mention~] the ~
                      function symbol~#4~[ ~&4, which is~/s ~&4, which are~] ~
                      defun'd non-recursively.  Unless disabled, ~#4~[this ~
                      function symbol is~/these function symbols are~] ~
                      unlikely to occur in the conjecture being proved and ~
                      hence the search for the required ~
                      ~#3~[hypothesis~/hypotheses~] will likely fail."
                     (:free-variables ,free-vars)
                     (:instantiated-hyps ,inst-hyps)
                     (:non-recursive-fns-lhs ,(hide-lambdas non-rec-fns-lhs))
                     (:name ,name)
                     (:rule-class ,token))
                   free-vars token name inst-hyps
                   (hide-lambdas non-rec-fns-inst-hyps)))
        (t state))
       (cond
        (subsumed-rule-names
         (warning$ ctx ("Subsume")
                   `("A newly proposed ~x0 rule generated from ~x1 probably ~
                     subsumes the previously added :REWRITE rule~#2~[~/s~] ~
                     ~&2, in the sense that the new rule will now probably be ~
                     applied whenever the old rule~#2~[~/s~] would have been."
                     (:new-rule ,name)
                     (:rule-class-new ,token)
                     (:rule-class-old :rewrite)
                     (:subsumed-rules ,subsumed-rule-names))
                   token name subsumed-rule-names))
        (t state))
       (cond
        (subsuming-rule-names
         (warning$ ctx ("Subsume")
                   `("The previously added rule~#1~[~/s~] ~&1 ~
                     subsume~#1~[s~/~] a newly proposed ~x0 rule generated ~
                     from ~x2, in the sense that the old rule~#1~[ rewrites a ~
                     more general target~/s rewrite more general targets~].  ~
                     Because the new rule will be tried first, it may ~
                     nonetheless find application."
                     (:new-rule ,name)
                     (:rule-class ,token)
                     (:subsuming-rules ,subsuming-rule-names))
                   token
                   subsuming-rule-names
                   name))
        (t state))
       (cond
        ((warning-disabled-p "Loop-Stopper")
         state)
        (t (let ((bad-pairs
                  (irrelevant-loop-stopper-pairs loop-stopper lhs-vars)))
             (cond
              (bad-pairs
               (warning$ ctx ("Loop-Stopper")
                         "When the ~x0 rule generated from ~x1 is created, ~
                          the ~#2~[entry~/entries~] ~&2 from the specified ~
                          :LOOP-STOPPER will be ignored because the two ~
                          specified variables do not both occur on the ~
                          left-hand side of the rule.  See :DOC loop-stopper."
                         token name bad-pairs))
              (t state)))))
       (value nil))))))

(defun chk-acceptable-rewrite-rule2 (name match-free loop-stopper hyps concl
                                          ctx ens wrld state)

; This is the basic function for checking that (IMPLIES (AND . hyps)
; concl) generates a useful :REWRITE rule.  If it does not, we cause an
; error.  If it does, we may print some warnings regarding the rule
; generated.  The superior functions, chk-acceptable-rewrite-rule1
; and chk-acceptable-rewrite-rule just cycle down to this one after
; flattening the IMPLIES/AND structure of the user's input term.  When
; successful, this function returns a ttree justifying the storage of
; the :REWRITE rule -- it sometimes depends on type-set information.

  (mv-let
   (msg eqv lhs rhs ttree)
   (interpret-term-as-rewrite-rule name hyps concl ens wrld)
   (cond
    (msg (er soft ctx "~@0" msg))
    (t (let ((rewrite-rule
              (create-rewrite-rule *fake-rune-for-anonymous-enabled-rule*
                                   nil hyps eqv lhs rhs nil nil nil wrld)))

; The :REWRITE rule created above is used only for subsumption checking and
; then discarded.  The rune, nume, loop-stopper-lst, and match-free used are
; irrelevant.  The warning messages, if any, concerning subsumption report the
; name of the rule as name.

         (er-progn
          (chk-rewrite-rule-warnings name match-free loop-stopper
                                     rewrite-rule ctx ens wrld state)
          (value ttree)))))))

(defun chk-acceptable-rewrite-rule1 (name match-free loop-stopper lst ctx ens
                                          wrld state)

; Each element of lst is a pair, (hyps . concl) and we check that each
; such pair, when interpreted as the term (implies (and . hyps)
; concl), generates a legal :REWRITE rule.  We return the accumulated
; ttrees.

  (cond
   ((null lst) (value nil))
   (t (er-let* ((ttree1
                 (chk-acceptable-rewrite-rule2 name match-free loop-stopper
                                               (caar lst) (cdar lst)
                                               ctx ens wrld state))
                (ttree
                 (chk-acceptable-rewrite-rule1 name match-free loop-stopper
                                               (cdr lst) ctx ens wrld state)))
               (value (cons-tag-trees ttree1 ttree))))))

(defun chk-acceptable-rewrite-rule (name match-free loop-stopper term ctx ens
                                         wrld state)

; We strip the conjuncts out of term and flatten those in the
; hypotheses of implications to obtain a list of implications, each of
; the form (IMPLIES (AND . hyps) concl), and each represented simply
; by a pair (hyps . concl).  For each element of that list we then
; determine whether it generates a legal :REWRITE rule.  See
; chk-acceptable-rewrite-rule2 for the guts of this test.  We either
; cause an error or return successfully.  We may print warning
; messages without causing an error.  On successful returns the value
; is a ttree that justifies the storage of all the :REWRITE rules.

  (chk-acceptable-rewrite-rule1 name match-free loop-stopper
                                (unprettyify (remove-guard-holders term))
                                ctx ens wrld state))

; So now we work on actually generating and adding the rules.

(defun add-rewrite-rule2 (rune nume hyps concl loop-stopper-lst
                               backchain-limit-lst match-free ens wrld)

; This is the basic function for generating and adding a rule named
; rune from the formula (IMPLIES (AND . hyps) concl).

  (mv-let
   (msg eqv lhs rhs ttree)
   (interpret-term-as-rewrite-rule (base-symbol rune) hyps concl ens wrld)
   (declare (ignore ttree))
   (cond
    (msg

; Msg is nil if we have called chk-acceptable-rewrite-rule for the
; corresponding rule under the same event that we are processing here.  But
; suppose we are in the second pass of encapsulate or the local compatibility
; check of certify-book.  Then that check may have been done in a different
; world than the one we have now.

; Even then, we typically expect that if interpret-term-as-rewrite-rule avoids
; returning an error, then it does so for every call made on the same arguments
; other than, perhaps, the world.  Looking at the code for
; interpret-term-as-rewrite-rule2 and its callees, we see that it suffices to
; show that if interpret-term-as-rewrite-rule2 returns nil for lhs and rhs that
; are returned by a call of interpret-term-as-rewrite-rule1, then that call of
; interpret-term-as-rewrite-rule2 returns nil when the only input argument
; changes are the world and, for the latter call, equiv-okp = t.  A
; counterexample would have to be a term of the form (equiv x y), where equiv
; is an equivalence relation in the first world passed to
; interpret-term-as-rewrite-rule1 but not in the second, where
; interpret-term-as-rewrite-rule2 returns nil for lhs = x and rhs = y but
; returns a non-nil msg for lhs = (equiv x y) and rhs = *t*.  The only way that
; can happen is with the bad-synp-hyp-msg check in
; interpret-term-as-rewrite-rule2, as in the following example -- and it does
; indeed happen!  But we think this hard error is so rare that it is
; tolerable.

;   (encapsulate
;    ()
;    (defun my-equivp (x y)
;      (equal (nfix x) (nfix y)))
;    (local (defequiv my-equivp))
;    (defthm foo
;      (implies (and (bind-free (list (cons 'y x)) (y))
;                    (equal y x))
;               (my-equivp (identity x) y))))

     (er hard 'add-rewrite-rule2
         "We believe that this error is occurring because the conclusion of a ~
          proposed :REWRITE rule generated from ~x0 is of the form (equiv LHS ~
          RHS), where equiv was a known equivalence relation when this rule ~
          was originally processed, but that is no longer the case.  As a ~
          result, the rule is now treated as rewriting (equiv LHS RHS) to t, ~
          and yet a BIND-FREE hypothesis is attempting to bind a variable in ~
          RHS.  Perhaps you can fix this problem by making equiv an ~
          equivalence relation non-locally."
         (base-symbol rune)))
    (t
     (let* ((match-free-value (match-free-value match-free hyps lhs wrld))
            (rewrite-rule (create-rewrite-rule rune nume hyps eqv
                                               lhs rhs
                                               loop-stopper-lst
                                               backchain-limit-lst
                                               match-free-value
                                               wrld))
            (wrld1 (putprop (ffn-symb lhs)
                            'lemmas
                            (cons rewrite-rule
                                  (getpropc (ffn-symb lhs) 'lemmas nil wrld))
                            wrld)))
       (put-match-free-value match-free-value rune wrld1))))))

(defun add-rewrite-rule1 (rune nume lst loop-stopper-lst
                               backchain-limit-lst match-free ens wrld)

; Each element of lst is a pair, (hyps . concl).  We generate and
; add to wrld a :REWRITE for each.

  (cond ((null lst) wrld)
        (t (add-rewrite-rule1 rune nume (cdr lst)
                              loop-stopper-lst
                              backchain-limit-lst
                              match-free
                              ens
                              (add-rewrite-rule2 rune nume
                                                 (caar lst)
                                                 (cdar lst)
                                                 loop-stopper-lst
                                                 backchain-limit-lst
                                                 match-free
                                                 ens
                                                 wrld)))))

(defun add-rewrite-rule (rune nume loop-stopper-lst term
                              backchain-limit-lst match-free ens wrld)

; This function might better be called "add-rewrite-rules" because we
; may get many :REWRITE rules from term.  But we are true to our naming
; convention.  "Consistency is the hobgoblin of small minds."  Emerson?

  (add-rewrite-rule1 rune nume
                     (unprettyify (remove-guard-holders term))
                     loop-stopper-lst backchain-limit-lst match-free ens wrld))

;---------------------------------------------------------------------------
; Section:  :LINEAR Rules

; We now move on to :LINEAR class rules.

(defun expand-inequality-fncall1 (term)

; Term is a non-variable, non-quotep term.  If it is a call of one of
; the primitive arithmetic relations, <, =, and /=, we return a
; nearly-equivalent term using not, equal, and < in place of that
; top-level call.  Otherwise, we return term.  We ignore the guards of
; arithmetic relations expanded!

; Warning: See the warning in expand-inequality-fncall below.  It is
; crucial that if (fn a b) is expanded here then the guards necessary
; to justify that expansion are implied by the rationalp assumptions
; produced during the linearization of the expanded term.  In
; particular, (rationalp a) and (rationalp b) ought to be sufficient
; to permit (fn a b) to expand to whatever we produce below.

  (let ((fn (ffn-symb term)))
    (case
     fn
     (< term)
     (= (mcons-term* 'equal (fargn term 1) (fargn term 2)))
     (/= (mcons-term* 'not (mcons-term* 'equal (fargn term 1) (fargn term 2))))
     (otherwise term))))

(defun expand-inequality-fncall (term)

; If term is a (possibly negated) call of a primitive arithmetic
; relation, <, = and /=, we reexpress it in terms of
; not, equal, and < so that it can be linearized successfully.
; Otherwise, we return term.

; Warning: This function expands the definitions of the primitives
; above without considering their guards.  This is unsound if the
; expanded form is used in place of the term.  For example, (= x y)
; is here expanded to (equal x y), and in the case that the
; guards are violated the two terms are not equivalent.  Do not call
; this function casually!

; What is the intended use of this function?  Suppose the user has
; proved a theorem, (implies hyps (= a b)) and wants it stored as a
; :LINEAR rule.  We instead store a rule concluding with (equal a b)!
; Note that the rule we store is not equivalent to the rule proved!
; We've ignored the acl2-numberp guards on =.  Isn't that scary?  Yes.
; But how do :LINEAR rules get used?  Let max be one of the maximal
; terms of the rule we store and suppose we encounter a term, max',
; that is an instance of max.  Then we will instantiate the stored
; conclusion (equal a b) with the substitution derived from max' to
; obtain (equal a' b') and then linearize that.  The linearization of
; an equality insists that both arguments be known rational -- i.e.
; that their type-sets are a subset of *ts-rational*.  Thus, in
; essence we are acting as though we had the theorem (implies (and
; (rationalp a) (rationalp b) hyps) (equal a b)) and use type-set to
; relieve the first two hyps.  But this imagined theorem is an easy
; consequence of (implies hyps (= a b)) given that (rationalp a) and
; (rationalp b) let us reduce (= a b) to (equal a b).

  (mv-let (negativep atm)
          (strip-not term)
          (let ((atm (cond ((variablep atm) atm)
                           ((fquotep atm) atm)
                           (t (expand-inequality-fncall1 atm)))))
            (cond
             (negativep (dumb-negate-lit atm))
             (t atm)))))

; Once we linearize the conclusion of a :LINEAR lemma, we extract all the
; linear variables (i.e., terms in the alist of the polys) and identify
; those that are "maximal."

(defun all-vars-in-poly-lst (lst)

; Lst is a list of polynomials.  We return the list of all linear variables
; used.

  (cond ((null lst) nil)
        (t (union-equal (strip-cars (access poly (car lst) :alist))
                        (all-vars-in-poly-lst (cdr lst))))))

; Part of the notion of maximal is "always bigger", which we develop here.

(defun subbagp-eq (bag1 bag2)
  (cond ((null bag1) t)
        ((null bag2) nil)
        ((member-eq (car bag1) bag2)
         (subbagp-eq (cdr bag1) (remove1-eq (car bag1) bag2)))
        (t nil)))

(defun always-biggerp-data (term)

; See always-biggerp.

  (mv-let (fn-cnt p-fn-cnt)
          (fn-count term)
          (cons term (cons fn-cnt (cons p-fn-cnt (all-vars-bag term nil))))))

(defun always-biggerp-data-lst (lst)

; See always-biggerp.

  (cond ((null lst) nil)
        (t (cons (always-biggerp-data (car lst))
                 (always-biggerp-data-lst (cdr lst))))))

(defun always-biggerp (abd1 abd2)

; We say term1 is always bigger than term2 if all instances of term1
; have a larger fn-count (actually lexicographic order of fn-count and
; pseudo-fn-count) than the corresponding instances of term2.  This is
; equivalent to saying that the fn-count of term1 is larger than that
; of term2 (by "fn-count" here we mean the lexicographic order of
; fn-count and pseudo-fn-count) and the variable bag for term2 is a
; subbag of that for term1.

; Because we will be doing this check repeatedly across a list of terms
; we have converted the terms into "abd" (always bigger data)
; triples of the form (term fn-cnt . vars).  Our two arguments are
; abd triples for term1 and term2.

  (and (or (> (cadr abd1) (cadr abd2))
           (and (eql (cadr abd1) (cadr abd2))
                (> (caddr abd1) (caddr abd2))))
       (subbagp-eq (cdddr abd2) (cdddr abd1))))

; That completes the notion of always-biggerp.  We now complete the
; notion of "maximal term".  It is probably best to read backwards from
; that defun.

(defun no-element-always-biggerp (abd-lst abd)

; abd-lst is a list of always-biggerp-data triples.  Abd is one such
; triple.  If there is an element of the lst that is always bigger than
; abd, we return nil; else t.

  (cond ((null abd-lst) t)
        ((always-biggerp (car abd-lst) abd) nil)
        (t (no-element-always-biggerp (cdr abd-lst) abd))))

(defun maximal-terms1 (abd-lst abd-lst0 needed-vars)

; See maximal-terms.

  (cond ((null abd-lst) nil)
        ((and (nvariablep (car (car abd-lst)))
              (not (fquotep (car (car abd-lst))))
              (not (flambda-applicationp (car (car abd-lst))))
              (not (eq (ffn-symb (car (car abd-lst))) 'if))
              (subsetp-eq needed-vars (cdddr (car abd-lst)))
              (no-element-always-biggerp abd-lst0 (car abd-lst)))
         (cons (car (car abd-lst))
               (maximal-terms1 (cdr abd-lst) abd-lst0 needed-vars)))
        (t (maximal-terms1 (cdr abd-lst) abd-lst0 needed-vars))))

(defun maximal-terms (lst hyp-vars concl-vars)

; Lst is a list of terms.  Hyp-vars and concl-vars are the variables
; occurring in the hypothesis and conclusion, respectively, of some
; lemma.  We wish to return the subset of "maximal terms" in lst.
; These terms will be used as triggers to fire the :LINEAR rule built
; from (implies hyps concl).  A term is maximal if it is not a
; variable, quote, lambda-application or IF, its variables plus those
; of the hyps include those of the conclusion (so there are no free
; vars in the conclusion after we match on the maximal term and
; relieve the hyps) and there is no other term in lst that is "always
; bigger."  Intuitively, the idea behind "always bigger" is that the
; fn-count of one term is larger than that of the other, under all
; instantiations.

; The subroutine maximal-terms1 does most of the work.  We convert the
; list of terms into an abd list, containing triples of the form (term
; fn-cnt . vars) for each term in lst.  Then we pass maximal-terms1
; two copies of this; the first it recurs down so as to visit one term
; at a time and the second it holds fixed to use to search for bigger
; terms.  Finally, a condition equivalent to the variable restriction
; above is that each maximal term contain at least those variables in
; the conclusion which aren't in the hyps, and so we compute that set
; here to avoid more consing.

  (let ((abd-lst (always-biggerp-data-lst lst)))
    (maximal-terms1 abd-lst abd-lst
                    (if (eq hyp-vars t)
                        nil
                      (set-difference-eq concl-vars hyp-vars)))))

; That finishes maximal-terms.  Onward.

; We now develop the functions to support the friendly user interface.

(defun collect-when-ffnnamesp (fns lst)

; Return the subset of lst consisting of those terms that mention any
; fn in fns.

  (cond ((null lst) nil)
        ((ffnnamesp fns (car lst))
         (cons (car lst) (collect-when-ffnnamesp fns (cdr lst))))
        (t (collect-when-ffnnamesp fns (cdr lst)))))

(defun make-free-max-terms-msg1 (max-terms vars hyps)

; This function is used by make-free-max-terms-msg1 and is building a
; list of pairs of the form (str . alist').  Each such pair is
; suitable for giving to the ~@ fmt directive, which will print the
; string str under the alist obtained by appending alist' to the
; current alist.  The idea here is simply to identify those max-terms
; that give rise to free-vars in the hyps and to comment upon them.

  (cond ((null max-terms) nil)
        ((subsetp-eq vars (all-vars (car max-terms)))
         (make-free-max-terms-msg1 (cdr max-terms) vars hyps))
        (t (cons
            (cons
             "When ~xN is triggered by ~xT the variable~#V~[~/s~] ~&V ~
              will be chosen by searching for ~#H~[an ~
              instance~/instances~] of ~&H among the hypotheses of the ~
              conjecture being rewritten.  "
             (list (cons #\T (car max-terms))
                   (cons #\V (set-difference-eq vars
                                                (all-vars (car max-terms))))
                   (cons #\H (hyps-that-instantiate-free-vars
                              (set-difference-eq vars
                                                 (all-vars (car max-terms)))
                              hyps))))
            (make-free-max-terms-msg1 (cdr max-terms) vars hyps)))))

(defun make-free-max-terms-msg (name max-terms vars hyps)

; We make a message suitable for giving to the ~* fmt directive that
; will print out a sequence of sentences of the form "When name is
; triggered by foo the variables u and v will be chosen by searching
; for the hypotheses h1 and h2.  When ..."  Vars is a list of the
; variables occurring in the hypotheses of the lemma named name.
; Hyps is the list of hyps.  We always end with two spaces.

  (list* ""
         "~@*"
         "~@*"
         "~@*"
         (make-free-max-terms-msg1 max-terms vars hyps)
         (list (cons #\N name))))

(defun external-linearize (term ens wrld state)
  (linearize term
             t ;positivep
             nil ;type-alist
             ens
             (ok-to-force-ens ens)
             wrld ;wrld
             nil ;ttree
             state))

(defun bad-synp-hyp-msg-for-linear (max-terms hyps wrld)
  (if (null max-terms)
      (mv nil nil)
    (let ((bad-synp-hyp-msg (bad-synp-hyp-msg hyps (all-vars (car max-terms))
                                               nil wrld)))
      (if bad-synp-hyp-msg
          (mv bad-synp-hyp-msg (car max-terms))
        (bad-synp-hyp-msg-for-linear (cdr max-terms) hyps wrld)))))

(defun show-double-rewrite-opportunities-linear (hyps max-terms final-term name
                                                      ctx wrld state)
  (cond ((endp max-terms)
         state)
        (t (pprogn (show-double-rewrite-opportunities
                    (double-rewrite-opportunities
                     1
                     hyps
                     (covered-geneqv-alist (car max-terms) nil nil wrld)
                     final-term
                     "the conclusion"
                     *geneqv-iff* ; final-geneqv
                     wrld)
                    :linear name
                    (msg " for trigger term ~x0"
                         (untranslate (car max-terms) nil wrld))
                    ctx state)
                   (show-double-rewrite-opportunities-linear
                    hyps (cdr max-terms) final-term name ctx wrld
                    state)))))

(defun chk-acceptable-linear-rule2
  (name match-free trigger-terms hyps concl ctx ens wrld state)

; This is the basic function for checking that (implies (AND . hyps)
; concl) generates a useful :LINEAR rule.  If it does not, we cause an
; error.  If it does, we may print some warnings regarding the rule
; generated.  The superior functions, chk-acceptable-linear-rule1
; and chk-acceptable-linear-rule just cycle down to this one after
; flattening the IMPLIES/AND structure of the user's input term.

; The trigger-terms above are those supplied by the user in the rule class.  If
; nil, we are to generate the trigger terms automatically, choosing all of the
; maximal terms.  If provided, we know that each element of trigger-terms is a
; term that is a legal (if possibly silly) trigger for each rule.

  (let* ((xconcl (expand-inequality-fncall concl))
         (lst (external-linearize xconcl ens wrld state)))
    (cond ((null lst)
           (er soft ctx
               "No :LINEAR rule can be generated from ~x0.  See :DOC linear."
               name))
          ((not (null (cdr lst)))
           (er soft ctx
               "No :LINEAR rule can be generated from ~x0 because the ~
                linearization of its conclusion, which in normal form is ~p1, ~
                produces a disjunction of polynomial inequalities.  See :DOC ~
                linear."
               name
               (untranslate xconcl t wrld)))
          (t (let* ((all-vars-hyps (all-vars-in-hyps hyps))
                    (potential-free-vars
                     (free-vars-in-hyps-considering-bind-free hyps nil wrld))
                    (all-vars-in-poly-lst
                     (all-vars-in-poly-lst (car lst)))
                    (max-terms
                     (or trigger-terms
                         (maximal-terms all-vars-in-poly-lst
                                        all-vars-hyps
                                        (all-vars concl))))
                    (non-rec-fns (non-recursive-fnnames-lst
                                  max-terms ens wrld))
                    (bad-max-terms (collect-when-ffnnamesp
                                    non-rec-fns
                                    max-terms))
                    (free-max-terms-msg
                     (make-free-max-terms-msg name
                                              max-terms
                                              potential-free-vars
                                              hyps)))
               (cond
                ((null max-terms)
                 (cond
                  ((null all-vars-in-poly-lst)
                   (er soft ctx
                       "No :LINEAR rule can be generated from ~x0 because ~
                        there are no ``maximal terms'' in the inequality ~
                        produced from its conclusion.  In fact, the inequality ~
                        has simplified to one that has no variables."
                       name))
                  (t
                   (er soft ctx
                       "No :LINEAR rule can be generated from ~x0 because ~
                        there are no ``maximal terms'' in the inequality ~
                        produced from its conclusion.  The inequality produced ~
                        from its conclusion involves a linear polynomial in ~
                        the unknown~#1~[~/s~] ~&1.  No unknown above has the ~
                        three properties of a maximal term (see :DOC linear).  ~
                        What can you do?  The most direct solution is to make ~
                        this a :REWRITE rule rather than a :LINEAR rule.  Of ~
                        course, you then have to make sure your intended ~
                        application can suffer it being a :REWRITE rule!  A ~
                        more challenging (and sometimes more rewarding) ~
                        alternative is to package up some of your functions ~
                        into a new non-recursive function (either in the ~
                        unknowns or the hypotheses) so as to create a maximal ~
                        term.  Of course, if you do that, you have to arrange ~
                        to use that non-recursive function in the intended ~
                        applications of this rule."
                       name all-vars-in-poly-lst))))
                (t
                 (mv-let (bad-synp-hyp-msg bad-max-term)
                   (bad-synp-hyp-msg-for-linear max-terms hyps wrld)
                   (cond
                    (bad-synp-hyp-msg
                     (er soft ctx
                         "While checking the hypotheses of ~x0 and using ~
                          the trigger term ~x1, the following error message ~
                          was generated: ~% ~%~
                          ~@2"
                         name
                         bad-max-term
                         bad-synp-hyp-msg))
                    (t
                     (pprogn
                      (if (warning-disabled-p "Double-rewrite")
                          state
                        (show-double-rewrite-opportunities-linear
                         hyps max-terms concl name ctx wrld state))
                      (cond
                       ((equal max-terms bad-max-terms)
                        (warning$ ctx "Non-rec"
                                  `("A :LINEAR rule generated from ~x0 will ~
                                     be triggered only by terms containing ~
                                     the non-recursive function symbol~#1~[ ~
                                     ~&1.  Unless this function is~/s ~&1.  ~
                                     Unless these functions are~] disabled, ~
                                     such triggering terms are unlikely to ~
                                     arise and so ~x0 is unlikely to ever be ~
                                     used."
                                    (:name ,name)
                                    (:non-recursive-fns
                                     ,(hide-lambdas non-rec-fns))
                                    (:rule-class :linear))
                                  name (hide-lambdas non-rec-fns)))
                       (bad-max-terms
                        (warning$ ctx "Non-rec"
                                  "A :LINEAR rule generated from ~x0 will be ~
                                   triggered by the terms ~&1. ~N2 of these ~
                                   terms, namely ~&3, contain~#3~[s~/~] the ~
                                   non-recursive function symbol~#4~[ ~&4.  ~
                                   Unless this function is~/s ~&4.  Unless ~
                                   these functions are~] disabled, ~x0 is ~
                                   unlikely to be triggered via ~#3~[this ~
                                   term~/these terms~]."
                                  name
                                  max-terms
                                  (length bad-max-terms)
                                  bad-max-terms
                                  (hide-lambdas non-rec-fns)))
                       (t state))
                      (cond
                       ((and (nth 4 free-max-terms-msg)
                             (null match-free))
                        (pprogn
                         (warning$ ctx "Free"
                                   "A :LINEAR rule generated from ~x0 will be ~
                                    triggered by the term~#1~[~/s~] ~&1.  ~*2This is ~
                                    generally a severe restriction on the ~
                                    applicability of the :LINEAR rule~@3."
                                   name
                                   max-terms
                                   free-max-terms-msg
                                   (let ((len-max-terms (length max-terms))
                                         (len-bad-max-terms
                                          (length (nth 4 free-max-terms-msg))))
                                     (cond ((eql len-bad-max-terms
                                                 len-max-terms)
                                            "")
                                           ((eql len-bad-max-terms 1)
                                            " for this trigger")
                                           (t (msg " for these ~n0 triggers"
                                                   len-bad-max-terms)))))
                         (free-variable-error? :linear name ctx wrld state)))
                       (t (value nil))))))))))))))

(defun chk-acceptable-linear-rule1 (name match-free trigger-terms lst ctx ens
                                         wrld state)

; Each element of lst is a pair, (hyps . concl) and we check that each
; such pair, when interpreted as the term (implies (and . hyps)
; concl), generates a legal :LINEAR rule.

  (cond
   ((null lst) (value nil))
   (t (er-progn
       (chk-acceptable-linear-rule2 name match-free trigger-terms (caar lst)
                                    (cdar lst)
                                    ctx ens wrld state)
       (chk-acceptable-linear-rule1 name match-free trigger-terms (cdr lst)
                                    ctx ens wrld state)))))

(defun chk-acceptable-linear-rule (name match-free trigger-terms term ctx ens
                                        wrld state)

; We strip the conjuncts out of term and flatten those in the
; hypotheses of implications to obtain a list of implications, each of
; the form (IMPLIES (AND . hyps) concl), and each represented simply
; by a pair (hyps . concl).  For each element of that list we then
; determine whether it generates a legal :LINEAR rule.  See
; chk-acceptable-linear-rule2 for the guts of this test.  We either
; cause an error or return successfully.  We may print warning
; messages without causing an error.

  (chk-acceptable-linear-rule1 name match-free trigger-terms
                               (unprettyify (remove-guard-holders term))
                               ctx ens wrld state))

; And now, to adding :LINEAR rules...

(defun add-linear-rule3 (rune nume hyps concl max-terms
                              backchain-limit-lst match-free put-match-free-done
                              wrld)
  (cond
   ((null max-terms) wrld)
   (t (let* ((match-free-value
              (match-free-value match-free hyps (car max-terms) wrld))
             (linear-rule
              (make linear-lemma
                    :rune rune
                    :nume nume
                    :hyps hyps
                    :concl concl
                    :max-term (car max-terms)
                    :backchain-limit-lst
                    (rule-backchain-limit-lst backchain-limit-lst hyps wrld
                                              :rewrite)
                    :match-free match-free-value))
             (wrld1 (putprop (ffn-symb (access linear-lemma linear-rule
                                               :max-term))
                             'linear-lemmas
                             (cons linear-rule
                                   (getpropc (ffn-symb
                                              (access linear-lemma linear-rule
                                                      :max-term))
                                             'linear-lemmas nil wrld))
                             wrld)))
        (add-linear-rule3 rune nume hyps concl (cdr max-terms)
                          backchain-limit-lst
                          match-free
                          (or put-match-free-done match-free-value)
                          (if put-match-free-done

; In this case we have already added this rune to the appropriate world global,
; so we do not want to do so again.

                              wrld1
                            (put-match-free-value match-free-value rune
                                                  wrld1)))))))

(defun add-linear-rule2 (rune nume trigger-terms hyps concl
                              backchain-limit-lst match-free ens wrld state)
  (let* ((concl (remove-guard-holders concl))
         (xconcl (expand-inequality-fncall concl))
         (lst (external-linearize xconcl ens wrld state))
         (hyps (preprocess-hyps hyps))
         (all-vars-hyps (all-vars-in-hyps hyps))
         (max-terms
          (or trigger-terms
              (maximal-terms (all-vars-in-poly-lst (car lst))
                             all-vars-hyps
                             (all-vars concl)))))
    (add-linear-rule3 rune nume hyps xconcl max-terms backchain-limit-lst
                      match-free nil wrld)))

(defun add-linear-rule1 (rune nume trigger-terms lst
                              backchain-limit-lst match-free ens wrld state)
  (cond ((null lst) wrld)
        (t (add-linear-rule1 rune nume trigger-terms (cdr lst)
                             backchain-limit-lst
                             match-free
                             ens
                             (add-linear-rule2 rune nume
                                               trigger-terms
                                               (caar lst)
                                               (cdar lst)
                                               backchain-limit-lst
                                               match-free
                                               ens wrld state)
                             state))))

(defun add-linear-rule (rune nume trigger-terms term
                             backchain-limit-lst match-free ens wrld state)

; Sol Swords sent the following example on 10/12/09, which failed because of
; the modification after Version_3.6.1 to mv-let (to introduce mv-list in the
; expansion), until the call below of remove-guard-holders was added.

; (defun break-cons (x)
;    (mv (car x) (cdr x)))

; (defthm break-cons-size-decr-0
;    (mv-let (car cdr)
;      (break-cons x)
;      (declare (ignore cdr))
;      (implies (consp x)
;               (< (acl2-count car) (acl2-count x))))
;    :rule-classes :linear)

; (defthm break-cons-size-decr-1
;    (mv-let (car cdr)
;      (break-cons x)
;      (declare (ignore car))
;      (implies (consp x)
;               (< (acl2-count cdr) (acl2-count x))))
;    :rule-classes :linear)

; (in-theory (disable break-cons acl2-count mv-nth))

; (defun recur-over-break-cons (x)
;    (if (atom x)
;        (list x)
;      (mv-let (car cdr) (break-cons x)
;        (append (recur-over-break-cons car)
;                (recur-over-break-cons cdr)))))

  (add-linear-rule1 rune nume trigger-terms
                    (unprettyify (remove-guard-holders term))
                    backchain-limit-lst match-free ens wrld state))

;---------------------------------------------------------------------------
; Section:  :WELL-FOUNDED-RELATION Rules

(defun destructure-well-founded-relation-rule (term)

; We check that term is the translation of one of the two forms
; described in :DOC well-founded-relation.  We return two results, (mv
; mp rel).  If mp is nil in the result, then term is not of the
; required form.  If mp is t, then term is of the second general form
; (i.e., we act as though t were the function symbol for (lambda (x)
; t)).  With that caveat, if the mp is non-nil then term establishes
; that rel is a well-founded relation on mp-measures.

  (case-match
   term
   (('IF ('IMPLIES (mp x) ('O-P (fn x)))
         ('IMPLIES ('IF (mp x)
                        ('IF (mp y) (rel x y) ''NIL)
                        ''NIL)
                   ('O< (fn x) (fn y)))
         ''NIL)
    (cond ((and (symbolp mp)
                (variablep x)
                (symbolp fn)
                (variablep y)
                (not (eq x y))
                (symbolp rel))
           (mv mp rel))
          (t (mv nil nil))))
   (('IF ('O-P (fn x))
         ('IMPLIES (rel x y)
                   ('O< (fn x) (fn y)))
         ''NIL)
    (cond ((and (variablep x)
                (symbolp fn)
                (variablep y)
                (not (eq x y))
                (symbolp rel))
           (mv t rel))
          (t (mv nil nil))))
   (& (mv nil nil))))

(defun chk-acceptable-well-founded-relation-rule (name term ctx wrld state)
  (mv-let
   (mp rel)
   (destructure-well-founded-relation-rule term)
   (cond
    ((null mp)
     (er soft ctx
         "No :WELL-FOUNDED-RELATION rule can be generated for ~x0 ~
          because it does not have either of the two general forms ~
          described in :DOC well-founded-relation."
         name))
    ((and (assoc-eq rel (global-val 'well-founded-relation-alist wrld))
          (not (eq (cadr (assoc-eq rel
                                   (global-val 'well-founded-relation-alist
                                               wrld)))
                   mp)))
     (er soft ctx
         "~x0 was shown in ~x1 to be well-founded~@2  We do not permit more ~
          than one domain to be associated with a well-founded relation.  To ~
          proceed in this direction, you should define some new function ~
          symbol to be ~x0 and state your well-foundedness in terms of the ~
          new function."
         rel
         (cadr (cddr (assoc-eq rel
                               (global-val 'well-founded-relation-alist
                                           wrld))))
         (if (eq (cadr (assoc-eq rel
                                 (global-val 'well-founded-relation-alist
                                             wrld)))
                 t)
             "."
             (msg " on objects satisfying ~x0."
                  (cadr (assoc-eq rel
                                  (global-val 'well-founded-relation-alist
                                              wrld)))))))
    (t (value nil)))))

(defun add-well-founded-relation-rule (rune nume term wrld)
  (declare (ignore nume))
  (mv-let (mp rel)
          (destructure-well-founded-relation-rule term)
          (global-set 'well-founded-relation-alist
                      (cons (cons rel (cons mp rune))
                            (global-val 'well-founded-relation-alist wrld))
                      wrld)))

;---------------------------------------------------------------------------
; Section:  :BUILT-IN-CLAUSE Rules

(defun chk-acceptable-built-in-clause-rule2 (name hyps concl ctx wrld state)

; This is the basic function for checking that (IMPLIES (AND . hyps) concl)
; generates a useful built-in clause rule.  If it does not, we cause an error.
; The superior functions, chk-acceptable-built-in-clause-rule1 and
; chk-acceptable-built-in-clause-rule just cycle down to this one after
; flattening the IMPLIES/AND structure of the user's input term.

  (let* ((term (if (null hyps)
                   concl
                   (mcons-term* 'if (conjoin hyps) concl *t*)))
         (clauses (clausify term nil t (sr-limit wrld))))
    (cond ((null clauses)
           (er soft ctx
               "~x0 is an illegal :built-in-clause rule because ~p1 clausifies ~
                to nil, indicating that it is a propositional tautology.  See ~
                :DOC built-in-clause."
               name
               (untranslate
                (cond ((null hyps) concl)
                      (t (mcons-term* 'implies (conjoin hyps) concl)))
                t
                wrld)))
          (t (value nil)))))

(defun chk-acceptable-built-in-clause-rule1 (name lst ctx wrld state)

; Each element of lst is a pair, (hyps . concl) and we check that each such
; pair, when interpreted as the term (implies (and . hyps) concl), generates
; one or more clauses to be built-in.

  (cond
   ((null lst) (value nil))
   (t
    (er-progn
     (chk-acceptable-built-in-clause-rule2 name (caar lst) (cdar lst) ctx
                                           wrld state)
     (chk-acceptable-built-in-clause-rule1 name (cdr lst) ctx wrld state)))))

(defun chk-acceptable-built-in-clause-rule (name term ctx wrld state)

; We strip the conjuncts out of term and flatten those in the hypotheses of
; implications to obtain a list of implications, each of the form (IMPLIES (AND
; . hyps) concl), and each represented simply by a pair (hyps . concl).  For
; each element of that list we then determine whether it generates one or more
; clauses.  See chk-acceptable-built-in-clause-rule2 for the guts of this test.
; We either cause an error or return successfully.

  (chk-acceptable-built-in-clause-rule1 name (unprettyify term) ctx
                                        wrld state))

; So now we work on actually generating and adding :BUILT-IN-CLAUSE rules.

(mutual-recursion

(defun fn-and-maximal-level-no (term wrld fn max)

; We explore term and return (mv fn max), where fn is an "explicit" function
; symbol of term, max is its get-level-no, and that level number is maximal in
; term.  By an "explicit" function symbol of term we mean one not on
; *one-way-unify1-implicit-fns*.  We return the initial fn and max unless some
; explicit symbol of term actually betters it.  If you call this with fn=nil
; and max=-1 you will get back a legitimate function symbol if term contains at
; least one explicit symbol.  Furthermore, it is always the maximal symbol
; occurring first in print-order.

  (cond
   ((variablep term) (mv fn max))
   ((fquotep term) (mv fn max))
   ((flambdap (ffn-symb term))
    (mv-let (fn max)
            (fn-and-maximal-level-no (lambda-body (ffn-symb term)) wrld fn max)
            (fn-and-maximal-level-no-lst (fargs term) wrld fn max)))
   ((member-eq (ffn-symb term) *one-way-unify1-implicit-fns*)
    (fn-and-maximal-level-no-lst (fargs term) wrld fn max))
   (t (let ((n (get-level-no (ffn-symb term) wrld)))
        (cond
         ((> n max)
          (fn-and-maximal-level-no-lst (fargs term) wrld (ffn-symb term) n))
         (t (fn-and-maximal-level-no-lst (fargs term) wrld fn max)))))))

(defun fn-and-maximal-level-no-lst (lst wrld fn max)
  (cond
   ((null lst) (mv fn max))
   (t (mv-let (fn max)
              (fn-and-maximal-level-no (car lst) wrld fn max)
              (fn-and-maximal-level-no-lst (cdr lst) wrld fn max)))))

)

(defun built-in-clause-discriminator-fn (cl wrld)
  (mv-let (fn max)
          (fn-and-maximal-level-no-lst cl wrld nil -1)
          (declare (ignore max))
          fn))

(defun all-fnnames-subsumer (cl wrld)

; Let cl be a clause which is about to be built in.  Cl subsumes another
; clause, cla, if under some instantiation of cl, cl', the literals of cl' are
; a subset of those of cla.  Thus, a necessary condition for cl to subsume cla
; is that the function symbols of cl be a subset of those of cla.  However,
; one-way-unify1 knows that (binary-+ '1 x) can be instantiated to be '7, by
; letting x be '6.  Thus, if by "the function symbols" of a clause we mean
; those that explicitly occur, i.e., all-fnnames-lst, then, contrary to what
; was just said, it is possible for cl to subsume cla without the function
; symbols of cl being a subset of those of cla:  let cl contain (binary-+ '1 x)
; where cla contains '7 and no mention of binary-+.  So we here compute the
; list of function symbols of cl which must necessarily occur in cla.  It is
; always sound to throw out symbols from the list returned here.  In addition,
; we make sure that the "discriminator function symbol" of cl occur first in
; the list.  That symbol will be used to classify this subsumer into a bucket
; in the built-in-clause list.

  (let ((syms (set-difference-eq (all-fnnames-lst cl)
                                 *one-way-unify1-implicit-fns*))
        (discrim-fn (built-in-clause-discriminator-fn cl wrld)))
    (cond ((null discrim-fn) syms)
          (t (cons discrim-fn (remove1-eq discrim-fn syms))))))

(defun make-built-in-clause-rules1 (rune nume clauses wrld)

; We build a built-in-clause record for every element of clauses.  We put the
; last literal of each clause first on the heuristic grounds that the last
; literal of a user-supplied clause is generally the most interesting and thus
; the one the subsumption check should look at first.

; Note:  The :all-fnnames computed here has the property that the discriminator
; function symbol is the car and the remaining functions are in the cdr.  When
; a built-in-clause record is stored into the built-in-clauses alist, the
; record is changed; the discriminator is stripped out, leaving the remaining
; fns as the :all-fnnames.

  (cond ((null clauses) nil)
        (t (let ((cl (cons (car (last (car clauses)))
                           (butlast (car clauses) 1))))
             (cons (make built-in-clause
                         :rune rune
                         :nume nume
                         :clause cl
                         :all-fnnames (all-fnnames-subsumer cl wrld))
                   (make-built-in-clause-rules1 rune nume
                                                (cdr clauses) wrld))))))

(defun chk-initial-built-in-clauses (lst wrld good-lst some-badp)

; This function sweeps down the list of initial built-in clause records and
; checks that the :all-fnnames of each is set properly given the current wrld.
; The standard top-level call of this function is (chk-initial-built-in-clauses
; *initial-built-in-clauses* wrld nil nil) where wrld is the world in which you
; wish to check the appropriateness of the initial setting.  This function
; returns either nil, meaning that everything was ok, or a new copy of lst
; which is correct for the current wrld.

  (cond
   ((null lst)
    (cond
     (some-badp (reverse good-lst))
     (t nil)))
   (t (let* ((clause (access built-in-clause (car lst) :clause))
             (fnnames1 (access built-in-clause (car lst) :all-fnnames))
             (fnnames2 (all-fnnames-subsumer clause wrld)))
        (chk-initial-built-in-clauses
         (cdr lst) wrld
         (cons `(make built-in-clause
                      :nume nil
                      :rune *fake-rune-for-anonymous-enabled-rule*
                      :clause ',clause
                      :all-fnnames ',fnnames2)
               good-lst)
         (or some-badp
             (not (equal fnnames1 fnnames2))))))))

(defun make-built-in-clause-rules (rune nume lst wrld)

; Each element of lst is a pair, (hyps . concl).  We generate and collect the
; clauses for each such pair.

  (cond ((null lst) nil)
        (t (let* ((hyps (caar lst))
                  (concl (cdar lst))
                  (clauses (clausify
                            (if (null hyps)
                                concl
                                (mcons-term* 'if (conjoin hyps) concl *t*))
                            nil t (sr-limit wrld))))
             (append (make-built-in-clause-rules1 rune nume clauses wrld)
                     (make-built-in-clause-rules rune nume (cdr lst) wrld))))))

(defun classify-and-store-built-in-clause-rules (lst pots wrld)

; Lst is a list of built-in-clause records.  Each record contains an
; :all-fnnames field, which contains a (possibly empty) list of function
; symbols.  The first symbol in the :all-fnnames list is the "discriminator
; function symbol" of the clause, the heaviest function symbol in the clause.
; Pots is an alist in which each entry pairs a symbol, fn, to a list of
; built-in-clause records; the list has the property that every clause in it
; has fn as its discriminator function symbol.  We add each record in lst to
; the appropriate pot in pots.

; If a record has :all-fnnames nil then it is most likely a primitive built-in
; clause, i.e., a member of *initial-built-in-clauses*.  The nil is a signal to
; this function to compute the appropriate :all-fnnames using the function
; all-fnnames-subsumer which is what we use when we build a built-in clause
; record for the user with make-built-in-clause-rules1.  This is just a rugged
; way to let the list of implicit function symbols known to one-way-unify1 vary
; without invalidating our *initial-built-in-clauses* setting.

; But it is possible, perhaps, for a user-supplied built-in clause to contain
; no function symbols of the kind returned by all-fnnames-subsumer.  For
; example, the user might prove 7 as a built-in clause.  Perhaps a
; nonpathological example arises, but I haven't bothered to think of one.
; Instead, this is handled soundly, as follows.  If the :all-fnnames is nil we
; act like it hasn't been computed yet (as above) and compute it.  Then we
; consider the discriminator function symbol to the car of the resulting list,
; which might be nil.  There is a special pot for the nil "discriminator
; function symbol".

  (cond ((null lst) pots)
        (t (let* ((bic (car lst))
                  (fns (or (access built-in-clause bic :all-fnnames)
                           (all-fnnames-subsumer
                            (access built-in-clause bic :clause)
                            wrld)))
                  (fn (car fns))
                  (pot (cdr (assoc-eq fn pots))))
             (classify-and-store-built-in-clause-rules
              (cdr lst)
              (put-assoc-eq fn
                            (cons (change built-in-clause bic
                                          :all-fnnames (cdr fns))
                                  pot)
                            pots)
              wrld)))))

(defun add-built-in-clause-rule (rune nume term wrld)

; We strip the conjuncts out of term and flatten those in the hypotheses of
; implications to obtain a list of implications and then clausify each and
; store each clause as a :BUILT-IN-CLAUSE rule.  We maintain the invariant
; that 'half-length-built-in-clauses is equal to the (floor n 2), where n
; is the length of 'built-in-clauses.

  (let ((rules (make-built-in-clause-rules rune nume (unprettyify term)
                                           wrld)))

; Every rule in rules is stored (somewhere) into built-in-clauses, so the
; number of clauses goes up by (length rules).  Once we had a bug here:  we
; incremented 'half-length-built-in-clauses by half the length of rules.  That
; was pointless since we're dealing with integers here:  rules is most often of
; length 1 and so we would increment by 0 and never accumulate all those 1/2's!

    (global-set 'half-length-built-in-clauses
                (floor (+ (length rules)
                          (length (global-val 'built-in-clauses wrld)))
                       2)
                (global-set 'built-in-clauses
                            (classify-and-store-built-in-clause-rules
                             rules
                             (global-val 'built-in-clauses wrld)
                             wrld)
                            wrld))))


;---------------------------------------------------------------------------
; Section:  :COMPOUND-RECOGNIZER Rules

(defun destructure-compound-recognizer (term)

; If term is one of the forms of a compound recognizer lemma we return
; its parity (TRUE, FALSE, WEAK-BOTH or STRONG-BOTH), the recognizer
; fn, its variablep argument in this term, and the type description
; term.  In the case of WEAK-BOTH the type description term is a pair
; -- not a term -- consisting of the true term and the false term.
; Otherwise we return four nils.

  (case-match term
              (('implies ('not (fn x)) concl)
               (cond ((and (variablep x)
                           (symbolp fn))
                      (mv 'false fn x concl))
                     (t (mv nil nil nil nil))))
              (('implies (fn x) concl)
               (cond ((and (variablep x)
                           (symbolp fn))
                      (mv 'true fn x concl))
                     (t (mv nil nil nil nil))))
              (('if ('implies (fn x) concl1)
                    ('implies ('not (fn x)) concl2)
                    ''nil)
               (cond ((and (variablep x)
                           (symbolp fn))
                      (mv 'weak-both fn x (cons concl1 concl2)))
                     (t (mv nil nil nil nil))))
              (('if (fn x) concl1 concl2)
               (cond ((and (variablep x)
                           (symbolp fn))
                      (mv 'weak-both fn x (cons concl1 concl2)))
                     (t (mv nil nil nil nil))))
              (('if ('implies ('not (fn x)) concl2)
                    ('implies (fn x) concl1)
                    ''nil)
               (cond ((and (variablep x)
                           (symbolp fn))
                      (mv 'weak-both fn x (cons concl1 concl2)))
                     (t (mv nil nil nil nil))))
              (('if ('implies ('not (fn x)) concl2)
                    ('implies (fn x) concl1)
                    ''nil)
               (cond ((and (variablep x)
                           (symbolp fn))
                      (mv 'weak-both fn x (cons concl1 concl2)))
                     (t (mv nil nil nil nil))))
              (('iff (fn x) concl)
               (cond ((and (variablep x)
                           (symbolp fn))
                      (mv 'strong-both fn x concl))
                     (t (mv nil nil nil nil))))
              (('equal (fn x) concl)
               (cond ((and (variablep x)
                           (symbolp fn))
                      (mv 'strong-both fn x concl))
                     (t (mv nil nil nil nil))))
              (& (mv nil nil nil nil))))

(defun make-recognizer-tuple (rune nume parity fn var term ens wrld)

; If parity is 'WEAK-BOTH then term is really (tterm . fterm).  We
; create a recognizer-tuple from our arguments.  Nume is stored in
; the :nume and may be nil.  We return two results, the
; recognizer-tuple and the ttree justifying the type-set(s) in it.

  (case parity
        (true
         (mv-let (ts ttree)
                 (type-set-implied-by-term var nil term ens wrld nil)
                 (mv (make recognizer-tuple
                           :rune rune
                           :nume nume
                           :fn fn
                           :true-ts ts
                           :false-ts *ts-unknown*
                           :strongp nil)
                     ttree)))
        (false
         (mv-let (ts ttree)
                 (type-set-implied-by-term var nil term ens wrld nil)
                 (mv (make recognizer-tuple
                           :rune rune
                           :nume nume
                           :fn fn
                           :true-ts *ts-unknown*
                           :false-ts ts
                           :strongp nil)
                     ttree)))
        (weak-both
         (mv-let (tts ttree)
                 (type-set-implied-by-term var nil (car term) ens wrld nil)
                 (mv-let (fts ttree)
                         (type-set-implied-by-term var nil (cdr term) ens wrld ttree)
                         (mv (make recognizer-tuple
                                   :rune rune
                                   :nume nume
                                   :fn fn
                                   :true-ts tts
                                   :false-ts fts
                                   :strongp (ts= tts (ts-complement fts)))
                             ttree))))
        (otherwise

; Warning: We proved that (fn x) = term and one is tempted to build a
; :strongp = t rule.  But since we do not guarantee that term is
; equivalent to the type-set we deduce from it, we cannot just get the
; type-set for term and complement it for the false branch.  And we
; cannot guarantee to build a strong rule.  Instead, we act more or
; less like we do for weak-both: we compute independent type sets from
; term and (not term) and just in the case that they are complementary
; do we build a strong rule.

         (mv-let (tts ttree)
                 (type-set-implied-by-term var nil term ens wrld nil)
                 (mv-let (fts ttree)
                         (type-set-implied-by-term var t term ens wrld ttree)
                         (mv (make recognizer-tuple
                                   :rune rune
                                   :nume nume
                                   :fn fn
                                   :true-ts tts
                                   :false-ts fts
                                   :strongp (ts= tts (ts-complement fts)))
                             ttree))))))

(defun comment-on-new-recog-tuple1 (new-recog-tuple recognizer-alist
                                                    ctx state)

; This function compares a newly proposed recognizer tuple to each of
; the tuples on the recognizer-alist, expecting that it will be more
; restrictive than each of the existing tuples with the same :fn.  Let
; tts', fts', and strongp' be the obvious fields from the new tuple,
; and let tts, fts, and strongp be from an existing tuple.  Let ts' <=
; ts here mean (ts-subsetp ts' ts) and let strongp' <= strongp be true
; if either strongp is nil or strongp' is t.  Then we say the new
; tuple is ``more restrictive'' than the existing tuple iff

; (a) tts' <= tts & fts' <= fts & strongp' <= strongp, and

; (b) at least one of the three primed fields is different from its
; unprimed counterpart.

; For each old tuple that is at least as restrictive as the new tuple
; we print a warning.  We never cause an error.  However, we have
; coded the function and its caller so that if we someday choose to
; cause an error it will be properly handled.  (Without more experience
; with compound recognizers we do not know what sort of checks would be
; most helpful.)

  (cond
   ((null recognizer-alist) (value nil))
   ((eq (access recognizer-tuple new-recog-tuple :fn)
        (access recognizer-tuple (car recognizer-alist) :fn))
    (cond
     ((and
       (ts-subsetp (access recognizer-tuple new-recog-tuple :true-ts)
                   (access recognizer-tuple (car recognizer-alist) :true-ts))
       (ts-subsetp (access recognizer-tuple new-recog-tuple :false-ts)
                   (access recognizer-tuple (car recognizer-alist) :false-ts))
       (or (access recognizer-tuple new-recog-tuple :strongp)
           (null (access recognizer-tuple (car recognizer-alist) :strongp)))
       (or
        (not (ts= (access recognizer-tuple new-recog-tuple :false-ts)
                  (access recognizer-tuple (car recognizer-alist) :false-ts)))
        (not (ts= (access recognizer-tuple new-recog-tuple :true-ts)
                  (access recognizer-tuple (car recognizer-alist) :true-ts)))
        (not (eq (access recognizer-tuple new-recog-tuple :strongp)
                 (access recognizer-tuple (car recognizer-alist) :strongp)))))
      (comment-on-new-recog-tuple1 new-recog-tuple (cdr recognizer-alist)
                                   ctx state))
     (t (pprogn
         (warning$ ctx ("Compound-rec")
                  "The newly proposed compound recognizer rule ~x0 is not as ~
                   restrictive as the old rule ~x1.  See :DOC ~
                   compound-recognizer."
                  (base-symbol (access recognizer-tuple new-recog-tuple :rune))
                  (base-symbol (access recognizer-tuple (car recognizer-alist)
                                       :rune)))
         (comment-on-new-recog-tuple1 new-recog-tuple (cdr recognizer-alist)
                                      ctx state)))))
   (t (comment-on-new-recog-tuple1 new-recog-tuple (cdr recognizer-alist)
                                   ctx state))))

(defun comment-on-new-recog-tuple (new-recog-tuple ctx ens wrld state)

; This function prints out a warning advising the user of the type
; information to be extracted from a newly proposed compound
; recognizer.  We also print out a description of the lemmas used to
; derive this information.  We also compare the new recognizer tuple
; to any old tuples we have for the same function and print a suitable
; message should it be less ``restrictive.''

; We never cause an error, but this function and its caller are coded
; so that if we someday choose to cause an error it will be properly
; handled.  (Without more experience with compound recognizers we do
; not know what sort of checks would be most helpful.)

  (let ((pred (fcons-term* (access recognizer-tuple new-recog-tuple :fn) 'x)))
    (mv-let
     (tts-term ttree)
     (convert-type-set-to-term
      'x (access recognizer-tuple new-recog-tuple :true-ts) ens wrld nil)
     (mv-let
      (fts-term ttree)
      (convert-type-set-to-term
       'x (access recognizer-tuple new-recog-tuple :false-ts) ens wrld ttree)
      (let ((tts-term (untranslate tts-term t wrld))
            (fts-term (untranslate fts-term t wrld)))
        (er-progn
         (if (and (ts= (access recognizer-tuple new-recog-tuple :true-ts)
                       *ts-unknown*)
                  (ts= (access recognizer-tuple new-recog-tuple :false-ts)
                       *ts-unknown*))
             (er soft ctx
                 "When ~x0 is assumed true, ~x1 will allow us to deduce ~
                  nothing about the type of X.  Also, when ~x0 is assumed ~
                  false, ~x1 will allow us to deduce nothing about the type of ~
                  X.  Thus this is not a legal compound recognizer rule.  See ~
                  doc :compound-recognizer if these observations surprise you."
                 pred
                 (base-symbol (access recognizer-tuple new-recog-tuple :rune)))
             (value nil))
         (pprogn
          (observation
           ctx
           "When ~x0 is assumed true, ~x1 will allow us to deduce ~#2~[nothing ~
            about the type of X.~/~p3.~]  When ~x0 is assumed false, ~x1 will ~
            allow us to deduce ~#4~[nothing about the type of X.~/~p5.~]  Note ~
            that ~x0 is~#6~[ not~/~] a strong compound recognizer, according ~
            to this rule.  See doc :compound-recognizer if these observations ~
            surprise you.  These particular expressions of the type ~
            information are based on ~*7."
           pred
           (base-symbol (access recognizer-tuple new-recog-tuple :rune))
           (if (eq tts-term t) 0 1)
           tts-term
           (if (eq fts-term t) 0 1)
           fts-term
           (if (access recognizer-tuple new-recog-tuple :strongp) 1 0)
           (tilde-*-simp-phrase ttree))
          (if (warning-disabled-p "Compound-rec")
              (value nil)
            (comment-on-new-recog-tuple1 new-recog-tuple
                                         (global-val 'recognizer-alist wrld)
                                         ctx state)))))))))

(defun chk-acceptable-compound-recognizer-rule (name term ctx ens wrld state)

; If we don't cause an error, we return an 'assumption-free ttree that
; justifies the type information extracted from term.

  (mv-let
   (parity fn var term1)
   (destructure-compound-recognizer term)
   (cond
    ((null parity)
     (er soft ctx
         "No :COMPOUND-RECOGNIZER rule can be generated from ~x0 ~
          because it does not have the form described in :DOC ~
          compound-recognizer."
         name))
    (t (mv-let
        (ts ttree1)
        (type-set (mcons-term* fn var) nil nil nil ens wrld nil nil nil)
        (cond ((not (ts-subsetp ts *ts-boolean*))

; To loosen the Boolean restriction, we must change assume-true-false
; so that when a compound recognizer is assumed true its type-set is
; not just set to *ts-t*.  A comment at the defrec for
; recognizer-tuple also says that fn must be Boolean.  It would be a
; good idea, before changing this, to inspect all code involved with
; recognizer-tuples.

               (er soft ctx
                   "A function can be treated as a :COMPOUND-RECOGNIZER only ~
                    if it is Boolean valued. ~x0 is not known to be Boolean.  ~
                    See :DOC compound-recognizer."
                   fn))
              (t

; Historical Note: We used to combine the new type information with
; the old.  We do not do that anymore: we store exactly what the new
; rule tells us.  The reason is so that we can maintain a 1:1
; relationship between what we store and rule names, so that it is
; meaningful to disable a compound recognizer rule.

               (mv-let (recog-tuple ttree2)

; Note: Below we counterfeit a rune based on name, simply so that the
; recog-tuple we get back really looks like one.  The actual rule
; created for term1 will have a different name (x will be specified).
; This tuple is only used for error reporting and we dig name out of
; its rune then.

                       (make-recognizer-tuple `(:COMPOUND-RECOGNIZER ,name . x)
                                              nil parity fn var term1 ens wrld)
                       (er-progn
                        (comment-on-new-recog-tuple recog-tuple ctx ens wrld
                                                    state)
                        (value (cons-tag-trees ttree1 ttree2)))))))))))

; And to add :COMPOUND-RECOGNIZER rules...

(defun add-compound-recognizer-rule (rune nume term ens wrld)

; We construct the recongizer-tuple corresponding to term and just add
; it onto the front of the current recognizer-alist.  We used to merge
; it into the existing tuple for the same :fn, if one existed, but
; that makes disabling these rules complicated.  When we retrieve
; tuples from the alist we look for the first enabled tuple about the
; :fn in question.  So it is necessary to leave old tuples for :fn in
; place.

  (mv-let (parity fn var term1)
          (destructure-compound-recognizer term)
          (mv-let (recog-tuple ttree)
                  (make-recognizer-tuple rune nume parity fn var term1 ens
                                         wrld)
                  (declare (ignore ttree))
                  (global-set 'recognizer-alist
                              (cons recog-tuple (global-val 'recognizer-alist wrld))
                              wrld))))

;---------------------------------------------------------------------------
; Section:  :FORWARD-CHAINING Rules

(defun chk-triggers (name match-free hyps terms hyps-vars concls-vars ctx ens
                          wrld state)

; Name is the name of a proposed forward chaining rule with hyps hyps
; and triggers terms.  We verify that every trigger is a non-variable,
; non-quote, non-lambda, non-NOT application.  We also print the
; free-variable warning messages.

  (cond ((null terms) (value nil))
        ((or (variablep (car terms))
             (fquotep (car terms))
             (flambda-applicationp (car terms))
             (eq (ffn-symb (car terms)) 'not))
         (er soft ctx
             "It is illegal to use a variable, a quoted constant, the ~
              application of a lambda-expression, a LET-expression, ~
              or a NOT-expression as the trigger of a forward ~
              chaining rule.  Your proposed trigger, ~x0, violates ~
              these restrictions.  See :DOC forward-chaining."
             (car terms)))
        ((not (subsetp-eq concls-vars
                          (all-vars1 (car terms) hyps-vars)))
         (er soft ctx
             "We cannot use ~x0 as a forward chaining rule triggered ~
              by ~x1 because the variable~#2~[ ~&2 is~/s ~&2 are~] ~
              used in the conclusion but not in the ~#3~[~/hypothesis ~
              or the ~/hypotheses or the ~]trigger.  See :DOC ~
              forward-chaining."
             name
             (car terms)
             (set-difference-eq concls-vars
                                (all-vars1 (car terms) hyps-vars))
             (zero-one-or-more hyps)))
        (t
         (let* ((warn-non-rec (not (warning-disabled-p "Non-rec")))
                (free-vars (free-vars-in-hyps hyps (all-vars (car terms)) wrld))
                (inst-hyps (hyps-that-instantiate-free-vars free-vars hyps))
                (forced-hyps (forced-hyps inst-hyps))
                (non-rec-fns (and warn-non-rec
                                  (non-recursive-fnnames (car terms) ens wrld)))
                (non-rec-fns-inst-hyps
                 (and warn-non-rec
                      (non-recursive-fnnames-lst
                       (strip-top-level-nots-and-forces inst-hyps) ens wrld))))
           (er-progn
            (cond
             ((and free-vars (null match-free))
              (pprogn
               (warning$ ctx "Free"
                         `("When the :FORWARD-CHAINING rule generated from ~
                            ~x0 is triggered by ~x1 it contains the free ~
                            variable~#2~[ ~&2.  This variable~/s ~&2.  These ~
                            variables~] will be chosen by searching for ~
                            ~#3~[an instance~/instances~] of ~&3 among the ~
                            hypotheses of the conjecture being rewritten.  ~
                            This is generally a severe restriction on the ~
                            applicability of the forward chaining rule."
                           (:free-variables ,free-vars)
                           (:instantiated-hyps ,inst-hyps)
                           (:name ,name)
                           (:rule-class :forward-chaining)
                           (:trigger ,(car terms)))
                         name (car terms) free-vars inst-hyps)
               (free-variable-error? :forward-chaining name ctx wrld state)))
             (t (value nil)))
            (pprogn
             (cond
              ((and free-vars forced-hyps)
               (warning$ ctx "Free"
                         "Forward chaining rule ~x0 has forced (or ~
                          case-split) ~#1~[hypothesis~/hypotheses~], ~*2, ~
                          which will be used to instantiate one or more free ~
                          variables.  We will search for suitable ~
                          instantiations (of the term inside the FORCE or ~
                          CASE-SPLIT) among the known assumptions in the ~
                          context at the time we encounter ~#1~[the~/each~] ~
                          hypothesis.  If no instances are found, we will ~
                          force or case split on the partially instantiated ~
                          ~#1~[hypothesis~/hypotheses~] instead of waiting ~
                          for future rounds of forward chaining which might ~
                          derive appropriate instances.  Note that this will ~
                          introduce a ``free variable'' into the conjecture.  ~
                          While sound, this will establish a goal almost ~
                          certain to fail since the restriction described by ~
                          this apparently necessary hypothesis constrains a ~
                          variable not involved in the problem.  To highlight ~
                          this oddity, we will rename the free variables in ~
                          such forced hypotheses by prefixing them with ~
                          ``UNBOUND-FREE-''.  This is not guaranteed to ~
                          generate a new variable but at least it generates ~
                          an unusual one.  If you see such a variable in a ~
                          subsequent proof (and did not introduce them ~
                          yourself) you should consider the possibility that ~
                          the free variables of this forward chaining rule ~
                          were forced into the conjecture."
                         name
                         (if (null (cdr forced-hyps)) 0 1)
                         (tilde-*-untranslate-lst-phrase forced-hyps t
                                                         wrld)))
              (t state))
             (cond
              (non-rec-fns
               (warning$ ctx ("Non-rec")
                         `("The term ~x0 contains the non-recursive function ~
                            symbol~#1~[ ~&1.  Unless this function is~/s ~&1. ~
                            ~ Unless these functions are~] disabled, ~x0 is ~
                            unlikely ever to occur as a trigger for ~x2."
                           (:name ,name)
                           (:non-recursive-fns ,(hide-lambdas non-rec-fns))
                           (:trigger-term ,(car terms)))
                         (car terms)
                         (hide-lambdas non-rec-fns)
                         name))
              (t state))
             (cond
              (non-rec-fns-inst-hyps
               (warning$ ctx ("Non-rec")
                         `("As noted, when triggered by ~x0, we will ~
                            instantiate the free variable~#1~[~/s~], ~&1, of ~
                            the rule ~x2, by searching for the ~
                            ~#3~[hypothesis~/set of hypotheses~] shown above. ~
                            ~ However, ~#3~[this hypothesis mentions~/these ~
                            hypotheses mention~] the function symbol~#4~[ ~
                            ~&4, which is~/s ~&4, which are~] defun'd ~
                            non-recursively. Unless disabled, ~#4~[this ~
                            function symbol is~/these function symbols are~] ~
                            unlikely to occur in the conjecture being proved ~
                            and hence the search for the required ~
                            ~#3~[hypothesis~/hypotheses~] will likely fail."
                           (:free-variables ,free-vars)
                           (:instantiated-hyps ,inst-hyps)
                           (:name ,name)
                           (:non-recursive-fns-inst-hyps
                            ,(hide-lambdas non-rec-fns-inst-hyps))
                           (:trigger-term ,(car terms)))
                         (car terms) free-vars name inst-hyps
                         (hide-lambdas non-rec-fns-inst-hyps)))
              (t state))
             (chk-triggers match-free name hyps (cdr terms)
                           hyps-vars concls-vars ctx ens wrld state)))))))

(defun destructure-forward-chaining-term (term)

; We return two lists, hyps and concls, such that term is equivalent to
; (implies (and . hyps) (and . concls)).

; We have considered treating (IMPLIES a (IMPLIES b c)) as (IMPLIES (and a b)
; c) when we parse :forward-chaining rules.  At the moment we do not, and hence
; such a :forward-chaing rule might put (IMPLIES b c) on the type-alist.  The
; code for the ``improved'' parsing is in the comment just below.  This would
; bring the parsing of :forward-chaining rules more into line with what we do
; for :rewrite rules.  But an email from Dave Greve gave us the impression that
; he and others might intentionally put calls of IMPLIES on the type-alist.
; This is in the spirit of ``just do what the user said.''  We never ran a
; regression with the ``improved'' parsing so we don't know what effect it
; might have.  But we decided to stick with the ``just do what the user said''
; approach.

;   (let ((term (remove-lambdas (remove-guard-holders term))))
;     (cond ((or (variablep term)
;                (fquotep term)
;                (not (eq (ffn-symb term) 'implies)))
;            (mv nil (flatten-ands-in-lit term)))
;           (t
;
; ; Term is of the form (implies arg1 arg2).  We recursively
; ; destructure arg2 first, in case it is another (implies ...).
;
;            (mv-let (hyps concls)
;                    (destructure-forward-chaining-term (fargn term 2))
;                    (mv (append (flatten-ands-in-lit (fargn term 1))
;                                hyps)
;                        concls)))))

  (let ((term (remove-lambdas (remove-guard-holders term))))
    (cond ((or (variablep term)
               (fquotep term)
               (not (eq (ffn-symb term) 'implies)))
           (mv nil (flatten-ands-in-lit term)))
          (t (mv (flatten-ands-in-lit (fargn term 1))
                 (flatten-ands-in-lit (fargn term 2)))))))

(defun chk-acceptable-forward-chaining-rule (name match-free trigger-terms term
                                                  ctx ens wrld state)

; Acceptable forward chaining rules are of the form

; (IMPLIES (AND . hyps)
;          (AND . concls))

; We used to split term up with unprettyify as is done for REWRITE
; class rules.  But that meant that we had to establish hyps
; once for each concl whenever the rule was triggered.

  (mv-let
   (hyps concls)
   (destructure-forward-chaining-term term)
   (let ((hyps-vars (all-vars1-lst hyps nil))
         (concls-vars (all-vars1-lst concls nil)))
     (chk-triggers name match-free hyps trigger-terms
                   hyps-vars concls-vars
                   ctx ens wrld state))))

(defun putprop-forward-chaining-rules-lst
  (rune nume triggers hyps concls match-free wrld)
  (cond ((null triggers)
         (put-match-free-value match-free rune wrld))
        (t (putprop-forward-chaining-rules-lst
            rune nume
            (cdr triggers)
            hyps concls match-free
            (putprop (ffn-symb (car triggers))
                     'forward-chaining-rules
                     (cons (make forward-chaining-rule
                                 :rune rune
                                 :nume nume
                                 :trigger (car triggers)
                                 :hyps hyps
                                 :concls concls
                                 :match-free match-free)
                           (getpropc (ffn-symb (car triggers))
                                     'forward-chaining-rules nil wrld))
                     wrld)))))

(defun add-forward-chaining-rule (rune nume trigger-terms term match-free wrld)
  (mv-let
   (hyps concls)
   (destructure-forward-chaining-term term)
   (putprop-forward-chaining-rules-lst rune nume
                                       trigger-terms
                                       hyps concls
                                       (match-free-fc-value match-free
                                                            hyps concls
                                                            trigger-terms
                                                            wrld)
                                       wrld)))

;---------------------------------------------------------------------------
; Section:  :META Rules

(defun evaluator-clause/arglist (evfn formals x)

; See evaluator-clause.  We return a list of the form
; '((evfn (cadr x) a) (evfn (caddr x) a) ...) containing
; as many elements as there are in formals.  The evfn and
; x we use are as provided in our arguments, but the variable
; symbol A in our answer is built-in below.

  (cond ((null formals) nil)
        (t (cons (mcons-term* evfn (mcons-term* 'car x) 'a)
                 (evaluator-clause/arglist evfn
                                           (cdr formals)
                                           (mcons-term* 'cdr x))))))

(defun evaluator-clause (evfn fn-args)

; Fn-args is of the form (fn v1 ... vn), a well-formed application of the
; function fn.  We return a clause that expresses the theorem

; (implies (and (consp x)
;               (equal (car x) 'fn))
;          (equal (evfn x a)
;                 (fn (evfn (cadr x) a)
;                     ...
;                     (evfn (cad...dr x) a))))

; where evfn and fn are the function symbols provided.  Note that the
; clause we return uses the variable symbols X and A.  These symbols
; are built into this definition and that of evaluator-clause/arglist.

  (list '(not (consp x))
        (fcons-term*
         'not
         (fcons-term* 'equal '(car x) (kwote (car fn-args))))
        (fcons-term*
         'equal
         (fcons-term* evfn 'x 'a)
         (fcons-term (car fn-args)
                     (evaluator-clause/arglist evfn
                                               (cdr fn-args)
                                               '(cdr x))))))

(defun evaluator-clauses1 (evfn fn-args-lst)
  (cond ((null fn-args-lst) nil)
        (t (cons (evaluator-clause evfn (car fn-args-lst))
                 (evaluator-clauses1 evfn (cdr fn-args-lst))))))

(defun evaluator-clauses (evfn evfn-lst fn-args-lst)

; We return the set of clauses that describe an evaluator, evfn, that
; knows about the function symbols listed in fn-args-lst.  The
; mutually recursive function that evaluates a list of such terms is
; named evfn-lst.

; This function serves two purposes: it is used to generate the constraints
; produced by the defevaluator event and it is used to check that the
; constraints on an alleged evaluator are in fact those required.  (Remember:
; the user need not have introduced an evaluator via defevaluator.)

; The clauses that describe an evaluator include an evaluator-clause
; (q.v.)  for each fn in fn-args-lst plus clauses describing evfn when
; x is a variable symbol, a quoted object, and a lambda application,
; plus clauses describing evfn-lst on nil and on conses.

; Note: The function chk-evaluator exploits the fact that if evfn is
; an evaluator, then the constraint on it will contain at least 4
; clauses.  (One of the five fixed clauses below is about only
; evfn-lst and not about evfn and hence wouldn't be among the
; constraints of evfn.)  If this changes, change chk-evaluator.

; The functions guess-fn-args-lst-for-evfn and guess-evfn-lst-for-evfn take the
; known constraints on an evfn and guess the evfn-lst and list of fns for which
; evfn might be an evaluator.  These functions knows the structure of the
; clauses generated here, in particular, the structure of the clause describing
; evfn-lst on a cons and the structure of the evaluator-clause for a given fn.
; If these structures change, change these two functions.

; WARNING: Don't change the clauses below without reading the Notes above!  In
; particular, the functions chk-evaluator and defevaluator-form/defthms both
; call this function.  Furthermore, at least the following functions know about
; the number, order, and shape of the clauses generated:
; defevaluator-form/defthm-name and defevaluator-form/defthm-hints.

  (append (sublis (list (cons 'evfn evfn)
                        (cons 'evfn-lst evfn-lst))
                  '(((not (consp x))
                     (not ; (syntaxp (not (equal a ''nil)))
                      (synp 'nil
                            '(syntaxp (not (equal a ''nil)))
                            '(if (not (equal a ''nil)) 't 'nil)))
                     (equal (car x) 'quote)
                     (equal (evfn x a)
                            (evfn (cons (car x)
                                        (kwote-lst (evfn-lst (cdr x) a)))
                                  'nil)))
                    ((not (symbolp x))

; We considered replacing the right-hand side below simply by (cdr (assoc-equal
; x a)), i.e., without making a special case for x = nil.  Our motivation was
; an observation from Sol Swords: there is a kind of mismatch between that
; special case for nil on the one hand, and the treating of nil as an ordinary
; variable by sublis-var.  Indeed, he went through some effort to deal with
; this mismatch in his community book,
; books/clause-processors/sublis-var-meaning.lisp, using a hypothesis (not
; (assoc nil alist)) in some lemmas in that book.

; However, if we were to make that change, together with the corresponding
; change in the local witness for the evaluator in the symbolp case, then the
; preceding clause (above) would no longer be valid for our local witness.
; Consider for example the case that x is '(binary-+) and a is '((nil . 7)),
; and that evfn is the local witness and understands binary-+.  Then the
; left-hand side above is 14 but the right-hand side is 0.  A fix is to modify
; the preceding clause by replacing the final 'nil by a (and then dropping the
; syntaxp hypothesis above, and even making this a definition rule with
; :controller-alist mapping the evaluator to (t nil)).  But that change would
; make invalid the lemma ev-commutes-car in community book
; books/tools/defevaluator-fast.lisp.  It would also require changing some
; hints, for example replacing the :hints in event lemma0, community book
; books/clause-processors/bv-add.lisp, by (("Goal" :expand ((evl x1 env)))).
; Who knows how many books might be affected, including some user books not in
; the regression suite?  So we have decided to leave well enough alone, at
; least for now.  If later we learn of a reason to reconsider, we may do so.

                     (equal (evfn x a)
                            (if x
                                (cdr (assoc-equal x a))
                              'nil)))
                    ((not (consp x))
                     (not (equal (car x) 'quote))
                     (equal (evfn x a) (car (cdr x))))
                    ((not (consp x))
                     (not (consp (car x)))
                     (equal (evfn x a)
                            (evfn (car (cdr (cdr (car x))))
                                  (pairlis$ (car (cdr (car x)))
                                            (evfn-lst (cdr x) a)))))
                    ((consp x-lst)
                     (equal (evfn-lst x-lst a) 'nil))
                    ((not (consp x-lst))
                     (equal (evfn-lst x-lst a)
                            (cons (evfn (car x-lst) a)
                                  (evfn-lst (cdr x-lst) a))))))
          (evaluator-clauses1 evfn fn-args-lst)))

; The function above describes the constraints on an evaluator
; function.  The user will define his own evfn and evfn-lst and prove
; the constraint formulas.  Later, when evfn is used in an alleged
; :META theorem, we will verify that it is an evaluator by getting its
; constraint, digging the clauses out of it, and comparing them to the
; list above.  But in our statement of the constraints we use car/cdr
; nests freely.  The user is liable to use cadr nests (or first,
; second, third, etc., which expand to cadr nests).  We therefore take
; time out from our development of evaluators and define the functions
; for normalizing the user's cadr nests to car/cdr nests.  The
; following code feels really clunky.

(defun cdrp (x term)

; We determine whether term is of the form (cdr (cdr ... (cdr x))),
; where there are 0 or more cdrs.

  (cond ((equal x term) t)
        ((variablep term) nil)
        ((fquotep term) nil)
        ((eq (ffn-symb term) 'cdr) (cdrp x (fargn term 1)))
        (t nil)))

; A source of confusion the user faces is that he may write
; (eq & 'fn) or (eq 'fn &) where we expect (equal & 'fn).  So we
; normalize those too, at the top-level of a clause.  We call it
; a term-lst rather than a clause for symmetry with the foregoing.

(defun expand-eq-and-atom-term-lst (lst)

; This function scans the clause lst and replaces literals of the
; form (not (eq x 'sym)), (not (eq 'sym x)), and (not (equal 'sym x))
; by (not (equal x 'sym)).  It also replaces literals of the form
; (atom x) by (not (consp x)).

  (cond ((null lst) nil)
        (t (let ((rst (expand-eq-and-atom-term-lst (cdr lst)))
                 (lit (car lst)))
             (case-match
              lit
              (('not ('eq x ('quote s)))
               (cond ((symbolp s)
                      (cons (mcons-term* 'not
                                         (mcons-term* 'equal
                                                      x
                                                      (list 'quote s)))
                            rst))
                     ((and (quotep x)
                           (symbolp (cadr x)))
                      (cons (mcons-term* 'not
                                         (mcons-term* 'equal
                                                      (list 'quote s)
                                                      x))
                            rst))
                     (t (cons lit rst))))
              (('not ('eq ('quote s) x))
               (cond ((symbolp s)
                      (cons (mcons-term* 'not
                                         (mcons-term* 'equal
                                                      x
                                                      (list 'quote s)))
                            rst))
                     (t (cons lit rst))))
              (('not ('equal ('quote s) x))
               (cond ((and (symbolp s)
                           (not (and (quotep x)
                                     (symbolp (cadr x)))))
                      (cons (mcons-term* 'not
                                         (mcons-term* 'equal
                                                      x
                                                      (list 'quote s)))
                            rst))
                     (t (cons lit rst))))
              (('atom x)
               (cons (mcons-term* 'not (mcons-term* 'consp x))
                     rst))
              (& (cons lit rst)))))))

; And here, at long last, is the function that massages a user's
; alleged evaluator constraint clause so as to unfold all the cadrs
; and cadars of the pseudo-term in question.

(defun normalize-alleged-evaluator-clause (clause)

; Supposing clause is an evaluator clause, we make the likely
; transformations to remove minor syntactic variants introduced by the
; user.  In particular, we eliminate the uses of atom and eq.

  (expand-eq-and-atom-term-lst clause))

; And here is how we massage the list of user clauses.

(defun normalize-alleged-evaluator-clause-set (lst)
  (cond ((null lst) nil)
        (t (cons (normalize-alleged-evaluator-clause (car lst))
                 (normalize-alleged-evaluator-clause-set (cdr lst))))))

(defun shallow-clausify1 (lst)

; Lst is a list of pairs, each of the form (hyps . concl) as returned
; by unprettyify.  We convert it to a list of clauses.

  (cond ((null lst) nil)
        (t (conjoin-clause-to-clause-set
            (add-literal
             (cdar lst)
             (dumb-negate-lit-lst (caar lst))
             t)
            (shallow-clausify1 (cdr lst))))))

(defun shallow-clausify (term)

; We extract a set of clauses from term whose conjunction is is
; propositionally equivalent to term.  This is like clausify except
; that we are very shallow and stupid.

; Note: Why on earth do we have this function?  The intended use for
; this function is to clausify the constraint on an alleged evaluator
; function evfn.  The idea is to convert the user's constraint to a
; set of clauses and compare that set to the canonical evaluator
; clauses.  Why not just use clausify?  If one of the functions
; interpretted by evfn is 'if then our full-blown clausify will break
; that clause apart into two unrecognizable pieces.

  (shallow-clausify1 (unprettyify term)))

; We next turn to guessing the evfn-lst and list of fns for which evfn
; is an evaluator.  Our guesses key on the structure of the clauses
; that constrain evfn.

(defun find-evfn-lst-in-clause (evfn cl)

; We are looking for the clause that specifies how evfn evaluates
; a lambda application.  That clause will mention evfn-lst, the
; function that evaluates a list of terms.  In particular, we scan
; cl looking for the literal

; (equal (evfn x a)
;        (evfn (caddar x)
;              (pairlis$ (cadar x)
;                        (evfn-lst (cdr x) a))))

; except we know that the cadr nests are in car/cdr form if this is a
; good clause.  If we find such a literal we use evfn-lst as our
; guess.  Otherwise we return nil

  (cond
   ((null cl) nil)
   (t (let ((lit (car cl)))
        (case-match
         lit
         (('equal (!evfn x a)
                  (!evfn ('car ('cdr ('cdr ('car x))))
                         ('pairlis$ ('car ('cdr ('car x)))
                                    (evfn-lst ('cdr x) a))))
          (cond ((and (variablep x)
                      (variablep a))
                 evfn-lst)
                (t (find-evfn-lst-in-clause evfn (cdr cl)))))
         (& (find-evfn-lst-in-clause evfn (cdr cl))))))))

(defun guess-evfn-lst-for-evfn (evfn cl-set)

; We look through cl-set for the clause that specifies how evfn
; evaluates lambda applications.  That clause mentions evfn-lst and if
; we find it we return the evfn-lst mentioned.  Otherwise nil.
; We insist that the clause be of length 3.

  (cond ((null cl-set) nil)
        ((and (int= (length (car cl-set)) 3)
              (find-evfn-lst-in-clause evfn (car cl-set))))
        (t (guess-evfn-lst-for-evfn evfn (cdr cl-set)))))

(defun find-fn-in-clause (cl wrld)
  (cond ((null cl) nil)
        (t (let ((lit (car cl)))
             (case-match
              lit
              (('not ('equal ('car x) ('quote fn)))
               (cond ((and (variablep x)
                           (symbolp fn)
                           (not (eq fn 'quote))
                           (function-symbolp fn wrld))
                      fn)
                     (t (find-fn-in-clause (cdr cl) wrld))))
              (& (find-fn-in-clause (cdr cl) wrld)))))))

(defun guess-fn-args-lst-for-evfn (cl-set wrld)

; We return a list of ``fn-args'', terms of the form (fn v1 ... vn) where the
; vi are the formals of fn.  The list contains a fn-arg for each function
; symbol fn such that some 3 literal clause in cl-set contains a literal of the
; form (not (equal (car x) 'fn)).

  (cond ((null cl-set) nil)
        (t (let ((fn (and (int= (length (car cl-set)) 3)
                          (find-fn-in-clause (car cl-set) wrld))))
             (cond (fn (cons (mcons-term fn (formals fn wrld))
                             (guess-fn-args-lst-for-evfn (cdr cl-set) wrld)))
                   (t (guess-fn-args-lst-for-evfn (cdr cl-set) wrld)))))))

(defun normalized-evaluator-cl-set (ev wrld)
  (normalize-alleged-evaluator-clause-set
   (shallow-clausify
    (mv-let (sym x)
            (constraint-info ev wrld)
            (assert$ (not (eq x *unknown-constraints*))
                     (cond
                      (sym (conjoin x))
                      (t x)))))))

(defun chk-evaluator (evfn wrld ctx state)

; Evfn must be a function symbol.  We check that evfn is an evaluator
; function in wrld, or else we cause an error.  To be an evaluator
; function evfn must be a function symbol and there must exist another
; symbol, evfn-lst, and a list of function symbols, fns, such that the
; constraints on evfn and evfn-lst are equivalent to the evaluator
; clauses for evfn, evfn-lst and fns.

; What do we mean by the constraints being "equivalent" to the evaluator
; clauses?  We convert the two constraint formulas to sets of clauses
; with shallow-clausify.  Then we expand the cadrs in the user's set.
; Then we do a bi-directional subsumption check on the evaluator clauses.
; By doing a subsumption check we permit the user to use any variable
; names he wishes and to order his clauses and the literals within his
; clauses any way he wishes.

; However, before we can do that we have to decide what evfn-lst and
; fns we will use.  We guess, by inspecting the constraints of evfn.
; If our guess is wrong we'll just end up saying that evfn is not an
; evaluator fn.  If our guess is right, we'll confirm it by the subsumption
; check.  So the guessing method is technically unimportant.  However, we
; believe it is complete:  if there exist suitable evfn-lst and fns,
; we find them.

  (let ((cl-set0 (normalized-evaluator-cl-set evfn wrld))
        (str
         "The symbol ~x0, playing the role of an evaluator in your alleged ~
          theorem, does not pass the test for an evaluator.  See :DOC meta ~
          and :DOC defevaluator.  The constraint on ~x0 is in fact ~p1.  ~@2")
        )
    (cond
     ((< (length cl-set0) 4)
      (er soft ctx str
          evfn
          (prettyify-clause-set cl-set0 nil wrld)
          "This constraint has fewer than four conjuncts."))
     (t (let ((evfn-lst
               (guess-evfn-lst-for-evfn evfn cl-set0)))
          (cond
           ((null evfn-lst)
            (er soft ctx str
                evfn
                (prettyify-clause-set cl-set0 nil wrld)
                "We cannot find the formula describing how to ~
                 evaluate lambda applications."))
           (t (let* ((fn-args-lst (guess-fn-args-lst-for-evfn cl-set0 wrld))
                     (cl-set1
                      (conjoin-clause-sets
                       cl-set0
                       (normalized-evaluator-cl-set evfn-lst wrld)))
                     (cl-set2
                      (remove-guard-holders-lst-lst
                       (evaluator-clauses evfn evfn-lst fn-args-lst))))
                (cond
                 ((not (and (clause-set-subsumes nil cl-set1 cl-set2)
                            (clause-set-subsumes nil cl-set2 cl-set1)))
                  (er soft ctx
                      "If ~x0 is an evaluator then it recognizes ~#1~[no ~
                       function symbols~/only the function symbol ~&2~/the ~
                       function symbols ~&2~] and its mutually recursive ~
                       counterpart for lists of terms must be ~x3.  The ~
                       constraints on ~x0 and ~x3 must therefore be ~
                       ~P45.~|~%We would recognize ~x0 and ~x3 as evaluators ~
                       if the constraints on them subsumed and were subsumed ~
                       by the constraints above.  But, in fact, the ~
                       constraints on ~x0 and ~x3 are ~P65 and the ~
                       bidirectional subsumption check fails.  See :DOC ~
                       defevaluator."
                      evfn
                      (zero-one-or-more fn-args-lst)
                      (strip-cars fn-args-lst)
                      evfn-lst
                      (prettyify-clause-set cl-set2 nil wrld)
                      (term-evisc-tuple nil state)
                      (prettyify-clause-set cl-set1 nil wrld)))
                 (t (value nil)))))))))))

; To make it easier to introduce an evaluator, we define the following
; macro.

(defun namedp-prefix (evfn namedp)

; We generate the prefix used in naming the constraints for evaluator evfn.
; Namedp is t or nil and indicates whether we generate a name like
; evfn-OF-fn-CALL or like evfn-CONSTRAINT-i.  We return either "evfn-OF-" or
; "evfn-CONSTRAINT-".

  (if namedp
      (concatenate 'string (symbol-name evfn) "-OF-")
      (concatenate 'string (symbol-name evfn) "-CONSTRAINT-")))

(defun defevaluator-form/defthm-name (evfn evfn-lst namedp prefix i clause)

; This function generates the name of the ith constraint for evaluator function
; evfn.  Namedp is t or nil and indicates whether we generate a name like
; evfn-OF-fn-CALL or like evfn-CONSTRAINT-i.  Prefix is a string and is either
; of the form "evfn-OF-" or "evfn-CONSTRAINT-"; see namedp-prefix. I is 0-based
; the number of the constraint and clause is the clausal form of the
; constraint.  But when namedp is non-nil we have to solve two problems: (a)
; give special names to the first few constraints (which do not concern one of
; the function symbols to be interpreted) and (b) figure out the function
; symbol fn.

; We solve (a) by coding in our knowledge of the order of the clauses generated
; by evaluator-clauses and we solve (b) by looking into those clauses
; corresponding to calls of functions to be interpreted.

; i             name of defthm when namedp

; 0             evfn-OF-FNCALL-ARGS
; 1             evfn-OF-VARIABLE
; 2             evfn-of-QUOTE
; 3             evfn-of-LAMBDA
; 4             evfn-lst-OF-ATOM
; 5             evfn-lst-OF-CONS
; 6 ...         evfn-OF-fn-CALL, ... for each interpreted fn

; When i>5, clause is always of the form:
; ((NOT (CONSP X)) (NOT (EQUAL (CAR X) 'fn)) (EQUAL (evfn X A) (fn ...)))
; and we recover fn from the second literal as shown in the binding of
; fn below.

  (cond
   (namedp
    (let ((fn (car (fargn (caddr clause) 2))))
      (case i
        (0 (genvar evfn (concatenate 'string prefix "FNCALL-ARGS") nil nil))
        (1 (genvar evfn (concatenate 'string prefix "VARIABLE") nil nil))
        (2 (genvar evfn (concatenate 'string prefix "QUOTE") nil nil))
        (3 (genvar evfn (concatenate 'string prefix "LAMBDA") nil nil))
        (4 (genvar evfn
                   (concatenate 'string (symbol-name evfn-lst) "-OF-ATOM")
                   nil nil))
        (5 (genvar evfn
                   (concatenate 'string (symbol-name evfn-lst) "-OF-CONS")
                   nil nil))
        (otherwise
         (genvar evfn
                 (concatenate 'string prefix (symbol-name fn) "-CALL")
                 nil nil)))))
   (t (genvar evfn prefix i nil))))

(defun defevaluator-form/defthm-hints (evfn evfn-lst i)

; See the comment in defevaluator-form/defthm-name about the knowledge of
; evaluator-clauses encoded in this function.  We generate the :hints for the
; ith constraint, i.e., for the formula (prettyify-clause clause nil nil),
; where clause is (nth i (evaluator-clauses evfn evfn-lst fn-args-lst).  A
; representative value of fn-args-lst would be ((CAR X) (CONS X Y) (IF X Y Z)),
; for which suitable i would be 0, 1, ..., 8.

  (cond
   ((> i 5)
    `(("Goal" :expand
       ((,evfn X A)
        (:free (x) (HIDE x))
        (:free (fn args)
               (APPLY-FOR-DEFEVALUATOR fn args))))))
   (t
    (case i
      (0 `(("Goal" :expand
            ((:free (x) (HIDE x))
             (,evfn X A)
             (:free (args)
                    (,evfn (CONS (CAR X) ARGS) NIL)))
            :in-theory '(eval-list-kwote-lst
                         fix-true-list-ev-lst
                         car-cons cdr-cons))))
      ((1 2 3) `(("Goal" :expand ((,evfn X A)))))
      (otherwise
       `(("Goal" :expand ((,evfn-lst X-LST A)))))))))

(defun defevaluator-form/defthm (evfn evfn-lst namedp prefix i clause)

; We generate the defthm event for the ith constraint, given the clause
; expressing that constraint.  The 0th constraint is disabled; the
; others are only locally disabled.

  (let* ((defthm (if (zp i) 'defthmd 'defthm))
         (name (defevaluator-form/defthm-name
                 evfn evfn-lst namedp prefix i clause))
         (formula (prettyify-clause clause nil nil))
         (hints (defevaluator-form/defthm-hints evfn evfn-lst i)))
    `((,defthm ,name
        ,formula
        :hints ,hints)
      (local (in-theory (disable ,name))))))

(defun defevaluator-form/defthms (evfn evfn-lst namedp prefix i clauses)
  (declare (xargs :mode :program))
  (if (endp clauses)
      nil
    (append
     (defevaluator-form/defthm evfn evfn-lst namedp prefix i (car clauses))
     (defevaluator-form/defthms evfn evfn-lst namedp prefix (+ 1 i) (cdr clauses)))))

(defun car-cadr-caddr-etc (formals x)
  (if (endp formals)
      nil
      (cons `(CAR ,x)
            (car-cadr-caddr-etc (cdr formals) `(CDR ,x)))))

(defun defevaluator-form/fns-clauses (fn-args-lst)
  (declare (xargs :mode :program))
; We return a list of cond clauses,
; (
;  ((equal (car x) 'fn1)
;   (fn1 (evfn (cadr x) a) ... (evfn (cad...dr x) a)))
;  ((equal (car x) 'fn2)
;   (fn2 (evfn (cadr x) a) ... (evfn (cad...dr x) a)))
;  ...
;   (t nil))

; containing a clause for each fni in fns plus a final t clause.

  (cond ((null fn-args-lst) '((t nil)))
        (t (cons
            (list (list 'equal 'fn (kwote (caar fn-args-lst)))
                  (cons (caar fn-args-lst)
                        (car-cadr-caddr-etc (cdar fn-args-lst)
                                                       'args)))
            (defevaluator-form/fns-clauses (cdr fn-args-lst))))))

(defconst *defevaluator-form-base-theory*
  (append *definition-minimal-theory*
          '(car-cdr-elim
            car-cons cdr-cons
            o< o-finp o-first-expt o-first-coeff o-rst natp posp
            acl2-count
            alistp
            fix-true-list kwote kwote-lst pairlis$-fix-true-list
            )))

(defun defevaluator-form (evfn evfn-lst namedp fn-args-lst)
  (declare (xargs :mode :program))
  (let* ((fns-clauses (defevaluator-form/fns-clauses fn-args-lst))
         (defthms (defevaluator-form/defthms evfn evfn-lst namedp
                    (namedp-prefix evfn namedp)
                    0
                    (evaluator-clauses evfn evfn-lst fn-args-lst))))
    `(encapsulate
      (((,evfn * *) => *)
       ((,evfn-lst * *) => *))
      (set-inhibit-warnings "theory")
      (local (in-theory *defevaluator-form-base-theory*))
      . ,(sublis
          (list (cons 'evfn evfn)
                (cons 'evfn-lst evfn-lst)
                (cons 'fns-clauses fns-clauses)
                (cons 'defthms defthms))
          '((local (defun-nx apply-for-defevaluator (fn args)
                     (declare (xargs :verify-guards nil
                                     :normalize nil))
                     (cond . fns-clauses)))
            (local
             (mutual-recursion
              (defun-nx evfn (x a)
                (declare
                 (xargs :verify-guards nil
                        :measure (acl2-count x)
                        :well-founded-relation o<
                        :normalize nil
                        :hints (("goal" :in-theory
                                 (enable (:type-prescription
                                          acl2-count))))
                        :mode :logic))
                (cond
                 ((symbolp x) (and x (cdr (assoc-eq x a))))
                 ((atom x) nil)
                 ((eq (car x) 'quote) (car (cdr x)))
                 (t (let ((args (evfn-lst (cdr x) a)))
                      (cond
                       ((consp (car x))
                        (evfn (car (cdr (cdr (car x))))
                              (pairlis$ (car (cdr (car x)))
                                        args)))
                       (t (apply-for-defevaluator (car x) args)))))))
                (defun-nx evfn-lst (x-lst a)
                  (declare (xargs :measure (acl2-count x-lst)
                                  :well-founded-relation o<))
                  (cond ((endp x-lst) nil)
                        (t (cons (evfn (car x-lst) a)
                                 (evfn-lst (cdr x-lst) a)))))))
            (local (in-theory (disable evfn evfn-lst apply-for-defevaluator)))
            (local
             (defthm eval-list-kwote-lst
               (equal (evfn-lst (kwote-lst args) a)
                      (fix-true-list args))
               :hints (("goal"
                        :expand ((:free (x y) (evfn-lst (cons x y) a))
                                 (evfn-lst nil a)
                                 (:free (x)
                                        (evfn (list 'quote x) a)))
                        :induct (fix-true-list args)))))
            (local
             (defthm fix-true-list-ev-lst
               (equal (fix-true-list (evfn-lst x a))
                      (evfn-lst x a))
               :hints (("goal" :induct (len x)
                        :in-theory (e/d ((:induction len)))
                        :expand ((evfn-lst x a)
                                 (evfn-lst nil a))))))
            (local
             (defthm ev-commutes-car
               (equal (car (evfn-lst x a))
                      (evfn (car x) a))
               :hints (("goal" :expand ((evfn-lst x a)
                                        (evfn nil a))
                        :in-theory (enable default-car)))))
            (local
             (defthm ev-lst-commutes-cdr
               (equal (cdr (evfn-lst x a))
                      (evfn-lst (cdr x) a))
               :hints (("Goal" :expand ((evfn-lst x a)
                                        (evfn-lst nil a))
                        :in-theory (enable default-cdr)))))
            . defthms)))))

(defun pairs-to-macro-alias-msgs (alist)
  (declare (xargs :guard (symbol-alistp alist)))
  (cond ((endp alist) nil)
        (t (cons (msg "~x0 is a macro alias for function ~x1"
                      (caar alist) (cdar alist))
                 (pairs-to-macro-alias-msgs (cdr alist))))))

(defun defevaluator-check-msg (alist macro-aliases wrld bad macro-alist)
  (declare (xargs :guard (and (symbol-alistp alist)
                              (symbol-alistp macro-aliases)
                              (plist-worldp wrld)
                              (symbol-listp bad)
                              (symbol-alistp macro-alist))))
  (cond ((endp alist)
         (cond ((or bad macro-alist)
                (msg "~@0~@1"
                     (cond ((null bad) "")
                           ((null (cdr bad))
                            (msg "The symbol ~x0 is not a function symbol in ~
                                  the current ACL2 world."
                                 (car bad)))
                           (t
                            (msg "The symbols ~&0 are not function symbols in ~
                                  the current ACL2 world."
                                 bad)))
                     (cond ((null macro-alist) "")
                           (t (msg "  Note that ~*0."
                                   (list
                                    ""          ; nothing to print
                                    "~@*"       ; last element
                                    "~@*, and " ; 2nd to last element
                                    "~@*"       ; all other elements
                                    (pairs-to-macro-alias-msgs macro-alist)))))))
               (t nil)))
        ((function-symbolp (caar alist) wrld)
         (defevaluator-check-msg (cdr alist) macro-aliases wrld bad
           macro-alist))
        (t (defevaluator-check-msg (cdr alist) macro-aliases wrld
             (cons (caar alist) bad)
             (let ((entry (assoc-eq (caar alist) macro-aliases)))
               (cond (entry (cons entry macro-alist))
                     (t macro-alist)))))))

(defun defevaluator-check (x evfn evfn-lst fn-args-lst ctx state)
  (declare (xargs :guard
                  (and (state-p state)
                       (symbol-alistp fn-args-lst)
                       (symbol-alistp
                        (fgetprop 'macro-aliases-table
                                  'table-alist
                                  nil
                                  (w state))))))
  (cond ((not (and (symbolp evfn)
                   (symbolp evfn-lst)
                   (symbol-list-listp fn-args-lst)))
         (er soft ctx
             "The form of a defevaluator event is (defevaluator evfn evfn-lst ~
              fn-args-lst), where evfn and evfn-lst are symbols and ~
              fn-args-lst is a true list of lists of symbols.  Optionally, ~
              one may supply the final keyword argument :namedp with value t ~
              or nil (default).  However, ~x0 does not have this form."
             x))
        (t (let* ((wrld (w state))
                  (msg (defevaluator-check-msg
                         fn-args-lst
                         (macro-aliases wrld)
                         wrld nil nil)))
             (cond (msg (er soft ctx "~@0" msg))
                   (t (value nil)))))))

(defun defevaluator-check-form (x evfn evfn-lst fn-args-lst)
  (declare (xargs :guard t))
  `(with-output
    :off error
    :stack :push
    (make-event
     (er-progn
      (with-output
       :stack :pop
       (defevaluator-check ',x ',evfn ',evfn-lst ',fn-args-lst
         '(defevaluator . ,evfn)
         state))
      (value '(value-triple nil))))))

(defmacro defevaluator (&whole x evfn evfn-lst fn-args-lst &key skip-checks namedp)

; Note: It might be nice to allow defevaluator to take a :DOC string, but that
; would require allowing encapsulate to take such a string!

; This function executes an encapsulate that defines an evaluator
; evfn (with mutually recursive counterpart evfn-lst for lists of
; terms) that recognizes the functions in fns.

; Note: This version of defevaluator was adapted, with permission, from ACL2
; Community Book tools/defevaluator-fast.lisp which was authored by Sol Swords
; and Jared Davis.  The defevaluator-fast defun-nx for evfn and evfn-lst,
; together with the preliminary lemmas and hints for the constraints were
; ripped from that book.  The code for generating those forms was refactored to
; make it clear that the :namedp option only affects the names of the
; constraint theorems.

  (let ((form (defevaluator-form evfn evfn-lst namedp fn-args-lst)))
    (cond (skip-checks form)
          (t `(progn ,(defevaluator-check-form x evfn evfn-lst fn-args-lst)
                     ,form)))))

(table term-table nil nil
       :guard
       (term-listp val world))

(table term-table t '((binary-+ x y) (binary-* '0 y) (car x)))

(defun remove-meta-extract-contextual-hyps (hyps ev mfc-symbol a)

; Return (mv hyps' flg), where hyps' is the result of removing suitable
; meta-extract-contextual-fact hypotheses from hyps and flg is true if and only
; if at least one such hypothesis was removed.  Ev is the evaluator function
; symbol and mfc-symbol is either nil or the mfc from the conclusion of a rule
; of class :meta.  See also remove-meta-extract-global-hyps for an
; corresponding function for global hypotheses.

  (cond
   ((atom hyps) (mv nil nil))
   (t (let ((hyp (car hyps)))
        (mv-let
         (hs flg)
         (remove-meta-extract-contextual-hyps (cdr hyps) ev mfc-symbol a)
         (case-match hyp
           ((!ev ('meta-extract-contextual-fact & !mfc-symbol

; Note that meta-extract-contextual-fact calls mfc- functions, which get their
; world from the mfc, not the state (at least as of this writing, on
; 4/17/2013).  Thus, we believe that meta-extract-contextual-fact is correct
; regardless of the state argument.  This belief allows us to loosen the
; restriction that the state is 'state, and instead allow an arbitrary state
; here.  But we keep the restriction that state is 'state; we may more
; carefullly consider relaxing it upon request.

                                                'state)
                 !a)
            (mv hs t))
           (& (mv (cons hyp hs) flg))))))))

(defun remove-meta-extract-global-hyps (hyps ev)

; Return (mv hyps' flg), where hyps' is the result of removing suitable
; meta-extract-global-fact+ hypotheses from hyps and flg is true if and only if
; at least one such hypothesis was removed.  Ev is the evaluator function
; symbol.  See also remove-meta-extract-contextual-hyps for an analogous
; function.

  (declare (xargs :mode :program))
  (cond
   ((atom hyps) (mv nil nil))
   (t (let ((hyp (car hyps)))
        (mv-let
         (hs flg)
         (remove-meta-extract-global-hyps (cdr hyps) ev)
         (case-match hyp
           ((!ev ('meta-extract-global-fact+ & & 'state) &)
            (mv hs t))
           (& (mv (cons hyp hs) flg))))))))

(defun meta-rule-hypothesis-functions (hyp ev x a mfc-symbol)

; Here hyp is the hypothesis of the proposed meta rule (or, *t* if
; there is none).  We want to identify the hypothesis metafunction
; (see :DOC meta) of that rule.  We return nil if the hyp is
; unacceptable, t if there is no extra hypothesis, and otherwise the
; hypothesis function symbol.  Note that we allow, but do not require,
; the hypotheses (pseudo-termp x) and (alistp a) to be among the
; hypotheses, in which case we delete them before returning the
; result.

; If mfc-symbol is non-nil, this is an extended metafunction and we
; insist that the hyp function be extended also.  All extended
; functions take three arguments, the term, the context, and STATE, in
; that order.  The value of mfc-symbol is the variable symbol used to
; denote the context.

  (let ((hyps (remove1-equal
               (fcons-term* 'pseudo-termp x)
               (remove1-equal (fcons-term* 'alistp a)
                              (flatten-ands-in-lit hyp)))))
    (mv-let
     (hyps flg1)
     (if mfc-symbol
         (remove-meta-extract-contextual-hyps hyps ev mfc-symbol a)
       (mv hyps nil))
     (mv-let
      (hyps flg2)
      (remove-meta-extract-global-hyps hyps ev)
      (let ((hyp3 (car hyps))
            (extended-args
             (if mfc-symbol (cons mfc-symbol '(STATE)) nil)))
        (mv (cond
             ((null hyps) t)
             (t (and (null (cdr hyps))
                     (case-match hyp3
                       ((!ev (fn !x . !extended-args) !a)
                        (if (symbolp fn)
                            fn
                          nil))
                       (& nil)))))
            (append (and flg1 '(meta-extract-contextual-fact))
                    (and flg2 '(meta-extract-global-fact+)))))))))

(defun meta-fn-args (term extendedp ens state)
  (cond
   (extendedp
    (let ((wrld (w state)))
      (list term
            (make metafunction-context
                  :rdepth (rewrite-stack-limit wrld)
                  :type-alist nil
                  :obj '?
                  :geneqv nil
                  :wrld wrld
                  :fnstack nil
                  :ancestors nil
                  :simplify-clause-pot-lst nil
                  :rcnst
                  (make-rcnst ens wrld state
                              :force-info t
                              :top-clause (list term)
                              :current-clause (list term))
                  :gstack nil
                  :ttree nil
                  :unify-subst nil)
            (coerce-state-to-object state))))
   (t (list term))))

(defun chk-meta-function (metafn name trigger-fns extendedp
                                 term-list ctx ens state)

; If extendedp is nil we call metafn on only one term arg.  Otherwise, we call
; it on args of the type: (term context state).  We manufacture a trivial
; context.  We don't care what non-nil value extendedp is.

  (cond
   ((null term-list)
    (value nil))
   ((or (variablep (car term-list))
        (fquotep (car term-list))
        (flambda-applicationp (car term-list))
        (not (member-eq (ffn-symb (car term-list)) trigger-fns)))
    (chk-meta-function metafn name trigger-fns extendedp
                       (cdr term-list) ctx ens state))
   (t
    (let ((args (meta-fn-args (car term-list) extendedp ens state)))
      (pprogn
       (cond
        ((warning-disabled-p "Meta")
         state)
        (t
         (mv-let (erp val latches)
                 (ev-fncall-meta metafn args state)
                 (declare (ignore latches))
                 (cond
                  (erp

; We use warnings rather than errors when the checks fail, partly so
; that we can feel free to change the checks without changing what the
; prover will accept.  Put differently, we don't want user-managed
; tables to affect what the prover is able to prove.

                   (warning$ ctx ("Meta")
                             "An error occurred upon running the metafunction ~
                              ~x0 on the term ~x1.  This does not bode well ~
                              for the utility of this metafunction for the ~
                              meta rule ~x2.  See :DOC term-table."
                             metafn (car term-list) name))
                  ((termp val (w state))
                   state)
                  (t
                   (warning$ ctx ("Meta")
                             "The value obtained upon running the ~
                              metafunction ~x0 on the term ~x1 is ~x2, which ~
                              is NOT a termp in the current ACL2 world.  This ~
                              does not bode well for the utility of this ~
                              metafunction for the meta rule ~x3.  See :DOC ~
                              term-table."
                             metafn (car term-list) val name))))))
       (chk-meta-function
        metafn name trigger-fns extendedp (cdr term-list) ctx ens state))))))

(defun ev-lst-from-ev (ev wrld)

; We expect already to have checked that ev has a known constraint (see assert$
; call below).

  (guess-evfn-lst-for-evfn
   ev
   (normalized-evaluator-cl-set ev wrld)))

(defun attached-fns (fns wrld)
  (cond ((endp fns) nil)
        (t (let ((prop (attachment-alist (car fns) wrld)))
             (cond ((or (null prop)
                        (and (consp prop)
                             (eq (car prop)
                                 :attachment-disallowed)))
                    (attached-fns (cdr fns) wrld))
                   (t (cons (car fns)
                            (attached-fns (cdr fns) wrld))))))))

(defun siblings (f wrld)
  (or (getpropc f 'siblings nil wrld)
      (getpropc f 'recursivep nil wrld)
      (list f)))

(defun canonical-sibling (f wrld)
  (let ((sibs (getpropc f 'siblings nil wrld)))
    (cond (sibs (car sibs))
          (t (let ((sibs (getpropc f 'recursivep nil wrld)))
               (cond (sibs (car sibs))
                     (t f)))))))

(mutual-recursion

(defun canonical-ffn-symbs (term wrld ans ignore-fns rlp)

; For a discussion of rlp, see the end of the Essay on Correctness of Meta
; Reasoning.

  (cond
   ((variablep term) ans)
   ((fquotep term) ans)
   ((and rlp
         (eq (ffn-symb term) 'return-last)
         (not (equal (fargn term 1) ''mbe1-raw)))
    (canonical-ffn-symbs (fargn term 3) wrld ans ignore-fns rlp))
   (t (canonical-ffn-symbs-lst
       (fargs term)
       wrld
       (cond ((flambda-applicationp term)
              (canonical-ffn-symbs (lambda-body (ffn-symb term))
                                   wrld
                                   ans
                                   ignore-fns
                                   rlp))
             (t (let ((fn (canonical-sibling (ffn-symb term) wrld)))
                  (cond ((member-eq fn ignore-fns) ans)
                        (t (add-to-set-eq fn ans))))))
       ignore-fns
       rlp))))

(defun canonical-ffn-symbs-lst (lst wrld ans ignore-fns rlp)
  (cond ((null lst) ans)
        (t (canonical-ffn-symbs-lst
            (cdr lst)
            wrld
            (canonical-ffn-symbs (car lst) wrld ans ignore-fns rlp)
            ignore-fns
            rlp))))

)

(defun collect-canonical-siblings (fns wrld ans ignore-fns)
  (cond ((endp fns) ans)
        (t (collect-canonical-siblings
            (cdr fns)
            wrld
            (let ((fn (canonical-sibling (car fns) wrld)))
              (cond ((or (member-eq fn ignore-fns)
                         (member-eq fn ans))
                     ans)
                    (t (cons fn ans))))
            ignore-fns))))

(defun immediate-canonical-ancestors (fn wrld ignore-fns rlp)

; This function is analogous to immediate-instantiable-ancestors, but it
; traffics entirely in canonical functions and is not concerned with the notion
; of instantiablep.  To see why guards are involved, see the reference to the
; Essay on Correctness of Meta Reasoning in the Essay on Defattach, which also
; explains special handling of return-last, performed here when rlp is true.

  (let ((guard-anc
         (canonical-ffn-symbs (guard fn nil wrld) wrld nil ignore-fns rlp)))
    (mv-let (name x)
            (constraint-info fn wrld)
            (cond
             ((eq x *unknown-constraints*)
              (let* ((cl-proc
                      (getpropc name 'constrainedp
                                '(:error
                                  "See immediate-canonical-ancestors:  ~
                                   expected to find a 'constrainedp property ~
                                   where we did not.")
                                wrld))
                     (supporters (unknown-constraint-supporters cl-proc wrld)))
                (collect-canonical-siblings supporters wrld guard-anc
                                            ignore-fns)))
             (name (canonical-ffn-symbs-lst x wrld guard-anc ignore-fns rlp))
             (t (canonical-ffn-symbs x wrld guard-anc ignore-fns rlp))))))

(defun canonical-ancestors-rec (fns wrld ans rlp)

; See canonical-ancestors.  Unlike that function, it includes fns in the
; result, and it assumes that all functions in fns are canonical.

  (cond
   ((null fns) ans)
   ((member-eq (car fns) ans)
    (canonical-ancestors-rec (cdr fns) wrld ans rlp))
   (t
    (let* ((ans1 (cons (car fns) ans))
           (imm (immediate-canonical-ancestors (car fns) wrld ans1 rlp))
           (ans2 (canonical-ancestors-rec imm wrld ans1 rlp)))
      (canonical-ancestors-rec (cdr fns) wrld ans2 rlp)))))

(defun canonical-ancestors (fn wrld rlp)

; This function is completely analogous to instantiable-ancestors, except that
; it takes a single function that is not included in the result, it traffics
; entirely in canonical functions, and it is not concerned with the notion of
; instantiablep.  It assumes that fn is canonical.

; For a discussion of rlp, see the end of the Essay on Correctness of Meta
; Reasoning.

  (let* ((imm (immediate-canonical-ancestors fn wrld (list fn) rlp)))
    (canonical-ancestors-rec imm wrld nil rlp)))

(defun canonical-ancestors-lst (fns wrld)

; Fns is a set of function symbols, not necessarily canonical.  We return all
; canonical ancestors of fns.

  (canonical-ancestors-rec (collect-canonical-siblings fns wrld nil nil)
                           wrld nil t))

(defun chk-evaluator-use-in-rule (name meta-fn hyp-fn extra-fns rule-type ev
                                       ctx wrld state)
  (er-progn
   (let ((temp (context-for-encapsulate-pass-2 (decode-logical-name ev wrld)
                                               (f-get-global 'in-local-flg
                                                             state))))
     (case temp
       (illegal
        (er soft ctx ; see comment in defaxiom-supporters
            "The proposed ~x0 rule, ~x1, is illegal because its evaluator ~
             function symbol, ~x2, is defined in a superior non-trivial ~
             encapsulate event (``non-trivial'' in the sense that it has a ~
             non-empty signature).  See :DOC evaluator-restrictions.  In some ~
             cases, a solution is to make the current ~x0 rule LOCAL, though ~
             the alleged evaluator will probably not be available for future ~
             :META or :CLAUSE-PROCESSOR rules."
            rule-type
            name
            ev))
       (maybe
        (pprogn
         (warning$ ctx nil ; add a string here if someone wants to turn this off
                   "The proposed ~x0 rule will ultimately need to be LOCAL in ~
                    its immediately surrounding encapsulate event, because ~
                    its evaluator is introduced in a superior non-trivial ~
                    encapsulate event.  Even if this rule is LOCAL, the ~
                    alleged evaluator will probably not be available for ~
                    future :META or :CLAUSE-PROCESSOR rules. See :DOC ~
                    evaluator-restrictions."
                   rule-type
                   name
                   ev)
         (value nil)))
       (otherwise (value nil))))
   (mv-let
    (fn constraint)
    (constraint-info ev wrld)
    (declare (ignore fn))
    (cond
     ((eq constraint *unknown-constraints*)
      (er soft ctx ; see comment in defaxiom-supporters
          "The proposed ~x0 rule, ~x1, is illegal because its evaluator ~
           function symbol, ~x2, is constrained by the (unknown) theory of a ~
           dependent clause-processor, ~x3.  See :DOC clause-processor."
          rule-type
          name
          ev
          (getpropc ev 'constrainedp
                    '(:error "See chk-evaluator-use-in-rule:  expected to ~
                              find a 'constrainedp property where we did not.")
                    wrld)))
     (t
      (let* ((ev-lst (ev-lst-from-ev ev wrld))
             (ev-prop (getpropc ev 'defaxiom-supporter nil wrld))
             (ev-lst-prop (getpropc ev-lst 'defaxiom-supporter nil wrld))
             (ev-fns (list ev ev-lst))
             (meta-fn-lst (if hyp-fn
                              (list meta-fn hyp-fn)
                            (list meta-fn)))
             (meta-anc (canonical-ancestors-lst meta-fn-lst wrld))
             (extra-anc (canonical-ancestors-lst extra-fns wrld))
             (ev-anc (canonical-ancestors-lst (list ev) wrld)))
        (cond
         ((and extra-fns
               (or (getpropc ev 'predefined nil wrld)
                   (getpropc ev-lst 'predefined nil wrld)))

; See the comment below about this case in the comment in a case below, where
; we point out that extra-fns are defined in the boot-strap world.

          (er soft ctx
              "The proposed evaluator function, ~x0, was defined in the ~
               boot-strap world.  This is illegal when meta-extract hyotheses ~
               are present, because for logical reasons our implementation ~
               assumes that the evaluator is not ancestral in ~v1."
              (if (getpropc ev 'predefined nil wrld)
                  ev
                ev-lst)
              '(meta-extract-contextual-fact meta-extract-global-fact+)))
         ((or ev-prop ev-lst-prop)
          (er soft ctx ; see comment in defaxiom-supporters
              "The proposed ~x0 rule, ~x1, is illegal because its evaluator ~
               function symbol, ~x2, supports the formula of the defaxiom ~
               event named ~x3.  See :DOC evaluator-restrictions."
              rule-type
              name
              (if ev-prop ev ev-lst)
              (or ev-prop ev-lst-prop)))
         ((intersectp-eq ev-fns meta-anc)

; As explained in defaxiom-supporters, we might expect also to check here that
; ev and ev-lst are not ancestral in extra-fns.  But extra-fns are defined in
; the boot-strap world while ev and ev-lst, as we check above, are not.

; It would be nice to improve the following error message by finding the
; particular function symbol in the meta or clause-processor rule for which ev
; is ancestral.

          (er soft ctx ; see comment in defaxiom-supporters
              "The proposed ~x0 rule, ~x1, is illegal because its ~
               evaluator~#2~[~/ (list)~] function symbol, ~x3, supports the ~
               definition of the rule's metafunction~#4~[~/s~], ~&4.  See ~
               :DOC evaluator-restrictions."
              rule-type
              name
              (if (member-eq ev meta-anc) 0 1)
              (if (member-eq ev meta-anc) ev ev-lst)
              meta-fn-lst))
         (t

; We would like to be able to use attachments where possible.  However, the
; example at the end of :doc evaluator-restrictions shows that this is unsound
; in general and is followed by other relevant remarks.

          (let ((bad-attached-fns-1
                 (attached-fns (intersection-eq ev-anc meta-anc) wrld))
                (bad-attached-fns-2

; Although we need bad-attached-fns-2 to be empty (see the Essay on Correctness
; of Meta Reasoning), we could at the very least store extra-anc in the world,
; based on both meta-extract-contextual-fact and meta-extract-global-fact+, so
; that we don't have to compute extra-anc every time.  But that check is
; probably cheap, so we opt for simplicity.

                 (attached-fns (intersection-eq extra-anc meta-anc) wrld)))
              (cond
               ((or bad-attached-fns-1 bad-attached-fns-2)
                (let ((msg "because the attached function~#0~[~/s~] ~&0 ~
                            ~#0~[is~/are~] ancestral in both the ~@1 and ~@2 ~
                            functions")
                      (type-string
                       (if (eq rule-type :meta) "meta" "clause-processor")))
                  (er soft ctx ; see comment in defaxiom-supporters
                      "The proposed ~x0 rule, ~x1, is illegal ~@2~@3.  See ~
                       :DOC evaluator-restrictions."
                      rule-type
                      name
                      (msg msg
                           (or bad-attached-fns-1 bad-attached-fns-2)
                           (if bad-attached-fns-1 "evaluator" "meta-extract")
                           type-string)
                      (cond ((and bad-attached-fns-1 bad-attached-fns-2)
                             (msg ", and because ~@0"
                                  (msg msg
                                       bad-attached-fns-2
                                       "meta-extract"
                                       type-string)))
                            (t "")))))
               (t (value nil))))))))))))

(defun chk-rule-fn-guard (function-string rule-type fn ctx wrld state)

; At one time we insisted that fn not have a non-nil value for its 'constrained
; or 'non-executablep property.  With the advent of defattach, a constrained
; function may however be a reasonable choice.  Rather than do an elaborate
; check here on exactly what sort of constrained function might be attachable,
; we trust that the writer of :meta and :clause-processor rules knows better
; than to attach to functions that cannot be executed.

  (let ((guard (guard fn t wrld))
        (pseudo-termp-predicate
         (case rule-type
           (:meta 'pseudo-termp)
           (:clause-processor 'pseudo-term-listp)
           (t (er hard 'chk-rule-fn-guard
                  "Implementation error: unknown case in chk-rule-fn-guard. ~
                   Please contact the ACL2 implementors.")))))
    (cond ((or (equal guard *t*)
               (tautologyp
                (fcons-term* 'implies
                             (fcons-term* pseudo-termp-predicate
                                          (car (formals fn wrld)))
                             guard)
                wrld))
           (value nil))
          (t (er soft ctx
                 "The ~s0 of a ~x1 rule must have a guard that obviously ~
                  holds whenever its first argument is known to be a ~x2 and ~
                  any stobj arguments are assumed to satisfy their stobj ~
                  predicates.  However, the guard for ~x3 is ~p4.  See :DOC ~
                  ~@5."
                 function-string
                 rule-type
                 pseudo-termp-predicate
                 fn
                 (untranslate guard t wrld)
                 (case rule-type
                   (:meta "meta")
                   (:clause-processor "clause-processor")
                   (t (er hard 'chk-rule-fn-guard
                          "Implementation error: unknown case in ~
                           chk-rule-fn-guard.  Please contact the ACL2 ~
                           implementors."))))))))

; Essay on never-untouchable-fns

; The global-val of 'never-untouchable-fns is an alist pairing function symbols
; with lists of well-formedness-guarantees.  A well-formedness-guarantee is a
; structure of the form ((name fn thm-name1 hyp-fn thm-name2) . arity-alist),
; where hyp-fn and thm-name2 may omitted.  It denotes the fact that the
; metatheorem named name justifies the metafunction fn (with hypothesis
; metafunction hyp-fn if present), and that the two metafunctions are
; guaranteed to return TERMPs by the theorems named thm-name1 and thm-name2
; respectively, provided the world satisfies arity-alist.  The function symbols
; listed in arity-alist are the symbols that may be introduced by the
; metafunction or the hypothesis metafunction.  When a metatheorem with TERMP
; guarantees is added, we make sure that none of the introduced symbols are on
; (forbidden-fns wrld state).  See translate-well-formedness-guarantee.  We
; also record the fact that those introduced symbols should never be made
; untouchable, by adding the well-formedness-guarantee to the symbol's entry on
; never-untouchable-fns.  Thereafter, we prevent any of those function symbols
; from being added to untouchable-fns.  This is done in push-untouchable, by
; comparing any about-to-be-made-untouchable function with
; never-untouchable-fns.

(defun add-new-never-untouchable-fns (fns well-formedness-guarantee
                                          never-untouchable-fns)

; Well-formedness-guarantee is a structure of the form ((name fn thm-name1
; hyp-fn thm-name2) . arity-alist), where hyp-fn and thm-name2 may be omitted.
; It denotes the fact that the metatheorem named name justifies the
; metafunction fn (with hypothesis metafunction hyp-fn if present), and that
; the two metafunctions are guaranteed to return TERMPs by the theorems named
; thm-name1 and thm-name2 respectively, provided the world satisfies
; arity-alist.  Fns, above, is a list of function symbols possibly introduced
; by the metatheorem described by well-formedness-guarantee.  (In fact, it is
; initially just the keys of the arity-alist.)  Never-untouchable-fns is an
; alist pairing function symbols to well-formedness-guarantees that may
; introduce that symbol.  We add this new well-formedness-guarantee to the
; entries for fns.

  (cond ((endp fns) never-untouchable-fns)
        (t (add-new-never-untouchable-fns
            (cdr fns)
            well-formedness-guarantee
            (put-assoc-eq
             (car fns)
             (add-to-set-equal well-formedness-guarantee
                               (cdr (assoc-eq (car fns) never-untouchable-fns)))
             never-untouchable-fns)))))

(defun collect-never-untouchable-fns-entries (fns never-untouchable-fns)

; Suppose the list of function symbols fns is to be pushed onto
; untouchable-fns.  We use this function to collect those g in fns (and
; information from their well-formedness-guarantees) which are not supposed to be
; made untouchable.  The result of this function is thus nil if there are no
; never-untouchable-fns names in fns and otherwise, for each name gi that is
; not to be made untouchable we will have an entry in the result of the form
; (gi relevant-names1 relevant-names2 ...), where each relevant-namesi is the
; car of a well-formedness-guarantee, i.e., a list of 5 (or 3) names (name fn
; thm-name1 hyp-fn thm-name2) with the last two possibly omitted.  This data
; structure is only shown to the user to help him or her figure out why we're
; rejecting a proposed untouchable function.

  (cond
   ((endp fns) nil)
   (t (let ((entry (assoc-eq (car fns) never-untouchable-fns)))
        (cond
         (entry
          (cons entry
                (collect-never-untouchable-fns-entries (cdr fns)
                                                       never-untouchable-fns)))
         (t (collect-never-untouchable-fns-entries (cdr fns)
                                                   never-untouchable-fns)))))))

(defun interpret-term-as-meta-rule (term)

; We match term against the acceptable forms of metafunction correctness
; theorems and return the pieces: (mv hyp eqv ev x a fn mfc-symbol), where hyp
; is the hypothesis term or *t*, eqv is the equivalence relation, ev is the
; evaluator, etc.  We do absolutely no well-formedness checks here, just
; deconstruct the term!  For example, eqv, ev, or fn may be (unacceptable)
; LAMBDA expressions, x may not be a variable symbol, etc.  But since term is
; known to be a term, eqv, for example, cannot be nil unless we fail to match
; any of the acceptable forms.  Our convention is to test eqv to see if the
; term was deconstructed.  If mfc-symbol is nil, fn is a vanilla flavored
; metafunction taking one argument, else it is an extended metafunction.  But,
; despite its name, we don't know that mfc-symbol is a symbol, it could be any
; term.

  (case-match term
    (('IMPLIES hyp
               (eqv (ev x a) (ev (fn x) a)))
     (mv hyp eqv ev x a fn nil))
    ((eqv (ev x a) (ev (fn x) a))
     (mv *t* eqv ev x a fn nil))
    (('IMPLIES hyp
               (eqv (ev x a)
                    (ev (fn x mfc-symbol 'STATE)
                        a)))
     (mv hyp eqv ev x a fn mfc-symbol))
    ((eqv (ev x a)
          (ev (fn x mfc-symbol 'STATE)
              a))
     (mv *t* eqv ev x a fn mfc-symbol))
    (& (mv *t* nil nil nil nil nil nil))))

(defun chk-acceptable-meta-rule (name trigger-fns term ctx ens wrld state)
  (if (member-eq 'IF trigger-fns)
      (er soft ctx
          "The function symbol IF is not an acceptable member of ~
           :trigger-fns, because the ACL2 simplifier is not set up to apply ~
           :meta rules to calls of IF.")
    (let ((str "No :META rule can be generated from ~x0 because ~p1 does not ~
                have the form of a metatheorem.  See :DOC meta."))
      (mv-let
       (hyp eqv ev x a fn mfc-symbol)
       (interpret-term-as-meta-rule term)
       (cond ((null eqv)
              (er soft ctx str name (untranslate term t wrld)))
             ((eq fn 'return-last)

; Ev-fncall-meta calls ev-fncall!.  We could make an exception for return-last,
; calling ev-fncall instead, but for now we avoid that runtime overhead by
; excluding return-last.  It's a bit difficult to imagine that anyone would
; use return-last as a metafunction anyhow.

              (er soft ctx
                  "It is illegal to use ~x0 as a metafunction, as specified ~
                   by ~x1.  See :DOC meta."
                  'return-last name))
             ((not (and (not (flambdap eqv))
                        (equivalence-relationp eqv wrld)
                        (variablep x)
                        (variablep a)
                        (not (eq x a))
                        (not (eq fn 'quote))
                        (not (flambdap fn))
                        (or (null mfc-symbol)
                            (and (variablep mfc-symbol)
                                 (no-duplicatesp (list x a mfc-symbol 'STATE))))))

; Note:  Fn must be a symbol, not a lambda expression.  That is because
; in rewrite-with-lemma, when we apply the metafunction, we use ev-fncall-meta.

              (er soft ctx str name (untranslate term t wrld)))
             ((not (member-equal (stobjs-in fn wrld)
                                 '((nil)
                                   (nil nil state))))
              (er soft ctx
                  "Metafunctions cannot take single-threaded object names ~
                   other than STATE as formal parameters. The function ~x0 ~
                   may therefore not be used as a metafunction."
                  fn))
             (t (er-progn
                 (chk-rule-fn-guard "metafunction" :meta fn ctx wrld state)
                 (mv-let
                  (hyp-fn extra-fns)
                  (meta-rule-hypothesis-functions hyp ev x a mfc-symbol)
                  (let ((term-list
                         (cdar (table-alist 'term-table (w state)))))
                    (er-progn
                     (cond
                      ((null hyp-fn)
                       (er soft ctx str name (untranslate term t wrld)))
                      ((and (not (eq hyp-fn t))
                            (not (member-equal (stobjs-in hyp-fn wrld)
                                               '((nil)
                                                 (nil nil state)))))

; It is tempting to avoid the check here that hyp-fn does not take
; stobjs in.  After all, we have already checked this for fn, and fn
; and hyp-fn have the same actuals.  But our defun warts allow certain
; functions to traffic in stobjs even though they do not use STATE (or
; another stobj name) as a formal.  So, we play it safe and check.

                       (er soft ctx
                           "Hypothesis metafunctions cannot take single ~
                           threaded object names as formal parameters.  The ~
                           function ~x0 may therefore not be used as a ~
                           hypothesis metafunction."
                           hyp-fn))
                      ((not (eq hyp-fn t))
                       (er-progn
                        (chk-evaluator-use-in-rule name
                                                   fn hyp-fn extra-fns
                                                   :meta ev ctx wrld state)
                        (chk-rule-fn-guard "hypothesis function" :meta fn ctx
                                           wrld state)))
                      (t (chk-evaluator-use-in-rule name
                                                    fn nil extra-fns
                                                    :meta ev ctx wrld state)))
                     (chk-evaluator ev wrld ctx state)

; In the code below, mfc-symbol is used merely as a Boolean indicating
; that this is an extended metafunction.

                     (chk-meta-function fn name trigger-fns mfc-symbol
                                        term-list ctx ens state)
                     (if (eq hyp-fn t)
                         (value nil)
                       (chk-meta-function hyp-fn name trigger-fns mfc-symbol
                                          term-list ctx ens state))))))))))))

; And to add a :META rule:

(defun add-meta-rule1 (lst rule wrld)

; Fn is a function symbol, not a lambda expression.

  (cond ((null lst) wrld)
        (t
         (add-meta-rule1 (cdr lst) rule
                         (putprop (car lst)
                                  'lemmas
                                  (cons rule
                                        (getpropc (car lst) 'lemmas nil wrld))
                                  wrld)))))

(defun maybe-putprop-lst (symb-lst key val wrld)
  (cond ((endp symb-lst)
         wrld)
        (t (let ((symb (car symb-lst)))
             (maybe-putprop-lst
              (cdr symb-lst) key val
              (cond ((getpropc symb key nil wrld)
                     wrld)
                    (t (putprop symb key val wrld))))))))

(defun mark-attachment-disallowed2 (fns msg wrld)

; It might be that we only need to disallow attachments to constrained
; functions.  However, our theory (Essay on Correctness of Meta Reasoning, as
; referenced in chk-evaluator-use-in-rule) doesn't address this possibility, so
; until someone complains we'll keep this simple and disallow attachments for
; each member of fns, whether or not its attachment is used in evaluation.

  (cond ((endp fns) wrld)
        (t (mark-attachment-disallowed2
            (cdr fns)
            msg
            (let ((old-prop (getpropc (car fns) 'attachment nil wrld)))
              (cond ((and (consp old-prop)
                          (eq (car old-prop)
                              :attachment-disallowed))
                     wrld)
                    (t (putprop (car fns)
                                'attachment
                                (cons :attachment-disallowed msg)
                                wrld))))))))

(defun mark-attachment-disallowed1 (canonical-fns msg wrld)
  (cond ((endp canonical-fns) wrld)
        (t (mark-attachment-disallowed1
            (cdr canonical-fns)
            msg
            (mark-attachment-disallowed2 (siblings (car canonical-fns) wrld)
                                         msg
                                         wrld)))))

(defun mark-attachment-disallowed (meta-fns ev msg wrld)

; We mark as unattachable all functions ancestral in both meta-fns and ev.  We
; obtain that set of common ancestors by restricting first to canonical
; functions, and then taking all siblings (in mark-attachment-disallowed1)
; before marking (in mark-attachment-disallowed2).

  (mark-attachment-disallowed1
   (intersection-eq (canonical-ancestors-lst meta-fns wrld)
                    (canonical-ancestors-lst (list ev) wrld))
   msg
   wrld))

(defun add-meta-rule (rune nume trigger-fns well-formedness-guarantee
                           term backchain-limit wrld)
  (mv-let
   (hyp eqv ev x a fn mfc-symbol)
   (interpret-term-as-meta-rule term)
   (mv-let
    (hyp-fn extra-fns)
    (meta-rule-hypothesis-functions hyp ev x a mfc-symbol)
    (declare (ignore extra-fns))
    (cond
     ((or (null hyp-fn) (null eqv))
      (er hard 'add-meta-rule
          "Add-meta-rule broke on args ~x0!  It seems to be out of sync with ~
           chk-acceptable-meta-rule."
          (list rune nume trigger-fns term)))
     (t

; Note: If a :meta rule has a :WELL-FORMEDNESS-GUARANTEE spec, then
; well-formedness-guarantee is (name fn thm-name1 hyp-fn thm-name2)
; . combined-arities-alist), where the hyp-fn and thm-name2 entries are omitted
; if there is no hyp-fn.  If no :WELL-FORMEDNESS-GUARANTEE was specified, the
; well-formedness-guarantee is nil.  The :heuristic-info field of the resulting
; rule contains the well-formedness-guarantee.

      (let* ((arity-alist (cdr well-formedness-guarantee))
             (wrld1
              (add-meta-rule1 trigger-fns
                              (make rewrite-rule
                                    :rune rune
                                    :nume nume
                                    :hyps (if (eq hyp-fn t) nil hyp-fn)
                                    :equiv eqv
                                    :lhs fn
                                    :var-info nil ; unused
                                    :rhs (if mfc-symbol 'extended nil)
                                    :subclass 'meta
                                    :heuristic-info well-formedness-guarantee
                                    :backchain-limit-lst
                                    (rule-backchain-limit-lst
                                     backchain-limit
                                     nil ; hyps (ignored for :meta)
                                     wrld
                                     :meta))
                              (mark-attachment-disallowed
                               (if (eq hyp-fn t)
                                   (list fn)
                                   (list hyp-fn fn))
                               ev
                               (msg "it supports both evaluator and meta functions ~
                             used in :META rule ~x0"
                                    (base-symbol rune))
                               wrld)))
             (wrld2 (global-set 'never-untouchable-fns
                                (add-new-never-untouchable-fns
                                 (strip-cars arity-alist)
                                 well-formedness-guarantee
                                 (global-val 'never-untouchable-fns wrld1))
                                wrld1)))
        wrld2))))))

;---------------------------------------------------------------------------
; Section:  Destructor :ELIM Rules

(mutual-recursion

(defun destructors (term ans)

; Union-equal into ans all of the subterms of term of the form (fn v1
; ... vn) where fn is a symbol and the vi are distinct variables.

  (cond ((or (variablep term)
             (fquotep term)
             (flambda-applicationp term))
         ans)
        (t (destructors-lst (fargs term)
                            (cond ((and (fargs term)
                                        (all-variablep (fargs term))
                                        (no-duplicatesp-equal (fargs term)))
                                   (add-to-set-equal term ans))
                                  (t ans))))))

(defun destructors-lst (lst ans)
  (cond ((null lst) ans)
        (t (destructors-lst (cdr lst)
                            (destructors (car lst) ans)))))

)

(defun strip-ffn-symbs (lst)
  (cond ((null lst) nil)
        (t (cons (ffn-symb (car lst))
                 (strip-ffn-symbs (cdr lst))))))

(defun chk-acceptable-elim-rule1 (name vars dests ctx wrld state)
  (cond
   ((null dests) (value nil))
   ((not (subsetp-eq vars (fargs (car dests))))
    (er soft ctx
        "~x0 is an unacceptable destructor elimination rule because ~
         the destructor term ~x1 does not mention ~&2.  See :DOC elim."
        name
        (car dests)
        (set-difference-eq vars (fargs (car dests)))))
   ((getpropc (ffn-symb (car dests)) 'eliminate-destructors-rule nil wrld)
    (er soft ctx
        "~x0 is an unacceptable destructor elimination rule because ~
         we already have a destructor elimination rule for ~x1, ~
         namely ~x2, and we do not support more than one elimination rule ~
         for the same function symbol."
        name
        (ffn-symb (car dests))
        (getpropc (ffn-symb (car dests)) 'eliminate-destructors-rule nil wrld)))
   (t (chk-acceptable-elim-rule1 name vars (cdr dests) ctx wrld state))))

(defun chk-acceptable-elim-rule (name term ctx wrld state)
  (let ((lst (unprettyify term)))
    (case-match
     lst
     (((& . (equiv lhs rhs)))
      (cond
       ((not (equivalence-relationp equiv wrld))
        (er soft ctx
            "~x0 is an unacceptable destructor elimination rule ~
             because ~x1 is not a known equivalence relation.  See ~
             :DOC elim."
            name equiv))
       ((nvariablep rhs)
        (er soft ctx
            "~x0 is an unacceptable destructor elimination rule ~
             because the right-hand side of its conclusion, ~x1, is ~
             not a variable symbol.  See :DOC elim."
            name rhs))
       (t
        (let ((dests (destructors lhs nil)))
          (cond
           ((null dests)
            (er soft ctx
                "~x0 is an unacceptable destructor elimination rule ~
                 because the left-hand side of its conclusion, ~x1, ~
                 does not contain any terms of the form (fn v1 ... ~
                 vn), where fn is a function symbol and the vi are ~
                 all distinct variables.  See :DOC elim."
                name lhs))
           ((not (no-duplicatesp-equal (strip-ffn-symbs dests)))
            (er soft ctx
                "~x0 is an unacceptable destructor elimination rule ~
                 because the destructor terms, ~&1, include more than ~
                 one occurrence of the same function symbol.  See :DOC ~
                 elim."
                name dests))
           ((occur rhs (sublis-expr (pairlis-x2 dests *t*) lhs))
            (er soft ctx
                "~x0 is an unacceptable destructor elimination rule ~
                 because the right-hand side of the conclusion, ~x1, ~
                 occurs in the left-hand side, ~x2, in places other ~
                 than the destructor term~#3~[~/s~] ~&3.  See :DOC ~
                 elim."
                name rhs lhs dests))
           (t (chk-acceptable-elim-rule1 name (all-vars term)
                                         dests ctx wrld state)))))))
     (&
      (er soft ctx
          "~x0 is an unacceptable destructor elimination rule because ~
           its conclusion is not of the form (equiv lhs rhs).  See ~
           :DOC elim."
          name)))))

; and to add an :ELIM rule:

(defun add-elim-rule1 (rune nume hyps equiv lhs rhs lst dests wrld)

; Lst is a tail of dests and contains the destructor terms for which we
; have not yet added a rule.  For each destructor in lst we add an elim
; rule to wrld.

  (cond ((null lst) wrld)
        (t (let* ((dest (car lst))
                  (rule (make elim-rule
                              :rune rune
                              :nume nume
                              :hyps hyps
                              :equiv equiv
                              :lhs lhs
                              :rhs rhs
                              :crucial-position
                              (- (length (fargs dest))
                                 (length (member-eq rhs (fargs dest))))
                              :destructor-term dest
                              :destructor-terms dests)))
             (add-elim-rule1 rune nume hyps equiv lhs rhs (cdr lst) dests
                             (putprop (ffn-symb dest)
                                      'eliminate-destructors-rule
                                      rule wrld))))))

(defun add-elim-rule (rune nume term wrld)
  (let* ((lst (unprettyify term))
         (hyps (caar lst))
         (equiv (ffn-symb (cdar lst)))
         (lhs (fargn (cdar lst) 1))
         (rhs (fargn (cdar lst) 2))
         (dests (reverse (destructors lhs nil))))
    (add-elim-rule1 rune nume hyps equiv lhs rhs dests dests wrld)))

;---------------------------------------------------------------------------
; Section:  :GENERALIZE Rules

(defun chk-acceptable-generalize-rule (name term ctx wrld state)

; This function is really a no-op.  It exists simply for regularity.

  (declare (ignore name term ctx wrld))
  (value nil))

(defun add-generalize-rule (rune nume term wrld)
  (global-set 'generalize-rules
              (cons (make generalize-rule
                          :rune rune
                          :nume nume
                          :formula term)
                    (global-val 'generalize-rules wrld))
              wrld))

;---------------------------------------------------------------------------
; Section:  :TYPE-PRESCRIPTION Rules

(defun find-type-prescription-pat (term ens wrld)

; Suppose term is the translation of a legal type-prescription lemma
; conclusion, e.g.,
; (or (rationalp (fn x x y))
;     (and (symbolp (fn x x y))
;          (not (equal (fn x x y) nil)))
;     (consp (fn x x y))
;     (equal (fn x x y) y)).
; In general, term will be some IF expression giving type or equality
; information about some function application, e.g., (fn x x y) in the
; example above.  This function attempts to identify the term whose
; type is described.  The function is merely heuristic in that if it
; fails (returns nil) the user will have to tell us what term to use.

  (cond ((variablep term) nil)
        ((fquotep term) nil)
        ((flambda-applicationp term) nil)
        ((eq (ffn-symb term) 'if)
         (or (find-type-prescription-pat (fargn term 1) ens wrld)
             (find-type-prescription-pat (fargn term 2) ens wrld)
             (find-type-prescription-pat (fargn term 3) ens wrld)))
        ((eq (ffn-symb term) 'not)
         (find-type-prescription-pat (fargn term 1) ens wrld))
        ((eq (ffn-symb term) '<)
         (if (quotep (fargn term 1))
             (fargn term 2)
             (fargn term 1)))
        ((eq (ffn-symb term) 'equal)
         (cond ((or (variablep (fargn term 1))
                    (fquotep (fargn term 1)))
                (fargn term 2))
               ((or (variablep (fargn term 2))
                    (fquotep (fargn term 2)))
                (fargn term 1))
               (t nil)))
        ((let ((recog-tuple
                (most-recent-enabled-recog-tuple (ffn-symb term)
                                                 (global-val 'recognizer-alist
                                                             wrld)
                                                 ens)))
           (and recog-tuple

; An ACL2(h) "everything" regression in August 2014 failed to certify community
; book centaur/aig/aiger-help.lisp when we added the following condition.  So
; we modified two defthm forms in that book by making the :typed-term explicit.

; Note that the most-recent-enabled-recog-tuple is the one used in
; assume-true-false-rec.  So here, we only consider that tuple; if it is not
; :strongp, then we do not look for a less recent enabled recog-tuple that is
; :strongp.

                (access recognizer-tuple recog-tuple :strongp)))
         (fargn term 1))
        (t term)))

(defun type-prescription-disjunctp (var term)

; Warning: Keep this function in sync with
; subst-nil-into-type-prescription-disjunct.

; Var is a variable and term is a term.  Essentially we are answering
; the question, ``is term a legal disjunct in the conclusion of a
; type-prescription about pat'' for some term pat.  However, by this
; time all occurrences of the candidate pat in the conclusion have
; been replaced by some new variable symbol and that symbol is var.
; Furthermore, we will have already checked that the resulting
; generalized concl contains no variables other than var and the
; variables occurring in pat.  So what this function actually checks
; is that term is either (equal var other-var), (equal other-var var),
; or else is some arbitrary term whose all-vars is identically the
; singleton list containing var.

; If term is one of the two equality forms above, then we know
; other-var is a variable in pat and that term is one of the disjuncts
; that says ``pat sometimes returns this part of its input.''  If term
; is of the third form, then it might have come from a
; type-restriction on pat, e.g., (and (rationalp pat) (<= pat 0)) or
; (compound-recognizerp pat), or it might be some pretty arbitrary
; term.  However, we at least know that it contains no variables at
; all outside the occurrences of pat and that means that we can trust
; type-set-implied-by-term to tell us what this term implies about
; pat.

  (cond ((variablep term)

; This could be a type-prescription disjunct in the generalized concl
; only if term is var, i.e., the original disjunct was equivalent to
; (not (equal pat 'nil)).

         (eq term var))
        ((fquotep term) nil)
        ((flambda-applicationp term) nil)
        (t (or (and (eq (ffn-symb term) 'equal)
                    (or (and (eq var (fargn term 1))
                             (variablep (fargn term 2))
                             (not (eq (fargn term 1) (fargn term 2))))
                        (and (eq var (fargn term 2))
                             (variablep (fargn term 1))
                             (not (eq (fargn term 2) (fargn term 1))))))
               (equal (all-vars term) (list var))))))

(defun type-prescription-conclp (var concl)

; Warning: Keep this function in sync with
; subst-nil-into-type-prescription-concl.

; Var is a variable and concl is a term.  We recognize those concl
; that are the macroexpansion of (or t1 ... tk) where every ti is a
; type-prescription-disjunctp about var.

; In the grand scheme of things, concl was obtained from the
; conclusion of an alleged :TYPE-PRESCRIPTION lemma about some term,
; pat, by replacing all occurrences of pat with some new variable,
; var.  We also know that concl involves no variables other than var
; and those that occurred in pat.

  (cond ((variablep concl) (type-prescription-disjunctp var concl))
        ((fquotep concl) nil)
        ((flambda-applicationp concl) nil)
        ((eq (ffn-symb concl) 'if)
         (cond ((equal (fargn concl 1) (fargn concl 2))
                (and (type-prescription-disjunctp var (fargn concl 1))
                     (type-prescription-conclp var (fargn concl 3))))
               (t (type-prescription-disjunctp var concl))))
        (t (type-prescription-disjunctp var concl))))

(defun subst-nil-into-type-prescription-disjunct (var term)

; Warning:  Keep this function in sync with type-prescription-disjunctp.

; We assume var and term are ok'd by type-prescription-disjunctp.
; If term is of the form (equal var other-var) or (equal other-var var)
; we replace it by nil, otherwise we leave it alone.

  (cond ((variablep term) term)

; The next two cases never happen, but we leave them in just to make
; sure we copy term modulo this substitution.

        ((fquotep term) term)
        ((flambda-applicationp term) term)
        ((and (eq (ffn-symb term) 'equal)
              (or (and (eq var (fargn term 1))
                       (variablep (fargn term 2))
                       (not (eq (fargn term 1) (fargn term 2))))
                  (and (eq var (fargn term 2))
                       (variablep (fargn term 1))
                       (not (eq (fargn term 2) (fargn term 1))))))
         *nil*)
        (t term)))

(defun subst-nil-into-type-prescription-concl (var concl)

; Warning:  Keep this function in sync with type-prescription-conclp.

; We know that var and concl are ok'd by type-prescription-conclp.  So
; concl is a disjunction of terms, some of which are of the form
; (equal var other-var).  We replace each of those disjuncts in concl
; with nil so as to produce that part of concl that is a disjunct of
; type restrictions.  That is, if our answer is basic-term and vars is
; the list of all the other-vars in concl, then concl is equivalent to
; basic-term disjoined with the equality between var and each variable
; in vars.

  (cond
   ((variablep concl) (subst-nil-into-type-prescription-disjunct var concl))

; The next two cases never happen.

   ((fquotep concl) concl)
   ((flambda-applicationp concl) concl)
   ((eq (ffn-symb concl) 'if)
    (cond ((equal (fargn concl 1) (fargn concl 2))
           (let ((temp (subst-nil-into-type-prescription-disjunct var
                                                                  (fargn concl 1))))
             (fcons-term* 'if
                          temp
                          temp
                          (subst-nil-into-type-prescription-concl var
                                                                  (fargn concl 3)))))
          (t (subst-nil-into-type-prescription-disjunct var concl))))
   (t (subst-nil-into-type-prescription-disjunct var concl))))

(defun unprettyify-tp (term)

; This variant of unprettyify avoids giviing special treatment to conjunctions,
; and hence is suitable for parsing terms into type-prescription rules.  Unlike
; unprettyify, it returns (mv hyps concl).

  (case-match term
    (('implies t1 t2)
     (mv-let (hyps concl)
             (unprettyify-tp t2)
             (mv (append? (flatten-ands-in-lit t1)
                          hyps)
                 concl)))
    ((('lambda vars body) . args)
     (unprettyify-tp (subcor-var vars args body)))
    (& (mv nil (remove-lambdas term)))))

(defun destructure-type-prescription (name typed-term term ens wrld)

; Warning: Keep this in sync with the :BACKCHAIN-LIMIT-LST case of
; translate-rule-class-alist.

; Note: This function does more than "destructure" term into a
; :TYPE-PRESCRIPTION rule, it checks a lot of conditions too and
; computes type-sets.  However, it doesn't actually cause errors --
; note that state is not among its arguments -- but may return an
; error message suitable for printing with ~@.  We return many
; results.  The first is nil or an error message.  The rest are
; relevant only if the first is nil and are described below.  We code
; this way because the destructuring and checking are inextricably
; intertwined and when we destructure in order to add the rule, we do
; not have state around.

; We determine whether term is a suitable :TYPE-PRESCRIPTION lemma
; about the term typed-term.  Term is suitable as a :TYPE-
; PRESCRIPTION lemma about typed-term if the conclusion of term,
; concl, is a disjunction of type-prescription disjuncts about
; typed-term.  Each disjunct must either be an equality between
; typed-term and one of the variables occurring in typed-term, or else
; must be some term, such as (and (rationalp typed-term) (<=
; typed-term 0)) or (compound-recognizerp typed-term), that mentions
; typed-term and contains no variables outside those occurrences of
; typed-term.

; If term is unsuitable we return an error msg and nils.  Otherwise we
; return nil and four more things: the list of hyps, a basic type
; set, a list of variables, and a ttree.  In that case, term implies
; that when hyps are true, the type-set of typed-term is the union of the
; basic type-set together with the type-sets of the variables listed.
; The ttree records our dependencies on compound recognizers or other
; type-set lemmas in wrld.  The ttree returned contains no 'assumption
; tags.

  (let ((term (remove-guard-holders term)))
    (mv-let
     (hyps concl)
     (unprettyify-tp term)
     (cond
      ((or (variablep typed-term)
           (fquotep typed-term)
           (flambda-applicationp typed-term))
       (mv (msg "The :TYPED-TERM, ~x0, provided in the :TYPE-PRESCRIPTION ~
                 rule class for ~x1 is illegal because it is a variable, ~
                 constant, or lambda application.  See :DOC type-prescription."
                typed-term name)
           nil nil nil nil nil))
      ((dumb-occur-lst typed-term hyps)
       (mv (msg "The :TYPED-TERM, ~x0, of the proposed :TYPE-PRESCRIPTION ~
                 rule ~x1 occurs in the hypotheses of the rule.  This would ~
                 cause ``infinite backchaining'' if we permitted ~x1 as a ~
                 :TYPE-PRESCRIPTION.  (Don't feel reassured by this check:  ~
                 infinite backchaining may occur anyway since it can be ~
                 caused by the combination of several rules.)"
                typed-term
                name)
           nil nil nil nil nil))
      (t
       (let ((all-vars-typed-term (all-vars typed-term))
             (all-vars-concl (all-vars concl)))
         (cond
          ((not (subsetp-eq all-vars-concl all-vars-typed-term))
           (mv (msg "~x0 cannot be used as a :TYPE-PRESCRIPTION rule as ~
                     described by the given rule class because the ~
                     :TYPED-TERM, ~x1, does not contain the ~#2~[variable ~&2 ~
                     which is~/variables ~&2 which are~] mentioned in the ~
                     conclusion.  See :DOC type-prescription."
                    name
                    typed-term
                    (set-difference-eq all-vars-concl all-vars-typed-term))
               nil nil nil nil nil))
          (t (let* ((new-var (genvar (find-pkg-witness typed-term)
                                     "TYPED-TERM" nil all-vars-typed-term))
                    (concl1 (subst-expr new-var typed-term concl)))
               (cond
                ((not (type-prescription-conclp new-var concl1))
                 (mv (msg "~x0 is an illegal :TYPE-PRESCRIPTION lemma of the ~
                           class indicated because its conclusion is not a ~
                           disjunction of type restrictions about the ~
                           :TYPED-TERM ~x1.  See :DOC type-prescription."
                          name typed-term)
                     nil nil nil nil nil))
                (t (let ((vars (remove1-eq new-var (all-vars concl1)))
                         (basic-term
                          (subst-nil-into-type-prescription-concl new-var concl1)))

; Once upon a time, briefly, we got the type-set implied by (and hyps
; basic-term), thinking that we might need hyps to extract type
; information from basic-term.  But the only var in basic-term is new
; so the hyps don't help much.  The idea was to permit lemmas like
; (implies (rationalp x) (<= 0 (* x x))).  Note that the guard for <=
; is satisfied only if we know that the product is rational, which we
; can deduce from the hyp.  But when we try to process that lemma, the
; typed-term in generalized away, e.g., (implies (rationalp x) (<= 0
; Z)).  Thus, the hyps don't help: the only var in basic-term is
; new-var.  You could conjoin hyps and concl1 and THEN generalize the
; typed-term to new-var, thereby linking the occurrences of typed-term
; in the hyps to those in the concl.  But this is very unhelpful
; because it encourages the creation of lemmas that contain the
; typed-term in the hyps.  That is bad because type-set then
; infinitely backchains.  In the face of these difficulties, we have
; reverted back to the simplest treatment of type-prescription lemmas.

                     (mv-let
                      (ts ttree)
                      (type-set-implied-by-term new-var nil basic-term ens wrld
                                                nil)
                      (cond ((ts= ts *ts-unknown*)
                             (mv (msg "~x0 is a useless :TYPE-PRESCRIPTION ~
                                       lemma because we can deduce no type ~
                                       restriction about its :TYPED-TERM ~
                                       (below represented by ~x1) from the ~
                                       generalized conclusion, ~p2.  See :DOC ~
                                       type-prescription."
                                      name
                                      new-var
                                      (untranslate concl1 t wrld))
                                 nil nil nil nil nil))
                            ((not (assumption-free-ttreep ttree))

; If type-set-implied-by-term requires that we force some assumptions,
; it is not clear what to do.  For example, it is possible that the
; assumptions involve new-var, which makes no sense in the context of
; an application of this rule.  My intuition tells me this error will
; never arise because for legal concls, basic-term is guard free.  If
; there are :TYPE-PRESCRIPTION lemmas about the compound recognizers
; in it, they could have forced hyps.  I think it unlikely, since the
; recognizers are Boolean.  Well, I guess I could add a
; :TYPE-PRESCRIPTION lemma that said that under some forced hyp the
; compound-recognizer was actually t.  In that case, the forced hyp
; would necessarily involve new-var, since that is the only argument
; to a compound recognizer.  It would be interesting to see a living
; example of this situation.

                             (mv
                              (if (tagged-objectsp 'fc-derivation ttree)
                                  (er hard 'destructure-type-prescription
                                      "Somehow an 'fc-derivation, ~x0, has ~
                                       found its way into the ttree returned ~
                                       by type-set-implied-by-term."
                                      (car (tagged-objects 'fc-derivation
                                                           ttree)))
                                (msg "~x0 is an illegal :TYPE-PRESCRIPTION ~
                                      lemma because in determining the ~
                                      type-set implied for its :TYPED-TERM, ~
                                      ~x1, by its conclusion the ~
                                      ~#2~[assumption ~&2 was~/assumptions ~
                                      ~&2 were~] and our :TYPE-PRESCRIPTION ~
                                      preprocessor, ~
                                      CHK-ACCEPTABLE-TYPE-PRESCRIPTION-RULE, ~
                                      does not know how to handle this ~
                                      supposedly unusual situation.  It would ~
                                      be very helpful to report this error to ~
                                      the authors."
                                     name typed-term
                                     (tagged-objects 'assumption ttree)))
                              nil nil nil nil nil))
                            (t (mv nil hyps concl ts vars ttree))))))))))))))))

(defun add-type-prescription-rule (rune nume typed-term term
                                        backchain-limit-lst ens wrld quietp)
  (mv-let
   (erp hyps concl ts vars ttree)
   (destructure-type-prescription (base-symbol rune)
                                  typed-term term ens wrld)
   (declare (ignore concl ttree))
   (cond
    (erp
     (cond (quietp

; We pass in the quietp flag when attempting to add a :type-prescription rule
; indirectly, as under a defequiv event.  The following example causes the
; following code to be executed.  Otherwise, we see an unfortunate error.  (Or
; perhaps we really should see that error, since we will be unable to add the
; booleanp type prescription for the equivalence relation.  However, then we
; will need to re-work community book
; books/workshops/2000/manolios/pipeline/pipeline/deterministic-systems/128/top/ma128-isa128.lisp.)

;  (defun my-equal (x y)
;    (equal x y))
;
;  (in-theory (disable
;              (:type-prescription my-equal)
;              (:COMPOUND-RECOGNIZER BOOLEANP-COMPOUND-RECOGNIZER)))
;
;  (defequiv my-equal
;    :hints (("Goal" :in-theory (enable booleanp))))
;
; ; In v2-7 and presumably earlier, the above leads us to a type-prescription
; ; rule with a NIL :basic-ts field:
;
;   ACL2 !>(car (getpropc 'my-equal 'type-prescriptions t))
;   (NIL (1685 MY-EQUAL X Y)
;        NIL
;        (NIL :EQUIVALENCE MY-EQUAL-IS-AN-EQUIVALENCE)
;        BOOLEANP (MY-EQUAL X Y))
;   ACL2 !>

            (prog2$ (cw "~%NOTE:  ACL2 is unable to create a proposed ~
                          type-prescription rule from the term ~x0 for ~
                          :typed-term ~x1, so this proposed rule is not being ~
                          added.~|"
                        term typed-term)
                    wrld))
           (t
            (er hard 'add-type-prescription-rule
                "Unable to process this :TYPE-PRESCRIPTION rule.  A possible ~
                  explanation is that we are in the second pass of an ~
                  include-book or encapsulate, and although this rule was ~
                  legal in the first pass, it is not legal in the second pass. ~
                   For example, the rule may depend on a preceding ~
                  :COMPOUND-RECOGNIZER rule local to this encapsulate or ~
                  include-book.  The usual error message for ~
                  :TYPE-PRESCRIPTION rules now follows.~|~%~@0"
                erp))))
    (t
     (putprop (ffn-symb typed-term)
              'type-prescriptions
              (cons (make type-prescription
                          :rune rune
                          :nume nume
                          :term typed-term
                          :hyps hyps
                          :backchain-limit-lst
                          (rule-backchain-limit-lst
                           backchain-limit-lst hyps wrld :ts)
                          :basic-ts ts
                          :vars vars
                          :corollary term)
                    (getpropc (ffn-symb typed-term) 'type-prescriptions nil
                              wrld))
              wrld)))))

(defun strong-compound-recognizer-p (fn recognizer-alist ens)
  (cond ((endp recognizer-alist) nil)
        ((let ((recog-tuple (car recognizer-alist)))
           (and (eq fn (access recognizer-tuple recog-tuple :fn))
                (access recognizer-tuple recog-tuple :strongp)
                (enabled-numep (access recognizer-tuple recog-tuple :nume)
                               ens)))
         t)
        (t (strong-compound-recognizer-p fn (cdr recognizer-alist) ens))))

(defun warned-non-rec-fns-for-tp (term recognizer-alist ens wrld)
  (cond ((or (variablep term)
             (fquotep term))
         nil)
        ((flambdap (ffn-symb term))
         (cons (ffn-symb term)
               (non-recursive-fnnames-lst (fargs term) ens wrld)))
        ((eq (ffn-symb term) 'if)

; Type-set and assume-true-false explore the top-level IF structure in such a
; way that NOT and strong compound recognizers aren't problems.

         (union-equal
          (warned-non-rec-fns-for-tp
           (fargn term 1) recognizer-alist ens wrld)
          (union-equal
           (warned-non-rec-fns-for-tp
            (fargn term 2) recognizer-alist ens wrld)
           (warned-non-rec-fns-for-tp
            (fargn term 3) recognizer-alist ens wrld))))
        ((eq (ffn-symb term) 'not)
         (warned-non-rec-fns-for-tp (fargn term 1) recognizer-alist ens wrld))
        ((strong-compound-recognizer-p (ffn-symb term) recognizer-alist ens)

; We noticed in August 2014 that only the most-recent-enabled-recog-tuple is
; relevant here; see assume-true-false-rec.  But this code has been in place
; for a long time, and it's not terribly unreasonable, since enabled status can
; change.

         (non-recursive-fnnames-lst (fargs term) ens wrld))
        (t (non-recursive-fnnames term ens wrld))))

(defun warned-non-rec-fns-tp-hyps1 (hyps recognizer-alist ens wrld acc)
  (cond ((endp hyps) acc)
        (t (warned-non-rec-fns-tp-hyps1
            (cdr hyps)
            recognizer-alist ens wrld
            (let ((hyp (if (and (nvariablep (car hyps))
;                               (not (fquotep (car hyps))) ; implied by:
                                (member-eq (ffn-symb (car hyps))
                                           '(force case-split)))
                           (fargn (car hyps) 1)
                         (car hyps))))
              (cond (acc (union-equal (warned-non-rec-fns-for-tp
                                       hyp recognizer-alist ens wrld)
                                      acc))
                    (t (warned-non-rec-fns-for-tp
                        hyp recognizer-alist ens wrld))))))))

(defun warned-non-rec-fns-tp-hyps (hyps ens wrld)
  (warned-non-rec-fns-tp-hyps1 hyps
                               (global-val 'recognizer-alist wrld)
                               ens wrld nil))

(defun chk-acceptable-type-prescription-rule (name typed-term term
                                                   backchain-limit-lst
                                                   ctx ens wrld state)

; Like all individual rule checkers, we either cause an error or
; return a ttree that records our dependencies on lemmas.

  (mv-let
   (erp hyps concl ts vars ttree)
   (destructure-type-prescription name typed-term term ens wrld)
   (declare (ignore ts))
   (cond
    (erp (er soft ctx "~@0" erp))
    (t (let* ((weakp

; We avoid calling weak-type-prescription-rulep if we are going to ignore the
; warning anyhow.  Otherwise, we construct a temporary world.

; We check (null vars) because otherwise, the warning can be needlessly harsh.
; For example, try submitting these events in a fresh ACL2 session after
; removing the (null vars) check from this function.

; (defstub foo (x) x)
; (defaxiom foo-type-prescription
;           (or (integerp (foo y))
;               (equal (foo y) y))
;           :rule-classes :type-prescription)

; Then the warning will be printed without the (null vars) check, even though
; the rule above is a perfectly good one.

               (and (null vars)
                    (not (warning-disabled-p "Type prescription"))
                    (let* ((nume (get-next-nume wrld))
                           (rune (list :type-prescription name))
                           (wrld2 (add-type-prescription-rule
                                   rune nume typed-term term
                                   backchain-limit-lst
                                   ens wrld nil)))
                      (mv-let
                       (ts ttree)
                       (type-set (remove-guard-holders term)
                                 nil t nil ens wrld2 nil nil nil)
                       (or (not (assumption-free-ttreep ttree))
                           (ts-intersectp ts *ts-nil*)))))))
         (pprogn
          (cond
           (weakp
            (warning$ ctx ("Type prescription")
                      "The :type-prescription rule generated for ~x0 may be ~
                       weaker than you expect.  Note that the conclusion of a ~
                       :type-prescription rule is stored as a numeric type ~
                       rather than a term.  It so happens that~|  ~p1~|is not ~
                       provable using type-set reasoning in the extension of ~
                       the current world by that rule.  Because information ~
                       has been lost, this rule probably does not have the ~
                       strength that it appears to have.~@2"
                      name
                      (untranslate term t wrld)
                      (if (ffnnamep '< concl)
                          "  The conclusion of this rule contains a call of ~
                           function symbol < (or a macro <=, >, or >=), so it ~
                           may be worth considering making a :linear rule; ~
                           see :DOC linear."
                        "")))
           (t state))
          (let* ((warned-non-rec-fns
                  (and (not (warning-disabled-p "Non-rec"))
                       (warned-non-rec-fns-tp-hyps hyps ens wrld)))
                 (warned-free-vars
                  (and (not (warning-disabled-p "Free"))
                       (free-vars-in-hyps hyps
                                          (all-vars typed-term)
                                          wrld)))
                 (inst-hyps (and warned-free-vars ; optimization
                                 (hyps-that-instantiate-free-vars
                                  warned-free-vars hyps))))
            (pprogn
             (cond
              (warned-non-rec-fns
               (warning$ ctx ("Non-rec")
                         `("The hypothesis of the :type-prescription rule ~
                            generated from ~x0 contains the non-recursive ~
                            function symbol~#1~[~/s~] ~&1.  Since the ~
                            hypotheses of :type-prescription rules are ~
                            relieved by type reasoning alone (and not ~
                            rewriting) ~#1~[this function is~/these functions ~
                            are~] liable to make the rule inapplicable.  See ~
                            :DOC type-prescription."
                           (:doc type-prescription)
                           (:name ,name)
                           (:non-recursive-fns
                            ,(hide-lambdas warned-non-rec-fns))
                           (:rule-class :type-prescription))
                         name (hide-lambdas warned-non-rec-fns)))
              (t state))
             (cond
              (warned-free-vars
               (warning$ ctx ("Free")
                         `("The :type-prescription rule generated from ~x0 ~
                            contains the free variable~#1~[ ~&1.  This ~
                            variable~/s ~&1.  These variables~] will be ~
                            chosen by searching for instances of ~&2 among ~
                            the hypotheses of conjectures being rewritten.  ~
                            This is generally a severe restriction on the ~
                            applicability of the :type-prescription rule."
                           (:free-variables ,warned-free-vars)
                           (:instantiated-hyps ,inst-hyps)
                           (:name ,name)
                           (:rule-class :type-prescription))
                         name warned-free-vars inst-hyps))
              (t state))
             (cond
              ((and warned-free-vars
                    (forced-hyps inst-hyps))
               (warning$ ctx ("Free")
                         "For the forced ~#0~[hypothesis~/hypotheses~], ~&1, ~
                          used to instantiate free variables we will search ~
                          for ~#0~[an instance of the argument~/instances of ~
                          the arguments~] rather than ~#0~[an ~
                          instance~/instances~] of the FORCE or CASE-SPLIT ~
                          ~#0~[term itself~/terms themselves~].  If a search ~
                          fails for such a hypothesis, we will cause a case ~
                          split on the partially instantiated hypothesis.  ~
                          Note that this case split will introduce a ``free ~
                          variable'' into the conjecture.  While sound, this ~
                          will establish a goal almost certain to fail since ~
                          the restriction described by this apparently ~
                          necessary hypothesis constrains a variable not ~
                          involved in the problem.  To highlight this oddity, ~
                          we will rename the free variables in such forced ~
                          hypotheses by prefixing them with ~
                          ``UNBOUND-FREE-''.  This is not guaranteed to ~
                          generate a new variable but at least it generates ~
                          an unusual one.  If you see such a variable in a ~
                          subsequent proof (and did not introduce them ~
                          yourself) you should consider the possibility that ~
                          the free variables of this type-prescription rule ~
                          were forced into the conjecture."
                         (if (null (cdr (forced-hyps inst-hyps))) 0 1)
                         (forced-hyps inst-hyps)))
              (t state))
             (value ttree)))))))))

;---------------------------------------------------------------------------
; Section:  :EQUIVALENCE Rules

; For a rule to acceptable as an :EQUIVALENCE rule, it must state the
; Boolean-ness, reflexivity, symmetry, and transitivity of a 2-place
; function symbol.  We make the user type in the desired formula and
; then check that he typed a suitable one.  This way we can define a
; simple macro that generates a suitable defthm event (rather than
; have to produce a new event type with all the prove-level hint
; passing mechanism).  To check that the formula is suitable we
; generate a cannonical formula and check that the given one subsumes
; it.  To add an :EQUIVALENCE rule we add a 'coarsenings property to
; the function symbol and also set up an initial 'congruences property
; for it.

; Some of the simple functions below anticipate the day we allow n-ary
; equivalences (n>2) but don't be fooled into thinking we allow it
; today!

(defun boolean-fn (fn)

; The name boolean is not usable for definitions in Allegro, because
; it's in the COMMON-LISP package.  So, we'd better not use that name
; here.

  `(booleanp (,fn x y)))

(defun reflexivity (fn)

; In this function we expect fn to have arity 2.

  `(,fn x x))

(defun symmetry (fn)

; This function expects fn to have arity 2.

  `(implies (,fn x y)
            (,fn y x)))

(defun transitivity (fn)

; This function expects fn to have arity 2.

  `(implies (and (,fn x y)
                 (,fn y z))
            (,fn x z)))

(defun equivalence-relation-condition (fn)

; This function expects fn to have arity 2.  We generate a formula that states
; that fn is Boolean, reflexive, symmetric, and transitive.

; There are at least two reasons we require equivalence relations to be
; Boolean.  One is to simplify assume-true-false.  When we assume (fn x y)
; true, we pair it with *ts-t* rather than its full type-set take away
; *ts-nil*.  The other is that from reflexivity and Boolean we get than fn is
; commutative and so can freely use (fn y x) for (fn x y).  If we did not have
; the Boolean condition we would have to be more careful about, say,
; commutative unification.

  `(and ,(boolean-fn fn)
        ,(reflexivity fn)
        ,(symmetry fn)
        ,(transitivity fn)))

(defun find-candidate-equivalence-relation (clauses)

; Clauses is a list of clauses.  We look for one of the form
; ((fn x x)) and if we find it, we return fn; else nil.  See
; chk-acceptable-equivalence-rule.

  (cond ((null clauses) nil)
        (t (let ((clause (car clauses)))
             (case-match clause
                         (((fn x x))
                          (declare (ignore x))
                          fn)
                         (& (find-candidate-equivalence-relation (cdr clauses))))))))

(defun collect-problematic-pre-equivalence-rule-names (lst)

; A problematic pre-equivalence rule about a soon-to-be-named
; equivalence relation equiv is one whose conclusion is (equiv lhs
; rhs), where lhs is not a variable or a quote.  Such a rule could be
; stored as a :REWRITE rule for lhs after equiv is known to be an
; equivalence relation; but before that, such a rule is stored to
; rewrite (equiv lhs rhs) to T.  Assuming lst is all the :REWRITE rules
; for equiv, we return the list of names of the problematic rules.

  (cond ((null lst) nil)
        ((and (eq (access rewrite-rule (car lst) :equiv) 'equal)
              (equal (access rewrite-rule (car lst) :rhs) *t*)
              (not (variablep (fargn (access rewrite-rule (car lst) :lhs) 1)))
              (not (quotep (fargn (access rewrite-rule (car lst) :lhs) 1))))
          (cons (access rewrite-rule (car lst) :rune)
                (collect-problematic-pre-equivalence-rule-names (cdr lst))))
        (t (collect-problematic-pre-equivalence-rule-names (cdr lst)))))

(defun chk-acceptable-equivalence-rule (name term ctx wrld state)

; Term supposedly states that fn is boolean, reflexive, symmetric, and
; transitive.  To check that, we generate our canonical statement of
; those four properties and then check that term subsumes it.  We
; clausify both statements with shallow-clausify, which tears apart
; the IMPLIES and AND structure of the terms without messing up the
; IFs.

; The hard part is finding out the candidate fn.  Consider the clausification
; of an acceptable term.  The clauses are shown below (ignoring choice of clause order,
; literal order and variable names):

; ((booleanp (fn x y)))
; ((fn x x))
; ((not (fn x y)) (fn y x))
; ((not (fn x z))
;  (not (fn z y))
;  (fn x y))

; So to find fn we will look for the reflexive clause.

  (let* ((act-clauses (shallow-clausify term))
         (fn (find-candidate-equivalence-relation act-clauses)))
    (cond
     ((null fn)
      (er soft ctx
          "~x0 is an unacceptable :EQUIVALENCE lemma.  Such a lemma ~
           must state that a given 2-place function symbol is ~
           Boolean, reflexive, symmetric, and transitive.  We cannot ~
           find the statement of reflexivity, which is the one we key ~
           on to identify the name of the alleged equivalence ~
           relation.  Perhaps you have forgotten to include it.  More ~
           likely, perhaps your relation takes more than two ~
           arguments.  We do not support n-ary equivalence relations, ~
           for n>2.  Sorry."
          name))
     (t (er-let*
         ((eqv-cond (translate (equivalence-relation-condition fn)
                               t t t ctx wrld state)))
; known-stobjs = t (stobjs-out = t)

         (let ((eqv-clauses (shallow-clausify eqv-cond)))

; In the first test below we open-code a call of equivalence-relationp,
; avoiding special treatment for iff since we want (defequiv iff) to succeed
; during initialization.

           (cond
            ((or (eq fn 'equal)
                 (and (not (flambdap fn))
                      (getpropc fn 'coarsenings nil wrld)))
             (er soft ctx
                 "~x0 is already known to be an equivalence relation."
                 fn))
            (t
             (let ((subsumes
                    (clause-set-subsumes *init-subsumes-count* act-clauses
                                         eqv-clauses)))
               (cond
                ((eq subsumes t)
                 (cond
                  ((warning-disabled-p "Equiv") ; optimization
                   (value nil))
                  (t
                   (let ((lst
                          (scrunch-eq
                           (collect-problematic-pre-equivalence-rule-names
                            (getpropc fn 'lemmas nil wrld)))))
                     (cond
                      (lst
                       (pprogn
                        (warning$ ctx ("Equiv")
                                  "Any lemma about ~p0, proved before ~x1 is ~
                                   marked as an equivalence relation, is ~
                                   stored so as to rewrite ~p0 to T.  After ~
                                   ~x1 is known to be an equivalence ~
                                   relation, such a rule would rewrite the ~
                                   left-hand side to the right-hand side, ~
                                   preserving ~x1.  You have previously ~
                                   proved ~n2 possibly problematic ~
                                   rule~#3~[~/s~] about ~x1, namely ~&3.  ~
                                   After ~x1 is marked as an equivalence ~
                                   relation you should reconsider ~
                                   ~#3~[this~/each~] problematic rule.  If ~
                                   the rule is merely in support of ~
                                   establishing that ~x1 is an equivalence ~
                                   relation, it may be appropriate to disable ~
                                   it permanently hereafter.  If the rule is ~
                                   now intended to rewrite left to right, you ~
                                   must prove the lemma again after ~x1 is ~
                                   known to be an equivalence relation."
                                  (fcons-term fn '(x y))
                                  fn
                                  (length lst)
                                  (strip-cadrs lst))
                        (value nil)))
                      (t (value nil)))))))
                (t (er soft ctx
                       (if subsumes ; (eq subsumes '?)

; Perhaps the user could come up with a case that puts us here, but that's
; pretty hard to imagine!  So we use *init-subsumes-count* in the call of
; clause-set-subsumes above, so that we can complain if we get to this case.

                           "This low-level implementation error is a complete ~
                            surprise, as the subsumption check returned '? ~
                            for the :EQUIVALENCE lemma ~x0 for funcction ~
                            symbol ~x1.  This failure occurred when it was ~
                            checked that the equivalence-relation formula ~
                            subsumes the following canonical form: ~X23.  ~
                            Please contact the ACL2 implementors."
                         "~x0 is an unacceptable :EQUIVALENCE lemma for the ~
                          function symbol ~x1.  To be acceptable the formula ~
                          being proved must state that ~x1 is Boolean, ~
                          reflexive, symmetric, and transitive.  This is ~
                          checked by verifying that the formula subsumes the ~
                          following canonical form:  ~x2.  It does not.")
                       name
                       fn
                       (prettyify-clause-set eqv-clauses nil wrld)
                       nil))))))))))))

(defun add-equivalence-rule (rune nume term ens wrld)

; Term states that some function symbol fn is an equivalence relation.
; We recover from term the fn in question and add a 'coarsenings
; property for fn, stating that it is a coarsening of itself.  This
; marks it as an equivalence relation.  We also add it to the
; coarsenings of 'equal, which is the only other equivalence relation
; that we know is a refinement of this new one.  The coarsenings of
; 'equal is thus the list of all known equivalence relations.  The car of
; the 'coarsenings property for an equivalence relation fn is always
; eq to fn itself.  However, subsequent relations are listed in
; arbitrary order.

; If fn is not "obviously" Boolean in the sense that type-set reports
; that it is Boolean, we store a type-prescription rule for it.  This is
; usually unnecessary when fn is defined.  But on the off chance that its
; Boolean nature was missed by DEFUN or -- more likely -- when fn is a
; constrained function that is undefined in this world, we often need
; this fact.

; We also add a 'congruences property for fn.  See the essay on
; equivalence, refinements, and congruence-based rewriting.
; The property that we add states that the equality of two fn expressions
; is maintained by maintaining fn in both arguments.
; That is
;  (implies (fn x1 x2) (equal (fn x1 y) (fn x2 y)))
; and
;  (implies (fn y1 y2) (equal (fn x y1) (fn x y2))).
; We prove this below.

; Suppose fn is an arbitrary equivalence relation.

;  (encapsulate (((fn * *) => *))
;   (local (defun fn (x y) (equal x y)))
;   (defequiv fn))

; We pick out from its properties just three that we care about, its
; Boolean nature, symmetry, and transitivity.  We don't care that it
; is reflexive and the proofs below go through if you constrain fn
; just to have the three properties below.  We made fn an equivalence
; relation simply so we could conclude with some :congruence lemmas
; about fn -- an act which causes an error if fn is not an equivalence
; relation.  But the theorems proved about fn are true of any relation
; with the three properties below.

;  (defthm fn-boolean (booleanp (fn x y))
;   :rule-classes :type-prescription
;   :hints (("Goal" :use fn-is-an-equivalence)))
;
;  (defthm fn-symm (implies (fn x y) (equal (fn y x) t))
;   :hints (("Goal" :use fn-is-an-equivalence)))
;
;  (defthm fn-trans (implies (and (fn x y) (fn y z)) (equal (fn x z) t))
;   :hints (("Goal" :use fn-is-an-equivalence)))

; So now we observe the first of our two congruence properties: to
; maintain identity in fn expressions it is sufficient to maintain
; "fn-ity" in the first argument position.

;  (defthm fn-congruence1
;   (implies (fn x1 x2)
;            (equal (fn x1 y) (fn x2 y)))
;   :rule-classes :congruence
;   :hints (("Goal" :use (:instance
;                         (:theorem
;                          (implies (and (booleanp p)
;                                        (booleanp q))
;                                   (equal (equal p q) (iff p q))))
;                         (p (fn x1 y))
;                         (q (fn x2 y))))
;           ("Subgoal 2.1" :use ((:instance fn-symm (x x1) (y x2)))
;                          :in-theory (disable fn-symm))))

; And, to maintain identity in fn expressions it suffices to maintain
; "fn-ity" in the second argument position.

;  (defthm fn-congruence2
;   (implies (fn y1 y2)
;            (equal (fn x y1) (fn x y2)))
;   :rule-classes :congruence
;   :hints (("Goal" :use (:instance
;                         (:theorem
;                          (implies (and (booleanp p)
;                                        (booleanp q))
;                                   (equal (equal p q) (iff p q))))
;                         (p (fn x y1))
;                         (q (fn x y2))))
;           ("Subgoal 2.1" :use ((:instance fn-symm (x y1) (y y2)))
;                          :in-theory (disable fn-symm))))

; We do not store with the equivalence relation the name of the event
; that established that it is an equivalence relation.  That means we
; can't report it in our dependencies or disable it.

  (let* ((act-clauses (shallow-clausify term))
         (fn (find-candidate-equivalence-relation act-clauses)))
    (putprop
     fn
     'coarsenings
     (list fn)
     (putprop 'equal
              'coarsenings
              (append (getpropc 'equal 'coarsenings nil wrld)
                      (list fn))
              (putprop fn
                       'congruences
                       (cons (list 'equal
                                   (list (make congruence-rule
                                               :rune rune
                                               :nume nume
                                               :equiv fn))
                                   (list (make congruence-rule
                                               :rune rune
                                               :nume nume
                                               :equiv fn)))
                             (getpropc fn 'congruences nil wrld))
                       (cond
                        ((mv-let
                          (ts ttree)
                          (type-set (fcons-term* fn 'x 'y) nil nil nil ens wrld
                                    nil nil nil)
                          (declare (ignore ttree))
                          (ts-subsetp ts *ts-boolean*))
                         wrld)
                        (t
                         (add-type-prescription-rule
                          rune nume
                          (fcons-term* fn 'x 'y)
                          (fcons-term* 'booleanp
                                       (fcons-term* fn 'x 'y))
                          nil ; backchain-limit-lst
                          ens wrld
                          t))))))))

;---------------------------------------------------------------------------
; Section:  :REFINEMENT Rules

(defun chk-acceptable-refinement-rule (name term ctx wrld state)
  (let ((str "~x0 does not have the form of a :REFINEMENT rule.  See :DOC refinement."))
    (case-match term
                (('implies (equiv1 x y) (equiv2 x y))
                 (cond
                  ((and (equivalence-relationp equiv1 wrld)
                        (equivalence-relationp equiv2 wrld)
                        (variablep x)
                        (variablep y)
                        (not (eq x y)))
                   (cond
                    ((refinementp equiv1 equiv2 wrld)
                     (er soft ctx
                         "~x0 is already known to be a refinement of ~
                          ~x1.  See :DOC refinement."
                         equiv1 equiv2))
                    (t (value nil))))
                  (t (er soft ctx str name))))
                (& (er soft ctx str name)))))

; As noted in the essay on equivalence, refinements, and
; congruence-based rewriting, we maintain our refinements database
; via the 'coarsenings property, for efficiency reasons explained in
; the essay.  Thus, if equiv1 is a refinement of equiv2 then equiv2 is
; a coarsening of equiv1.  We therefore wish to add equiv2 to the
; coarsening property of equiv1.  However, as noted in the essay, the
; coarsening properties are kept closed under transitivity.  So we need
; a transitive closure operation.

; Rather that try to implement this closure operation directly on the
; property-list world, where we would repeatedly extend the 'coarsenings
; properties of the affected equivs, we have decided on a more modular and
; elegant approach.  We will simply collect all the coarsening properties
; into an alist, close that alist under the appropriate operation, and then
; go put the new coarsenings into the property list world.

; We start with the trivial operations of collecting and then
; redistributing all the coarsenings.

(defun collect-coarsenings (wrld)

; Return an alist that pairs each equivalence relation in wrld with
; its current coarsenings.

  (let ((all-equivs (getpropc 'equal 'coarsenings nil wrld)))
    (pairlis$ all-equivs
              (getprop-x-lst all-equivs 'coarsenings wrld))))

(defun putprop-coarsenings (alist wrld)

; Alist pairs equiv relations with their new 'coarsenings property.
; Put each property, provided it is different from its current value
; in wrld.

  (cond ((null alist) wrld)
        ((equal (getpropc (caar alist) 'coarsenings nil wrld)
                (cdar alist))
         (putprop-coarsenings (cdr alist) wrld))
        (t (putprop (caar alist) 'coarsenings (cdar alist)
                    (putprop-coarsenings (cdr alist) wrld)))))

; We now develop the world's least efficient transitive closure
; algorithm.  Let alist be an alist pairing symbols to sets of
; symbols.  By ``the value of a symbol'' in this context we mean the
; value assigned by the alist.  We close the value sets under the
; operation of unioning into the set the value of any symbol already
; in the set.  This operation eventually terminates since there are
; only a finite number of symbols involved.

; We do this in a very inefficient way.  We literally just extend
; each value set by unioning into it the appropriate other sets and
; iterate that operation until there are no changes.  If we ever have
; to operate with many equivalence relations enjoying many refinement
; relationships, we'll have to look at this code again.

(defun union-values (lst alist)

; We form the union of the values of the members of lst under alist.

  (cond ((null lst) nil)
        (t (union-eq (cdr (assoc-eq (car lst) alist))
                     (union-values (cdr lst) alist)))))

(defun extend-value-set (lst alist)

; We union into lst the value under alist of each element of lst.  In
; an effort to preserve order we implement this in a slightly bizarre
; style.  This concern about order is three-fold.  First, it lets us
; code the termination check with an equality rather than a
; set-equality.  Second, it ensures maintenance of the invariant that
; the car of the coarsenings property for an equiv is the equiv
; itself, e.g., see refinementp.  Third, it means that 'coarsenings
; that don't get extended don't get changed and so don't get written
; back to the world.

  (append lst (set-difference-eq (union-values lst alist) lst)))

(defun extend-each-value-set (alist1 alist2)

; we visit each value set in alist1 and extend it with the
; values specified by alist2.

  (cond ((null alist1) nil)
        (t (cons (cons (caar alist1)
                       (extend-value-set (cdar alist1) alist2))
                 (extend-each-value-set (cdr alist1) alist2)))))

(defun close-value-sets (alist)

; We extend each value set in alist, under alist, until alist doesn't
; change.  Because we have taken care to preserve the order of things
; in extend-value-set we know that a value set doesn't change unless
; it has a new element.  Thus, we can use equal rather than set-equal
; to check for our termination condition.  But the real reason we care
; about order is so that the 'congruences properties eventually
; restored are usually unchanged.

  (let ((new-alist (extend-each-value-set alist alist)))
    (cond ((equal new-alist alist) alist)
          (t (close-value-sets new-alist)))))

(defun add-refinement-rule (name nume term wrld)
  (declare (ignore name nume))
  (let ((equiv1 (ffn-symb (fargn term 1)))
        (equiv2 (ffn-symb (fargn term 2))))

; We collect all the 'coarsenings properties into an alist, add equiv2
; to the end of the pot for equiv1, close that as discussed above, and
; then put the resulting 'coarsenings properties back into the world.

    (putprop-coarsenings
     (close-value-sets
      (put-assoc-eq equiv1
                    (append (getpropc equiv1 'coarsenings nil wrld)
                            (list equiv2))
                    (collect-coarsenings wrld)))
     wrld)))

;---------------------------------------------------------------------------
; Section:  :CONGRUENCE Rules

(defun corresponding-args-eq-except (args1 args2 xk yk)

; Suppose args1 and args2 are two true lists of equal length, args1
; contains distinct symbols, xk and yk are symbols and xk is an
; element of args1.  Then we determine whether args2 is equal to args1
; except at xk where args2 contains yk.

  (cond ((null args1) t)
        ((eq (car args1) xk)
         (and (eq (car args2) yk)
              (corresponding-args-eq-except (cdr args1) (cdr args2) xk yk)))
        (t (and (eq (car args1) (car args2))
                (corresponding-args-eq-except (cdr args1) (cdr args2) xk yk)))))

(mutual-recursion

; The two functions in this nest accumulate into seen the variables occurring
; free in the first argument, and accumulate into dups those occurring at least
; twice in term (and, more precisely, those occurring at least once in the
; first argument that already occur in seen).

(defun duplicate-vars-1 (term seen dups)
  (cond ((variablep term)
         (cond ((member-eq term dups)
                (mv seen dups))
               ((member-eq term seen)
                (mv seen (cons term dups)))
               (t
                (mv (cons term seen) dups))))
        ((fquotep term)
         (mv seen dups))
        (t (duplicate-vars-1-lst (fargs term) seen dups))))

(defun duplicate-vars-1-lst (lst seen dups)
  (cond ((endp lst) (mv seen dups))
        (t (mv-let (seen dups)
                   (duplicate-vars-1 (car lst) seen dups)
                   (duplicate-vars-1-lst (cdr lst) seen dups)))))
)

(defun duplicate-vars (term)
  (mv-let (seen dups)
          (duplicate-vars-1 term nil nil)
          (declare (ignore seen))
          dups))

(mutual-recursion

(defun replace-duplicate-vars-with-anonymous-var-1 (term dup-vars)
  (cond ((variablep term) (cond ((member-eq term dup-vars)
                                 term)
                                (t *anonymous-var*)))
        ((fquotep term) term)
        (t (cons-term (ffn-symb term)
                      (replace-duplicate-vars-with-anonymous-var-1-lst
                       (fargs term) dup-vars)))))

(defun replace-duplicate-vars-with-anonymous-var-1-lst (lst dup-vars)
  (cond ((endp lst) nil)
        (t (cons (replace-duplicate-vars-with-anonymous-var-1
                  (car lst) dup-vars)
                 (replace-duplicate-vars-with-anonymous-var-1-lst
                  (cdr lst) dup-vars)))))
)

(defun replace-duplicate-vars-with-anonymous-var (term)
  (replace-duplicate-vars-with-anonymous-var-1 term (duplicate-vars term)))

(defun split-at-position (posn lst acc)

; We pop posn - 1 elements off lst, accumulating them into acc and returning
; the resulting extension of acc together with what remains of lst.

  (cond ((eql posn 1)
         (mv acc lst))
        (t (split-at-position (1- posn) (cdr lst) (cons (car lst) acc)))))

(defun make-pequiv-pattern (term addr)

; Address is the address of a variable occurrence in term.  We return the
; corresponding pattern.  See the Essay on Patterned Congruences and
; Equivalences.

  (cond ((endp addr)
         (assert$ (variablep term)
                  term))
        (t (assert$ (and (nvariablep term)
                         (not (fquotep term))
                         (not (flambda-applicationp term)))
                    (mv-let (pre-rev next/post)
                            (split-at-position (car addr) (fargs term) nil)
                            (make pequiv-pattern
                                  :fn (ffn-symb term)
                                  :posn (car addr)
                                  :pre-rev pre-rev
                                  :post (cdr next/post)
                                  :next
                                  (make-pequiv-pattern (car next/post)
                                                       (cdr addr))))))))

(defun make-pequiv (term addr nume equiv rune)
  (make pequiv
        :pattern (make-pequiv-pattern
                  (replace-duplicate-vars-with-anonymous-var term)
                  addr)
        :unify-subst nil
        :congruence-rule (make congruence-rule
                               :rune rune
                               :nume nume
                               :equiv equiv)))

(mutual-recursion

(defun var-address (var term acc)

; Var is a variable and term is a term.  This function returns nil if var does
; not occur in term, returns t if var occurs more than once in term, and
; otherwise returns the one-based address of the unique occurrence of var in
; term (with the reverse of the accumulator appended to the front of that
; address).  A return value of nil is thus ambiguous if term is a variable.

  (declare (xargs :guard (and (symbolp var)
                              (pseudo-termp term)
                              (true-listp acc))))
  (cond ((eq var term)
         (reverse acc))
        ((variablep term) nil)
        ((fquotep term) nil)
        (t (var-address-lst var (fargs term) 1 acc))))

(defun var-address-lst (var lst position acc)
  (declare (xargs :guard (and (symbolp var)
                              (pseudo-term-listp lst)
                              (natp position)
                              (true-listp acc))))
  (cond ((endp lst) nil)
        (t (let ((addr1 (var-address var (car lst) (cons position acc)))
                 (addr2 (var-address-lst var (cdr lst) (1+ position) acc)))
             (cond ((or (and addr1 addr2)
                        (eq addr1 t)
                        (eq addr2 t))
                    t)
                   (t (or addr1 addr2)))))))
)

(defun interpret-term-as-congruence-rule (name term wrld)

; This function recognizes terms that are :CONGRUENCE lemmas.  We return two
; results.  The first result is nil when the term is not a valid :CONGRUENCE
; lemma.  If the term is a congruence lemma, the second result is a structure
; (fn equiv1 addr equiv2 . extra).  If the term represents a classic congruence
; rule, then extra is nil, addr is a positive integer k, and this structure
; states that ``equiv2 is preserved by equiv1 in the kth argument of fn.''
; Otherwise the term represents a patterned congruence rule, which is thus
; either shallow or deep, indicated by whether the first result is :SHALLOW or
; :DEEP, respectively.  In that case, extra is the lhs of the rule, and addr is
; the address of the occurrence of the rule's variable in lhs.  Finally, if the
; term is not a :CONGRUENCE rule, the second is a tilde-@ message explaining
; why.  See the essay on equivalence, refinements, and congruence-based
; rewriting for details.

; Classic :CONGRUENCE lemmas are of the form

; (implies (equiv1 xk yk)
;          (equiv2 (fn x1 ... xk ... xn) (fn x1 ... yk ... xn)))

; where fn is a function symbol, all the xi and yk are distinct variables and
; equiv1 and the equiv2 are equivalence relations.  Such a lemma is read as
; ``equiv2 is preserved by equiv1 in the kth argument of fn.''  For a
; discussion of patterned :CONGRUENCE lemmas, see the Essay on Patterned
; Congruences and Equivalences.

; We do not actually cause an error because this function is sometimes called
; when STATE is unavailable.  We combine the recognition of the :CONGRUENCE
; lemma with the construction of the structure describing it because the two
; are so intermingled that it seemed dubious to separate them into two
; functions.

  (let ((pairs (unprettyify (remove-guard-holders term)))
        (hyp-msg   "~x0 is an unacceptable :CONGRUENCE rule.  The ~
                    single hypothesis of a :CONGRUENCE rule must be a ~
                    term of the form (equiv x y), where equiv has ~
                    been proved to be an equivalence relation and x ~
                    and y are distinct variable symbols.  The ~
                    hypothesis of ~x0, ~x1, is not of this form.")
        (concl-msg "~x0 is an unacceptable :CONGRUENCE rule because its ~
                    conclusion does not have the expected form.  See :DOC ~
                    congruence.")
        (failure-msg "~x0 is an unacceptable :CONGRUENCE rule because ~@1.  ~
                      See :DOC congruence."))
    (cond
     ((and (int= (length pairs) 1)
           (int= (length (caar pairs)) 1))
      (let ((hyp (caaar pairs))
            (concl

; With the advent of patterned congruences, we put the conclusion into
; quote-normal form, both to facilitate matching when the rule is subsequently
; applied and to make the test robust below where we use subst-var-lst.

             (sublis-var nil (cdar pairs))))
        (case-match
         hyp
         ((equiv1 xk yk)
          (cond
           ((and (variablep xk)
                 (variablep yk)
                 (equivalence-relationp equiv1 wrld))
            (case-match
             concl
             ((equiv2 (fn . args1) (fn . args2))
              (cond
               ((or (not (equivalence-relationp equiv2 wrld))
                    (not (symbolp fn))
                    (eq fn 'quote) ; rule out quotep for equiv2 args
                    (eq fn

; Calls of IF are handled specially in geneqv-lst, so that the first argument
; is treated propositionally and the other arguments inherit the governing
; congruence.

                        'if))
                (mv nil (msg concl-msg name)))
               ((and (all-variablep args1)
                     (no-duplicatesp-eq args1)
                     (member-eq xk args1)

; The next conjunct is critical, but was missing from Versions  6.3 and 1.9,
; hence likely in all versions between these and perhaps even before 1.9.
; Without it, one can prove nil as follows.

;   (defun e (x y)
;     (or (equal x y)
;         (and (booleanp x) (booleanp y))))
;
;   (defequiv e)
;
;   (defun h (x y)
;     (if (booleanp x)
;         (booleanp y)
;       (equal (car x) y)))
;
;   ; The following is a bogus sort of expansion of:
;   ; (defcong e equal (h x y) 2)
;
;   (defthm e-implies-equal-h-2-bad
;     (implies (e y1 y2)
;              (equal (h y2 y1)
;                     (h y2 y2)))
;     :rule-classes :congruence)
;
;   (defun true ()
;     t)
;
;   (defun false ()
;     nil)
;
;   (defthm e-true-false
;     (e (true) (false)))
;
;   (defthm fact-1
;     (h (cons t x) (true))
;     :rule-classes nil)
;
;   (defthm fact-2
;     (not (h (cons t x) (false)))
;     :rule-classes nil)
;
;   (in-theory (disable true (true) false (false)))
;
;   (defthm contradiction
;     nil
;     :hints (("Goal" :use (fact-1 fact-2)))
;     :rule-classes nil)

                     (not (member-eq yk args1))
                     (corresponding-args-eq-except args1 args2 xk yk))
                (mv :classic
                    (list* fn
                           equiv1
                           (1+ (- (length args1)
                                  (length (member-eq xk args1))))
                           equiv2
                           nil)))

; Otherwise our check is for a patterned congruence rule.

               ((or (ffnnamep-lst 'if args1)
                    (ffnnamep-lst 'implies args1)
                    (ffnnamep-lst 'equal args1)
                    (lambda-subtermp-lst args1))

; The restrictions above might be stronger than necessary.  But we have felt
; free to rely on them while developing support for patterned congruence rules.
; For example, rewrite-equal calls rewrite-args several times with arguments
; deep-pequiv-lst and shallow-pequiv-lst equal to nil, and this is safe because
; no pequivs encountered can involve the symbol EQUAL in the pattern.  Another
; example is in the body of the definition of rewrite for the case (eq
; (ffn-symb term) 'IMPLIES), where recursive calls of rewrite are passed the
; value nil for pequiv-info.

                (let ((bad-fns (append (and (ffnnamep-lst 'if args1)
                                            '(if))
                                       (and (ffnnamep-lst 'implies args1)
                                            '(implies))
                                       (and (ffnnamep-lst 'equal args1)
                                            '(equal))))
                      (bad-lambda-p (lambda-subtermp-lst args1)))
                  (mv nil
                      (msg failure-msg
                           name
                           (cond ((and bad-fns bad-lambda-p)
                                  (msg "the function symbol~#0~[ ~&0~/s ~&0~] ~
                                        and a lambda application occur in the ~
                                        conclusion of the rule"
                                       bad-fns))
                                 (bad-fns
                                  (msg "the function symbol~#0~[ ~&0 ~
                                        occurs~/s ~&0 occur~] in the ~
                                        conclusion of the rule"
                                       bad-fns))
                                 (t ; bad-lambda-p
                                  (msg "a lambda application occurs in the ~
                                        conclusion of the rule.")))))))
               ((dumb-occur-var-lst *anonymous-var* term)

; We introduce *anonymous-var*, which will be treated specially during
; matching, when creating a pequiv-pattern from term; so it would be a mistake
; to allow *anonymous-var* in term, which should not get that special
; treatment.  See the Essay on Patterned Congruences and Equivalences.

                (mv nil
                    (msg failure-msg
                         name
                         (msg "the variable ~x0, which is used in a special ~
                               way by the implementation, occurs in the rule"
                              *anonymous-var*))))
               (t
                (let ((addr1 (var-address xk (fargn concl 1) nil))
                      (addr2 (var-address yk (fargn concl 2) nil)))
                  (cond
                   ((or (null addr1) (null addr2))
                    (mv nil
                        (msg failure-msg
                             name
                             (cond
                              ((null addr1)
                               (msg "the variable ~x0 does not occur in ~x1"
                                    xk (fargn concl 1)))
                              (t
                               (msg "the variable ~x0 does not occur in ~x1"
                                    yk (fargn concl 2)))))))
                   ((or (eq addr1 t) (eq addr2 t))
                    (mv nil
                        (msg failure-msg
                             name
                             (cond
                              ((null addr1)
                               (msg "the variable ~x0 occurs more than once ~
                                     in ~x1"
                                    xk (fargn concl 1)))
                              (t
                               (msg "the variable ~x0 occurs more than once ~
                                     in ~x1"
                                    yk (fargn concl 2)))))))
                   ((not (equal addr1 addr2))
                    (mv nil
                        (msg failure-msg
                             name
                             (msg "the variables ~x0 and ~x1 occur at ~
                                   different positions in the first and ~
                                   second arguments, respectively, of ~x3 in ~
                                   the conclusion of the proposed rule"
                                  xk yk equiv2))))
                   ((not (equal args2 (subst-var-lst yk xk args1)))

; The test above is sufficient: at this point we know that xk occurs
; exactly once in args1, so if the equality is true, then the left and right
; sides of the concl are equal except at addr1 (= addr2).

                    (mv nil
                        (msg failure-msg
                             name
                             (msg "the second argument of its conclusion is ~
                                   not equal to the result of substituting ~
                                   ~x0 for ~x1 in its first argument"
                                  yk xk))))
                   (t
                    (mv (if (member-eq xk args1)
                            :shallow
                          :deep)
                        (list* fn equiv1 addr1 equiv2
                               (fargn concl 1) ; (fn . args1)
                               ))))))))
             (& (mv nil (msg concl-msg name)))))
           (t (mv nil (msg hyp-msg name hyp)))))
         (& (mv nil (msg hyp-msg name hyp))))))
     (t (mv nil (msg failure-msg
                     name
                     "the supplied formula does not generate a single ~
                      conjunct of the form (implies (equiv1 xk yk) (equiv2 ~
                      (fn ...) (fn ...))), where equiv1 and equiv2 are ~
                      equivalence relations"))))))

(defun some-congruence-rule-same (equiv rules)

; Return the first element of rules which has equiv as its :equiv field.

  (cond ((null rules) nil)
        ((eq equiv (access congruence-rule (car rules) :equiv))
         (car rules))
        (t (some-congruence-rule-same equiv (cdr rules)))))

(defun some-congruence-rule-has-refinement (equiv rules wrld)

; Return the first element of rules which has equiv as a refinement of its
; :equiv field.

  (cond ((null rules) nil)
        ((refinementp equiv (access congruence-rule (car rules) :equiv) wrld)
         (car rules))
        (t (some-congruence-rule-has-refinement equiv (cdr rules) wrld))))

(defun chk-acceptable-congruence-rule (name term ctx wrld state)

; We check that term is a legal congruence rule.

; If the rule is a classic (not patterned) congruence rule, then we print a
; warning message if we already know that equiv2 is preserved by equiv1 in the
; kth slot of fn.  We are not so much watching out for the possibility that
; equiv1 literally occurs in the list in the kth slot -- though that could
; happen and the old rule be disabled so the user is unaware that it exists.
; We are more concerned, because of efficiency when applying congruences, about
; the possibility that equiv1 is some refinement of a relation already in the
; kth slot.

  (mv-let
   (flg x)
   (interpret-term-as-congruence-rule name term wrld)
   (cond
    ((not flg) (er soft ctx "~@0" x))
    (t
     (let ((fn (car x))
           (equiv1 (cadr x))    ; inner equiv
           (addr (caddr x))     ; a number in the :classic case
           (equiv2 (cadddr x))) ; outer equiv
       (pprogn
        (cond ((eq equiv1 'equal)
               (warning$ ctx "Equiv"
                         "The :CONGRUENCE rule ~x0 will have no effect on ~
                          proofs because ACL2 already knows that ~x1 refines ~
                          every equivalence relation."
                         name 'equal))
              ((and (eq equiv2 'iff)
                    (mv-let
                     (ts ttree)
                     (type-set (cons-term fn (formals fn wrld))
                               nil nil nil (ens state) wrld
                               nil nil nil)
                     (declare (ignore ttree))
                     (ts-subsetp ts *ts-boolean*)))
               (warning$ ctx "Equiv"
                         "The :CONGRUENCE rule ~x0 can be strengthened by ~
                          replacing the outer equivalence relation, ~x1, by ~
                          ~x2.  See :DOC congruence, in particular (near the ~
                          end) the Remark on Replacing IFF by EQUAL."
                         name 'iff 'equal))
              (t state))

; The warnings below were originally errors, but as Jared Davis pointed out
; using essentially the following example, it was easy to change order to avoid
; the errors.  So we create warnings instead.

;  (defun my-equiv (x y) (equal x y))
;  (defun my-equiv2 (x y) (equal x y))
;  (defequiv my-equiv)
;  (defequiv my-equiv2)
;  (defrefinement my-equiv my-equiv2)

;   ; Then this sequence formerly resulted in an error, but not if their order
;   ; was switched or the defrefinement above was moved to after both defcong
;   ; forms.  Now, we get a warning this way but not if we switch their order
;   ; or defer the defrefinement.  We can live with that, since we suspect that
;   ; it could slow down ACL2 to do the more thorough checks.

;  (defcong my-equiv2 equal (consp x) 1)
;  (defcong my-equiv equal (consp x) 1)

        (cond
         ((eq flg :classic)
          (let* ((k addr)
                 (temp (nth k
                            (assoc-eq equiv2
                                      (getpropc fn 'congruences nil wrld)))))
            (cond
             ((some-congruence-rule-same equiv1 temp)
              (warning$ ctx "Equiv"
                        "The previously added :CONGRUENCE lemma, ~x0, ~
                         establishes that ~x1 preserves ~x2 in the ~n3 slot ~
                         of ~x4.  Thus, ~x5 is unnecessary."
                        (base-symbol
                         (access congruence-rule
                                 (some-congruence-rule-same equiv1 temp)
                                 :rune))
                        equiv1 equiv2 (cons k 'th) fn name))
             ((some-congruence-rule-has-refinement equiv1 temp wrld)
              (warning$ ctx "Equiv"
                        "The previously added :CONGRUENCE lemma, ~x0, ~
                         establishes that ~x1 preserves ~x2 in the ~n3 slot ~
                         of ~x4.  But we know that ~x5 is a refinement of ~
                         ~x1.  Thus, ~x6 is unnecessary."
                        (base-symbol
                         (access congruence-rule
                                 (some-congruence-rule-has-refinement equiv1 temp
                                                                      wrld)
                                 :rune))
                        (access congruence-rule
                                (some-congruence-rule-has-refinement equiv1 temp wrld)
                                :equiv)
                        equiv2 (cons k 'th) fn equiv1 name))
             (t state))))
         (t (observation ctx
                         "The rule ~x0 is a ~s1 patterned congruence rule.  ~
                          See :DOC patterned-congruence."
                         name
                         (if (eq flg :shallow)
                             "shallow"
                           (assert$ (eq flg :deep)
                                    "deep")))))
        (value nil)))))))

(defun add-congruence-rule-to-congruence (rule k congruence)

; Congruence is an element of the 'congruence property of some n-ary
; function fn.  As such, it is of the form (equiv geneqv1 ... geneqvk
; ... geneqvn), where equiv is some equivalence relation and each of
; the geneqvi is a list of congruence-rule records.  We add rule to
; geneqvk.

  (update-nth k (cons rule (nth k congruence)) congruence))

(defun cons-assoc-eq-rec (key val alist)

; This function is analogous to put-assoc-eq, but instead of replacing the
; value of key in alist, that value -- which should be a true list -- is
; extended by consing val onto the front of it.

  (declare (xargs :guard (and (symbol-alistp alist)
                              (true-list-listp alist)
                              (assoc-eq key alist))))
  (cond ((endp alist)
         (er hard 'cons-assoc-eq-rec
             "Implementation error: Reached the end of the alist for key ~x0!"
             key))
        ((eq key (caar alist))
         (acons key
                (cons val (cdar alist))
                (cdr alist)))
        (t (cons (car alist)
                 (cons-assoc-eq-rec key val (cdr alist))))))

(defun cons-assoc-eq (key val alist)

; This function is analogous to put-assoc-eq, but instead of replacing the
; value of key in alist, that value -- which should be a true list -- is
; extended by consing val onto the front of the old value of key in alist.

; As an optimization, we handle specially the case that key is not already a
; key of alist.

  (declare (xargs :guard (and (symbol-alistp alist)
                              (true-list-listp alist))))
  (cond ((endp alist) (list (list key val)))
        ((assoc-eq key alist)
         (cons-assoc-eq-rec key val alist))
        (t (acons key (list val) alist))))

(defun add-congruence-rule (rune nume term wrld)
  (mv-let
   (flg x)
   (interpret-term-as-congruence-rule (base-symbol rune) term wrld)
   (let ((fn (car x))
         (equiv1 (cadr x))   ; inner equiv
         (addr (caddr x))    ; a number when flg is :classic
         (equiv2 (cadddr x)) ; outer equiv
         (lhs (cddddr x)))
     (cond
      ((eq flg :classic)
       (let* ((k addr)
              (temp (assoc-eq equiv2
                              (getpropc fn 'congruences nil wrld)))
              (equiv2-congruence
               (or temp
                   (cons equiv2 (make-list-ac (arity fn wrld) nil nil))))
              (rst (if temp
                       (remove1-equal temp
                                      (getpropc fn 'congruences nil wrld))
                     (getpropc fn 'congruences nil wrld))))
         (putprop fn
                  'congruences
                  (cons (add-congruence-rule-to-congruence
                         (make congruence-rule
                               :rune rune
                               :nume nume
                               :equiv equiv1)
                         k
                         equiv2-congruence)
                        rst)
                  wrld)))
      ((null flg)
       (er hard! 'add-congruence-rule
           "Implementation error: ~x0 returned failure when attempting to ~
            apply ~x1.  Please contact the ACL2 implementors."
           'interpret-term-as-congruence-rule
           'add-congruence-rule))
      (t
       (assert$
        (and (member-eq flg '(:deep :shallow))
             (not (or (variablep lhs)
                      (fquotep lhs)
                      (lambda-applicationp lhs)))
             (consp addr))
        (let* ((pequiv (make-pequiv lhs addr nume equiv1 rune))
               (sym (if (eq flg :shallow)
                        fn
                      (let ((arg ; (nth (1- (car addr)) (fargs lhs))
                             (nth (car addr) lhs)))
                        (assert$
                         (not (or (variablep arg)
                                  (fquotep arg)
                                  (lambda-applicationp arg)))
                         (ffn-symb arg)))))
               (prop (getpropc sym 'pequivs nil wrld))
               (new-prop
                (let ((prop (or prop
                                *empty-pequivs-property*)))
                  (cond ((eq flg :shallow)
                         (change pequivs-property prop
                                 :shallow
                                 (cons-assoc-eq equiv2
                                                pequiv
                                                (pequivs-property-field
                                                 prop :shallow))))
                        (t ; (eq flg :deep)
                         (change pequivs-property prop
                                 :deep
                                 (cons-assoc-eq equiv2
                                                pequiv
                                                (pequivs-property-field
                                                 prop :deep)))))))
               (parent-prop
                (and (eq flg :deep) ; optimization
                     (getpropc fn 'pequivs nil wrld))))
          (putprop sym 'pequivs new-prop
                   (cond ((eq flg :shallow) wrld)
                         ((null parent-prop) ; and flg is :deep
                          (putprop fn 'pequivs
                                   (make pequivs-property
                                         :shallow nil
                                         :deep nil
                                         :deep-pequiv-p t)
                                   wrld))
                         ((pequivs-property-field parent-prop :deep-pequiv-p)
                          wrld)
                         (t
                          (putprop fn 'pequivs
                                   (change pequivs-property parent-prop
                                           :deep-pequiv-p t)
                                   wrld)))))))))))

;---------------------------------------------------------------------------
; Section:  :DEFINITION rules

(defun chk-destructure-definition (name term ctx wrld state)
  (mv-let (hyps equiv fn args body ttree)
          (destructure-definition term nil nil wrld nil)
          (declare (ignore hyps equiv args body ttree))
          (cond ((null fn)
                 (er soft ctx
                     "~x0 cannot be stored as a :DEFINITION rule ~
                      because the :COROLLARY formula, ~p1, is not of ~
                      the proper form.  See :DOC definition."
                     name (untranslate term t wrld)))
                (t (value nil)))))

(defun chk-acceptable-definition-install-body (fn hyps equiv args body
                                                  install-body
                                                  install-body-supplied-p
                                                  ctx state)
  (let ((install-body (if install-body-supplied-p
                          install-body
                        :NORMALIZE))
        (er-preamble
         (msg "For a :DEFINITION rule with non-nil :INSTALL-BODY value~@0,"
              (if install-body-supplied-p
                  ""
                " (default :NORMALIZE)")))
        (install-body-msg
         (if install-body-supplied-p
             ""
           (msg "  Please add :INSTALL-BODY ~x0 to your :DEFINITION rule ~
                 class."
                nil))))
    (cond
     ((null install-body)
      (value nil))
     ((member-eq fn *definition-minimal-theory*)

; This restriction is to allow us to assume that calls of (body fn t wrld),
; which occur in several places in the source code, refer to the original
; normalized body of fn, which excuses us from tracking the corresponding rune.

      (er soft ctx
          "~@0 the function symbol being called on the left-hand side, ~x1, ~
           must not be among the following built-in functions:  ~&2.~@3  ~
           Please contact the implementors if you feel that this is an ~
           encumbrance to you."
          er-preamble
          fn
          *definition-minimal-theory*
          install-body-msg))
     ((not (arglistp args))
      (er soft ctx
          "~@0 the arguments on the left-hand side of the rule must be a list ~
           of distinct variables, unlike ~x1.~@2  See :DOC definition."
          er-preamble
          args
          install-body-msg))
     ((not (eq equiv 'equal))
      (er soft ctx
          "~@0 the equivalence relation on the left-hand side of the rule ~
           must be ~x1, unlike ~x2.~@3  See :DOC definition."
          er-preamble
          'equal
          equiv
          install-body-msg))
     ((free-varsp-member-lst hyps args)
      (er soft ctx
          "~@0 the hypotheses must not contain free variables that are not ~
           among the variables on its left-hand side.  The ~#1~[variable ~&1 ~
           violates~/variables ~&1 violate~] this requirement.~@2  See :DOC ~
           definition."
          er-preamble
          (set-difference-eq (all-vars1-lst hyps nil) args)
          install-body-msg))
     ((free-varsp-member body args)
      (er soft ctx
          "~@0 the right-hand side of a :DEFINITION rule must not contain free ~
           variables that are not among the variables on its left-hand side.  ~
           The ~#1~[variable ~&1 violates~/variables ~&1 violate~] this ~
           requirement.~@2  See :DOC definition."
          er-preamble
          (set-difference-eq (all-vars body) args)
          install-body-msg))
     (t (value nil)))))

(defun chk-acceptable-definition-rule
  (name clique controller-alist install-body-tail term ctx ens wrld state)

; Term is a translated term that is the :COROLLARY of a :DEFINITION with the
; given :CLIQUE and :CONTROLLER-ALIST.  We know the clique and alist are well
; formed.  But to check that during rule class translation, we had to
; destructure term with chk-destructure-definition and it must have passed.
; The only things left to check are the various subsumption-type conditions on
; rewrite rules, as well as the :install-body argument, passed in as
; install-body-tail of the form (:install-body value ...) if :install-body was
; supplied by the user, and as nil otherwise.

  (mv-let
   (hyps equiv fn args body ttree)
   (destructure-definition term nil ens wrld nil)
   (cond
    ((eq fn 'hide)
     (er soft ctx
         "It is illegal to make a definition rule for ~x0, because of the ~
          special role of this function in the ACL2 rewriter."
         'hide))
    (t
     (let ((rule
            (make rewrite-rule
                  :rune *fake-rune-for-anonymous-enabled-rule*
                  :nume nil
                  :hyps (preprocess-hyps hyps)
                  :equiv equiv
                  :lhs (mcons-term fn args)
                  :var-info (var-counts args body)
                  :rhs body
                  :subclass 'definition
                  :heuristic-info (cons clique controller-alist)
                  :backchain-limit-lst nil)))
       (er-progn (chk-rewrite-rule-warnings name
                                            nil ; match-free
                                            nil ; loop-stopper
                                            rule ctx ens wrld state)
                 (chk-acceptable-definition-install-body
                  fn hyps equiv args body
                  (cadr install-body-tail)
                  install-body-tail ctx state)
                 (value ttree)))))))

; add-definition-rule was defined in defuns.lisp in order to implement
; defuns-fn0.

;---------------------------------------------------------------------------
; Section:  :INDUCTION rules

(defun chk-acceptable-induction-rule (name term ctx wrld state)

; This function is really a no-op.  It exists simply for regularity.

  (declare (ignore name term ctx wrld))
  (value nil))

(defun add-induction-rule (rune nume pat-term cond-term scheme-term term wrld)
  (declare (ignore term))
  (let ((fn (ffn-symb pat-term)))
    (putprop fn 'induction-rules
             (cons (make induction-rule
                         :rune rune
                         :nume nume
                         :pattern pat-term
                         :condition cond-term
                         :scheme scheme-term)
                   (getpropc fn 'induction-rules nil wrld))
             wrld)))

;---------------------------------------------------------------------------
; Section:  :TYPE-SET-RECOGNIZER-TERM Rules

(defun chk-acceptable-type-set-inverter-rule (name ts term ctx ens wrld state)
  (let* ((vars (all-vars term)))
    (cond
     ((not (and (ffn-symb-p term 'equal)
                (equal vars '(X))
                (equal (all-vars (fargn term 1))
                       (all-vars (fargn term 2)))))
      (er soft ctx
          "The :COROLLARY of a :TYPE-SET-INVERTER rule must be of the form ~
           (equal old-expr new-expr), where new-expr and old-expr are each ~
           terms containing the single free variable X.  ~p0 is not of this ~
           form, so ~x1 is an illegal :TYPE-SET-INVERTER rule.  See :DOC ~
           type-set-inverter."
          (untranslate term t wrld)
          name))
     (t
      (mv-let
       (ts2 ttree)
       (cond ((null ts)
              (type-set-implied-by-term 'X nil (fargn term 2) ens wrld nil))
             (t (mv ts nil)))
       (cond
        ((not (and (integerp ts2)
                   (<= *min-type-set* ts2)
                   (<= ts2 *max-type-set*)))

; It is believed neither of the following errors will ever occur.  The hard
; error won't occur because type-set-implied-by-term always returns a type-set.
; The soft error won't occur because translate-rule-class-alist insists, when a
; :TYPE-SET is supplied, that the type-set be proper and causes this error
; there.

         (cond ((null ts)
                (mv t
                    (er hard ctx
                        "Type-set-implied-by-term returned ~x0 instead of a ~
                         type-set!"
                        ts2)
                    state))
               (t (er soft ctx
                      "The :TYPE-SET of a :TYPE-SET-INVERTER rule must be a ~
                       type-set, i.e., an integer n such that ~x0 <= n <= ~x1. ~
                       But ~x2 is not so ~x3 is an illegal :TYPE-SET-INVERTER ~
                       rule.  See :DOC type-set-inverter."
                      *min-type-set*
                      *max-type-set*
                      ts2 name))))
        (t
         (mv-let
          (required-old-expr ttree)
          (convert-type-set-to-term 'X ts2 ens wrld ttree)
          (cond
           ((not
             (tautologyp (fcons-term* 'iff (fargn term 2) required-old-expr)
                         wrld))
            (er soft ctx
                "The right-hand side of the :COROLLARY of a :TYPE-SET-INVERTER ~
                 rule with :TYPE-SET ~x0 must be propositionally equivalent to ~
                 ~p1 but you have specified ~p2.  Thus, ~x3 is an illegal ~
                 :TYPE-SET-INVERTER rule.  See :doc type-set-inverter."
                ts2
                (untranslate required-old-expr t wrld)
                (untranslate (fargn term 2) t wrld)
                name))
           (t (value ttree)))))))))))

(defun add-type-set-inverter-rule (rune nume ts term ens wrld)
  (mv-let (ts ttree)
          (cond ((null ts)
                 (type-set-implied-by-term
                  'X
                  nil
                  (fargn term 2)
                  ens wrld nil))
                (t (mv ts nil)))
          (declare (ignore ttree))
          (global-set 'type-set-inverter-rules
                      (cons (make type-set-inverter-rule
                                  :nume nume
                                  :rune rune
                                  :ts ts
                                  :terms (flatten-ands-in-lit (fargn term 1)))
                            (global-val 'type-set-inverter-rules wrld))
                      wrld)))

; --------------------------------------------------------------------------
; Section: :TAU-SYSTEM rules

; The code for adding :tau-system rules is in a prior file, namely
; history-management, where it is used in install-event as part of
; tau-auto-modep.

;---------------------------------------------------------------------------
; Section:  :CLAUSE-PROCESSOR Rules

(defun tilde-@-illegal-clause-processor-sig-msg (cl-proc stobjs-in stobjs-out)

; A clause-processor should have signature of the form
; (cl-proc cl) => cl-list
; or
; (cl-proc cl hint) => cl-list
; or
; (cl-proc cl hint st_1 ... st_k) => (erp cl-list st_i1 ... st_in)

  (cond
   ((null (cdr stobjs-out)) ; first two signatures
    (cond ((car stobjs-out)
           (msg "~x0 returns a single argument but it is a stobj"
                cl-proc))
          ((or (equal stobjs-in '(nil))
               (equal stobjs-in '(nil nil)))
           nil)
          (t (msg "~x0 returns a single argument, but doesn't take exactly one ~
                   or two arguments, both not stobjs"
                  cl-proc))))
   ((and ; the final (third) class of signatures above
     (null (car stobjs-in))
     (cdr stobjs-in)
     (null (cadr stobjs-in))
     (not (member-eq nil (cddr stobjs-in)))
     (null (car stobjs-out))
     (cdr stobjs-out)
     (null (cadr stobjs-out))
     (not (member-eq nil (cddr stobjs-out))))
    nil)
   (t
    (msg "both the arguments and results of ~x0 in this case are expected to ~
          contain stobjs in exactly all positions other than the first two"
         cl-proc))))

(defun destructure-clause-processor-rule (term)

; We destructure the translated term term in the form of a :clause-processor
; correctness theorem.  We return
; (mv flg fn cl alist rest-args ev call xflg)
; where
; flg:   :error, if term is not the right shape
;        t, if the clause processor function returns an error triple
;           and is thus to be accessed with CLAUSES-RESULT
;        nil, if the clause processor returns a set of clauses.
; fn:    the clause processor function (presumably a function symbol)
; cl:    the first argument to fn (presumably a variable symbol denoting the
;        input clause)
; alist: the evaluator's alist (presumably a variable symbol)
; rest-args: the arguments of fn after the first (presumably a hint possibly
;        followed by a list of stobj names)
; ev:    the evaluator function (presumably a function symbol)
; call:  the actual call of fn
; flg:   a boolean indicating whether meta-extract-global-fact+ hyps were found
; We also may presume that all the variables above are distinct.

; This function does not check the presumptions above but
; chk-acceptable-clause-processor-rule does and causes an error if they are not
; true.

  (case-match term
    (('IMPLIES hyp
               (ev ('DISJOIN clause) alist))
     (mv-let
      (hyps meta-extract-flg)
      (remove-meta-extract-global-hyps
       (remove1-equal (fcons-term* 'pseudo-term-listp clause)
                      (remove1-equal (fcons-term* 'alistp alist)
                                     (flatten-ands-in-lit hyp)))
       ev)
      (case-match hyps
        (((ev ('CONJOIN-CLAUSES cl-result)
              &))
         (case-match cl-result
           (('CLAUSES-RESULT (cl-proc !clause . rest-args))
            (mv t cl-proc clause alist rest-args ev (cadr cl-result)
                meta-extract-flg))
           ((cl-proc !clause . rest-args)
            (mv nil cl-proc clause alist rest-args ev cl-result
                meta-extract-flg))
           (& (mv :error nil nil nil nil nil nil nil))))
        (& (mv :error nil nil nil nil nil nil nil)))))
    (& (mv :error nil nil nil nil nil nil nil))))

(defun chk-acceptable-clause-processor-rule (name term ctx wrld state)

; Note that term has been translated (as it comes from a translated rule
; class), but not for execution.

  (let ((str "No :CLAUSE-PROCESSOR rule can be generated from ~x0 ~
              because~|~%~p1~|~%does not have the necessary form:  ~@2.  See ~
              :DOC clause-processor."))
    (mv-let
     (clauses-result-call-p cl-proc clause alist rest-args ev cl-proc-call
                            meta-extract-flg)
     (destructure-clause-processor-rule term)
     (cond
      ((eq clauses-result-call-p :error)
       (er soft ctx str name (untranslate term t wrld)
           "it fails to satisfy basic syntactic criteria"))
      ((not (and (symbolp cl-proc)
                 (function-symbolp cl-proc wrld)))
       (er soft ctx str name (untranslate term t wrld)

; We may never see the following message, but it seems harmless to do this
; check.

           (msg "the symbol ~x0 is not a function symbol in the current world"
                cl-proc)))
      (t
       (mv-let
        (erp t-cl-proc-call bindings state)

; Here we catch the use of the wrong stobjs.  Other checking is done below.

        (translate1 cl-proc-call
                    :stobjs-out ; clause-processor call must be executable
                    '((:stobjs-out . :stobjs-out))
                    t ctx wrld state)
        (declare (ignore bindings))
        (cond
         (erp (er soft ctx str name (untranslate term t wrld)
                  (msg "the clause-processor call is not in a form suitable ~
                        for evaluation (as may be indicated by an error ~
                        message above)")))
         (t
          (assert$ ; If translation changes cl-proc-call, we want to know!
           (equal cl-proc-call t-cl-proc-call)
           (let* ((stobjs-in (stobjs-in cl-proc wrld))
                  (stobjs-out (stobjs-out cl-proc wrld)))
             (er-progn
              (cond ((if clauses-result-call-p ; expected: iff at least 2 args
                         (equal stobjs-out '(nil))
                       (not (equal stobjs-out '(nil))))
                     (er soft ctx str name (untranslate term t wrld)
                         (msg "~x0 returns ~#1~[only~/more than~] one value ~
                               and hence there should be ~#1~[no~/a~] call of ~
                               ~x2"
                              cl-proc
                              (if clauses-result-call-p 0 1)
                              'clauses-result)))
                    (t
                     (let ((msg (tilde-@-illegal-clause-processor-sig-msg
                                 cl-proc stobjs-in stobjs-out)))
                       (cond (msg (er soft ctx str name
                                      (untranslate term t wrld)
                                      msg))
                             (t (value nil))))))
              (let* ((user-hints-p (cdr stobjs-in))
                     (user-hints (cond (user-hints-p (car rest-args))
                                       (t nil)))
                     (stobjs-called (cond (user-hints-p (cdr rest-args))
                                          (t rest-args)))
                     (non-alist-vars
                      (if user-hints
                          (list* clause user-hints stobjs-called)
                        (list* clause stobjs-called)))
                     (vars (cons alist non-alist-vars))
                     (bad-vars (collect-non-legal-variableps vars)))
                (cond (bad-vars
                       (er soft ctx str name (untranslate term t wrld)
                           (msg "the clause-processor function must be ~
                                 applied to a list of distinct variable and ~
                                 stobj names, but ~&0 ~#0~[is~/are~] not"
                                (untranslate-lst bad-vars nil wrld))))
                      ((not (no-duplicatesp vars))
                       (cond ((no-duplicatesp non-alist-vars)
                              (er soft ctx str name (untranslate term t wrld)
                                  (msg "the proposed :clause-processor rule ~
                                        uses ~x0 as its alist variable, but ~
                                        this variable also occurs in the ~
                                        argument list of the clause-processor ~
                                        function, ~x1"
                                       alist
                                       cl-proc)))
                             (t
                              (er soft ctx str name (untranslate term t wrld)
                                  (msg "the clause-processor function must be ~
                                        applied to a list of distinct ~
                                        variable and stobj names, but the ~
                                        list ~x0 contains duplicates"
                                       non-alist-vars)))))
                      (t (value nil))))
              (chk-evaluator-use-in-rule name cl-proc nil
                                         (and meta-extract-flg
                                              '(meta-extract-global-fact+))
                                         :clause-processor
                                         ev ctx wrld state)
              (chk-rule-fn-guard "clause-processor" :clause-processor cl-proc
                                 ctx wrld state)
              (chk-evaluator ev wrld ctx state))))))))))))

(defun add-clause-processor-rule (name well-formedness-guarantee term wrld)

; Warning: Keep this in sync with chk-acceptable-clause-processor-rule.

; This function is non-standard, as the other add-x-rule functions traffic in
; runes and numes.  If we ever decide to support automatic application of
; clause-processor rules, along with enabling and disabling, then we should
; modify this to fit into that common mold.  For now, it seems misleading to
; deal with runes, since these rules cannot be enabled or disabled or applied
; automatically.

  (mv-let
   (clauses-result-call-p cl-proc clause alist rest-args ev cl-proc-call
                          meta-extract-flg)
   (destructure-clause-processor-rule term)
   (declare (ignore clause alist rest-args cl-proc-call meta-extract-flg))
   (assert$
    (and (not (eq clauses-result-call-p :error))
         (symbolp cl-proc)
         (function-symbolp cl-proc wrld))
    (putprop
     cl-proc 'clause-processor
     (or well-formedness-guarantee
         t)

; We keep a global list of clause-processor-rules, simply in order to be
; able to print them.  But someone may find other uses for this list, in
; particular in order to code computed hints that look for applicable
; clause-processor rules.

     (global-set 'clause-processor-rules
                 (acons name
                        term
                        (global-val 'clause-processor-rules wrld))
                 (mark-attachment-disallowed
                  (list cl-proc)
                  ev
                  (msg "it supports both the evaluator and clause-processor ~
                        function used in :CLAUSE-PROCESSOR rule ~x0"
                       name)
                  wrld))))))

; Finally, we develop code for trusted clause-processors.  This has nothing to
; do with defthm, but it seems reasonable to place it immediately below code
; for verified clause-processors.

(defun trusted-clause-processor-table-guard (key val wrld)

; There is not much point in checking whether the key is already designated as
; a clause-processor, because a redundant table event won't even result in such
; a check.  We could at least do this check for the non-redundant case, but
; there isn't really any need: It's perfectly OK to redefine the supporters and
; property of being a dependent clause-processor, provided the rest of the
; checks pass.  The user might be surprised in such cases, so the macro
; define-trusted-clause-processor causes an error if the proposed trusted
; clause-processor is already designated as such.

; At one time we insisted that key not have a non-nil value for its
; 'constrained or 'non-executablep property.  With the advent of defattach, a
; constrained function may however be a reasonable choice.  Rather than do an
; elaborate check here on exactly what sort of constrained function might be
; attachable (none, if it is a dependent clause-processor), we trust that the
; writer of :meta and :clause-processor rules knows better than to attach to
; functions that cannot be executed.

  (let ((er-msg "The proposed designation of a trusted clause-processor is ~
                 illegal because ~@0.  See :DOC ~
                 define-trusted-clause-processor.")
        (ctx 'trusted-clause-processor-table-guard))
    (cond
     ((not (or (ttag wrld)
               (global-val 'boot-strap-flg wrld)))
      (er hard ctx er-msg
          "there is not an active ttag (also see :DOC ttag)"))
     ((not (symbolp key))
      (er hard ctx er-msg
          (msg "the clause-processor must be a symbol, unlike ~x0"
               key)))
     ((not (function-symbolp key wrld))
      (er hard ctx er-msg
          (msg "the clause-processor must be a function symbol, unlike ~x0"
               key)))
     ((not (and (consp val)
                (all-function-symbolps (car val) wrld)))
      (cond ((not (symbol-listp (car val)))
             (er hard ctx er-msg
                 "the indicated supporters list is not a true list of symbols"))
            (t (er hard ctx er-msg
                   (msg "the indicated supporter~#0~[ ~&0 is not a function ~
                         symbol~/s ~&0 are not function symbols~] in the ~
                         current ACL2 world"
                        (non-function-symbols (car val) wrld))))))
     ((and (cdr val)
           (not (eql (length (non-trivial-encapsulate-ee-entries
                              (global-val 'embedded-event-lst wrld)))
                     1)))
      (let  ((ee-entries (non-trivial-encapsulate-ee-entries
                          (global-val 'embedded-event-lst wrld))))
        (cond
         ((null ee-entries)
          (er hard ctx er-msg
              "there is no promised encapsulate to associate with this ~
               dependent clause-processor"))
         (t
          (er hard ctx er-msg
              (msg "there is not a unique encapsulate for the promised ~
                    encapsulate to associate with this dependent ~
                    clause-processor.  In particular, an enclosing ~
                    encapsulate introduces function ~x0, while an encapsulate ~
                    superior to that introduces function ~x1"
                   (caar (cadr (car ee-entries)))
                   (caar (cadr (cadr ee-entries)))))))))
     (t
      (let ((failure-msg (tilde-@-illegal-clause-processor-sig-msg
                          key
                          (stobjs-in key wrld)
                          (stobjs-out key wrld))))
        (cond
         (failure-msg
          (er hard ctx er-msg
              (msg failure-msg key)))
         (t t)))))))

(table trusted-clause-processor-table nil nil
       :guard
       (trusted-clause-processor-table-guard key val world))

(defmacro define-trusted-clause-processor
  (clause-processor supporters
                    &key
                    label          ;;; optional, but required if doc is non-nil
                    doc            ;;; optional
                    partial-theory ;;; optional
                    ttag           ;;; optional; nil is same as missing
                    )

; We could mention that unlike trusted clause-processors, no supporters need to
; be specified for a verified clause-processor, as such a rule is guaranteed to
; be a theorem even in if local events have been removed.  But that probably
; would distract more than it would enlighten.

  (let* ((ctx 'define-trusted-clause-processor)
         (er-msg "The proposed use of define-trusted-clause-processor is ~
                  illegal because ~@0.  See :DOC ~
                  define-trusted-clause-processor.")
         (assert-check
          `(assert-event
            (not (assoc-eq ',clause-processor
                           (table-alist 'trusted-clause-processor-table
                                        (w state))))
            :msg (msg "The function ~x0 is already indicated as a trusted ~
                       clause-processor."
                      ',clause-processor)
            :on-skip-proofs t))
         (ttag-extra (and ttag `((defttag ,ttag))))
         (label-extra (and label
                           (cond (doc
                                  `((deflabel ,label
                                      :doc ,doc)))
                                 (t `((deflabel ,label))))))
         (extra (append ttag-extra label-extra)))
    (cond
     ((not (symbol-listp supporters))
      (er hard ctx er-msg
          "the second (supporters) argument must be a true list of symbols"))
     ((not (symbolp clause-processor)) ; expansion will do stronger check
      (er hard ctx er-msg
          "the first argument must be a symbol (in fact, must be a defined ~
           function symbol in the current ACL2 world)"))
     ((and doc (not label))
      (er hard ctx er-msg
          "a non-nil :label argument is required when a non-nil :doc argument ~
           is supplied"))
     (t
      (case-match partial-theory
        (nil
         `(encapsulate
           ()
           ,assert-check
           ,@extra
           (table trusted-clause-processor-table ',clause-processor
                  '(,supporters))))
        (('encapsulate sigs . events)
         (cond
          ((atom sigs)
           (er hard ctx er-msg
               "the encapsulate event associated with :partial-theory has an ~
                empty signature list"))
          ((atom events)
           (er hard ctx er-msg
               "the encapsulate event associated with :partial-theory has an ~
                empty list of sub-events"))
          ((not (true-listp events))
           (er hard ctx er-msg
               "the encapsulate event associated with :partial-theory has a ~
                list of sub-events that is not a true-listp"))
          (t `(encapsulate
               ,sigs
               ,assert-check
               (logic) ; to avoid skipping local events
               ,@events
               ,@extra
               (table trusted-clause-processor-table ',clause-processor
                      '(,supporters . t))))))
        (& (er hard ctx er-msg
               "a supplied :partial-theory argument must be a call of ~
                encapsulate")))))))

;---------------------------------------------------------------------------
; Section:  Handling a List of Classes

; We start by translating the user-supplied list of rule-class tokens.

; Once upon a time we considered the idea of permitting rule classes, e.g.,
; :FORWARD-CHAINING, to be abbreviated by arbitrary subsequences of their
; characters.  We implemented the idea via "disambiguation alists."  We have
; since scrapped the idea for user-level consistency: rule classes are only one
; source of long keywords.  Do we permit the abbreviation of, say, :HINTS by
; :H?  Do we permit the abbreviation of :RULE-CLASSES to :RC?  Do we permit the
; abbreviation of the :PROPS keyword command of LP?  There is a good argument
; that we ought to permit a powerful symbol-level abbreviation convention.
; Macros suffer by requiring parentheses.  But since we don't have the time,
; now, to carry out the root-and-branch implementation of keyword
; disambiguation, we have scrapped the idea for now.  We leave the following
; dead code in place.

; (defun char-subsequencep (x y)
;
; ; Determine whether x is a subsequence of y, e.g., '(#\B #\D) is a
; ; char-subsequencep of '(#\A #\B #\C #\D) but not of '(#\A #\D #\B).
; ; X and y must be true lists of characters.
;
;   (cond ((null x) t)
;         ((null y) nil)
;         ((eql (car x) (car y))
;          (char-subsequencep (cdr x) (cdr y)))
;         (t (char-subsequencep x (cdr y)))))
;
; (defun disambiguate1 (x alist)
;
; ; Alist should pair character lists with arbitrary values.  We select those
; ; pairs whose key have x as a subsequence.
;
;   (cond ((null alist) nil)
;         ((char-subsequencep x (caar alist))
;          (cons (car alist) (disambiguate1 x (cdr alist))))
;         (t (disambiguate1 x (cdr alist)))))
;
; (defun make-disambiguation-alist (lst)
;
; ; This function is used to preprocess a true list of symbols into an
; ; alist suitable for disambiguate.  For example, '(FOO BAR) is
; ; transformed into '(((#\F #\O #\O) . FOO) ((#\B #\A #\R) . BAR)).
;
;   (cond ((null lst) nil)
;         (t (cons (cons (coerce (symbol-name (car lst)) 'list) (car lst))
;                  (make-disambiguation-alist (cdr lst))))))
;
; (defun assoc-cdr (x alist)
;
; ; Like assoc-equal but uses the cdr of each pair in alist as the key.
;
;   (cond ((null alist) nil)
;         ((equal x (cdar alist)) (car alist))
;         (t (assoc-cdr x (cdr alist)))))
;
; (defun disambiguate (token alist ctx phrase state)
;
; ; This function disambiguates token wrt alist or else causes an error.
; ; Token must be a symbol and alist must be a ``disambiguation alist,''
; ; an alist pairing lists of characters to symbols.  For example, if
; ; token is :EM and alist includes the pair ((#\E #\L #\I #\M) . :ELIM)
; ; and no other pair whose key has EM as a subsequence, then no error
; ; is caused and :ELIM is returned as the value.  If the token is a
; ; subsequence of no key or of more than one key, an error is caused.
; ; Phrase is a tilde-@ phrase that fills in the sentence: "The
; ; acceptable ~@1 are ..." so, for example, phrase might be "rule
; ; classes".
;
; ; We adopt the convention, for sanity, that if token is eq to the
; ; value component of some pair in alist, then its meaning is itself.
; ; This guarantees that if you spell a token out completely you get that
; ; token and no other; in particular, you don't get an ambiguity error
; ; just one key in the alist is a subsequence of another.
;
;   (cond
;    ((assoc-cdr token alist) (value token))
;    (t
;     (let ((winners (disambiguate1 (coerce (symbol-name token) 'list) alist)))
;       (cond ((null winners)
;              (er soft ctx "The token ~x0 denotes none of the acceptable ~@1: ~&2."
;                  token
;                  phrase
;                  (strip-cdrs alist)))
;             ((null (cdr winners))
;              (value (cdar winners)))
;             (t (er soft ctx "The token ~x0 is ambiguously denotes the ~@1:  ~&2."
;                    token
;                    phrase
;                    (strip-cdrs winners))))))))
;
; (defun tilde-@-abbreviates-but-phrase (x y)
;
; ; We produce a tilde-@ phrase that prints as "x abbreviates y, but y"
; ; if x is different from y and that is just "y" otherwise.  Both x and
; ; y are symbols.  This is used to print such messages as ":RWT
; ; abbreviates :REWRITE, but :REWRITE cannot be used as a structured
; ; rule class."
;
;   (cond ((eq x y) (msg "~x0" y))
;         (t (msg "~x0 abbreviates ~x1, but ~x1" x y))))
;
; ; Thus ends the dead code devoted to disambiguation.
;

; Now we stub out the proof checker's sense of "instructions."

(defun primitive-instructionp (instr state)
  (let* ((cmd (car (make-official-pc-instr instr)))
         (typ (pc-command-type cmd)))
    (and (member-eq typ '(primitive atomic-macro))
         (acl2-system-namep-state
          (intern-in-package-of-symbol (symbol-name cmd) 'acl2-pc::induct)
          state))))

(defun non-primitive-instructions (instructions state)
  (cond
   ((endp instructions)
    nil)
   ((primitive-instructionp (car instructions) state)
    (non-primitive-instructions (cdr instructions) state))
   (t
    (cons (car instructions)
          (non-primitive-instructions (cdr instructions) state)))))

(defun chk-primitive-instruction-listp (instructions ctx state)
  (if (true-listp instructions)
      (value nil)
    (er soft ctx
        "An :instructions argument must be a ~
         true-list and ~x0 is not."
        instructions)))

(defun translate-instructions (name instructions ctx wrld state)
  (declare (ignore name wrld))
  (if (eq instructions t)
      (value t)
    (er-progn (chk-primitive-instruction-listp instructions ctx state)
              (value instructions))))

(defun controller-alistp (clique alist wrld)

; Clique is a list of function symbols.  Alist is an arbitrary object.
; We confirm that alist is an alist that maps each fn in clique to a
; mask of t's and nil's whose length is the arity of the corresponding
; fn.

  (cond ((atom alist)
         (cond ((null alist) (null clique))
               (t nil)))
        ((and (consp (car alist))
              (symbolp (caar alist))
              (member-eq (caar alist) clique)
              (boolean-listp (cdar alist))
              (= (length (cdar alist)) (arity (caar alist) wrld)))
         (controller-alistp (remove1-eq (caar alist) clique)
                            (cdr alist)
                            wrld))
        (t nil)))

(defun alist-to-keyword-alist (alist ans)

; Convert ((key1 . val1) ... (keyn . valn)) to a keyword alist, i.e.,
; (keyn valn ... key1 val1).  Note that we reverse the order of the
; "key pairs."

  (declare (xargs :guard (alistp alist)))
  (cond ((endp alist) ans)
        (t (alist-to-keyword-alist (cdr alist)
                                   (cons (caar alist)
                                         (cons (cdar alist) ans))))))

(defun eliminate-macro-aliases (lst macro-aliases wrld)

; Returns (mv flg lst), where flg is nil if lst is unchanged, :error if there
; is an error (some element is neither a function symbol nor a macro aliases)
; -- in which case lst is a string giving a reason for the error after "but
; <original_list> " -- else :changed if there is no error but at least one
; macro alias was found.

  (cond ((atom lst)
         (cond ((null lst) (mv nil nil))
               (t (mv :error "does not end in nil"))))
        (t (mv-let (flg rst)
                   (eliminate-macro-aliases (cdr lst) macro-aliases wrld)
                   (cond ((eq flg :error)
                          (mv :error rst))
                         (t (let* ((next (car lst))
                                   (fn (deref-macro-name next macro-aliases)))
                              (cond ((not (and (symbolp fn)
                                               (function-symbolp fn wrld)))
                                     (mv :error
                                         (msg "contains ~x0"
                                              next)))
                                    ((or (eq flg :changed)
                                         (not (eq next fn)))
                                     (mv :changed (cons fn rst)))
                                    (t (mv nil lst))))))))))

(defun fix-loop-stopper-alist (x macro-aliases wrld)

; Returns (mv flg x').  If x is a valid loop-stopper alist then flg is flg0 and
; x' is x.  If x is valid except that some symbols that are expected to be
; function symbols are actually macro aliases, then flg is t and x' is the
; result of replacing each such macro aliases by the corresponding function.
; Otherwise flg is :error.

  (cond
   ((null x) (mv nil nil))
   ((atom x) (mv :error nil))
   ((not (and (true-listp (car x))
              (<= 2 (length (car x)))
              (legal-variablep (caar x))
              (legal-variablep (cadar x))
              (not (eq (caar x) (cadar x)))))
    (mv :error nil))
   (t (mv-let (flg1 fns)
              (eliminate-macro-aliases (cddar x) macro-aliases wrld)
              (cond ((eq flg1 :error) (mv :error nil))
                    (t (mv-let
                        (flg2 rest)
                        (fix-loop-stopper-alist (cdr x) macro-aliases wrld)
                        (cond (flg1 (mv t (cons (list* (caar x) (cadar x) fns)
                                                rest)))
                              (flg2 (mv t (cons (car x) rest)))
                              (t (mv nil x))))))))))

(defun guess-controller-alist-for-definition-rule (names formals body ctx wrld
                                                         state)

; Names is a singleton list containing a function name to be used as the clique
; for a :definition rule with the indicated formals and body.  We guess a
; :controller-alist or cause an error.

  (let ((t-machine (termination-machine names body nil nil
                                        (default-ruler-extenders wrld))))
    (er-let*
     ((m (guess-measure (car names) nil formals 0 t-machine ctx wrld state)))
     (value (list (cons (car names)
                        (make-controller-pocket formals
                                                (all-vars m))))))))

(defun chk-legal-linear-trigger-terms1 (term lst name ctx state)
  (cond ((null lst) (value nil))
        ((subsetp-eq (set-difference-eq (all-vars (cdar lst))
                                        (all-vars1-lst (caar lst) nil))
                     (all-vars term))
         (chk-legal-linear-trigger-terms1 term (cdr lst) name ctx state))
        (t (er soft ctx
               "Each term in the :TRIGGER-TERMS of a :LINEAR rule should be a ~
                legal trigger for the rule generated for each branch through ~
                the corollary.  But the the proposed trigger ~p0 for the ~
                :LINEAR rule ~x1 is illegal for the branch ~p2 because it ~
                contains insufficient variables.  See :DOC linear."
               (untranslate term nil (w state))
               name
               (untranslate
                (if (caar lst)
                    (fcons-term* 'implies (conjoin (caar lst)) (cdar lst))
                    (cdar lst))
                t
                (w state))))))

(defun chk-legal-linear-trigger-terms (terms lst name ctx state)

; When the user supplies some :TRIGGER-TERMS for a :LINEAR rule, we must check
; that each trigger is legal for every rule generated from the unprettified
; corollary.  Here, terms is a true-list of terms proposed as triggers and lst
; is the unprettification of the corollary, i.e., a list of pairs of the form
; ((hyps1 . concl1) ... (hypsk . conclk)).  To be legal, each term must be a
; non-variable, non-quote, non-lambda application, non-IF and must, for each
; (hypsi . concli) pair, contain sufficient variables so that the vars in hypsi
; plus those in the term include all the vars in concli.  We check these
; conditions and return nil or cause an error.

  (cond
   ((null terms) (value nil))
   ((and (nvariablep (car terms))
         (not (fquotep (car terms)))
         (not (flambda-applicationp (car terms)))
         (not (eq (ffn-symb (car terms)) 'if)))
    (er-progn
     (chk-legal-linear-trigger-terms1 (car terms) lst name ctx state)
     (chk-legal-linear-trigger-terms (cdr terms) lst name ctx state)))
   (t (er soft ctx
          "The term ~p0 supplied as a :TRIGGER-TERM for the :LINEAR rule ~x1 ~
           is illegal because it is either a variable, a quoted constant, a ~
           lambda application (or LET-expression), or an IF-expression."
          (untranslate (car terms) nil (w state))
          name))))

(defun backchain-limit-listp (lst)

; Recognizer for true-lists each of whose elements is either NIL or a
; non-negative integer.

  (cond ((atom lst)
         (equal lst nil))
        ((or (null (car lst))
             (natp (car lst)))
         (backchain-limit-listp (cdr lst)))
        (t
         nil)))

(defun recover-metafunction-or-clause-processor-signatures (token term)

; Term is supposed to be either a metafunction correctness theorem or a
; clause-processor correctness theorem, depending on token being :meta or
; :clause-processor.  (But it may not be of the correct form.)  We return (mv
; triple-flg fn hyp-fn rest-args), where hyp-fn is nil if no hypothesis fn is
; involved.  Rest-args are all the arguments of fn after the first.  Triple-flg
; is :error if term cannot be parsed according to token, is t if the identified
; metafunction or clause processor, fn, returns an error triple (and thus must
; actually be a clause-processor whose result is to be accessed with
; CLAUSES-RESULT), or nil if fn returns a simple value (term or set of
; clauses).

; In the case of a :meta fn, triple-flg is :error or nil and rest-args may be
; nil or something like (mfc state).  In the case of a :clause-processor,
; triple-flg may be :error, t, or nil and rest-args may be nil or (hint) or
; (hint stobj1 stobj2 ... stobjk).  When hyp-fn is present, we know that it can
; take the same arguments as fn.

; If triple-flg is :error then we know chk-acceptable-x-rule will cause an
; error.  Otherwise, we guarantee that fn is a function symbol, hyp-fn is nil
; or a function symbol of the same arity as fn, that the arity of both
; functions is (+ 1 (len rest-args)), and that rest-args is a list of distinct
; variable symbols, and that result of fn is either a triple (whose value is to
; be accessed with CLAUSES-RESULT) or a single value according to triple-flg.

  (cond
   ((eq token :meta)
    (mv-let
     (hyp eqv ev x a fn mfc-symbol)
     (interpret-term-as-meta-rule term)
     (mv-let
      (hyp-fn extra-fns)
      (meta-rule-hypothesis-functions hyp ev x a mfc-symbol)
      (declare (ignore extra-fns))
      (cond

; If hyp-fn is nil, it means the hyp didn't parse.  If hyp-fn is t it means the
; hyp parsed but there is no hyp-fn.

; Note that to insure that fn, for example, is a function symbol of the correct
; signature, we only need to check that it is a symbol, since term is a
; translated term.

       ((or (null eqv)
            (not (symbolp fn))
            (null hyp-fn)
            (not (symbolp hyp-fn))
            (not (symbolp mfc-symbol)))
        (mv :error nil nil nil))
       (t (mv nil
              fn
              (if (eq hyp-fn t) nil hyp-fn)
              (if mfc-symbol
                  (list mfc-symbol 'STATE)
                  nil)))))))
   (t
    (mv-let
     (flg fn cl alist rest-args ev call xflg)
     (destructure-clause-processor-rule term)
     (declare (ignore call xflg))
     (cond
      ((or (eq flg :error)
           (not (symbolp fn))
           (not (symbolp cl))
           (not (symbolp alist))
           (not (symbol-listp rest-args))
           (not (symbolp ev))
           (not (no-duplicatesp (list* cl alist rest-args))))
       (mv :error nil nil nil))
      (t (mv flg fn nil rest-args)))))))

(defun equal-except-on-non-stobjs (arglist1 arglist2 w)

; Given two lists of symbols, we check that when corresponding elements are
; different they are not stobjs.  That is, the two lists are equal except on
; the non-stobj elements.  This is implied by (equal arglist1 arglist2) and
; implies (equal (len arglist1) (len arglist2)).

  (cond ((atom arglist1)
         (and (equal nil arglist1)
              (equal nil arglist2)))
        ((atom arglist2) nil)
        ((equal (car arglist1) (car arglist2))
         (equal-except-on-non-stobjs (cdr arglist1) (cdr arglist2) w))
        ((or (stobjp (car arglist1) t w)
             (stobjp (car arglist2) t w))
         nil)
        (t (equal-except-on-non-stobjs (cdr arglist1) (cdr arglist2) w))))

(defun arity-alistp (alist)
; We check that alist binds symbols to naturals and that no symbol is bound
; twice.
  (cond
   ((atom alist) (eq alist nil))
   ((and (consp (car alist))
         (symbolp (car (car alist)))
         (natp (cdr (car alist)))
         (arity-alistp (cdr alist))
         (not (assoc-eq (car (car alist)) (cdr alist))))
    t)
   (t nil)))

(defun compatible-arity-alistsp (alist1 alist2)

; Both arguments are arity-alists.  We want to know if their union is also.  We
; do this in the most brute-force way imaginable except that we recognize the
; special cases where the two alists are identical.

  (cond ((equal alist1 alist2) t)
        (t (arity-alistp (union-equal alist1 alist2)))))

(defun collect-disagreeing-arity-assumptions (alist1 alist2)
  (cond ((endp alist1) nil)
        ((and (assoc (car (car alist1)) alist2)
              (not (equal (cdr (car alist1))
                          (cdr (assoc (car (car alist1)) alist2)))))
         (cons (car (car alist1))
               (collect-disagreeing-arity-assumptions (cdr alist1) alist2)))
        (t (collect-disagreeing-arity-assumptions (cdr alist1) alist2))))

(defun interpret-term-as-well-formedness-guarantee-thm (token fn thm)

; Token must be :META or :CLAUSE-PROCESSOR.  In the former case,
; thm is a term (actually a theorem) and we interpret it as 

; (IMPLIES (AND (TERMP tvar wvar)
;               (ARITIES-OKP '((fn1 . k1) ...) wvar))
;          (TERMP (fn tvar) wvar))

; In the latter case, we interpret thm as

; (IMPLIES (AND (TERM-LISTP tvar wvar)
;               (ARITIES-OKP '((fn1 . k1) ...) wvar))
;          (TERM-LIST-LISTP (fn tvar) wvar))

; or

; (IMPLIES (AND (TERM-LISTP tvar wvar)
;               (ARITIES-OKP '((fn1 . k1) ...) wvar))
;          (TERM-LIST-LISTP (CLAUSES-RESULT (fn tvar)) wvar))

; But we recognize certain equivalent or stronger variants, including allowing
; fewer or rearranged hypotheses and allowing for fn to have additional
; arguments as permitted for metafunctions and clause-processors.  We return
; (mv tvar wvar alist triple-flg rest-args), where alist is the evg of the quoted
; arities alist found and rest-args is the list of arguments to fn after tvar.
; and triple-flg is :error, t, or nil with :error meaning we couldn't parse
; thm appropriately, t meaning that fn returns a triple whose value is accessed
; by CLAUSES-RESULT, and nil meaning fn returns a single value.

; If triple-flg is :error, thm is not of the appropriate form; otherwise it is.
; But we do not check anything about the components returned!  For example,
; tvar, which is guaranteed to be a term may not actually be a variable symbol,
; etc.  These constraints must be checked by the caller.

; We actually accept the thm (TERMP (fn tvar) wvar) and (TERM-LIST-LISTP (fn
; tvar) wvar) without any hypotheses, though the only functions we can think of
; for which this is provable are those that return constants and hence can't be
; correct metafunctions or clause processor.

; We could code this more efficiently but we don't expect well-formedness
; guarantees to be very common.

  (let ((pre (if (eq token :META) 'TERMP 'TERM-LISTP))
        (post (if (eq token :META) 'TERMP 'TERM-LIST-LISTP)))
    (case-match thm
      (('IMPLIES ('IF (!pre tvar wvar)
                      ('ARITIES-OKP ('QUOTE alist) wvar)
                      ''NIL)
                 (!post (!fn tvar . rest-args) wvar))
       (mv tvar wvar alist nil rest-args))
      (('IMPLIES ('IF ('ARITIES-OKP ('QUOTE alist) wvar)
                      (!pre tvar wvar)
                      ''NIL)
                 (!post (!fn tvar . rest-args) wvar))
       (mv tvar wvar alist nil rest-args))
      (('IMPLIES (!pre tvar wvar)
                 (!post (!fn tvar . rest-args) wvar))
       (mv tvar wvar nil nil rest-args))
      (('IMPLIES ('ARITIES-OKP ('QUOTE alist) wvar)
                 (!post (!fn tvar . rest-args) wvar))
       (mv tvar wvar alist nil rest-args))
      ((!post (!fn tvar . rest-args) wvar)
       (mv tvar wvar nil nil rest-args))

; Now we repeat the same patterns except this time allow for CLAUSES-RESULT
; around the fn call:

      (('IMPLIES ('IF (!pre tvar wvar)
                      ('ARITIES-OKP ('QUOTE alist) wvar)
                      ''NIL)
                 (!post ('CLAUSES-RESULT (!fn tvar . rest-args)) wvar))
       (mv tvar wvar alist t rest-args))
      (('IMPLIES ('IF ('ARITIES-OKP ('QUOTE alist) wvar)
                      (!pre tvar wvar)
                      ''NIL)
                 (!post ('CLAUSES-RESULT (!fn tvar . rest-args)) wvar))
       (mv tvar wvar alist t rest-args))
      (('IMPLIES (!pre tvar wvar)
                 (!post ('CLAUSES-RESULT (!fn tvar . rest-args)) wvar))
       (mv tvar wvar nil t rest-args))
      (('IMPLIES ('ARITIES-OKP ('QUOTE alist) wvar)
                 (!post ('CLAUSES-RESULT (!fn tvar . rest-args)) wvar))
       (mv tvar wvar alist t rest-args))
      ((!post ('CLAUSES-RESULT (!fn tvar . rest-args)) wvar)
       (mv tvar wvar nil t rest-args))
      (& (mv nil nil nil :error nil)))))

(defun translate-well-formedness-guarantee (token x name corollary ctx wrld
                                                  state)

; Token is either :META or :CLAUSE-PROCESSOR and indicates what class of rule
; we're creating.  X is the value supplied for the :WELL-FORMEDNESS-GUARANTEE
; component of the rule class.  Name is the name of the correctness theorem for
; a metafunction (perhaps with a hypothesis metafunction) or clause-processor
; and corollary is the statement of that correctness theorem.  X must be one
; of:

; [1] thm-name1               token = :META or :CLAUSE-PROCESSOR
; [2] (thm-name1)             token = :META
; [3] (thm-name1 thm-name2)   token = :META

; If token is :CLAUSE-PROCESSOR, token must be of form [1].  If token is :META
; and the metatheorem named by name has a hypothesis metafunction, token must
; be of form [3].  In all cases, thm-name1 and thm-name2 (when relevant) must
; be symbols that name theorems that guarantee that the metafunction or clause
; processor together with the hypothesis metafunction, as appropriate, return
; well-formed results.  In the case of token :META ``well-formed'' means the
; output is a TERMP if the input is; in the case of token :CLAUSE-PROCESSOR,
; ``well-formed'' means the output is a TERM-LIST-LISTP if the input is a
; TERM-LISTP..  In both cases, the well-formedness theorems also involve
; assumptions about the arities of certain functions.

; The result of this function either an error or a ``well-formedness
; guarantee'' of the form:

; (cons (list name fn thm-name1 hyp-fn thm-name2)
;       combined-arity-alist)

; where the list of length 5 above is shortened to 3 if there no hyp-fn is
; involved, and combined-arity-alist is the union of the two arity-alists.  We
; keep all this information to make error reporting easier.  The list of length
; 5 (or 3) is displayed to the user when he or she tries to make one of the
; functions on the combined-arity-alist untouchable.  The combined-arity-alist
; is checked against the current world when the metatheorem or clause processor
; is applied.  The value of this function is stored in the :heuristic-info
; field of the :rewrite-rule created for this metatheorem and on the property
; list of the metafunction under the WELL-FORMEDNESS-GUARANTEE property.

; So much for the spec and use of this function.  Now for the operational
; details.   To allow some code sharing we often act like a
; clause-processor is just a metafunction (e.g., we use the same name, fn, for
; both) without a hyp-fn; of course, we must interpret ``well-formedness''
; appropriately.

; But we must recover the metafunction or clause-processor functio name, fn,
; (and, possibly, the hypothesis metafunction name, hyp-fn) from the translated
; corollary formula, which means we must parse corollary as a formula of the
; appropriate shape.  But rule classes are translated -- resulting in this
; function being called -- before the translated rule class (always now
; containing a translated :corollary term) is checked for well-formedness.  So
; here we're in the odd position of wanting to know whether x names theorems
; about certain functions, fn and hyp-fn, proved sound by corollary, without
; knowing that corollary establishes soundness for anything!  So what do we do
; if corollary has the wrong shape and we cannot recover fn and hyp-fn from it?
; Answer: we ``approve'' x (by causing no error and acting as though there were
; well-formedness guarantee)!  We know that corollary will be checked later and
; will cause the whole rule to fail if it's not of the right shape.

  (cond
   ((not (or (and (symbolp x)
                  (formula x nil wrld))
             (and (eq token :META)
                  (consp x)
                  (symbolp (car x))
                  (null (cdr x))
                  (formula (car x) nil wrld))
             (and (eq token :META)
                  (consp x)
                  (symbolp (car x))
                  (consp (cdr x))
                  (symbolp (cadr x))
                  (null (cddr x))
                  (formula (car x) nil wrld)
                  (formula (cadr x) nil wrld))))
    (if (eq token :META)
        (er soft ctx
            "The :WELL-FORMEDNESS-GUARANTEE of :META rule ~x0 is ill-formed.  ~
             In general, a :WELL-FORMEDNESS-GUARANTEE must be of one of the ~
             following forms:~%[1]  thm-name1~%[2]  (thm-name1)~%[3]  ~
             (thm-name1 thm-name2)~%where thm-name1 names a previously proved ~
             theorem guaranteeing that the relevant metafunction returns a ~
             TERMP when given a TERMP.  See :DOC termp.  Form [3] is only ~
             permitted (and is required!) when the metatheorem has a ~
             hypothesis metafunction, in which case thm-name2 names a ~
             previously proved theorem guaranteeing that the hypothesis ~
             metafunction also returns a TERMP when given one.  ~x1 is of ~
             none of the expected forms.  See :DOC well-formedness-guarantee ~
             for details."
            name x)
        (er soft ctx
            "The :WELL-FORMEDNESS-GUARANTEE of :CLAUSE-PROCESSOR rule ~x0 ~
             must be the name of a theorem guaranteeing that the clause ~
             processor returns a TERM-LIST-LISTP when given a TERM-LISTP.  ~
             ~x1 is not such a name.  See :DOC term-listp, :DOC ~
             term-list-listp, and :DOC well-formedness-guarantee for details."
             name x)))
   (t (let* ((thm-name1 (cond ((symbolp x) x)
                              (t (car x))))
             (thm-name2 (cond ((symbolp x) nil) ; might be nil
                              (t (cadr x))))
             (thm1 (formula thm-name1 nil wrld))
             (thm2 (if (null thm-name2)         ; might be nil
                       nil
                       (formula thm-name2 nil wrld))))

        (mv-let
         (triple-flg fn hyp-fn rest-args)
         (recover-metafunction-or-clause-processor-signatures token corollary)
         (let ((expected-fn-form
                `(IMPLIES
                  (AND (,(if (eq token :meta) 'TERMP 'TERM-LISTP) X W)
                       (ARITY-ALISTP '<alist> W))
                  (,(if (eq token :meta) 'TERMP 'TERM-LIST-LISTP)
                   ,(if triple-flg
                        `(CLAUSES-RESULT (,fn X ,@rest-args))
                        `(,fn X ,@rest-args))
                   W)))
               (expected-hyp-fn-form
                (if hyp-fn
                    `(IMPLIES
                      (AND (TERMP X W)
                           (ARITY-ALISTP '<alist> W))
                      (TERMP (,hyp-fn X ,@rest-args)
                             W))
                    nil))
               (evisc (evisc-tuple nil nil
                                   '((<alist> . "((fn1 . n1) ... (fnk . nk))"))
                                   nil)))
         (cond
          ((eq triple-flg :error)

; The corollary didn't parse as a meta/clause-processor rule (as per token).
; But we quietly accept it knowing that the corresponding chk-acceptable-x-rule
; will cause an error.

            (value nil))

; Otherwise, fn is the metafunction or clause processor function, as per token.
; We know that fn is a function symbol of arity (+ 1 (len rest-args)), that fn
; returns an error triple iff triple-flg is t (and so its value must be
; accessed with CLAUSES-RESULT), that hyp-fn is either nil or a function symbol
; of the same arity as fn, and that `(,fn x ,@rest-args) and `(,hyp-fn x
; ,@rest-args) are legal calls of those functions (assuming hyp-fn is non-nil).

; We also know that x names at least one theorem, thm1 with name thm-name1.  We
; know that thm2 is either a theorem with name thm-name2 or else thm2 and
; thm-name2 are both nil.  Thm1 and thm2 are supposedly well-formedness
; guarantees for fn and hyp-fn.  But we must confirm that.

           (t (mv-let
               (tvar1 wvar1 alist1 triple-flg1 rest-args1)
               (interpret-term-as-well-formedness-guarantee-thm token fn thm1)
               (cond
                ((eq triple-flg1 :error)
                 (er soft ctx
                     "The :WELL-FORMEDNESS-GUARANTEE of ~x0 rule ~x1 is ~
                      ill-formed.  We cannot interpret the theorem named ~x2 ~
                      as a well-formedness guarantee for the function ~x3.  ~
                      We expected the name of a theorem like ~X45.  See :DOC ~
                      well-formedness-guarantee for details of the acceptable ~
                      forms."
                     token name thm-name1 fn
                     expected-fn-form
                     evisc))
                ((and

; Now we know that the alleged well-formedness theorem, thm1, is about the same
; function symbol, fn!  Given the possibility that fn has changed since thm1
; was proved, we do another check.  This is just out of politeness: fn could
; only change due to a redefinition and soundness is now the user's
; responsibility!  But we know that if this metatheorem/clause-processor is
; approved, we're going to call fn on the arguments we see in corollary and we
; want some assurance that thm1 guarantees the well-formedness of the result!
; For example, imagine that when thm1 was proved about a metafunction fn, the
; formals of fn were (x state mfc) but then before corollary was proved fn was
; redefined with arguments (x mfc state).  If we were to approve this thm as a
; well-formedness guarantee then we'd be wrong!  Of course, if fn has been
; redefined, it hardly matters that the arguments are the same!  But since the
; introduction of a non-term is a pretty difficult bug to diagnose, we prefer
; to do what we can to prevent it even if it's the user's own fault!

                  (equal-except-on-non-stobjs rest-args rest-args1 wrld)
                  (eq triple-flg triple-flg1)

                  (variablep tvar1)
                  (variablep wvar1)
                  (symbol-listp rest-args1) ;``(variable-listp rest-args1)''
                  (no-duplicatesp-equal
                   (list* tvar1 wvar1 rest-args1))
                  (arity-alistp alist1))

; We know thm is of the form (for token :meta):
; (IMPLIES (AND (TERMP tvar1 wvar1)
;               (ARITIES-OKP '<alist1> wvar1))
;          (TERMP (fn tvar1 . rest-args1) wvar1))

; For token :clause-processor we know:
; (IMPLIES (AND (TERM-LISTP tvar1 wvar1)
;               (ARITIES-OKP '<alist1> wvar1))
;          (TERM-LIST-LISTP (fn tvar1 . rest-args1) wvar1))

; possibly with a CLAUSES-RESULT wrapped around the fn call.  Now we know that
; all the terms used as variables above really are variables and they're
; distinct, and that alist1 pairs symbols to naturals.  (For politeness only we
; know that the same stobjs are given to fn in both the corollary and thm1 and
; that the output of fn is either a triple or a single value as specified by
; triple-flg in both theorems.)

; We claim the tests above insure that thm1 guarantees that fn always returns a
; TERMP or TERM-LIST-LISTP provided the arity alist, alist1, is valid in the
; current world.  Now we check the same things for the hyp-fn, if any.

                 (cond
                  ((null hyp-fn)
                   (cond
                    (thm-name2
                     (er soft ctx
                         "The ~x0 rule ~x1 mentions the metafunction ~x2 but ~
                          does not mention a hypothesis metafunction.  ~
                          Therefore, it makes no sense to name a previously ~
                          proved theorem that provides a well-formedness ~
                          guarantee for a hypothesis metafunction.  But ~
                          you have specified such a name, ~x4, with your ~
                          :WELL-FORMEDNESS-GUARANTEE ~x3.  This may indicate ~
                          a misunderstanding.  Replace your guarantee with ~
                          :WELL-FORMEDNESS-GUARANTEE ~x5."
                         token name fn x thm-name2 (list thm-name1)))
                    (t
                     (value (cons (list name fn thm-name1)
                                  alist1)))))

; Token is :META because we have a hyp-fn.

                  ((null thm-name2)
                   (er soft ctx
                       "The :META rule ~x0 mentions the metafunction ~x1 and ~
                        the hypothesis metafunction ~x2.  You have correctly ~
                        named ~x3 as a previously proved theorem guaranteeing ~
                        that ~x1 always returns a TERMP, but you have not ~
                        specified such a name for ~x2.  We require that you ~
                        do so.  That is, prove a theorem like ~X45 with some ~
                        name and change your :WELL-FORMEDNESS-GUARANTEE value ~
                        to (~x3 name)."
                       name fn hyp-fn thm-name1 expected-hyp-fn-form evisc))
                  (t (mv-let
                      (tvar2 wvar2 alist2 triple-flg2 rest-args2)
                      (interpret-term-as-well-formedness-guarantee-thm
                       token hyp-fn thm2)
                      (cond
                       ((and
                         (equal-except-on-non-stobjs rest-args rest-args2 wrld)
                         (eq triple-flg triple-flg2)
                         (variablep tvar2)
                         (variablep wvar2)
                         (no-duplicatesp-equal
                          (list* tvar2 wvar2 rest-args2))
                         (arity-alistp alist2))
                        (cond
                         ((compatible-arity-alistsp alist1 alist2)
                          (value (cons (list name
                                             fn thm-name1
                                             hyp-fn thm-name2)
                                       (union-equal alist1 alist2))))
                         (t (er soft ctx
                                "The :WELL-FORMEDNESS-GUARANTEE of the :META ~
                                 rule ~x0 for the metafunction ~x1 with ~
                                 hypothesis metafunction ~x2 is inadmissible ~
                                 because the two TERMP theorems (~x3 and ~x4) ~
                                 assume different arities for one or more ~
                                 function symbols, to wit ~&5.  You will have ~
                                 to prove TERMP guarantee theorems that make ~
                                 compatible arity assumptions!"
                                name fn hyp-fn thm-name1 thm-name2
                                (collect-disagreeing-arity-assumptions
                                 alist1 alist2)))))
                       (t (er soft ctx
                              "The :WELL-FORMEDNESS-GUARANTEE of the :META ~
                               rule ~x0 for the metafunction ~x1 with ~
                               hypothesis metafunction ~x2 specified that ~x3 ~
                               is the name of the previously proved theorem ~
                               that guarantees that ~x2 always returns a ~
                               TERMP.  But theorem ~x3 is not of the expected ~
                               form.  We expected it to be something ~
                               like:~X45.  See :DOC well-formedness-guarantee."
                              name fn hyp-fn thm-name2
                              expected-hyp-fn-form evisc)))))))
                (t (er soft ctx
                       "The :WELL-FORMEDNESS-GUARANTEE of the ~x0 rule ~x1 ~
                        for ~x2 specified that ~x3 is the name of the ~
                        previously proved theorem that established that ~x2 ~
                        always returns a TERMP.  But theorem ~x3 is not of ~
                        the expected form.  We expected it to be something ~
                        like ~X45. See :DOC well-formedness-guarantee."
                       token name fn thm-name1
                       expected-fn-form evisc))))))))))))

(defun translate-rule-class-alist (token alist seen corollary name x ctx ens
                                         wrld state)

; Alist is the untranslated alist of a rule-class with car token.
; Corollary is the translated value of the :COROLLARY entry in alist
; (which is guaranteed to be present).  Seen is an alist of the keys
; seen so far and their translated values.  It is in fact the reverse
; of the final answer.  We translate the values in alist, making sure
; that no key is seen twice, that the keys seen are appropriate for
; the class named by token, and that all required keys (other than
; :COROLLARY) are present.  The variable x is the object the user
; supplied to specify this class and is used only in error messages.
; Name is the name of the event for which this rule class is being
; translated and is used in the translation of :BY hints.

; WARNING: If you add new keywords, be sure to change the
; documentation under deflabel rule-classes.

  (cond
   ((null alist)
    (cond
     ((eq token :META)
      (cond ((not (assoc-eq :TRIGGER-FNS seen))
             (er soft ctx
                 "The :META rule class must specify :TRIGGER-FNS.  ~
                  The rule class ~x0 is thus illegal.  See :DOC meta."
                 x))
            (t (value (alist-to-keyword-alist seen nil)))))
     ((eq token :FORWARD-CHAINING)
      (cond ((not (assoc-eq :TRIGGER-TERMS seen))
             (mv-let (hyps concls)
                     (destructure-forward-chaining-term corollary)
                     (declare (ignore concls))
                     (cond ((null hyps)
                            (er soft ctx
                                "When no :TRIGGER-TERMS component is ~
                                 specified for a :FORWARD-CHAINING ~
                                 rule class, the first hypothesis of ~
                                 the conjecture is used as the only ~
                                 trigger.  But ~p0 has no hypotheses ~
                                 and thus ~x1 is an illegal rule ~
                                 class.  See :DOC forward-chaining."
                                (untranslate corollary t wrld)
                                x))
                           (t (let* ((first-hyp
                                      (if (and (nvariablep (car hyps))
;                                              (not (fquotep (car hyps)))
                                               (or (eq (ffn-symb (car hyps))
                                                       'force)
                                                   (eq (ffn-symb (car hyps))
                                                       'case-split)))
                                          (fargn (car hyps) 1)
                                        (car hyps)))
                                     (trigger-term
                                      (if (ffn-symb-p first-hyp 'not)
                                          (fargn first-hyp 1)
                                        first-hyp)))
                                (pprogn
                                 (observation ctx
                                              "The :TRIGGER-TERMS for the ~
                                               :FORWARD-CHAINING rule ~x0 will ~
                                               consist of the list containing ~p1."
                                              name
                                              (untranslate trigger-term nil wrld))
                                 (value (alist-to-keyword-alist
                                         seen
                                         (list :TRIGGER-TERMS
                                               (list trigger-term))))))))))
            (t (value (alist-to-keyword-alist seen nil)))))
     ((eq token :TYPE-PRESCRIPTION)
      (cond ((not (assoc-eq :TYPED-TERM seen))
             (mv-let
              (hyps concl)
              (unprettyify-tp (remove-guard-holders corollary))
              (declare (ignore hyps))
              (let ((pat (cond ((ffn-symb-p concl 'implies)
                                (find-type-prescription-pat (fargn concl 2)
                                                            ens wrld))
                               (t (find-type-prescription-pat concl ens
                                                              wrld)))))
                (cond ((null pat)
                       (er soft ctx
                           "When no :TYPED-TERM component is specified for a ~
                            :TYPE-PRESCRIPTION rule class, a suitable term is ~
                            selected heuristically from the conjecture.  But ~
                            our heuristics identify no candidate term in ~p0. ~
                             Thus, ~x1 is an illegal rule class.  See :DOC ~
                            type-prescription."
                           (untranslate corollary t wrld)
                           x))
                      (t (pprogn
                          (if (ld-skip-proofsp state)
                              state
                            (observation ctx
                                         "Our heuristics choose ~p0 as the ~
                                         :TYPED-TERM."
                                         (untranslate pat nil wrld)))
                          (value (alist-to-keyword-alist
                                  seen
                                  (list :TYPED-TERM pat)))))))))
            (t (value (alist-to-keyword-alist seen nil)))))
     ((eq token :DEFINITION)
      (er-progn
       (chk-destructure-definition name corollary ctx wrld state)
       (mv-let
        (hyps equiv fn args body ttree)
        (destructure-definition corollary nil nil wrld nil)
        (declare (ignore hyps equiv ttree))

; Rockwell Addition:  In the old code, the recursivep property of a
; singly recursive function was the function name itself; the
; recursivep property of a function in a mutually-recursive clique was
; the list of all the fns in the clique.  In order to speed up the
; check to determine if there is a recursive function on the fnstack,
; I decided to make the recursivep property of a recursive fn be
; a list of all the fns in its "clique" -- possibly the singleton
; list containing just the singly recursive function name.  That way,
; if the fnstack contains a function name, I know it is non-recursive.
; In support of this change, I changed the processing of :definition
; rules.  In the old code, the translated clique of a :definition was
; made atomic (i.e., the fn name itself) if the clique was a singleton.
; For sanity, I don't do that now:  the translated clique is what
; you wrote.  This change shows up several times in the window-compare
; because in the old code we had to change back and forth between
; (fn) and fn.

        (er-let* ((clique
                   (value
                    (cond
                     ((assoc-eq :clique seen)
                      (cdr (assoc-eq :clique seen)))
                     ((ffnnamep fn body) (list fn))
                     (t nil))))
                  (controller-alist
                   (cond
                    ((assoc-eq :CONTROLLER-ALIST seen)
                     (value (cdr (assoc-eq :CONTROLLER-ALIST seen))))
                    ((null clique)
                     (value nil))
                    ((null (cdr clique))
                     (guess-controller-alist-for-definition-rule
                      clique args body ctx wrld state))
                    (t (er soft ctx
                           "We are unable to guess a :CONTROLLER-ALIST for a ~
                            :DEFINITION rule if the :CLIQUE contains more ~
                            than one function symbol.  Therefore, you must ~
                            supply a :CONTROLLER-ALIST entry for ~x0."
                           name)))))
          (cond
           ((controller-alistp clique controller-alist wrld)
            (value (alist-to-keyword-alist
                    seen
                    (append (if (assoc-eq :CLIQUE seen)
                                nil
                              (list :CLIQUE clique))
                            (if (assoc-eq :CONTROLLER-ALIST seen)
                                nil
                              (list :CONTROLLER-ALIST controller-alist))))))
           (t (er soft ctx
                  "The :CONTROLLER-ALIST of a :DEFINITION must be an alist ~
                   that maps each function symbol in the :CLIQUE to a list of ~
                   t's and nil's whose length is equal to the arity of the ~
                   function symbol. ~x0 is an inappropriate controller alist ~
                   for the :CLIQUE consisting of ~&1.  See :DOC definition."
                  controller-alist
                  clique)))))))
     ((eq token :INDUCTION)
      (cond ((not (assoc-eq :PATTERN seen))
             (er soft ctx
                 "The :INDUCTION rule class requires the specification of a ~
                  :PATTERN term and ~x0 contains no such entry."
                 x))
            ((not (assoc-eq :SCHEME seen))
             (er soft ctx
                 "The :INDUCTION rule class requires the specification of a ~
                  :SCHEME term and ~x0 contains no such entry."
                 x))
            (t (let* ((pat-term (cdr (assoc-eq :pattern seen)))
                      (cond-term (or (cdr (assoc-eq :condition seen)) *t*))
                      (scheme-term (cdr (assoc-eq :scheme seen)))
                      (pat-vars (all-vars pat-term))
                      (cond-vars (all-vars cond-term))
                      (scheme-vars (all-vars scheme-term)))
                 (cond
                  ((not (subsetp-eq cond-vars pat-vars))
                   (er soft ctx
                       "The variables occuring freely in the :CONDITION term ~
                        of an :INDUCTION rule class must be a subset of those ~
                        occuring freely in the :PATTERN term.  But the ~
                        condition term ~x0 mentions ~&1, which ~#1~[does~/do~] ~
                        not occur in the pattern term ~x2.  Thus the ~
                        :INDUCTION rule class specified for ~x3 is illegal."
                       cond-term
                       (set-difference-eq cond-vars pat-vars)
                       pat-term
                       name))
                  ((not (subsetp-eq scheme-vars pat-vars))
                   (er soft ctx
                       "The variables occuring freely in the :SCHEME term ~
                        of an :INDUCTION rule class must be a subset of those ~
                        occuring freely in the :PATTERN term.  But the ~
                        scheme term ~x0 mentions ~&1, which ~#1~[does~/do~] ~
                        not occur in the pattern term ~x2.  Thus the ~
                        :INDUCTION rule class specified for ~x3 is illegal."
                       scheme-term
                       (set-difference-eq scheme-vars pat-vars)
                       pat-term
                       name))
                  ((assoc-eq :condition seen)
                   (value (alist-to-keyword-alist seen nil)))
                  (t (value (alist-to-keyword-alist
                             seen
                             (list :CONDITION *t*)))))))))
     (t (value (alist-to-keyword-alist seen nil)))))
   ((assoc-eq (car alist) seen)
    (er soft ctx
        "Rule classes may not contain duplicate keys, but ~x0 occurs ~
         twice in ~x1.  See :DOC rule-classes."
        (car alist)
        x))
   (t
    (let ((assumep (or (eq (ld-skip-proofsp state) 'include-book)
                       (eq (ld-skip-proofsp state) 'include-book-with-locals)
                       (eq (ld-skip-proofsp state) 'initialize-acl2))))
      (er-let*
          ((val (case (car alist)
                  (:COROLLARY
                   (value corollary))
                  (:HINTS
                   (cond
                    ((assoc-eq :INSTRUCTIONS seen)
                     (er soft ctx
                         "It is illegal to supply both :INSTRUCTIONS ~
                         and :HINTS in a rule class.  Hence, ~x0 is ~
                         illegal.  See :DOC rule-classes."
                         x))
                    (t
                     (er-let* ((hints (if assumep
                                          (value nil)
                                        (translate-hints+
                                         (cons "Corollary of " name)
                                         (cadr alist)
                                         (default-hints wrld)
                                         ctx wrld state))))
                       (value hints)))))
                  (:INSTRUCTIONS
                   (cond
                    ((assoc-eq :HINTS seen)
                     (er soft ctx
                         "It is illegal to supply both :HINTS and ~
                          :INSTRUCTIONS in a rule class.  Hence, ~x0 is ~
                          illegal.  See :DOC rule-classes."
                         x))
                    (t
                     (er-let* ((instrs (if assumep
                                           (value nil)
                                         (translate-instructions
                                          (cons "Corollary of " name)
                                          (cadr alist)
                                          ctx wrld state))))
                       (value instrs)))))
                  (:OTF-FLG
                   (value (cadr alist)))
                  (:TRIGGER-FNS
                   (cond
                    ((eq token :FORWARD-CHAINING)
                     (er soft ctx
                         "The :FORWARD-CHAINING rule class may specify ~
                          :TRIGGER-TERMS but may not specify :TRIGGER-FNS.  ~
                          Thus, ~x0 is illegal.  See :DOC forward-chaining ~
                          and :DOC meta."
                         x))
                    ((not (eq token :META))
                     (er soft ctx
                         ":TRIGGER-FNS can only be specified for :META rules. ~
                           Thus, ~x0 is illegal.  See :DOC ~@1."
                         x
                         (symbol-name token)))
                    ((atom (cadr alist))
                     (er soft ctx
                         "The :TRIGGER-FNS component of a :META rule class ~
                          must be a non-empty true-list of function symbols.  ~
                          But ~x0 is empty.  See :DOC meta."
                         (cadr alist)))
                    ((eq (car (cadr alist)) 'quote)
                     (er soft ctx
                         "The :TRIGGER-FNS component of a :META rule class ~
                          must be a non-empty true-list of function symbols.  ~
                          You specified ~x0 for this component, but the list ~
                          is not to be quoted.~@1  See :DOC meta."
                         (cadr alist)
                         (cond ((and (consp (cdr (cadr alist)))
                                     (symbol-listp (cadr (cadr alist)))
                                     (null (cddr (cadr alist))))
                                (msg "  Perhaps you intended ~x0 instead."
                                     (cadr (cadr alist))))
                               (t ""))))
                    (t (mv-let (flg lst)
                               (eliminate-macro-aliases (cadr alist)
                                                        (macro-aliases wrld)
                                                        wrld)
                               (cond ((eq flg :error)
                                      (er soft ctx
                                          "The :TRIGGER-FNS component of a ~
                                           :META rule class must be a ~
                                           non-empty true-list of function ~
                                           symbols, but ~x0 ~@1.  See :DOC ~
                                           meta."
                                          (cadr alist) lst))
                                     (t (value lst)))))))
                  (:TRIGGER-TERMS
                   (cond
                    ((eq token :META)
                     (er soft ctx
                         "The :META rule class may specify :TRIGGER-FNS but ~
                          may not specify :TRIGGER-TERMS.  Thus, ~x0 is ~
                          illegal.  See :DOC meta and :DOC forward-chaining."
                         x))
                    ((not (true-listp (cadr alist)))
                     (er soft ctx
                         "The :TRIGGER-TERMS must be a list true list.  Thus ~
                          the rule class ~x0 proposed for ~x1 is illegal."
                         x name))
                    ((eq token :LINEAR)

; We allow but do not require :TRIGGER-TERMS to be provided for :LINEAR rules.
; The whole idea of :TRIGGER-TERMS specified at the rule-class level is a
; little jarring in the case of linear rules because we generate a linear rule
; for each unprettified branch through the COROLLARY of the rule class and the
; appropriate trigger terms for one branch may not be those for another.
; Nevertheless, when :TRIGGER-TERMS is provided, we store the rule for every
; branch under every given trigger.  You get what you ask for.  The moral is
; that if you are going to provide :TRIGGER-TERMS you would be well-advised to
; provide a corollary with only one branch.

                     (er-let*
                         ((terms (translate-term-lst (cadr alist)
                                                     t t t ctx wrld state)))
                       (cond
                        ((null terms)
                         (er soft ctx
                             "For the :LINEAR rule ~x0 you specified an empty ~
                              list of :TRIGGER-TERMS.  This is illegal.  If ~
                              you wish to cause ACL2 to compute the trigger ~
                              terms, omit the :TRIGGER-TERMS field entirely.  ~
                              See :DOC linear."
                             name))
                        (t
                         (let ((terms (remove-guard-holders-lst terms)))
                           (er-progn
                            (chk-legal-linear-trigger-terms
                             terms
                             (unprettyify (remove-guard-holders corollary))
                             name ctx state)
                            (value terms)))))))
                    ((eq token :FORWARD-CHAINING)
                     (er-let*
                         ((terms (translate-term-lst (cadr alist)
                                                     t t t ctx wrld state)))
                       (cond ((null terms)
                              (er soft ctx
                                  ":FORWARD-CHAINING rules must have at least ~
                                   one trigger.  Your rule class, ~x0, ~
                                   specifies none.  See :DOC forward-chaining."
                                  x))
                             (t (value (remove-guard-holders-lst terms))))))
                    (t
                     (er soft ctx
                         ":TRIGGER-TERMS can only be specified for ~
                          :FORWARD-CHAINING and :LINEAR rules.  Thus, ~x0 is ~
                          illegal.  See :DOC ~@1."
                         x
                         (symbol-name token)))))
                  (:WELL-FORMEDNESS-GUARANTEE
                   (cond
                    ((and (not (eq token :META))
                          (not (eq token :CLAUSE-PROCESSOR)))
                     (er soft ctx
                         "Only :META and :CLAUSE-PROCESSOR rule classes are ~
                          permitted to have a :WELL-FORMEDNESS-GUARANTEE ~
                          component.  Thus, ~x0 is illegal.  See :DOC ~
                          well-formedness-guarantee."
                         x))
                    (t (er-let*
                         ((well-formedness-guarantee
                           (translate-well-formedness-guarantee
                            token
                            (cadr alist)
                            name corollary ctx wrld state)))

; well-formedness-guarantee is of the form ((name fn thm-name1 hyp-fn
; thm-name2) .  alist), where hyp-fn and thm-name2 are omitted if there is no
; hyp-fn.  Alist is the combined arity alist of both termp theorems.  We next
; check that all of these functions have appropriate arities in the current
; world and that none are currently on forbidden-fns.

                         (let* ( ; (fn (nth 1 (car well-formedness-guarantee)))
                                (thm-name1
                                 (nth 2 (car well-formedness-guarantee)))
                                (hyp-fn
                                 (nth 3 (car well-formedness-guarantee))) ; may be nil
                                (thm-name2
                                 (nth 4 (car well-formedness-guarantee))) ; may be nil
                                (alist
                                 (cdr well-formedness-guarantee))
                                (bad-arities
                                 (collect-bad-fn-arity-pairs alist wrld))
                                (forbidden-fns
                                 (intersection-eq (strip-cars alist)
                                                  (forbidden-fns wrld state))))
                           (cond
                            (bad-arities
                             (er soft ctx
                                 ":META rule ~x0 is inadmissible because its ~
                                  :WELL-FORMEDNESS-GUARANTEE ~
                                  theorem~#1~[~/s~], named ~&1, ~
                                  ~#1~[is~/are~] incompatible with the ~
                                  current world.  In particular, the ~
                                  ~#1~[theorem makes~/theorems make~] invalid ~
                                  assumptions about the arities of one or ~
                                  more function symbols possibly introduced ~
                                  by the metatheorem. The following alist ~
                                  shows assumed arities that are different ~
                                  from the actual arities of those symbols in ~
                                  the current world, ~X23."
                                 name
                                 (if hyp-fn
                                     (list thm-name1 thm-name2)
                                     (list thm-name1))
                                 bad-arities))
                            (forbidden-fns
                             (er soft ctx
                                 ":META rule ~x0 is inadmissible because its ~
                                  well-formedness theorem~#1~[~/s~], named ~
                                  ~&1, ~#1~[is~/are~] incompatible with the ~
                                  current world.  In particular, judging by ~
                                  the ARITIES-OKP ~
                                  ~#1~[hypothesis~/hypotheses~] of the ~
                                  theorem~#1~[~/s~], the metatheorem may ~
                                  introduce one or more functions that are ~
                                  currently forbidden, to wit ~&2.  See :DOC ~
                                  set-skip-meta-termp-checks and :DOC ~
                                  well-formedness-guarantee."
                                 name
                                 (if hyp-fn
                                     (list thm-name1 thm-name2)
                                     (list thm-name1))
                                 forbidden-fns))
                            (t (value well-formedness-guarantee))))))))
                  (:TYPED-TERM
                   (cond
                    ((not (eq token :TYPE-PRESCRIPTION))
                     (er soft ctx
                         "Only :TYPE-PRESCRIPTION rule classes are permitted ~
                          to have a :TYPED-TERM component.  Thus, ~x0 is ~
                          illegal.  See :DOC ~@1."
                         x
                         (symbol-name token)))
                    (t (er-let* ((term (translate (cadr alist)
                                                  t t t ctx wrld state)))
; known-stobjs = t (stobjs-out = t)
                         (value term)))))
                  (:BACKCHAIN-LIMIT-LST
                   (let ((hyps-concl-pairs

; We could call unprettyify in all cases below (not always with
; remove-guard-holders, though).  But it seems more appropriate not to rely on
; unprettyify to handle the very specific legal forms of meta rules.

; Warning: Keep this in sync with destructure-type-prescription.

                          (case token
                            (:meta
                             (case-match corollary
                               (('implies hyp concl)
                                (list (cons (list hyp) concl)))
                               (& (list (cons nil corollary)))))
                            (:type-prescription
                             (mv-let
                              (hyps concl)
                              (unprettyify-tp (remove-guard-holders corollary))
                              (list (cons hyps concl))))
                            (otherwise
                             (unprettyify (remove-guard-holders corollary))))))
                     (cond
                      ((not (member-eq token
                                       '(:REWRITE :META :LINEAR
                                                  :TYPE-PRESCRIPTION)))
                       (er soft ctx
                           "The rule-class ~@0 is not permitted to have a ~
                            :BACKCHAIN-LIMIT-LST component.  Hence, ~x1 is ~
                            illegal.  See :DOC ~@0."
                           (symbol-name token) x))
                      ((not (equal (length (remove-duplicates-equal
                                            (strip-cars hyps-concl-pairs)))
                                   1))
                       (er soft ctx
                           "We do not allow you to specify the ~
                            :BACKCHAIN-LIMIT-LST when more than one rule is ~
                            produced from the corollary and at least two such ~
                            rules have different hypothesis lists.  You ~
                            should split the corollary of ~x0 into parts and ~
                            specify a limit for each."
                           x))
                      (t
                       (let ((hyps (car (car hyps-concl-pairs))))
                         (cond
                          ((null hyps)
                           (er soft ctx
                               "There are no hypotheses, so ~
                                :BACKCHAIN-LIMIT-LST makes no sense.  See ~
                                :DOC RULE-CLASSES."))
                          ((null (cadr alist))
                           (value nil))
                          ((and (integerp (cadr alist))
                                (<= 0 (cadr alist)))
                           (cond ((eq token :META)
                                  (value (cadr alist)))
                                 (t
                                  (value (make-list
                                          (length hyps)
                                          :initial-element (cadr alist))))))
                          ((eq token :META)
                           (er soft ctx
                               "The legal values of :BACKCHAIN-LIMIT-LST for ~
                                rules of class :META are nil or a ~
                                non-negative integer.  See :DOC RULE-CLASSES."))
                          ((and (backchain-limit-listp (cadr alist))
                                (eql (length (cadr alist)) (length hyps)))
                           (value (cadr alist)))
                          (t
                           (er soft ctx
                               "The legal values of :BACKCHAIN-LIMIT-LST are ~
                                nil, a non-negative integer, or a list of ~
                                these of the same length as the flattened ~
                                hypotheses.  In this case the list of ~
                                flattened hypotheses, of length ~x0, is:~%  ~
                                ~x1.~%See :DOC RULE-CLASSES."
                               (length hyps) hyps))))))))
                  (:MATCH-FREE
                   (cond
                    ((not (member-eq token '(:REWRITE :LINEAR :FORWARD-CHAINING)))
                     (er soft ctx
                         "Only :REWRITE, :FORWARD-CHAINING, and :LINEAR rule ~
                          classes are permitted to have a :MATCH-FREE ~
                          component.  Thus, ~x0 is illegal.  See :DOC ~
                          free-variables."
                         x))
                    ((not (member-eq (cadr alist) '(:ALL :ONCE)))
                     (er soft ctx
                         "The legal values of :MATCH-FREE are :ALL and :ONCE. ~
                          Thus, ~x0 is illegal.  See :DOC free-variables."
                         x))
                    (t (value (cadr alist)))))
                  (:CLIQUE
                   (cond
                    ((not (eq token :DEFINITION))
                     (er soft ctx
                         "Only :DEFINITION rule classes are permitted to have ~
                          a :CLIQUE component.  Thus, ~x0 is illegal.  See ~
                          :DOC ~@1."
                         x
                         (symbol-name token)))
                    (t (er-progn
                        (chk-destructure-definition name corollary ctx wrld state)
                        (mv-let
                         (hyps equiv fn args body ttree)
                         (destructure-definition corollary nil nil wrld nil)
                         (declare (ignore hyps equiv args ttree))
                         (let ((clique
                                (cond ((null (cadr alist)) nil)
                                      ((atom (cadr alist)) (list (cadr alist)))
                                      (t (cadr alist)))))
                           (cond ((not (and (all-function-symbolps clique wrld)
                                            (no-duplicatesp-equal clique)))
                                  (mv-let
                                   (flg lst)
                                   (eliminate-macro-aliases (cadr alist)
                                                            (macro-aliases wrld)
                                                            wrld)
                                   (er soft ctx
                                       "The :CLIQUE of a :DEFINITION must be ~
                                        a truelist of function symbols ~
                                        (containing no duplications) or else ~
                                        a single function symbol.  ~x0 is ~
                                        neither.~@1  See :DOC definition."
                                       (cadr alist)
                                       (cond ((eq flg :error) "")
                                             (t (msg "  Note that it is ~
                                                      illegal to use ~v0 ~
                                                      here, because we ~
                                                      require function ~
                                                      symbols, not merely ~
                                                      macros that are aliases ~
                                                      for function symbols ~
                                                      (see :DOC ~
                                                      macro-aliases-table)."
                                                     (set-difference-equal
                                                      (cadr alist)
                                                      lst)))))))
                                 ((and (ffnnamep fn body)
                                       (not (member-eq fn clique)))
                                  (er soft ctx
                                      "The :CLIQUE of a :DEFINITION must ~
                                       contain the defined function, ~x0, if ~
                                       the body calls the function.  See :DOC ~
                                       definition."
                                      fn))
                                 ((and clique
                                       (not (member-eq fn clique)))
                                  (er soft ctx
                                      "The :CLIQUE of a :DEFINITION, when ~
                                       non-nil, must contain the function ~
                                       defined.  ~x0 does not contain ~x1.  ~
                                       See :DOC definition."
                                      (cadr alist)
                                      fn))
                                 (t (value clique)))))))))
                  (:CONTROLLER-ALIST
                   (cond
                    ((not (eq token :DEFINITION))
                     (er soft ctx
                         "Only :DEFINITION rule classes are permitted to have ~
                          a :CONTROLLER-ALIST component.  Thus, ~x0 is ~
                          illegal.  See :DOC ~@1."
                         x
                         (symbol-name token)))
                    (t

; Actually, the rules on a controller alist involve the clique in question.
; We don't necessarily know the clique yet.  We wait until the end, when
; :CLIQUE will have been processed, to check that the following value is ok.

                     (value (cadr alist)))))
                  (:INSTALL-BODY
                   (cond
                    ((not (eq token :DEFINITION))
                     (er soft ctx
                         "Only :DEFINITION rule classes are permitted to have ~
                          an :INSTALL-BODY component.  Thus, ~x0 is illegal.  ~
                          See :DOC ~@1."
                         x
                         (symbol-name token)))
                    ((not (member-eq (cadr alist)
                                     '(t nil :NORMALIZE)))
                     (er soft ctx
                         "The :INSTALL-BODY component of a  :DEFINITION rule ~
                          class must have one of the values ~v0.  Thus, ~x1 ~
                          is illegal.  See :DOC ~@2."
                         '(t nil :NORMALIZE)
                         (cadr alist)
                         (symbol-name token)))
                    (t
                     (value (cadr alist)))))
                  (:LOOP-STOPPER
                   (cond
                    ((not (eq token :REWRITE))
                     (er soft ctx
                         "Only :REWRITE rule classes are permitted to have a ~
                          :LOOP-STOPPER component.  Thus, ~x0 is illegal.  ~
                          See :DOC rule-classes."
                         x))
                    (t (mv-let
                        (flg loop-stopper-alist)
                        (fix-loop-stopper-alist
                         (cadr alist) (macro-aliases wrld) wrld)
                        (cond
                         ((eq flg :error)
                          (er soft ctx
                              "The :LOOP-STOPPER for a rule class must be a ~
                               list whose elements have the form (variable1 ~
                               variable2 . fns), where variable1 and ~
                               variable2 are distinct variables and fns is a ~
                               list of function symbols (or macro-aliases for ~
                               function symbols), but ~x0 does not have this ~
                               form.  Thus, ~x1 is illegal.  See :DOC ~
                               rule-classes."
                              (cadr alist)
                              x))
                         ((not (subsetp-eq
                                (union-eq (strip-cars loop-stopper-alist)
                                          (strip-cadrs loop-stopper-alist))
                                (all-vars corollary)))
                          (let ((bad-vars
                                 (set-difference-eq
                                  (union-eq (strip-cars loop-stopper-alist)
                                            (strip-cadrs loop-stopper-alist))
                                  (all-vars corollary))))
                            (er soft ctx
                                "The variables from elements (variable1 ~
                                 variable2 . fns) of a :LOOP-STOPPER ~
                                 specified for a rule class must all appear ~
                                 in the :COROLLARY theorem for that rule ~
                                 class.  However, the ~#0~[variables ~&1 ~
                                 do~/variable ~&1 does~] not appear in ~p2.  ~
                                 Thus, ~x3 is illegal.  See :DOC rule-classes."
                                (if (cdr bad-vars) 0 1)
                                bad-vars
                                (untranslate corollary t wrld)
                                x)))
                         (t
                          (value loop-stopper-alist)))))))
                  (:PATTERN
                   (cond
                    ((not (eq token :INDUCTION))
                     (er soft ctx
                         "Only :INDUCTION rule classes are permitted to have ~
                          a :PATTERN component.  Thus, ~x0 is illegal.  See ~
                          :DOC ~@1."
                         x
                         (symbol-name token)))
                    (t (er-let*
                           ((term (translate (cadr alist) t t t ctx wrld state)))
; known-stobjs = t (stobjs-out = t)
                         (cond
                          ((or (variablep term)
                               (fquotep term)
                               (flambdap (ffn-symb term)))
                           (er soft ctx
                               "The :PATTERN term of an :INDUCTION rule class ~
                                may not be a variable symbol, constant, or ~
                                the application of a lambda expression.  Thus ~
                                ~x0 is illegal.  See :DOC induction."
                               x))
                          (t (value term)))))))
                  (:CONDITION
                   (cond
                    ((not (eq token :INDUCTION))
                     (er soft ctx
                         "Only :INDUCTION rule classes are permitted to have ~
                          a :CONDITION component.  Thus, ~x0 is illegal.  See ~
                          :DOC ~@1."
                         x
                         (symbol-name token)))
                    (t (er-let*
                           ((term (translate (cadr alist) t t t ctx wrld state)))
; known-stobjs = t (stobjs-out = t)
                         (value term)))))
                  (:SCHEME
                   (cond
                    ((not (eq token :INDUCTION))
                     (er soft ctx
                         "Only :INDUCTION rule classes are permitted to have ~
                          a :SCHEME component.  Thus, ~x0 is illegal.  See ~
                          :DOC ~@1."
                         x
                         (symbol-name token)))
                    (t (er-let*
                           ((term (translate (cadr alist) t t t ctx wrld state)))
; known-stobjs = t (stobjs-out = t)
                         (cond
                          ((or (variablep term)
                               (fquotep term)
                               (flambdap (ffn-symb term)))
                           (er soft ctx
                               "The :SCHEME term of an :INDUCTION rule class ~
                                may not be a variable symbol, constant, or ~
                                the application of a lambda expression.  Thus ~
                                ~x0 is illegal.  See :DOC induction."
                               x))
                          ((not (or (getpropc (ffn-symb term)
                                              'induction-machine
                                              nil wrld)
                                    (getpropc (ffn-symb term) 'induction-rules
                                              nil wrld)))
                           (er soft ctx
                               "The function symbol of the :SCHEME term of an ~
                                :INDUCTION rule class must, at least ~
                                sometimes, suggest an induction and ~x0 does ~
                                not.  See :DOC induction."
                               (ffn-symb term)))
                          (t (value term)))))))
                  (:TYPE-SET
                   (cond
                    ((not (eq token :TYPE-SET-INVERTER))
                     (er soft ctx
                         "Only :TYPE-SET-INVERTER rule classes are permitted ~
                          to have a :TYPE-SET component.  Thus ~x0 is ~
                          illegal.  See :DOC type-set-inverter."
                         x))
                    ((not (and (integerp (cadr alist))
                               (<= *min-type-set* (cadr alist))
                               (<= (cadr alist) *max-type-set*)))
                     (er soft ctx
                         "The :TYPE-SET of a :TYPE-SET-INVERTER rule must be ~
                          a type-set, i.e., an integer between ~x0 and ~x1, ~
                          inclusive.  ~x2 is not a type-set.  See :DOC ~
                          type-set and :DOC type-set-inverter."
                         *min-type-set*
                         *max-type-set*
                         (cadr alist)))
                    (t (value (cadr alist)))))
                  (otherwise
                   (er soft ctx
                       "The key ~x0 is unrecognized as a rule class ~
                        component.  See :DOC rule-classes."
                       (car alist))))))
        (translate-rule-class-alist token (cddr alist)
                                    (cons (cons (car alist) val) seen)
                                    corollary
                                    name x ctx ens wrld state))))))

(defun translate-rule-class1 (class tflg name x ctx ens wrld state)

; Class is a candidate rule class.  We know it is of the form (:key
; :key1 val1 ... :keyn valn).  We know that among the :keyi is
; :COROLLARY and that if tflg is on then the :COROLLARY value has
; already been translated.  Make sure class is syntactically legal and
; translate all the vals in it.  X is the user's original
; specification of this class and is used only in error messages.
; Name is the name of the event for which this class is being
; translated.

; The binding below exhibits all the rule tokens and identifies the
; special additional keywords allowed (or required) by them.  All of
; the tokens allow the keywords :COROLLARY, :HINTS, :INSTRUCTIONS, and
; :OTF-FLG.

; Note: The "definitive" description of the fields in our rule classes is to be
; found in :DOC rule-classes.  It is hygenic to compare periodically the
; setting below to the form described there.

  (let ((rule-tokens '(:REWRITE
                       :LINEAR            ; :TRIGGER-TERMS (optional)
                       :WELL-FOUNDED-RELATION
                       :BUILT-IN-CLAUSE
                       :COMPOUND-RECOGNIZER
                       :ELIM
                       :GENERALIZE
                       :META              ; :TRIGGER-FNS
                       :FORWARD-CHAINING  ; :TRIGGER-TERMS (optional)
                       :EQUIVALENCE
                       :REFINEMENT
                       :CONGRUENCE
                       :TYPE-PRESCRIPTION ; :TYPED-TERM (optional)
                       :DEFINITION        ; :CLIQUE and :CONTROLLER-ALIST
                       :INDUCTION         ; :PATTERN, :CONDITION (optional),
                                          ;   and :SCHEME
                       :TYPE-SET-INVERTER ; :TYPE-SET (optional)
                       :CLAUSE-PROCESSOR
                       :TAU-SYSTEM
                       )))
  (cond
   ((not (member-eq (car class) rule-tokens))
    (er soft ctx
        "~x0 is not one of the known rule tokens, ~&1.  See :DOC ~
         rule-classes."
        (car class)
        rule-tokens))
   (t (er-let*
       ((corollary
         (cond (tflg (value (cadr (assoc-keyword :corollary (cdr class)))))
               (t (translate (cadr (assoc-keyword :corollary (cdr class)))
                             t t t ctx wrld state))))
; known-stobjs = t (stobjs-out = t)
        (alist
         (translate-rule-class-alist (car class)
                                     (cdr class)
                                     nil
                                     corollary
                                     name x ctx ens wrld state)))
       (value (cons (car class) alist)))))))

(defun reason-for-non-keyword-value-listp (x)
  (cond
   ((atom x)
    (cond
     ((null x)
      (er hard 'reason-for-non-keyword-value-listp
          "Uh oh, it was a keyword-value-listp after all!"))
     (t
      (msg "there is a non-nil final cdr of ~x0"
           x))))
   ((not (keywordp (car x)))
    (msg "we found a non-keyword, ~x0, where a keyword was expected"
         (car x)))
   ((atom (cdr x))
    (msg "the value corresponding to the final key of ~x0 was missing"
         (car x)))
   (t
    (reason-for-non-keyword-value-listp (cddr x)))))

(defun translate-rule-class (name x thm ctx ens wrld state)

; Warning: We depend on the property that the resulting :corollary field is
; independent of context.  See redundant-theoremp.

; X is an untranslated rule class.  For example, x may be :REWRITE or (:META
; :TRIGGER-FNS (fn1 ... fnk)) or even (:REWRITE :COROLLARY (IMPLIES p q) :HINTS
; ...).  We either translate x into a "fully elaborated" rule class or else
; cause an error.  A fully elaborated rule class starts with one of the rule
; class keywords, token, followed by an alternating keyword/value list.  Every
; fully elaborated class has a :COROLLARY component.  In addition, every :META
; class has a :TRIGGER-FNS component, every :FORWARD-CHAINING class has a
; :TRIGGER-TERMS component, and every :TYPE-PRESCRIPTION has a :TYPED-TERM
; component.  No keyword is bound twice in the list and the values associated
; with each keyword is syntactically correct in a local sense, e.g., alleged
; function symbols are really function symbols, alleged terms are translated
; terms, alleged hints are translated hints, etc.  We do not make the non-local
; checks, such as that the :COROLLARY of a :TYPE-PRESCRIPTION rule actually
; prescribes the type of the :TYPED-TERM.  Those checks are made by the
; individual acceptability checkers.

  (let ((er-string
         "The object ~x0 is not a rule class.  Rule classes are either certain ~
          keywords, e.g., :REWRITE, or lists of the form (:rule-token :key1 ~
          val1 :key2 val2 ...), as in (:REWRITE :COROLLARY term :HINTS ...).  ~
          In your case, ~@1.  See :DOC rule-classes."))
    (cond
     ((or (keywordp x)
          (and (consp x)
               (keywordp (car x))
               (keyword-value-listp (cdr x))))
      (translate-rule-class1

; Note that we observe the requirement dicussed in the comment (warning) at the
; top of this definition, about the :corollary field being independent of
; context.

       (cond ((symbolp x) (list x :COROLLARY thm))
             ((assoc-keyword :COROLLARY (cdr x)) x)
             (t `(,(car x) :COROLLARY ,thm ,@(cdr x))))
       (or (symbolp x)
           (not (assoc-keyword :COROLLARY (cdr x))))
       name x ctx ens wrld state))
     ((not (consp x))
      (er soft ctx
          er-string
          x "the rule class is a non-keyword atom"))
     ((not (keywordp (car x)))
      (er soft ctx
          er-string
          x
          "the rule class starts with the non-keyword ~x2"
          (car x)))
     (t
      (er soft ctx er-string
          x (reason-for-non-keyword-value-listp (cdr x)))))))

(defun translate-rule-classes1 (name classes thm ctx ens wrld state)

; We make sure that classes is a true list of legal rule classes.  We
; translate the terms that occur in the classes and return the
; translated list of classes, i.e., a list of fully elaborated rule
; classes.

  (cond
   ((atom classes)
    (cond ((null classes) (value nil))
          (t (er soft ctx
                 "The list of rule classes is supposed to a true ~
                  list, but your list ends in ~x0.  See :DOC ~
                  rule-classes."
                 classes))))
   (t (er-let*
       ((class (translate-rule-class name (car classes) thm ctx ens wrld
                                     state))
        (rst (translate-rule-classes1 name (cdr classes) thm ctx ens wrld
                                      state)))
       (value (cons class rst))))))

(defun translate-rule-classes (name classes thm ctx ens wrld state)

; We adopt the convention that if a non-nil atomic classes is provided
; it is understood as the singleton list containing that atom.  Thus,
; one is permitted to write
;   :rule-classes :elim
; and have it understood as
;   :rule-classes (:elim).
; However, it is not possible to so abbreviate non-atomic classes.
; That is, one might expect to be able to write:
;   :rule-classes (:TYPE-PRESCRIPTION :TYPED-TERM (foo a b))
; but one would be disappointed if one did.  Any non-atomic value for
; classes is treated as though it were a list of rule classes.  The effect
; intended by the above example can only be achieved by writing
;   :rule-classes ((:TYPE-PRESCRIPTION :TYPED-TERM (foo a b))).

  (translate-rule-classes1 name
                           (cond ((null classes) nil)
                                 ((atom classes) (list classes))
                                 (t classes))
                           thm
                           ctx ens wrld state))

; We now turn our attention to the function that checks that a given
; term generates acceptable rules in all of a specified set of
; classes.  The basic function is the one below, that takes a class
; token and calls the appropriate acceptability checker.  In all of
; the code below we can assume that "class" is one of the objects
; produced by translate-rule-class above and "classes" is a true list
; of such objects.

(defun chk-acceptable-x-rule (name class ctx ens wrld state)

; We check that the :COROLLARY term of class can be used as a rule of
; the class specified.  Class is a fully elaborated, translated rule
; class.  This function is just a big switch.  Each exit subroutine
; returns a ttree justifying the claim that class describes a rule.

  (let ((term (cadr (assoc-keyword :COROLLARY (cdr class)))))
    (case (car class)
          (:REWRITE
           (chk-acceptable-rewrite-rule name
                                        (cadr (assoc-keyword :MATCH-FREE
                                                             (cdr class)))
                                        (cadr (assoc-keyword :LOOP-STOPPER
                                                             (cdr class)))
                                        term ctx ens wrld state))
          (:LINEAR
           (chk-acceptable-linear-rule
            name
            (cadr (assoc-keyword :MATCH-FREE (cdr class)))
            (cadr (assoc-keyword :TRIGGER-TERMS (cdr class)))
            term ctx ens wrld state))
          (:WELL-FOUNDED-RELATION
           (chk-acceptable-well-founded-relation-rule name term ctx wrld state))
          (:BUILT-IN-CLAUSE
           (chk-acceptable-built-in-clause-rule name term ctx wrld state))
          (:COMPOUND-RECOGNIZER
           (chk-acceptable-compound-recognizer-rule name term ctx ens wrld
                                                    state))
          (:ELIM
           (chk-acceptable-elim-rule name term ctx wrld state))
          (:GENERALIZE
           (chk-acceptable-generalize-rule name term ctx wrld state))
          (:EQUIVALENCE
           (chk-acceptable-equivalence-rule name term ctx wrld state))
          (:CONGRUENCE
           (chk-acceptable-congruence-rule name term ctx wrld state))
          (:REFINEMENT
           (chk-acceptable-refinement-rule name term ctx wrld state))
          (:META

; We already know that the :TRIGGER-FNS of a :META rule class are all function
; symbols.  However, we need them in order to produce warning messages when
; metafunctions produce non-termps.  See chk-acceptable-meta-rule.

           (chk-acceptable-meta-rule
            name
            (cadr (assoc-keyword :TRIGGER-FNS (cdr class)))
            term ctx ens wrld state))
          (:CLAUSE-PROCESSOR
           (chk-acceptable-clause-processor-rule name term ctx wrld state))
          (:FORWARD-CHAINING
           (chk-acceptable-forward-chaining-rule
            name
            (cadr (assoc-keyword :MATCH-FREE (cdr class)))
            (cadr (assoc-keyword :TRIGGER-TERMS (cdr class)))
            term ctx ens wrld state))
          (:TYPE-PRESCRIPTION
           (chk-acceptable-type-prescription-rule
            name
            (cadr (assoc-keyword :TYPED-TERM (cdr class)))
            term
            (assoc-keyword :BACKCHAIN-LIMIT-LST (cdr class))
            ctx ens wrld state))
          (:DEFINITION
           (chk-acceptable-definition-rule
            name
            (cadr (assoc-keyword :CLIQUE (cdr class)))
            (cadr (assoc-keyword :CONTROLLER-ALIST (cdr class)))
            (assoc-keyword :INSTALL-BODY (cdr class))
            term ctx ens wrld state))
          (:INDUCTION
           (chk-acceptable-induction-rule name term ctx wrld state))
          (:TYPE-SET-INVERTER
           (chk-acceptable-type-set-inverter-rule
            name
            (cadr (assoc-keyword :TYPE-SET (cdr class)))
            term ctx ens wrld state))
          (:TAU-SYSTEM
           (chk-acceptable-tau-rule name term ctx wrld state))
          (otherwise
           (value (er hard ctx
                      "Unrecognized rule class token ~x0 in CHK-ACCEPTABLE-X-RULE."
                      (car class)))))))

(defun chk-acceptable-x-rules (name classes ctx ens wrld state)

; Classes has already been translated and hence is known to be a true
; list of fully elaborated rule classes.  Each class has a :COROLLARY
; term and we check that the term can be used as a rule of the
; indicated class.  We return a tag-tree supporting the claim.

  (cond ((null classes) (value nil))
        (t (er-let*
            ((ttree1 (chk-acceptable-x-rule name (car classes) ctx ens wrld
                                            state))
             (ttree  (chk-acceptable-x-rules name (cdr classes) ctx ens wrld
                                             state)))
            (value (cons-tag-trees ttree1 ttree))))))

(defun collect-keys-eq (sym-list alist)
  (cond ((endp alist) nil)
        ((member-eq (caar alist) sym-list)
         (cons (car alist) (collect-keys-eq sym-list (cdr alist))))
        (t (collect-keys-eq sym-list (cdr alist)))))

; So here is how you check that it is legal to add the rules from a
; thm term, named name, in all of the classes classes.

(defun chk-acceptable-rules (name classes ctx ens wrld state)

; The classes have already been translated, so we do not need to worry
; about unrecognized classes.  Each class contains a :COROLLARY which
; is a translated term.  We check that the :COROLLARY term can be used
; as a rule of the class indicated.  We either cause an error or
; return a ttree justifying whatever pre/post-processing is done to
; store the rules.  If we are not doing proofs we skip the checks.

  (let ((classes
         (cond ((or (eq (ld-skip-proofsp state) 'include-book)
                    (eq (ld-skip-proofsp state) 'include-book-with-locals))

; We avoid the check for :REWRITE rules, tolerating a rare hard error as a
; result.  See the comment just above the hard error in add-rewrite-rule2.

; We need to check :meta and :clause-processor rules even when skipping proofs.
; Below is a slight modification of a proof of nil sent by Dave Greve and Jared
; Davis, which is no longer possible after this check (namely: meta-foo-rule
; fails).  In this example, the :meta rule is not supported by an evaluator in
; the second pass through the encapsulate.  The Essay on Correctness of Meta
; Reasoning makes it clear that we need the evaluator axioms to justify the
; application of a :meta or :clause-processor rule.

;  (defun meta-foo (term)
;    (if (and (consp term)
;             (equal (car term) 'foo))
;        *nil*
;      term))
;
;  (encapsulate
;   (((evx * *) => *)
;    ((evx-list * *) => *)
;    ((foo *) => *))
;
;   (local
;    (defun foo (x)
;      (declare (ignore x))
;      nil))
;
;   (local
;    (defevaluator evx evx-list
;      ((foo x))))
;
;   (defthm meta-foo-rule
;     (equal (evx term a)
;            (evx (meta-foo term) a))
;     :rule-classes ((:meta :trigger-fns (foo)))))
;
;  (defun goo (x)
;    (declare (ignore x))
;    t)
;
;  (defthm qed
;    (not (goo x))
;    :hints (("goal" :use (:functional-instance (:theorem (not (foo x)))
;                                               (foo goo))
;             :in-theory (disable
;                         goo
;                         (:type-prescription goo)
;                         (goo))))
;    :rule-classes nil)
;
;  (defthm contradiction
;    nil
;    :hints (("goal" :use qed :in-theory (enable goo)))
;    :rule-classes nil)

                (collect-keys-eq '(:meta :clause-processor) classes))
               (t classes))))
    (cond
     ((null classes) ; optimization
      (value nil))
     (t
      (er-let* ((ttree1 (chk-acceptable-x-rules name classes ctx ens wrld
                                                state)))

; At one time we accumulated ttree1 into state.  But that caused rules to be
; reported during a failed proof that are not actually used in the proof.  It
; is better to let install-event take care of accumulating this ttree (as part
; of the final ttree) into state, so that users can see the relevant
; explanatory message, "The storage of ... depends upon ...".

               (er-progn
                (chk-assumption-free-ttree ttree1 ctx state)
                (value ttree1)))))))

; We now turn to actually adding the rules generated.  The development is
; exactly analogous to the checking above.

(defun add-x-rule (rune nume class ens wrld state)

; We add the rules of class class derived from term.

; WARNING: If this function is changed, change info-for-x-rules (and/or
; subsidiaries) and find-rules-of-rune2.

; WARNING:  If you add a new type of rule record, update access-x-rule-rune.

  (let ((term (cadr (assoc-keyword :COROLLARY (cdr class)))))
    (case (car class)
          (:REWRITE
           (add-rewrite-rule rune nume
                             (assoc-keyword :LOOP-STOPPER (cdr class))
                             term
                             (assoc-keyword :BACKCHAIN-LIMIT-LST (cdr class))
                             (cadr (assoc-keyword :MATCH-FREE (cdr class)))
                             ens
                             wrld))
          (:LINEAR
           (add-linear-rule rune nume
                            (cadr (assoc-keyword :TRIGGER-TERMS (cdr class)))
                            term
                            (assoc-keyword :BACKCHAIN-LIMIT-LST (cdr class))
                            (cadr (assoc-keyword :MATCH-FREE (cdr class)))
                            ens wrld state))
          (:WELL-FOUNDED-RELATION
           (add-well-founded-relation-rule rune nume term wrld))
          (:BUILT-IN-CLAUSE
           (add-built-in-clause-rule rune nume term wrld))
          (:COMPOUND-RECOGNIZER
           (add-compound-recognizer-rule rune nume term ens wrld))
          (:ELIM
           (add-elim-rule rune nume term wrld))
          (:GENERALIZE
           (add-generalize-rule rune nume term wrld))
          (:EQUIVALENCE
           (add-equivalence-rule rune nume term ens wrld))
          (:REFINEMENT
           (add-refinement-rule rune nume term wrld))
          (:CONGRUENCE
           (add-congruence-rule rune nume term wrld))
          (:META
           (add-meta-rule rune nume
                          (cadr (assoc-keyword :TRIGGER-FNS (cdr class)))
                          (cadr (assoc-keyword :WELL-FORMEDNESS-GUARANTEE
                                               (cdr class)))
                          term
                          (assoc-keyword :BACKCHAIN-LIMIT-LST (cdr class))
                          wrld))
          (:CLAUSE-PROCESSOR
           (add-clause-processor-rule (base-symbol rune)
                                      (cadr (assoc-keyword
                                             :WELL-FORMEDNESS-GUARANTEE
                                             (cdr class)))
                                      term wrld))
          (:FORWARD-CHAINING
           (add-forward-chaining-rule rune nume
                                      (cadr (assoc-keyword :TRIGGER-TERMS
                                                           (cdr class)))
                                      term
                                      (cadr (assoc-keyword :MATCH-FREE
                                                           (cdr class)))
                                      wrld))
          (:TYPE-PRESCRIPTION
           (add-type-prescription-rule rune nume
                                       (cadr (assoc-keyword :TYPED-TERM
                                                            (cdr class)))
                                       term
                                       (assoc-keyword :BACKCHAIN-LIMIT-LST
                                                      (cdr class))
                                       ens wrld nil))
          (:DEFINITION
           (add-definition-rule rune nume
                                (cadr (assoc-keyword :CLIQUE (cdr class)))
                                (cadr (assoc-keyword :CONTROLLER-ALIST
                                                     (cdr class)))
                                (let ((pair (assoc-keyword :INSTALL-BODY
                                                           (cdr class))))
                                  (if pair
                                      (cadr pair)
                                    :NORMALIZE))
                                term ens wrld))
          (:INDUCTION
           (add-induction-rule rune nume
                               (cadr (assoc-keyword :PATTERN (cdr class)))
                               (cadr (assoc-keyword :CONDITION (cdr class)))
                               (cadr (assoc-keyword :SCHEME (cdr class)))
                               term wrld))
          (:TYPE-SET-INVERTER
           (add-type-set-inverter-rule
            rune nume
            (cadr (assoc-keyword :TYPE-SET (cdr class)))
            term ens wrld))

          (:TAU-SYSTEM

; One might think that :tau-system rules are added here, since every other rule
; class is handled here.  But one would be wrong!  Because of the automatic mode in
; the tau system and because of the facility for regenerating the tau database,
; :tau-system rules are added by the tau-visit code invoked most often from
; install-event.

           wrld)

; WARNING: If this function is changed, change info-for-x-rules (and/or
; subsidiaries) and find-rules-of-rune2.

; WARNING:  If you add a new type of rule record, update access-x-rule-rune.

          (otherwise
           (er hard 'add-x-rule
               "Unrecognized rule class token ~x0 in ADD-X-RULE."
               (car class))))))

(defun add-rules1 (mapping-pairs classes ens wrld state)

; Mapping-pairs is in 1:1 correspondence with classes.  Each mapping
; pair is of the form (nume . rune) and gives the nume and rune we are
; to use for the rule built according to the corresponding element of
; classes.  Recall that each element of classes has a :COROLLARY component
; which is the term describing the rule.  Thus, term (above) is actually
; not used to build any rule.

  (cond ((null classes) wrld)
        (t (add-rules1 (cdr mapping-pairs)
                       (cdr classes)
                       ens
                       (add-x-rule (cdr (car mapping-pairs))
                                   (car (car mapping-pairs))
                                   (car classes)
                                   ens wrld state)
                       state))))

(defun truncate-class-alist (alist term)

; Alist is the cdr of a fully elaborated rule class and hence is a
; keyword-alistp -- not a regular alist!  As such it contains a :COROLLARY
; field and perhaps :HINTS and :INSTRUCTIONS.  A truncated class is a fully
; elaborated class with the :HINTS and :INSTRUCTIONS fields thrown out.  In
; addition, we throw out the :COROLLARY field if its value is term.

  (cond ((null alist) nil)
        ((or (eq (car alist) :HINTS)
             (eq (car alist) :INSTRUCTIONS)
             (and (eq (car alist) :COROLLARY)
                  (equal (cadr alist) term)))
         (truncate-class-alist (cddr alist) term))
        (t (cons (car alist)
                 (cons (cadr alist)
                       (truncate-class-alist (cddr alist) term))))))

(defun truncate-classes (classes term)

; This function generates the value we store under the
; 'truncated-classes property of an event whose 'theorem property is
; term.  It seems sensible to us to store the fully elaborated rule
; classes for a name and term.  For example, from them you can recover
; the exact logical expression of a given rule.  But a fully
; elaborated rule class can be an exceedingly large object to display,
; e.g., with :PROPS, because its translated :HINTS fields may contain
; large theories.  Thus, we "truncate" the elaborated classes,
; throwing away :HINTS, :INSTRUCTIONS, and perhaps (if it is identical
; to term, the 'theorem field of the event).

  (cond ((null classes) nil)
        (t (cons (cons (caar classes)
                       (truncate-class-alist (cdar classes) term))
                 (truncate-classes (cdr classes) term)))))

(defun make-runes1 (event-name classes runes)

; Event-name is a symbol and classes is a list of fully elaborated
; rule classes.  Hence, each element of classes is a list that starts
; with a rule token keyword, e.g., :REWRITE, :META, etc.  We make up a
; list of runes in 1:1 correspondence with classes.  The general form
; of a name is (token event-name . i), where token is the keyword for
; the class and i enumerates how many occurrences we have already
; counted for that keyword.  So for example, suppose event-name is FOO
; and classes contains, in order two :REWRITE classes and an :ELIM
; class, then we will name them (:REWRITE FOO . 1) (:REWRITE FOO . 2)
; (:ELIM FOO).  Note the oddity: if there is just one rule with a
; given token, its i is nil; otherwise i is an integer that counts
; from 1.

  (cond
   ((null classes) (revappend runes nil))
   (t (let* ((token (caar classes))
             (temp (assoc-eq token runes)))
        (make-runes1
         event-name
         (cdr classes)

; The new name we add is of the form (token event-name . i) where
; i is: 1, if we haven't seen token before but there is another occurrence
; of token in classes; nil, if we haven't seen token before and we won't
; see it again; and one more than the last i for token if we've seen
; token before.

         (cons
          (cons token
                (cons event-name
                      (cond ((null temp)
                             (cond ((assoc-eq token (cdr classes))
                                    1)
                                   (t nil)))
                            (t (1+ (cddr temp))))))
          runes))))))

(defun make-runes (event-name classes)

; Given an event name and the rule classes for the event we create the
; list of runes naming each rule.  The list is in 1:1 correspondence
; with classes.

  (make-runes1 event-name classes nil))

(defun make-runic-mapping-pairs (nume runes)

; Given the nume to be assigned to the first rune in a list of runes,
; we return a list, in ascending order by nume, of the mapping pairs,
; each pair of the form (nume . rune), in 1:1 correspondence with
; runes.

  (cond ((null runes)
         (prog2$ (or (<= nume (fixnum-bound))
                     (max-nume-exceeded-error 'make-runic-mapping-pairs))
                 nil))
        (t (cons (cons nume (car runes))
                 (make-runic-mapping-pairs (1+ nume) (cdr runes))))))

(defun add-rules (name classes term untranslated-term ens wrld state)

; Name is an event name.  We store term under the 'theorem property
; for name.  Under the 'truncated-classes for name we store the
; truncated, but otherwise fully elaborated, rule classes.  Under the
; 'runic-mapping-pairs we store the alist mapping numes to runes,
; i.e., ((n1 . rune1) ... (nk . runek)), where the runes are in 1:1
; correspondence with classes.  The numes are consecutive integers
; uniquely associated with the corresponding runes.  N1 is the least,
; Nk is the greatest, and thus Nk+1 is the next available nume in the
; world resulting from this addition.  For more on runes and numes,
; see runep.  See also the Essay on the Assignment of Runes and Numes
; by DEFUNS.

  (let ((runic-mapping-pairs
         (make-runic-mapping-pairs (get-next-nume wrld)
                                   (make-runes name classes))))
    (putprop name 'runic-mapping-pairs runic-mapping-pairs
     (putprop name 'theorem term
      (putprop name 'untranslated-theorem untranslated-term
       (putprop name 'classes (truncate-classes classes term)
                (add-rules1 runic-mapping-pairs classes ens wrld state)))))))

(defun redundant-theoremp (name term classes event-form wrld)

; We know name is a symbol, but it may or may not be new.  We return t if name
; is already defined as the name of the theorem term with the given
; rule-classes, or if event-form -- which is a defthm or defaxiom event -- is
; an existing event in the world.  We do the first test first since perhaps it
; is more efficient.

; Through Version_6.5 we had only the first test of this disjunction.  But
; Jared Davis and Sol Swords sent us small examples including the following,
; which failed because the translated rule-classes had changed.

;   (defund foop (x) (consp x))
;
;   (defthm booleanp-of-foop
;     (booleanp (foop x))
;     :rule-classes :type-prescription)
;
;   (in-theory (disable booleanp-compound-recognizer))
;
;   ; Was not redundant, because the generated corollary's :typed-term changes:
;   (defthm booleanp-of-foop
;     (booleanp (foop x))
;     :rule-classes :type-prescription)

; Now that we treat the second event as redundant, imagine a book consisting of
; the four events above except that the first defthm is local.  Then we get a
; different rule when including the book.  That seems harmless enough, but
; perhaps we should be more concerned if using encapsulate instead of a book,
; since we have seen soundness bugs when constraints change.  There are two
; reasons why we don't see a soundness issue here.

; First, if there is a soundness issue here, then there was already a soundness
; issue by converting each (defthm ...) to (encapsulate () (defthm ...)),
; because syntactic equality implies redundancy for encapsulate events.

; Second, the :corollary for a rule is independent of context; for example, the
; enabled status of booleanp-compound-recognizer in the example above only
; affects the :typed-term for the rule, not the :corollary.  The reason is that
; when a :corollary is implicit, then translate-rule-class generates the
; :corollary to be exactly the original theorem.

  (or (and (equal term (getpropc name 'theorem 0 wrld))
           (equal (truncate-classes classes term)
                  (getpropc name 'classes 0 wrld)))
      (assert$ event-form
               (equal event-form
                      (get-event name wrld)))))

; The next part develops the functions for proving that each alleged
; corollary in a rule class follows from the theorem proved.

(defun non-tautological-classes (term classes)

; Term is a translated term (indeed, it known to be a theorem).
; Classes is a list of translated rule classes, each therefore having
; a :COROLLARY field.  We'll say an element of classes is
; "tautological" if its :COROLLARY is implied by term, e.g., if
; (IMPLIES term corollary) is a theorem.  Return that sublist of
; classes consisting of the non-tautological elements.

  (cond ((null classes) nil)
        ((let ((cor
                (cadr (assoc-keyword :COROLLARY (cdr (car classes))))))
           (or (equal term cor)
               (if-tautologyp (mcons-term* 'if term cor *t*))))
         (non-tautological-classes term (cdr classes)))
        (t (cons (car classes)
                 (non-tautological-classes term (cdr classes))))))

(defun prove-corollaries1 (name term i n rule-classes ens wrld ctx state ttree)

; Term is a theorem just proved.  Rule-classes is a list of translated
; rule classes and each is known to be non-tautological wrt term.  We
; prove that term implies the :corollary of each rule class, or cause
; an error.  We return the ttree accumulated from all the proofs.  The
; two variables i and n are integers and used merely to control the
; output that enumerates where we are in the process: i is a 1-based
; counter indicating the position in the enumeration of the next rule
; class; n is the number of rule classes in all.

  (cond
   ((null rule-classes) (value ttree))
   (t (let ((goal (fcons-term* 'implies
                               term
                               (cadr (assoc-keyword
                                      :COROLLARY
                                      (cdr (car rule-classes))))))
            (otf-flg (cadr (assoc-keyword :OTF-FLG (cdr (car rule-classes)))))
            (hints (cadr (assoc-keyword :HINTS (cdr (car rule-classes)))))
            (instructions (cadr (assoc-keyword :INSTRUCTIONS
                                               (cdr (car rule-classes))))))
        (er-let*
         ((hints (if hints
                     (value hints) ; already translated, with default-hints
                   (let ((default-hints (default-hints wrld)))
                     (if default-hints ; not yet translated; no explicit hints
                         (translate-hints
                          (cons "Corollary of " name)
                          default-hints ctx wrld state)
                       (value nil))))))
         (pprogn
          (io? event nil state
               (wrld goal n i)
               (fms "The~#0~[~/ first~/ second~/ next~/ last~] goal is ~p1.~%"
                    (list (cons #\0 (cond ((and (= i 1) (= n 1)) 0)
                                          ((= i 1) 1)
                                          ((= i 2) 2)
                                          ((= i n) 4)
                                          (t 3)))
                          (cons #\1 (untranslate goal t wrld)))
                    (proofs-co state)
                    state
                    (term-evisc-tuple nil state)))
          (er-let*
           ((ttree1 (cond
                     (instructions
                      (proof-checker nil (untranslate goal t wrld)
                                     goal nil instructions
                                     wrld state))
                     (t (prove goal
                               (make-pspv ens wrld state
                                          :displayed-goal goal
                                          :otf-flg otf-flg)
                               hints ens wrld ctx state)))))
           (prove-corollaries1 name term (1+ i) n (cdr rule-classes) ens wrld
                               ctx state
                               (cons-tag-trees ttree1 ttree)))))))))

(defun prove-corollaries (name term rule-classes ens wrld ctx state)

; Rule-classes is a list of translated rule classes.  The basic idea
; is to prove the :COROLLARY of every class in rule-classes.  Like
; prove, we return an error triple; the non-erroneous value is a ttree
; signalling the successful proof of all the corollaries.

  (let* ((classes (non-tautological-classes term rule-classes))
         (n (length classes)))
    (cond
     ((= n 0)
      (value nil))
     (t (pprogn
         (io? event nil state
              (rule-classes n)
              (fms
               "~%We now consider~#2~[ the~/, in turn, the ~x0~]~#1~[~/ ~
                non-trivial~] ~#2~[corollary~/corollaries~] claimed in the ~
                specified rule ~#3~[class~/classes~].~%"
               (list (cons #\0 n)
                     (cons #\1 (if (= (length rule-classes) 1) 0 1))
                     (cons #\2 (if (= n 1) 0 1))
                     (cons #\3 (if (= (length rule-classes) 1) 0 1)))
               (proofs-co state)
               state
               (term-evisc-tuple nil state)))
         (prove-corollaries1 name term 1 n classes ens wrld ctx state nil))))))

;---------------------------------------------------------------------------
; Section:  More History Management and Command Stuff

; While we are at it, we here develop the code for printing out all the
; rules added by a particular event.

(defun enabled-runep-string (rune ens wrld)
  (if (enabled-runep rune ens wrld)
      "Enabled"
    "Disabled"))

(defun untranslate-hyps (hyps wrld)
  (cond ((null hyps) t)
        ((null (cdr hyps)) (untranslate (car hyps) t wrld))
        (t (cons 'and (untranslate-lst hyps t wrld)))))

(defun info-for-lemmas (lemmas numes ens wrld)
  (if (null lemmas)
      nil
    (let* ((rule                (car lemmas))
           (nume                (access rewrite-rule rule :nume))
           (rune                (access rewrite-rule rule :rune))
           (subclass            (access rewrite-rule rule :subclass))
           (lhs                 (access rewrite-rule rule :lhs))
           (rhs                 (access rewrite-rule rule :rhs))
           (hyps                (access rewrite-rule rule :hyps))
           (equiv               (access rewrite-rule rule :equiv))
           (backchain-limit-lst (access rewrite-rule rule
                                        :backchain-limit-lst))
           (heuristic-info      (access rewrite-rule rule :heuristic-info)))
      (if (or (eq numes t)
              (member nume numes))
          (cons `((:rune            ,rune :rewrite ,nume)
                  (:enabled         ,(and (enabled-runep rune ens wrld) t))
                  ,@(if (eq subclass 'meta)
                        `((:hyp-fn  ,(or hyps :none) hyps)
                          (:equiv   ,equiv)
                          (:meta-fn ,lhs))
                      `((:hyps  ,(untranslate-hyps hyps wrld) hyps)
                        (:equiv ,equiv)
                        (:lhs   ,(untranslate lhs nil wrld) lhs)
                        (:rhs   ,(untranslate rhs nil wrld) rhs)))
                  (:backchain-limit-lst ,backchain-limit-lst)
                  (:subclass            ,subclass)
                  ,@(cond ((eq subclass 'backchain)
                           `((:loop-stopper ,heuristic-info)))
                          ((eq subclass 'definition)
                           `((:clique           ,(car heuristic-info))
                             (:controller-alist ,(cdr heuristic-info))))
                          (t
                           nil)))
                (info-for-lemmas (cdr lemmas) numes ens wrld))
        (info-for-lemmas (cdr lemmas) numes ens wrld)))))

(defun world-to-next-event (wrld)
  (cond ((null wrld) nil)
        ((and (eq (caar wrld) 'event-landmark)
              (eq (cadar wrld) 'global-value))
         nil)
        (t (cons (car wrld)
                 (world-to-next-event (cdr wrld))))))

(defun assoc-eq-eq (x y alist)

; We look for a pair on alist of the form (x y . val) where we compare with x
; and y using eq.  We return the pair or nil.

  (cond ((endp alist) nil)
        ((and (eq (car (car alist)) x)
              (eq (car (cdr (car alist))) y))
         (car alist))
        (t (assoc-eq-eq x y (cdr alist)))))

(defun actual-props (props seen acc)

; Props is a list whose elements have the form (sym key . val), where val could
; be *acl2-property-unbound*.  Seen is the list containing some (sym key . &)
; for each pair (sym key) that has already been seen.

  (cond
   ((null props)
    (prog2$ (fast-alist-free seen)
            (reverse acc)))
   ((member-eq (cadar props) (cdr (hons-get (caar props) seen)))
    (actual-props (cdr props) seen acc))
   ((eq (cddr (car props)) *acl2-property-unbound*)
    (actual-props (cdr props)
                  (hons-acons (caar props)
                              (cons (cadar props)
                                    (cdr (hons-get (caar props) seen)))
                              seen)
                  acc))
   (t
    (actual-props (cdr props)
                  (hons-acons (caar props)
                              (cons (cadar props)
                                    (cdr (hons-get (caar props) seen)))
                              seen)
                  (cons (car props) acc)))))

(defun info-for-well-founded-relation-rules (rules)

; There is not record class corresponding to well-founded-relation rules.  But
; the well-founded-relation-alist contains triples of the form (rel mp . rune)
; and we assume rules is a list of such triples.

  (if (null rules)
      nil
    (let* ((rule (car rules))
           (rune (cddr rule)))
      (cons (list (list :rune rune :well-founded-relation)
                  (list :domain-predicate      (cadr rule))
                  (list :well-founded-relation (car rule)))
            (info-for-well-founded-relation-rules (cdr rules))))))

(defun info-for-built-in-clause-rules1 (rules numes ens wrld)
  (if (null rules)
      nil
    (let* ((rule   (car rules))
           (nume   (access built-in-clause rule :nume))
           (rune   (access built-in-clause rule :rune))
           (clause (access built-in-clause rule :clause)))
      (if (or (eq numes t)
              (member nume numes))
          (cons (list (list :rune     rune
                            :built-in-clause nume)
                      (list :enabled  (and (enabled-runep rune ens wrld) t))
                      (list :clause   (prettyify-clause clause nil wrld)
                            clause))
                (info-for-built-in-clause-rules1 (cdr rules) numes ens wrld))
        (info-for-built-in-clause-rules1 (cdr rules) numes ens wrld)))))

(defun info-for-built-in-clause-rules (alist numes ens wrld)
  (if (null alist)
      nil
    (append (info-for-built-in-clause-rules1 (cdar alist) numes ens wrld)
            (info-for-built-in-clause-rules (cdr alist) numes ens wrld))))

(defun info-for-compound-recognizer-rules (rules numes ens wrld)
  (if (null rules)
      nil
    (let* ((rule     (car rules))
           (nume     (access recognizer-tuple rule :nume))
           (rune     (access recognizer-tuple rule :rune))
           (true-ts  (access recognizer-tuple rule :true-ts))
           (false-ts (access recognizer-tuple rule :false-ts))
           (strongp  (access recognizer-tuple rule :strongp)))
      (if (or (eq numes t)
              (member nume numes))
          (cons (list (list :rune     rune
                            :compound-recognizer nume)
                      (list :enabled  (and (enabled-runep rune ens wrld) t))
                      (list :fn       (access recognizer-tuple rule :fn))
                      (list :true-ts  (decode-type-set true-ts)
                            true-ts)
                      (list :false-ts (decode-type-set false-ts)
                            false-ts)
                      (list :strongp
                            strongp))
                (info-for-compound-recognizer-rules (cdr rules) numes ens wrld))
        (info-for-compound-recognizer-rules (cdr rules) numes ens wrld)))))

(defun info-for-generalize-rules (rules numes ens wrld)
  (if (null rules)
      nil
    (let* ((rule    (car rules))
           (nume    (access generalize-rule rule :nume))
           (rune    (access generalize-rule rule :rune))
           (formula (access generalize-rule rule :formula)))
      (if (or (eq numes t)
              (member nume numes))
          (cons (list (list :rune    rune
                            :generalize nume)
                      (list :enabled (and (enabled-runep rune ens wrld) t))
                      (list :formula (untranslate formula t wrld)
                            formula))
                (info-for-generalize-rules (cdr rules) numes ens wrld))
        (info-for-generalize-rules (cdr rules) numes ens wrld)))))

(defun info-for-linear-lemmas (rules numes ens wrld)
  (if (null rules)
      nil
    (let* ((rule                (car rules))
           (nume                (access linear-lemma rule :nume))
           (rune                (access linear-lemma rule :rune))
           (hyps                (access linear-lemma rule :hyps))
           (concl               (access linear-lemma rule :concl))
           (max-term            (access linear-lemma rule :max-term))
           (backchain-limit-lst (access linear-lemma rule
                                        :backchain-limit-lst)))
      (if (or (eq numes t)
              (member nume numes))
          (cons (list (list :rune                rune
                            :linear nume)
                      (list :enabled             (and (enabled-runep rune
                                                                     ens
                                                                     wrld)
                                                      t))
                      (list :hyps                (untranslate-hyps hyps wrld)
                            hyps)
                      (list :concl               (untranslate concl nil wrld)
                            concl)
                      (list :max-term            (untranslate max-term nil
                                                              wrld)
                            max-term)
                      (list :backchain-limit-lst backchain-limit-lst))
                (info-for-linear-lemmas (cdr rules) numes ens wrld))
        (info-for-linear-lemmas (cdr rules) numes ens wrld)))))

(defun info-for-eliminate-destructors-rule (rule numes ens wrld)
  (let ((rune             (access elim-rule rule :rune))
        (nume             (access elim-rule rule :nume))
        (hyps             (access elim-rule rule :hyps))
        (equiv            (access elim-rule rule :equiv))
        (lhs              (access elim-rule rule :lhs))
        (rhs              (access elim-rule rule :rhs))
        (destructor-term  (access elim-rule rule :destructor-term))
        (destructor-terms (access elim-rule rule :destructor-terms))
        (crucial-position (access elim-rule rule :crucial-position)))
    (if (or (eq numes t)
            (member nume numes))
        (list (list (list :rune rune
                          :elim nume)
                    (list :enabled          (and (enabled-runep rune ens wrld) t))
                    (list :hyps             (untranslate-hyps hyps wrld)
                          hyps)
                    (list :equiv            equiv)
                    (list :lhs              (untranslate lhs nil wrld)
                          lhs)
                    (list :rhs              (untranslate rhs nil wrld)
                          rhs)
                    (list :destructor-term  (untranslate destructor-term nil wrld)
                          destructor-term)
                    (list :destructor-terms (untranslate-lst destructor-terms nil
                                                             wrld)
                          destructor-terms)
                    (list :crucial-position crucial-position)))
      nil)))

(defun info-for-congruences (val numes ens wrld)

; val is of the form (equiv geneqv1 ... geneqvk ... geneqvn).
; This seems complicated so we'll punt for now.

  (declare (ignore val numes ens wrld))
  nil)

(defun info-for-pequivs (val numes ens wrld)

; This seems complicated so we'll punt for now.

  (declare (ignore val numes ens wrld))
  nil)

(defun info-for-coarsenings (val numes ens wrld)

; It is not obvious how to determine which coarsenings are really new, so we
; print nothing.

  (declare (ignore val numes ens wrld))
  nil)

(defun info-for-forward-chaining-rules (rules numes ens wrld)
  (if (null rules)
      nil
    (let* ((rule    (car rules))
           (rune    (access forward-chaining-rule rule :rune))
           (nume    (access forward-chaining-rule rule :nume))
           (trigger (access forward-chaining-rule rule :trigger))
           (hyps    (access forward-chaining-rule rule :hyps))
           (concls  (access forward-chaining-rule rule :concls)))
      (if (or (eq numes t)
              (member nume numes))
          (cons (list (list :rune    rune
                            :forward-chaining nume)
                      (list :enabled (and (enabled-runep rune ens wrld) t))
                      (list :trigger (untranslate trigger nil wrld)
                            trigger)
                      (list :hyps    (untranslate-hyps hyps wrld)
                            hyps)
                      (list :concls

; The :concls of a forward-chaining rule is really a implicit conjunction of
; all the conclusions you can draw.  So we untranslate the list and put an
; AND on the front, which is just what untranslate-hyps does, oddly enough.

                                      (untranslate-hyps concls wrld) concls))
                (info-for-forward-chaining-rules (cdr rules) numes ens wrld))
        (info-for-forward-chaining-rules (cdr rules) numes ens wrld)))))

(defun decode-type-set-lst (lst)
  (if lst
      (cons (decode-type-set (car lst))
            (decode-type-set-lst (cdr lst)))
    nil))

(defun info-for-type-prescriptions (rules numes ens wrld)
  (if (null rules)
      nil
    (let* ((rule      (car rules))
           (rune      (access type-prescription rule :rune))
           (nume      (access type-prescription rule :nume))
           (term      (access type-prescription rule :term))
           (hyps      (access type-prescription rule :hyps))
           (backchain-limit-lst (access type-prescription rule
                                        :backchain-limit-lst))
           (basic-ts  (access type-prescription rule :basic-ts))
           (vars      (access type-prescription rule :vars))
           (corollary (access type-prescription rule :corollary)))
      (if (or (eq numes t)
              (member nume numes))
          (cons (list (list :rune      rune :type-prescription nume)
                      (list :enabled   (and (enabled-runep rune ens wrld) t))
                      (list :hyps      (untranslate-hyps hyps wrld)
                            hyps)
                      (list :term      (untranslate term nil wrld)
                            term)
                      (list :backchain-limit-lst backchain-limit-lst)
                      (list :basic-ts  (decode-type-set basic-ts)
                            basic-ts)
                      (list :vars      vars)
                      (list :corollary (untranslate corollary t wrld)
                            corollary))
                (info-for-type-prescriptions (cdr rules) numes ens wrld))
        (info-for-type-prescriptions (cdr rules) numes ens wrld)))))

(defun info-for-induction-rules (rules numes ens wrld)
  (if (null rules)
      nil
    (let* ((rule      (car rules))
           (rune      (access induction-rule rule :rune))
           (nume      (access induction-rule rule :nume))
           (pattern   (access induction-rule rule :pattern))
           (condition (access induction-rule rule :condition))
           (scheme    (access induction-rule rule :scheme)))
      (if (or (eq numes t)
              (member nume numes))
          (cons (list (list :rune      rune
                            :induction nume)
                      (list :enabled   (and (enabled-runep rune ens wrld) t))
                      (list :pattern   (untranslate pattern nil wrld)
                            pattern)
                      (list :condition (untranslate condition t wrld)
                            condition)
                      (list :scheme    (untranslate scheme nil wrld)
                            scheme))
                (info-for-induction-rules (cdr rules) numes ens wrld))
        (info-for-induction-rules (cdr rules) numes ens wrld)))))

(defun info-for-type-set-inverter-rules (rules numes ens wrld)
  (if (null rules)
      nil
    (let* ((rule     (car rules))
           (rune     (access type-set-inverter-rule rule :rune))
           (nume     (access type-set-inverter-rule rule :nume))
           (type-set (access type-set-inverter-rule rule :ts))
           (terms    (access type-set-inverter-rule rule :terms))
           )
      (if (or (eq numes t)
              (member nume numes))
          (cons (list (list :rune      rune
                            :type-set-inverter nume)
                      (list :enabled   (and (enabled-runep rune ens wrld) t))
                      (list :type-set  type-set)
                      (list :condition (untranslate-hyps terms wrld)
                            terms))
                (info-for-type-set-inverter-rules (cdr rules) numes ens wrld))
        (info-for-type-set-inverter-rules (cdr rules) numes ens wrld)))))

(defun info-for-x-rules (sym key val numes ens wrld)

; See add-x-rule for an enumeration of rule classes that generate the
; properties shown below.

; Warning: Keep this function in sync with find-rules-of-rune2.  In that
; spirit, tau rules are completely invisible and so we return nil for
; any property affected by tau rules.

; Info functions inspect the various rules and turn them into alists of the
; form:

;   (key . (value1 ... valueN))

; When we print these alists with :pr, we only print "key: value1".  This lets
; you store additional information in later values.  For example, value1 might
; want to untranslate the term for prettier printing to the user, or decode the
; type-set, etc.  Value2 can then include the original term or undecoded
; type-set, so that programs can use that value instead.

  (cond
   ((eq key 'global-value)
    (case sym
      (well-founded-relation-alist

; Avoid printing the built-in anonymous rule if that is all we have here.

       (if (consp (cdr val))
           (info-for-well-founded-relation-rules val)
         nil))
      (built-in-clauses
       (info-for-built-in-clause-rules val numes ens wrld))
      (type-set-inverter-rules
       (info-for-type-set-inverter-rules val numes ens wrld))
      (recognizer-alist
       (info-for-compound-recognizer-rules val numes ens wrld))
      (generalize-rules
       (info-for-generalize-rules val numes ens wrld))
      (otherwise nil)))
   (t
    (case key
      (lemmas
       (info-for-lemmas val numes ens wrld))
      (linear-lemmas
       (info-for-linear-lemmas val numes ens wrld))
      (eliminate-destructors-rule
       (info-for-eliminate-destructors-rule val numes ens wrld))
      (congruences
       (info-for-congruences val numes ens wrld))
      (pequivs
       (info-for-pequivs val numes ens wrld))
      (coarsenings
       (info-for-coarsenings val numes ens wrld))
      (forward-chaining-rules
       (info-for-forward-chaining-rules val numes ens wrld))
      (type-prescriptions
       (info-for-type-prescriptions val numes ens wrld))
      (induction-rules
       (info-for-induction-rules val numes ens wrld))
      (otherwise nil)))))

(defun info-for-rules (props numes ens wrld)
  (cond ((null props)
         nil)
        ((eq (cadar props) *acl2-property-unbound*)
         (info-for-rules (cdr props) numes ens wrld))
        (t
         (append (info-for-x-rules (caar props) (cadar props) (cddar props)
                                   numes ens wrld)
                 (info-for-rules (cdr props) numes ens wrld)))))

(defun print-info-for-rules-entry (keys vals chan state)
  (if (not (consp keys))
      state
    (mv-let (col state)
            (fmt1 "~s0:"
                  (list (cons #\0 (let* ((name (symbol-name (car keys)))
                                         (lst (coerce name 'list)))
                                    (coerce (cons (car lst)
                                                  (string-downcase1 (cdr lst)))
                                            'string))))
                  0 chan state nil)
            (mv-let (col state)
                    (cond ((< col 14)
                           (fmt1 "~t0~q1"
                                 (list (cons #\0 14)
                                       (cons #\1 (caar vals)))
                                 col chan state nil))
                          (t (fmt1 " ~q1"
                                   (list (cons #\0 14)
                                         (cons #\1 (caar vals)))
                                   col chan state nil)))
                    (declare (ignore col))
                    (print-info-for-rules-entry (cdr keys) (cdr vals) chan
                                                state)))))

(defun print-info-for-rules (info chan state)
  (if (not (consp info))
      (value :invisible)
    (pprogn (newline chan state)
            (print-info-for-rules-entry (strip-cars (car info))
                              (strip-cdrs (car info))
                              chan
                              state)
            (print-info-for-rules (cdr info) chan state))))

(defun pr-body (wrld-segment numes wrld state)
  (print-info-for-rules
   (info-for-rules (actual-props wrld-segment nil nil)
                   numes
                   (ens-maybe-brr state)
                   wrld)
   (standard-co state)
   state))

(defun pr-fn (name state)
  (cond ((and (symbolp name)
              (not (keywordp name)))
         (let* ((wrld (w state))
                (name (deref-macro-name name (macro-aliases wrld)))
                (numes (strip-cars
                        (getpropc name 'runic-mapping-pairs nil wrld)))
                (wrld-segment (world-to-next-event
                               (cdr (decode-logical-name name wrld)))))
           (pr-body wrld-segment numes wrld state)))
        (t (er soft 'pr
               "The argument to PR must be a non-keyword symbol.  Perhaps you ~
                should use PR! instead."))))

(defun print-clause-processor-rules1 (alist wrld state)
  (if (null alist)
      (value :invisible)
    (let* ((pair (car alist))
           (name (car pair))
           (term (cdr pair)))
      (pprogn (fms "Rule ~x0:~|~P12~|"
                   (list (cons #\0 name)
                         (cons #\1 (untranslate term nil wrld))
                         (cons #\2 (term-evisc-tuple nil state)))
                   (standard-co state) state nil)
              (print-clause-processor-rules1 (cdr alist) wrld state)))))

(defmacro print-clause-processor-rules ()
  '(let ((wrld (w state)))
     (print-clause-processor-rules1 (global-val 'clause-processor-rules wrld)
                                    wrld
                                    state)))

(defun new-numes (world-segment)
  (cond
   ((null world-segment)
    nil)
   ((and (eq (cadr (car world-segment)) 'runic-mapping-pairs)
         (not (eq (cddr (car world-segment)) *acl2-property-unbound*)))
    (append (strip-cars (cddr (car world-segment)))
            (new-numes (cdr world-segment))))
   (t
    (new-numes (cdr world-segment)))))

(defun world-to-next-command (wrld ans)
  (cond ((null wrld) (reverse ans))
        ((and (eq (caar wrld) 'command-landmark)
              (eq (cadar wrld) 'global-value))
         (reverse ans))
        (t (world-to-next-command (cdr wrld) (cons (car wrld) ans)))))

(defun pr!-fn (cd state)

; We assume that the world starts with a command landmark.

  (let ((wrld (w state)))
    (er-let* ((wrld-tail (er-decode-cd cd wrld 'print-new-rules state)))
             (pr-body (world-to-next-command (cdr wrld-tail) nil)
                      t wrld state))))

(defmacro pr (name)
  (list 'pr-fn name 'state))

(defmacro pr! (cd)
  (list 'pr!-fn cd 'state))

(defun disabledp-fn-lst (runic-mapping-pairs ens)
  (cond ((null runic-mapping-pairs) nil)
        ((enabled-numep (caar runic-mapping-pairs) ens)
         (disabledp-fn-lst (cdr runic-mapping-pairs) ens))
        (t (cons (cdar runic-mapping-pairs)
                 (disabledp-fn-lst (cdr runic-mapping-pairs) ens)))))

(defun disabledp-fn (name ens wrld)
  (declare (xargs :guard t))
  (cond ((symbolp name)
         (let ((name2 (deref-macro-name name (macro-aliases wrld))))
           (cond
            ((and (not (eq name2 :here))
                  name2
                  (logical-namep name2 wrld))
             (disabledp-fn-lst (getpropc name2 'runic-mapping-pairs nil wrld)
                               ens))
            (t (er hard 'disabledp
                   "Illegal call of disabledp on symbolp argument ~x0.  See ~
                    :DOC disabledp."
                   name)))))
        (t (let* ((rune (translate-abbrev-rune name (macro-aliases wrld))))
             (cond
              ((runep rune wrld)
               (not (enabled-runep rune ens wrld)))
              (t (er hard 'disabledp
                     "Illegal call of disabledp: ~x0 does not designate a ~
                      rune or a list of runes.  See :DOC disabledp."
                     name)))))))

(defmacro disabledp (name)
  `(disabledp-fn ,name (ens-maybe-brr state) (w state)))

(defun access-x-rule-rune (x rule)

; Given a rule object, rule, of record type x, we return the :rune of rule.
; This is thus typically ``(access x rule :rune).''

; Note: We include with every case the rule-class tokens that create this rule
; so that we can search for any such tokens and find this function when adding
; a new, similar, rule-class.

; There is no record object generated only by        ;;; :refinement
;                                                    ;;; :tau-system
  (case x
        (recognizer-tuple                            ;;; :compound-recognizer
         (access recognizer-tuple rule :rune))
        (type-prescription                           ;;; :type-prescription
         (access type-prescription rule :rune))
        (congruence-rule                             ;;; :congruence
                                                     ;;; :equivalence
         (access congruence-rule rule :rune))
        (pequiv                                      ;;; :congruence
         (access congruence-rule
                 (access pequiv rule :congruence-rule)
                 :rune))
        (rewrite-rule                                ;;; :rewrite
                                                     ;;; :meta
                                                     ;;; :definition
         (access rewrite-rule rule :rune))
        (well-founded-relation-rule                  ;;; :well-founded-relation
; No such record type, but we pretend!
         (cddr rule))
        (linear-lemma                                ;;; :linear
         (access linear-lemma rule :rune))
        (forward-chaining-rule                       ;;; :forward-chaining
         (access forward-chaining-rule rule :rune))
        (built-in-clause                             ;;; :built-in-clause
         (access built-in-clause rule :rune))
        (elim-rule                                   ;;; :elim
         (access elim-rule rule :rune))
        (generalize-rule                             ;;; :generalize
         (access generalize-rule rule :rune))
        (induction-rule                              ;;; :induction
         (access induction-rule rule :rune))
        (type-set-inverter-rule                      ;;; :type-set-inverter
         (access type-set-inverter-rule rule :rune))
        (otherwise (er hard 'access-x-rule-rune
                       "Unrecognized rule class, ~x0."
                       x))))

(defun collect-x-rules-of-rune (x rune lst ans)

; Lst is a list of rules of type x.  We collect all those elements of lst
; with :rune rune.

  (cond ((null lst) ans)
        ((equal rune (access-x-rule-rune x (car lst)))
         (collect-x-rules-of-rune x rune (cdr lst)
                                  (add-to-set-equal (car lst) ans)))
        (t (collect-x-rules-of-rune x rune (cdr lst) ans))))

(defun collect-congruence-rules-of-rune-in-geneqv-lst (geneqv-lst rune ans)

; A geneqv is a list of congruence rules.  Geneqv-lst, above, is a list of
; geneqvs.  We scan every congruence rule in geneqv-lst and collect those with
; the :rune rune.

  (cond
   ((null geneqv-lst) ans)
   (t (collect-congruence-rules-of-rune-in-geneqv-lst
       (cdr geneqv-lst) rune
       (collect-x-rules-of-rune 'congruence-rule rune (car geneqv-lst) ans)))))

(defun collect-congruence-rules-of-rune (congruences rune ans)

; The 'congruences property of an n-ary function symbol is a list of tuples,
; each of which is of the form (equiv geneqv1 ... geneqvn), where each geneqvi
; is a list of congruence rules.  Congruences is the 'congruences property of
; some function.  We scan it and collect every congruence rule in it that has
; :rune rune.

  (cond
   ((null congruences) ans)
   (t (collect-congruence-rules-of-rune
       (cdr congruences) rune
       (collect-congruence-rules-of-rune-in-geneqv-lst (cdr (car congruences))
                                                       rune ans)))))

(defun collect-pequivs-of-rune (alist rune ans)

; Alist has the form of the :deep or :shallow field of the 'pequivs property of
; a function symbol.  Thus, each element of alist is of the form (equiv pequiv1
; ... pequivn), where each pequivi is a pequiv record.  We scan this alist and
; collect every pequiv record in it whose :rune is rune.

  (cond
   ((null alist) ans)
   (t (collect-pequivs-of-rune
       (cdr alist)
       rune
       (collect-x-rules-of-rune 'pequiv rune (cdr (car alist)) ans)))))

(defun find-rules-of-rune2 (rune sym key val ans)

; (sym key . val) is a member of wrld.  We collect all the rules in val with
; :rune rune.  This function is patterned after info-for-x-rules.

; Wart: If key is 'eliminate-destructors-rule, then val is a single rule, not a
; list of rules.  We handle this case specially below.

; Warning: Keep this function in sync with info-for-x-rules.  In that spirit,
; note that tau rules never store runes and hence are completely ignored
; here, as in info-for-x-rules.

  (let ((token (car rune)))

; As an efficiency, we do not look for rune in places where it cannot occur.
; For example, if token is :elim then there is no point in searching through
; the 'lemmas properties.  In general, each case below insists that token is of
; the appropriate class.  Sometimes there are more than one.  For example, the
; 'lemmas property may contain :rewrite, :definition, and :meta runes, all of
; which are stored as REWRITE-RULEs.

    (cond
     ((eq key 'global-value)
      (case sym
            (well-founded-relation-alist
             (if (eq token :well-founded-relation)
                 (collect-x-rules-of-rune 'well-founded-relation-rule rune
                                          val ans)
                 ans))
            (built-in-clauses
             (if (eq token :built-in-clause)
                 (collect-x-rules-of-rune 'built-in-clause rune val ans)
                 ans))
            (type-set-inverter-rules
             (if (eq token :type-set-inverter)
                 (collect-x-rules-of-rune 'type-set-inverter-rule rune
                                          val ans)
                 ans))
            (recognizer-alist
             (if (eq token :compound-recognizer)
                 (collect-x-rules-of-rune 'recognizer-tuple rune val ans)
                 ans))
            (generalize-rules
             (if (eq token :generalize)
                 (collect-x-rules-of-rune 'generalize-rule rune val ans)
                 ans))
            (otherwise ans)))
     (t
      (case key
            (lemmas
             (if (member-eq token '(:rewrite :meta :definition))
                 (collect-x-rules-of-rune 'rewrite-rule rune val ans)
                 ans))
            (linear-lemmas
             (if (eq token :linear)
                 (collect-x-rules-of-rune 'linear-lemma rune val ans)
                 ans))
            (eliminate-destructors-rule
             (if (eq token :elim)
                 (collect-x-rules-of-rune 'elim-rule rune (list val) ans)
                 ans))
            (congruences
             (if (member-eq token '(:congruence :equivalence))
                 (collect-congruence-rules-of-rune val rune ans)
                 ans))
            (pequivs
             (if (eq token :congruence)
                 (collect-pequivs-of-rune
                  (access pequivs-property val :deep)
                  rune
                  (collect-pequivs-of-rune
                   (access pequivs-property val :shallow)
                   rune
                   ans))
               ans))
            (coarsenings

; :Refinement rules add to the 'coarsenings property.  If equiv1 is a
; refinement of equiv2, then equiv2 is a coarsening of equiv1 and the lemma
; establishing that fact adds equiv2 to the 'coarsenings property of equiv1.
; There is no rule object corresponding to this fact.  Hence, even if rune is
; the :refinement rune responsible for adding some equiv2 to this list, we
; won't find a rule object here by the name rune.

; Similar comments apply to :equivalence rules.  They add to the 'coarsenings
; property but no rule object exists.  It should be noted that some congruence
; rules are added by lemmas of class :equivalence and those rules are named by
; :equivalence runes and are found among the 'congruences properties.

             ans)
            (forward-chaining-rules
             (if (eq token :forward-chaining)
                 (collect-x-rules-of-rune 'forward-chaining-rule rune val ans)
                 ans))
            (type-prescriptions
             (if (eq token :type-prescription)
                 (collect-x-rules-of-rune 'type-prescription rune val ans)
                 ans))
            (induction-rules
             (if (eq token :induction)
                 (collect-x-rules-of-rune 'induction-rule rune val ans)
                 ans))
            (otherwise ans))))))

(defun find-rules-of-rune1 (rune props ans)

; Props is a list of triples and can be considered a segment of some wrld.  (It
; is not only because duplicates have been removed.)  We visit every property
; and collect all the rules with :rune rune.

  (cond ((null props) ans)
        ((eq (cddar props) *acl2-property-unbound*)
         (find-rules-of-rune1 rune (cdr props) ans))
        (t (find-rules-of-rune1 rune (cdr props)
                                (find-rules-of-rune2 rune
                                                     (caar props)
                                                     (cadar props)
                                                     (cddar props)
                                                     ans)))))

(defun find-rules-of-rune (rune wrld)

; Find all the rules in wrld with :rune rune.  We do this by first obtaining
; that segment of wrld consisting of the properties stored by the event
; named by the base symbol of rune.  Then we collect every rule mentioned
; in the segment, provided the rule has :rune rune.

  (declare (xargs :guard (and (plist-worldp wrld)
                              (runep rune wrld))))
  (let ((wrld-tail (decode-logical-name (base-symbol rune) wrld)))
    (find-rules-of-rune1 rune
                         (actual-props
                          (world-to-next-event (cdr wrld-tail))
                          'find-rules-of-rune1
                          nil)
                         nil)))

(defun collect-abbreviation-subclass (rules)

; Rules is a list of REWRITE-RULEs.  We collect all those that are of :subclass
; 'ABBREVIATION.

  (cond ((null rules) nil)
        ((eq (access rewrite-rule (car rules) :subclass) 'ABBREVIATION)
         (cons (car rules) (collect-abbreviation-subclass (cdr rules))))
        (t (collect-abbreviation-subclass (cdr rules)))))

(defun runes-to-monitor-warnings (runes wrld ctx state
                                        only-simple only-simple-count
                                        some-simple some-s-all some-s-bad)

; This function assumes that "Monitor" warnings are enabled.

  (cond
   ((endp runes)
    (pprogn (cond
             (only-simple
              (warning$ ctx ("Monitor")
                        "The rune~#0~[~/s~] ~&0 name~#1~[s only a~/ only~] ~
                         simple abbreviation rule~#1~[~/s~].  Monitors can be ~
                         installed on abbreviation rules, but will not fire ~
                         during preprocessing, so you may want to supply the ~
                         hint :DO-NOT '(PREPROCESS); see :DOC hints.  For an ~
                         explanation of what a simple abbreviation rule is, ~
                         see :DOC simple.  Also, see :DOC monitor."
                        only-simple
                        (if (> only-simple-count 1) 1 0)))
             (t state))
            (cond
             (some-simple
              (assert$
               (< 1 some-s-all)
               (warning$ ctx ("Monitor")
                         "Among the ~n0 rules named ~v1 ~#2~[is a simple ~
                          abbreviation rule~/are ~n3 simple abbreviation ~
                          rules~].  Such rules can be monitored, but will not ~
                          fire during preprocessing, so you may want to ~
                          supply the hint :DO-NOT '(PREPROCESS); see :DOC ~
                          hints,  For an explanation of what a simple ~
                          abbreviation rule is, see :DOC simple.  Also, see ~
                          :DOC monitor."
                         some-s-all
                         some-simple
                         (if (< 1 some-s-bad) 1 0)
                         some-s-bad)))
             (t state))))
   (t
    (let ((rune (car runes)))
      (cond
       ((member-eq (car rune) '(:rewrite :definition))
        (let* ((rules (find-rules-of-rune rune wrld))
               (bad-rewrite-rules (collect-abbreviation-subclass rules)))
          (assert$
           rules
           (cond
            ((equal (length bad-rewrite-rules) (length rules))
             (runes-to-monitor-warnings
              (cdr runes) wrld ctx state
              (cons rune only-simple)
              (+ (length rules) only-simple-count)
              some-simple some-s-all some-s-bad))
            (bad-rewrite-rules
             (runes-to-monitor-warnings
              (cdr runes) wrld ctx state
              only-simple only-simple-count
              (cons rune some-simple)
              (+ (length rules) some-s-all)
              (+ (length bad-rewrite-rules) some-s-bad)))
            (t (runes-to-monitor-warnings (cdr runes) wrld ctx state
                                          only-simple only-simple-count
                                          some-simple some-s-all some-s-bad))))))
       (t (runes-to-monitor-warnings (cdr runes) wrld ctx state
                                     only-simple only-simple-count
                                     some-simple some-s-all some-s-bad)))))))

(defconst *monitorable-rune-types*
  '(:rewrite :definition :linear))

(defun monitorable-runes (lst)
  (cond ((endp lst) nil)
        ((member-eq (caar lst) *monitorable-rune-types*)
         (cons (car lst)
               (monitorable-runes (cdr lst))))
        (t (monitorable-runes (cdr lst)))))

(defun monitorable-runes-from-mapping-pairs (sym wrld)

; Warning: keep this in sync with convert-theory-to-unordered-mapping-pairs1.
; In both cases we are guided by the discussion of runic designators in :doc
; theories.  However, here we do not include :induction runes, and we do not
; accommodate theories because we wonder what complexity that might introduce
; in providing useful errors and warnings from :monitor, and we don't (yet?)
; consider it likely that users will want to monitor theories.

; We accumuate runic mapping pairs of sym into ans, except in the case that sym
; is a defined function, we only include the :definition rune and, if indp is
; true, the induction rune.

  (let ((temp (strip-cdrs
               (getpropc (deref-macro-name sym (macro-aliases wrld))
                         'runic-mapping-pairs nil wrld))))
    (cond
     ((and temp
           (eq (car (cdr (car temp))) :DEFINITION)
           (eq (car (cdr (cadr temp))) :EXECUTABLE-COUNTERPART))
      (list (car temp)))
     (t (monitorable-runes temp)))))

(defun runes-to-monitor (x ctx state)
  (er-let* ((wrld (value (w state)))
            (runes
             (cond
              ((symbolp x)
               (let ((runes (monitorable-runes-from-mapping-pairs x wrld)))
                 (cond ((null runes)
                        (er soft ctx
                            "The symbol ~x0 does not represent any runes to ~
                             be monitored.  See :DOC monitor."
                            x))
                       (t (value runes)))))
              (t
               (let ((rune (translate-abbrev-rune x (macro-aliases wrld))))
                 (cond
                  ((not (runep rune wrld))
                   (er soft ctx "~x0 does not designate a (valid) rune."
                       rune))
                  ((not (member-eq (car rune) *monitorable-rune-types*))
                   (er soft ctx
                       "Only ~&0 runes may be monitored.  We cannot break ~x1."
                       *monitorable-rune-types*
                       rune))
                  (t (value (list rune)))))))))
    (pprogn (cond ((warning-disabled-p "Monitor") state)
                  (t (runes-to-monitor-warnings runes wrld ctx state
                                                nil 0
                                                nil 0 0)))
            (value runes))))

(defun delete-assoc-equal? (key alist)
  (cond ((assoc-equal key alist)
         (delete-assoc-equal key alist))
        (t alist)))

(defun delete-assoc-equal?-lst (lst alist)
  (declare (xargs :guard (alistp alist)))
  (if (consp lst)
      (delete-assoc-equal?-lst (cdr lst)
                               (delete-assoc-equal? (car lst) alist))
    alist))

(defun monitor1 (x form ctx state)

; The list of monitored runes modified by this function is a brr-global.
; Thus, this function should only be evaluated within a wormhole.  The macro
; monitor can be called in either a wormhole state or a normal state.

  (er-let* ((runes (runes-to-monitor x ctx state))
            (term (translate-break-condition form ctx state)))
    (prog2$
     (or (f-get-global 'gstackp state)
         (cw "Note: Enable break-rewrite with :brr t.~%"))
     (pprogn
      (f-put-global 'brr-monitored-runes
                    (append (pairlis-x2 runes (list term))
                            (delete-assoc-equal?-lst
                             runes
                             (get-brr-global 'brr-monitored-runes
                                             state)))
                    state)
      (value (get-brr-global 'brr-monitored-runes state))))))

(defun delete-assoc-equal-lst (lst alist)
  (declare (xargs :guard (alistp alist)))
  (if (consp lst)
      (delete-assoc-equal-lst (cdr lst)
                              (delete-assoc-eq (car lst) alist))
    alist))

(defun set-difference-assoc-equal (lst alist)
  (declare (xargs :guard (and (true-listp lst)
                              (alistp alist))))
  (cond ((endp lst) nil)
        ((assoc-equal (car lst) alist)
         (set-difference-assoc-equal (cdr lst) alist))
        (t (cons (car lst) (set-difference-assoc-equal (cdr lst) alist)))))

(defun unmonitor1 (x ctx state)
  (let* ((wrld (w state))
         (runes (cond
                 ((symbolp x)
                  (monitorable-runes-from-mapping-pairs x wrld))
                 (t (list (translate-abbrev-rune x (macro-aliases wrld)))))))
    (cond
     ((null runes)
      (er soft ctx
          "The value ~x0 does not specify any runes that could be monitored."
          x))
     (t
      (let* ((monitored-runes-alist
              (get-brr-global 'brr-monitored-runes state))
             (bad-runes ; specified to unmonitor, but not monitored
              (set-difference-assoc-equal runes monitored-runes-alist)))
        (er-progn
         (cond ((null bad-runes)
                (value nil))
               ((not (intersectp-equal runes (strip-cars monitored-runes-alist)))
                (cond
                 ((null (cdr runes)) ; common case
                  (er soft ctx "~x0 is not monitored." (car runes)))
                 (t
                  (er soft ctx
                      "None of the ~n0 runes specified to be unmonitored is ~
                       currently monitored."
                      (length runes)))))
               (t
                (pprogn (warning$ ctx "Monitor"
                                  "Skipping the rune~#0~[~/s~] ~&0, as ~
                                   ~#0~[it is~/they are~] not currently ~
                                   monitored."
                                  bad-runes)
                        (value nil))))
         (pprogn
          (f-put-global 'brr-monitored-runes
                        (delete-assoc-equal-lst runes monitored-runes-alist)
                        state)
          (prog2$
           (cond ((and (f-get-global 'gstackp state)
                       (null monitored-runes-alist))
                  (cw "Note:  No runes are being monitored.  Disable ~
                       break-rewrite with :brr nil.~%"))
                 (t nil))
           (value monitored-runes-alist)))))))))

(defun monitor-fn (x expr state)

; If we are not in a wormhole, get into one.  Then we set brr-monitored-runes
; appropriately.  We always print the final value of brr-monitored-runes to the
; comment window and we always return (value :invisible).

  (cond
   ((eq (f-get-global 'wormhole-name state) 'brr)
    (er-progn
     (monitor1 x expr 'monitor state)
     (prog2$
      (cw "~Y01~|" (get-brr-global 'brr-monitored-runes state) nil)
      (value :invisible))))
   (t (prog2$
       (brr-wormhole
        '(lambda (whs)
           (set-wormhole-entry-code whs :ENTER))
        nil
        `(er-progn
          (monitor1 ',x ',expr 'monitor state)
          (prog2$
           (cw "~Y01~|" (get-brr-global 'brr-monitored-runes state) nil)
           (value nil)))
        nil)
       (value :invisible)))))

(defun unmonitor-fn (x ctx state)
  (cond
   ((eq (f-get-global 'wormhole-name state) 'brr)
    (er-progn
     (cond ((eq x :all)
            (pprogn (f-put-global 'brr-monitored-runes nil state)
                    (value nil)))
           (t (unmonitor1 x ctx state)))
     (prog2$
      (cw "~Y01~|" (get-brr-global 'brr-monitored-runes state) nil)
      (value :invisible))))
   (t
    (prog2$
     (brr-wormhole
      '(lambda (whs)
         (set-wormhole-entry-code whs :ENTER))
      nil
      `(er-progn
        (cond ((eq ',x :all)
               (pprogn (f-put-global 'brr-monitored-runes nil state)
                       (value nil)))
              (t (unmonitor1 ',x ',ctx state)))
        (prog2$
         (cw "~Y01~|" (get-brr-global 'brr-monitored-runes state) nil)
         (value nil)))
      nil)
     (value :invisible)))))

(defun monitored-runes-fn (state)
  (cond
   ((eq (f-get-global 'wormhole-name state) 'brr)
    (prog2$ (cw "~Y01~|" (get-brr-global 'brr-monitored-runes state) nil)
            (value :invisible)))
   (t
    (prog2$
     (brr-wormhole
      '(lambda (whs)
         (set-wormhole-entry-code whs :ENTER))
      nil
      `(prog2$ (cw "~Y01~|" (get-brr-global 'brr-monitored-runes state) nil)
               (value nil))
      nil)
     (value :invisible)))))

(defun brr-fn (flg state)
  (cond
   (flg
    (pprogn
     (f-put-global 'gstackp t state)
     (prog2$
      (cw "Use :a! to exit break-rewrite.~|See :DOC set-evisc-tuple to ~
           control suppression of details when printing.~|~%The monitored ~
           runes are:~%")
      (er-progn
       (monitored-runes-fn state)
       (value t)))))
   (t (pprogn (f-put-global 'gstackp nil state)
              (value nil)))))

(defmacro brr (flg)
  `(brr-fn ,flg state))

(defmacro brr@ (sym)
  (declare (xargs :guard (member-eq sym '(:target
                                          :unify-subst
                                          :wonp
                                          :rewritten-rhs
                                          :poly-list
                                          :failure-reason
                                          :lemma
                                          :type-alist
                                          :ancestors
                                          :initial-ttree
                                          :final-ttree
                                          :gstack))))
  (case sym
        (:target '(get-brr-local 'target state))
        (:unify-subst '(get-brr-local 'unify-subst state))
        (:wonp '(get-brr-local 'wonp state))
        (:rewritten-rhs '(get-brr-local 'brr-result state))
        (:poly-list '(brr-result state))
        (:failure-reason '(get-brr-local 'failure-reason state))
        (:lemma '(get-brr-local 'lemma state))
        (:type-alist '(get-brr-local 'type-alist state))
        (:ancestors '(get-brr-local 'ancestors state))
        (:initial-ttree '(get-brr-local 'initial-ttree state))
        (:final-ttree '(get-brr-local 'final-ttree state))
        (otherwise '(get-brr-global 'brr-gstack state))))

(defmacro monitor (x expr)
  `(monitor-fn ,x ,expr state))

(defmacro unmonitor (rune)
  `(unmonitor-fn ,rune 'unmonitor state))

(defmacro monitored-runes ()
  `(monitored-runes-fn state))

(defun proceed-from-brkpt1 (action runes ctx state)

; Action may be
; silent - exit brr with no output except the closing parenthesis
; print -  exit brr after printing results of attempted application
; break -  do not exit brr

; Runes is allegedly either t or a list of runes (or any runic designators
; legal for monitoring) to be used as brr-monitored-runes after pairing every
; rune with *t*.  If it is t, it means use the same brr-monitored-runes.
; Otherwise, we check that they are all legal.  If not, we warn and do not
; exit.  We may wish someday to provide the capability of proceeding with
; conditions other than *t* on the various runes, but I haven't seen a nice
; design for that yet.

  (er-let*
   ((lst (if (eq runes t)
             (value nil)
           (runes-to-monitor runes ctx state))))
   (pprogn
    (put-brr-local 'saved-standard-oi
                   (f-get-global 'standard-oi state)
                   state)
    (put-brr-local 'saved-brr-monitored-runes
                   (get-brr-global 'brr-monitored-runes state)
                   state)
    (if (eq runes t)
        state
        (f-put-global 'brr-monitored-runes lst state))
    (put-brr-local 'action action state)
    (exit-brr-wormhole state))))

(defun exit-brr (state)

; The assoc-eq on 'wonp below determines if we are in brkpt2 or brkpt1.

  (cond
   ((assoc-eq 'wonp (get-brr-global 'brr-alist state))
    (prog2$ (cw "~F0)~%" (get-brr-local 'depth state))
            (pprogn (pop-brr-stack-frame state)
                    (exit-brr-wormhole state))))
   (t (proceed-from-brkpt1 'silent t 'exit-brr state))))

(defun ok-if-fn (term state)
  (er-let*
   ((pair
     (simple-translate-and-eval term nil '(state)
                                "The ok-if test" 'ok-if (w state) state t)))
   (cond ((cdr pair) (exit-brr state))
         (t (value nil)))))

(defmacro ok-if (term)
  `(ok-if-fn ,term state))

;---------------------------------------------------------------------------

; Section:  The DEFAXIOM Event

(defun print-rule-storage-dependencies (name ttree state)
  (cond
   ((ld-skip-proofsp state) (value nil))
   (t (pprogn
       (io? event nil state
            (name ttree)
            (let ((simp-phrase (tilde-*-simp-phrase ttree)))
              (cond ((nth 4 simp-phrase)
                     (fms "The storage of ~x0 depends upon ~*1.~%"
                          (list (cons #\0 name)
                                (cons #\1 simp-phrase))
                          (proofs-co state)
                          state
                          nil))
                    (t state))))
       (value nil)))))

(defun defaxiom-supporters (tterm name ctx wrld state)

; Here we document requirements on disjointness of the sets of evaluator
; functions and defaxiom supporters.

; First, consider the following comment from relevant-constraints (which should
; be kept in sync with that comment), regarding functional instantiation of a
; theorem, thm, using a functional substitution, alist.

; The relevant theorems are the set of all terms, term, such that
;   (a) term mentions some function symbol in the domain of alist,
;   AND
;   (b) either
;      (i) term arises from a definition of or constraint on a function symbol
;          ancestral either in thm or in some defaxiom,
;       OR
;      (ii) term is the body of a defaxiom.

 ; Then when we (conceptually at least) functionally instantiate a :meta or
; :clause-processor rule using a functional substitution of the form ((evl
; evl') (evl-list evl'-list)), we need to know that the above proof obligations
; are met.

; ACL2 insists (in function chk-evaluator-use-in-rule) that the evaluator of a
; proposed :meta or :clause-processor rule is not ancestral in any defaxiom or
; in the definition of, or constraint on, the rule's metafunctions, nor is the
; evaluator ancestral in meta-extract-global-fact+ and
; meta-extract-contextual-fact if they are used in the rule.  Thus, when we
; imagine functionally instantiating the rule as discussed above, at the point
; of its application, the only relevant theorems for (i) above are the
; constraints on the evaluator, and there are no relevant theorems for (ii)
; above.  We can use our usual computation of "ancestral", which does not
; explore below functions that are not instantiablep, since (presumably!)
; non-instantiablep functions are primitives in which no evaluator functions is
; ancestral.

; But there is a subtlety not fully addressed above.  Consider the following
; case: a legitimate :meta (or :clause-processor) rule, with evaluator evl, is
; followed by a defaxiom event for which evl (or evl-list) is ancestral.  Does
; this new defaxiom invalidate the existing rule?  The answer is no, but the
; argument above doesn't quite explain why, so we elaborate here.  Let C0 be
; the chronology in which the meta rule was proved and let C1 be the current
; chronology, which extends C0.  Let C2 be the result of extending C0 with a
; defstub for every function symbol of C1 that is not in C0, except for the
; evaluator pair evl'/evl'-list, introduced at the end for all function symbols
; of C1.  Then the argument applies to C2, so the desired functional instance
; is a theorem of C2.  But the theory of C2 is a subtheory of C1, so the
; desired functional instance is a theorem of C1.

  (declare (ignore name ctx))
  (let ((supporters (instantiable-ancestors (all-fnnames tterm) wrld nil)))
    (value supporters)))

(defun defaxiom-fn (name term state rule-classes event-form)

; Important Note: Don't change the formals of this function without reading the
; *initial-event-defmacros* discussion in axioms.lisp.

  (when-logic
   "DEFAXIOM"
   (with-ctx-summarized
    (if (output-in-infixp state) event-form (cons 'defaxiom name))

; At one time we thought that event-form could be nil.  It is simplest, for
; checking redundancy, not to consider the case of manufacturing an event-form,
; so now we insist on event-form being supplied (not nil).

    (assert$
     event-form
     (let ((wrld (w state))
           (ens (ens state)))
       (er-progn
        (chk-all-but-new-name name ctx nil wrld state)
        (er-let* ((tterm (translate term t t t ctx wrld state))
; known-stobjs = t (stobjs-out = t)
                  (supporters (defaxiom-supporters tterm name ctx wrld state))
                  (classes (translate-rule-classes name rule-classes tterm ctx
                                                   ens wrld state)))
          (cond
           ((redundant-theoremp name tterm classes event-form wrld)
            (stop-redundant-event ctx state))
           (t

; Next we implement Defaxiom Restriction for Defattach from The Essay on
; Defattach: no ancestor (according to the transitive closure of the
; immediate-supporter relation) of a defaxiom event has an attachment.  Since
; this is all about logic, we remove guard-holders from term before doing this
; check.

            (let ((attached-fns
                   (attached-fns (canonical-ancestors-lst
                                  (all-ffn-symbs (remove-guard-holders tterm)
                                                 nil)
                                  wrld)
                                 wrld)))
              (cond
               (attached-fns
                (er soft ctx
                    "The following function~#0~[ has an attachment, but is~/s ~
                    have attachments, but are~] ancestral in the proposed ~
                    axiom: ~&0. ~ See :DOC defattach."
                    attached-fns))
               (t
                (enforce-redundancy
                 event-form ctx wrld
                 (er-let*
                     ((ttree1 (chk-acceptable-rules name classes ctx ens wrld
                                                    state))
                      (wrld1 (chk-just-new-name name nil 'theorem nil ctx wrld
                                                state))
                      (ttree3
                       (cond ((ld-skip-proofsp state)
                              (value nil))
                             (t
                              (prove-corollaries name tterm classes ens wrld1 ctx
                                                 state)))))
                   (let* ((wrld2
                           (add-rules name classes tterm term ens wrld1 state))
                          (wrld3 (global-set
                                  'nonconstructive-axiom-names
                                  (cons name
                                        (global-val 'nonconstructive-axiom-names wrld))
                                  wrld2))
                          (wrld4 (maybe-putprop-lst supporters 'defaxiom-supporter
                                                    name wrld3))
                          (ttree4 (cons-tag-trees ttree1 ttree3)))
                     (pprogn
                      (f-put-global 'axiomsp t state)
                      (er-progn
                       (chk-assumption-free-ttree ttree4 ctx state)
                       (print-rule-storage-dependencies name ttree1 state)
                       (install-event name
                                      event-form
                                      'defaxiom
                                      name
                                      ttree4
                                      nil :protect ctx wrld4
                                      state))))))))))))))))))


;---------------------------------------------------------------------------
; Section:  The DEFTHM Event

(defun warn-on-inappropriate-defun-mode (assumep event-form ctx state)
  (if (or assumep
          (eq (default-defun-mode (w state)) :logic))
      state
    (warning$ ctx "Defun-Mode"
             "It is perhaps unusual to execute the event ~x0 in the ~
              :program default-defun-mode when ld-skip-proofsp has not been ~
              set to T."
             event-form)))

;; RAG - this trio of functions adds the hypothesis "(standardp x)"
;; for each variable x in the theorem.

#+:non-standard-analysis
(defun add-hyp-standardp-var-lst (vars)
  (if (consp vars)
      (cons (list 'standardp (car vars))
            (add-hyp-standardp-var-lst (cdr vars)))
    nil))

#+:non-standard-analysis
(defun strengthen-hyps-using-transfer-principle (hyps vars)

; Hyps is an untranslated expression.

  (cons 'and
        (append (add-hyp-standardp-var-lst vars)
                (if (and (consp hyps)
                         (eq (car hyps) 'and))
                    (cdr hyps)
                    (list hyps)))))

#+:non-standard-analysis
(defun weaken-using-transfer-principle (term)

; Term is an untranslated expression.

  (let ((vars (all-vars term)))
    (case-match term
                (('implies hyps ('standardp subterm))
                 (declare (ignore subterm))
                 (list 'implies
                       hyps
                       (cons 'and (add-hyp-standardp-var-lst vars))))
                (('standardp subterm)
                 (declare (ignore subterm))
                 (cons 'and (add-hyp-standardp-var-lst vars)))
                (('implies hyps concls)
                 (list 'implies
                       (strengthen-hyps-using-transfer-principle hyps vars)
                       concls))
                (&
                 (list 'implies
                       (cons 'and (add-hyp-standardp-var-lst vars))
                       term)))))

#+:non-standard-analysis
(defun remove-standardp-hyp (tterm)
  (if (and (consp tterm)
           (eq (car tterm) 'standardp)
           (variablep (car (cdr tterm))))
      (list 'eq (car (cdr tterm)) (car (cdr tterm)))
      tterm))

#+:non-standard-analysis
(defun remove-standardp-hyps (tterm)
  (if (and (consp tterm)
           (eq (car tterm) 'if)
           (equal (car (cdr (cdr (cdr tterm))))
                  (list 'quote nil)))
      (list 'if
            (remove-standardp-hyp (car (cdr tterm)))
            (remove-standardp-hyps (car (cdr (cdr tterm))))
            (list 'quote nil))
      (remove-standardp-hyp tterm)))

#+:non-standard-analysis
(defun remove-standardp-hyps-and-standardp-conclusion (tterm)
  (case-match tterm
              (('implies hyps ('standardp subterm))
               (list 'implies
                     (remove-standardp-hyps hyps)
                     subterm))
              (('standardp subterm)
               subterm)
              (& tterm)))

#+:non-standard-analysis
(defun chk-classical-term-or-standardp-of-classical-term (tterm term ctx wrld state)

; Tterm is the translation of term.

  (let* ((names (all-fnnames (remove-standardp-hyps-and-standardp-conclusion tterm)))
         (non-classical-fns (get-non-classical-fns-from-list names wrld nil)))
    (if (null non-classical-fns)
        (value nil)
      (er soft ctx
          "It is illegal to use DEFTHM-STD to prove non-classical ~
           formulas.  However, there has been an attempt to prove ~
           the formula ~x0 using DEFTHM-STD, even though it ~
           contains the non-classical function ~*1."
          term
          `("<MissingFunction>" "~x*" "~x* and " "~x*,"
            ,non-classical-fns)))))

#+(and acl2-par (not acl2-loop-only))
(defmacro with-waterfall-parallelism-timings (name form)
  `(unwind-protect-disable-interrupts-during-cleanup
    (progn (setup-waterfall-parallelism-ht-for-name ,name)
           (reset-future-queue-length-history)
           (setf *acl2p-starting-proof-time*
                 (get-internal-real-time))
           ,form)
    (clear-current-waterfall-parallelism-ht)))

#-(and acl2-par (not acl2-loop-only))
(defmacro with-waterfall-parallelism-timings (name form)
  (declare (ignore name))
  form)

(defun defthm-fn1 (name term state
                        rule-classes
                        instructions
                        hints
                        otf-flg
                        event-form
                        #+:non-standard-analysis std-p)
  (with-ctx-summarized
   (if (output-in-infixp state) event-form (cons 'defthm name))
; At one time we thought that event-form could be nil.  It is simplest, for
; checking redundancy, not to consider the case of manufacturing an event-form,
; so now we insist on event-form being supplied (not nil).

    (assert$
     event-form
     (let ((wrld (w state))
           (ens (ens state))
           (event-form (or event-form
                           (list* 'defthm name term
                                  (append (if (not (equal rule-classes
                                                          '(:REWRITE)))
                                              (list :rule-classes rule-classes)
                                            nil)
                                          (if instructions
                                              (list :instructions instructions)
                                            nil)
                                          (if hints
                                              (list :hints hints)
                                            nil)
                                          (if otf-flg
                                              (list :otf-flg otf-flg)
                                            nil)))))
           (ld-skip-proofsp (ld-skip-proofsp state)))
       (pprogn
        (warn-on-inappropriate-defun-mode ld-skip-proofsp event-form ctx state)
        #+acl2-par
        (erase-acl2p-checkpoints-for-summary state)
        (with-waterfall-parallelism-timings
         name
         (er-progn
          (chk-all-but-new-name name ctx nil wrld state)
          (er-let*
              ((tterm0 (translate term t t t ctx wrld state))
; known-stobjs = t (stobjs-out = t)
               (tterm
                #+:non-standard-analysis
                (if std-p
                    (er-progn
                     (chk-classical-term-or-standardp-of-classical-term
                      tterm0 term ctx wrld state)
                     (translate (weaken-using-transfer-principle term)
                                t t t ctx wrld state))
                  (value tterm0))
                #-:non-standard-analysis
                (value tterm0))
               (classes

; (#+:non-standard-analysis) We compute rule classes with respect to the
; original (translated) term.  The modified term is only relevant for proof.

                (translate-rule-classes name rule-classes tterm0 ctx ens wrld
                                        state)))
            (cond
             ((redundant-theoremp name tterm0 classes event-form wrld)
              (stop-redundant-event ctx state))
             (t
              (enforce-redundancy
               event-form ctx wrld
               (er-let*
                   ((ttree1 (chk-acceptable-rules name classes ctx ens wrld
                                                  state))
                    (wrld1 (chk-just-new-name name nil 'theorem nil ctx wrld
                                              state)))
                 (er-let*
                     ((instructions (if (or (eq ld-skip-proofsp 'include-book)
                                            (eq ld-skip-proofsp
                                                'include-book-with-locals)
                                            (eq ld-skip-proofsp 'initialize-acl2))
                                        (value nil)
                                      (translate-instructions name instructions
                                                              ctx wrld1 state)))

; Observe that we do not translate the hints if ld-skip-proofsp is non-nil.
; Once upon a time we translated the hints unless ld-skip-proofsp was
; 'include-book, which meant we translated them if it was t, which meant we did
; it during initialize-acl2.  That caused a failure due to the fact that ENABLE
; was not defined when it was first used in axioms.lisp.  This choice is
; a little unsettling because it means

                      (hints (if (or (eq ld-skip-proofsp 'include-book)
                                     (eq ld-skip-proofsp 'include-book-with-locals)
                                     (eq ld-skip-proofsp 'initialize-acl2))
                                 (value nil)
                               (translate-hints+ name
                                                 hints

; If there are :instructions, then default hints are to be ignored; otherwise
; the error just below will prevent :instructions in the presence of default
; hints.

                                                 (and (null instructions)
                                                      (default-hints wrld1))
                                                 ctx wrld1 state)))
                      (ttree2 (cond (instructions
                                     (er-progn
                                      (cond (hints (er soft ctx
                                                       "It is not permitted to ~
                                                 supply both :INSTRUCTIONS ~
                                                 and :HINTS to DEFTHM."))
                                            (t (value nil)))
                                      #+:non-standard-analysis
                                      (if std-p

; How could this happen?  Presumably the user created a defthm event using the
; proof-checker, and then absent-mindedly somehow suffixed "-std" on to the
; car, defthm, of that form.

                                          (er soft ctx
                                              ":INSTRUCTIONS are not supported for ~
                                        defthm-std events.")
                                        (value nil))
                                      (proof-checker name term
                                                     tterm classes instructions
                                                     wrld1 state)))
                                    (t (prove tterm
                                              (make-pspv ens wrld1 state
                                                         :displayed-goal term
                                                         :otf-flg otf-flg)
                                              hints ens wrld1 ctx state))))
                      (ttree3 (cond (ld-skip-proofsp (value nil))
                                    (t (prove-corollaries name tterm0 classes ens wrld1
                                                          ctx state)))))
                   (let ((wrld2
                          (add-rules name classes tterm0 term ens wrld1 state))
                         (ttree4 (cons-tag-trees ttree1
                                                 (cons-tag-trees ttree2 ttree3))))
                     (er-progn
                      (chk-assumption-free-ttree ttree4 ctx state)
                      (print-rule-storage-dependencies name ttree1 state)
                      (install-event name
                                     event-form
                                     'defthm
                                     name
                                     ttree4
                                     nil :protect ctx wrld2
                                     state))))))))))))))))

(defun defthm-fn (name term state
                       rule-classes
                       instructions
                       hints
                       otf-flg
                       event-form
                       #+:non-standard-analysis std-p)

; Important Note:  Don't change the formals of this function without
; reading the *initial-event-defmacros* discussion in axioms.lisp.

  (when-logic
   "DEFTHM"
   (defthm-fn1 name term state
     rule-classes
     instructions
     hints
     otf-flg
     event-form
     #+:non-standard-analysis std-p)))

(defmacro thm (term &key hints otf-flg)
  (list 'thm-fn
        (list 'quote term)
        'state
        (list 'quote hints)
        (list 'quote otf-flg)))

(defun thm-fn (term state hints otf-flg)
  (er-progn
   (with-ctx-summarized
    (if (output-in-infixp state)
        (list* 'THM term (if (or hints otf-flg) '(irrelevant) nil))
      "( THM ...)")
    (let ((wrld (w state))
          (ens (ens state)))
      (er-let* ((hints (translate-hints+ 'thm
                                         hints
                                         (default-hints wrld)
                                         ctx wrld state)))
               (er-let* ((tterm (translate term t t t ctx wrld state))
; known-stobjs = t (stobjs-out = t)
                         (ttree (prove tterm
                                       (make-pspv ens wrld state
                                                  :displayed-goal term
                                                  :otf-flg otf-flg)
                                       hints ens wrld ctx state)))
                        (value nil)))))
   (pprogn (io? prove nil state
                nil
                (fms "Proof succeeded.~%" nil
                     (proofs-co state) state nil))
           (value :invisible))))

; Note:  During boot-strapping the thm macro is unavailable because it is
; not one of the *initial-event-defmacros*.

;---------------------------------------------------------------------------
; Section:  Some Convenient Abbreviations for Defthm

(defun chk-extensible-rule-classes (rule-classes ctx state)
  (cond ((or (symbolp rule-classes)
             (true-listp rule-classes))
         (value nil))
        (t (er soft ctx
               "The :rule-classes argument to must be either ~
                a symbol or a true-listp.  Your rule-classes is ~x0."
               rule-classes))))

(defun extend-rule-classes (class rule-classes)
  (cond ((symbolp rule-classes)
         (cond ((null rule-classes)
                class)
               ((eq rule-classes class)
                rule-classes)
               (t (list class rule-classes))))
        ((member-eq class rule-classes)
         rule-classes)
        (t (cons class rule-classes))))

(defun gen-new-name-in-package-of-symbol1 (char-lst cnt pkgsym wrld)

; This function generates a symbol in the same package as pkgsym that
; is guaranteed to be a new-namep in wrld.  We form a symbol by
; concatenating char-lst and the decimal representation of the natural
; number cnt (separated by a hyphen).  Clearly, for some sufficiently
; large cnt that symbol is a new name.

  (let ((sym (intern-in-package-of-symbol
              (coerce
               (append char-lst
                       (cons #\- (explode-nonnegative-integer cnt 10 nil)))
               'string)
              pkgsym)))
    (cond ((new-namep sym wrld)
           sym)
          (t
           (gen-new-name-in-package-of-symbol1 char-lst (1+ cnt) pkgsym
                                               wrld)))))

(defun gen-new-name-in-package-of-symbol (sym pkgsym wrld)

; We generate a symbol, sym', in the same package as pkgsym, such that
; (new-namep sym' wrld).  If sym itself will not do, we start trying
; the extension of sym with successive integers, e.g., sym-0, sym-1,
; sym-2, ...

  (let ((sym1 (if (equal (symbol-package-name sym)
                         (symbol-package-name pkgsym))
                  sym
                  (intern-in-package-of-symbol
                   (symbol-name sym)
                   pkgsym))))
    (cond ((new-namep sym1 wrld) sym1)
          (t (gen-new-name-in-package-of-symbol1
              (coerce (symbol-name sym) 'list)
              0
              pkgsym
              wrld)))))

(defmacro defequiv (equiv
                    &key (rule-classes '(:EQUIVALENCE))
                    instructions
                    hints
                    otf-flg
                    event-name
                    doc)
  `(defthm ,(or event-name
                (intern-in-package-of-symbol
                 (coerce (packn1 (list equiv "-IS-AN-EQUIVALENCE")) 'string)
                 equiv))
     ,(equivalence-relation-condition equiv)
     :rule-classes
     ,(extend-rule-classes :equivalence rule-classes)
     ,@(if instructions (list :instructions instructions) nil)
     ,@(if hints (list :hints hints) nil)
     ,@(if otf-flg (list :otf-flg otf-flg) nil)
     ,@(if doc (list :doc doc) nil)))

(defmacro defrefinement (equiv1 equiv2
                                &key (rule-classes '(:REFINEMENT))
                                instructions
                                hints
                                otf-flg
                                event-name
                                doc)
  `(defthm
     ,(or event-name
          (intern-in-package-of-symbol
           (coerce (packn1 (list equiv1 "-REFINES-" equiv2)) 'string)
           equiv1))
     (implies (,equiv1 x y) (,equiv2 x y))
     :rule-classes
     ,(extend-rule-classes :REFINEMENT rule-classes)
     ,@(if instructions (list :instructions instructions) nil)
     ,@(if hints (list :hints hints) nil)
     ,@(if otf-flg (list :otf-flg otf-flg) nil)
     ,@(if doc (list :doc doc) nil)))

(defmacro defcong (&whole x
                          equiv1 equiv2 fn-args k
                          &key (rule-classes '(:CONGRUENCE))
                          instructions
                          hints
                          otf-flg
                          event-name
                          doc)
  (cond
   ((not (and (symbolp equiv1)
              (symbolp equiv2)
              (integerp k)
              (< 0 k)
              (symbol-listp fn-args)
              (no-duplicatesp-equal (cdr fn-args))
              (< k (length fn-args))))
    `(er soft 'defcong
         "The form of a defcong event is (defcong equiv1 equiv2 term k ...), ~
          where equiv1 and equiv2 are symbols and k is a positive integer less ~
          than the length of term, where term should be a call of a function ~
          symbol on distinct variable arguments.  However, ~x0 does not have ~
          this form.  See :DOC defcong."
         ',x))
   (t
    (let ((sym (if (equal (symbol-package-name equiv1)
                          *main-lisp-package-name*)
                   (pkg-witness "ACL2")
                 equiv1)))
      `(defthm
         ,(or event-name
              (intern-in-package-of-symbol
               (coerce (packn1 (list equiv1 "-IMPLIES-"
                                     equiv2 "-" (car fn-args) "-" k)) 'string)
               sym))
         ,(let ((arg-k-equiv (intern-in-package-of-symbol
                              (coerce (packn1 (list (nth k fn-args) '-equiv))
                                      'string)
                              sym)))
            `(implies (,equiv1 ,(nth k fn-args)
                               ,arg-k-equiv)
                      (,equiv2 ,fn-args
                               ,(update-nth k arg-k-equiv fn-args))))
         :rule-classes
         ,(extend-rule-classes :CONGRUENCE rule-classes)
         ,@(if instructions (list :instructions instructions) nil)
         ,@(if hints (list :hints hints) nil)
         ,@(if otf-flg (list :otf-flg otf-flg) nil)
         ,@(if doc (list :doc doc) nil))))))