/usr/share/acl2-7.2dfsg/defthm.lisp is in acl2-source 7.2dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 | ; ACL2 Version 7.2 -- A Computational Logic for Applicative Common Lisp
; Copyright (C) 2016, Regents of the University of Texas
; This version of ACL2 is a descendent of ACL2 Version 1.9, Copyright
; (C) 1997 Computational Logic, Inc. See the documentation topic NOTE-2-0.
; This program is free software; you can redistribute it and/or modify
; it under the terms of the LICENSE file distributed with ACL2.
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; LICENSE for more details.
; Written by: Matt Kaufmann and J Strother Moore
; email: Kaufmann@cs.utexas.edu and Moore@cs.utexas.edu
; Department of Computer Science
; University of Texas at Austin
; Austin, TX 78712 U.S.A.
(in-package "ACL2")
; This file contains the functions that check the acceptable forms for
; the various classes of rules, the functions that generate the rules
; from the forms, and finally the functions that actually do the adding.
; It also contains various history management and command facilities whose
; implementation is intertwined with the storage of rules, e.g., :pr and
; some monitoring stuff.
; The structure of the file is that we first define the checkers and
; generators for each class of rule. Each such section has a header
; like that shown below. When we finish all the individual classes
; we enter the final sections, headed
; Section: Handling a List of Classes
; Section: More History Management and Command Stuff
; Section: The DEFAXIOM Event
; Section: The DEFTHM Event
; Section: Some Convenient Abbreviations for Defthm
;---------------------------------------------------------------------------
; Section: :REWRITE Rules
; In this section we develop the function chk-acceptable-
; rewrite-rule, which checks that all the :REWRITE rules generated
; from a term are legal. We then develop add-rewrite-rule which does
; the actual generation and addition of the rules to the world.
(mutual-recursion
(defun remove-lambdas (term)
(if (or (variablep term)
(fquotep term))
term
(let ((args (remove-lambdas-lst (fargs term)))
(fn (ffn-symb term)))
(if (flambdap fn)
(subcor-var (lambda-formals fn) args (remove-lambdas (lambda-body fn)))
(cons-term fn args)))))
(defun remove-lambdas-lst (termlist)
(if termlist
(cons (remove-lambdas (car termlist))
(remove-lambdas-lst (cdr termlist)))
nil))
)
; We use the following functions to determine the sense of the conclusion
; as a :REWRITE rule.
(defun interpret-term-as-rewrite-rule2 (name hyps lhs rhs wrld)
(cond
((equal lhs rhs)
(msg
"A :REWRITE rule generated from ~x0 is illegal because it rewrites the ~
term ~x1 to itself! This can happen even when you submit a rule whose ~
left and right sides appear to be different, in the case that those two ~
sides represent the same term (in particular, after macroexpansion). ~
For general information about rewrite rules in ACL2, see :DOC rewrite. ~
~ You may wish to consider submitting a DEFTHM event ending with ~
:RULE-CLASSES NIL."
name
lhs))
((or (variablep lhs)
(fquotep lhs)
(flambda-applicationp lhs)
(eq (ffn-symb lhs) 'if))
(msg
"A :REWRITE rule generated from ~x0 is illegal because it rewrites the ~
~@1 ~x2. For general information about rewrite rules in ACL2, see :DOC ~
rewrite."
name
(cond ((variablep lhs) "variable symbol")
((fquotep lhs) "quoted constant")
((flambda-applicationp lhs) "LET-expression")
(t "IF-expression"))
lhs))
(t (let ((bad-synp-hyp-msg (bad-synp-hyp-msg
hyps (all-vars lhs) nil wrld)))
(cond
(bad-synp-hyp-msg
(msg
"A rewrite rule generated from ~x0 is illegal because ~@1"
name
bad-synp-hyp-msg))
(t nil))))))
(defun interpret-term-as-rewrite-rule1 (term equiv-okp ens wrld)
; Here we do the work described in interpret-term-as-rewrite-rule. If
; equiv-okp is nil, then no special treatment is given to equivalence relations
; other than equal, iff, and members of *equality-aliases*.
(cond ((variablep term) (mv 'iff term *t* nil))
((fquotep term) (mv 'iff term *t* nil))
((member-eq (ffn-symb term) *equality-aliases*)
(mv 'equal (fargn term 1) (fargn term 2) nil))
((if equiv-okp
(equivalence-relationp (ffn-symb term) wrld)
(member-eq (ffn-symb term) '(equal iff)))
(mv-let (equiv ttree)
(cond ((eq (ffn-symb term) 'iff)
(mv-let
(ts ttree)
(type-set (fargn term 1) nil nil nil ens wrld nil
nil nil)
(cond ((ts-subsetp ts *ts-boolean*)
(mv-let
(ts ttree)
(type-set (fargn term 2) nil nil nil ens
wrld ttree nil nil)
(cond ((ts-subsetp ts *ts-boolean*)
(mv 'equal ttree))
(t (mv 'iff nil)))))
(t (mv 'iff nil)))))
(t (mv (ffn-symb term) nil)))
(mv equiv (fargn term 1) (fargn term 2) ttree)))
((eq (ffn-symb term) 'not) (mv 'equal (fargn term 1) *nil* nil))
(t (mv-let (ts ttree)
(type-set term nil nil nil ens wrld nil nil nil)
(cond ((ts-subsetp ts *ts-boolean*)
(mv 'equal term *t* ttree))
(t (mv 'iff term *t* nil)))))))
(defun interpret-term-as-rewrite-rule (name hyps term ens wrld)
; This function returns five values. The first can be a msg for printing an
; error message. Otherwise the first is nil, in which case the second is an
; equivalence relation, eqv; the next two are terms, lhs and rhs, such that
; (eqv lhs rhs) is propositionally equivalent to term; and the last is an
; 'assumption-free ttree justifying the claim.
(let ((term (remove-lambdas term)))
(mv-let
(eqv lhs rhs ttree)
(interpret-term-as-rewrite-rule1 term t ens wrld)
(let ((msg (interpret-term-as-rewrite-rule2 name hyps lhs rhs wrld)))
(cond
(msg
; We try again, this time with equiv-okp = nil to avoid errors for a form such
; as the following. Its evaluation caused a hard Lisp error in Version_4.3
; during the second pass of the encapsulate at the final defthm, and is based
; closely on an example sent to us by Jared Davis.
; (encapsulate
; ()
; (defun my-equivp (x y)
; (equal (nfix x) (nfix y)))
; (local
; (defthm my-equivp-reflexive
; (my-equivp x x)))
; (defequiv my-equivp)
; (defthm my-equivp-reflexive
; (my-equivp x x)))
(mv-let
(eqv2 lhs2 rhs2 ttree2)
(interpret-term-as-rewrite-rule1 term nil ens wrld)
(cond
((interpret-term-as-rewrite-rule2 name hyps lhs2 rhs2 wrld)
(mv msg eqv lhs rhs ttree))
(t (mv nil eqv2 lhs2 rhs2 ttree2)))))
(t (mv nil eqv lhs rhs ttree)))))))
; We inspect the lhs and some hypotheses with the following function
; to determine if non-recursive defuns will present a problem to the
; user.
(mutual-recursion
(defun non-recursive-fnnames (term ens wrld)
(cond ((variablep term) nil)
((fquotep term) nil)
((flambda-applicationp term)
(add-to-set-equal (ffn-symb term)
(non-recursive-fnnames-lst (fargs term) ens wrld)))
((let ((def-body (def-body (ffn-symb term) wrld)))
(and def-body
(enabled-numep (access def-body def-body :nume)
ens)
(not (access def-body def-body :recursivep))))
(add-to-set-eq (ffn-symb term)
(non-recursive-fnnames-lst (fargs term) ens wrld)))
(t (non-recursive-fnnames-lst (fargs term) ens wrld))))
(defun non-recursive-fnnames-lst (lst ens wrld)
(cond ((null lst) nil)
(t (union-equal (non-recursive-fnnames (car lst) ens wrld)
(non-recursive-fnnames-lst (cdr lst) ens wrld)))))
)
; The list just constructed is odd because it may contain some lambda
; expressions posing as function symbols. We use the following function
; to transform those into let's just for printing purposes...
(defun hide-lambdas1 (formals)
; CLTL uses # as the "too deep to show" symbol. But if we use it, we
; print vertical bars around it. Until we modify the printer to support
; some kind of hiding, we'll use Interlisp's ampersand.
(cond ((null formals) nil)
(t (cons (list (car formals) '&)
(hide-lambdas1 (cdr formals))))))
(defun hide-lambdas (lst)
(cond ((null lst) nil)
(t (cons (if (flambdap (car lst))
(list 'let (hide-lambdas1 (lambda-formals (car lst)))
(lambda-body (car lst)))
(car lst))
(hide-lambdas (cdr lst))))))
; Now we develop the stuff to determine if we have a permutative :REWRITE rule.
(defun variantp (term1 term2)
; This function returns two values: A flag indicating whether the two
; terms are variants and the substitution which when applied to term1
; yields term2.
(mv-let (ans unify-subst)
(one-way-unify term1 term2)
(cond
(ans
(let ((range (strip-cdrs unify-subst)))
(mv (and (symbol-listp range)
(no-duplicatesp-equal range))
unify-subst)))
(t (mv nil nil)))))
(mutual-recursion
(defun surrounding-fns1 (vars term fn acc)
; See surrounding-fns for the definition of the notions used below.
; Vars is a list of variables. Term is a term that occurs as an argument in
; some (here unknown) application of the function fn. Acc is either a list of
; function symbols or the special token 'has-lambda. Observe that if term is a
; var in vars, then fn surrounds some var in vars in whatever larger term
; contained the application of fn.
; If term is a var in vars, we collect fn into acc. If term is not a var, we
; collect into acc all the function symbols surrounding any element of vars.
; However, if we ever encounter a lambda application surrounding a var in vars
; (including fn), we set acc to the special token 'has-lambda, and collections
; cease thereafter.
(cond
((variablep term)
(cond
((member-eq term vars)
(if (or (eq acc 'has-lambda)
(not (symbolp fn)))
'has-lambda
(add-to-set-eq fn acc)))
(t acc)))
((fquotep term) acc)
(t (surrounding-fns-lst vars (fargs term) (ffn-symb term) acc))))
(defun surrounding-fns-lst (vars term-list fn acc)
(cond
((null term-list) acc)
(t (surrounding-fns-lst vars (cdr term-list) fn
(surrounding-fns1 vars (car term-list) fn acc)))))
)
(defun surrounding-fns (vars term)
; This function returns the list of all functions fn surrounding, in term, any
; var in vars, except that if that list includes a lambda expression we return
; nil.
; We make this precise as follows. Let us say a function symbol or lambda
; expression, fn, ``surrounds'' a variable v in term if there is a subterm of
; term that is an application of fn and v is among the actuals of that
; application. Thus, in the term (fn (g x) (h (d x)) y), g and d both surround
; x and fn surrounds y. Note that h surrounds no variable.
; Consider the set, s, of all functions fn such that fn surrounds a variable
; var in term, where var is a member of the list of variables var. If s
; contains a lambda expression, we return nil; otherwise we return s.
(cond
((or (variablep term)
(fquotep term))
nil)
(t
(let ((ans (surrounding-fns-lst vars (fargs term) (ffn-symb term) nil)))
(if (eq ans 'has-lambda)
nil
ans)))))
(defun loop-stopper1 (alist vars lhs)
(cond ((null alist) nil)
((member-eq (car (car alist))
(cdr (member-eq (cdr (car alist)) vars)))
(cons (list* (caar alist)
(cdar alist)
(surrounding-fns (list (caar alist) (cdar alist)) lhs))
(loop-stopper1 (cdr alist) vars lhs)))
(t (loop-stopper1 (cdr alist) vars lhs))))
(defun loop-stopper (lhs rhs)
; If lhs and rhs are variants, we return the "expansion" (see next
; paragraph) of the subset of the unifying substitution containing
; those pairs (x . y) in which a variable symbol (y) is being moved
; forward (to the position of x) in the print representation of the
; term. For example, suppose lhs is (foo x y z) and rhs is (foo y z
; x). Then both y and z are moved forward, so the loop-stopper is the
; "expansion" of '((y . z) (x . y)). This function exploits the fact
; that all-vars returns the set of variables listed in reverse
; print-order.
; In the paragraph above, the "expansion" of a substitution ((x1 .
; y1) ... (xn . yn)) is the list ((x1 y1 . fns-1) ... (xn yn .
; fns-n)), where fns-i is the list of function symbols of subterms of
; lhs that contain xi or yi (or both) as a top-level argument.
; Exception: If any such "function symbol" is a LAMBDA, then fns-i is
; nil.
; Note: John Cowles first suggested the idea that led to the idea of
; invisible function symbols as implemented here. Cowles observation
; was that it would be very useful if x and (- x) were moved into
; adjacency by permutative rules. His idea was to redefine term-order
; so that those two terms were of virtually equal weight. Our notion
; of invisible function symbols and the handling of loop-stopper is
; meant to address Cowles original concern without complicating
; term-order, which is used in places besides permutative rewriting.
(mv-let (ans unify-subst)
(variantp lhs rhs)
(cond (ans (loop-stopper1 unify-subst (all-vars lhs) lhs))
(t nil))))
(defun remove-irrelevant-loop-stopper-pairs (pairs vars)
; Keep this in sync with irrelevant-loop-stopper-pairs.
(if pairs
(if (and (member-eq (caar pairs) vars)
(member-eq (cadar pairs) vars))
; Note that the use of loop-stopper1 by loop-stopper guarantees that
; machine-constructed loop-stoppers only contain pairs (u v . fns) for
; which u and v both occur in the lhs of the rewrite rule. Hence, it
; is reasonable to include the test above.
(cons (car pairs)
(remove-irrelevant-loop-stopper-pairs (cdr pairs) vars))
(remove-irrelevant-loop-stopper-pairs (cdr pairs) vars))
nil))
(defun put-match-free-value (match-free-value rune wrld)
(cond
((eq match-free-value :all)
(global-set 'free-var-runes-all
(cons rune (global-val 'free-var-runes-all wrld))
wrld))
((eq match-free-value :once)
(global-set 'free-var-runes-once
(cons rune (global-val 'free-var-runes-once wrld))
wrld))
((null match-free-value)
wrld)
(t
(er hard 'put-match-free-value
"Internal ACL2 error (called put-match-free-value with ~
match-free-value equal to ~x0). Please contact the ACL2 implementors."
match-free-value))))
(defun free-vars-in-hyps (hyps bound-vars wrld)
; Let hyps be a list of terms -- the hypotheses to some :REWRITE rule.
; Let bound-vars be a list of variables. We find all the variables that
; will be free-vars in hyps when each variable in bound-vars is bound.
; This would be just (set-difference-eq (all-vars1-lst hyps) bound-vars)
; were it not for the fact that relieve-hyps interprets the hypothesis
; (equal v term), where v is free and does not occur in term, as
; a "let v be term..." instead of as a genuine free variable to be found
; by search.
; Warning: Keep this function and free-vars-in-hyps-considering-bind-free
; in sync.
(cond ((null hyps) nil)
(t (mv-let
(forcep flg)
(binding-hyp-p (car hyps)
(pairlis$ bound-vars bound-vars)
wrld)
; The odd pairlis$ above just manufactures a substitution with bound-vars as
; bound vars so we can use free-varsp to answer the question, "does
; the rhs of the equality contain any free variables?" The range of
; the subsitution is irrelevant. If the conjunction above is true, then
; the current hyp is of the form (equiv v term) and v will be chosen
; by rewriting term. V is not a "free variable".
(cond ((and flg (not forcep))
(free-vars-in-hyps (cdr hyps)
(cons (fargn (car hyps) 1)
bound-vars)
wrld))
(t (let ((hyp-vars (all-vars (car hyps))))
(union-eq
(set-difference-eq hyp-vars bound-vars)
(free-vars-in-hyps (cdr hyps)
(union-eq hyp-vars bound-vars)
wrld)))))))))
(defun free-vars-in-hyps-simple (hyps bound-vars)
; This is a simpler variant of free-vars-in-hyps that does not give special
; treatment to terms (equal variable term).
(cond ((null hyps) nil)
(t (let ((hyp-vars (all-vars (car hyps))))
(union-eq (set-difference-eq hyp-vars bound-vars)
(free-vars-in-hyps-simple (cdr hyps)
(union-eq hyp-vars
bound-vars)))))))
(defun free-vars-in-fc-hyps (triggers hyps concls)
; This function determines whether a rule has free variables, given the
; triggers, hyps and conclusions of the rule.
(if (endp triggers)
nil
(let ((vars (all-vars (car triggers))))
(or (free-vars-in-hyps-simple hyps vars)
(or (free-vars-in-hyps-simple concls vars)
(free-vars-in-fc-hyps (cdr triggers) hyps concls))))))
(defun free-vars-in-hyps-considering-bind-free (hyps bound-vars wrld)
; This function is similar to the above free-vars-in-hyps. It
; differs in that it takes into account the effects of bind-free.
; Note that a bind-free hypothesis expands to a call to synp in
; which the first arg denotes the vars that are potentially bound
; by the hyp. This first arg will be either a quoted list of vars
; or 't which we interpret to mean all the otherwise free vars.
; Vars that are potentially bound by a bind-free hyp are not considered
; to be free vars for the purposes of this function.
; Note that a syntaxp hypothesis also expands to a call of synp,
; but that in this case the first arg is 'nil.
; Warning: Keep this function and free-vars-in-hyps in sync.
(cond ((null hyps) nil)
(t (mv-let
(forcep flg)
(binding-hyp-p (car hyps)
(pairlis$ bound-vars bound-vars)
wrld)
; The odd pairlis$ above just manufactures a substitution with bound-vars as
; bound vars so we can use free-varsp to answer the question, "does
; the rhs of the equality contain any free variables?" The range of
; the subsitution is irrelevant. If the conjunction above is true, then
; the current hyp is of the form (equiv v term) and v will be chosen
; by rewriting term. V is not a "free variable".
(cond
((and flg (not forcep))
(free-vars-in-hyps-considering-bind-free
(cdr hyps)
(cons (fargn (car hyps) 1) bound-vars)
wrld))
((and (ffn-symb-p (car hyps) 'synp)
(not (equal (fargn (car hyps) 1) *nil*))) ; not syntaxp hyp
(cond
((equal (fargn (car hyps) 1) *t*)
; All free variables are potentially bound. The user will presumably not want
; to see a warning in this case.
nil)
((and (quotep (fargn (car hyps) 1))
(not (collect-non-legal-variableps
(cadr (fargn (car hyps) 1)))))
(free-vars-in-hyps-considering-bind-free
(cdr hyps)
(union-eq (cadr (fargn (car hyps) 1)) bound-vars)
wrld))
(t (er hard 'free-vars-in-hyps-considering-bind-free
"We thought the first argument of synp in this context ~
was either 'NIL, 'T, or else a quoted true list of ~
variables, but ~x0 is not!"
(fargn (car hyps) 1)))))
(t (let ((hyp-vars (all-vars (car hyps))))
(union-eq (set-difference-eq hyp-vars bound-vars)
(free-vars-in-hyps-considering-bind-free
(cdr hyps)
(union-eq hyp-vars bound-vars)
wrld)))))))))
(defun all-vars-in-hyps (hyps)
; We return a list of all the vars mentioned in hyps or, if there is
; a synp hyp whose var-list is 't, we return t.
(cond ((null hyps)
nil)
((variablep (car hyps))
(add-to-set-eq (car hyps)
(all-vars-in-hyps (cdr hyps))))
((fquotep (car hyps))
(all-vars-in-hyps (cdr hyps)))
((eq (ffn-symb (car hyps)) 'synp)
(cond ((equal (fargn (car hyps) 1) *nil*)
(all-vars-in-hyps (cdr hyps)))
((equal (fargn (car hyps) 1) *t*)
t)
((and (quotep (fargn (car hyps) 1))
(not (collect-non-legal-variableps
(cadr (fargn (car hyps) 1)))))
(union-eq (cadr (fargn (car hyps) 1))
(all-vars-in-hyps (cdr hyps))))
(t (er hard 'free-vars-in-hyps-considering-bind-free
"We thought the first argument of synp in this context ~
was either 'NIL, 'T, or else a quoted true list of ~
variables, but ~x0 is not!"
(fargn (car hyps) 1)))))
(t
(union-eq (all-vars (car hyps))
(all-vars-in-hyps (cdr hyps))))))
(defun match-free-value (match-free hyps pat wrld)
(or match-free
(and (free-vars-in-hyps hyps (all-vars pat) wrld)
(or (match-free-default wrld)
; We presumably already caused an error if at this point we would find a value
; of t for state global match-free-error.
:all))))
(defun match-free-fc-value (match-free hyps concls triggers wrld)
; This function, based on match-free-value, uses free-vars-in-fc-hyps to
; determine whether free-vars are present in a forward-chaining rule (if so it
; returns nil). If free-vars are not present then it uses the match-free value
; of the rule (given by the match-free arg) or the match-free default value of
; the world to determine the correct match-free value for this particular rule.
(or match-free
(and (free-vars-in-fc-hyps triggers hyps concls)
(or (match-free-default wrld)
:all))))
(defun rule-backchain-limit-lst (backchain-limit-lst hyps wrld flg)
(cond (backchain-limit-lst (cadr backchain-limit-lst))
(t (let ((limit (default-backchain-limit wrld flg)))
(and limit
(cond ((eq flg :meta) limit)
(t (make-list (length hyps)
:initial-element
limit))))))))
(defun create-rewrite-rule (rune nume hyps equiv lhs rhs loop-stopper-lst
backchain-limit-lst match-free-value wrld)
; This function creates a :REWRITE rule of subclass 'backchain or
; 'abbreviation from the basic ingredients, preprocessing the hyps and
; computing the loop-stopper. Equiv is an equivalence relation name.
(let ((hyps (preprocess-hyps hyps))
(loop-stopper (if loop-stopper-lst
(remove-irrelevant-loop-stopper-pairs
(cadr loop-stopper-lst)
(all-vars lhs))
(loop-stopper lhs rhs))))
(make rewrite-rule
:rune rune
:nume nume
:hyps hyps
:equiv equiv
:lhs lhs
:var-info (free-varsp lhs nil)
:rhs rhs
:subclass (cond ((and (null hyps)
(null loop-stopper)
(abbreviationp nil
(all-vars-bag lhs nil)
rhs))
'abbreviation)
(t 'backchain))
:heuristic-info loop-stopper
; If backchain-limit-lst is given, then it is a keyword-alist whose second
; element is a list of values of length (length hyps), and we use this value.
; Otherwise we use the default. This will be either nil -- used directly -- or
; an integer which we expand to a list of (length hyps) copies.
:backchain-limit-lst
(rule-backchain-limit-lst backchain-limit-lst hyps wrld :rewrite)
:match-free match-free-value)))
; The next subsection of our code develops various checkers to help the
; user manage his collection of rules.
(defun hyps-that-instantiate-free-vars (free-vars hyps)
; We determine the hyps in hyps that will be used to instantiate
; the free variables, free-vars, of some rule. Here, variables "bound" by
; calls of bind-free are not considered free in the case of rewrite and linear
; rules, so would not appear among free-vars in those cases.
(cond ((null free-vars) nil)
((intersectp-eq free-vars (all-vars (car hyps)))
(cons (car hyps)
(hyps-that-instantiate-free-vars
(set-difference-eq free-vars (all-vars (car hyps)))
(cdr hyps))))
(t (hyps-that-instantiate-free-vars free-vars (cdr hyps)))))
(mutual-recursion
(defun maybe-one-way-unify (pat term alist)
; We return t if "it is possible" that pat matches term. More accurately, if
; we return nil, then (one-way-unify1 pat term alist) definitely fails. Thus,
; the answer t below is always safe. The answer nil means there is no
; substitution, s extending alist such that pat/s is term.
(cond ((variablep pat)
(let ((pair (assoc-eq pat alist)))
(or (not pair)
(eq pat (cdr pair)))))
((fquotep pat) (equal pat term))
((variablep term) nil)
((fquotep term) t)
((equal (ffn-symb pat) (ffn-symb term))
(maybe-one-way-unify-lst (fargs pat) (fargs term) alist))
(t nil)))
(defun maybe-one-way-unify-lst (pat-lst term-lst alist)
(cond ((endp pat-lst) t)
(t (and (maybe-one-way-unify (car pat-lst) (car term-lst) alist)
(maybe-one-way-unify-lst (cdr pat-lst) (cdr term-lst)
alist)))))
)
(defun maybe-one-way-unify-with-some (pat term-lst alist)
; If we return nil, then there is no term in term-lst such that (one-way-unify
; pat term alist). If we return t, then pat might unify with some member.
(cond ((endp term-lst) nil)
((maybe-one-way-unify pat (car term-lst) alist) t)
(t (maybe-one-way-unify-with-some pat (cdr term-lst) alist))))
(defun maybe-subsumes (cl1 cl2 alist)
; We return t if it is possible that the instance of cl1 via alist subsumes
; cl2. More accurately, if we return nil then cl1 does not subsume cl2.
; Recall what it means for (subsumes cl1 cl2 alist) to return t: cl1/alist' is
; a subset of cl2, where alist' is an extension of alist. Observe that the
; subset check would fail if cl1 contained a literal (P X) and there is no
; literal beginning with P in cl2. More generally, suppose there is a literal
; of cl1 (e.g., (P X)) that unifies with no literal of cl2. Then cl1 could not
; possibly subsume cl2.
; For a discussion of the origin of this function, see subsumes-rewrite-rule.
; It was made more efficient after Version_3.0, by adding an alist argument to
; eliminate the possibility of subsumption in more cases.
; Note that this function does not give special treatment for literals
; satisfying extra-info-lit-p. We intend this function for use in checking
; subsumption of rewrite rules, and extra-info-lit-p has no special role for
; the rewriter.
(cond ((null cl1) t)
((maybe-one-way-unify-with-some (car cl1) cl2 alist)
(maybe-subsumes (cdr cl1) cl2 alist))
(t nil)))
(defun subsumes-rewrite-rule (rule1 rule2 wrld)
; We answer the question: does rule1 subsume rule2? I.e., can rule1
; (probably) be applied whenever rule2 can be? Since we don't check
; the loop-stoppers, the "probably" is warranted. There may be other
; reasons it is warranted. But this is just a heuristic check performed
; as a service to the user.
; One might ask why we do the maybe-subsumes. We do the subsumes
; check on the hyps of two rules with matching :lhs. In a hardware
; related file we were once confronted with a rule1 having :hyps
; ((BOOLEANP A0) (BOOLEANP B0) (BOOLEANP S0) (BOOLEANP C0_IN)
; (BOOLEANP A1) (BOOLEANP B1) (BOOLEANP S1) (BOOLEANP C1_IN)
; ...
; (S_REL A0 B0 C0_IN S0)
; ...)
; and a rule2 with :hyps
; ((BOOLEANP A0) (BOOLEANP B0) (BOOLEANP S0)
; (BOOLEANP A1) (BOOLEANP B1) (BOOLEANP S1)
; ...)
; The subsumes computation ran for over 30 minutes (and was eventually
; aborted). The problem is that the extra variables in rule1, e.g.,
; C0_IN, were matchable in many different ways, e.g., C0_IN <- A0,
; C0_IN <- B0, etc., all of which must be tried in a subsumption
; check. But no matter how you get rid of (BOOLEANP C0_IN) by
; choosing C0_IN, you will eventually run into the S_REL hypothesis in
; rule1 which has no counterpart in rule2. Thus we installed the
; relatively quick maybe-subsumes check. The check scans the :hyps of
; the first rule and determines whether there is some hypothesis that
; cannot possibly be matched against the hyps of the other rule.
(and (refinementp (access rewrite-rule rule1 :equiv)
(access rewrite-rule rule2 :equiv)
wrld)
(mv-let (ans unify-subst)
(one-way-unify (access rewrite-rule rule1 :lhs)
(access rewrite-rule rule2 :lhs))
(and ans
(maybe-subsumes
(access rewrite-rule rule1 :hyps)
(access rewrite-rule rule2 :hyps)
unify-subst)
(eq (subsumes *init-subsumes-count*
(access rewrite-rule rule1 :hyps)
(access rewrite-rule rule2 :hyps)
unify-subst)
t)))))
(defun find-subsumed-rule-names (lst rule ens wrld)
; Lst is a list of rewrite-rules. Rule is a rewrite-rule. We return
; the names of those elements of lst that are subsumed by rule. We
; skip those rules in lst that are disabled in the global enabled structure
; and those that are META or DEFINITION rules.
(cond ((null lst) nil)
((and (enabled-numep (access rewrite-rule (car lst) :nume)
ens)
(not (eq (access rewrite-rule (car lst) :subclass) 'meta))
(not (eq (access rewrite-rule (car lst) :subclass) 'definition))
(subsumes-rewrite-rule rule (car lst) wrld))
(cons (base-symbol (access rewrite-rule (car lst) :rune))
(find-subsumed-rule-names (cdr lst) rule ens wrld)))
(t (find-subsumed-rule-names (cdr lst) rule ens wrld))))
(defun find-subsuming-rule-names (lst rule ens wrld)
; Lst is a list of rewrite-rules. Rule is a rewrite-rule. We return
; the names of those elements of lst that subsume rule. We skip those
; rules in lst that are disabled and that are META or DEFINITION rules.
(cond ((null lst) nil)
((and (enabled-numep (access rewrite-rule (car lst) :nume)
ens)
(not (eq (access rewrite-rule (car lst) :subclass) 'meta))
(not (eq (access rewrite-rule (car lst) :subclass) 'definition))
(subsumes-rewrite-rule (car lst) rule wrld))
(cons (base-symbol (access rewrite-rule (car lst) :rune))
(find-subsuming-rule-names (cdr lst) rule ens wrld)))
(t (find-subsuming-rule-names (cdr lst) rule ens wrld))))
(defun forced-hyps (lst)
(cond ((null lst) nil)
((and (nvariablep (car lst))
; (not (fquotep (car lst)))
(or (eq (ffn-symb (car lst)) 'force)
(eq (ffn-symb (car lst)) 'case-split)))
(cons (car lst) (forced-hyps (cdr lst))))
(t (forced-hyps (cdr lst)))))
(defun strip-top-level-nots-and-forces (hyps)
(cond
((null hyps)
nil)
(t (mv-let (not-flg atm)
(strip-not (if (and (nvariablep (car hyps))
; (not (fquotep (car hyps)))
(or (eq (ffn-symb (car hyps)) 'force)
(eq (ffn-symb (car hyps)) 'case-split)))
(fargn (car hyps) 1)
(car hyps)))
(declare (ignore not-flg))
(cons atm (strip-top-level-nots-and-forces (cdr hyps)))))))
(defun free-variable-error? (token name ctx wrld state)
(if (and (null (match-free-default wrld))
(f-get-global 'match-free-error state))
(er soft ctx
"The warning above has caused this error in order to make it clear ~
that there are free variables in ~s0 of a ~x1 rule generated from ~
~x2. This error can be suppressed for the rest of this ACL2 ~
session by submitting the following form:~|~%~x3~|~%However, you ~
are advised not to do so until you have read the documentation on ~
``free variables'' (see :DOC free-variables) in order to understand ~
the issues. In particular, you can supply a :match-free value for ~
the :rewrite rule class (see :DOC rule-classes) or a default for ~
the book under development (see :DOC set-match-free-default)."
(if (eq token :forward-chaining)
"some trigger term"
"the hypotheses")
token name '(set-match-free-error nil))
(value nil)))
(defun extend-geneqv-alist (var geneqv alist wrld)
; For each pair (x . y) in alist, x is a variable and y is a geneqv. The
; result extends alist by associating variable var with geneqv, thus extending
; the generated equivalence relation already associated with var in alist.
(put-assoc-eq var
(union-geneqv geneqv (cdr (assoc-eq var alist)) wrld)
alist))
(mutual-recursion
(defun covered-geneqv-alist (term geneqv alist wrld)
; Extends alist, an accumulator, as follows. The result associates, with each
; variable bound in term, a geneqv representing the list of all equivalence
; relations that are sufficient to preserve at one or more free occurrences of
; that variable in term, in order to preserve the given geneqv at term. This
; function creates the initial bound-vars-alist for
; double-rewrite-opportunities; see also the comment there.
; Alist is an accumulator with entries of the form (variable . geneqv).
(cond ((variablep term)
(extend-geneqv-alist term geneqv alist wrld))
((fquotep term)
alist)
(t
(covered-geneqv-alist-lst (fargs term)
(geneqv-lst (ffn-symb term) geneqv nil wrld)
alist
wrld))))
(defun covered-geneqv-alist-lst (termlist geneqv-lst alist wrld)
(cond ((endp termlist)
alist)
(t (covered-geneqv-alist-lst (cdr termlist)
(cdr geneqv-lst)
(covered-geneqv-alist (car termlist) (car geneqv-lst)
alist wrld)
wrld))))
)
(defun uncovered-equivs (geneqv covered-geneqv wrld)
(cond ((endp geneqv) nil)
(t (let ((equiv (access congruence-rule (car geneqv) :equiv))
(rst (uncovered-equivs (cdr geneqv) covered-geneqv wrld)))
(cond ((geneqv-refinementp equiv covered-geneqv wrld)
rst)
(t (cons equiv rst)))))))
(mutual-recursion
(defun uncovered-equivs-alist (term geneqv var-geneqv-alist var-geneqv-alist0
obj-not-? acc-equivs acc-counts wrld)
; Accumulator acc-equiv is an alist that associates variables with lists of
; equivalence relations, and accumulator acc-counts associates variables with
; natural numbers. We are given a term whose value is to be maintained with
; respect to the given geneqv, along with var-geneqv-alist, which associates
; variables with ilsts of equivalence relations. We return extensions of
; acc-equivs, acc-counts, and var-geneqv-alist as follows.
; Consider a bound (by var-geneqv-alist) variable occurrence in term. Its
; context is known to preserve certain equivalence relations; but some of these
; may be "uncovered", i.e., not among the ones associated with this variable in
; var-geneqv-alist. If that is the case, then add those "uncovered"
; equivalence relations to the list associated with this variable in
; acc-equivs, and increment the value of this variable in acc-counts by 1.
; However, we skip the above analysis for the case that geneqv is *geneqv-iff*
; and we are at the top level of the IF-structure of the top-level term (not
; including the tests). This function is used for creating warnings that
; suggest the use of double-rewrite, which however is generally not necessary
; in such situations; see rewrite-solidify-plus.
; For a free variable occurrence in term, we leave acc-equivs and acc-counts
; unchanged, and instead extend var-geneqv-alist by associating this variable
; with the geneqv for its context. Var-geneqv-alist0 is left unchanged by this
; process, for purposes of checking free-ness.
(cond
((variablep term)
(let ((binding (assoc-eq term var-geneqv-alist0)))
(cond ((null binding)
(mv acc-equivs
acc-counts
(extend-geneqv-alist term geneqv var-geneqv-alist wrld)))
((and obj-not-?
(equal geneqv *geneqv-iff*))
; The call of rewrite-solidify-plus in rewrite makes it unnecessary to warn
; when the objective is other than '? and the given geneqv is *geneqv-iff*.
(mv acc-equivs acc-counts var-geneqv-alist))
(t (let* ((covered-geneqv (cdr binding))
(uncovered-equivs
(uncovered-equivs geneqv covered-geneqv wrld)))
(cond (uncovered-equivs
(mv (put-assoc-eq
term
(union-eq uncovered-equivs
(cdr (assoc-eq term acc-equivs)))
acc-equivs)
(put-assoc-eq
term
(1+ (or (cdr (assoc-eq term acc-counts))
0))
acc-counts)
var-geneqv-alist))
(t (mv acc-equivs acc-counts var-geneqv-alist))))))))
((or (fquotep term)
(eq (ffn-symb term) 'double-rewrite))
(mv acc-equivs acc-counts var-geneqv-alist))
((and obj-not-?
(eq (ffn-symb term) 'if))
(mv-let (acc-equivs acc-counts var-geneqv-alist)
(uncovered-equivs-alist
(fargn term 3)
geneqv
var-geneqv-alist
var-geneqv-alist0
t
acc-equivs acc-counts
wrld)
(mv-let (acc-equivs acc-counts var-geneqv-alist)
(uncovered-equivs-alist
(fargn term 2)
geneqv
var-geneqv-alist
var-geneqv-alist0
t
acc-equivs acc-counts
wrld)
(uncovered-equivs-alist
(fargn term 1)
*geneqv-iff*
var-geneqv-alist
var-geneqv-alist0
nil
acc-equivs acc-counts
wrld))))
(t (uncovered-equivs-alist-lst
(fargs term)
(geneqv-lst (ffn-symb term) geneqv nil wrld)
var-geneqv-alist var-geneqv-alist0 acc-equivs acc-counts wrld))))
(defun uncovered-equivs-alist-lst (termlist geneqv-lst var-geneqv-alist
var-geneqv-alist0 acc-equivs
acc-counts wrld)
(cond ((endp termlist)
(mv acc-equivs acc-counts var-geneqv-alist))
(t (mv-let (acc-equivs acc-counts var-geneqv-alist)
(uncovered-equivs-alist (car termlist)
(car geneqv-lst)
var-geneqv-alist
var-geneqv-alist0
nil
acc-equivs acc-counts
wrld)
(uncovered-equivs-alist-lst (cdr termlist) (cdr geneqv-lst)
var-geneqv-alist
var-geneqv-alist0
acc-equivs acc-counts
wrld)))))
)
(defun double-rewrite-opportunities (hyp-index hyps var-geneqv-alist
final-term final-location final-geneqv
wrld)
; We return an alist having entries (location var-equiv-alist
; . var-count-alist), where location is a string identifying a term (either the
; hyp-index_th member of the original hyps, or the final-term), var-equiv-alist
; associates variables of that term with their "uncovered equivs" as defined
; below, and var-count-alist associates variables of that term with the number
; of occurrences of a given variable that have at least one "uncovered" equiv.
; This function is called only for the purpose of producing a warning when
; there is a missed opportunity for a potentially useful call of
; double-rewrite. Consider a variable occurrence in hyps, the hypotheses of a
; rule, in a context where it is sufficient to preserve equiv. If that
; variable occurs in the left-hand side of a rewrite rule (or the max-term of a
; linear rule) in at least one context where it is sufficient to preserve
; equiv, that would give us confidence that the value associated with that
; occurrence (in the unifying substitution) had been fully rewritten with
; respect to equiv. But otherwise, we want to note this "uncovered" equiv for
; that variable in that hyp.
; We give similar treatment for the right-hand side of a rewrite rule and
; conclusion of a linear rule, using the parameters final-xxx.
; Var-geneqv-alist is an alist that binds variables to geneqvs. Initially, the
; keys are exactly the bound variables of the unifying substitution. Each key
; is associated with a geneqv that represents the equivalence relation
; generated by all equivalence relations known to be preserved for at least one
; variable occurrence in the pattern that was matched to give the unifying
; substitution (the left left-hand side of a rewrite rule or max-term of a
; linear rule). As we move through hyps, we may encounter a hypothesis (equal
; var term) or (equiv var (double-rewrite term)) that binds a variable, var, in
; which case we will extend var-geneqv-alist for var at that point. Note that
; we do not extend var-geneqv-alist for other free variables in hypotheses,
; because we do not know the equivalence relations that were maintained when
; creating the rewritten terms to which the free variables are bound.
(cond ((endp hyps)
(mv-let (var-equivs-alist var-counts var-geneqv-alist)
(uncovered-equivs-alist final-term final-geneqv
var-geneqv-alist var-geneqv-alist
nil nil nil wrld)
(declare (ignore var-geneqv-alist))
(if var-equivs-alist
(list (list* final-location var-equivs-alist var-counts))
nil)))
(t
(mv-let
(forcep bind-flg)
(binding-hyp-p (car hyps) var-geneqv-alist wrld)
(let ((hyp (if forcep (fargn (car hyps) 1) (car hyps))))
(cond (bind-flg
(let* ((equiv (ffn-symb hyp))
(var (fargn hyp 1))
(term0 (fargn hyp 2))
(term (if (ffn-symb-p term0 'double-rewrite)
(fargn term0 1)
term0))
(new-geneqv (cadr (geneqv-lst equiv
*geneqv-iff*
nil
wrld))))
(double-rewrite-opportunities
(1+ hyp-index)
(cdr hyps)
(covered-geneqv-alist term
new-geneqv
(assert$ (variablep var)
(extend-geneqv-alist
var new-geneqv
var-geneqv-alist wrld))
wrld)
final-term final-location final-geneqv
wrld)))
(t (mv-let (var-equivs-alist var-counts var-geneqv-alist)
(uncovered-equivs-alist (car hyps)
*geneqv-iff*
var-geneqv-alist
var-geneqv-alist
t
nil nil
wrld)
(let ((cdr-result
(double-rewrite-opportunities (1+ hyp-index)
(cdr hyps)
var-geneqv-alist
final-term
final-location
final-geneqv
wrld)))
(if var-equivs-alist
(cons (list* (msg "the ~n0 hypothesis"
(list hyp-index))
var-equivs-alist var-counts)
cdr-result)
cdr-result))))))))))
(defun show-double-rewrite-opportunities1 (location var-equivs-alist
var-count-alist token name
max-term-msg ctx state)
; This should only be called in a context where we know that double-rewrite
; warnings are enabled. Otherwise we lose efficiency, and anyhow warning$ is
; called below with ("Double-rewrite").
(cond ((endp var-equivs-alist)
state)
(t (pprogn (let* ((var (caar var-equivs-alist))
(count (let ((pair (assoc-eq var var-count-alist)))
(assert$ pair (cdr pair)))))
(warning$ ctx ("Double-rewrite")
`("In a ~x0 rule generated from ~x1~@2, ~
equivalence relation~#3~[ ~&3~ is~/s ~&3 ~
are~] maintained at ~n4 problematic ~
occurrence~#5~[~/s~] of variable ~x6 in ~
~@7, but not at any binding occurrence of ~
~x6. Consider replacing ~#5~[that ~
occurrence~/those ~n4 occurrences~] of ~x6 ~
in ~@7 with ~x8. See :doc double-rewrite ~
for more information on this issue."
(:doc double-rewrite)
(:equivalence-relations
,(cdar var-equivs-alist))
(:location ,location)
,@(and (not (equal max-term-msg ""))
`((:max-term-msg ,max-term-msg)))
(:new-rule ,name)
(:number-of-problematic-occurrences ,count)
(:rule-class ,token)
(:variable ,var))
token name
max-term-msg
(cdar var-equivs-alist)
count
(if (eql count 1) 0 1)
var
location
(list 'double-rewrite var)))
(show-double-rewrite-opportunities1
location (cdr var-equivs-alist) var-count-alist
token name max-term-msg ctx state)))))
(defun show-double-rewrite-opportunities (hyp-var-equivs-counts-alist-pairs
token name max-term-msg ctx state)
; Hyp-var-equivs-counts-alist-pairs is an alist as returned by
; double-rewrite-opportunities; see the comment there. Final-term,
; final-location, final-var-equivs-alist, and final-var-count-alist are the
; analog of one entry of that alist, but for the right-hand side of a rewrite
; rule or the conclusion of a linear rule.
; For efficiency, check warning-disabled-p before calling this function.
(cond ((endp hyp-var-equivs-counts-alist-pairs)
state)
(t (pprogn (show-double-rewrite-opportunities1
(caar hyp-var-equivs-counts-alist-pairs)
(cadar hyp-var-equivs-counts-alist-pairs)
(cddar hyp-var-equivs-counts-alist-pairs)
token name max-term-msg ctx state)
(show-double-rewrite-opportunities
(cdr hyp-var-equivs-counts-alist-pairs)
token name max-term-msg ctx state)))))
(defun irrelevant-loop-stopper-pairs (pairs vars)
; Keep this in sync with remove-irrelevant-loop-stopper-pairs.
(if pairs
(if (and (member-eq (caar pairs) vars)
(member-eq (cadar pairs) vars))
(irrelevant-loop-stopper-pairs (cdr pairs) vars)
(cons (car pairs)
(irrelevant-loop-stopper-pairs (cdr pairs) vars)))
nil))
(defun chk-rewrite-rule-warnings (name match-free loop-stopper rule ctx ens
wrld state)
(let* ((token (if (eq (access rewrite-rule rule :subclass)
'definition)
:definition
:rewrite))
(hyps (access rewrite-rule rule :hyps))
(lhs (access rewrite-rule rule :lhs))
(non-rec-fns-lhs (non-recursive-fnnames lhs ens wrld))
(lhs-vars (all-vars lhs))
(rhs-vars (all-vars (access rewrite-rule rule :rhs)))
(free-vars (free-vars-in-hyps-considering-bind-free
hyps
lhs-vars
wrld))
(inst-hyps (hyps-that-instantiate-free-vars free-vars hyps))
(non-rec-fns-inst-hyps
(non-recursive-fnnames-lst
(strip-top-level-nots-and-forces inst-hyps) ens wrld))
(subsume-check-enabled (not (warning-disabled-p "Subsume")))
(subsumed-rule-names
(and subsume-check-enabled
(find-subsumed-rule-names (getpropc (ffn-symb lhs) 'lemmas nil
wrld)
rule ens wrld)))
(subsuming-rule-names
(and subsume-check-enabled
(find-subsuming-rule-names (getpropc (ffn-symb lhs) 'lemmas nil
wrld)
rule ens wrld)))
(equiv (access rewrite-rule rule :equiv))
(double-rewrite-opportunities
(and (not (warning-disabled-p "Double-rewrite"))
(double-rewrite-opportunities
1
hyps
(covered-geneqv-alist
lhs
(cadr (geneqv-lst equiv nil nil wrld)) ; geneqv
nil wrld)
(access rewrite-rule rule :rhs)
"the right-hand side"
(cadr (geneqv-lst (access rewrite-rule rule :equiv) nil nil wrld))
wrld))))
(pprogn
(cond (double-rewrite-opportunities
(show-double-rewrite-opportunities double-rewrite-opportunities
token name "" ctx state))
(t state))
(cond
(non-rec-fns-lhs
(warning$ ctx "Non-rec"
`("A ~x0 rule generated from ~x1 will be triggered only by ~
terms containing the non-recursive function symbol~#2~[ ~
~&2. Unless this function is~/s ~&2. Unless these ~
functions are~] disabled, this rule is unlikely ever to ~
be used."
(:non-recursive-fns-lhs ,(hide-lambdas non-rec-fns-lhs))
(:name ,name)
(:rule-class ,token))
token name (hide-lambdas non-rec-fns-lhs)))
(t state))
(er-progn
(cond
((and free-vars (null match-free))
(pprogn
(warning$ ctx "Free"
`("A ~x0 rule generated from ~x1 contains the free ~
variable~#2~[ ~&2. This variable~/s ~&2. These ~
variables~] will be chosen by searching for ~#3~[an ~
instance~/instances~] of ~*4 in the context of the term ~
being rewritten. This is generally a severe restriction ~
on the applicability of a ~x0 rule. See :DOC ~
free-variables."
(:doc free-variables)
(:free-variables ,free-vars)
(:instantiated-hyps ,(untranslate-lst inst-hyps t wrld))
(:name ,name)
(:rule-class ,token))
token name free-vars
inst-hyps
(tilde-*-untranslate-lst-phrase inst-hyps t wrld))
(free-variable-error? token name ctx wrld state)))
(t (value nil)))
(pprogn
(cond
((and free-vars
(forced-hyps inst-hyps))
(warning$ ctx "Free"
"For the forced ~#0~[hypothesis~/hypotheses~], ~*1, used ~
to instantiate free variables we will search for ~#0~[an ~
instance of the argument~/instances of the arguments~] ~
rather than ~#0~[an instance~/instances~] of the FORCE or ~
CASE-SPLIT ~#0~[term itself~/terms themselves~]. If a ~
search fails for such a hypothesis, we will cause a case ~
split on the partially instantiated hypothesis. Note ~
that this case split will introduce a ``free variable'' ~
into the conjecture. While sound, this will establish a ~
goal almost certain to fail since the restriction ~
described by this apparently necessary hypothesis ~
constrains a variable not involved in the problem. To ~
highlight this oddity, we will rename the free variables ~
in such forced hypotheses by prefixing them with ~
``UNBOUND-FREE-''. This is not guaranteed to generate a ~
new variable but at least it generates an unusual one. ~
If you see such a variable in a subsequent proof (and did ~
not introduce them yourself) you should consider the ~
possibility that the free variables of this rewrite rule ~
were forced into the conjecture."
(if (null (cdr (forced-hyps inst-hyps))) 0 1)
(tilde-*-untranslate-lst-phrase (forced-hyps inst-hyps) t
wrld)))
(t state))
(cond
((set-difference-eq rhs-vars lhs-vars)
; Usually the above will be nil. If not, the recomputation below is no big
; deal.
(cond
((set-difference-eq rhs-vars
(all-vars1-lst hyps lhs-vars))
(warning$ ctx "Free"
"A ~x0 rule generated from ~x1 contains the the free ~
variable~#2~[~/s~] ~&2 on the right-hand side of the ~
rule, which ~#2~[is~/are~] not bound on the left-hand ~
side~#3~[~/ or in the hypothesis~/ or in any ~
hypothesis~]. This can cause new variables to be ~
introduced into the proof, which may surprise you."
token name
(set-difference-eq rhs-vars
(all-vars1-lst hyps lhs-vars))
(zero-one-or-more hyps)))
(t state)))
(t state))
(cond
(non-rec-fns-inst-hyps
(warning$ ctx "Non-rec"
`("As noted, we will instantiate the free ~
variable~#0~[~/s~], ~&0, of a ~x1 rule generated from ~
~x2, by searching for the ~#3~[hypothesis~/set of ~
hypotheses~] shown above. However, ~#3~[this ~
hypothesis mentions~/these hypotheses mention~] the ~
function symbol~#4~[ ~&4, which is~/s ~&4, which are~] ~
defun'd non-recursively. Unless disabled, ~#4~[this ~
function symbol is~/these function symbols are~] ~
unlikely to occur in the conjecture being proved and ~
hence the search for the required ~
~#3~[hypothesis~/hypotheses~] will likely fail."
(:free-variables ,free-vars)
(:instantiated-hyps ,inst-hyps)
(:non-recursive-fns-lhs ,(hide-lambdas non-rec-fns-lhs))
(:name ,name)
(:rule-class ,token))
free-vars token name inst-hyps
(hide-lambdas non-rec-fns-inst-hyps)))
(t state))
(cond
(subsumed-rule-names
(warning$ ctx ("Subsume")
`("A newly proposed ~x0 rule generated from ~x1 probably ~
subsumes the previously added :REWRITE rule~#2~[~/s~] ~
~&2, in the sense that the new rule will now probably be ~
applied whenever the old rule~#2~[~/s~] would have been."
(:new-rule ,name)
(:rule-class-new ,token)
(:rule-class-old :rewrite)
(:subsumed-rules ,subsumed-rule-names))
token name subsumed-rule-names))
(t state))
(cond
(subsuming-rule-names
(warning$ ctx ("Subsume")
`("The previously added rule~#1~[~/s~] ~&1 ~
subsume~#1~[s~/~] a newly proposed ~x0 rule generated ~
from ~x2, in the sense that the old rule~#1~[ rewrites a ~
more general target~/s rewrite more general targets~]. ~
Because the new rule will be tried first, it may ~
nonetheless find application."
(:new-rule ,name)
(:rule-class ,token)
(:subsuming-rules ,subsuming-rule-names))
token
subsuming-rule-names
name))
(t state))
(cond
((warning-disabled-p "Loop-Stopper")
state)
(t (let ((bad-pairs
(irrelevant-loop-stopper-pairs loop-stopper lhs-vars)))
(cond
(bad-pairs
(warning$ ctx ("Loop-Stopper")
"When the ~x0 rule generated from ~x1 is created, ~
the ~#2~[entry~/entries~] ~&2 from the specified ~
:LOOP-STOPPER will be ignored because the two ~
specified variables do not both occur on the ~
left-hand side of the rule. See :DOC loop-stopper."
token name bad-pairs))
(t state)))))
(value nil))))))
(defun chk-acceptable-rewrite-rule2 (name match-free loop-stopper hyps concl
ctx ens wrld state)
; This is the basic function for checking that (IMPLIES (AND . hyps)
; concl) generates a useful :REWRITE rule. If it does not, we cause an
; error. If it does, we may print some warnings regarding the rule
; generated. The superior functions, chk-acceptable-rewrite-rule1
; and chk-acceptable-rewrite-rule just cycle down to this one after
; flattening the IMPLIES/AND structure of the user's input term. When
; successful, this function returns a ttree justifying the storage of
; the :REWRITE rule -- it sometimes depends on type-set information.
(mv-let
(msg eqv lhs rhs ttree)
(interpret-term-as-rewrite-rule name hyps concl ens wrld)
(cond
(msg (er soft ctx "~@0" msg))
(t (let ((rewrite-rule
(create-rewrite-rule *fake-rune-for-anonymous-enabled-rule*
nil hyps eqv lhs rhs nil nil nil wrld)))
; The :REWRITE rule created above is used only for subsumption checking and
; then discarded. The rune, nume, loop-stopper-lst, and match-free used are
; irrelevant. The warning messages, if any, concerning subsumption report the
; name of the rule as name.
(er-progn
(chk-rewrite-rule-warnings name match-free loop-stopper
rewrite-rule ctx ens wrld state)
(value ttree)))))))
(defun chk-acceptable-rewrite-rule1 (name match-free loop-stopper lst ctx ens
wrld state)
; Each element of lst is a pair, (hyps . concl) and we check that each
; such pair, when interpreted as the term (implies (and . hyps)
; concl), generates a legal :REWRITE rule. We return the accumulated
; ttrees.
(cond
((null lst) (value nil))
(t (er-let* ((ttree1
(chk-acceptable-rewrite-rule2 name match-free loop-stopper
(caar lst) (cdar lst)
ctx ens wrld state))
(ttree
(chk-acceptable-rewrite-rule1 name match-free loop-stopper
(cdr lst) ctx ens wrld state)))
(value (cons-tag-trees ttree1 ttree))))))
(defun chk-acceptable-rewrite-rule (name match-free loop-stopper term ctx ens
wrld state)
; We strip the conjuncts out of term and flatten those in the
; hypotheses of implications to obtain a list of implications, each of
; the form (IMPLIES (AND . hyps) concl), and each represented simply
; by a pair (hyps . concl). For each element of that list we then
; determine whether it generates a legal :REWRITE rule. See
; chk-acceptable-rewrite-rule2 for the guts of this test. We either
; cause an error or return successfully. We may print warning
; messages without causing an error. On successful returns the value
; is a ttree that justifies the storage of all the :REWRITE rules.
(chk-acceptable-rewrite-rule1 name match-free loop-stopper
(unprettyify (remove-guard-holders term))
ctx ens wrld state))
; So now we work on actually generating and adding the rules.
(defun add-rewrite-rule2 (rune nume hyps concl loop-stopper-lst
backchain-limit-lst match-free ens wrld)
; This is the basic function for generating and adding a rule named
; rune from the formula (IMPLIES (AND . hyps) concl).
(mv-let
(msg eqv lhs rhs ttree)
(interpret-term-as-rewrite-rule (base-symbol rune) hyps concl ens wrld)
(declare (ignore ttree))
(cond
(msg
; Msg is nil if we have called chk-acceptable-rewrite-rule for the
; corresponding rule under the same event that we are processing here. But
; suppose we are in the second pass of encapsulate or the local compatibility
; check of certify-book. Then that check may have been done in a different
; world than the one we have now.
; Even then, we typically expect that if interpret-term-as-rewrite-rule avoids
; returning an error, then it does so for every call made on the same arguments
; other than, perhaps, the world. Looking at the code for
; interpret-term-as-rewrite-rule2 and its callees, we see that it suffices to
; show that if interpret-term-as-rewrite-rule2 returns nil for lhs and rhs that
; are returned by a call of interpret-term-as-rewrite-rule1, then that call of
; interpret-term-as-rewrite-rule2 returns nil when the only input argument
; changes are the world and, for the latter call, equiv-okp = t. A
; counterexample would have to be a term of the form (equiv x y), where equiv
; is an equivalence relation in the first world passed to
; interpret-term-as-rewrite-rule1 but not in the second, where
; interpret-term-as-rewrite-rule2 returns nil for lhs = x and rhs = y but
; returns a non-nil msg for lhs = (equiv x y) and rhs = *t*. The only way that
; can happen is with the bad-synp-hyp-msg check in
; interpret-term-as-rewrite-rule2, as in the following example -- and it does
; indeed happen! But we think this hard error is so rare that it is
; tolerable.
; (encapsulate
; ()
; (defun my-equivp (x y)
; (equal (nfix x) (nfix y)))
; (local (defequiv my-equivp))
; (defthm foo
; (implies (and (bind-free (list (cons 'y x)) (y))
; (equal y x))
; (my-equivp (identity x) y))))
(er hard 'add-rewrite-rule2
"We believe that this error is occurring because the conclusion of a ~
proposed :REWRITE rule generated from ~x0 is of the form (equiv LHS ~
RHS), where equiv was a known equivalence relation when this rule ~
was originally processed, but that is no longer the case. As a ~
result, the rule is now treated as rewriting (equiv LHS RHS) to t, ~
and yet a BIND-FREE hypothesis is attempting to bind a variable in ~
RHS. Perhaps you can fix this problem by making equiv an ~
equivalence relation non-locally."
(base-symbol rune)))
(t
(let* ((match-free-value (match-free-value match-free hyps lhs wrld))
(rewrite-rule (create-rewrite-rule rune nume hyps eqv
lhs rhs
loop-stopper-lst
backchain-limit-lst
match-free-value
wrld))
(wrld1 (putprop (ffn-symb lhs)
'lemmas
(cons rewrite-rule
(getpropc (ffn-symb lhs) 'lemmas nil wrld))
wrld)))
(put-match-free-value match-free-value rune wrld1))))))
(defun add-rewrite-rule1 (rune nume lst loop-stopper-lst
backchain-limit-lst match-free ens wrld)
; Each element of lst is a pair, (hyps . concl). We generate and
; add to wrld a :REWRITE for each.
(cond ((null lst) wrld)
(t (add-rewrite-rule1 rune nume (cdr lst)
loop-stopper-lst
backchain-limit-lst
match-free
ens
(add-rewrite-rule2 rune nume
(caar lst)
(cdar lst)
loop-stopper-lst
backchain-limit-lst
match-free
ens
wrld)))))
(defun add-rewrite-rule (rune nume loop-stopper-lst term
backchain-limit-lst match-free ens wrld)
; This function might better be called "add-rewrite-rules" because we
; may get many :REWRITE rules from term. But we are true to our naming
; convention. "Consistency is the hobgoblin of small minds." Emerson?
(add-rewrite-rule1 rune nume
(unprettyify (remove-guard-holders term))
loop-stopper-lst backchain-limit-lst match-free ens wrld))
;---------------------------------------------------------------------------
; Section: :LINEAR Rules
; We now move on to :LINEAR class rules.
(defun expand-inequality-fncall1 (term)
; Term is a non-variable, non-quotep term. If it is a call of one of
; the primitive arithmetic relations, <, =, and /=, we return a
; nearly-equivalent term using not, equal, and < in place of that
; top-level call. Otherwise, we return term. We ignore the guards of
; arithmetic relations expanded!
; Warning: See the warning in expand-inequality-fncall below. It is
; crucial that if (fn a b) is expanded here then the guards necessary
; to justify that expansion are implied by the rationalp assumptions
; produced during the linearization of the expanded term. In
; particular, (rationalp a) and (rationalp b) ought to be sufficient
; to permit (fn a b) to expand to whatever we produce below.
(let ((fn (ffn-symb term)))
(case
fn
(< term)
(= (mcons-term* 'equal (fargn term 1) (fargn term 2)))
(/= (mcons-term* 'not (mcons-term* 'equal (fargn term 1) (fargn term 2))))
(otherwise term))))
(defun expand-inequality-fncall (term)
; If term is a (possibly negated) call of a primitive arithmetic
; relation, <, = and /=, we reexpress it in terms of
; not, equal, and < so that it can be linearized successfully.
; Otherwise, we return term.
; Warning: This function expands the definitions of the primitives
; above without considering their guards. This is unsound if the
; expanded form is used in place of the term. For example, (= x y)
; is here expanded to (equal x y), and in the case that the
; guards are violated the two terms are not equivalent. Do not call
; this function casually!
; What is the intended use of this function? Suppose the user has
; proved a theorem, (implies hyps (= a b)) and wants it stored as a
; :LINEAR rule. We instead store a rule concluding with (equal a b)!
; Note that the rule we store is not equivalent to the rule proved!
; We've ignored the acl2-numberp guards on =. Isn't that scary? Yes.
; But how do :LINEAR rules get used? Let max be one of the maximal
; terms of the rule we store and suppose we encounter a term, max',
; that is an instance of max. Then we will instantiate the stored
; conclusion (equal a b) with the substitution derived from max' to
; obtain (equal a' b') and then linearize that. The linearization of
; an equality insists that both arguments be known rational -- i.e.
; that their type-sets are a subset of *ts-rational*. Thus, in
; essence we are acting as though we had the theorem (implies (and
; (rationalp a) (rationalp b) hyps) (equal a b)) and use type-set to
; relieve the first two hyps. But this imagined theorem is an easy
; consequence of (implies hyps (= a b)) given that (rationalp a) and
; (rationalp b) let us reduce (= a b) to (equal a b).
(mv-let (negativep atm)
(strip-not term)
(let ((atm (cond ((variablep atm) atm)
((fquotep atm) atm)
(t (expand-inequality-fncall1 atm)))))
(cond
(negativep (dumb-negate-lit atm))
(t atm)))))
; Once we linearize the conclusion of a :LINEAR lemma, we extract all the
; linear variables (i.e., terms in the alist of the polys) and identify
; those that are "maximal."
(defun all-vars-in-poly-lst (lst)
; Lst is a list of polynomials. We return the list of all linear variables
; used.
(cond ((null lst) nil)
(t (union-equal (strip-cars (access poly (car lst) :alist))
(all-vars-in-poly-lst (cdr lst))))))
; Part of the notion of maximal is "always bigger", which we develop here.
(defun subbagp-eq (bag1 bag2)
(cond ((null bag1) t)
((null bag2) nil)
((member-eq (car bag1) bag2)
(subbagp-eq (cdr bag1) (remove1-eq (car bag1) bag2)))
(t nil)))
(defun always-biggerp-data (term)
; See always-biggerp.
(mv-let (fn-cnt p-fn-cnt)
(fn-count term)
(cons term (cons fn-cnt (cons p-fn-cnt (all-vars-bag term nil))))))
(defun always-biggerp-data-lst (lst)
; See always-biggerp.
(cond ((null lst) nil)
(t (cons (always-biggerp-data (car lst))
(always-biggerp-data-lst (cdr lst))))))
(defun always-biggerp (abd1 abd2)
; We say term1 is always bigger than term2 if all instances of term1
; have a larger fn-count (actually lexicographic order of fn-count and
; pseudo-fn-count) than the corresponding instances of term2. This is
; equivalent to saying that the fn-count of term1 is larger than that
; of term2 (by "fn-count" here we mean the lexicographic order of
; fn-count and pseudo-fn-count) and the variable bag for term2 is a
; subbag of that for term1.
; Because we will be doing this check repeatedly across a list of terms
; we have converted the terms into "abd" (always bigger data)
; triples of the form (term fn-cnt . vars). Our two arguments are
; abd triples for term1 and term2.
(and (or (> (cadr abd1) (cadr abd2))
(and (eql (cadr abd1) (cadr abd2))
(> (caddr abd1) (caddr abd2))))
(subbagp-eq (cdddr abd2) (cdddr abd1))))
; That completes the notion of always-biggerp. We now complete the
; notion of "maximal term". It is probably best to read backwards from
; that defun.
(defun no-element-always-biggerp (abd-lst abd)
; abd-lst is a list of always-biggerp-data triples. Abd is one such
; triple. If there is an element of the lst that is always bigger than
; abd, we return nil; else t.
(cond ((null abd-lst) t)
((always-biggerp (car abd-lst) abd) nil)
(t (no-element-always-biggerp (cdr abd-lst) abd))))
(defun maximal-terms1 (abd-lst abd-lst0 needed-vars)
; See maximal-terms.
(cond ((null abd-lst) nil)
((and (nvariablep (car (car abd-lst)))
(not (fquotep (car (car abd-lst))))
(not (flambda-applicationp (car (car abd-lst))))
(not (eq (ffn-symb (car (car abd-lst))) 'if))
(subsetp-eq needed-vars (cdddr (car abd-lst)))
(no-element-always-biggerp abd-lst0 (car abd-lst)))
(cons (car (car abd-lst))
(maximal-terms1 (cdr abd-lst) abd-lst0 needed-vars)))
(t (maximal-terms1 (cdr abd-lst) abd-lst0 needed-vars))))
(defun maximal-terms (lst hyp-vars concl-vars)
; Lst is a list of terms. Hyp-vars and concl-vars are the variables
; occurring in the hypothesis and conclusion, respectively, of some
; lemma. We wish to return the subset of "maximal terms" in lst.
; These terms will be used as triggers to fire the :LINEAR rule built
; from (implies hyps concl). A term is maximal if it is not a
; variable, quote, lambda-application or IF, its variables plus those
; of the hyps include those of the conclusion (so there are no free
; vars in the conclusion after we match on the maximal term and
; relieve the hyps) and there is no other term in lst that is "always
; bigger." Intuitively, the idea behind "always bigger" is that the
; fn-count of one term is larger than that of the other, under all
; instantiations.
; The subroutine maximal-terms1 does most of the work. We convert the
; list of terms into an abd list, containing triples of the form (term
; fn-cnt . vars) for each term in lst. Then we pass maximal-terms1
; two copies of this; the first it recurs down so as to visit one term
; at a time and the second it holds fixed to use to search for bigger
; terms. Finally, a condition equivalent to the variable restriction
; above is that each maximal term contain at least those variables in
; the conclusion which aren't in the hyps, and so we compute that set
; here to avoid more consing.
(let ((abd-lst (always-biggerp-data-lst lst)))
(maximal-terms1 abd-lst abd-lst
(if (eq hyp-vars t)
nil
(set-difference-eq concl-vars hyp-vars)))))
; That finishes maximal-terms. Onward.
; We now develop the functions to support the friendly user interface.
(defun collect-when-ffnnamesp (fns lst)
; Return the subset of lst consisting of those terms that mention any
; fn in fns.
(cond ((null lst) nil)
((ffnnamesp fns (car lst))
(cons (car lst) (collect-when-ffnnamesp fns (cdr lst))))
(t (collect-when-ffnnamesp fns (cdr lst)))))
(defun make-free-max-terms-msg1 (max-terms vars hyps)
; This function is used by make-free-max-terms-msg1 and is building a
; list of pairs of the form (str . alist'). Each such pair is
; suitable for giving to the ~@ fmt directive, which will print the
; string str under the alist obtained by appending alist' to the
; current alist. The idea here is simply to identify those max-terms
; that give rise to free-vars in the hyps and to comment upon them.
(cond ((null max-terms) nil)
((subsetp-eq vars (all-vars (car max-terms)))
(make-free-max-terms-msg1 (cdr max-terms) vars hyps))
(t (cons
(cons
"When ~xN is triggered by ~xT the variable~#V~[~/s~] ~&V ~
will be chosen by searching for ~#H~[an ~
instance~/instances~] of ~&H among the hypotheses of the ~
conjecture being rewritten. "
(list (cons #\T (car max-terms))
(cons #\V (set-difference-eq vars
(all-vars (car max-terms))))
(cons #\H (hyps-that-instantiate-free-vars
(set-difference-eq vars
(all-vars (car max-terms)))
hyps))))
(make-free-max-terms-msg1 (cdr max-terms) vars hyps)))))
(defun make-free-max-terms-msg (name max-terms vars hyps)
; We make a message suitable for giving to the ~* fmt directive that
; will print out a sequence of sentences of the form "When name is
; triggered by foo the variables u and v will be chosen by searching
; for the hypotheses h1 and h2. When ..." Vars is a list of the
; variables occurring in the hypotheses of the lemma named name.
; Hyps is the list of hyps. We always end with two spaces.
(list* ""
"~@*"
"~@*"
"~@*"
(make-free-max-terms-msg1 max-terms vars hyps)
(list (cons #\N name))))
(defun external-linearize (term ens wrld state)
(linearize term
t ;positivep
nil ;type-alist
ens
(ok-to-force-ens ens)
wrld ;wrld
nil ;ttree
state))
(defun bad-synp-hyp-msg-for-linear (max-terms hyps wrld)
(if (null max-terms)
(mv nil nil)
(let ((bad-synp-hyp-msg (bad-synp-hyp-msg hyps (all-vars (car max-terms))
nil wrld)))
(if bad-synp-hyp-msg
(mv bad-synp-hyp-msg (car max-terms))
(bad-synp-hyp-msg-for-linear (cdr max-terms) hyps wrld)))))
(defun show-double-rewrite-opportunities-linear (hyps max-terms final-term name
ctx wrld state)
(cond ((endp max-terms)
state)
(t (pprogn (show-double-rewrite-opportunities
(double-rewrite-opportunities
1
hyps
(covered-geneqv-alist (car max-terms) nil nil wrld)
final-term
"the conclusion"
*geneqv-iff* ; final-geneqv
wrld)
:linear name
(msg " for trigger term ~x0"
(untranslate (car max-terms) nil wrld))
ctx state)
(show-double-rewrite-opportunities-linear
hyps (cdr max-terms) final-term name ctx wrld
state)))))
(defun chk-acceptable-linear-rule2
(name match-free trigger-terms hyps concl ctx ens wrld state)
; This is the basic function for checking that (implies (AND . hyps)
; concl) generates a useful :LINEAR rule. If it does not, we cause an
; error. If it does, we may print some warnings regarding the rule
; generated. The superior functions, chk-acceptable-linear-rule1
; and chk-acceptable-linear-rule just cycle down to this one after
; flattening the IMPLIES/AND structure of the user's input term.
; The trigger-terms above are those supplied by the user in the rule class. If
; nil, we are to generate the trigger terms automatically, choosing all of the
; maximal terms. If provided, we know that each element of trigger-terms is a
; term that is a legal (if possibly silly) trigger for each rule.
(let* ((xconcl (expand-inequality-fncall concl))
(lst (external-linearize xconcl ens wrld state)))
(cond ((null lst)
(er soft ctx
"No :LINEAR rule can be generated from ~x0. See :DOC linear."
name))
((not (null (cdr lst)))
(er soft ctx
"No :LINEAR rule can be generated from ~x0 because the ~
linearization of its conclusion, which in normal form is ~p1, ~
produces a disjunction of polynomial inequalities. See :DOC ~
linear."
name
(untranslate xconcl t wrld)))
(t (let* ((all-vars-hyps (all-vars-in-hyps hyps))
(potential-free-vars
(free-vars-in-hyps-considering-bind-free hyps nil wrld))
(all-vars-in-poly-lst
(all-vars-in-poly-lst (car lst)))
(max-terms
(or trigger-terms
(maximal-terms all-vars-in-poly-lst
all-vars-hyps
(all-vars concl))))
(non-rec-fns (non-recursive-fnnames-lst
max-terms ens wrld))
(bad-max-terms (collect-when-ffnnamesp
non-rec-fns
max-terms))
(free-max-terms-msg
(make-free-max-terms-msg name
max-terms
potential-free-vars
hyps)))
(cond
((null max-terms)
(cond
((null all-vars-in-poly-lst)
(er soft ctx
"No :LINEAR rule can be generated from ~x0 because ~
there are no ``maximal terms'' in the inequality ~
produced from its conclusion. In fact, the inequality ~
has simplified to one that has no variables."
name))
(t
(er soft ctx
"No :LINEAR rule can be generated from ~x0 because ~
there are no ``maximal terms'' in the inequality ~
produced from its conclusion. The inequality produced ~
from its conclusion involves a linear polynomial in ~
the unknown~#1~[~/s~] ~&1. No unknown above has the ~
three properties of a maximal term (see :DOC linear). ~
What can you do? The most direct solution is to make ~
this a :REWRITE rule rather than a :LINEAR rule. Of ~
course, you then have to make sure your intended ~
application can suffer it being a :REWRITE rule! A ~
more challenging (and sometimes more rewarding) ~
alternative is to package up some of your functions ~
into a new non-recursive function (either in the ~
unknowns or the hypotheses) so as to create a maximal ~
term. Of course, if you do that, you have to arrange ~
to use that non-recursive function in the intended ~
applications of this rule."
name all-vars-in-poly-lst))))
(t
(mv-let (bad-synp-hyp-msg bad-max-term)
(bad-synp-hyp-msg-for-linear max-terms hyps wrld)
(cond
(bad-synp-hyp-msg
(er soft ctx
"While checking the hypotheses of ~x0 and using ~
the trigger term ~x1, the following error message ~
was generated: ~% ~%~
~@2"
name
bad-max-term
bad-synp-hyp-msg))
(t
(pprogn
(if (warning-disabled-p "Double-rewrite")
state
(show-double-rewrite-opportunities-linear
hyps max-terms concl name ctx wrld state))
(cond
((equal max-terms bad-max-terms)
(warning$ ctx "Non-rec"
`("A :LINEAR rule generated from ~x0 will ~
be triggered only by terms containing ~
the non-recursive function symbol~#1~[ ~
~&1. Unless this function is~/s ~&1. ~
Unless these functions are~] disabled, ~
such triggering terms are unlikely to ~
arise and so ~x0 is unlikely to ever be ~
used."
(:name ,name)
(:non-recursive-fns
,(hide-lambdas non-rec-fns))
(:rule-class :linear))
name (hide-lambdas non-rec-fns)))
(bad-max-terms
(warning$ ctx "Non-rec"
"A :LINEAR rule generated from ~x0 will be ~
triggered by the terms ~&1. ~N2 of these ~
terms, namely ~&3, contain~#3~[s~/~] the ~
non-recursive function symbol~#4~[ ~&4. ~
Unless this function is~/s ~&4. Unless ~
these functions are~] disabled, ~x0 is ~
unlikely to be triggered via ~#3~[this ~
term~/these terms~]."
name
max-terms
(length bad-max-terms)
bad-max-terms
(hide-lambdas non-rec-fns)))
(t state))
(cond
((and (nth 4 free-max-terms-msg)
(null match-free))
(pprogn
(warning$ ctx "Free"
"A :LINEAR rule generated from ~x0 will be ~
triggered by the term~#1~[~/s~] ~&1. ~*2This is ~
generally a severe restriction on the ~
applicability of the :LINEAR rule~@3."
name
max-terms
free-max-terms-msg
(let ((len-max-terms (length max-terms))
(len-bad-max-terms
(length (nth 4 free-max-terms-msg))))
(cond ((eql len-bad-max-terms
len-max-terms)
"")
((eql len-bad-max-terms 1)
" for this trigger")
(t (msg " for these ~n0 triggers"
len-bad-max-terms)))))
(free-variable-error? :linear name ctx wrld state)))
(t (value nil))))))))))))))
(defun chk-acceptable-linear-rule1 (name match-free trigger-terms lst ctx ens
wrld state)
; Each element of lst is a pair, (hyps . concl) and we check that each
; such pair, when interpreted as the term (implies (and . hyps)
; concl), generates a legal :LINEAR rule.
(cond
((null lst) (value nil))
(t (er-progn
(chk-acceptable-linear-rule2 name match-free trigger-terms (caar lst)
(cdar lst)
ctx ens wrld state)
(chk-acceptable-linear-rule1 name match-free trigger-terms (cdr lst)
ctx ens wrld state)))))
(defun chk-acceptable-linear-rule (name match-free trigger-terms term ctx ens
wrld state)
; We strip the conjuncts out of term and flatten those in the
; hypotheses of implications to obtain a list of implications, each of
; the form (IMPLIES (AND . hyps) concl), and each represented simply
; by a pair (hyps . concl). For each element of that list we then
; determine whether it generates a legal :LINEAR rule. See
; chk-acceptable-linear-rule2 for the guts of this test. We either
; cause an error or return successfully. We may print warning
; messages without causing an error.
(chk-acceptable-linear-rule1 name match-free trigger-terms
(unprettyify (remove-guard-holders term))
ctx ens wrld state))
; And now, to adding :LINEAR rules...
(defun add-linear-rule3 (rune nume hyps concl max-terms
backchain-limit-lst match-free put-match-free-done
wrld)
(cond
((null max-terms) wrld)
(t (let* ((match-free-value
(match-free-value match-free hyps (car max-terms) wrld))
(linear-rule
(make linear-lemma
:rune rune
:nume nume
:hyps hyps
:concl concl
:max-term (car max-terms)
:backchain-limit-lst
(rule-backchain-limit-lst backchain-limit-lst hyps wrld
:rewrite)
:match-free match-free-value))
(wrld1 (putprop (ffn-symb (access linear-lemma linear-rule
:max-term))
'linear-lemmas
(cons linear-rule
(getpropc (ffn-symb
(access linear-lemma linear-rule
:max-term))
'linear-lemmas nil wrld))
wrld)))
(add-linear-rule3 rune nume hyps concl (cdr max-terms)
backchain-limit-lst
match-free
(or put-match-free-done match-free-value)
(if put-match-free-done
; In this case we have already added this rune to the appropriate world global,
; so we do not want to do so again.
wrld1
(put-match-free-value match-free-value rune
wrld1)))))))
(defun add-linear-rule2 (rune nume trigger-terms hyps concl
backchain-limit-lst match-free ens wrld state)
(let* ((concl (remove-guard-holders concl))
(xconcl (expand-inequality-fncall concl))
(lst (external-linearize xconcl ens wrld state))
(hyps (preprocess-hyps hyps))
(all-vars-hyps (all-vars-in-hyps hyps))
(max-terms
(or trigger-terms
(maximal-terms (all-vars-in-poly-lst (car lst))
all-vars-hyps
(all-vars concl)))))
(add-linear-rule3 rune nume hyps xconcl max-terms backchain-limit-lst
match-free nil wrld)))
(defun add-linear-rule1 (rune nume trigger-terms lst
backchain-limit-lst match-free ens wrld state)
(cond ((null lst) wrld)
(t (add-linear-rule1 rune nume trigger-terms (cdr lst)
backchain-limit-lst
match-free
ens
(add-linear-rule2 rune nume
trigger-terms
(caar lst)
(cdar lst)
backchain-limit-lst
match-free
ens wrld state)
state))))
(defun add-linear-rule (rune nume trigger-terms term
backchain-limit-lst match-free ens wrld state)
; Sol Swords sent the following example on 10/12/09, which failed because of
; the modification after Version_3.6.1 to mv-let (to introduce mv-list in the
; expansion), until the call below of remove-guard-holders was added.
; (defun break-cons (x)
; (mv (car x) (cdr x)))
; (defthm break-cons-size-decr-0
; (mv-let (car cdr)
; (break-cons x)
; (declare (ignore cdr))
; (implies (consp x)
; (< (acl2-count car) (acl2-count x))))
; :rule-classes :linear)
; (defthm break-cons-size-decr-1
; (mv-let (car cdr)
; (break-cons x)
; (declare (ignore car))
; (implies (consp x)
; (< (acl2-count cdr) (acl2-count x))))
; :rule-classes :linear)
; (in-theory (disable break-cons acl2-count mv-nth))
; (defun recur-over-break-cons (x)
; (if (atom x)
; (list x)
; (mv-let (car cdr) (break-cons x)
; (append (recur-over-break-cons car)
; (recur-over-break-cons cdr)))))
(add-linear-rule1 rune nume trigger-terms
(unprettyify (remove-guard-holders term))
backchain-limit-lst match-free ens wrld state))
;---------------------------------------------------------------------------
; Section: :WELL-FOUNDED-RELATION Rules
(defun destructure-well-founded-relation-rule (term)
; We check that term is the translation of one of the two forms
; described in :DOC well-founded-relation. We return two results, (mv
; mp rel). If mp is nil in the result, then term is not of the
; required form. If mp is t, then term is of the second general form
; (i.e., we act as though t were the function symbol for (lambda (x)
; t)). With that caveat, if the mp is non-nil then term establishes
; that rel is a well-founded relation on mp-measures.
(case-match
term
(('IF ('IMPLIES (mp x) ('O-P (fn x)))
('IMPLIES ('IF (mp x)
('IF (mp y) (rel x y) ''NIL)
''NIL)
('O< (fn x) (fn y)))
''NIL)
(cond ((and (symbolp mp)
(variablep x)
(symbolp fn)
(variablep y)
(not (eq x y))
(symbolp rel))
(mv mp rel))
(t (mv nil nil))))
(('IF ('O-P (fn x))
('IMPLIES (rel x y)
('O< (fn x) (fn y)))
''NIL)
(cond ((and (variablep x)
(symbolp fn)
(variablep y)
(not (eq x y))
(symbolp rel))
(mv t rel))
(t (mv nil nil))))
(& (mv nil nil))))
(defun chk-acceptable-well-founded-relation-rule (name term ctx wrld state)
(mv-let
(mp rel)
(destructure-well-founded-relation-rule term)
(cond
((null mp)
(er soft ctx
"No :WELL-FOUNDED-RELATION rule can be generated for ~x0 ~
because it does not have either of the two general forms ~
described in :DOC well-founded-relation."
name))
((and (assoc-eq rel (global-val 'well-founded-relation-alist wrld))
(not (eq (cadr (assoc-eq rel
(global-val 'well-founded-relation-alist
wrld)))
mp)))
(er soft ctx
"~x0 was shown in ~x1 to be well-founded~@2 We do not permit more ~
than one domain to be associated with a well-founded relation. To ~
proceed in this direction, you should define some new function ~
symbol to be ~x0 and state your well-foundedness in terms of the ~
new function."
rel
(cadr (cddr (assoc-eq rel
(global-val 'well-founded-relation-alist
wrld))))
(if (eq (cadr (assoc-eq rel
(global-val 'well-founded-relation-alist
wrld)))
t)
"."
(msg " on objects satisfying ~x0."
(cadr (assoc-eq rel
(global-val 'well-founded-relation-alist
wrld)))))))
(t (value nil)))))
(defun add-well-founded-relation-rule (rune nume term wrld)
(declare (ignore nume))
(mv-let (mp rel)
(destructure-well-founded-relation-rule term)
(global-set 'well-founded-relation-alist
(cons (cons rel (cons mp rune))
(global-val 'well-founded-relation-alist wrld))
wrld)))
;---------------------------------------------------------------------------
; Section: :BUILT-IN-CLAUSE Rules
(defun chk-acceptable-built-in-clause-rule2 (name hyps concl ctx wrld state)
; This is the basic function for checking that (IMPLIES (AND . hyps) concl)
; generates a useful built-in clause rule. If it does not, we cause an error.
; The superior functions, chk-acceptable-built-in-clause-rule1 and
; chk-acceptable-built-in-clause-rule just cycle down to this one after
; flattening the IMPLIES/AND structure of the user's input term.
(let* ((term (if (null hyps)
concl
(mcons-term* 'if (conjoin hyps) concl *t*)))
(clauses (clausify term nil t (sr-limit wrld))))
(cond ((null clauses)
(er soft ctx
"~x0 is an illegal :built-in-clause rule because ~p1 clausifies ~
to nil, indicating that it is a propositional tautology. See ~
:DOC built-in-clause."
name
(untranslate
(cond ((null hyps) concl)
(t (mcons-term* 'implies (conjoin hyps) concl)))
t
wrld)))
(t (value nil)))))
(defun chk-acceptable-built-in-clause-rule1 (name lst ctx wrld state)
; Each element of lst is a pair, (hyps . concl) and we check that each such
; pair, when interpreted as the term (implies (and . hyps) concl), generates
; one or more clauses to be built-in.
(cond
((null lst) (value nil))
(t
(er-progn
(chk-acceptable-built-in-clause-rule2 name (caar lst) (cdar lst) ctx
wrld state)
(chk-acceptable-built-in-clause-rule1 name (cdr lst) ctx wrld state)))))
(defun chk-acceptable-built-in-clause-rule (name term ctx wrld state)
; We strip the conjuncts out of term and flatten those in the hypotheses of
; implications to obtain a list of implications, each of the form (IMPLIES (AND
; . hyps) concl), and each represented simply by a pair (hyps . concl). For
; each element of that list we then determine whether it generates one or more
; clauses. See chk-acceptable-built-in-clause-rule2 for the guts of this test.
; We either cause an error or return successfully.
(chk-acceptable-built-in-clause-rule1 name (unprettyify term) ctx
wrld state))
; So now we work on actually generating and adding :BUILT-IN-CLAUSE rules.
(mutual-recursion
(defun fn-and-maximal-level-no (term wrld fn max)
; We explore term and return (mv fn max), where fn is an "explicit" function
; symbol of term, max is its get-level-no, and that level number is maximal in
; term. By an "explicit" function symbol of term we mean one not on
; *one-way-unify1-implicit-fns*. We return the initial fn and max unless some
; explicit symbol of term actually betters it. If you call this with fn=nil
; and max=-1 you will get back a legitimate function symbol if term contains at
; least one explicit symbol. Furthermore, it is always the maximal symbol
; occurring first in print-order.
(cond
((variablep term) (mv fn max))
((fquotep term) (mv fn max))
((flambdap (ffn-symb term))
(mv-let (fn max)
(fn-and-maximal-level-no (lambda-body (ffn-symb term)) wrld fn max)
(fn-and-maximal-level-no-lst (fargs term) wrld fn max)))
((member-eq (ffn-symb term) *one-way-unify1-implicit-fns*)
(fn-and-maximal-level-no-lst (fargs term) wrld fn max))
(t (let ((n (get-level-no (ffn-symb term) wrld)))
(cond
((> n max)
(fn-and-maximal-level-no-lst (fargs term) wrld (ffn-symb term) n))
(t (fn-and-maximal-level-no-lst (fargs term) wrld fn max)))))))
(defun fn-and-maximal-level-no-lst (lst wrld fn max)
(cond
((null lst) (mv fn max))
(t (mv-let (fn max)
(fn-and-maximal-level-no (car lst) wrld fn max)
(fn-and-maximal-level-no-lst (cdr lst) wrld fn max)))))
)
(defun built-in-clause-discriminator-fn (cl wrld)
(mv-let (fn max)
(fn-and-maximal-level-no-lst cl wrld nil -1)
(declare (ignore max))
fn))
(defun all-fnnames-subsumer (cl wrld)
; Let cl be a clause which is about to be built in. Cl subsumes another
; clause, cla, if under some instantiation of cl, cl', the literals of cl' are
; a subset of those of cla. Thus, a necessary condition for cl to subsume cla
; is that the function symbols of cl be a subset of those of cla. However,
; one-way-unify1 knows that (binary-+ '1 x) can be instantiated to be '7, by
; letting x be '6. Thus, if by "the function symbols" of a clause we mean
; those that explicitly occur, i.e., all-fnnames-lst, then, contrary to what
; was just said, it is possible for cl to subsume cla without the function
; symbols of cl being a subset of those of cla: let cl contain (binary-+ '1 x)
; where cla contains '7 and no mention of binary-+. So we here compute the
; list of function symbols of cl which must necessarily occur in cla. It is
; always sound to throw out symbols from the list returned here. In addition,
; we make sure that the "discriminator function symbol" of cl occur first in
; the list. That symbol will be used to classify this subsumer into a bucket
; in the built-in-clause list.
(let ((syms (set-difference-eq (all-fnnames-lst cl)
*one-way-unify1-implicit-fns*))
(discrim-fn (built-in-clause-discriminator-fn cl wrld)))
(cond ((null discrim-fn) syms)
(t (cons discrim-fn (remove1-eq discrim-fn syms))))))
(defun make-built-in-clause-rules1 (rune nume clauses wrld)
; We build a built-in-clause record for every element of clauses. We put the
; last literal of each clause first on the heuristic grounds that the last
; literal of a user-supplied clause is generally the most interesting and thus
; the one the subsumption check should look at first.
; Note: The :all-fnnames computed here has the property that the discriminator
; function symbol is the car and the remaining functions are in the cdr. When
; a built-in-clause record is stored into the built-in-clauses alist, the
; record is changed; the discriminator is stripped out, leaving the remaining
; fns as the :all-fnnames.
(cond ((null clauses) nil)
(t (let ((cl (cons (car (last (car clauses)))
(butlast (car clauses) 1))))
(cons (make built-in-clause
:rune rune
:nume nume
:clause cl
:all-fnnames (all-fnnames-subsumer cl wrld))
(make-built-in-clause-rules1 rune nume
(cdr clauses) wrld))))))
(defun chk-initial-built-in-clauses (lst wrld good-lst some-badp)
; This function sweeps down the list of initial built-in clause records and
; checks that the :all-fnnames of each is set properly given the current wrld.
; The standard top-level call of this function is (chk-initial-built-in-clauses
; *initial-built-in-clauses* wrld nil nil) where wrld is the world in which you
; wish to check the appropriateness of the initial setting. This function
; returns either nil, meaning that everything was ok, or a new copy of lst
; which is correct for the current wrld.
(cond
((null lst)
(cond
(some-badp (reverse good-lst))
(t nil)))
(t (let* ((clause (access built-in-clause (car lst) :clause))
(fnnames1 (access built-in-clause (car lst) :all-fnnames))
(fnnames2 (all-fnnames-subsumer clause wrld)))
(chk-initial-built-in-clauses
(cdr lst) wrld
(cons `(make built-in-clause
:nume nil
:rune *fake-rune-for-anonymous-enabled-rule*
:clause ',clause
:all-fnnames ',fnnames2)
good-lst)
(or some-badp
(not (equal fnnames1 fnnames2))))))))
(defun make-built-in-clause-rules (rune nume lst wrld)
; Each element of lst is a pair, (hyps . concl). We generate and collect the
; clauses for each such pair.
(cond ((null lst) nil)
(t (let* ((hyps (caar lst))
(concl (cdar lst))
(clauses (clausify
(if (null hyps)
concl
(mcons-term* 'if (conjoin hyps) concl *t*))
nil t (sr-limit wrld))))
(append (make-built-in-clause-rules1 rune nume clauses wrld)
(make-built-in-clause-rules rune nume (cdr lst) wrld))))))
(defun classify-and-store-built-in-clause-rules (lst pots wrld)
; Lst is a list of built-in-clause records. Each record contains an
; :all-fnnames field, which contains a (possibly empty) list of function
; symbols. The first symbol in the :all-fnnames list is the "discriminator
; function symbol" of the clause, the heaviest function symbol in the clause.
; Pots is an alist in which each entry pairs a symbol, fn, to a list of
; built-in-clause records; the list has the property that every clause in it
; has fn as its discriminator function symbol. We add each record in lst to
; the appropriate pot in pots.
; If a record has :all-fnnames nil then it is most likely a primitive built-in
; clause, i.e., a member of *initial-built-in-clauses*. The nil is a signal to
; this function to compute the appropriate :all-fnnames using the function
; all-fnnames-subsumer which is what we use when we build a built-in clause
; record for the user with make-built-in-clause-rules1. This is just a rugged
; way to let the list of implicit function symbols known to one-way-unify1 vary
; without invalidating our *initial-built-in-clauses* setting.
; But it is possible, perhaps, for a user-supplied built-in clause to contain
; no function symbols of the kind returned by all-fnnames-subsumer. For
; example, the user might prove 7 as a built-in clause. Perhaps a
; nonpathological example arises, but I haven't bothered to think of one.
; Instead, this is handled soundly, as follows. If the :all-fnnames is nil we
; act like it hasn't been computed yet (as above) and compute it. Then we
; consider the discriminator function symbol to the car of the resulting list,
; which might be nil. There is a special pot for the nil "discriminator
; function symbol".
(cond ((null lst) pots)
(t (let* ((bic (car lst))
(fns (or (access built-in-clause bic :all-fnnames)
(all-fnnames-subsumer
(access built-in-clause bic :clause)
wrld)))
(fn (car fns))
(pot (cdr (assoc-eq fn pots))))
(classify-and-store-built-in-clause-rules
(cdr lst)
(put-assoc-eq fn
(cons (change built-in-clause bic
:all-fnnames (cdr fns))
pot)
pots)
wrld)))))
(defun add-built-in-clause-rule (rune nume term wrld)
; We strip the conjuncts out of term and flatten those in the hypotheses of
; implications to obtain a list of implications and then clausify each and
; store each clause as a :BUILT-IN-CLAUSE rule. We maintain the invariant
; that 'half-length-built-in-clauses is equal to the (floor n 2), where n
; is the length of 'built-in-clauses.
(let ((rules (make-built-in-clause-rules rune nume (unprettyify term)
wrld)))
; Every rule in rules is stored (somewhere) into built-in-clauses, so the
; number of clauses goes up by (length rules). Once we had a bug here: we
; incremented 'half-length-built-in-clauses by half the length of rules. That
; was pointless since we're dealing with integers here: rules is most often of
; length 1 and so we would increment by 0 and never accumulate all those 1/2's!
(global-set 'half-length-built-in-clauses
(floor (+ (length rules)
(length (global-val 'built-in-clauses wrld)))
2)
(global-set 'built-in-clauses
(classify-and-store-built-in-clause-rules
rules
(global-val 'built-in-clauses wrld)
wrld)
wrld))))
;---------------------------------------------------------------------------
; Section: :COMPOUND-RECOGNIZER Rules
(defun destructure-compound-recognizer (term)
; If term is one of the forms of a compound recognizer lemma we return
; its parity (TRUE, FALSE, WEAK-BOTH or STRONG-BOTH), the recognizer
; fn, its variablep argument in this term, and the type description
; term. In the case of WEAK-BOTH the type description term is a pair
; -- not a term -- consisting of the true term and the false term.
; Otherwise we return four nils.
(case-match term
(('implies ('not (fn x)) concl)
(cond ((and (variablep x)
(symbolp fn))
(mv 'false fn x concl))
(t (mv nil nil nil nil))))
(('implies (fn x) concl)
(cond ((and (variablep x)
(symbolp fn))
(mv 'true fn x concl))
(t (mv nil nil nil nil))))
(('if ('implies (fn x) concl1)
('implies ('not (fn x)) concl2)
''nil)
(cond ((and (variablep x)
(symbolp fn))
(mv 'weak-both fn x (cons concl1 concl2)))
(t (mv nil nil nil nil))))
(('if (fn x) concl1 concl2)
(cond ((and (variablep x)
(symbolp fn))
(mv 'weak-both fn x (cons concl1 concl2)))
(t (mv nil nil nil nil))))
(('if ('implies ('not (fn x)) concl2)
('implies (fn x) concl1)
''nil)
(cond ((and (variablep x)
(symbolp fn))
(mv 'weak-both fn x (cons concl1 concl2)))
(t (mv nil nil nil nil))))
(('if ('implies ('not (fn x)) concl2)
('implies (fn x) concl1)
''nil)
(cond ((and (variablep x)
(symbolp fn))
(mv 'weak-both fn x (cons concl1 concl2)))
(t (mv nil nil nil nil))))
(('iff (fn x) concl)
(cond ((and (variablep x)
(symbolp fn))
(mv 'strong-both fn x concl))
(t (mv nil nil nil nil))))
(('equal (fn x) concl)
(cond ((and (variablep x)
(symbolp fn))
(mv 'strong-both fn x concl))
(t (mv nil nil nil nil))))
(& (mv nil nil nil nil))))
(defun make-recognizer-tuple (rune nume parity fn var term ens wrld)
; If parity is 'WEAK-BOTH then term is really (tterm . fterm). We
; create a recognizer-tuple from our arguments. Nume is stored in
; the :nume and may be nil. We return two results, the
; recognizer-tuple and the ttree justifying the type-set(s) in it.
(case parity
(true
(mv-let (ts ttree)
(type-set-implied-by-term var nil term ens wrld nil)
(mv (make recognizer-tuple
:rune rune
:nume nume
:fn fn
:true-ts ts
:false-ts *ts-unknown*
:strongp nil)
ttree)))
(false
(mv-let (ts ttree)
(type-set-implied-by-term var nil term ens wrld nil)
(mv (make recognizer-tuple
:rune rune
:nume nume
:fn fn
:true-ts *ts-unknown*
:false-ts ts
:strongp nil)
ttree)))
(weak-both
(mv-let (tts ttree)
(type-set-implied-by-term var nil (car term) ens wrld nil)
(mv-let (fts ttree)
(type-set-implied-by-term var nil (cdr term) ens wrld ttree)
(mv (make recognizer-tuple
:rune rune
:nume nume
:fn fn
:true-ts tts
:false-ts fts
:strongp (ts= tts (ts-complement fts)))
ttree))))
(otherwise
; Warning: We proved that (fn x) = term and one is tempted to build a
; :strongp = t rule. But since we do not guarantee that term is
; equivalent to the type-set we deduce from it, we cannot just get the
; type-set for term and complement it for the false branch. And we
; cannot guarantee to build a strong rule. Instead, we act more or
; less like we do for weak-both: we compute independent type sets from
; term and (not term) and just in the case that they are complementary
; do we build a strong rule.
(mv-let (tts ttree)
(type-set-implied-by-term var nil term ens wrld nil)
(mv-let (fts ttree)
(type-set-implied-by-term var t term ens wrld ttree)
(mv (make recognizer-tuple
:rune rune
:nume nume
:fn fn
:true-ts tts
:false-ts fts
:strongp (ts= tts (ts-complement fts)))
ttree))))))
(defun comment-on-new-recog-tuple1 (new-recog-tuple recognizer-alist
ctx state)
; This function compares a newly proposed recognizer tuple to each of
; the tuples on the recognizer-alist, expecting that it will be more
; restrictive than each of the existing tuples with the same :fn. Let
; tts', fts', and strongp' be the obvious fields from the new tuple,
; and let tts, fts, and strongp be from an existing tuple. Let ts' <=
; ts here mean (ts-subsetp ts' ts) and let strongp' <= strongp be true
; if either strongp is nil or strongp' is t. Then we say the new
; tuple is ``more restrictive'' than the existing tuple iff
; (a) tts' <= tts & fts' <= fts & strongp' <= strongp, and
; (b) at least one of the three primed fields is different from its
; unprimed counterpart.
; For each old tuple that is at least as restrictive as the new tuple
; we print a warning. We never cause an error. However, we have
; coded the function and its caller so that if we someday choose to
; cause an error it will be properly handled. (Without more experience
; with compound recognizers we do not know what sort of checks would be
; most helpful.)
(cond
((null recognizer-alist) (value nil))
((eq (access recognizer-tuple new-recog-tuple :fn)
(access recognizer-tuple (car recognizer-alist) :fn))
(cond
((and
(ts-subsetp (access recognizer-tuple new-recog-tuple :true-ts)
(access recognizer-tuple (car recognizer-alist) :true-ts))
(ts-subsetp (access recognizer-tuple new-recog-tuple :false-ts)
(access recognizer-tuple (car recognizer-alist) :false-ts))
(or (access recognizer-tuple new-recog-tuple :strongp)
(null (access recognizer-tuple (car recognizer-alist) :strongp)))
(or
(not (ts= (access recognizer-tuple new-recog-tuple :false-ts)
(access recognizer-tuple (car recognizer-alist) :false-ts)))
(not (ts= (access recognizer-tuple new-recog-tuple :true-ts)
(access recognizer-tuple (car recognizer-alist) :true-ts)))
(not (eq (access recognizer-tuple new-recog-tuple :strongp)
(access recognizer-tuple (car recognizer-alist) :strongp)))))
(comment-on-new-recog-tuple1 new-recog-tuple (cdr recognizer-alist)
ctx state))
(t (pprogn
(warning$ ctx ("Compound-rec")
"The newly proposed compound recognizer rule ~x0 is not as ~
restrictive as the old rule ~x1. See :DOC ~
compound-recognizer."
(base-symbol (access recognizer-tuple new-recog-tuple :rune))
(base-symbol (access recognizer-tuple (car recognizer-alist)
:rune)))
(comment-on-new-recog-tuple1 new-recog-tuple (cdr recognizer-alist)
ctx state)))))
(t (comment-on-new-recog-tuple1 new-recog-tuple (cdr recognizer-alist)
ctx state))))
(defun comment-on-new-recog-tuple (new-recog-tuple ctx ens wrld state)
; This function prints out a warning advising the user of the type
; information to be extracted from a newly proposed compound
; recognizer. We also print out a description of the lemmas used to
; derive this information. We also compare the new recognizer tuple
; to any old tuples we have for the same function and print a suitable
; message should it be less ``restrictive.''
; We never cause an error, but this function and its caller are coded
; so that if we someday choose to cause an error it will be properly
; handled. (Without more experience with compound recognizers we do
; not know what sort of checks would be most helpful.)
(let ((pred (fcons-term* (access recognizer-tuple new-recog-tuple :fn) 'x)))
(mv-let
(tts-term ttree)
(convert-type-set-to-term
'x (access recognizer-tuple new-recog-tuple :true-ts) ens wrld nil)
(mv-let
(fts-term ttree)
(convert-type-set-to-term
'x (access recognizer-tuple new-recog-tuple :false-ts) ens wrld ttree)
(let ((tts-term (untranslate tts-term t wrld))
(fts-term (untranslate fts-term t wrld)))
(er-progn
(if (and (ts= (access recognizer-tuple new-recog-tuple :true-ts)
*ts-unknown*)
(ts= (access recognizer-tuple new-recog-tuple :false-ts)
*ts-unknown*))
(er soft ctx
"When ~x0 is assumed true, ~x1 will allow us to deduce ~
nothing about the type of X. Also, when ~x0 is assumed ~
false, ~x1 will allow us to deduce nothing about the type of ~
X. Thus this is not a legal compound recognizer rule. See ~
doc :compound-recognizer if these observations surprise you."
pred
(base-symbol (access recognizer-tuple new-recog-tuple :rune)))
(value nil))
(pprogn
(observation
ctx
"When ~x0 is assumed true, ~x1 will allow us to deduce ~#2~[nothing ~
about the type of X.~/~p3.~] When ~x0 is assumed false, ~x1 will ~
allow us to deduce ~#4~[nothing about the type of X.~/~p5.~] Note ~
that ~x0 is~#6~[ not~/~] a strong compound recognizer, according ~
to this rule. See doc :compound-recognizer if these observations ~
surprise you. These particular expressions of the type ~
information are based on ~*7."
pred
(base-symbol (access recognizer-tuple new-recog-tuple :rune))
(if (eq tts-term t) 0 1)
tts-term
(if (eq fts-term t) 0 1)
fts-term
(if (access recognizer-tuple new-recog-tuple :strongp) 1 0)
(tilde-*-simp-phrase ttree))
(if (warning-disabled-p "Compound-rec")
(value nil)
(comment-on-new-recog-tuple1 new-recog-tuple
(global-val 'recognizer-alist wrld)
ctx state)))))))))
(defun chk-acceptable-compound-recognizer-rule (name term ctx ens wrld state)
; If we don't cause an error, we return an 'assumption-free ttree that
; justifies the type information extracted from term.
(mv-let
(parity fn var term1)
(destructure-compound-recognizer term)
(cond
((null parity)
(er soft ctx
"No :COMPOUND-RECOGNIZER rule can be generated from ~x0 ~
because it does not have the form described in :DOC ~
compound-recognizer."
name))
(t (mv-let
(ts ttree1)
(type-set (mcons-term* fn var) nil nil nil ens wrld nil nil nil)
(cond ((not (ts-subsetp ts *ts-boolean*))
; To loosen the Boolean restriction, we must change assume-true-false
; so that when a compound recognizer is assumed true its type-set is
; not just set to *ts-t*. A comment at the defrec for
; recognizer-tuple also says that fn must be Boolean. It would be a
; good idea, before changing this, to inspect all code involved with
; recognizer-tuples.
(er soft ctx
"A function can be treated as a :COMPOUND-RECOGNIZER only ~
if it is Boolean valued. ~x0 is not known to be Boolean. ~
See :DOC compound-recognizer."
fn))
(t
; Historical Note: We used to combine the new type information with
; the old. We do not do that anymore: we store exactly what the new
; rule tells us. The reason is so that we can maintain a 1:1
; relationship between what we store and rule names, so that it is
; meaningful to disable a compound recognizer rule.
(mv-let (recog-tuple ttree2)
; Note: Below we counterfeit a rune based on name, simply so that the
; recog-tuple we get back really looks like one. The actual rule
; created for term1 will have a different name (x will be specified).
; This tuple is only used for error reporting and we dig name out of
; its rune then.
(make-recognizer-tuple `(:COMPOUND-RECOGNIZER ,name . x)
nil parity fn var term1 ens wrld)
(er-progn
(comment-on-new-recog-tuple recog-tuple ctx ens wrld
state)
(value (cons-tag-trees ttree1 ttree2)))))))))))
; And to add :COMPOUND-RECOGNIZER rules...
(defun add-compound-recognizer-rule (rune nume term ens wrld)
; We construct the recongizer-tuple corresponding to term and just add
; it onto the front of the current recognizer-alist. We used to merge
; it into the existing tuple for the same :fn, if one existed, but
; that makes disabling these rules complicated. When we retrieve
; tuples from the alist we look for the first enabled tuple about the
; :fn in question. So it is necessary to leave old tuples for :fn in
; place.
(mv-let (parity fn var term1)
(destructure-compound-recognizer term)
(mv-let (recog-tuple ttree)
(make-recognizer-tuple rune nume parity fn var term1 ens
wrld)
(declare (ignore ttree))
(global-set 'recognizer-alist
(cons recog-tuple (global-val 'recognizer-alist wrld))
wrld))))
;---------------------------------------------------------------------------
; Section: :FORWARD-CHAINING Rules
(defun chk-triggers (name match-free hyps terms hyps-vars concls-vars ctx ens
wrld state)
; Name is the name of a proposed forward chaining rule with hyps hyps
; and triggers terms. We verify that every trigger is a non-variable,
; non-quote, non-lambda, non-NOT application. We also print the
; free-variable warning messages.
(cond ((null terms) (value nil))
((or (variablep (car terms))
(fquotep (car terms))
(flambda-applicationp (car terms))
(eq (ffn-symb (car terms)) 'not))
(er soft ctx
"It is illegal to use a variable, a quoted constant, the ~
application of a lambda-expression, a LET-expression, ~
or a NOT-expression as the trigger of a forward ~
chaining rule. Your proposed trigger, ~x0, violates ~
these restrictions. See :DOC forward-chaining."
(car terms)))
((not (subsetp-eq concls-vars
(all-vars1 (car terms) hyps-vars)))
(er soft ctx
"We cannot use ~x0 as a forward chaining rule triggered ~
by ~x1 because the variable~#2~[ ~&2 is~/s ~&2 are~] ~
used in the conclusion but not in the ~#3~[~/hypothesis ~
or the ~/hypotheses or the ~]trigger. See :DOC ~
forward-chaining."
name
(car terms)
(set-difference-eq concls-vars
(all-vars1 (car terms) hyps-vars))
(zero-one-or-more hyps)))
(t
(let* ((warn-non-rec (not (warning-disabled-p "Non-rec")))
(free-vars (free-vars-in-hyps hyps (all-vars (car terms)) wrld))
(inst-hyps (hyps-that-instantiate-free-vars free-vars hyps))
(forced-hyps (forced-hyps inst-hyps))
(non-rec-fns (and warn-non-rec
(non-recursive-fnnames (car terms) ens wrld)))
(non-rec-fns-inst-hyps
(and warn-non-rec
(non-recursive-fnnames-lst
(strip-top-level-nots-and-forces inst-hyps) ens wrld))))
(er-progn
(cond
((and free-vars (null match-free))
(pprogn
(warning$ ctx "Free"
`("When the :FORWARD-CHAINING rule generated from ~
~x0 is triggered by ~x1 it contains the free ~
variable~#2~[ ~&2. This variable~/s ~&2. These ~
variables~] will be chosen by searching for ~
~#3~[an instance~/instances~] of ~&3 among the ~
hypotheses of the conjecture being rewritten. ~
This is generally a severe restriction on the ~
applicability of the forward chaining rule."
(:free-variables ,free-vars)
(:instantiated-hyps ,inst-hyps)
(:name ,name)
(:rule-class :forward-chaining)
(:trigger ,(car terms)))
name (car terms) free-vars inst-hyps)
(free-variable-error? :forward-chaining name ctx wrld state)))
(t (value nil)))
(pprogn
(cond
((and free-vars forced-hyps)
(warning$ ctx "Free"
"Forward chaining rule ~x0 has forced (or ~
case-split) ~#1~[hypothesis~/hypotheses~], ~*2, ~
which will be used to instantiate one or more free ~
variables. We will search for suitable ~
instantiations (of the term inside the FORCE or ~
CASE-SPLIT) among the known assumptions in the ~
context at the time we encounter ~#1~[the~/each~] ~
hypothesis. If no instances are found, we will ~
force or case split on the partially instantiated ~
~#1~[hypothesis~/hypotheses~] instead of waiting ~
for future rounds of forward chaining which might ~
derive appropriate instances. Note that this will ~
introduce a ``free variable'' into the conjecture. ~
While sound, this will establish a goal almost ~
certain to fail since the restriction described by ~
this apparently necessary hypothesis constrains a ~
variable not involved in the problem. To highlight ~
this oddity, we will rename the free variables in ~
such forced hypotheses by prefixing them with ~
``UNBOUND-FREE-''. This is not guaranteed to ~
generate a new variable but at least it generates ~
an unusual one. If you see such a variable in a ~
subsequent proof (and did not introduce them ~
yourself) you should consider the possibility that ~
the free variables of this forward chaining rule ~
were forced into the conjecture."
name
(if (null (cdr forced-hyps)) 0 1)
(tilde-*-untranslate-lst-phrase forced-hyps t
wrld)))
(t state))
(cond
(non-rec-fns
(warning$ ctx ("Non-rec")
`("The term ~x0 contains the non-recursive function ~
symbol~#1~[ ~&1. Unless this function is~/s ~&1. ~
~ Unless these functions are~] disabled, ~x0 is ~
unlikely ever to occur as a trigger for ~x2."
(:name ,name)
(:non-recursive-fns ,(hide-lambdas non-rec-fns))
(:trigger-term ,(car terms)))
(car terms)
(hide-lambdas non-rec-fns)
name))
(t state))
(cond
(non-rec-fns-inst-hyps
(warning$ ctx ("Non-rec")
`("As noted, when triggered by ~x0, we will ~
instantiate the free variable~#1~[~/s~], ~&1, of ~
the rule ~x2, by searching for the ~
~#3~[hypothesis~/set of hypotheses~] shown above. ~
~ However, ~#3~[this hypothesis mentions~/these ~
hypotheses mention~] the function symbol~#4~[ ~
~&4, which is~/s ~&4, which are~] defun'd ~
non-recursively. Unless disabled, ~#4~[this ~
function symbol is~/these function symbols are~] ~
unlikely to occur in the conjecture being proved ~
and hence the search for the required ~
~#3~[hypothesis~/hypotheses~] will likely fail."
(:free-variables ,free-vars)
(:instantiated-hyps ,inst-hyps)
(:name ,name)
(:non-recursive-fns-inst-hyps
,(hide-lambdas non-rec-fns-inst-hyps))
(:trigger-term ,(car terms)))
(car terms) free-vars name inst-hyps
(hide-lambdas non-rec-fns-inst-hyps)))
(t state))
(chk-triggers match-free name hyps (cdr terms)
hyps-vars concls-vars ctx ens wrld state)))))))
(defun destructure-forward-chaining-term (term)
; We return two lists, hyps and concls, such that term is equivalent to
; (implies (and . hyps) (and . concls)).
; We have considered treating (IMPLIES a (IMPLIES b c)) as (IMPLIES (and a b)
; c) when we parse :forward-chaining rules. At the moment we do not, and hence
; such a :forward-chaing rule might put (IMPLIES b c) on the type-alist. The
; code for the ``improved'' parsing is in the comment just below. This would
; bring the parsing of :forward-chaining rules more into line with what we do
; for :rewrite rules. But an email from Dave Greve gave us the impression that
; he and others might intentionally put calls of IMPLIES on the type-alist.
; This is in the spirit of ``just do what the user said.'' We never ran a
; regression with the ``improved'' parsing so we don't know what effect it
; might have. But we decided to stick with the ``just do what the user said''
; approach.
; (let ((term (remove-lambdas (remove-guard-holders term))))
; (cond ((or (variablep term)
; (fquotep term)
; (not (eq (ffn-symb term) 'implies)))
; (mv nil (flatten-ands-in-lit term)))
; (t
;
; ; Term is of the form (implies arg1 arg2). We recursively
; ; destructure arg2 first, in case it is another (implies ...).
;
; (mv-let (hyps concls)
; (destructure-forward-chaining-term (fargn term 2))
; (mv (append (flatten-ands-in-lit (fargn term 1))
; hyps)
; concls)))))
(let ((term (remove-lambdas (remove-guard-holders term))))
(cond ((or (variablep term)
(fquotep term)
(not (eq (ffn-symb term) 'implies)))
(mv nil (flatten-ands-in-lit term)))
(t (mv (flatten-ands-in-lit (fargn term 1))
(flatten-ands-in-lit (fargn term 2)))))))
(defun chk-acceptable-forward-chaining-rule (name match-free trigger-terms term
ctx ens wrld state)
; Acceptable forward chaining rules are of the form
; (IMPLIES (AND . hyps)
; (AND . concls))
; We used to split term up with unprettyify as is done for REWRITE
; class rules. But that meant that we had to establish hyps
; once for each concl whenever the rule was triggered.
(mv-let
(hyps concls)
(destructure-forward-chaining-term term)
(let ((hyps-vars (all-vars1-lst hyps nil))
(concls-vars (all-vars1-lst concls nil)))
(chk-triggers name match-free hyps trigger-terms
hyps-vars concls-vars
ctx ens wrld state))))
(defun putprop-forward-chaining-rules-lst
(rune nume triggers hyps concls match-free wrld)
(cond ((null triggers)
(put-match-free-value match-free rune wrld))
(t (putprop-forward-chaining-rules-lst
rune nume
(cdr triggers)
hyps concls match-free
(putprop (ffn-symb (car triggers))
'forward-chaining-rules
(cons (make forward-chaining-rule
:rune rune
:nume nume
:trigger (car triggers)
:hyps hyps
:concls concls
:match-free match-free)
(getpropc (ffn-symb (car triggers))
'forward-chaining-rules nil wrld))
wrld)))))
(defun add-forward-chaining-rule (rune nume trigger-terms term match-free wrld)
(mv-let
(hyps concls)
(destructure-forward-chaining-term term)
(putprop-forward-chaining-rules-lst rune nume
trigger-terms
hyps concls
(match-free-fc-value match-free
hyps concls
trigger-terms
wrld)
wrld)))
;---------------------------------------------------------------------------
; Section: :META Rules
(defun evaluator-clause/arglist (evfn formals x)
; See evaluator-clause. We return a list of the form
; '((evfn (cadr x) a) (evfn (caddr x) a) ...) containing
; as many elements as there are in formals. The evfn and
; x we use are as provided in our arguments, but the variable
; symbol A in our answer is built-in below.
(cond ((null formals) nil)
(t (cons (mcons-term* evfn (mcons-term* 'car x) 'a)
(evaluator-clause/arglist evfn
(cdr formals)
(mcons-term* 'cdr x))))))
(defun evaluator-clause (evfn fn-args)
; Fn-args is of the form (fn v1 ... vn), a well-formed application of the
; function fn. We return a clause that expresses the theorem
; (implies (and (consp x)
; (equal (car x) 'fn))
; (equal (evfn x a)
; (fn (evfn (cadr x) a)
; ...
; (evfn (cad...dr x) a))))
; where evfn and fn are the function symbols provided. Note that the
; clause we return uses the variable symbols X and A. These symbols
; are built into this definition and that of evaluator-clause/arglist.
(list '(not (consp x))
(fcons-term*
'not
(fcons-term* 'equal '(car x) (kwote (car fn-args))))
(fcons-term*
'equal
(fcons-term* evfn 'x 'a)
(fcons-term (car fn-args)
(evaluator-clause/arglist evfn
(cdr fn-args)
'(cdr x))))))
(defun evaluator-clauses1 (evfn fn-args-lst)
(cond ((null fn-args-lst) nil)
(t (cons (evaluator-clause evfn (car fn-args-lst))
(evaluator-clauses1 evfn (cdr fn-args-lst))))))
(defun evaluator-clauses (evfn evfn-lst fn-args-lst)
; We return the set of clauses that describe an evaluator, evfn, that
; knows about the function symbols listed in fn-args-lst. The
; mutually recursive function that evaluates a list of such terms is
; named evfn-lst.
; This function serves two purposes: it is used to generate the constraints
; produced by the defevaluator event and it is used to check that the
; constraints on an alleged evaluator are in fact those required. (Remember:
; the user need not have introduced an evaluator via defevaluator.)
; The clauses that describe an evaluator include an evaluator-clause
; (q.v.) for each fn in fn-args-lst plus clauses describing evfn when
; x is a variable symbol, a quoted object, and a lambda application,
; plus clauses describing evfn-lst on nil and on conses.
; Note: The function chk-evaluator exploits the fact that if evfn is
; an evaluator, then the constraint on it will contain at least 4
; clauses. (One of the five fixed clauses below is about only
; evfn-lst and not about evfn and hence wouldn't be among the
; constraints of evfn.) If this changes, change chk-evaluator.
; The functions guess-fn-args-lst-for-evfn and guess-evfn-lst-for-evfn take the
; known constraints on an evfn and guess the evfn-lst and list of fns for which
; evfn might be an evaluator. These functions knows the structure of the
; clauses generated here, in particular, the structure of the clause describing
; evfn-lst on a cons and the structure of the evaluator-clause for a given fn.
; If these structures change, change these two functions.
; WARNING: Don't change the clauses below without reading the Notes above! In
; particular, the functions chk-evaluator and defevaluator-form/defthms both
; call this function. Furthermore, at least the following functions know about
; the number, order, and shape of the clauses generated:
; defevaluator-form/defthm-name and defevaluator-form/defthm-hints.
(append (sublis (list (cons 'evfn evfn)
(cons 'evfn-lst evfn-lst))
'(((not (consp x))
(not ; (syntaxp (not (equal a ''nil)))
(synp 'nil
'(syntaxp (not (equal a ''nil)))
'(if (not (equal a ''nil)) 't 'nil)))
(equal (car x) 'quote)
(equal (evfn x a)
(evfn (cons (car x)
(kwote-lst (evfn-lst (cdr x) a)))
'nil)))
((not (symbolp x))
; We considered replacing the right-hand side below simply by (cdr (assoc-equal
; x a)), i.e., without making a special case for x = nil. Our motivation was
; an observation from Sol Swords: there is a kind of mismatch between that
; special case for nil on the one hand, and the treating of nil as an ordinary
; variable by sublis-var. Indeed, he went through some effort to deal with
; this mismatch in his community book,
; books/clause-processors/sublis-var-meaning.lisp, using a hypothesis (not
; (assoc nil alist)) in some lemmas in that book.
; However, if we were to make that change, together with the corresponding
; change in the local witness for the evaluator in the symbolp case, then the
; preceding clause (above) would no longer be valid for our local witness.
; Consider for example the case that x is '(binary-+) and a is '((nil . 7)),
; and that evfn is the local witness and understands binary-+. Then the
; left-hand side above is 14 but the right-hand side is 0. A fix is to modify
; the preceding clause by replacing the final 'nil by a (and then dropping the
; syntaxp hypothesis above, and even making this a definition rule with
; :controller-alist mapping the evaluator to (t nil)). But that change would
; make invalid the lemma ev-commutes-car in community book
; books/tools/defevaluator-fast.lisp. It would also require changing some
; hints, for example replacing the :hints in event lemma0, community book
; books/clause-processors/bv-add.lisp, by (("Goal" :expand ((evl x1 env)))).
; Who knows how many books might be affected, including some user books not in
; the regression suite? So we have decided to leave well enough alone, at
; least for now. If later we learn of a reason to reconsider, we may do so.
(equal (evfn x a)
(if x
(cdr (assoc-equal x a))
'nil)))
((not (consp x))
(not (equal (car x) 'quote))
(equal (evfn x a) (car (cdr x))))
((not (consp x))
(not (consp (car x)))
(equal (evfn x a)
(evfn (car (cdr (cdr (car x))))
(pairlis$ (car (cdr (car x)))
(evfn-lst (cdr x) a)))))
((consp x-lst)
(equal (evfn-lst x-lst a) 'nil))
((not (consp x-lst))
(equal (evfn-lst x-lst a)
(cons (evfn (car x-lst) a)
(evfn-lst (cdr x-lst) a))))))
(evaluator-clauses1 evfn fn-args-lst)))
; The function above describes the constraints on an evaluator
; function. The user will define his own evfn and evfn-lst and prove
; the constraint formulas. Later, when evfn is used in an alleged
; :META theorem, we will verify that it is an evaluator by getting its
; constraint, digging the clauses out of it, and comparing them to the
; list above. But in our statement of the constraints we use car/cdr
; nests freely. The user is liable to use cadr nests (or first,
; second, third, etc., which expand to cadr nests). We therefore take
; time out from our development of evaluators and define the functions
; for normalizing the user's cadr nests to car/cdr nests. The
; following code feels really clunky.
(defun cdrp (x term)
; We determine whether term is of the form (cdr (cdr ... (cdr x))),
; where there are 0 or more cdrs.
(cond ((equal x term) t)
((variablep term) nil)
((fquotep term) nil)
((eq (ffn-symb term) 'cdr) (cdrp x (fargn term 1)))
(t nil)))
; A source of confusion the user faces is that he may write
; (eq & 'fn) or (eq 'fn &) where we expect (equal & 'fn). So we
; normalize those too, at the top-level of a clause. We call it
; a term-lst rather than a clause for symmetry with the foregoing.
(defun expand-eq-and-atom-term-lst (lst)
; This function scans the clause lst and replaces literals of the
; form (not (eq x 'sym)), (not (eq 'sym x)), and (not (equal 'sym x))
; by (not (equal x 'sym)). It also replaces literals of the form
; (atom x) by (not (consp x)).
(cond ((null lst) nil)
(t (let ((rst (expand-eq-and-atom-term-lst (cdr lst)))
(lit (car lst)))
(case-match
lit
(('not ('eq x ('quote s)))
(cond ((symbolp s)
(cons (mcons-term* 'not
(mcons-term* 'equal
x
(list 'quote s)))
rst))
((and (quotep x)
(symbolp (cadr x)))
(cons (mcons-term* 'not
(mcons-term* 'equal
(list 'quote s)
x))
rst))
(t (cons lit rst))))
(('not ('eq ('quote s) x))
(cond ((symbolp s)
(cons (mcons-term* 'not
(mcons-term* 'equal
x
(list 'quote s)))
rst))
(t (cons lit rst))))
(('not ('equal ('quote s) x))
(cond ((and (symbolp s)
(not (and (quotep x)
(symbolp (cadr x)))))
(cons (mcons-term* 'not
(mcons-term* 'equal
x
(list 'quote s)))
rst))
(t (cons lit rst))))
(('atom x)
(cons (mcons-term* 'not (mcons-term* 'consp x))
rst))
(& (cons lit rst)))))))
; And here, at long last, is the function that massages a user's
; alleged evaluator constraint clause so as to unfold all the cadrs
; and cadars of the pseudo-term in question.
(defun normalize-alleged-evaluator-clause (clause)
; Supposing clause is an evaluator clause, we make the likely
; transformations to remove minor syntactic variants introduced by the
; user. In particular, we eliminate the uses of atom and eq.
(expand-eq-and-atom-term-lst clause))
; And here is how we massage the list of user clauses.
(defun normalize-alleged-evaluator-clause-set (lst)
(cond ((null lst) nil)
(t (cons (normalize-alleged-evaluator-clause (car lst))
(normalize-alleged-evaluator-clause-set (cdr lst))))))
(defun shallow-clausify1 (lst)
; Lst is a list of pairs, each of the form (hyps . concl) as returned
; by unprettyify. We convert it to a list of clauses.
(cond ((null lst) nil)
(t (conjoin-clause-to-clause-set
(add-literal
(cdar lst)
(dumb-negate-lit-lst (caar lst))
t)
(shallow-clausify1 (cdr lst))))))
(defun shallow-clausify (term)
; We extract a set of clauses from term whose conjunction is is
; propositionally equivalent to term. This is like clausify except
; that we are very shallow and stupid.
; Note: Why on earth do we have this function? The intended use for
; this function is to clausify the constraint on an alleged evaluator
; function evfn. The idea is to convert the user's constraint to a
; set of clauses and compare that set to the canonical evaluator
; clauses. Why not just use clausify? If one of the functions
; interpretted by evfn is 'if then our full-blown clausify will break
; that clause apart into two unrecognizable pieces.
(shallow-clausify1 (unprettyify term)))
; We next turn to guessing the evfn-lst and list of fns for which evfn
; is an evaluator. Our guesses key on the structure of the clauses
; that constrain evfn.
(defun find-evfn-lst-in-clause (evfn cl)
; We are looking for the clause that specifies how evfn evaluates
; a lambda application. That clause will mention evfn-lst, the
; function that evaluates a list of terms. In particular, we scan
; cl looking for the literal
; (equal (evfn x a)
; (evfn (caddar x)
; (pairlis$ (cadar x)
; (evfn-lst (cdr x) a))))
; except we know that the cadr nests are in car/cdr form if this is a
; good clause. If we find such a literal we use evfn-lst as our
; guess. Otherwise we return nil
(cond
((null cl) nil)
(t (let ((lit (car cl)))
(case-match
lit
(('equal (!evfn x a)
(!evfn ('car ('cdr ('cdr ('car x))))
('pairlis$ ('car ('cdr ('car x)))
(evfn-lst ('cdr x) a))))
(cond ((and (variablep x)
(variablep a))
evfn-lst)
(t (find-evfn-lst-in-clause evfn (cdr cl)))))
(& (find-evfn-lst-in-clause evfn (cdr cl))))))))
(defun guess-evfn-lst-for-evfn (evfn cl-set)
; We look through cl-set for the clause that specifies how evfn
; evaluates lambda applications. That clause mentions evfn-lst and if
; we find it we return the evfn-lst mentioned. Otherwise nil.
; We insist that the clause be of length 3.
(cond ((null cl-set) nil)
((and (int= (length (car cl-set)) 3)
(find-evfn-lst-in-clause evfn (car cl-set))))
(t (guess-evfn-lst-for-evfn evfn (cdr cl-set)))))
(defun find-fn-in-clause (cl wrld)
(cond ((null cl) nil)
(t (let ((lit (car cl)))
(case-match
lit
(('not ('equal ('car x) ('quote fn)))
(cond ((and (variablep x)
(symbolp fn)
(not (eq fn 'quote))
(function-symbolp fn wrld))
fn)
(t (find-fn-in-clause (cdr cl) wrld))))
(& (find-fn-in-clause (cdr cl) wrld)))))))
(defun guess-fn-args-lst-for-evfn (cl-set wrld)
; We return a list of ``fn-args'', terms of the form (fn v1 ... vn) where the
; vi are the formals of fn. The list contains a fn-arg for each function
; symbol fn such that some 3 literal clause in cl-set contains a literal of the
; form (not (equal (car x) 'fn)).
(cond ((null cl-set) nil)
(t (let ((fn (and (int= (length (car cl-set)) 3)
(find-fn-in-clause (car cl-set) wrld))))
(cond (fn (cons (mcons-term fn (formals fn wrld))
(guess-fn-args-lst-for-evfn (cdr cl-set) wrld)))
(t (guess-fn-args-lst-for-evfn (cdr cl-set) wrld)))))))
(defun normalized-evaluator-cl-set (ev wrld)
(normalize-alleged-evaluator-clause-set
(shallow-clausify
(mv-let (sym x)
(constraint-info ev wrld)
(assert$ (not (eq x *unknown-constraints*))
(cond
(sym (conjoin x))
(t x)))))))
(defun chk-evaluator (evfn wrld ctx state)
; Evfn must be a function symbol. We check that evfn is an evaluator
; function in wrld, or else we cause an error. To be an evaluator
; function evfn must be a function symbol and there must exist another
; symbol, evfn-lst, and a list of function symbols, fns, such that the
; constraints on evfn and evfn-lst are equivalent to the evaluator
; clauses for evfn, evfn-lst and fns.
; What do we mean by the constraints being "equivalent" to the evaluator
; clauses? We convert the two constraint formulas to sets of clauses
; with shallow-clausify. Then we expand the cadrs in the user's set.
; Then we do a bi-directional subsumption check on the evaluator clauses.
; By doing a subsumption check we permit the user to use any variable
; names he wishes and to order his clauses and the literals within his
; clauses any way he wishes.
; However, before we can do that we have to decide what evfn-lst and
; fns we will use. We guess, by inspecting the constraints of evfn.
; If our guess is wrong we'll just end up saying that evfn is not an
; evaluator fn. If our guess is right, we'll confirm it by the subsumption
; check. So the guessing method is technically unimportant. However, we
; believe it is complete: if there exist suitable evfn-lst and fns,
; we find them.
(let ((cl-set0 (normalized-evaluator-cl-set evfn wrld))
(str
"The symbol ~x0, playing the role of an evaluator in your alleged ~
theorem, does not pass the test for an evaluator. See :DOC meta ~
and :DOC defevaluator. The constraint on ~x0 is in fact ~p1. ~@2")
)
(cond
((< (length cl-set0) 4)
(er soft ctx str
evfn
(prettyify-clause-set cl-set0 nil wrld)
"This constraint has fewer than four conjuncts."))
(t (let ((evfn-lst
(guess-evfn-lst-for-evfn evfn cl-set0)))
(cond
((null evfn-lst)
(er soft ctx str
evfn
(prettyify-clause-set cl-set0 nil wrld)
"We cannot find the formula describing how to ~
evaluate lambda applications."))
(t (let* ((fn-args-lst (guess-fn-args-lst-for-evfn cl-set0 wrld))
(cl-set1
(conjoin-clause-sets
cl-set0
(normalized-evaluator-cl-set evfn-lst wrld)))
(cl-set2
(remove-guard-holders-lst-lst
(evaluator-clauses evfn evfn-lst fn-args-lst))))
(cond
((not (and (clause-set-subsumes nil cl-set1 cl-set2)
(clause-set-subsumes nil cl-set2 cl-set1)))
(er soft ctx
"If ~x0 is an evaluator then it recognizes ~#1~[no ~
function symbols~/only the function symbol ~&2~/the ~
function symbols ~&2~] and its mutually recursive ~
counterpart for lists of terms must be ~x3. The ~
constraints on ~x0 and ~x3 must therefore be ~
~P45.~|~%We would recognize ~x0 and ~x3 as evaluators ~
if the constraints on them subsumed and were subsumed ~
by the constraints above. But, in fact, the ~
constraints on ~x0 and ~x3 are ~P65 and the ~
bidirectional subsumption check fails. See :DOC ~
defevaluator."
evfn
(zero-one-or-more fn-args-lst)
(strip-cars fn-args-lst)
evfn-lst
(prettyify-clause-set cl-set2 nil wrld)
(term-evisc-tuple nil state)
(prettyify-clause-set cl-set1 nil wrld)))
(t (value nil)))))))))))
; To make it easier to introduce an evaluator, we define the following
; macro.
(defun namedp-prefix (evfn namedp)
; We generate the prefix used in naming the constraints for evaluator evfn.
; Namedp is t or nil and indicates whether we generate a name like
; evfn-OF-fn-CALL or like evfn-CONSTRAINT-i. We return either "evfn-OF-" or
; "evfn-CONSTRAINT-".
(if namedp
(concatenate 'string (symbol-name evfn) "-OF-")
(concatenate 'string (symbol-name evfn) "-CONSTRAINT-")))
(defun defevaluator-form/defthm-name (evfn evfn-lst namedp prefix i clause)
; This function generates the name of the ith constraint for evaluator function
; evfn. Namedp is t or nil and indicates whether we generate a name like
; evfn-OF-fn-CALL or like evfn-CONSTRAINT-i. Prefix is a string and is either
; of the form "evfn-OF-" or "evfn-CONSTRAINT-"; see namedp-prefix. I is 0-based
; the number of the constraint and clause is the clausal form of the
; constraint. But when namedp is non-nil we have to solve two problems: (a)
; give special names to the first few constraints (which do not concern one of
; the function symbols to be interpreted) and (b) figure out the function
; symbol fn.
; We solve (a) by coding in our knowledge of the order of the clauses generated
; by evaluator-clauses and we solve (b) by looking into those clauses
; corresponding to calls of functions to be interpreted.
; i name of defthm when namedp
; 0 evfn-OF-FNCALL-ARGS
; 1 evfn-OF-VARIABLE
; 2 evfn-of-QUOTE
; 3 evfn-of-LAMBDA
; 4 evfn-lst-OF-ATOM
; 5 evfn-lst-OF-CONS
; 6 ... evfn-OF-fn-CALL, ... for each interpreted fn
; When i>5, clause is always of the form:
; ((NOT (CONSP X)) (NOT (EQUAL (CAR X) 'fn)) (EQUAL (evfn X A) (fn ...)))
; and we recover fn from the second literal as shown in the binding of
; fn below.
(cond
(namedp
(let ((fn (car (fargn (caddr clause) 2))))
(case i
(0 (genvar evfn (concatenate 'string prefix "FNCALL-ARGS") nil nil))
(1 (genvar evfn (concatenate 'string prefix "VARIABLE") nil nil))
(2 (genvar evfn (concatenate 'string prefix "QUOTE") nil nil))
(3 (genvar evfn (concatenate 'string prefix "LAMBDA") nil nil))
(4 (genvar evfn
(concatenate 'string (symbol-name evfn-lst) "-OF-ATOM")
nil nil))
(5 (genvar evfn
(concatenate 'string (symbol-name evfn-lst) "-OF-CONS")
nil nil))
(otherwise
(genvar evfn
(concatenate 'string prefix (symbol-name fn) "-CALL")
nil nil)))))
(t (genvar evfn prefix i nil))))
(defun defevaluator-form/defthm-hints (evfn evfn-lst i)
; See the comment in defevaluator-form/defthm-name about the knowledge of
; evaluator-clauses encoded in this function. We generate the :hints for the
; ith constraint, i.e., for the formula (prettyify-clause clause nil nil),
; where clause is (nth i (evaluator-clauses evfn evfn-lst fn-args-lst). A
; representative value of fn-args-lst would be ((CAR X) (CONS X Y) (IF X Y Z)),
; for which suitable i would be 0, 1, ..., 8.
(cond
((> i 5)
`(("Goal" :expand
((,evfn X A)
(:free (x) (HIDE x))
(:free (fn args)
(APPLY-FOR-DEFEVALUATOR fn args))))))
(t
(case i
(0 `(("Goal" :expand
((:free (x) (HIDE x))
(,evfn X A)
(:free (args)
(,evfn (CONS (CAR X) ARGS) NIL)))
:in-theory '(eval-list-kwote-lst
fix-true-list-ev-lst
car-cons cdr-cons))))
((1 2 3) `(("Goal" :expand ((,evfn X A)))))
(otherwise
`(("Goal" :expand ((,evfn-lst X-LST A)))))))))
(defun defevaluator-form/defthm (evfn evfn-lst namedp prefix i clause)
; We generate the defthm event for the ith constraint, given the clause
; expressing that constraint. The 0th constraint is disabled; the
; others are only locally disabled.
(let* ((defthm (if (zp i) 'defthmd 'defthm))
(name (defevaluator-form/defthm-name
evfn evfn-lst namedp prefix i clause))
(formula (prettyify-clause clause nil nil))
(hints (defevaluator-form/defthm-hints evfn evfn-lst i)))
`((,defthm ,name
,formula
:hints ,hints)
(local (in-theory (disable ,name))))))
(defun defevaluator-form/defthms (evfn evfn-lst namedp prefix i clauses)
(declare (xargs :mode :program))
(if (endp clauses)
nil
(append
(defevaluator-form/defthm evfn evfn-lst namedp prefix i (car clauses))
(defevaluator-form/defthms evfn evfn-lst namedp prefix (+ 1 i) (cdr clauses)))))
(defun car-cadr-caddr-etc (formals x)
(if (endp formals)
nil
(cons `(CAR ,x)
(car-cadr-caddr-etc (cdr formals) `(CDR ,x)))))
(defun defevaluator-form/fns-clauses (fn-args-lst)
(declare (xargs :mode :program))
; We return a list of cond clauses,
; (
; ((equal (car x) 'fn1)
; (fn1 (evfn (cadr x) a) ... (evfn (cad...dr x) a)))
; ((equal (car x) 'fn2)
; (fn2 (evfn (cadr x) a) ... (evfn (cad...dr x) a)))
; ...
; (t nil))
; containing a clause for each fni in fns plus a final t clause.
(cond ((null fn-args-lst) '((t nil)))
(t (cons
(list (list 'equal 'fn (kwote (caar fn-args-lst)))
(cons (caar fn-args-lst)
(car-cadr-caddr-etc (cdar fn-args-lst)
'args)))
(defevaluator-form/fns-clauses (cdr fn-args-lst))))))
(defconst *defevaluator-form-base-theory*
(append *definition-minimal-theory*
'(car-cdr-elim
car-cons cdr-cons
o< o-finp o-first-expt o-first-coeff o-rst natp posp
acl2-count
alistp
fix-true-list kwote kwote-lst pairlis$-fix-true-list
)))
(defun defevaluator-form (evfn evfn-lst namedp fn-args-lst)
(declare (xargs :mode :program))
(let* ((fns-clauses (defevaluator-form/fns-clauses fn-args-lst))
(defthms (defevaluator-form/defthms evfn evfn-lst namedp
(namedp-prefix evfn namedp)
0
(evaluator-clauses evfn evfn-lst fn-args-lst))))
`(encapsulate
(((,evfn * *) => *)
((,evfn-lst * *) => *))
(set-inhibit-warnings "theory")
(local (in-theory *defevaluator-form-base-theory*))
. ,(sublis
(list (cons 'evfn evfn)
(cons 'evfn-lst evfn-lst)
(cons 'fns-clauses fns-clauses)
(cons 'defthms defthms))
'((local (defun-nx apply-for-defevaluator (fn args)
(declare (xargs :verify-guards nil
:normalize nil))
(cond . fns-clauses)))
(local
(mutual-recursion
(defun-nx evfn (x a)
(declare
(xargs :verify-guards nil
:measure (acl2-count x)
:well-founded-relation o<
:normalize nil
:hints (("goal" :in-theory
(enable (:type-prescription
acl2-count))))
:mode :logic))
(cond
((symbolp x) (and x (cdr (assoc-eq x a))))
((atom x) nil)
((eq (car x) 'quote) (car (cdr x)))
(t (let ((args (evfn-lst (cdr x) a)))
(cond
((consp (car x))
(evfn (car (cdr (cdr (car x))))
(pairlis$ (car (cdr (car x)))
args)))
(t (apply-for-defevaluator (car x) args)))))))
(defun-nx evfn-lst (x-lst a)
(declare (xargs :measure (acl2-count x-lst)
:well-founded-relation o<))
(cond ((endp x-lst) nil)
(t (cons (evfn (car x-lst) a)
(evfn-lst (cdr x-lst) a)))))))
(local (in-theory (disable evfn evfn-lst apply-for-defevaluator)))
(local
(defthm eval-list-kwote-lst
(equal (evfn-lst (kwote-lst args) a)
(fix-true-list args))
:hints (("goal"
:expand ((:free (x y) (evfn-lst (cons x y) a))
(evfn-lst nil a)
(:free (x)
(evfn (list 'quote x) a)))
:induct (fix-true-list args)))))
(local
(defthm fix-true-list-ev-lst
(equal (fix-true-list (evfn-lst x a))
(evfn-lst x a))
:hints (("goal" :induct (len x)
:in-theory (e/d ((:induction len)))
:expand ((evfn-lst x a)
(evfn-lst nil a))))))
(local
(defthm ev-commutes-car
(equal (car (evfn-lst x a))
(evfn (car x) a))
:hints (("goal" :expand ((evfn-lst x a)
(evfn nil a))
:in-theory (enable default-car)))))
(local
(defthm ev-lst-commutes-cdr
(equal (cdr (evfn-lst x a))
(evfn-lst (cdr x) a))
:hints (("Goal" :expand ((evfn-lst x a)
(evfn-lst nil a))
:in-theory (enable default-cdr)))))
. defthms)))))
(defun pairs-to-macro-alias-msgs (alist)
(declare (xargs :guard (symbol-alistp alist)))
(cond ((endp alist) nil)
(t (cons (msg "~x0 is a macro alias for function ~x1"
(caar alist) (cdar alist))
(pairs-to-macro-alias-msgs (cdr alist))))))
(defun defevaluator-check-msg (alist macro-aliases wrld bad macro-alist)
(declare (xargs :guard (and (symbol-alistp alist)
(symbol-alistp macro-aliases)
(plist-worldp wrld)
(symbol-listp bad)
(symbol-alistp macro-alist))))
(cond ((endp alist)
(cond ((or bad macro-alist)
(msg "~@0~@1"
(cond ((null bad) "")
((null (cdr bad))
(msg "The symbol ~x0 is not a function symbol in ~
the current ACL2 world."
(car bad)))
(t
(msg "The symbols ~&0 are not function symbols in ~
the current ACL2 world."
bad)))
(cond ((null macro-alist) "")
(t (msg " Note that ~*0."
(list
"" ; nothing to print
"~@*" ; last element
"~@*, and " ; 2nd to last element
"~@*" ; all other elements
(pairs-to-macro-alias-msgs macro-alist)))))))
(t nil)))
((function-symbolp (caar alist) wrld)
(defevaluator-check-msg (cdr alist) macro-aliases wrld bad
macro-alist))
(t (defevaluator-check-msg (cdr alist) macro-aliases wrld
(cons (caar alist) bad)
(let ((entry (assoc-eq (caar alist) macro-aliases)))
(cond (entry (cons entry macro-alist))
(t macro-alist)))))))
(defun defevaluator-check (x evfn evfn-lst fn-args-lst ctx state)
(declare (xargs :guard
(and (state-p state)
(symbol-alistp fn-args-lst)
(symbol-alistp
(fgetprop 'macro-aliases-table
'table-alist
nil
(w state))))))
(cond ((not (and (symbolp evfn)
(symbolp evfn-lst)
(symbol-list-listp fn-args-lst)))
(er soft ctx
"The form of a defevaluator event is (defevaluator evfn evfn-lst ~
fn-args-lst), where evfn and evfn-lst are symbols and ~
fn-args-lst is a true list of lists of symbols. Optionally, ~
one may supply the final keyword argument :namedp with value t ~
or nil (default). However, ~x0 does not have this form."
x))
(t (let* ((wrld (w state))
(msg (defevaluator-check-msg
fn-args-lst
(macro-aliases wrld)
wrld nil nil)))
(cond (msg (er soft ctx "~@0" msg))
(t (value nil)))))))
(defun defevaluator-check-form (x evfn evfn-lst fn-args-lst)
(declare (xargs :guard t))
`(with-output
:off error
:stack :push
(make-event
(er-progn
(with-output
:stack :pop
(defevaluator-check ',x ',evfn ',evfn-lst ',fn-args-lst
'(defevaluator . ,evfn)
state))
(value '(value-triple nil))))))
(defmacro defevaluator (&whole x evfn evfn-lst fn-args-lst &key skip-checks namedp)
; Note: It might be nice to allow defevaluator to take a :DOC string, but that
; would require allowing encapsulate to take such a string!
; This function executes an encapsulate that defines an evaluator
; evfn (with mutually recursive counterpart evfn-lst for lists of
; terms) that recognizes the functions in fns.
; Note: This version of defevaluator was adapted, with permission, from ACL2
; Community Book tools/defevaluator-fast.lisp which was authored by Sol Swords
; and Jared Davis. The defevaluator-fast defun-nx for evfn and evfn-lst,
; together with the preliminary lemmas and hints for the constraints were
; ripped from that book. The code for generating those forms was refactored to
; make it clear that the :namedp option only affects the names of the
; constraint theorems.
(let ((form (defevaluator-form evfn evfn-lst namedp fn-args-lst)))
(cond (skip-checks form)
(t `(progn ,(defevaluator-check-form x evfn evfn-lst fn-args-lst)
,form)))))
(table term-table nil nil
:guard
(term-listp val world))
(table term-table t '((binary-+ x y) (binary-* '0 y) (car x)))
(defun remove-meta-extract-contextual-hyps (hyps ev mfc-symbol a)
; Return (mv hyps' flg), where hyps' is the result of removing suitable
; meta-extract-contextual-fact hypotheses from hyps and flg is true if and only
; if at least one such hypothesis was removed. Ev is the evaluator function
; symbol and mfc-symbol is either nil or the mfc from the conclusion of a rule
; of class :meta. See also remove-meta-extract-global-hyps for an
; corresponding function for global hypotheses.
(cond
((atom hyps) (mv nil nil))
(t (let ((hyp (car hyps)))
(mv-let
(hs flg)
(remove-meta-extract-contextual-hyps (cdr hyps) ev mfc-symbol a)
(case-match hyp
((!ev ('meta-extract-contextual-fact & !mfc-symbol
; Note that meta-extract-contextual-fact calls mfc- functions, which get their
; world from the mfc, not the state (at least as of this writing, on
; 4/17/2013). Thus, we believe that meta-extract-contextual-fact is correct
; regardless of the state argument. This belief allows us to loosen the
; restriction that the state is 'state, and instead allow an arbitrary state
; here. But we keep the restriction that state is 'state; we may more
; carefullly consider relaxing it upon request.
'state)
!a)
(mv hs t))
(& (mv (cons hyp hs) flg))))))))
(defun remove-meta-extract-global-hyps (hyps ev)
; Return (mv hyps' flg), where hyps' is the result of removing suitable
; meta-extract-global-fact+ hypotheses from hyps and flg is true if and only if
; at least one such hypothesis was removed. Ev is the evaluator function
; symbol. See also remove-meta-extract-contextual-hyps for an analogous
; function.
(declare (xargs :mode :program))
(cond
((atom hyps) (mv nil nil))
(t (let ((hyp (car hyps)))
(mv-let
(hs flg)
(remove-meta-extract-global-hyps (cdr hyps) ev)
(case-match hyp
((!ev ('meta-extract-global-fact+ & & 'state) &)
(mv hs t))
(& (mv (cons hyp hs) flg))))))))
(defun meta-rule-hypothesis-functions (hyp ev x a mfc-symbol)
; Here hyp is the hypothesis of the proposed meta rule (or, *t* if
; there is none). We want to identify the hypothesis metafunction
; (see :DOC meta) of that rule. We return nil if the hyp is
; unacceptable, t if there is no extra hypothesis, and otherwise the
; hypothesis function symbol. Note that we allow, but do not require,
; the hypotheses (pseudo-termp x) and (alistp a) to be among the
; hypotheses, in which case we delete them before returning the
; result.
; If mfc-symbol is non-nil, this is an extended metafunction and we
; insist that the hyp function be extended also. All extended
; functions take three arguments, the term, the context, and STATE, in
; that order. The value of mfc-symbol is the variable symbol used to
; denote the context.
(let ((hyps (remove1-equal
(fcons-term* 'pseudo-termp x)
(remove1-equal (fcons-term* 'alistp a)
(flatten-ands-in-lit hyp)))))
(mv-let
(hyps flg1)
(if mfc-symbol
(remove-meta-extract-contextual-hyps hyps ev mfc-symbol a)
(mv hyps nil))
(mv-let
(hyps flg2)
(remove-meta-extract-global-hyps hyps ev)
(let ((hyp3 (car hyps))
(extended-args
(if mfc-symbol (cons mfc-symbol '(STATE)) nil)))
(mv (cond
((null hyps) t)
(t (and (null (cdr hyps))
(case-match hyp3
((!ev (fn !x . !extended-args) !a)
(if (symbolp fn)
fn
nil))
(& nil)))))
(append (and flg1 '(meta-extract-contextual-fact))
(and flg2 '(meta-extract-global-fact+)))))))))
(defun meta-fn-args (term extendedp ens state)
(cond
(extendedp
(let ((wrld (w state)))
(list term
(make metafunction-context
:rdepth (rewrite-stack-limit wrld)
:type-alist nil
:obj '?
:geneqv nil
:wrld wrld
:fnstack nil
:ancestors nil
:simplify-clause-pot-lst nil
:rcnst
(make-rcnst ens wrld state
:force-info t
:top-clause (list term)
:current-clause (list term))
:gstack nil
:ttree nil
:unify-subst nil)
(coerce-state-to-object state))))
(t (list term))))
(defun chk-meta-function (metafn name trigger-fns extendedp
term-list ctx ens state)
; If extendedp is nil we call metafn on only one term arg. Otherwise, we call
; it on args of the type: (term context state). We manufacture a trivial
; context. We don't care what non-nil value extendedp is.
(cond
((null term-list)
(value nil))
((or (variablep (car term-list))
(fquotep (car term-list))
(flambda-applicationp (car term-list))
(not (member-eq (ffn-symb (car term-list)) trigger-fns)))
(chk-meta-function metafn name trigger-fns extendedp
(cdr term-list) ctx ens state))
(t
(let ((args (meta-fn-args (car term-list) extendedp ens state)))
(pprogn
(cond
((warning-disabled-p "Meta")
state)
(t
(mv-let (erp val latches)
(ev-fncall-meta metafn args state)
(declare (ignore latches))
(cond
(erp
; We use warnings rather than errors when the checks fail, partly so
; that we can feel free to change the checks without changing what the
; prover will accept. Put differently, we don't want user-managed
; tables to affect what the prover is able to prove.
(warning$ ctx ("Meta")
"An error occurred upon running the metafunction ~
~x0 on the term ~x1. This does not bode well ~
for the utility of this metafunction for the ~
meta rule ~x2. See :DOC term-table."
metafn (car term-list) name))
((termp val (w state))
state)
(t
(warning$ ctx ("Meta")
"The value obtained upon running the ~
metafunction ~x0 on the term ~x1 is ~x2, which ~
is NOT a termp in the current ACL2 world. This ~
does not bode well for the utility of this ~
metafunction for the meta rule ~x3. See :DOC ~
term-table."
metafn (car term-list) val name))))))
(chk-meta-function
metafn name trigger-fns extendedp (cdr term-list) ctx ens state))))))
(defun ev-lst-from-ev (ev wrld)
; We expect already to have checked that ev has a known constraint (see assert$
; call below).
(guess-evfn-lst-for-evfn
ev
(normalized-evaluator-cl-set ev wrld)))
(defun attached-fns (fns wrld)
(cond ((endp fns) nil)
(t (let ((prop (attachment-alist (car fns) wrld)))
(cond ((or (null prop)
(and (consp prop)
(eq (car prop)
:attachment-disallowed)))
(attached-fns (cdr fns) wrld))
(t (cons (car fns)
(attached-fns (cdr fns) wrld))))))))
(defun siblings (f wrld)
(or (getpropc f 'siblings nil wrld)
(getpropc f 'recursivep nil wrld)
(list f)))
(defun canonical-sibling (f wrld)
(let ((sibs (getpropc f 'siblings nil wrld)))
(cond (sibs (car sibs))
(t (let ((sibs (getpropc f 'recursivep nil wrld)))
(cond (sibs (car sibs))
(t f)))))))
(mutual-recursion
(defun canonical-ffn-symbs (term wrld ans ignore-fns rlp)
; For a discussion of rlp, see the end of the Essay on Correctness of Meta
; Reasoning.
(cond
((variablep term) ans)
((fquotep term) ans)
((and rlp
(eq (ffn-symb term) 'return-last)
(not (equal (fargn term 1) ''mbe1-raw)))
(canonical-ffn-symbs (fargn term 3) wrld ans ignore-fns rlp))
(t (canonical-ffn-symbs-lst
(fargs term)
wrld
(cond ((flambda-applicationp term)
(canonical-ffn-symbs (lambda-body (ffn-symb term))
wrld
ans
ignore-fns
rlp))
(t (let ((fn (canonical-sibling (ffn-symb term) wrld)))
(cond ((member-eq fn ignore-fns) ans)
(t (add-to-set-eq fn ans))))))
ignore-fns
rlp))))
(defun canonical-ffn-symbs-lst (lst wrld ans ignore-fns rlp)
(cond ((null lst) ans)
(t (canonical-ffn-symbs-lst
(cdr lst)
wrld
(canonical-ffn-symbs (car lst) wrld ans ignore-fns rlp)
ignore-fns
rlp))))
)
(defun collect-canonical-siblings (fns wrld ans ignore-fns)
(cond ((endp fns) ans)
(t (collect-canonical-siblings
(cdr fns)
wrld
(let ((fn (canonical-sibling (car fns) wrld)))
(cond ((or (member-eq fn ignore-fns)
(member-eq fn ans))
ans)
(t (cons fn ans))))
ignore-fns))))
(defun immediate-canonical-ancestors (fn wrld ignore-fns rlp)
; This function is analogous to immediate-instantiable-ancestors, but it
; traffics entirely in canonical functions and is not concerned with the notion
; of instantiablep. To see why guards are involved, see the reference to the
; Essay on Correctness of Meta Reasoning in the Essay on Defattach, which also
; explains special handling of return-last, performed here when rlp is true.
(let ((guard-anc
(canonical-ffn-symbs (guard fn nil wrld) wrld nil ignore-fns rlp)))
(mv-let (name x)
(constraint-info fn wrld)
(cond
((eq x *unknown-constraints*)
(let* ((cl-proc
(getpropc name 'constrainedp
'(:error
"See immediate-canonical-ancestors: ~
expected to find a 'constrainedp property ~
where we did not.")
wrld))
(supporters (unknown-constraint-supporters cl-proc wrld)))
(collect-canonical-siblings supporters wrld guard-anc
ignore-fns)))
(name (canonical-ffn-symbs-lst x wrld guard-anc ignore-fns rlp))
(t (canonical-ffn-symbs x wrld guard-anc ignore-fns rlp))))))
(defun canonical-ancestors-rec (fns wrld ans rlp)
; See canonical-ancestors. Unlike that function, it includes fns in the
; result, and it assumes that all functions in fns are canonical.
(cond
((null fns) ans)
((member-eq (car fns) ans)
(canonical-ancestors-rec (cdr fns) wrld ans rlp))
(t
(let* ((ans1 (cons (car fns) ans))
(imm (immediate-canonical-ancestors (car fns) wrld ans1 rlp))
(ans2 (canonical-ancestors-rec imm wrld ans1 rlp)))
(canonical-ancestors-rec (cdr fns) wrld ans2 rlp)))))
(defun canonical-ancestors (fn wrld rlp)
; This function is completely analogous to instantiable-ancestors, except that
; it takes a single function that is not included in the result, it traffics
; entirely in canonical functions, and it is not concerned with the notion of
; instantiablep. It assumes that fn is canonical.
; For a discussion of rlp, see the end of the Essay on Correctness of Meta
; Reasoning.
(let* ((imm (immediate-canonical-ancestors fn wrld (list fn) rlp)))
(canonical-ancestors-rec imm wrld nil rlp)))
(defun canonical-ancestors-lst (fns wrld)
; Fns is a set of function symbols, not necessarily canonical. We return all
; canonical ancestors of fns.
(canonical-ancestors-rec (collect-canonical-siblings fns wrld nil nil)
wrld nil t))
(defun chk-evaluator-use-in-rule (name meta-fn hyp-fn extra-fns rule-type ev
ctx wrld state)
(er-progn
(let ((temp (context-for-encapsulate-pass-2 (decode-logical-name ev wrld)
(f-get-global 'in-local-flg
state))))
(case temp
(illegal
(er soft ctx ; see comment in defaxiom-supporters
"The proposed ~x0 rule, ~x1, is illegal because its evaluator ~
function symbol, ~x2, is defined in a superior non-trivial ~
encapsulate event (``non-trivial'' in the sense that it has a ~
non-empty signature). See :DOC evaluator-restrictions. In some ~
cases, a solution is to make the current ~x0 rule LOCAL, though ~
the alleged evaluator will probably not be available for future ~
:META or :CLAUSE-PROCESSOR rules."
rule-type
name
ev))
(maybe
(pprogn
(warning$ ctx nil ; add a string here if someone wants to turn this off
"The proposed ~x0 rule will ultimately need to be LOCAL in ~
its immediately surrounding encapsulate event, because ~
its evaluator is introduced in a superior non-trivial ~
encapsulate event. Even if this rule is LOCAL, the ~
alleged evaluator will probably not be available for ~
future :META or :CLAUSE-PROCESSOR rules. See :DOC ~
evaluator-restrictions."
rule-type
name
ev)
(value nil)))
(otherwise (value nil))))
(mv-let
(fn constraint)
(constraint-info ev wrld)
(declare (ignore fn))
(cond
((eq constraint *unknown-constraints*)
(er soft ctx ; see comment in defaxiom-supporters
"The proposed ~x0 rule, ~x1, is illegal because its evaluator ~
function symbol, ~x2, is constrained by the (unknown) theory of a ~
dependent clause-processor, ~x3. See :DOC clause-processor."
rule-type
name
ev
(getpropc ev 'constrainedp
'(:error "See chk-evaluator-use-in-rule: expected to ~
find a 'constrainedp property where we did not.")
wrld)))
(t
(let* ((ev-lst (ev-lst-from-ev ev wrld))
(ev-prop (getpropc ev 'defaxiom-supporter nil wrld))
(ev-lst-prop (getpropc ev-lst 'defaxiom-supporter nil wrld))
(ev-fns (list ev ev-lst))
(meta-fn-lst (if hyp-fn
(list meta-fn hyp-fn)
(list meta-fn)))
(meta-anc (canonical-ancestors-lst meta-fn-lst wrld))
(extra-anc (canonical-ancestors-lst extra-fns wrld))
(ev-anc (canonical-ancestors-lst (list ev) wrld)))
(cond
((and extra-fns
(or (getpropc ev 'predefined nil wrld)
(getpropc ev-lst 'predefined nil wrld)))
; See the comment below about this case in the comment in a case below, where
; we point out that extra-fns are defined in the boot-strap world.
(er soft ctx
"The proposed evaluator function, ~x0, was defined in the ~
boot-strap world. This is illegal when meta-extract hyotheses ~
are present, because for logical reasons our implementation ~
assumes that the evaluator is not ancestral in ~v1."
(if (getpropc ev 'predefined nil wrld)
ev
ev-lst)
'(meta-extract-contextual-fact meta-extract-global-fact+)))
((or ev-prop ev-lst-prop)
(er soft ctx ; see comment in defaxiom-supporters
"The proposed ~x0 rule, ~x1, is illegal because its evaluator ~
function symbol, ~x2, supports the formula of the defaxiom ~
event named ~x3. See :DOC evaluator-restrictions."
rule-type
name
(if ev-prop ev ev-lst)
(or ev-prop ev-lst-prop)))
((intersectp-eq ev-fns meta-anc)
; As explained in defaxiom-supporters, we might expect also to check here that
; ev and ev-lst are not ancestral in extra-fns. But extra-fns are defined in
; the boot-strap world while ev and ev-lst, as we check above, are not.
; It would be nice to improve the following error message by finding the
; particular function symbol in the meta or clause-processor rule for which ev
; is ancestral.
(er soft ctx ; see comment in defaxiom-supporters
"The proposed ~x0 rule, ~x1, is illegal because its ~
evaluator~#2~[~/ (list)~] function symbol, ~x3, supports the ~
definition of the rule's metafunction~#4~[~/s~], ~&4. See ~
:DOC evaluator-restrictions."
rule-type
name
(if (member-eq ev meta-anc) 0 1)
(if (member-eq ev meta-anc) ev ev-lst)
meta-fn-lst))
(t
; We would like to be able to use attachments where possible. However, the
; example at the end of :doc evaluator-restrictions shows that this is unsound
; in general and is followed by other relevant remarks.
(let ((bad-attached-fns-1
(attached-fns (intersection-eq ev-anc meta-anc) wrld))
(bad-attached-fns-2
; Although we need bad-attached-fns-2 to be empty (see the Essay on Correctness
; of Meta Reasoning), we could at the very least store extra-anc in the world,
; based on both meta-extract-contextual-fact and meta-extract-global-fact+, so
; that we don't have to compute extra-anc every time. But that check is
; probably cheap, so we opt for simplicity.
(attached-fns (intersection-eq extra-anc meta-anc) wrld)))
(cond
((or bad-attached-fns-1 bad-attached-fns-2)
(let ((msg "because the attached function~#0~[~/s~] ~&0 ~
~#0~[is~/are~] ancestral in both the ~@1 and ~@2 ~
functions")
(type-string
(if (eq rule-type :meta) "meta" "clause-processor")))
(er soft ctx ; see comment in defaxiom-supporters
"The proposed ~x0 rule, ~x1, is illegal ~@2~@3. See ~
:DOC evaluator-restrictions."
rule-type
name
(msg msg
(or bad-attached-fns-1 bad-attached-fns-2)
(if bad-attached-fns-1 "evaluator" "meta-extract")
type-string)
(cond ((and bad-attached-fns-1 bad-attached-fns-2)
(msg ", and because ~@0"
(msg msg
bad-attached-fns-2
"meta-extract"
type-string)))
(t "")))))
(t (value nil))))))))))))
(defun chk-rule-fn-guard (function-string rule-type fn ctx wrld state)
; At one time we insisted that fn not have a non-nil value for its 'constrained
; or 'non-executablep property. With the advent of defattach, a constrained
; function may however be a reasonable choice. Rather than do an elaborate
; check here on exactly what sort of constrained function might be attachable,
; we trust that the writer of :meta and :clause-processor rules knows better
; than to attach to functions that cannot be executed.
(let ((guard (guard fn t wrld))
(pseudo-termp-predicate
(case rule-type
(:meta 'pseudo-termp)
(:clause-processor 'pseudo-term-listp)
(t (er hard 'chk-rule-fn-guard
"Implementation error: unknown case in chk-rule-fn-guard. ~
Please contact the ACL2 implementors.")))))
(cond ((or (equal guard *t*)
(tautologyp
(fcons-term* 'implies
(fcons-term* pseudo-termp-predicate
(car (formals fn wrld)))
guard)
wrld))
(value nil))
(t (er soft ctx
"The ~s0 of a ~x1 rule must have a guard that obviously ~
holds whenever its first argument is known to be a ~x2 and ~
any stobj arguments are assumed to satisfy their stobj ~
predicates. However, the guard for ~x3 is ~p4. See :DOC ~
~@5."
function-string
rule-type
pseudo-termp-predicate
fn
(untranslate guard t wrld)
(case rule-type
(:meta "meta")
(:clause-processor "clause-processor")
(t (er hard 'chk-rule-fn-guard
"Implementation error: unknown case in ~
chk-rule-fn-guard. Please contact the ACL2 ~
implementors."))))))))
; Essay on never-untouchable-fns
; The global-val of 'never-untouchable-fns is an alist pairing function symbols
; with lists of well-formedness-guarantees. A well-formedness-guarantee is a
; structure of the form ((name fn thm-name1 hyp-fn thm-name2) . arity-alist),
; where hyp-fn and thm-name2 may omitted. It denotes the fact that the
; metatheorem named name justifies the metafunction fn (with hypothesis
; metafunction hyp-fn if present), and that the two metafunctions are
; guaranteed to return TERMPs by the theorems named thm-name1 and thm-name2
; respectively, provided the world satisfies arity-alist. The function symbols
; listed in arity-alist are the symbols that may be introduced by the
; metafunction or the hypothesis metafunction. When a metatheorem with TERMP
; guarantees is added, we make sure that none of the introduced symbols are on
; (forbidden-fns wrld state). See translate-well-formedness-guarantee. We
; also record the fact that those introduced symbols should never be made
; untouchable, by adding the well-formedness-guarantee to the symbol's entry on
; never-untouchable-fns. Thereafter, we prevent any of those function symbols
; from being added to untouchable-fns. This is done in push-untouchable, by
; comparing any about-to-be-made-untouchable function with
; never-untouchable-fns.
(defun add-new-never-untouchable-fns (fns well-formedness-guarantee
never-untouchable-fns)
; Well-formedness-guarantee is a structure of the form ((name fn thm-name1
; hyp-fn thm-name2) . arity-alist), where hyp-fn and thm-name2 may be omitted.
; It denotes the fact that the metatheorem named name justifies the
; metafunction fn (with hypothesis metafunction hyp-fn if present), and that
; the two metafunctions are guaranteed to return TERMPs by the theorems named
; thm-name1 and thm-name2 respectively, provided the world satisfies
; arity-alist. Fns, above, is a list of function symbols possibly introduced
; by the metatheorem described by well-formedness-guarantee. (In fact, it is
; initially just the keys of the arity-alist.) Never-untouchable-fns is an
; alist pairing function symbols to well-formedness-guarantees that may
; introduce that symbol. We add this new well-formedness-guarantee to the
; entries for fns.
(cond ((endp fns) never-untouchable-fns)
(t (add-new-never-untouchable-fns
(cdr fns)
well-formedness-guarantee
(put-assoc-eq
(car fns)
(add-to-set-equal well-formedness-guarantee
(cdr (assoc-eq (car fns) never-untouchable-fns)))
never-untouchable-fns)))))
(defun collect-never-untouchable-fns-entries (fns never-untouchable-fns)
; Suppose the list of function symbols fns is to be pushed onto
; untouchable-fns. We use this function to collect those g in fns (and
; information from their well-formedness-guarantees) which are not supposed to be
; made untouchable. The result of this function is thus nil if there are no
; never-untouchable-fns names in fns and otherwise, for each name gi that is
; not to be made untouchable we will have an entry in the result of the form
; (gi relevant-names1 relevant-names2 ...), where each relevant-namesi is the
; car of a well-formedness-guarantee, i.e., a list of 5 (or 3) names (name fn
; thm-name1 hyp-fn thm-name2) with the last two possibly omitted. This data
; structure is only shown to the user to help him or her figure out why we're
; rejecting a proposed untouchable function.
(cond
((endp fns) nil)
(t (let ((entry (assoc-eq (car fns) never-untouchable-fns)))
(cond
(entry
(cons entry
(collect-never-untouchable-fns-entries (cdr fns)
never-untouchable-fns)))
(t (collect-never-untouchable-fns-entries (cdr fns)
never-untouchable-fns)))))))
(defun interpret-term-as-meta-rule (term)
; We match term against the acceptable forms of metafunction correctness
; theorems and return the pieces: (mv hyp eqv ev x a fn mfc-symbol), where hyp
; is the hypothesis term or *t*, eqv is the equivalence relation, ev is the
; evaluator, etc. We do absolutely no well-formedness checks here, just
; deconstruct the term! For example, eqv, ev, or fn may be (unacceptable)
; LAMBDA expressions, x may not be a variable symbol, etc. But since term is
; known to be a term, eqv, for example, cannot be nil unless we fail to match
; any of the acceptable forms. Our convention is to test eqv to see if the
; term was deconstructed. If mfc-symbol is nil, fn is a vanilla flavored
; metafunction taking one argument, else it is an extended metafunction. But,
; despite its name, we don't know that mfc-symbol is a symbol, it could be any
; term.
(case-match term
(('IMPLIES hyp
(eqv (ev x a) (ev (fn x) a)))
(mv hyp eqv ev x a fn nil))
((eqv (ev x a) (ev (fn x) a))
(mv *t* eqv ev x a fn nil))
(('IMPLIES hyp
(eqv (ev x a)
(ev (fn x mfc-symbol 'STATE)
a)))
(mv hyp eqv ev x a fn mfc-symbol))
((eqv (ev x a)
(ev (fn x mfc-symbol 'STATE)
a))
(mv *t* eqv ev x a fn mfc-symbol))
(& (mv *t* nil nil nil nil nil nil))))
(defun chk-acceptable-meta-rule (name trigger-fns term ctx ens wrld state)
(if (member-eq 'IF trigger-fns)
(er soft ctx
"The function symbol IF is not an acceptable member of ~
:trigger-fns, because the ACL2 simplifier is not set up to apply ~
:meta rules to calls of IF.")
(let ((str "No :META rule can be generated from ~x0 because ~p1 does not ~
have the form of a metatheorem. See :DOC meta."))
(mv-let
(hyp eqv ev x a fn mfc-symbol)
(interpret-term-as-meta-rule term)
(cond ((null eqv)
(er soft ctx str name (untranslate term t wrld)))
((eq fn 'return-last)
; Ev-fncall-meta calls ev-fncall!. We could make an exception for return-last,
; calling ev-fncall instead, but for now we avoid that runtime overhead by
; excluding return-last. It's a bit difficult to imagine that anyone would
; use return-last as a metafunction anyhow.
(er soft ctx
"It is illegal to use ~x0 as a metafunction, as specified ~
by ~x1. See :DOC meta."
'return-last name))
((not (and (not (flambdap eqv))
(equivalence-relationp eqv wrld)
(variablep x)
(variablep a)
(not (eq x a))
(not (eq fn 'quote))
(not (flambdap fn))
(or (null mfc-symbol)
(and (variablep mfc-symbol)
(no-duplicatesp (list x a mfc-symbol 'STATE))))))
; Note: Fn must be a symbol, not a lambda expression. That is because
; in rewrite-with-lemma, when we apply the metafunction, we use ev-fncall-meta.
(er soft ctx str name (untranslate term t wrld)))
((not (member-equal (stobjs-in fn wrld)
'((nil)
(nil nil state))))
(er soft ctx
"Metafunctions cannot take single-threaded object names ~
other than STATE as formal parameters. The function ~x0 ~
may therefore not be used as a metafunction."
fn))
(t (er-progn
(chk-rule-fn-guard "metafunction" :meta fn ctx wrld state)
(mv-let
(hyp-fn extra-fns)
(meta-rule-hypothesis-functions hyp ev x a mfc-symbol)
(let ((term-list
(cdar (table-alist 'term-table (w state)))))
(er-progn
(cond
((null hyp-fn)
(er soft ctx str name (untranslate term t wrld)))
((and (not (eq hyp-fn t))
(not (member-equal (stobjs-in hyp-fn wrld)
'((nil)
(nil nil state)))))
; It is tempting to avoid the check here that hyp-fn does not take
; stobjs in. After all, we have already checked this for fn, and fn
; and hyp-fn have the same actuals. But our defun warts allow certain
; functions to traffic in stobjs even though they do not use STATE (or
; another stobj name) as a formal. So, we play it safe and check.
(er soft ctx
"Hypothesis metafunctions cannot take single ~
threaded object names as formal parameters. The ~
function ~x0 may therefore not be used as a ~
hypothesis metafunction."
hyp-fn))
((not (eq hyp-fn t))
(er-progn
(chk-evaluator-use-in-rule name
fn hyp-fn extra-fns
:meta ev ctx wrld state)
(chk-rule-fn-guard "hypothesis function" :meta fn ctx
wrld state)))
(t (chk-evaluator-use-in-rule name
fn nil extra-fns
:meta ev ctx wrld state)))
(chk-evaluator ev wrld ctx state)
; In the code below, mfc-symbol is used merely as a Boolean indicating
; that this is an extended metafunction.
(chk-meta-function fn name trigger-fns mfc-symbol
term-list ctx ens state)
(if (eq hyp-fn t)
(value nil)
(chk-meta-function hyp-fn name trigger-fns mfc-symbol
term-list ctx ens state))))))))))))
; And to add a :META rule:
(defun add-meta-rule1 (lst rule wrld)
; Fn is a function symbol, not a lambda expression.
(cond ((null lst) wrld)
(t
(add-meta-rule1 (cdr lst) rule
(putprop (car lst)
'lemmas
(cons rule
(getpropc (car lst) 'lemmas nil wrld))
wrld)))))
(defun maybe-putprop-lst (symb-lst key val wrld)
(cond ((endp symb-lst)
wrld)
(t (let ((symb (car symb-lst)))
(maybe-putprop-lst
(cdr symb-lst) key val
(cond ((getpropc symb key nil wrld)
wrld)
(t (putprop symb key val wrld))))))))
(defun mark-attachment-disallowed2 (fns msg wrld)
; It might be that we only need to disallow attachments to constrained
; functions. However, our theory (Essay on Correctness of Meta Reasoning, as
; referenced in chk-evaluator-use-in-rule) doesn't address this possibility, so
; until someone complains we'll keep this simple and disallow attachments for
; each member of fns, whether or not its attachment is used in evaluation.
(cond ((endp fns) wrld)
(t (mark-attachment-disallowed2
(cdr fns)
msg
(let ((old-prop (getpropc (car fns) 'attachment nil wrld)))
(cond ((and (consp old-prop)
(eq (car old-prop)
:attachment-disallowed))
wrld)
(t (putprop (car fns)
'attachment
(cons :attachment-disallowed msg)
wrld))))))))
(defun mark-attachment-disallowed1 (canonical-fns msg wrld)
(cond ((endp canonical-fns) wrld)
(t (mark-attachment-disallowed1
(cdr canonical-fns)
msg
(mark-attachment-disallowed2 (siblings (car canonical-fns) wrld)
msg
wrld)))))
(defun mark-attachment-disallowed (meta-fns ev msg wrld)
; We mark as unattachable all functions ancestral in both meta-fns and ev. We
; obtain that set of common ancestors by restricting first to canonical
; functions, and then taking all siblings (in mark-attachment-disallowed1)
; before marking (in mark-attachment-disallowed2).
(mark-attachment-disallowed1
(intersection-eq (canonical-ancestors-lst meta-fns wrld)
(canonical-ancestors-lst (list ev) wrld))
msg
wrld))
(defun add-meta-rule (rune nume trigger-fns well-formedness-guarantee
term backchain-limit wrld)
(mv-let
(hyp eqv ev x a fn mfc-symbol)
(interpret-term-as-meta-rule term)
(mv-let
(hyp-fn extra-fns)
(meta-rule-hypothesis-functions hyp ev x a mfc-symbol)
(declare (ignore extra-fns))
(cond
((or (null hyp-fn) (null eqv))
(er hard 'add-meta-rule
"Add-meta-rule broke on args ~x0! It seems to be out of sync with ~
chk-acceptable-meta-rule."
(list rune nume trigger-fns term)))
(t
; Note: If a :meta rule has a :WELL-FORMEDNESS-GUARANTEE spec, then
; well-formedness-guarantee is (name fn thm-name1 hyp-fn thm-name2)
; . combined-arities-alist), where the hyp-fn and thm-name2 entries are omitted
; if there is no hyp-fn. If no :WELL-FORMEDNESS-GUARANTEE was specified, the
; well-formedness-guarantee is nil. The :heuristic-info field of the resulting
; rule contains the well-formedness-guarantee.
(let* ((arity-alist (cdr well-formedness-guarantee))
(wrld1
(add-meta-rule1 trigger-fns
(make rewrite-rule
:rune rune
:nume nume
:hyps (if (eq hyp-fn t) nil hyp-fn)
:equiv eqv
:lhs fn
:var-info nil ; unused
:rhs (if mfc-symbol 'extended nil)
:subclass 'meta
:heuristic-info well-formedness-guarantee
:backchain-limit-lst
(rule-backchain-limit-lst
backchain-limit
nil ; hyps (ignored for :meta)
wrld
:meta))
(mark-attachment-disallowed
(if (eq hyp-fn t)
(list fn)
(list hyp-fn fn))
ev
(msg "it supports both evaluator and meta functions ~
used in :META rule ~x0"
(base-symbol rune))
wrld)))
(wrld2 (global-set 'never-untouchable-fns
(add-new-never-untouchable-fns
(strip-cars arity-alist)
well-formedness-guarantee
(global-val 'never-untouchable-fns wrld1))
wrld1)))
wrld2))))))
;---------------------------------------------------------------------------
; Section: Destructor :ELIM Rules
(mutual-recursion
(defun destructors (term ans)
; Union-equal into ans all of the subterms of term of the form (fn v1
; ... vn) where fn is a symbol and the vi are distinct variables.
(cond ((or (variablep term)
(fquotep term)
(flambda-applicationp term))
ans)
(t (destructors-lst (fargs term)
(cond ((and (fargs term)
(all-variablep (fargs term))
(no-duplicatesp-equal (fargs term)))
(add-to-set-equal term ans))
(t ans))))))
(defun destructors-lst (lst ans)
(cond ((null lst) ans)
(t (destructors-lst (cdr lst)
(destructors (car lst) ans)))))
)
(defun strip-ffn-symbs (lst)
(cond ((null lst) nil)
(t (cons (ffn-symb (car lst))
(strip-ffn-symbs (cdr lst))))))
(defun chk-acceptable-elim-rule1 (name vars dests ctx wrld state)
(cond
((null dests) (value nil))
((not (subsetp-eq vars (fargs (car dests))))
(er soft ctx
"~x0 is an unacceptable destructor elimination rule because ~
the destructor term ~x1 does not mention ~&2. See :DOC elim."
name
(car dests)
(set-difference-eq vars (fargs (car dests)))))
((getpropc (ffn-symb (car dests)) 'eliminate-destructors-rule nil wrld)
(er soft ctx
"~x0 is an unacceptable destructor elimination rule because ~
we already have a destructor elimination rule for ~x1, ~
namely ~x2, and we do not support more than one elimination rule ~
for the same function symbol."
name
(ffn-symb (car dests))
(getpropc (ffn-symb (car dests)) 'eliminate-destructors-rule nil wrld)))
(t (chk-acceptable-elim-rule1 name vars (cdr dests) ctx wrld state))))
(defun chk-acceptable-elim-rule (name term ctx wrld state)
(let ((lst (unprettyify term)))
(case-match
lst
(((& . (equiv lhs rhs)))
(cond
((not (equivalence-relationp equiv wrld))
(er soft ctx
"~x0 is an unacceptable destructor elimination rule ~
because ~x1 is not a known equivalence relation. See ~
:DOC elim."
name equiv))
((nvariablep rhs)
(er soft ctx
"~x0 is an unacceptable destructor elimination rule ~
because the right-hand side of its conclusion, ~x1, is ~
not a variable symbol. See :DOC elim."
name rhs))
(t
(let ((dests (destructors lhs nil)))
(cond
((null dests)
(er soft ctx
"~x0 is an unacceptable destructor elimination rule ~
because the left-hand side of its conclusion, ~x1, ~
does not contain any terms of the form (fn v1 ... ~
vn), where fn is a function symbol and the vi are ~
all distinct variables. See :DOC elim."
name lhs))
((not (no-duplicatesp-equal (strip-ffn-symbs dests)))
(er soft ctx
"~x0 is an unacceptable destructor elimination rule ~
because the destructor terms, ~&1, include more than ~
one occurrence of the same function symbol. See :DOC ~
elim."
name dests))
((occur rhs (sublis-expr (pairlis-x2 dests *t*) lhs))
(er soft ctx
"~x0 is an unacceptable destructor elimination rule ~
because the right-hand side of the conclusion, ~x1, ~
occurs in the left-hand side, ~x2, in places other ~
than the destructor term~#3~[~/s~] ~&3. See :DOC ~
elim."
name rhs lhs dests))
(t (chk-acceptable-elim-rule1 name (all-vars term)
dests ctx wrld state)))))))
(&
(er soft ctx
"~x0 is an unacceptable destructor elimination rule because ~
its conclusion is not of the form (equiv lhs rhs). See ~
:DOC elim."
name)))))
; and to add an :ELIM rule:
(defun add-elim-rule1 (rune nume hyps equiv lhs rhs lst dests wrld)
; Lst is a tail of dests and contains the destructor terms for which we
; have not yet added a rule. For each destructor in lst we add an elim
; rule to wrld.
(cond ((null lst) wrld)
(t (let* ((dest (car lst))
(rule (make elim-rule
:rune rune
:nume nume
:hyps hyps
:equiv equiv
:lhs lhs
:rhs rhs
:crucial-position
(- (length (fargs dest))
(length (member-eq rhs (fargs dest))))
:destructor-term dest
:destructor-terms dests)))
(add-elim-rule1 rune nume hyps equiv lhs rhs (cdr lst) dests
(putprop (ffn-symb dest)
'eliminate-destructors-rule
rule wrld))))))
(defun add-elim-rule (rune nume term wrld)
(let* ((lst (unprettyify term))
(hyps (caar lst))
(equiv (ffn-symb (cdar lst)))
(lhs (fargn (cdar lst) 1))
(rhs (fargn (cdar lst) 2))
(dests (reverse (destructors lhs nil))))
(add-elim-rule1 rune nume hyps equiv lhs rhs dests dests wrld)))
;---------------------------------------------------------------------------
; Section: :GENERALIZE Rules
(defun chk-acceptable-generalize-rule (name term ctx wrld state)
; This function is really a no-op. It exists simply for regularity.
(declare (ignore name term ctx wrld))
(value nil))
(defun add-generalize-rule (rune nume term wrld)
(global-set 'generalize-rules
(cons (make generalize-rule
:rune rune
:nume nume
:formula term)
(global-val 'generalize-rules wrld))
wrld))
;---------------------------------------------------------------------------
; Section: :TYPE-PRESCRIPTION Rules
(defun find-type-prescription-pat (term ens wrld)
; Suppose term is the translation of a legal type-prescription lemma
; conclusion, e.g.,
; (or (rationalp (fn x x y))
; (and (symbolp (fn x x y))
; (not (equal (fn x x y) nil)))
; (consp (fn x x y))
; (equal (fn x x y) y)).
; In general, term will be some IF expression giving type or equality
; information about some function application, e.g., (fn x x y) in the
; example above. This function attempts to identify the term whose
; type is described. The function is merely heuristic in that if it
; fails (returns nil) the user will have to tell us what term to use.
(cond ((variablep term) nil)
((fquotep term) nil)
((flambda-applicationp term) nil)
((eq (ffn-symb term) 'if)
(or (find-type-prescription-pat (fargn term 1) ens wrld)
(find-type-prescription-pat (fargn term 2) ens wrld)
(find-type-prescription-pat (fargn term 3) ens wrld)))
((eq (ffn-symb term) 'not)
(find-type-prescription-pat (fargn term 1) ens wrld))
((eq (ffn-symb term) '<)
(if (quotep (fargn term 1))
(fargn term 2)
(fargn term 1)))
((eq (ffn-symb term) 'equal)
(cond ((or (variablep (fargn term 1))
(fquotep (fargn term 1)))
(fargn term 2))
((or (variablep (fargn term 2))
(fquotep (fargn term 2)))
(fargn term 1))
(t nil)))
((let ((recog-tuple
(most-recent-enabled-recog-tuple (ffn-symb term)
(global-val 'recognizer-alist
wrld)
ens)))
(and recog-tuple
; An ACL2(h) "everything" regression in August 2014 failed to certify community
; book centaur/aig/aiger-help.lisp when we added the following condition. So
; we modified two defthm forms in that book by making the :typed-term explicit.
; Note that the most-recent-enabled-recog-tuple is the one used in
; assume-true-false-rec. So here, we only consider that tuple; if it is not
; :strongp, then we do not look for a less recent enabled recog-tuple that is
; :strongp.
(access recognizer-tuple recog-tuple :strongp)))
(fargn term 1))
(t term)))
(defun type-prescription-disjunctp (var term)
; Warning: Keep this function in sync with
; subst-nil-into-type-prescription-disjunct.
; Var is a variable and term is a term. Essentially we are answering
; the question, ``is term a legal disjunct in the conclusion of a
; type-prescription about pat'' for some term pat. However, by this
; time all occurrences of the candidate pat in the conclusion have
; been replaced by some new variable symbol and that symbol is var.
; Furthermore, we will have already checked that the resulting
; generalized concl contains no variables other than var and the
; variables occurring in pat. So what this function actually checks
; is that term is either (equal var other-var), (equal other-var var),
; or else is some arbitrary term whose all-vars is identically the
; singleton list containing var.
; If term is one of the two equality forms above, then we know
; other-var is a variable in pat and that term is one of the disjuncts
; that says ``pat sometimes returns this part of its input.'' If term
; is of the third form, then it might have come from a
; type-restriction on pat, e.g., (and (rationalp pat) (<= pat 0)) or
; (compound-recognizerp pat), or it might be some pretty arbitrary
; term. However, we at least know that it contains no variables at
; all outside the occurrences of pat and that means that we can trust
; type-set-implied-by-term to tell us what this term implies about
; pat.
(cond ((variablep term)
; This could be a type-prescription disjunct in the generalized concl
; only if term is var, i.e., the original disjunct was equivalent to
; (not (equal pat 'nil)).
(eq term var))
((fquotep term) nil)
((flambda-applicationp term) nil)
(t (or (and (eq (ffn-symb term) 'equal)
(or (and (eq var (fargn term 1))
(variablep (fargn term 2))
(not (eq (fargn term 1) (fargn term 2))))
(and (eq var (fargn term 2))
(variablep (fargn term 1))
(not (eq (fargn term 2) (fargn term 1))))))
(equal (all-vars term) (list var))))))
(defun type-prescription-conclp (var concl)
; Warning: Keep this function in sync with
; subst-nil-into-type-prescription-concl.
; Var is a variable and concl is a term. We recognize those concl
; that are the macroexpansion of (or t1 ... tk) where every ti is a
; type-prescription-disjunctp about var.
; In the grand scheme of things, concl was obtained from the
; conclusion of an alleged :TYPE-PRESCRIPTION lemma about some term,
; pat, by replacing all occurrences of pat with some new variable,
; var. We also know that concl involves no variables other than var
; and those that occurred in pat.
(cond ((variablep concl) (type-prescription-disjunctp var concl))
((fquotep concl) nil)
((flambda-applicationp concl) nil)
((eq (ffn-symb concl) 'if)
(cond ((equal (fargn concl 1) (fargn concl 2))
(and (type-prescription-disjunctp var (fargn concl 1))
(type-prescription-conclp var (fargn concl 3))))
(t (type-prescription-disjunctp var concl))))
(t (type-prescription-disjunctp var concl))))
(defun subst-nil-into-type-prescription-disjunct (var term)
; Warning: Keep this function in sync with type-prescription-disjunctp.
; We assume var and term are ok'd by type-prescription-disjunctp.
; If term is of the form (equal var other-var) or (equal other-var var)
; we replace it by nil, otherwise we leave it alone.
(cond ((variablep term) term)
; The next two cases never happen, but we leave them in just to make
; sure we copy term modulo this substitution.
((fquotep term) term)
((flambda-applicationp term) term)
((and (eq (ffn-symb term) 'equal)
(or (and (eq var (fargn term 1))
(variablep (fargn term 2))
(not (eq (fargn term 1) (fargn term 2))))
(and (eq var (fargn term 2))
(variablep (fargn term 1))
(not (eq (fargn term 2) (fargn term 1))))))
*nil*)
(t term)))
(defun subst-nil-into-type-prescription-concl (var concl)
; Warning: Keep this function in sync with type-prescription-conclp.
; We know that var and concl are ok'd by type-prescription-conclp. So
; concl is a disjunction of terms, some of which are of the form
; (equal var other-var). We replace each of those disjuncts in concl
; with nil so as to produce that part of concl that is a disjunct of
; type restrictions. That is, if our answer is basic-term and vars is
; the list of all the other-vars in concl, then concl is equivalent to
; basic-term disjoined with the equality between var and each variable
; in vars.
(cond
((variablep concl) (subst-nil-into-type-prescription-disjunct var concl))
; The next two cases never happen.
((fquotep concl) concl)
((flambda-applicationp concl) concl)
((eq (ffn-symb concl) 'if)
(cond ((equal (fargn concl 1) (fargn concl 2))
(let ((temp (subst-nil-into-type-prescription-disjunct var
(fargn concl 1))))
(fcons-term* 'if
temp
temp
(subst-nil-into-type-prescription-concl var
(fargn concl 3)))))
(t (subst-nil-into-type-prescription-disjunct var concl))))
(t (subst-nil-into-type-prescription-disjunct var concl))))
(defun unprettyify-tp (term)
; This variant of unprettyify avoids giviing special treatment to conjunctions,
; and hence is suitable for parsing terms into type-prescription rules. Unlike
; unprettyify, it returns (mv hyps concl).
(case-match term
(('implies t1 t2)
(mv-let (hyps concl)
(unprettyify-tp t2)
(mv (append? (flatten-ands-in-lit t1)
hyps)
concl)))
((('lambda vars body) . args)
(unprettyify-tp (subcor-var vars args body)))
(& (mv nil (remove-lambdas term)))))
(defun destructure-type-prescription (name typed-term term ens wrld)
; Warning: Keep this in sync with the :BACKCHAIN-LIMIT-LST case of
; translate-rule-class-alist.
; Note: This function does more than "destructure" term into a
; :TYPE-PRESCRIPTION rule, it checks a lot of conditions too and
; computes type-sets. However, it doesn't actually cause errors --
; note that state is not among its arguments -- but may return an
; error message suitable for printing with ~@. We return many
; results. The first is nil or an error message. The rest are
; relevant only if the first is nil and are described below. We code
; this way because the destructuring and checking are inextricably
; intertwined and when we destructure in order to add the rule, we do
; not have state around.
; We determine whether term is a suitable :TYPE-PRESCRIPTION lemma
; about the term typed-term. Term is suitable as a :TYPE-
; PRESCRIPTION lemma about typed-term if the conclusion of term,
; concl, is a disjunction of type-prescription disjuncts about
; typed-term. Each disjunct must either be an equality between
; typed-term and one of the variables occurring in typed-term, or else
; must be some term, such as (and (rationalp typed-term) (<=
; typed-term 0)) or (compound-recognizerp typed-term), that mentions
; typed-term and contains no variables outside those occurrences of
; typed-term.
; If term is unsuitable we return an error msg and nils. Otherwise we
; return nil and four more things: the list of hyps, a basic type
; set, a list of variables, and a ttree. In that case, term implies
; that when hyps are true, the type-set of typed-term is the union of the
; basic type-set together with the type-sets of the variables listed.
; The ttree records our dependencies on compound recognizers or other
; type-set lemmas in wrld. The ttree returned contains no 'assumption
; tags.
(let ((term (remove-guard-holders term)))
(mv-let
(hyps concl)
(unprettyify-tp term)
(cond
((or (variablep typed-term)
(fquotep typed-term)
(flambda-applicationp typed-term))
(mv (msg "The :TYPED-TERM, ~x0, provided in the :TYPE-PRESCRIPTION ~
rule class for ~x1 is illegal because it is a variable, ~
constant, or lambda application. See :DOC type-prescription."
typed-term name)
nil nil nil nil nil))
((dumb-occur-lst typed-term hyps)
(mv (msg "The :TYPED-TERM, ~x0, of the proposed :TYPE-PRESCRIPTION ~
rule ~x1 occurs in the hypotheses of the rule. This would ~
cause ``infinite backchaining'' if we permitted ~x1 as a ~
:TYPE-PRESCRIPTION. (Don't feel reassured by this check: ~
infinite backchaining may occur anyway since it can be ~
caused by the combination of several rules.)"
typed-term
name)
nil nil nil nil nil))
(t
(let ((all-vars-typed-term (all-vars typed-term))
(all-vars-concl (all-vars concl)))
(cond
((not (subsetp-eq all-vars-concl all-vars-typed-term))
(mv (msg "~x0 cannot be used as a :TYPE-PRESCRIPTION rule as ~
described by the given rule class because the ~
:TYPED-TERM, ~x1, does not contain the ~#2~[variable ~&2 ~
which is~/variables ~&2 which are~] mentioned in the ~
conclusion. See :DOC type-prescription."
name
typed-term
(set-difference-eq all-vars-concl all-vars-typed-term))
nil nil nil nil nil))
(t (let* ((new-var (genvar (find-pkg-witness typed-term)
"TYPED-TERM" nil all-vars-typed-term))
(concl1 (subst-expr new-var typed-term concl)))
(cond
((not (type-prescription-conclp new-var concl1))
(mv (msg "~x0 is an illegal :TYPE-PRESCRIPTION lemma of the ~
class indicated because its conclusion is not a ~
disjunction of type restrictions about the ~
:TYPED-TERM ~x1. See :DOC type-prescription."
name typed-term)
nil nil nil nil nil))
(t (let ((vars (remove1-eq new-var (all-vars concl1)))
(basic-term
(subst-nil-into-type-prescription-concl new-var concl1)))
; Once upon a time, briefly, we got the type-set implied by (and hyps
; basic-term), thinking that we might need hyps to extract type
; information from basic-term. But the only var in basic-term is new
; so the hyps don't help much. The idea was to permit lemmas like
; (implies (rationalp x) (<= 0 (* x x))). Note that the guard for <=
; is satisfied only if we know that the product is rational, which we
; can deduce from the hyp. But when we try to process that lemma, the
; typed-term in generalized away, e.g., (implies (rationalp x) (<= 0
; Z)). Thus, the hyps don't help: the only var in basic-term is
; new-var. You could conjoin hyps and concl1 and THEN generalize the
; typed-term to new-var, thereby linking the occurrences of typed-term
; in the hyps to those in the concl. But this is very unhelpful
; because it encourages the creation of lemmas that contain the
; typed-term in the hyps. That is bad because type-set then
; infinitely backchains. In the face of these difficulties, we have
; reverted back to the simplest treatment of type-prescription lemmas.
(mv-let
(ts ttree)
(type-set-implied-by-term new-var nil basic-term ens wrld
nil)
(cond ((ts= ts *ts-unknown*)
(mv (msg "~x0 is a useless :TYPE-PRESCRIPTION ~
lemma because we can deduce no type ~
restriction about its :TYPED-TERM ~
(below represented by ~x1) from the ~
generalized conclusion, ~p2. See :DOC ~
type-prescription."
name
new-var
(untranslate concl1 t wrld))
nil nil nil nil nil))
((not (assumption-free-ttreep ttree))
; If type-set-implied-by-term requires that we force some assumptions,
; it is not clear what to do. For example, it is possible that the
; assumptions involve new-var, which makes no sense in the context of
; an application of this rule. My intuition tells me this error will
; never arise because for legal concls, basic-term is guard free. If
; there are :TYPE-PRESCRIPTION lemmas about the compound recognizers
; in it, they could have forced hyps. I think it unlikely, since the
; recognizers are Boolean. Well, I guess I could add a
; :TYPE-PRESCRIPTION lemma that said that under some forced hyp the
; compound-recognizer was actually t. In that case, the forced hyp
; would necessarily involve new-var, since that is the only argument
; to a compound recognizer. It would be interesting to see a living
; example of this situation.
(mv
(if (tagged-objectsp 'fc-derivation ttree)
(er hard 'destructure-type-prescription
"Somehow an 'fc-derivation, ~x0, has ~
found its way into the ttree returned ~
by type-set-implied-by-term."
(car (tagged-objects 'fc-derivation
ttree)))
(msg "~x0 is an illegal :TYPE-PRESCRIPTION ~
lemma because in determining the ~
type-set implied for its :TYPED-TERM, ~
~x1, by its conclusion the ~
~#2~[assumption ~&2 was~/assumptions ~
~&2 were~] and our :TYPE-PRESCRIPTION ~
preprocessor, ~
CHK-ACCEPTABLE-TYPE-PRESCRIPTION-RULE, ~
does not know how to handle this ~
supposedly unusual situation. It would ~
be very helpful to report this error to ~
the authors."
name typed-term
(tagged-objects 'assumption ttree)))
nil nil nil nil nil))
(t (mv nil hyps concl ts vars ttree))))))))))))))))
(defun add-type-prescription-rule (rune nume typed-term term
backchain-limit-lst ens wrld quietp)
(mv-let
(erp hyps concl ts vars ttree)
(destructure-type-prescription (base-symbol rune)
typed-term term ens wrld)
(declare (ignore concl ttree))
(cond
(erp
(cond (quietp
; We pass in the quietp flag when attempting to add a :type-prescription rule
; indirectly, as under a defequiv event. The following example causes the
; following code to be executed. Otherwise, we see an unfortunate error. (Or
; perhaps we really should see that error, since we will be unable to add the
; booleanp type prescription for the equivalence relation. However, then we
; will need to re-work community book
; books/workshops/2000/manolios/pipeline/pipeline/deterministic-systems/128/top/ma128-isa128.lisp.)
; (defun my-equal (x y)
; (equal x y))
;
; (in-theory (disable
; (:type-prescription my-equal)
; (:COMPOUND-RECOGNIZER BOOLEANP-COMPOUND-RECOGNIZER)))
;
; (defequiv my-equal
; :hints (("Goal" :in-theory (enable booleanp))))
;
; ; In v2-7 and presumably earlier, the above leads us to a type-prescription
; ; rule with a NIL :basic-ts field:
;
; ACL2 !>(car (getpropc 'my-equal 'type-prescriptions t))
; (NIL (1685 MY-EQUAL X Y)
; NIL
; (NIL :EQUIVALENCE MY-EQUAL-IS-AN-EQUIVALENCE)
; BOOLEANP (MY-EQUAL X Y))
; ACL2 !>
(prog2$ (cw "~%NOTE: ACL2 is unable to create a proposed ~
type-prescription rule from the term ~x0 for ~
:typed-term ~x1, so this proposed rule is not being ~
added.~|"
term typed-term)
wrld))
(t
(er hard 'add-type-prescription-rule
"Unable to process this :TYPE-PRESCRIPTION rule. A possible ~
explanation is that we are in the second pass of an ~
include-book or encapsulate, and although this rule was ~
legal in the first pass, it is not legal in the second pass. ~
For example, the rule may depend on a preceding ~
:COMPOUND-RECOGNIZER rule local to this encapsulate or ~
include-book. The usual error message for ~
:TYPE-PRESCRIPTION rules now follows.~|~%~@0"
erp))))
(t
(putprop (ffn-symb typed-term)
'type-prescriptions
(cons (make type-prescription
:rune rune
:nume nume
:term typed-term
:hyps hyps
:backchain-limit-lst
(rule-backchain-limit-lst
backchain-limit-lst hyps wrld :ts)
:basic-ts ts
:vars vars
:corollary term)
(getpropc (ffn-symb typed-term) 'type-prescriptions nil
wrld))
wrld)))))
(defun strong-compound-recognizer-p (fn recognizer-alist ens)
(cond ((endp recognizer-alist) nil)
((let ((recog-tuple (car recognizer-alist)))
(and (eq fn (access recognizer-tuple recog-tuple :fn))
(access recognizer-tuple recog-tuple :strongp)
(enabled-numep (access recognizer-tuple recog-tuple :nume)
ens)))
t)
(t (strong-compound-recognizer-p fn (cdr recognizer-alist) ens))))
(defun warned-non-rec-fns-for-tp (term recognizer-alist ens wrld)
(cond ((or (variablep term)
(fquotep term))
nil)
((flambdap (ffn-symb term))
(cons (ffn-symb term)
(non-recursive-fnnames-lst (fargs term) ens wrld)))
((eq (ffn-symb term) 'if)
; Type-set and assume-true-false explore the top-level IF structure in such a
; way that NOT and strong compound recognizers aren't problems.
(union-equal
(warned-non-rec-fns-for-tp
(fargn term 1) recognizer-alist ens wrld)
(union-equal
(warned-non-rec-fns-for-tp
(fargn term 2) recognizer-alist ens wrld)
(warned-non-rec-fns-for-tp
(fargn term 3) recognizer-alist ens wrld))))
((eq (ffn-symb term) 'not)
(warned-non-rec-fns-for-tp (fargn term 1) recognizer-alist ens wrld))
((strong-compound-recognizer-p (ffn-symb term) recognizer-alist ens)
; We noticed in August 2014 that only the most-recent-enabled-recog-tuple is
; relevant here; see assume-true-false-rec. But this code has been in place
; for a long time, and it's not terribly unreasonable, since enabled status can
; change.
(non-recursive-fnnames-lst (fargs term) ens wrld))
(t (non-recursive-fnnames term ens wrld))))
(defun warned-non-rec-fns-tp-hyps1 (hyps recognizer-alist ens wrld acc)
(cond ((endp hyps) acc)
(t (warned-non-rec-fns-tp-hyps1
(cdr hyps)
recognizer-alist ens wrld
(let ((hyp (if (and (nvariablep (car hyps))
; (not (fquotep (car hyps))) ; implied by:
(member-eq (ffn-symb (car hyps))
'(force case-split)))
(fargn (car hyps) 1)
(car hyps))))
(cond (acc (union-equal (warned-non-rec-fns-for-tp
hyp recognizer-alist ens wrld)
acc))
(t (warned-non-rec-fns-for-tp
hyp recognizer-alist ens wrld))))))))
(defun warned-non-rec-fns-tp-hyps (hyps ens wrld)
(warned-non-rec-fns-tp-hyps1 hyps
(global-val 'recognizer-alist wrld)
ens wrld nil))
(defun chk-acceptable-type-prescription-rule (name typed-term term
backchain-limit-lst
ctx ens wrld state)
; Like all individual rule checkers, we either cause an error or
; return a ttree that records our dependencies on lemmas.
(mv-let
(erp hyps concl ts vars ttree)
(destructure-type-prescription name typed-term term ens wrld)
(declare (ignore ts))
(cond
(erp (er soft ctx "~@0" erp))
(t (let* ((weakp
; We avoid calling weak-type-prescription-rulep if we are going to ignore the
; warning anyhow. Otherwise, we construct a temporary world.
; We check (null vars) because otherwise, the warning can be needlessly harsh.
; For example, try submitting these events in a fresh ACL2 session after
; removing the (null vars) check from this function.
; (defstub foo (x) x)
; (defaxiom foo-type-prescription
; (or (integerp (foo y))
; (equal (foo y) y))
; :rule-classes :type-prescription)
; Then the warning will be printed without the (null vars) check, even though
; the rule above is a perfectly good one.
(and (null vars)
(not (warning-disabled-p "Type prescription"))
(let* ((nume (get-next-nume wrld))
(rune (list :type-prescription name))
(wrld2 (add-type-prescription-rule
rune nume typed-term term
backchain-limit-lst
ens wrld nil)))
(mv-let
(ts ttree)
(type-set (remove-guard-holders term)
nil t nil ens wrld2 nil nil nil)
(or (not (assumption-free-ttreep ttree))
(ts-intersectp ts *ts-nil*)))))))
(pprogn
(cond
(weakp
(warning$ ctx ("Type prescription")
"The :type-prescription rule generated for ~x0 may be ~
weaker than you expect. Note that the conclusion of a ~
:type-prescription rule is stored as a numeric type ~
rather than a term. It so happens that~| ~p1~|is not ~
provable using type-set reasoning in the extension of ~
the current world by that rule. Because information ~
has been lost, this rule probably does not have the ~
strength that it appears to have.~@2"
name
(untranslate term t wrld)
(if (ffnnamep '< concl)
" The conclusion of this rule contains a call of ~
function symbol < (or a macro <=, >, or >=), so it ~
may be worth considering making a :linear rule; ~
see :DOC linear."
"")))
(t state))
(let* ((warned-non-rec-fns
(and (not (warning-disabled-p "Non-rec"))
(warned-non-rec-fns-tp-hyps hyps ens wrld)))
(warned-free-vars
(and (not (warning-disabled-p "Free"))
(free-vars-in-hyps hyps
(all-vars typed-term)
wrld)))
(inst-hyps (and warned-free-vars ; optimization
(hyps-that-instantiate-free-vars
warned-free-vars hyps))))
(pprogn
(cond
(warned-non-rec-fns
(warning$ ctx ("Non-rec")
`("The hypothesis of the :type-prescription rule ~
generated from ~x0 contains the non-recursive ~
function symbol~#1~[~/s~] ~&1. Since the ~
hypotheses of :type-prescription rules are ~
relieved by type reasoning alone (and not ~
rewriting) ~#1~[this function is~/these functions ~
are~] liable to make the rule inapplicable. See ~
:DOC type-prescription."
(:doc type-prescription)
(:name ,name)
(:non-recursive-fns
,(hide-lambdas warned-non-rec-fns))
(:rule-class :type-prescription))
name (hide-lambdas warned-non-rec-fns)))
(t state))
(cond
(warned-free-vars
(warning$ ctx ("Free")
`("The :type-prescription rule generated from ~x0 ~
contains the free variable~#1~[ ~&1. This ~
variable~/s ~&1. These variables~] will be ~
chosen by searching for instances of ~&2 among ~
the hypotheses of conjectures being rewritten. ~
This is generally a severe restriction on the ~
applicability of the :type-prescription rule."
(:free-variables ,warned-free-vars)
(:instantiated-hyps ,inst-hyps)
(:name ,name)
(:rule-class :type-prescription))
name warned-free-vars inst-hyps))
(t state))
(cond
((and warned-free-vars
(forced-hyps inst-hyps))
(warning$ ctx ("Free")
"For the forced ~#0~[hypothesis~/hypotheses~], ~&1, ~
used to instantiate free variables we will search ~
for ~#0~[an instance of the argument~/instances of ~
the arguments~] rather than ~#0~[an ~
instance~/instances~] of the FORCE or CASE-SPLIT ~
~#0~[term itself~/terms themselves~]. If a search ~
fails for such a hypothesis, we will cause a case ~
split on the partially instantiated hypothesis. ~
Note that this case split will introduce a ``free ~
variable'' into the conjecture. While sound, this ~
will establish a goal almost certain to fail since ~
the restriction described by this apparently ~
necessary hypothesis constrains a variable not ~
involved in the problem. To highlight this oddity, ~
we will rename the free variables in such forced ~
hypotheses by prefixing them with ~
``UNBOUND-FREE-''. This is not guaranteed to ~
generate a new variable but at least it generates ~
an unusual one. If you see such a variable in a ~
subsequent proof (and did not introduce them ~
yourself) you should consider the possibility that ~
the free variables of this type-prescription rule ~
were forced into the conjecture."
(if (null (cdr (forced-hyps inst-hyps))) 0 1)
(forced-hyps inst-hyps)))
(t state))
(value ttree)))))))))
;---------------------------------------------------------------------------
; Section: :EQUIVALENCE Rules
; For a rule to acceptable as an :EQUIVALENCE rule, it must state the
; Boolean-ness, reflexivity, symmetry, and transitivity of a 2-place
; function symbol. We make the user type in the desired formula and
; then check that he typed a suitable one. This way we can define a
; simple macro that generates a suitable defthm event (rather than
; have to produce a new event type with all the prove-level hint
; passing mechanism). To check that the formula is suitable we
; generate a cannonical formula and check that the given one subsumes
; it. To add an :EQUIVALENCE rule we add a 'coarsenings property to
; the function symbol and also set up an initial 'congruences property
; for it.
; Some of the simple functions below anticipate the day we allow n-ary
; equivalences (n>2) but don't be fooled into thinking we allow it
; today!
(defun boolean-fn (fn)
; The name boolean is not usable for definitions in Allegro, because
; it's in the COMMON-LISP package. So, we'd better not use that name
; here.
`(booleanp (,fn x y)))
(defun reflexivity (fn)
; In this function we expect fn to have arity 2.
`(,fn x x))
(defun symmetry (fn)
; This function expects fn to have arity 2.
`(implies (,fn x y)
(,fn y x)))
(defun transitivity (fn)
; This function expects fn to have arity 2.
`(implies (and (,fn x y)
(,fn y z))
(,fn x z)))
(defun equivalence-relation-condition (fn)
; This function expects fn to have arity 2. We generate a formula that states
; that fn is Boolean, reflexive, symmetric, and transitive.
; There are at least two reasons we require equivalence relations to be
; Boolean. One is to simplify assume-true-false. When we assume (fn x y)
; true, we pair it with *ts-t* rather than its full type-set take away
; *ts-nil*. The other is that from reflexivity and Boolean we get than fn is
; commutative and so can freely use (fn y x) for (fn x y). If we did not have
; the Boolean condition we would have to be more careful about, say,
; commutative unification.
`(and ,(boolean-fn fn)
,(reflexivity fn)
,(symmetry fn)
,(transitivity fn)))
(defun find-candidate-equivalence-relation (clauses)
; Clauses is a list of clauses. We look for one of the form
; ((fn x x)) and if we find it, we return fn; else nil. See
; chk-acceptable-equivalence-rule.
(cond ((null clauses) nil)
(t (let ((clause (car clauses)))
(case-match clause
(((fn x x))
(declare (ignore x))
fn)
(& (find-candidate-equivalence-relation (cdr clauses))))))))
(defun collect-problematic-pre-equivalence-rule-names (lst)
; A problematic pre-equivalence rule about a soon-to-be-named
; equivalence relation equiv is one whose conclusion is (equiv lhs
; rhs), where lhs is not a variable or a quote. Such a rule could be
; stored as a :REWRITE rule for lhs after equiv is known to be an
; equivalence relation; but before that, such a rule is stored to
; rewrite (equiv lhs rhs) to T. Assuming lst is all the :REWRITE rules
; for equiv, we return the list of names of the problematic rules.
(cond ((null lst) nil)
((and (eq (access rewrite-rule (car lst) :equiv) 'equal)
(equal (access rewrite-rule (car lst) :rhs) *t*)
(not (variablep (fargn (access rewrite-rule (car lst) :lhs) 1)))
(not (quotep (fargn (access rewrite-rule (car lst) :lhs) 1))))
(cons (access rewrite-rule (car lst) :rune)
(collect-problematic-pre-equivalence-rule-names (cdr lst))))
(t (collect-problematic-pre-equivalence-rule-names (cdr lst)))))
(defun chk-acceptable-equivalence-rule (name term ctx wrld state)
; Term supposedly states that fn is boolean, reflexive, symmetric, and
; transitive. To check that, we generate our canonical statement of
; those four properties and then check that term subsumes it. We
; clausify both statements with shallow-clausify, which tears apart
; the IMPLIES and AND structure of the terms without messing up the
; IFs.
; The hard part is finding out the candidate fn. Consider the clausification
; of an acceptable term. The clauses are shown below (ignoring choice of clause order,
; literal order and variable names):
; ((booleanp (fn x y)))
; ((fn x x))
; ((not (fn x y)) (fn y x))
; ((not (fn x z))
; (not (fn z y))
; (fn x y))
; So to find fn we will look for the reflexive clause.
(let* ((act-clauses (shallow-clausify term))
(fn (find-candidate-equivalence-relation act-clauses)))
(cond
((null fn)
(er soft ctx
"~x0 is an unacceptable :EQUIVALENCE lemma. Such a lemma ~
must state that a given 2-place function symbol is ~
Boolean, reflexive, symmetric, and transitive. We cannot ~
find the statement of reflexivity, which is the one we key ~
on to identify the name of the alleged equivalence ~
relation. Perhaps you have forgotten to include it. More ~
likely, perhaps your relation takes more than two ~
arguments. We do not support n-ary equivalence relations, ~
for n>2. Sorry."
name))
(t (er-let*
((eqv-cond (translate (equivalence-relation-condition fn)
t t t ctx wrld state)))
; known-stobjs = t (stobjs-out = t)
(let ((eqv-clauses (shallow-clausify eqv-cond)))
; In the first test below we open-code a call of equivalence-relationp,
; avoiding special treatment for iff since we want (defequiv iff) to succeed
; during initialization.
(cond
((or (eq fn 'equal)
(and (not (flambdap fn))
(getpropc fn 'coarsenings nil wrld)))
(er soft ctx
"~x0 is already known to be an equivalence relation."
fn))
(t
(let ((subsumes
(clause-set-subsumes *init-subsumes-count* act-clauses
eqv-clauses)))
(cond
((eq subsumes t)
(cond
((warning-disabled-p "Equiv") ; optimization
(value nil))
(t
(let ((lst
(scrunch-eq
(collect-problematic-pre-equivalence-rule-names
(getpropc fn 'lemmas nil wrld)))))
(cond
(lst
(pprogn
(warning$ ctx ("Equiv")
"Any lemma about ~p0, proved before ~x1 is ~
marked as an equivalence relation, is ~
stored so as to rewrite ~p0 to T. After ~
~x1 is known to be an equivalence ~
relation, such a rule would rewrite the ~
left-hand side to the right-hand side, ~
preserving ~x1. You have previously ~
proved ~n2 possibly problematic ~
rule~#3~[~/s~] about ~x1, namely ~&3. ~
After ~x1 is marked as an equivalence ~
relation you should reconsider ~
~#3~[this~/each~] problematic rule. If ~
the rule is merely in support of ~
establishing that ~x1 is an equivalence ~
relation, it may be appropriate to disable ~
it permanently hereafter. If the rule is ~
now intended to rewrite left to right, you ~
must prove the lemma again after ~x1 is ~
known to be an equivalence relation."
(fcons-term fn '(x y))
fn
(length lst)
(strip-cadrs lst))
(value nil)))
(t (value nil)))))))
(t (er soft ctx
(if subsumes ; (eq subsumes '?)
; Perhaps the user could come up with a case that puts us here, but that's
; pretty hard to imagine! So we use *init-subsumes-count* in the call of
; clause-set-subsumes above, so that we can complain if we get to this case.
"This low-level implementation error is a complete ~
surprise, as the subsumption check returned '? ~
for the :EQUIVALENCE lemma ~x0 for funcction ~
symbol ~x1. This failure occurred when it was ~
checked that the equivalence-relation formula ~
subsumes the following canonical form: ~X23. ~
Please contact the ACL2 implementors."
"~x0 is an unacceptable :EQUIVALENCE lemma for the ~
function symbol ~x1. To be acceptable the formula ~
being proved must state that ~x1 is Boolean, ~
reflexive, symmetric, and transitive. This is ~
checked by verifying that the formula subsumes the ~
following canonical form: ~x2. It does not.")
name
fn
(prettyify-clause-set eqv-clauses nil wrld)
nil))))))))))))
(defun add-equivalence-rule (rune nume term ens wrld)
; Term states that some function symbol fn is an equivalence relation.
; We recover from term the fn in question and add a 'coarsenings
; property for fn, stating that it is a coarsening of itself. This
; marks it as an equivalence relation. We also add it to the
; coarsenings of 'equal, which is the only other equivalence relation
; that we know is a refinement of this new one. The coarsenings of
; 'equal is thus the list of all known equivalence relations. The car of
; the 'coarsenings property for an equivalence relation fn is always
; eq to fn itself. However, subsequent relations are listed in
; arbitrary order.
; If fn is not "obviously" Boolean in the sense that type-set reports
; that it is Boolean, we store a type-prescription rule for it. This is
; usually unnecessary when fn is defined. But on the off chance that its
; Boolean nature was missed by DEFUN or -- more likely -- when fn is a
; constrained function that is undefined in this world, we often need
; this fact.
; We also add a 'congruences property for fn. See the essay on
; equivalence, refinements, and congruence-based rewriting.
; The property that we add states that the equality of two fn expressions
; is maintained by maintaining fn in both arguments.
; That is
; (implies (fn x1 x2) (equal (fn x1 y) (fn x2 y)))
; and
; (implies (fn y1 y2) (equal (fn x y1) (fn x y2))).
; We prove this below.
; Suppose fn is an arbitrary equivalence relation.
; (encapsulate (((fn * *) => *))
; (local (defun fn (x y) (equal x y)))
; (defequiv fn))
; We pick out from its properties just three that we care about, its
; Boolean nature, symmetry, and transitivity. We don't care that it
; is reflexive and the proofs below go through if you constrain fn
; just to have the three properties below. We made fn an equivalence
; relation simply so we could conclude with some :congruence lemmas
; about fn -- an act which causes an error if fn is not an equivalence
; relation. But the theorems proved about fn are true of any relation
; with the three properties below.
; (defthm fn-boolean (booleanp (fn x y))
; :rule-classes :type-prescription
; :hints (("Goal" :use fn-is-an-equivalence)))
;
; (defthm fn-symm (implies (fn x y) (equal (fn y x) t))
; :hints (("Goal" :use fn-is-an-equivalence)))
;
; (defthm fn-trans (implies (and (fn x y) (fn y z)) (equal (fn x z) t))
; :hints (("Goal" :use fn-is-an-equivalence)))
; So now we observe the first of our two congruence properties: to
; maintain identity in fn expressions it is sufficient to maintain
; "fn-ity" in the first argument position.
; (defthm fn-congruence1
; (implies (fn x1 x2)
; (equal (fn x1 y) (fn x2 y)))
; :rule-classes :congruence
; :hints (("Goal" :use (:instance
; (:theorem
; (implies (and (booleanp p)
; (booleanp q))
; (equal (equal p q) (iff p q))))
; (p (fn x1 y))
; (q (fn x2 y))))
; ("Subgoal 2.1" :use ((:instance fn-symm (x x1) (y x2)))
; :in-theory (disable fn-symm))))
; And, to maintain identity in fn expressions it suffices to maintain
; "fn-ity" in the second argument position.
; (defthm fn-congruence2
; (implies (fn y1 y2)
; (equal (fn x y1) (fn x y2)))
; :rule-classes :congruence
; :hints (("Goal" :use (:instance
; (:theorem
; (implies (and (booleanp p)
; (booleanp q))
; (equal (equal p q) (iff p q))))
; (p (fn x y1))
; (q (fn x y2))))
; ("Subgoal 2.1" :use ((:instance fn-symm (x y1) (y y2)))
; :in-theory (disable fn-symm))))
; We do not store with the equivalence relation the name of the event
; that established that it is an equivalence relation. That means we
; can't report it in our dependencies or disable it.
(let* ((act-clauses (shallow-clausify term))
(fn (find-candidate-equivalence-relation act-clauses)))
(putprop
fn
'coarsenings
(list fn)
(putprop 'equal
'coarsenings
(append (getpropc 'equal 'coarsenings nil wrld)
(list fn))
(putprop fn
'congruences
(cons (list 'equal
(list (make congruence-rule
:rune rune
:nume nume
:equiv fn))
(list (make congruence-rule
:rune rune
:nume nume
:equiv fn)))
(getpropc fn 'congruences nil wrld))
(cond
((mv-let
(ts ttree)
(type-set (fcons-term* fn 'x 'y) nil nil nil ens wrld
nil nil nil)
(declare (ignore ttree))
(ts-subsetp ts *ts-boolean*))
wrld)
(t
(add-type-prescription-rule
rune nume
(fcons-term* fn 'x 'y)
(fcons-term* 'booleanp
(fcons-term* fn 'x 'y))
nil ; backchain-limit-lst
ens wrld
t))))))))
;---------------------------------------------------------------------------
; Section: :REFINEMENT Rules
(defun chk-acceptable-refinement-rule (name term ctx wrld state)
(let ((str "~x0 does not have the form of a :REFINEMENT rule. See :DOC refinement."))
(case-match term
(('implies (equiv1 x y) (equiv2 x y))
(cond
((and (equivalence-relationp equiv1 wrld)
(equivalence-relationp equiv2 wrld)
(variablep x)
(variablep y)
(not (eq x y)))
(cond
((refinementp equiv1 equiv2 wrld)
(er soft ctx
"~x0 is already known to be a refinement of ~
~x1. See :DOC refinement."
equiv1 equiv2))
(t (value nil))))
(t (er soft ctx str name))))
(& (er soft ctx str name)))))
; As noted in the essay on equivalence, refinements, and
; congruence-based rewriting, we maintain our refinements database
; via the 'coarsenings property, for efficiency reasons explained in
; the essay. Thus, if equiv1 is a refinement of equiv2 then equiv2 is
; a coarsening of equiv1. We therefore wish to add equiv2 to the
; coarsening property of equiv1. However, as noted in the essay, the
; coarsening properties are kept closed under transitivity. So we need
; a transitive closure operation.
; Rather that try to implement this closure operation directly on the
; property-list world, where we would repeatedly extend the 'coarsenings
; properties of the affected equivs, we have decided on a more modular and
; elegant approach. We will simply collect all the coarsening properties
; into an alist, close that alist under the appropriate operation, and then
; go put the new coarsenings into the property list world.
; We start with the trivial operations of collecting and then
; redistributing all the coarsenings.
(defun collect-coarsenings (wrld)
; Return an alist that pairs each equivalence relation in wrld with
; its current coarsenings.
(let ((all-equivs (getpropc 'equal 'coarsenings nil wrld)))
(pairlis$ all-equivs
(getprop-x-lst all-equivs 'coarsenings wrld))))
(defun putprop-coarsenings (alist wrld)
; Alist pairs equiv relations with their new 'coarsenings property.
; Put each property, provided it is different from its current value
; in wrld.
(cond ((null alist) wrld)
((equal (getpropc (caar alist) 'coarsenings nil wrld)
(cdar alist))
(putprop-coarsenings (cdr alist) wrld))
(t (putprop (caar alist) 'coarsenings (cdar alist)
(putprop-coarsenings (cdr alist) wrld)))))
; We now develop the world's least efficient transitive closure
; algorithm. Let alist be an alist pairing symbols to sets of
; symbols. By ``the value of a symbol'' in this context we mean the
; value assigned by the alist. We close the value sets under the
; operation of unioning into the set the value of any symbol already
; in the set. This operation eventually terminates since there are
; only a finite number of symbols involved.
; We do this in a very inefficient way. We literally just extend
; each value set by unioning into it the appropriate other sets and
; iterate that operation until there are no changes. If we ever have
; to operate with many equivalence relations enjoying many refinement
; relationships, we'll have to look at this code again.
(defun union-values (lst alist)
; We form the union of the values of the members of lst under alist.
(cond ((null lst) nil)
(t (union-eq (cdr (assoc-eq (car lst) alist))
(union-values (cdr lst) alist)))))
(defun extend-value-set (lst alist)
; We union into lst the value under alist of each element of lst. In
; an effort to preserve order we implement this in a slightly bizarre
; style. This concern about order is three-fold. First, it lets us
; code the termination check with an equality rather than a
; set-equality. Second, it ensures maintenance of the invariant that
; the car of the coarsenings property for an equiv is the equiv
; itself, e.g., see refinementp. Third, it means that 'coarsenings
; that don't get extended don't get changed and so don't get written
; back to the world.
(append lst (set-difference-eq (union-values lst alist) lst)))
(defun extend-each-value-set (alist1 alist2)
; we visit each value set in alist1 and extend it with the
; values specified by alist2.
(cond ((null alist1) nil)
(t (cons (cons (caar alist1)
(extend-value-set (cdar alist1) alist2))
(extend-each-value-set (cdr alist1) alist2)))))
(defun close-value-sets (alist)
; We extend each value set in alist, under alist, until alist doesn't
; change. Because we have taken care to preserve the order of things
; in extend-value-set we know that a value set doesn't change unless
; it has a new element. Thus, we can use equal rather than set-equal
; to check for our termination condition. But the real reason we care
; about order is so that the 'congruences properties eventually
; restored are usually unchanged.
(let ((new-alist (extend-each-value-set alist alist)))
(cond ((equal new-alist alist) alist)
(t (close-value-sets new-alist)))))
(defun add-refinement-rule (name nume term wrld)
(declare (ignore name nume))
(let ((equiv1 (ffn-symb (fargn term 1)))
(equiv2 (ffn-symb (fargn term 2))))
; We collect all the 'coarsenings properties into an alist, add equiv2
; to the end of the pot for equiv1, close that as discussed above, and
; then put the resulting 'coarsenings properties back into the world.
(putprop-coarsenings
(close-value-sets
(put-assoc-eq equiv1
(append (getpropc equiv1 'coarsenings nil wrld)
(list equiv2))
(collect-coarsenings wrld)))
wrld)))
;---------------------------------------------------------------------------
; Section: :CONGRUENCE Rules
(defun corresponding-args-eq-except (args1 args2 xk yk)
; Suppose args1 and args2 are two true lists of equal length, args1
; contains distinct symbols, xk and yk are symbols and xk is an
; element of args1. Then we determine whether args2 is equal to args1
; except at xk where args2 contains yk.
(cond ((null args1) t)
((eq (car args1) xk)
(and (eq (car args2) yk)
(corresponding-args-eq-except (cdr args1) (cdr args2) xk yk)))
(t (and (eq (car args1) (car args2))
(corresponding-args-eq-except (cdr args1) (cdr args2) xk yk)))))
(mutual-recursion
; The two functions in this nest accumulate into seen the variables occurring
; free in the first argument, and accumulate into dups those occurring at least
; twice in term (and, more precisely, those occurring at least once in the
; first argument that already occur in seen).
(defun duplicate-vars-1 (term seen dups)
(cond ((variablep term)
(cond ((member-eq term dups)
(mv seen dups))
((member-eq term seen)
(mv seen (cons term dups)))
(t
(mv (cons term seen) dups))))
((fquotep term)
(mv seen dups))
(t (duplicate-vars-1-lst (fargs term) seen dups))))
(defun duplicate-vars-1-lst (lst seen dups)
(cond ((endp lst) (mv seen dups))
(t (mv-let (seen dups)
(duplicate-vars-1 (car lst) seen dups)
(duplicate-vars-1-lst (cdr lst) seen dups)))))
)
(defun duplicate-vars (term)
(mv-let (seen dups)
(duplicate-vars-1 term nil nil)
(declare (ignore seen))
dups))
(mutual-recursion
(defun replace-duplicate-vars-with-anonymous-var-1 (term dup-vars)
(cond ((variablep term) (cond ((member-eq term dup-vars)
term)
(t *anonymous-var*)))
((fquotep term) term)
(t (cons-term (ffn-symb term)
(replace-duplicate-vars-with-anonymous-var-1-lst
(fargs term) dup-vars)))))
(defun replace-duplicate-vars-with-anonymous-var-1-lst (lst dup-vars)
(cond ((endp lst) nil)
(t (cons (replace-duplicate-vars-with-anonymous-var-1
(car lst) dup-vars)
(replace-duplicate-vars-with-anonymous-var-1-lst
(cdr lst) dup-vars)))))
)
(defun replace-duplicate-vars-with-anonymous-var (term)
(replace-duplicate-vars-with-anonymous-var-1 term (duplicate-vars term)))
(defun split-at-position (posn lst acc)
; We pop posn - 1 elements off lst, accumulating them into acc and returning
; the resulting extension of acc together with what remains of lst.
(cond ((eql posn 1)
(mv acc lst))
(t (split-at-position (1- posn) (cdr lst) (cons (car lst) acc)))))
(defun make-pequiv-pattern (term addr)
; Address is the address of a variable occurrence in term. We return the
; corresponding pattern. See the Essay on Patterned Congruences and
; Equivalences.
(cond ((endp addr)
(assert$ (variablep term)
term))
(t (assert$ (and (nvariablep term)
(not (fquotep term))
(not (flambda-applicationp term)))
(mv-let (pre-rev next/post)
(split-at-position (car addr) (fargs term) nil)
(make pequiv-pattern
:fn (ffn-symb term)
:posn (car addr)
:pre-rev pre-rev
:post (cdr next/post)
:next
(make-pequiv-pattern (car next/post)
(cdr addr))))))))
(defun make-pequiv (term addr nume equiv rune)
(make pequiv
:pattern (make-pequiv-pattern
(replace-duplicate-vars-with-anonymous-var term)
addr)
:unify-subst nil
:congruence-rule (make congruence-rule
:rune rune
:nume nume
:equiv equiv)))
(mutual-recursion
(defun var-address (var term acc)
; Var is a variable and term is a term. This function returns nil if var does
; not occur in term, returns t if var occurs more than once in term, and
; otherwise returns the one-based address of the unique occurrence of var in
; term (with the reverse of the accumulator appended to the front of that
; address). A return value of nil is thus ambiguous if term is a variable.
(declare (xargs :guard (and (symbolp var)
(pseudo-termp term)
(true-listp acc))))
(cond ((eq var term)
(reverse acc))
((variablep term) nil)
((fquotep term) nil)
(t (var-address-lst var (fargs term) 1 acc))))
(defun var-address-lst (var lst position acc)
(declare (xargs :guard (and (symbolp var)
(pseudo-term-listp lst)
(natp position)
(true-listp acc))))
(cond ((endp lst) nil)
(t (let ((addr1 (var-address var (car lst) (cons position acc)))
(addr2 (var-address-lst var (cdr lst) (1+ position) acc)))
(cond ((or (and addr1 addr2)
(eq addr1 t)
(eq addr2 t))
t)
(t (or addr1 addr2)))))))
)
(defun interpret-term-as-congruence-rule (name term wrld)
; This function recognizes terms that are :CONGRUENCE lemmas. We return two
; results. The first result is nil when the term is not a valid :CONGRUENCE
; lemma. If the term is a congruence lemma, the second result is a structure
; (fn equiv1 addr equiv2 . extra). If the term represents a classic congruence
; rule, then extra is nil, addr is a positive integer k, and this structure
; states that ``equiv2 is preserved by equiv1 in the kth argument of fn.''
; Otherwise the term represents a patterned congruence rule, which is thus
; either shallow or deep, indicated by whether the first result is :SHALLOW or
; :DEEP, respectively. In that case, extra is the lhs of the rule, and addr is
; the address of the occurrence of the rule's variable in lhs. Finally, if the
; term is not a :CONGRUENCE rule, the second is a tilde-@ message explaining
; why. See the essay on equivalence, refinements, and congruence-based
; rewriting for details.
; Classic :CONGRUENCE lemmas are of the form
; (implies (equiv1 xk yk)
; (equiv2 (fn x1 ... xk ... xn) (fn x1 ... yk ... xn)))
; where fn is a function symbol, all the xi and yk are distinct variables and
; equiv1 and the equiv2 are equivalence relations. Such a lemma is read as
; ``equiv2 is preserved by equiv1 in the kth argument of fn.'' For a
; discussion of patterned :CONGRUENCE lemmas, see the Essay on Patterned
; Congruences and Equivalences.
; We do not actually cause an error because this function is sometimes called
; when STATE is unavailable. We combine the recognition of the :CONGRUENCE
; lemma with the construction of the structure describing it because the two
; are so intermingled that it seemed dubious to separate them into two
; functions.
(let ((pairs (unprettyify (remove-guard-holders term)))
(hyp-msg "~x0 is an unacceptable :CONGRUENCE rule. The ~
single hypothesis of a :CONGRUENCE rule must be a ~
term of the form (equiv x y), where equiv has ~
been proved to be an equivalence relation and x ~
and y are distinct variable symbols. The ~
hypothesis of ~x0, ~x1, is not of this form.")
(concl-msg "~x0 is an unacceptable :CONGRUENCE rule because its ~
conclusion does not have the expected form. See :DOC ~
congruence.")
(failure-msg "~x0 is an unacceptable :CONGRUENCE rule because ~@1. ~
See :DOC congruence."))
(cond
((and (int= (length pairs) 1)
(int= (length (caar pairs)) 1))
(let ((hyp (caaar pairs))
(concl
; With the advent of patterned congruences, we put the conclusion into
; quote-normal form, both to facilitate matching when the rule is subsequently
; applied and to make the test robust below where we use subst-var-lst.
(sublis-var nil (cdar pairs))))
(case-match
hyp
((equiv1 xk yk)
(cond
((and (variablep xk)
(variablep yk)
(equivalence-relationp equiv1 wrld))
(case-match
concl
((equiv2 (fn . args1) (fn . args2))
(cond
((or (not (equivalence-relationp equiv2 wrld))
(not (symbolp fn))
(eq fn 'quote) ; rule out quotep for equiv2 args
(eq fn
; Calls of IF are handled specially in geneqv-lst, so that the first argument
; is treated propositionally and the other arguments inherit the governing
; congruence.
'if))
(mv nil (msg concl-msg name)))
((and (all-variablep args1)
(no-duplicatesp-eq args1)
(member-eq xk args1)
; The next conjunct is critical, but was missing from Versions 6.3 and 1.9,
; hence likely in all versions between these and perhaps even before 1.9.
; Without it, one can prove nil as follows.
; (defun e (x y)
; (or (equal x y)
; (and (booleanp x) (booleanp y))))
;
; (defequiv e)
;
; (defun h (x y)
; (if (booleanp x)
; (booleanp y)
; (equal (car x) y)))
;
; ; The following is a bogus sort of expansion of:
; ; (defcong e equal (h x y) 2)
;
; (defthm e-implies-equal-h-2-bad
; (implies (e y1 y2)
; (equal (h y2 y1)
; (h y2 y2)))
; :rule-classes :congruence)
;
; (defun true ()
; t)
;
; (defun false ()
; nil)
;
; (defthm e-true-false
; (e (true) (false)))
;
; (defthm fact-1
; (h (cons t x) (true))
; :rule-classes nil)
;
; (defthm fact-2
; (not (h (cons t x) (false)))
; :rule-classes nil)
;
; (in-theory (disable true (true) false (false)))
;
; (defthm contradiction
; nil
; :hints (("Goal" :use (fact-1 fact-2)))
; :rule-classes nil)
(not (member-eq yk args1))
(corresponding-args-eq-except args1 args2 xk yk))
(mv :classic
(list* fn
equiv1
(1+ (- (length args1)
(length (member-eq xk args1))))
equiv2
nil)))
; Otherwise our check is for a patterned congruence rule.
((or (ffnnamep-lst 'if args1)
(ffnnamep-lst 'implies args1)
(ffnnamep-lst 'equal args1)
(lambda-subtermp-lst args1))
; The restrictions above might be stronger than necessary. But we have felt
; free to rely on them while developing support for patterned congruence rules.
; For example, rewrite-equal calls rewrite-args several times with arguments
; deep-pequiv-lst and shallow-pequiv-lst equal to nil, and this is safe because
; no pequivs encountered can involve the symbol EQUAL in the pattern. Another
; example is in the body of the definition of rewrite for the case (eq
; (ffn-symb term) 'IMPLIES), where recursive calls of rewrite are passed the
; value nil for pequiv-info.
(let ((bad-fns (append (and (ffnnamep-lst 'if args1)
'(if))
(and (ffnnamep-lst 'implies args1)
'(implies))
(and (ffnnamep-lst 'equal args1)
'(equal))))
(bad-lambda-p (lambda-subtermp-lst args1)))
(mv nil
(msg failure-msg
name
(cond ((and bad-fns bad-lambda-p)
(msg "the function symbol~#0~[ ~&0~/s ~&0~] ~
and a lambda application occur in the ~
conclusion of the rule"
bad-fns))
(bad-fns
(msg "the function symbol~#0~[ ~&0 ~
occurs~/s ~&0 occur~] in the ~
conclusion of the rule"
bad-fns))
(t ; bad-lambda-p
(msg "a lambda application occurs in the ~
conclusion of the rule.")))))))
((dumb-occur-var-lst *anonymous-var* term)
; We introduce *anonymous-var*, which will be treated specially during
; matching, when creating a pequiv-pattern from term; so it would be a mistake
; to allow *anonymous-var* in term, which should not get that special
; treatment. See the Essay on Patterned Congruences and Equivalences.
(mv nil
(msg failure-msg
name
(msg "the variable ~x0, which is used in a special ~
way by the implementation, occurs in the rule"
*anonymous-var*))))
(t
(let ((addr1 (var-address xk (fargn concl 1) nil))
(addr2 (var-address yk (fargn concl 2) nil)))
(cond
((or (null addr1) (null addr2))
(mv nil
(msg failure-msg
name
(cond
((null addr1)
(msg "the variable ~x0 does not occur in ~x1"
xk (fargn concl 1)))
(t
(msg "the variable ~x0 does not occur in ~x1"
yk (fargn concl 2)))))))
((or (eq addr1 t) (eq addr2 t))
(mv nil
(msg failure-msg
name
(cond
((null addr1)
(msg "the variable ~x0 occurs more than once ~
in ~x1"
xk (fargn concl 1)))
(t
(msg "the variable ~x0 occurs more than once ~
in ~x1"
yk (fargn concl 2)))))))
((not (equal addr1 addr2))
(mv nil
(msg failure-msg
name
(msg "the variables ~x0 and ~x1 occur at ~
different positions in the first and ~
second arguments, respectively, of ~x3 in ~
the conclusion of the proposed rule"
xk yk equiv2))))
((not (equal args2 (subst-var-lst yk xk args1)))
; The test above is sufficient: at this point we know that xk occurs
; exactly once in args1, so if the equality is true, then the left and right
; sides of the concl are equal except at addr1 (= addr2).
(mv nil
(msg failure-msg
name
(msg "the second argument of its conclusion is ~
not equal to the result of substituting ~
~x0 for ~x1 in its first argument"
yk xk))))
(t
(mv (if (member-eq xk args1)
:shallow
:deep)
(list* fn equiv1 addr1 equiv2
(fargn concl 1) ; (fn . args1)
))))))))
(& (mv nil (msg concl-msg name)))))
(t (mv nil (msg hyp-msg name hyp)))))
(& (mv nil (msg hyp-msg name hyp))))))
(t (mv nil (msg failure-msg
name
"the supplied formula does not generate a single ~
conjunct of the form (implies (equiv1 xk yk) (equiv2 ~
(fn ...) (fn ...))), where equiv1 and equiv2 are ~
equivalence relations"))))))
(defun some-congruence-rule-same (equiv rules)
; Return the first element of rules which has equiv as its :equiv field.
(cond ((null rules) nil)
((eq equiv (access congruence-rule (car rules) :equiv))
(car rules))
(t (some-congruence-rule-same equiv (cdr rules)))))
(defun some-congruence-rule-has-refinement (equiv rules wrld)
; Return the first element of rules which has equiv as a refinement of its
; :equiv field.
(cond ((null rules) nil)
((refinementp equiv (access congruence-rule (car rules) :equiv) wrld)
(car rules))
(t (some-congruence-rule-has-refinement equiv (cdr rules) wrld))))
(defun chk-acceptable-congruence-rule (name term ctx wrld state)
; We check that term is a legal congruence rule.
; If the rule is a classic (not patterned) congruence rule, then we print a
; warning message if we already know that equiv2 is preserved by equiv1 in the
; kth slot of fn. We are not so much watching out for the possibility that
; equiv1 literally occurs in the list in the kth slot -- though that could
; happen and the old rule be disabled so the user is unaware that it exists.
; We are more concerned, because of efficiency when applying congruences, about
; the possibility that equiv1 is some refinement of a relation already in the
; kth slot.
(mv-let
(flg x)
(interpret-term-as-congruence-rule name term wrld)
(cond
((not flg) (er soft ctx "~@0" x))
(t
(let ((fn (car x))
(equiv1 (cadr x)) ; inner equiv
(addr (caddr x)) ; a number in the :classic case
(equiv2 (cadddr x))) ; outer equiv
(pprogn
(cond ((eq equiv1 'equal)
(warning$ ctx "Equiv"
"The :CONGRUENCE rule ~x0 will have no effect on ~
proofs because ACL2 already knows that ~x1 refines ~
every equivalence relation."
name 'equal))
((and (eq equiv2 'iff)
(mv-let
(ts ttree)
(type-set (cons-term fn (formals fn wrld))
nil nil nil (ens state) wrld
nil nil nil)
(declare (ignore ttree))
(ts-subsetp ts *ts-boolean*)))
(warning$ ctx "Equiv"
"The :CONGRUENCE rule ~x0 can be strengthened by ~
replacing the outer equivalence relation, ~x1, by ~
~x2. See :DOC congruence, in particular (near the ~
end) the Remark on Replacing IFF by EQUAL."
name 'iff 'equal))
(t state))
; The warnings below were originally errors, but as Jared Davis pointed out
; using essentially the following example, it was easy to change order to avoid
; the errors. So we create warnings instead.
; (defun my-equiv (x y) (equal x y))
; (defun my-equiv2 (x y) (equal x y))
; (defequiv my-equiv)
; (defequiv my-equiv2)
; (defrefinement my-equiv my-equiv2)
; ; Then this sequence formerly resulted in an error, but not if their order
; ; was switched or the defrefinement above was moved to after both defcong
; ; forms. Now, we get a warning this way but not if we switch their order
; ; or defer the defrefinement. We can live with that, since we suspect that
; ; it could slow down ACL2 to do the more thorough checks.
; (defcong my-equiv2 equal (consp x) 1)
; (defcong my-equiv equal (consp x) 1)
(cond
((eq flg :classic)
(let* ((k addr)
(temp (nth k
(assoc-eq equiv2
(getpropc fn 'congruences nil wrld)))))
(cond
((some-congruence-rule-same equiv1 temp)
(warning$ ctx "Equiv"
"The previously added :CONGRUENCE lemma, ~x0, ~
establishes that ~x1 preserves ~x2 in the ~n3 slot ~
of ~x4. Thus, ~x5 is unnecessary."
(base-symbol
(access congruence-rule
(some-congruence-rule-same equiv1 temp)
:rune))
equiv1 equiv2 (cons k 'th) fn name))
((some-congruence-rule-has-refinement equiv1 temp wrld)
(warning$ ctx "Equiv"
"The previously added :CONGRUENCE lemma, ~x0, ~
establishes that ~x1 preserves ~x2 in the ~n3 slot ~
of ~x4. But we know that ~x5 is a refinement of ~
~x1. Thus, ~x6 is unnecessary."
(base-symbol
(access congruence-rule
(some-congruence-rule-has-refinement equiv1 temp
wrld)
:rune))
(access congruence-rule
(some-congruence-rule-has-refinement equiv1 temp wrld)
:equiv)
equiv2 (cons k 'th) fn equiv1 name))
(t state))))
(t (observation ctx
"The rule ~x0 is a ~s1 patterned congruence rule. ~
See :DOC patterned-congruence."
name
(if (eq flg :shallow)
"shallow"
(assert$ (eq flg :deep)
"deep")))))
(value nil)))))))
(defun add-congruence-rule-to-congruence (rule k congruence)
; Congruence is an element of the 'congruence property of some n-ary
; function fn. As such, it is of the form (equiv geneqv1 ... geneqvk
; ... geneqvn), where equiv is some equivalence relation and each of
; the geneqvi is a list of congruence-rule records. We add rule to
; geneqvk.
(update-nth k (cons rule (nth k congruence)) congruence))
(defun cons-assoc-eq-rec (key val alist)
; This function is analogous to put-assoc-eq, but instead of replacing the
; value of key in alist, that value -- which should be a true list -- is
; extended by consing val onto the front of it.
(declare (xargs :guard (and (symbol-alistp alist)
(true-list-listp alist)
(assoc-eq key alist))))
(cond ((endp alist)
(er hard 'cons-assoc-eq-rec
"Implementation error: Reached the end of the alist for key ~x0!"
key))
((eq key (caar alist))
(acons key
(cons val (cdar alist))
(cdr alist)))
(t (cons (car alist)
(cons-assoc-eq-rec key val (cdr alist))))))
(defun cons-assoc-eq (key val alist)
; This function is analogous to put-assoc-eq, but instead of replacing the
; value of key in alist, that value -- which should be a true list -- is
; extended by consing val onto the front of the old value of key in alist.
; As an optimization, we handle specially the case that key is not already a
; key of alist.
(declare (xargs :guard (and (symbol-alistp alist)
(true-list-listp alist))))
(cond ((endp alist) (list (list key val)))
((assoc-eq key alist)
(cons-assoc-eq-rec key val alist))
(t (acons key (list val) alist))))
(defun add-congruence-rule (rune nume term wrld)
(mv-let
(flg x)
(interpret-term-as-congruence-rule (base-symbol rune) term wrld)
(let ((fn (car x))
(equiv1 (cadr x)) ; inner equiv
(addr (caddr x)) ; a number when flg is :classic
(equiv2 (cadddr x)) ; outer equiv
(lhs (cddddr x)))
(cond
((eq flg :classic)
(let* ((k addr)
(temp (assoc-eq equiv2
(getpropc fn 'congruences nil wrld)))
(equiv2-congruence
(or temp
(cons equiv2 (make-list-ac (arity fn wrld) nil nil))))
(rst (if temp
(remove1-equal temp
(getpropc fn 'congruences nil wrld))
(getpropc fn 'congruences nil wrld))))
(putprop fn
'congruences
(cons (add-congruence-rule-to-congruence
(make congruence-rule
:rune rune
:nume nume
:equiv equiv1)
k
equiv2-congruence)
rst)
wrld)))
((null flg)
(er hard! 'add-congruence-rule
"Implementation error: ~x0 returned failure when attempting to ~
apply ~x1. Please contact the ACL2 implementors."
'interpret-term-as-congruence-rule
'add-congruence-rule))
(t
(assert$
(and (member-eq flg '(:deep :shallow))
(not (or (variablep lhs)
(fquotep lhs)
(lambda-applicationp lhs)))
(consp addr))
(let* ((pequiv (make-pequiv lhs addr nume equiv1 rune))
(sym (if (eq flg :shallow)
fn
(let ((arg ; (nth (1- (car addr)) (fargs lhs))
(nth (car addr) lhs)))
(assert$
(not (or (variablep arg)
(fquotep arg)
(lambda-applicationp arg)))
(ffn-symb arg)))))
(prop (getpropc sym 'pequivs nil wrld))
(new-prop
(let ((prop (or prop
*empty-pequivs-property*)))
(cond ((eq flg :shallow)
(change pequivs-property prop
:shallow
(cons-assoc-eq equiv2
pequiv
(pequivs-property-field
prop :shallow))))
(t ; (eq flg :deep)
(change pequivs-property prop
:deep
(cons-assoc-eq equiv2
pequiv
(pequivs-property-field
prop :deep)))))))
(parent-prop
(and (eq flg :deep) ; optimization
(getpropc fn 'pequivs nil wrld))))
(putprop sym 'pequivs new-prop
(cond ((eq flg :shallow) wrld)
((null parent-prop) ; and flg is :deep
(putprop fn 'pequivs
(make pequivs-property
:shallow nil
:deep nil
:deep-pequiv-p t)
wrld))
((pequivs-property-field parent-prop :deep-pequiv-p)
wrld)
(t
(putprop fn 'pequivs
(change pequivs-property parent-prop
:deep-pequiv-p t)
wrld)))))))))))
;---------------------------------------------------------------------------
; Section: :DEFINITION rules
(defun chk-destructure-definition (name term ctx wrld state)
(mv-let (hyps equiv fn args body ttree)
(destructure-definition term nil nil wrld nil)
(declare (ignore hyps equiv args body ttree))
(cond ((null fn)
(er soft ctx
"~x0 cannot be stored as a :DEFINITION rule ~
because the :COROLLARY formula, ~p1, is not of ~
the proper form. See :DOC definition."
name (untranslate term t wrld)))
(t (value nil)))))
(defun chk-acceptable-definition-install-body (fn hyps equiv args body
install-body
install-body-supplied-p
ctx state)
(let ((install-body (if install-body-supplied-p
install-body
:NORMALIZE))
(er-preamble
(msg "For a :DEFINITION rule with non-nil :INSTALL-BODY value~@0,"
(if install-body-supplied-p
""
" (default :NORMALIZE)")))
(install-body-msg
(if install-body-supplied-p
""
(msg " Please add :INSTALL-BODY ~x0 to your :DEFINITION rule ~
class."
nil))))
(cond
((null install-body)
(value nil))
((member-eq fn *definition-minimal-theory*)
; This restriction is to allow us to assume that calls of (body fn t wrld),
; which occur in several places in the source code, refer to the original
; normalized body of fn, which excuses us from tracking the corresponding rune.
(er soft ctx
"~@0 the function symbol being called on the left-hand side, ~x1, ~
must not be among the following built-in functions: ~&2.~@3 ~
Please contact the implementors if you feel that this is an ~
encumbrance to you."
er-preamble
fn
*definition-minimal-theory*
install-body-msg))
((not (arglistp args))
(er soft ctx
"~@0 the arguments on the left-hand side of the rule must be a list ~
of distinct variables, unlike ~x1.~@2 See :DOC definition."
er-preamble
args
install-body-msg))
((not (eq equiv 'equal))
(er soft ctx
"~@0 the equivalence relation on the left-hand side of the rule ~
must be ~x1, unlike ~x2.~@3 See :DOC definition."
er-preamble
'equal
equiv
install-body-msg))
((free-varsp-member-lst hyps args)
(er soft ctx
"~@0 the hypotheses must not contain free variables that are not ~
among the variables on its left-hand side. The ~#1~[variable ~&1 ~
violates~/variables ~&1 violate~] this requirement.~@2 See :DOC ~
definition."
er-preamble
(set-difference-eq (all-vars1-lst hyps nil) args)
install-body-msg))
((free-varsp-member body args)
(er soft ctx
"~@0 the right-hand side of a :DEFINITION rule must not contain free ~
variables that are not among the variables on its left-hand side. ~
The ~#1~[variable ~&1 violates~/variables ~&1 violate~] this ~
requirement.~@2 See :DOC definition."
er-preamble
(set-difference-eq (all-vars body) args)
install-body-msg))
(t (value nil)))))
(defun chk-acceptable-definition-rule
(name clique controller-alist install-body-tail term ctx ens wrld state)
; Term is a translated term that is the :COROLLARY of a :DEFINITION with the
; given :CLIQUE and :CONTROLLER-ALIST. We know the clique and alist are well
; formed. But to check that during rule class translation, we had to
; destructure term with chk-destructure-definition and it must have passed.
; The only things left to check are the various subsumption-type conditions on
; rewrite rules, as well as the :install-body argument, passed in as
; install-body-tail of the form (:install-body value ...) if :install-body was
; supplied by the user, and as nil otherwise.
(mv-let
(hyps equiv fn args body ttree)
(destructure-definition term nil ens wrld nil)
(cond
((eq fn 'hide)
(er soft ctx
"It is illegal to make a definition rule for ~x0, because of the ~
special role of this function in the ACL2 rewriter."
'hide))
(t
(let ((rule
(make rewrite-rule
:rune *fake-rune-for-anonymous-enabled-rule*
:nume nil
:hyps (preprocess-hyps hyps)
:equiv equiv
:lhs (mcons-term fn args)
:var-info (var-counts args body)
:rhs body
:subclass 'definition
:heuristic-info (cons clique controller-alist)
:backchain-limit-lst nil)))
(er-progn (chk-rewrite-rule-warnings name
nil ; match-free
nil ; loop-stopper
rule ctx ens wrld state)
(chk-acceptable-definition-install-body
fn hyps equiv args body
(cadr install-body-tail)
install-body-tail ctx state)
(value ttree)))))))
; add-definition-rule was defined in defuns.lisp in order to implement
; defuns-fn0.
;---------------------------------------------------------------------------
; Section: :INDUCTION rules
(defun chk-acceptable-induction-rule (name term ctx wrld state)
; This function is really a no-op. It exists simply for regularity.
(declare (ignore name term ctx wrld))
(value nil))
(defun add-induction-rule (rune nume pat-term cond-term scheme-term term wrld)
(declare (ignore term))
(let ((fn (ffn-symb pat-term)))
(putprop fn 'induction-rules
(cons (make induction-rule
:rune rune
:nume nume
:pattern pat-term
:condition cond-term
:scheme scheme-term)
(getpropc fn 'induction-rules nil wrld))
wrld)))
;---------------------------------------------------------------------------
; Section: :TYPE-SET-RECOGNIZER-TERM Rules
(defun chk-acceptable-type-set-inverter-rule (name ts term ctx ens wrld state)
(let* ((vars (all-vars term)))
(cond
((not (and (ffn-symb-p term 'equal)
(equal vars '(X))
(equal (all-vars (fargn term 1))
(all-vars (fargn term 2)))))
(er soft ctx
"The :COROLLARY of a :TYPE-SET-INVERTER rule must be of the form ~
(equal old-expr new-expr), where new-expr and old-expr are each ~
terms containing the single free variable X. ~p0 is not of this ~
form, so ~x1 is an illegal :TYPE-SET-INVERTER rule. See :DOC ~
type-set-inverter."
(untranslate term t wrld)
name))
(t
(mv-let
(ts2 ttree)
(cond ((null ts)
(type-set-implied-by-term 'X nil (fargn term 2) ens wrld nil))
(t (mv ts nil)))
(cond
((not (and (integerp ts2)
(<= *min-type-set* ts2)
(<= ts2 *max-type-set*)))
; It is believed neither of the following errors will ever occur. The hard
; error won't occur because type-set-implied-by-term always returns a type-set.
; The soft error won't occur because translate-rule-class-alist insists, when a
; :TYPE-SET is supplied, that the type-set be proper and causes this error
; there.
(cond ((null ts)
(mv t
(er hard ctx
"Type-set-implied-by-term returned ~x0 instead of a ~
type-set!"
ts2)
state))
(t (er soft ctx
"The :TYPE-SET of a :TYPE-SET-INVERTER rule must be a ~
type-set, i.e., an integer n such that ~x0 <= n <= ~x1. ~
But ~x2 is not so ~x3 is an illegal :TYPE-SET-INVERTER ~
rule. See :DOC type-set-inverter."
*min-type-set*
*max-type-set*
ts2 name))))
(t
(mv-let
(required-old-expr ttree)
(convert-type-set-to-term 'X ts2 ens wrld ttree)
(cond
((not
(tautologyp (fcons-term* 'iff (fargn term 2) required-old-expr)
wrld))
(er soft ctx
"The right-hand side of the :COROLLARY of a :TYPE-SET-INVERTER ~
rule with :TYPE-SET ~x0 must be propositionally equivalent to ~
~p1 but you have specified ~p2. Thus, ~x3 is an illegal ~
:TYPE-SET-INVERTER rule. See :doc type-set-inverter."
ts2
(untranslate required-old-expr t wrld)
(untranslate (fargn term 2) t wrld)
name))
(t (value ttree)))))))))))
(defun add-type-set-inverter-rule (rune nume ts term ens wrld)
(mv-let (ts ttree)
(cond ((null ts)
(type-set-implied-by-term
'X
nil
(fargn term 2)
ens wrld nil))
(t (mv ts nil)))
(declare (ignore ttree))
(global-set 'type-set-inverter-rules
(cons (make type-set-inverter-rule
:nume nume
:rune rune
:ts ts
:terms (flatten-ands-in-lit (fargn term 1)))
(global-val 'type-set-inverter-rules wrld))
wrld)))
; --------------------------------------------------------------------------
; Section: :TAU-SYSTEM rules
; The code for adding :tau-system rules is in a prior file, namely
; history-management, where it is used in install-event as part of
; tau-auto-modep.
;---------------------------------------------------------------------------
; Section: :CLAUSE-PROCESSOR Rules
(defun tilde-@-illegal-clause-processor-sig-msg (cl-proc stobjs-in stobjs-out)
; A clause-processor should have signature of the form
; (cl-proc cl) => cl-list
; or
; (cl-proc cl hint) => cl-list
; or
; (cl-proc cl hint st_1 ... st_k) => (erp cl-list st_i1 ... st_in)
(cond
((null (cdr stobjs-out)) ; first two signatures
(cond ((car stobjs-out)
(msg "~x0 returns a single argument but it is a stobj"
cl-proc))
((or (equal stobjs-in '(nil))
(equal stobjs-in '(nil nil)))
nil)
(t (msg "~x0 returns a single argument, but doesn't take exactly one ~
or two arguments, both not stobjs"
cl-proc))))
((and ; the final (third) class of signatures above
(null (car stobjs-in))
(cdr stobjs-in)
(null (cadr stobjs-in))
(not (member-eq nil (cddr stobjs-in)))
(null (car stobjs-out))
(cdr stobjs-out)
(null (cadr stobjs-out))
(not (member-eq nil (cddr stobjs-out))))
nil)
(t
(msg "both the arguments and results of ~x0 in this case are expected to ~
contain stobjs in exactly all positions other than the first two"
cl-proc))))
(defun destructure-clause-processor-rule (term)
; We destructure the translated term term in the form of a :clause-processor
; correctness theorem. We return
; (mv flg fn cl alist rest-args ev call xflg)
; where
; flg: :error, if term is not the right shape
; t, if the clause processor function returns an error triple
; and is thus to be accessed with CLAUSES-RESULT
; nil, if the clause processor returns a set of clauses.
; fn: the clause processor function (presumably a function symbol)
; cl: the first argument to fn (presumably a variable symbol denoting the
; input clause)
; alist: the evaluator's alist (presumably a variable symbol)
; rest-args: the arguments of fn after the first (presumably a hint possibly
; followed by a list of stobj names)
; ev: the evaluator function (presumably a function symbol)
; call: the actual call of fn
; flg: a boolean indicating whether meta-extract-global-fact+ hyps were found
; We also may presume that all the variables above are distinct.
; This function does not check the presumptions above but
; chk-acceptable-clause-processor-rule does and causes an error if they are not
; true.
(case-match term
(('IMPLIES hyp
(ev ('DISJOIN clause) alist))
(mv-let
(hyps meta-extract-flg)
(remove-meta-extract-global-hyps
(remove1-equal (fcons-term* 'pseudo-term-listp clause)
(remove1-equal (fcons-term* 'alistp alist)
(flatten-ands-in-lit hyp)))
ev)
(case-match hyps
(((ev ('CONJOIN-CLAUSES cl-result)
&))
(case-match cl-result
(('CLAUSES-RESULT (cl-proc !clause . rest-args))
(mv t cl-proc clause alist rest-args ev (cadr cl-result)
meta-extract-flg))
((cl-proc !clause . rest-args)
(mv nil cl-proc clause alist rest-args ev cl-result
meta-extract-flg))
(& (mv :error nil nil nil nil nil nil nil))))
(& (mv :error nil nil nil nil nil nil nil)))))
(& (mv :error nil nil nil nil nil nil nil))))
(defun chk-acceptable-clause-processor-rule (name term ctx wrld state)
; Note that term has been translated (as it comes from a translated rule
; class), but not for execution.
(let ((str "No :CLAUSE-PROCESSOR rule can be generated from ~x0 ~
because~|~%~p1~|~%does not have the necessary form: ~@2. See ~
:DOC clause-processor."))
(mv-let
(clauses-result-call-p cl-proc clause alist rest-args ev cl-proc-call
meta-extract-flg)
(destructure-clause-processor-rule term)
(cond
((eq clauses-result-call-p :error)
(er soft ctx str name (untranslate term t wrld)
"it fails to satisfy basic syntactic criteria"))
((not (and (symbolp cl-proc)
(function-symbolp cl-proc wrld)))
(er soft ctx str name (untranslate term t wrld)
; We may never see the following message, but it seems harmless to do this
; check.
(msg "the symbol ~x0 is not a function symbol in the current world"
cl-proc)))
(t
(mv-let
(erp t-cl-proc-call bindings state)
; Here we catch the use of the wrong stobjs. Other checking is done below.
(translate1 cl-proc-call
:stobjs-out ; clause-processor call must be executable
'((:stobjs-out . :stobjs-out))
t ctx wrld state)
(declare (ignore bindings))
(cond
(erp (er soft ctx str name (untranslate term t wrld)
(msg "the clause-processor call is not in a form suitable ~
for evaluation (as may be indicated by an error ~
message above)")))
(t
(assert$ ; If translation changes cl-proc-call, we want to know!
(equal cl-proc-call t-cl-proc-call)
(let* ((stobjs-in (stobjs-in cl-proc wrld))
(stobjs-out (stobjs-out cl-proc wrld)))
(er-progn
(cond ((if clauses-result-call-p ; expected: iff at least 2 args
(equal stobjs-out '(nil))
(not (equal stobjs-out '(nil))))
(er soft ctx str name (untranslate term t wrld)
(msg "~x0 returns ~#1~[only~/more than~] one value ~
and hence there should be ~#1~[no~/a~] call of ~
~x2"
cl-proc
(if clauses-result-call-p 0 1)
'clauses-result)))
(t
(let ((msg (tilde-@-illegal-clause-processor-sig-msg
cl-proc stobjs-in stobjs-out)))
(cond (msg (er soft ctx str name
(untranslate term t wrld)
msg))
(t (value nil))))))
(let* ((user-hints-p (cdr stobjs-in))
(user-hints (cond (user-hints-p (car rest-args))
(t nil)))
(stobjs-called (cond (user-hints-p (cdr rest-args))
(t rest-args)))
(non-alist-vars
(if user-hints
(list* clause user-hints stobjs-called)
(list* clause stobjs-called)))
(vars (cons alist non-alist-vars))
(bad-vars (collect-non-legal-variableps vars)))
(cond (bad-vars
(er soft ctx str name (untranslate term t wrld)
(msg "the clause-processor function must be ~
applied to a list of distinct variable and ~
stobj names, but ~&0 ~#0~[is~/are~] not"
(untranslate-lst bad-vars nil wrld))))
((not (no-duplicatesp vars))
(cond ((no-duplicatesp non-alist-vars)
(er soft ctx str name (untranslate term t wrld)
(msg "the proposed :clause-processor rule ~
uses ~x0 as its alist variable, but ~
this variable also occurs in the ~
argument list of the clause-processor ~
function, ~x1"
alist
cl-proc)))
(t
(er soft ctx str name (untranslate term t wrld)
(msg "the clause-processor function must be ~
applied to a list of distinct ~
variable and stobj names, but the ~
list ~x0 contains duplicates"
non-alist-vars)))))
(t (value nil))))
(chk-evaluator-use-in-rule name cl-proc nil
(and meta-extract-flg
'(meta-extract-global-fact+))
:clause-processor
ev ctx wrld state)
(chk-rule-fn-guard "clause-processor" :clause-processor cl-proc
ctx wrld state)
(chk-evaluator ev wrld ctx state))))))))))))
(defun add-clause-processor-rule (name well-formedness-guarantee term wrld)
; Warning: Keep this in sync with chk-acceptable-clause-processor-rule.
; This function is non-standard, as the other add-x-rule functions traffic in
; runes and numes. If we ever decide to support automatic application of
; clause-processor rules, along with enabling and disabling, then we should
; modify this to fit into that common mold. For now, it seems misleading to
; deal with runes, since these rules cannot be enabled or disabled or applied
; automatically.
(mv-let
(clauses-result-call-p cl-proc clause alist rest-args ev cl-proc-call
meta-extract-flg)
(destructure-clause-processor-rule term)
(declare (ignore clause alist rest-args cl-proc-call meta-extract-flg))
(assert$
(and (not (eq clauses-result-call-p :error))
(symbolp cl-proc)
(function-symbolp cl-proc wrld))
(putprop
cl-proc 'clause-processor
(or well-formedness-guarantee
t)
; We keep a global list of clause-processor-rules, simply in order to be
; able to print them. But someone may find other uses for this list, in
; particular in order to code computed hints that look for applicable
; clause-processor rules.
(global-set 'clause-processor-rules
(acons name
term
(global-val 'clause-processor-rules wrld))
(mark-attachment-disallowed
(list cl-proc)
ev
(msg "it supports both the evaluator and clause-processor ~
function used in :CLAUSE-PROCESSOR rule ~x0"
name)
wrld))))))
; Finally, we develop code for trusted clause-processors. This has nothing to
; do with defthm, but it seems reasonable to place it immediately below code
; for verified clause-processors.
(defun trusted-clause-processor-table-guard (key val wrld)
; There is not much point in checking whether the key is already designated as
; a clause-processor, because a redundant table event won't even result in such
; a check. We could at least do this check for the non-redundant case, but
; there isn't really any need: It's perfectly OK to redefine the supporters and
; property of being a dependent clause-processor, provided the rest of the
; checks pass. The user might be surprised in such cases, so the macro
; define-trusted-clause-processor causes an error if the proposed trusted
; clause-processor is already designated as such.
; At one time we insisted that key not have a non-nil value for its
; 'constrained or 'non-executablep property. With the advent of defattach, a
; constrained function may however be a reasonable choice. Rather than do an
; elaborate check here on exactly what sort of constrained function might be
; attachable (none, if it is a dependent clause-processor), we trust that the
; writer of :meta and :clause-processor rules knows better than to attach to
; functions that cannot be executed.
(let ((er-msg "The proposed designation of a trusted clause-processor is ~
illegal because ~@0. See :DOC ~
define-trusted-clause-processor.")
(ctx 'trusted-clause-processor-table-guard))
(cond
((not (or (ttag wrld)
(global-val 'boot-strap-flg wrld)))
(er hard ctx er-msg
"there is not an active ttag (also see :DOC ttag)"))
((not (symbolp key))
(er hard ctx er-msg
(msg "the clause-processor must be a symbol, unlike ~x0"
key)))
((not (function-symbolp key wrld))
(er hard ctx er-msg
(msg "the clause-processor must be a function symbol, unlike ~x0"
key)))
((not (and (consp val)
(all-function-symbolps (car val) wrld)))
(cond ((not (symbol-listp (car val)))
(er hard ctx er-msg
"the indicated supporters list is not a true list of symbols"))
(t (er hard ctx er-msg
(msg "the indicated supporter~#0~[ ~&0 is not a function ~
symbol~/s ~&0 are not function symbols~] in the ~
current ACL2 world"
(non-function-symbols (car val) wrld))))))
((and (cdr val)
(not (eql (length (non-trivial-encapsulate-ee-entries
(global-val 'embedded-event-lst wrld)))
1)))
(let ((ee-entries (non-trivial-encapsulate-ee-entries
(global-val 'embedded-event-lst wrld))))
(cond
((null ee-entries)
(er hard ctx er-msg
"there is no promised encapsulate to associate with this ~
dependent clause-processor"))
(t
(er hard ctx er-msg
(msg "there is not a unique encapsulate for the promised ~
encapsulate to associate with this dependent ~
clause-processor. In particular, an enclosing ~
encapsulate introduces function ~x0, while an encapsulate ~
superior to that introduces function ~x1"
(caar (cadr (car ee-entries)))
(caar (cadr (cadr ee-entries)))))))))
(t
(let ((failure-msg (tilde-@-illegal-clause-processor-sig-msg
key
(stobjs-in key wrld)
(stobjs-out key wrld))))
(cond
(failure-msg
(er hard ctx er-msg
(msg failure-msg key)))
(t t)))))))
(table trusted-clause-processor-table nil nil
:guard
(trusted-clause-processor-table-guard key val world))
(defmacro define-trusted-clause-processor
(clause-processor supporters
&key
label ;;; optional, but required if doc is non-nil
doc ;;; optional
partial-theory ;;; optional
ttag ;;; optional; nil is same as missing
)
; We could mention that unlike trusted clause-processors, no supporters need to
; be specified for a verified clause-processor, as such a rule is guaranteed to
; be a theorem even in if local events have been removed. But that probably
; would distract more than it would enlighten.
(let* ((ctx 'define-trusted-clause-processor)
(er-msg "The proposed use of define-trusted-clause-processor is ~
illegal because ~@0. See :DOC ~
define-trusted-clause-processor.")
(assert-check
`(assert-event
(not (assoc-eq ',clause-processor
(table-alist 'trusted-clause-processor-table
(w state))))
:msg (msg "The function ~x0 is already indicated as a trusted ~
clause-processor."
',clause-processor)
:on-skip-proofs t))
(ttag-extra (and ttag `((defttag ,ttag))))
(label-extra (and label
(cond (doc
`((deflabel ,label
:doc ,doc)))
(t `((deflabel ,label))))))
(extra (append ttag-extra label-extra)))
(cond
((not (symbol-listp supporters))
(er hard ctx er-msg
"the second (supporters) argument must be a true list of symbols"))
((not (symbolp clause-processor)) ; expansion will do stronger check
(er hard ctx er-msg
"the first argument must be a symbol (in fact, must be a defined ~
function symbol in the current ACL2 world)"))
((and doc (not label))
(er hard ctx er-msg
"a non-nil :label argument is required when a non-nil :doc argument ~
is supplied"))
(t
(case-match partial-theory
(nil
`(encapsulate
()
,assert-check
,@extra
(table trusted-clause-processor-table ',clause-processor
'(,supporters))))
(('encapsulate sigs . events)
(cond
((atom sigs)
(er hard ctx er-msg
"the encapsulate event associated with :partial-theory has an ~
empty signature list"))
((atom events)
(er hard ctx er-msg
"the encapsulate event associated with :partial-theory has an ~
empty list of sub-events"))
((not (true-listp events))
(er hard ctx er-msg
"the encapsulate event associated with :partial-theory has a ~
list of sub-events that is not a true-listp"))
(t `(encapsulate
,sigs
,assert-check
(logic) ; to avoid skipping local events
,@events
,@extra
(table trusted-clause-processor-table ',clause-processor
'(,supporters . t))))))
(& (er hard ctx er-msg
"a supplied :partial-theory argument must be a call of ~
encapsulate")))))))
;---------------------------------------------------------------------------
; Section: Handling a List of Classes
; We start by translating the user-supplied list of rule-class tokens.
; Once upon a time we considered the idea of permitting rule classes, e.g.,
; :FORWARD-CHAINING, to be abbreviated by arbitrary subsequences of their
; characters. We implemented the idea via "disambiguation alists." We have
; since scrapped the idea for user-level consistency: rule classes are only one
; source of long keywords. Do we permit the abbreviation of, say, :HINTS by
; :H? Do we permit the abbreviation of :RULE-CLASSES to :RC? Do we permit the
; abbreviation of the :PROPS keyword command of LP? There is a good argument
; that we ought to permit a powerful symbol-level abbreviation convention.
; Macros suffer by requiring parentheses. But since we don't have the time,
; now, to carry out the root-and-branch implementation of keyword
; disambiguation, we have scrapped the idea for now. We leave the following
; dead code in place.
; (defun char-subsequencep (x y)
;
; ; Determine whether x is a subsequence of y, e.g., '(#\B #\D) is a
; ; char-subsequencep of '(#\A #\B #\C #\D) but not of '(#\A #\D #\B).
; ; X and y must be true lists of characters.
;
; (cond ((null x) t)
; ((null y) nil)
; ((eql (car x) (car y))
; (char-subsequencep (cdr x) (cdr y)))
; (t (char-subsequencep x (cdr y)))))
;
; (defun disambiguate1 (x alist)
;
; ; Alist should pair character lists with arbitrary values. We select those
; ; pairs whose key have x as a subsequence.
;
; (cond ((null alist) nil)
; ((char-subsequencep x (caar alist))
; (cons (car alist) (disambiguate1 x (cdr alist))))
; (t (disambiguate1 x (cdr alist)))))
;
; (defun make-disambiguation-alist (lst)
;
; ; This function is used to preprocess a true list of symbols into an
; ; alist suitable for disambiguate. For example, '(FOO BAR) is
; ; transformed into '(((#\F #\O #\O) . FOO) ((#\B #\A #\R) . BAR)).
;
; (cond ((null lst) nil)
; (t (cons (cons (coerce (symbol-name (car lst)) 'list) (car lst))
; (make-disambiguation-alist (cdr lst))))))
;
; (defun assoc-cdr (x alist)
;
; ; Like assoc-equal but uses the cdr of each pair in alist as the key.
;
; (cond ((null alist) nil)
; ((equal x (cdar alist)) (car alist))
; (t (assoc-cdr x (cdr alist)))))
;
; (defun disambiguate (token alist ctx phrase state)
;
; ; This function disambiguates token wrt alist or else causes an error.
; ; Token must be a symbol and alist must be a ``disambiguation alist,''
; ; an alist pairing lists of characters to symbols. For example, if
; ; token is :EM and alist includes the pair ((#\E #\L #\I #\M) . :ELIM)
; ; and no other pair whose key has EM as a subsequence, then no error
; ; is caused and :ELIM is returned as the value. If the token is a
; ; subsequence of no key or of more than one key, an error is caused.
; ; Phrase is a tilde-@ phrase that fills in the sentence: "The
; ; acceptable ~@1 are ..." so, for example, phrase might be "rule
; ; classes".
;
; ; We adopt the convention, for sanity, that if token is eq to the
; ; value component of some pair in alist, then its meaning is itself.
; ; This guarantees that if you spell a token out completely you get that
; ; token and no other; in particular, you don't get an ambiguity error
; ; just one key in the alist is a subsequence of another.
;
; (cond
; ((assoc-cdr token alist) (value token))
; (t
; (let ((winners (disambiguate1 (coerce (symbol-name token) 'list) alist)))
; (cond ((null winners)
; (er soft ctx "The token ~x0 denotes none of the acceptable ~@1: ~&2."
; token
; phrase
; (strip-cdrs alist)))
; ((null (cdr winners))
; (value (cdar winners)))
; (t (er soft ctx "The token ~x0 is ambiguously denotes the ~@1: ~&2."
; token
; phrase
; (strip-cdrs winners))))))))
;
; (defun tilde-@-abbreviates-but-phrase (x y)
;
; ; We produce a tilde-@ phrase that prints as "x abbreviates y, but y"
; ; if x is different from y and that is just "y" otherwise. Both x and
; ; y are symbols. This is used to print such messages as ":RWT
; ; abbreviates :REWRITE, but :REWRITE cannot be used as a structured
; ; rule class."
;
; (cond ((eq x y) (msg "~x0" y))
; (t (msg "~x0 abbreviates ~x1, but ~x1" x y))))
;
; ; Thus ends the dead code devoted to disambiguation.
;
; Now we stub out the proof checker's sense of "instructions."
(defun primitive-instructionp (instr state)
(let* ((cmd (car (make-official-pc-instr instr)))
(typ (pc-command-type cmd)))
(and (member-eq typ '(primitive atomic-macro))
(acl2-system-namep-state
(intern-in-package-of-symbol (symbol-name cmd) 'acl2-pc::induct)
state))))
(defun non-primitive-instructions (instructions state)
(cond
((endp instructions)
nil)
((primitive-instructionp (car instructions) state)
(non-primitive-instructions (cdr instructions) state))
(t
(cons (car instructions)
(non-primitive-instructions (cdr instructions) state)))))
(defun chk-primitive-instruction-listp (instructions ctx state)
(if (true-listp instructions)
(value nil)
(er soft ctx
"An :instructions argument must be a ~
true-list and ~x0 is not."
instructions)))
(defun translate-instructions (name instructions ctx wrld state)
(declare (ignore name wrld))
(if (eq instructions t)
(value t)
(er-progn (chk-primitive-instruction-listp instructions ctx state)
(value instructions))))
(defun controller-alistp (clique alist wrld)
; Clique is a list of function symbols. Alist is an arbitrary object.
; We confirm that alist is an alist that maps each fn in clique to a
; mask of t's and nil's whose length is the arity of the corresponding
; fn.
(cond ((atom alist)
(cond ((null alist) (null clique))
(t nil)))
((and (consp (car alist))
(symbolp (caar alist))
(member-eq (caar alist) clique)
(boolean-listp (cdar alist))
(= (length (cdar alist)) (arity (caar alist) wrld)))
(controller-alistp (remove1-eq (caar alist) clique)
(cdr alist)
wrld))
(t nil)))
(defun alist-to-keyword-alist (alist ans)
; Convert ((key1 . val1) ... (keyn . valn)) to a keyword alist, i.e.,
; (keyn valn ... key1 val1). Note that we reverse the order of the
; "key pairs."
(declare (xargs :guard (alistp alist)))
(cond ((endp alist) ans)
(t (alist-to-keyword-alist (cdr alist)
(cons (caar alist)
(cons (cdar alist) ans))))))
(defun eliminate-macro-aliases (lst macro-aliases wrld)
; Returns (mv flg lst), where flg is nil if lst is unchanged, :error if there
; is an error (some element is neither a function symbol nor a macro aliases)
; -- in which case lst is a string giving a reason for the error after "but
; <original_list> " -- else :changed if there is no error but at least one
; macro alias was found.
(cond ((atom lst)
(cond ((null lst) (mv nil nil))
(t (mv :error "does not end in nil"))))
(t (mv-let (flg rst)
(eliminate-macro-aliases (cdr lst) macro-aliases wrld)
(cond ((eq flg :error)
(mv :error rst))
(t (let* ((next (car lst))
(fn (deref-macro-name next macro-aliases)))
(cond ((not (and (symbolp fn)
(function-symbolp fn wrld)))
(mv :error
(msg "contains ~x0"
next)))
((or (eq flg :changed)
(not (eq next fn)))
(mv :changed (cons fn rst)))
(t (mv nil lst))))))))))
(defun fix-loop-stopper-alist (x macro-aliases wrld)
; Returns (mv flg x'). If x is a valid loop-stopper alist then flg is flg0 and
; x' is x. If x is valid except that some symbols that are expected to be
; function symbols are actually macro aliases, then flg is t and x' is the
; result of replacing each such macro aliases by the corresponding function.
; Otherwise flg is :error.
(cond
((null x) (mv nil nil))
((atom x) (mv :error nil))
((not (and (true-listp (car x))
(<= 2 (length (car x)))
(legal-variablep (caar x))
(legal-variablep (cadar x))
(not (eq (caar x) (cadar x)))))
(mv :error nil))
(t (mv-let (flg1 fns)
(eliminate-macro-aliases (cddar x) macro-aliases wrld)
(cond ((eq flg1 :error) (mv :error nil))
(t (mv-let
(flg2 rest)
(fix-loop-stopper-alist (cdr x) macro-aliases wrld)
(cond (flg1 (mv t (cons (list* (caar x) (cadar x) fns)
rest)))
(flg2 (mv t (cons (car x) rest)))
(t (mv nil x))))))))))
(defun guess-controller-alist-for-definition-rule (names formals body ctx wrld
state)
; Names is a singleton list containing a function name to be used as the clique
; for a :definition rule with the indicated formals and body. We guess a
; :controller-alist or cause an error.
(let ((t-machine (termination-machine names body nil nil
(default-ruler-extenders wrld))))
(er-let*
((m (guess-measure (car names) nil formals 0 t-machine ctx wrld state)))
(value (list (cons (car names)
(make-controller-pocket formals
(all-vars m))))))))
(defun chk-legal-linear-trigger-terms1 (term lst name ctx state)
(cond ((null lst) (value nil))
((subsetp-eq (set-difference-eq (all-vars (cdar lst))
(all-vars1-lst (caar lst) nil))
(all-vars term))
(chk-legal-linear-trigger-terms1 term (cdr lst) name ctx state))
(t (er soft ctx
"Each term in the :TRIGGER-TERMS of a :LINEAR rule should be a ~
legal trigger for the rule generated for each branch through ~
the corollary. But the the proposed trigger ~p0 for the ~
:LINEAR rule ~x1 is illegal for the branch ~p2 because it ~
contains insufficient variables. See :DOC linear."
(untranslate term nil (w state))
name
(untranslate
(if (caar lst)
(fcons-term* 'implies (conjoin (caar lst)) (cdar lst))
(cdar lst))
t
(w state))))))
(defun chk-legal-linear-trigger-terms (terms lst name ctx state)
; When the user supplies some :TRIGGER-TERMS for a :LINEAR rule, we must check
; that each trigger is legal for every rule generated from the unprettified
; corollary. Here, terms is a true-list of terms proposed as triggers and lst
; is the unprettification of the corollary, i.e., a list of pairs of the form
; ((hyps1 . concl1) ... (hypsk . conclk)). To be legal, each term must be a
; non-variable, non-quote, non-lambda application, non-IF and must, for each
; (hypsi . concli) pair, contain sufficient variables so that the vars in hypsi
; plus those in the term include all the vars in concli. We check these
; conditions and return nil or cause an error.
(cond
((null terms) (value nil))
((and (nvariablep (car terms))
(not (fquotep (car terms)))
(not (flambda-applicationp (car terms)))
(not (eq (ffn-symb (car terms)) 'if)))
(er-progn
(chk-legal-linear-trigger-terms1 (car terms) lst name ctx state)
(chk-legal-linear-trigger-terms (cdr terms) lst name ctx state)))
(t (er soft ctx
"The term ~p0 supplied as a :TRIGGER-TERM for the :LINEAR rule ~x1 ~
is illegal because it is either a variable, a quoted constant, a ~
lambda application (or LET-expression), or an IF-expression."
(untranslate (car terms) nil (w state))
name))))
(defun backchain-limit-listp (lst)
; Recognizer for true-lists each of whose elements is either NIL or a
; non-negative integer.
(cond ((atom lst)
(equal lst nil))
((or (null (car lst))
(natp (car lst)))
(backchain-limit-listp (cdr lst)))
(t
nil)))
(defun recover-metafunction-or-clause-processor-signatures (token term)
; Term is supposed to be either a metafunction correctness theorem or a
; clause-processor correctness theorem, depending on token being :meta or
; :clause-processor. (But it may not be of the correct form.) We return (mv
; triple-flg fn hyp-fn rest-args), where hyp-fn is nil if no hypothesis fn is
; involved. Rest-args are all the arguments of fn after the first. Triple-flg
; is :error if term cannot be parsed according to token, is t if the identified
; metafunction or clause processor, fn, returns an error triple (and thus must
; actually be a clause-processor whose result is to be accessed with
; CLAUSES-RESULT), or nil if fn returns a simple value (term or set of
; clauses).
; In the case of a :meta fn, triple-flg is :error or nil and rest-args may be
; nil or something like (mfc state). In the case of a :clause-processor,
; triple-flg may be :error, t, or nil and rest-args may be nil or (hint) or
; (hint stobj1 stobj2 ... stobjk). When hyp-fn is present, we know that it can
; take the same arguments as fn.
; If triple-flg is :error then we know chk-acceptable-x-rule will cause an
; error. Otherwise, we guarantee that fn is a function symbol, hyp-fn is nil
; or a function symbol of the same arity as fn, that the arity of both
; functions is (+ 1 (len rest-args)), and that rest-args is a list of distinct
; variable symbols, and that result of fn is either a triple (whose value is to
; be accessed with CLAUSES-RESULT) or a single value according to triple-flg.
(cond
((eq token :meta)
(mv-let
(hyp eqv ev x a fn mfc-symbol)
(interpret-term-as-meta-rule term)
(mv-let
(hyp-fn extra-fns)
(meta-rule-hypothesis-functions hyp ev x a mfc-symbol)
(declare (ignore extra-fns))
(cond
; If hyp-fn is nil, it means the hyp didn't parse. If hyp-fn is t it means the
; hyp parsed but there is no hyp-fn.
; Note that to insure that fn, for example, is a function symbol of the correct
; signature, we only need to check that it is a symbol, since term is a
; translated term.
((or (null eqv)
(not (symbolp fn))
(null hyp-fn)
(not (symbolp hyp-fn))
(not (symbolp mfc-symbol)))
(mv :error nil nil nil))
(t (mv nil
fn
(if (eq hyp-fn t) nil hyp-fn)
(if mfc-symbol
(list mfc-symbol 'STATE)
nil)))))))
(t
(mv-let
(flg fn cl alist rest-args ev call xflg)
(destructure-clause-processor-rule term)
(declare (ignore call xflg))
(cond
((or (eq flg :error)
(not (symbolp fn))
(not (symbolp cl))
(not (symbolp alist))
(not (symbol-listp rest-args))
(not (symbolp ev))
(not (no-duplicatesp (list* cl alist rest-args))))
(mv :error nil nil nil))
(t (mv flg fn nil rest-args)))))))
(defun equal-except-on-non-stobjs (arglist1 arglist2 w)
; Given two lists of symbols, we check that when corresponding elements are
; different they are not stobjs. That is, the two lists are equal except on
; the non-stobj elements. This is implied by (equal arglist1 arglist2) and
; implies (equal (len arglist1) (len arglist2)).
(cond ((atom arglist1)
(and (equal nil arglist1)
(equal nil arglist2)))
((atom arglist2) nil)
((equal (car arglist1) (car arglist2))
(equal-except-on-non-stobjs (cdr arglist1) (cdr arglist2) w))
((or (stobjp (car arglist1) t w)
(stobjp (car arglist2) t w))
nil)
(t (equal-except-on-non-stobjs (cdr arglist1) (cdr arglist2) w))))
(defun arity-alistp (alist)
; We check that alist binds symbols to naturals and that no symbol is bound
; twice.
(cond
((atom alist) (eq alist nil))
((and (consp (car alist))
(symbolp (car (car alist)))
(natp (cdr (car alist)))
(arity-alistp (cdr alist))
(not (assoc-eq (car (car alist)) (cdr alist))))
t)
(t nil)))
(defun compatible-arity-alistsp (alist1 alist2)
; Both arguments are arity-alists. We want to know if their union is also. We
; do this in the most brute-force way imaginable except that we recognize the
; special cases where the two alists are identical.
(cond ((equal alist1 alist2) t)
(t (arity-alistp (union-equal alist1 alist2)))))
(defun collect-disagreeing-arity-assumptions (alist1 alist2)
(cond ((endp alist1) nil)
((and (assoc (car (car alist1)) alist2)
(not (equal (cdr (car alist1))
(cdr (assoc (car (car alist1)) alist2)))))
(cons (car (car alist1))
(collect-disagreeing-arity-assumptions (cdr alist1) alist2)))
(t (collect-disagreeing-arity-assumptions (cdr alist1) alist2))))
(defun interpret-term-as-well-formedness-guarantee-thm (token fn thm)
; Token must be :META or :CLAUSE-PROCESSOR. In the former case,
; thm is a term (actually a theorem) and we interpret it as
; (IMPLIES (AND (TERMP tvar wvar)
; (ARITIES-OKP '((fn1 . k1) ...) wvar))
; (TERMP (fn tvar) wvar))
; In the latter case, we interpret thm as
; (IMPLIES (AND (TERM-LISTP tvar wvar)
; (ARITIES-OKP '((fn1 . k1) ...) wvar))
; (TERM-LIST-LISTP (fn tvar) wvar))
; or
; (IMPLIES (AND (TERM-LISTP tvar wvar)
; (ARITIES-OKP '((fn1 . k1) ...) wvar))
; (TERM-LIST-LISTP (CLAUSES-RESULT (fn tvar)) wvar))
; But we recognize certain equivalent or stronger variants, including allowing
; fewer or rearranged hypotheses and allowing for fn to have additional
; arguments as permitted for metafunctions and clause-processors. We return
; (mv tvar wvar alist triple-flg rest-args), where alist is the evg of the quoted
; arities alist found and rest-args is the list of arguments to fn after tvar.
; and triple-flg is :error, t, or nil with :error meaning we couldn't parse
; thm appropriately, t meaning that fn returns a triple whose value is accessed
; by CLAUSES-RESULT, and nil meaning fn returns a single value.
; If triple-flg is :error, thm is not of the appropriate form; otherwise it is.
; But we do not check anything about the components returned! For example,
; tvar, which is guaranteed to be a term may not actually be a variable symbol,
; etc. These constraints must be checked by the caller.
; We actually accept the thm (TERMP (fn tvar) wvar) and (TERM-LIST-LISTP (fn
; tvar) wvar) without any hypotheses, though the only functions we can think of
; for which this is provable are those that return constants and hence can't be
; correct metafunctions or clause processor.
; We could code this more efficiently but we don't expect well-formedness
; guarantees to be very common.
(let ((pre (if (eq token :META) 'TERMP 'TERM-LISTP))
(post (if (eq token :META) 'TERMP 'TERM-LIST-LISTP)))
(case-match thm
(('IMPLIES ('IF (!pre tvar wvar)
('ARITIES-OKP ('QUOTE alist) wvar)
''NIL)
(!post (!fn tvar . rest-args) wvar))
(mv tvar wvar alist nil rest-args))
(('IMPLIES ('IF ('ARITIES-OKP ('QUOTE alist) wvar)
(!pre tvar wvar)
''NIL)
(!post (!fn tvar . rest-args) wvar))
(mv tvar wvar alist nil rest-args))
(('IMPLIES (!pre tvar wvar)
(!post (!fn tvar . rest-args) wvar))
(mv tvar wvar nil nil rest-args))
(('IMPLIES ('ARITIES-OKP ('QUOTE alist) wvar)
(!post (!fn tvar . rest-args) wvar))
(mv tvar wvar alist nil rest-args))
((!post (!fn tvar . rest-args) wvar)
(mv tvar wvar nil nil rest-args))
; Now we repeat the same patterns except this time allow for CLAUSES-RESULT
; around the fn call:
(('IMPLIES ('IF (!pre tvar wvar)
('ARITIES-OKP ('QUOTE alist) wvar)
''NIL)
(!post ('CLAUSES-RESULT (!fn tvar . rest-args)) wvar))
(mv tvar wvar alist t rest-args))
(('IMPLIES ('IF ('ARITIES-OKP ('QUOTE alist) wvar)
(!pre tvar wvar)
''NIL)
(!post ('CLAUSES-RESULT (!fn tvar . rest-args)) wvar))
(mv tvar wvar alist t rest-args))
(('IMPLIES (!pre tvar wvar)
(!post ('CLAUSES-RESULT (!fn tvar . rest-args)) wvar))
(mv tvar wvar nil t rest-args))
(('IMPLIES ('ARITIES-OKP ('QUOTE alist) wvar)
(!post ('CLAUSES-RESULT (!fn tvar . rest-args)) wvar))
(mv tvar wvar alist t rest-args))
((!post ('CLAUSES-RESULT (!fn tvar . rest-args)) wvar)
(mv tvar wvar nil t rest-args))
(& (mv nil nil nil :error nil)))))
(defun translate-well-formedness-guarantee (token x name corollary ctx wrld
state)
; Token is either :META or :CLAUSE-PROCESSOR and indicates what class of rule
; we're creating. X is the value supplied for the :WELL-FORMEDNESS-GUARANTEE
; component of the rule class. Name is the name of the correctness theorem for
; a metafunction (perhaps with a hypothesis metafunction) or clause-processor
; and corollary is the statement of that correctness theorem. X must be one
; of:
; [1] thm-name1 token = :META or :CLAUSE-PROCESSOR
; [2] (thm-name1) token = :META
; [3] (thm-name1 thm-name2) token = :META
; If token is :CLAUSE-PROCESSOR, token must be of form [1]. If token is :META
; and the metatheorem named by name has a hypothesis metafunction, token must
; be of form [3]. In all cases, thm-name1 and thm-name2 (when relevant) must
; be symbols that name theorems that guarantee that the metafunction or clause
; processor together with the hypothesis metafunction, as appropriate, return
; well-formed results. In the case of token :META ``well-formed'' means the
; output is a TERMP if the input is; in the case of token :CLAUSE-PROCESSOR,
; ``well-formed'' means the output is a TERM-LIST-LISTP if the input is a
; TERM-LISTP.. In both cases, the well-formedness theorems also involve
; assumptions about the arities of certain functions.
; The result of this function either an error or a ``well-formedness
; guarantee'' of the form:
; (cons (list name fn thm-name1 hyp-fn thm-name2)
; combined-arity-alist)
; where the list of length 5 above is shortened to 3 if there no hyp-fn is
; involved, and combined-arity-alist is the union of the two arity-alists. We
; keep all this information to make error reporting easier. The list of length
; 5 (or 3) is displayed to the user when he or she tries to make one of the
; functions on the combined-arity-alist untouchable. The combined-arity-alist
; is checked against the current world when the metatheorem or clause processor
; is applied. The value of this function is stored in the :heuristic-info
; field of the :rewrite-rule created for this metatheorem and on the property
; list of the metafunction under the WELL-FORMEDNESS-GUARANTEE property.
; So much for the spec and use of this function. Now for the operational
; details. To allow some code sharing we often act like a
; clause-processor is just a metafunction (e.g., we use the same name, fn, for
; both) without a hyp-fn; of course, we must interpret ``well-formedness''
; appropriately.
; But we must recover the metafunction or clause-processor functio name, fn,
; (and, possibly, the hypothesis metafunction name, hyp-fn) from the translated
; corollary formula, which means we must parse corollary as a formula of the
; appropriate shape. But rule classes are translated -- resulting in this
; function being called -- before the translated rule class (always now
; containing a translated :corollary term) is checked for well-formedness. So
; here we're in the odd position of wanting to know whether x names theorems
; about certain functions, fn and hyp-fn, proved sound by corollary, without
; knowing that corollary establishes soundness for anything! So what do we do
; if corollary has the wrong shape and we cannot recover fn and hyp-fn from it?
; Answer: we ``approve'' x (by causing no error and acting as though there were
; well-formedness guarantee)! We know that corollary will be checked later and
; will cause the whole rule to fail if it's not of the right shape.
(cond
((not (or (and (symbolp x)
(formula x nil wrld))
(and (eq token :META)
(consp x)
(symbolp (car x))
(null (cdr x))
(formula (car x) nil wrld))
(and (eq token :META)
(consp x)
(symbolp (car x))
(consp (cdr x))
(symbolp (cadr x))
(null (cddr x))
(formula (car x) nil wrld)
(formula (cadr x) nil wrld))))
(if (eq token :META)
(er soft ctx
"The :WELL-FORMEDNESS-GUARANTEE of :META rule ~x0 is ill-formed. ~
In general, a :WELL-FORMEDNESS-GUARANTEE must be of one of the ~
following forms:~%[1] thm-name1~%[2] (thm-name1)~%[3] ~
(thm-name1 thm-name2)~%where thm-name1 names a previously proved ~
theorem guaranteeing that the relevant metafunction returns a ~
TERMP when given a TERMP. See :DOC termp. Form [3] is only ~
permitted (and is required!) when the metatheorem has a ~
hypothesis metafunction, in which case thm-name2 names a ~
previously proved theorem guaranteeing that the hypothesis ~
metafunction also returns a TERMP when given one. ~x1 is of ~
none of the expected forms. See :DOC well-formedness-guarantee ~
for details."
name x)
(er soft ctx
"The :WELL-FORMEDNESS-GUARANTEE of :CLAUSE-PROCESSOR rule ~x0 ~
must be the name of a theorem guaranteeing that the clause ~
processor returns a TERM-LIST-LISTP when given a TERM-LISTP. ~
~x1 is not such a name. See :DOC term-listp, :DOC ~
term-list-listp, and :DOC well-formedness-guarantee for details."
name x)))
(t (let* ((thm-name1 (cond ((symbolp x) x)
(t (car x))))
(thm-name2 (cond ((symbolp x) nil) ; might be nil
(t (cadr x))))
(thm1 (formula thm-name1 nil wrld))
(thm2 (if (null thm-name2) ; might be nil
nil
(formula thm-name2 nil wrld))))
(mv-let
(triple-flg fn hyp-fn rest-args)
(recover-metafunction-or-clause-processor-signatures token corollary)
(let ((expected-fn-form
`(IMPLIES
(AND (,(if (eq token :meta) 'TERMP 'TERM-LISTP) X W)
(ARITY-ALISTP '<alist> W))
(,(if (eq token :meta) 'TERMP 'TERM-LIST-LISTP)
,(if triple-flg
`(CLAUSES-RESULT (,fn X ,@rest-args))
`(,fn X ,@rest-args))
W)))
(expected-hyp-fn-form
(if hyp-fn
`(IMPLIES
(AND (TERMP X W)
(ARITY-ALISTP '<alist> W))
(TERMP (,hyp-fn X ,@rest-args)
W))
nil))
(evisc (evisc-tuple nil nil
'((<alist> . "((fn1 . n1) ... (fnk . nk))"))
nil)))
(cond
((eq triple-flg :error)
; The corollary didn't parse as a meta/clause-processor rule (as per token).
; But we quietly accept it knowing that the corresponding chk-acceptable-x-rule
; will cause an error.
(value nil))
; Otherwise, fn is the metafunction or clause processor function, as per token.
; We know that fn is a function symbol of arity (+ 1 (len rest-args)), that fn
; returns an error triple iff triple-flg is t (and so its value must be
; accessed with CLAUSES-RESULT), that hyp-fn is either nil or a function symbol
; of the same arity as fn, and that `(,fn x ,@rest-args) and `(,hyp-fn x
; ,@rest-args) are legal calls of those functions (assuming hyp-fn is non-nil).
; We also know that x names at least one theorem, thm1 with name thm-name1. We
; know that thm2 is either a theorem with name thm-name2 or else thm2 and
; thm-name2 are both nil. Thm1 and thm2 are supposedly well-formedness
; guarantees for fn and hyp-fn. But we must confirm that.
(t (mv-let
(tvar1 wvar1 alist1 triple-flg1 rest-args1)
(interpret-term-as-well-formedness-guarantee-thm token fn thm1)
(cond
((eq triple-flg1 :error)
(er soft ctx
"The :WELL-FORMEDNESS-GUARANTEE of ~x0 rule ~x1 is ~
ill-formed. We cannot interpret the theorem named ~x2 ~
as a well-formedness guarantee for the function ~x3. ~
We expected the name of a theorem like ~X45. See :DOC ~
well-formedness-guarantee for details of the acceptable ~
forms."
token name thm-name1 fn
expected-fn-form
evisc))
((and
; Now we know that the alleged well-formedness theorem, thm1, is about the same
; function symbol, fn! Given the possibility that fn has changed since thm1
; was proved, we do another check. This is just out of politeness: fn could
; only change due to a redefinition and soundness is now the user's
; responsibility! But we know that if this metatheorem/clause-processor is
; approved, we're going to call fn on the arguments we see in corollary and we
; want some assurance that thm1 guarantees the well-formedness of the result!
; For example, imagine that when thm1 was proved about a metafunction fn, the
; formals of fn were (x state mfc) but then before corollary was proved fn was
; redefined with arguments (x mfc state). If we were to approve this thm as a
; well-formedness guarantee then we'd be wrong! Of course, if fn has been
; redefined, it hardly matters that the arguments are the same! But since the
; introduction of a non-term is a pretty difficult bug to diagnose, we prefer
; to do what we can to prevent it even if it's the user's own fault!
(equal-except-on-non-stobjs rest-args rest-args1 wrld)
(eq triple-flg triple-flg1)
(variablep tvar1)
(variablep wvar1)
(symbol-listp rest-args1) ;``(variable-listp rest-args1)''
(no-duplicatesp-equal
(list* tvar1 wvar1 rest-args1))
(arity-alistp alist1))
; We know thm is of the form (for token :meta):
; (IMPLIES (AND (TERMP tvar1 wvar1)
; (ARITIES-OKP '<alist1> wvar1))
; (TERMP (fn tvar1 . rest-args1) wvar1))
; For token :clause-processor we know:
; (IMPLIES (AND (TERM-LISTP tvar1 wvar1)
; (ARITIES-OKP '<alist1> wvar1))
; (TERM-LIST-LISTP (fn tvar1 . rest-args1) wvar1))
; possibly with a CLAUSES-RESULT wrapped around the fn call. Now we know that
; all the terms used as variables above really are variables and they're
; distinct, and that alist1 pairs symbols to naturals. (For politeness only we
; know that the same stobjs are given to fn in both the corollary and thm1 and
; that the output of fn is either a triple or a single value as specified by
; triple-flg in both theorems.)
; We claim the tests above insure that thm1 guarantees that fn always returns a
; TERMP or TERM-LIST-LISTP provided the arity alist, alist1, is valid in the
; current world. Now we check the same things for the hyp-fn, if any.
(cond
((null hyp-fn)
(cond
(thm-name2
(er soft ctx
"The ~x0 rule ~x1 mentions the metafunction ~x2 but ~
does not mention a hypothesis metafunction. ~
Therefore, it makes no sense to name a previously ~
proved theorem that provides a well-formedness ~
guarantee for a hypothesis metafunction. But ~
you have specified such a name, ~x4, with your ~
:WELL-FORMEDNESS-GUARANTEE ~x3. This may indicate ~
a misunderstanding. Replace your guarantee with ~
:WELL-FORMEDNESS-GUARANTEE ~x5."
token name fn x thm-name2 (list thm-name1)))
(t
(value (cons (list name fn thm-name1)
alist1)))))
; Token is :META because we have a hyp-fn.
((null thm-name2)
(er soft ctx
"The :META rule ~x0 mentions the metafunction ~x1 and ~
the hypothesis metafunction ~x2. You have correctly ~
named ~x3 as a previously proved theorem guaranteeing ~
that ~x1 always returns a TERMP, but you have not ~
specified such a name for ~x2. We require that you ~
do so. That is, prove a theorem like ~X45 with some ~
name and change your :WELL-FORMEDNESS-GUARANTEE value ~
to (~x3 name)."
name fn hyp-fn thm-name1 expected-hyp-fn-form evisc))
(t (mv-let
(tvar2 wvar2 alist2 triple-flg2 rest-args2)
(interpret-term-as-well-formedness-guarantee-thm
token hyp-fn thm2)
(cond
((and
(equal-except-on-non-stobjs rest-args rest-args2 wrld)
(eq triple-flg triple-flg2)
(variablep tvar2)
(variablep wvar2)
(no-duplicatesp-equal
(list* tvar2 wvar2 rest-args2))
(arity-alistp alist2))
(cond
((compatible-arity-alistsp alist1 alist2)
(value (cons (list name
fn thm-name1
hyp-fn thm-name2)
(union-equal alist1 alist2))))
(t (er soft ctx
"The :WELL-FORMEDNESS-GUARANTEE of the :META ~
rule ~x0 for the metafunction ~x1 with ~
hypothesis metafunction ~x2 is inadmissible ~
because the two TERMP theorems (~x3 and ~x4) ~
assume different arities for one or more ~
function symbols, to wit ~&5. You will have ~
to prove TERMP guarantee theorems that make ~
compatible arity assumptions!"
name fn hyp-fn thm-name1 thm-name2
(collect-disagreeing-arity-assumptions
alist1 alist2)))))
(t (er soft ctx
"The :WELL-FORMEDNESS-GUARANTEE of the :META ~
rule ~x0 for the metafunction ~x1 with ~
hypothesis metafunction ~x2 specified that ~x3 ~
is the name of the previously proved theorem ~
that guarantees that ~x2 always returns a ~
TERMP. But theorem ~x3 is not of the expected ~
form. We expected it to be something ~
like:~X45. See :DOC well-formedness-guarantee."
name fn hyp-fn thm-name2
expected-hyp-fn-form evisc)))))))
(t (er soft ctx
"The :WELL-FORMEDNESS-GUARANTEE of the ~x0 rule ~x1 ~
for ~x2 specified that ~x3 is the name of the ~
previously proved theorem that established that ~x2 ~
always returns a TERMP. But theorem ~x3 is not of ~
the expected form. We expected it to be something ~
like ~X45. See :DOC well-formedness-guarantee."
token name fn thm-name1
expected-fn-form evisc))))))))))))
(defun translate-rule-class-alist (token alist seen corollary name x ctx ens
wrld state)
; Alist is the untranslated alist of a rule-class with car token.
; Corollary is the translated value of the :COROLLARY entry in alist
; (which is guaranteed to be present). Seen is an alist of the keys
; seen so far and their translated values. It is in fact the reverse
; of the final answer. We translate the values in alist, making sure
; that no key is seen twice, that the keys seen are appropriate for
; the class named by token, and that all required keys (other than
; :COROLLARY) are present. The variable x is the object the user
; supplied to specify this class and is used only in error messages.
; Name is the name of the event for which this rule class is being
; translated and is used in the translation of :BY hints.
; WARNING: If you add new keywords, be sure to change the
; documentation under deflabel rule-classes.
(cond
((null alist)
(cond
((eq token :META)
(cond ((not (assoc-eq :TRIGGER-FNS seen))
(er soft ctx
"The :META rule class must specify :TRIGGER-FNS. ~
The rule class ~x0 is thus illegal. See :DOC meta."
x))
(t (value (alist-to-keyword-alist seen nil)))))
((eq token :FORWARD-CHAINING)
(cond ((not (assoc-eq :TRIGGER-TERMS seen))
(mv-let (hyps concls)
(destructure-forward-chaining-term corollary)
(declare (ignore concls))
(cond ((null hyps)
(er soft ctx
"When no :TRIGGER-TERMS component is ~
specified for a :FORWARD-CHAINING ~
rule class, the first hypothesis of ~
the conjecture is used as the only ~
trigger. But ~p0 has no hypotheses ~
and thus ~x1 is an illegal rule ~
class. See :DOC forward-chaining."
(untranslate corollary t wrld)
x))
(t (let* ((first-hyp
(if (and (nvariablep (car hyps))
; (not (fquotep (car hyps)))
(or (eq (ffn-symb (car hyps))
'force)
(eq (ffn-symb (car hyps))
'case-split)))
(fargn (car hyps) 1)
(car hyps)))
(trigger-term
(if (ffn-symb-p first-hyp 'not)
(fargn first-hyp 1)
first-hyp)))
(pprogn
(observation ctx
"The :TRIGGER-TERMS for the ~
:FORWARD-CHAINING rule ~x0 will ~
consist of the list containing ~p1."
name
(untranslate trigger-term nil wrld))
(value (alist-to-keyword-alist
seen
(list :TRIGGER-TERMS
(list trigger-term))))))))))
(t (value (alist-to-keyword-alist seen nil)))))
((eq token :TYPE-PRESCRIPTION)
(cond ((not (assoc-eq :TYPED-TERM seen))
(mv-let
(hyps concl)
(unprettyify-tp (remove-guard-holders corollary))
(declare (ignore hyps))
(let ((pat (cond ((ffn-symb-p concl 'implies)
(find-type-prescription-pat (fargn concl 2)
ens wrld))
(t (find-type-prescription-pat concl ens
wrld)))))
(cond ((null pat)
(er soft ctx
"When no :TYPED-TERM component is specified for a ~
:TYPE-PRESCRIPTION rule class, a suitable term is ~
selected heuristically from the conjecture. But ~
our heuristics identify no candidate term in ~p0. ~
Thus, ~x1 is an illegal rule class. See :DOC ~
type-prescription."
(untranslate corollary t wrld)
x))
(t (pprogn
(if (ld-skip-proofsp state)
state
(observation ctx
"Our heuristics choose ~p0 as the ~
:TYPED-TERM."
(untranslate pat nil wrld)))
(value (alist-to-keyword-alist
seen
(list :TYPED-TERM pat)))))))))
(t (value (alist-to-keyword-alist seen nil)))))
((eq token :DEFINITION)
(er-progn
(chk-destructure-definition name corollary ctx wrld state)
(mv-let
(hyps equiv fn args body ttree)
(destructure-definition corollary nil nil wrld nil)
(declare (ignore hyps equiv ttree))
; Rockwell Addition: In the old code, the recursivep property of a
; singly recursive function was the function name itself; the
; recursivep property of a function in a mutually-recursive clique was
; the list of all the fns in the clique. In order to speed up the
; check to determine if there is a recursive function on the fnstack,
; I decided to make the recursivep property of a recursive fn be
; a list of all the fns in its "clique" -- possibly the singleton
; list containing just the singly recursive function name. That way,
; if the fnstack contains a function name, I know it is non-recursive.
; In support of this change, I changed the processing of :definition
; rules. In the old code, the translated clique of a :definition was
; made atomic (i.e., the fn name itself) if the clique was a singleton.
; For sanity, I don't do that now: the translated clique is what
; you wrote. This change shows up several times in the window-compare
; because in the old code we had to change back and forth between
; (fn) and fn.
(er-let* ((clique
(value
(cond
((assoc-eq :clique seen)
(cdr (assoc-eq :clique seen)))
((ffnnamep fn body) (list fn))
(t nil))))
(controller-alist
(cond
((assoc-eq :CONTROLLER-ALIST seen)
(value (cdr (assoc-eq :CONTROLLER-ALIST seen))))
((null clique)
(value nil))
((null (cdr clique))
(guess-controller-alist-for-definition-rule
clique args body ctx wrld state))
(t (er soft ctx
"We are unable to guess a :CONTROLLER-ALIST for a ~
:DEFINITION rule if the :CLIQUE contains more ~
than one function symbol. Therefore, you must ~
supply a :CONTROLLER-ALIST entry for ~x0."
name)))))
(cond
((controller-alistp clique controller-alist wrld)
(value (alist-to-keyword-alist
seen
(append (if (assoc-eq :CLIQUE seen)
nil
(list :CLIQUE clique))
(if (assoc-eq :CONTROLLER-ALIST seen)
nil
(list :CONTROLLER-ALIST controller-alist))))))
(t (er soft ctx
"The :CONTROLLER-ALIST of a :DEFINITION must be an alist ~
that maps each function symbol in the :CLIQUE to a list of ~
t's and nil's whose length is equal to the arity of the ~
function symbol. ~x0 is an inappropriate controller alist ~
for the :CLIQUE consisting of ~&1. See :DOC definition."
controller-alist
clique)))))))
((eq token :INDUCTION)
(cond ((not (assoc-eq :PATTERN seen))
(er soft ctx
"The :INDUCTION rule class requires the specification of a ~
:PATTERN term and ~x0 contains no such entry."
x))
((not (assoc-eq :SCHEME seen))
(er soft ctx
"The :INDUCTION rule class requires the specification of a ~
:SCHEME term and ~x0 contains no such entry."
x))
(t (let* ((pat-term (cdr (assoc-eq :pattern seen)))
(cond-term (or (cdr (assoc-eq :condition seen)) *t*))
(scheme-term (cdr (assoc-eq :scheme seen)))
(pat-vars (all-vars pat-term))
(cond-vars (all-vars cond-term))
(scheme-vars (all-vars scheme-term)))
(cond
((not (subsetp-eq cond-vars pat-vars))
(er soft ctx
"The variables occuring freely in the :CONDITION term ~
of an :INDUCTION rule class must be a subset of those ~
occuring freely in the :PATTERN term. But the ~
condition term ~x0 mentions ~&1, which ~#1~[does~/do~] ~
not occur in the pattern term ~x2. Thus the ~
:INDUCTION rule class specified for ~x3 is illegal."
cond-term
(set-difference-eq cond-vars pat-vars)
pat-term
name))
((not (subsetp-eq scheme-vars pat-vars))
(er soft ctx
"The variables occuring freely in the :SCHEME term ~
of an :INDUCTION rule class must be a subset of those ~
occuring freely in the :PATTERN term. But the ~
scheme term ~x0 mentions ~&1, which ~#1~[does~/do~] ~
not occur in the pattern term ~x2. Thus the ~
:INDUCTION rule class specified for ~x3 is illegal."
scheme-term
(set-difference-eq scheme-vars pat-vars)
pat-term
name))
((assoc-eq :condition seen)
(value (alist-to-keyword-alist seen nil)))
(t (value (alist-to-keyword-alist
seen
(list :CONDITION *t*)))))))))
(t (value (alist-to-keyword-alist seen nil)))))
((assoc-eq (car alist) seen)
(er soft ctx
"Rule classes may not contain duplicate keys, but ~x0 occurs ~
twice in ~x1. See :DOC rule-classes."
(car alist)
x))
(t
(let ((assumep (or (eq (ld-skip-proofsp state) 'include-book)
(eq (ld-skip-proofsp state) 'include-book-with-locals)
(eq (ld-skip-proofsp state) 'initialize-acl2))))
(er-let*
((val (case (car alist)
(:COROLLARY
(value corollary))
(:HINTS
(cond
((assoc-eq :INSTRUCTIONS seen)
(er soft ctx
"It is illegal to supply both :INSTRUCTIONS ~
and :HINTS in a rule class. Hence, ~x0 is ~
illegal. See :DOC rule-classes."
x))
(t
(er-let* ((hints (if assumep
(value nil)
(translate-hints+
(cons "Corollary of " name)
(cadr alist)
(default-hints wrld)
ctx wrld state))))
(value hints)))))
(:INSTRUCTIONS
(cond
((assoc-eq :HINTS seen)
(er soft ctx
"It is illegal to supply both :HINTS and ~
:INSTRUCTIONS in a rule class. Hence, ~x0 is ~
illegal. See :DOC rule-classes."
x))
(t
(er-let* ((instrs (if assumep
(value nil)
(translate-instructions
(cons "Corollary of " name)
(cadr alist)
ctx wrld state))))
(value instrs)))))
(:OTF-FLG
(value (cadr alist)))
(:TRIGGER-FNS
(cond
((eq token :FORWARD-CHAINING)
(er soft ctx
"The :FORWARD-CHAINING rule class may specify ~
:TRIGGER-TERMS but may not specify :TRIGGER-FNS. ~
Thus, ~x0 is illegal. See :DOC forward-chaining ~
and :DOC meta."
x))
((not (eq token :META))
(er soft ctx
":TRIGGER-FNS can only be specified for :META rules. ~
Thus, ~x0 is illegal. See :DOC ~@1."
x
(symbol-name token)))
((atom (cadr alist))
(er soft ctx
"The :TRIGGER-FNS component of a :META rule class ~
must be a non-empty true-list of function symbols. ~
But ~x0 is empty. See :DOC meta."
(cadr alist)))
((eq (car (cadr alist)) 'quote)
(er soft ctx
"The :TRIGGER-FNS component of a :META rule class ~
must be a non-empty true-list of function symbols. ~
You specified ~x0 for this component, but the list ~
is not to be quoted.~@1 See :DOC meta."
(cadr alist)
(cond ((and (consp (cdr (cadr alist)))
(symbol-listp (cadr (cadr alist)))
(null (cddr (cadr alist))))
(msg " Perhaps you intended ~x0 instead."
(cadr (cadr alist))))
(t ""))))
(t (mv-let (flg lst)
(eliminate-macro-aliases (cadr alist)
(macro-aliases wrld)
wrld)
(cond ((eq flg :error)
(er soft ctx
"The :TRIGGER-FNS component of a ~
:META rule class must be a ~
non-empty true-list of function ~
symbols, but ~x0 ~@1. See :DOC ~
meta."
(cadr alist) lst))
(t (value lst)))))))
(:TRIGGER-TERMS
(cond
((eq token :META)
(er soft ctx
"The :META rule class may specify :TRIGGER-FNS but ~
may not specify :TRIGGER-TERMS. Thus, ~x0 is ~
illegal. See :DOC meta and :DOC forward-chaining."
x))
((not (true-listp (cadr alist)))
(er soft ctx
"The :TRIGGER-TERMS must be a list true list. Thus ~
the rule class ~x0 proposed for ~x1 is illegal."
x name))
((eq token :LINEAR)
; We allow but do not require :TRIGGER-TERMS to be provided for :LINEAR rules.
; The whole idea of :TRIGGER-TERMS specified at the rule-class level is a
; little jarring in the case of linear rules because we generate a linear rule
; for each unprettified branch through the COROLLARY of the rule class and the
; appropriate trigger terms for one branch may not be those for another.
; Nevertheless, when :TRIGGER-TERMS is provided, we store the rule for every
; branch under every given trigger. You get what you ask for. The moral is
; that if you are going to provide :TRIGGER-TERMS you would be well-advised to
; provide a corollary with only one branch.
(er-let*
((terms (translate-term-lst (cadr alist)
t t t ctx wrld state)))
(cond
((null terms)
(er soft ctx
"For the :LINEAR rule ~x0 you specified an empty ~
list of :TRIGGER-TERMS. This is illegal. If ~
you wish to cause ACL2 to compute the trigger ~
terms, omit the :TRIGGER-TERMS field entirely. ~
See :DOC linear."
name))
(t
(let ((terms (remove-guard-holders-lst terms)))
(er-progn
(chk-legal-linear-trigger-terms
terms
(unprettyify (remove-guard-holders corollary))
name ctx state)
(value terms)))))))
((eq token :FORWARD-CHAINING)
(er-let*
((terms (translate-term-lst (cadr alist)
t t t ctx wrld state)))
(cond ((null terms)
(er soft ctx
":FORWARD-CHAINING rules must have at least ~
one trigger. Your rule class, ~x0, ~
specifies none. See :DOC forward-chaining."
x))
(t (value (remove-guard-holders-lst terms))))))
(t
(er soft ctx
":TRIGGER-TERMS can only be specified for ~
:FORWARD-CHAINING and :LINEAR rules. Thus, ~x0 is ~
illegal. See :DOC ~@1."
x
(symbol-name token)))))
(:WELL-FORMEDNESS-GUARANTEE
(cond
((and (not (eq token :META))
(not (eq token :CLAUSE-PROCESSOR)))
(er soft ctx
"Only :META and :CLAUSE-PROCESSOR rule classes are ~
permitted to have a :WELL-FORMEDNESS-GUARANTEE ~
component. Thus, ~x0 is illegal. See :DOC ~
well-formedness-guarantee."
x))
(t (er-let*
((well-formedness-guarantee
(translate-well-formedness-guarantee
token
(cadr alist)
name corollary ctx wrld state)))
; well-formedness-guarantee is of the form ((name fn thm-name1 hyp-fn
; thm-name2) . alist), where hyp-fn and thm-name2 are omitted if there is no
; hyp-fn. Alist is the combined arity alist of both termp theorems. We next
; check that all of these functions have appropriate arities in the current
; world and that none are currently on forbidden-fns.
(let* ( ; (fn (nth 1 (car well-formedness-guarantee)))
(thm-name1
(nth 2 (car well-formedness-guarantee)))
(hyp-fn
(nth 3 (car well-formedness-guarantee))) ; may be nil
(thm-name2
(nth 4 (car well-formedness-guarantee))) ; may be nil
(alist
(cdr well-formedness-guarantee))
(bad-arities
(collect-bad-fn-arity-pairs alist wrld))
(forbidden-fns
(intersection-eq (strip-cars alist)
(forbidden-fns wrld state))))
(cond
(bad-arities
(er soft ctx
":META rule ~x0 is inadmissible because its ~
:WELL-FORMEDNESS-GUARANTEE ~
theorem~#1~[~/s~], named ~&1, ~
~#1~[is~/are~] incompatible with the ~
current world. In particular, the ~
~#1~[theorem makes~/theorems make~] invalid ~
assumptions about the arities of one or ~
more function symbols possibly introduced ~
by the metatheorem. The following alist ~
shows assumed arities that are different ~
from the actual arities of those symbols in ~
the current world, ~X23."
name
(if hyp-fn
(list thm-name1 thm-name2)
(list thm-name1))
bad-arities))
(forbidden-fns
(er soft ctx
":META rule ~x0 is inadmissible because its ~
well-formedness theorem~#1~[~/s~], named ~
~&1, ~#1~[is~/are~] incompatible with the ~
current world. In particular, judging by ~
the ARITIES-OKP ~
~#1~[hypothesis~/hypotheses~] of the ~
theorem~#1~[~/s~], the metatheorem may ~
introduce one or more functions that are ~
currently forbidden, to wit ~&2. See :DOC ~
set-skip-meta-termp-checks and :DOC ~
well-formedness-guarantee."
name
(if hyp-fn
(list thm-name1 thm-name2)
(list thm-name1))
forbidden-fns))
(t (value well-formedness-guarantee))))))))
(:TYPED-TERM
(cond
((not (eq token :TYPE-PRESCRIPTION))
(er soft ctx
"Only :TYPE-PRESCRIPTION rule classes are permitted ~
to have a :TYPED-TERM component. Thus, ~x0 is ~
illegal. See :DOC ~@1."
x
(symbol-name token)))
(t (er-let* ((term (translate (cadr alist)
t t t ctx wrld state)))
; known-stobjs = t (stobjs-out = t)
(value term)))))
(:BACKCHAIN-LIMIT-LST
(let ((hyps-concl-pairs
; We could call unprettyify in all cases below (not always with
; remove-guard-holders, though). But it seems more appropriate not to rely on
; unprettyify to handle the very specific legal forms of meta rules.
; Warning: Keep this in sync with destructure-type-prescription.
(case token
(:meta
(case-match corollary
(('implies hyp concl)
(list (cons (list hyp) concl)))
(& (list (cons nil corollary)))))
(:type-prescription
(mv-let
(hyps concl)
(unprettyify-tp (remove-guard-holders corollary))
(list (cons hyps concl))))
(otherwise
(unprettyify (remove-guard-holders corollary))))))
(cond
((not (member-eq token
'(:REWRITE :META :LINEAR
:TYPE-PRESCRIPTION)))
(er soft ctx
"The rule-class ~@0 is not permitted to have a ~
:BACKCHAIN-LIMIT-LST component. Hence, ~x1 is ~
illegal. See :DOC ~@0."
(symbol-name token) x))
((not (equal (length (remove-duplicates-equal
(strip-cars hyps-concl-pairs)))
1))
(er soft ctx
"We do not allow you to specify the ~
:BACKCHAIN-LIMIT-LST when more than one rule is ~
produced from the corollary and at least two such ~
rules have different hypothesis lists. You ~
should split the corollary of ~x0 into parts and ~
specify a limit for each."
x))
(t
(let ((hyps (car (car hyps-concl-pairs))))
(cond
((null hyps)
(er soft ctx
"There are no hypotheses, so ~
:BACKCHAIN-LIMIT-LST makes no sense. See ~
:DOC RULE-CLASSES."))
((null (cadr alist))
(value nil))
((and (integerp (cadr alist))
(<= 0 (cadr alist)))
(cond ((eq token :META)
(value (cadr alist)))
(t
(value (make-list
(length hyps)
:initial-element (cadr alist))))))
((eq token :META)
(er soft ctx
"The legal values of :BACKCHAIN-LIMIT-LST for ~
rules of class :META are nil or a ~
non-negative integer. See :DOC RULE-CLASSES."))
((and (backchain-limit-listp (cadr alist))
(eql (length (cadr alist)) (length hyps)))
(value (cadr alist)))
(t
(er soft ctx
"The legal values of :BACKCHAIN-LIMIT-LST are ~
nil, a non-negative integer, or a list of ~
these of the same length as the flattened ~
hypotheses. In this case the list of ~
flattened hypotheses, of length ~x0, is:~% ~
~x1.~%See :DOC RULE-CLASSES."
(length hyps) hyps))))))))
(:MATCH-FREE
(cond
((not (member-eq token '(:REWRITE :LINEAR :FORWARD-CHAINING)))
(er soft ctx
"Only :REWRITE, :FORWARD-CHAINING, and :LINEAR rule ~
classes are permitted to have a :MATCH-FREE ~
component. Thus, ~x0 is illegal. See :DOC ~
free-variables."
x))
((not (member-eq (cadr alist) '(:ALL :ONCE)))
(er soft ctx
"The legal values of :MATCH-FREE are :ALL and :ONCE. ~
Thus, ~x0 is illegal. See :DOC free-variables."
x))
(t (value (cadr alist)))))
(:CLIQUE
(cond
((not (eq token :DEFINITION))
(er soft ctx
"Only :DEFINITION rule classes are permitted to have ~
a :CLIQUE component. Thus, ~x0 is illegal. See ~
:DOC ~@1."
x
(symbol-name token)))
(t (er-progn
(chk-destructure-definition name corollary ctx wrld state)
(mv-let
(hyps equiv fn args body ttree)
(destructure-definition corollary nil nil wrld nil)
(declare (ignore hyps equiv args ttree))
(let ((clique
(cond ((null (cadr alist)) nil)
((atom (cadr alist)) (list (cadr alist)))
(t (cadr alist)))))
(cond ((not (and (all-function-symbolps clique wrld)
(no-duplicatesp-equal clique)))
(mv-let
(flg lst)
(eliminate-macro-aliases (cadr alist)
(macro-aliases wrld)
wrld)
(er soft ctx
"The :CLIQUE of a :DEFINITION must be ~
a truelist of function symbols ~
(containing no duplications) or else ~
a single function symbol. ~x0 is ~
neither.~@1 See :DOC definition."
(cadr alist)
(cond ((eq flg :error) "")
(t (msg " Note that it is ~
illegal to use ~v0 ~
here, because we ~
require function ~
symbols, not merely ~
macros that are aliases ~
for function symbols ~
(see :DOC ~
macro-aliases-table)."
(set-difference-equal
(cadr alist)
lst)))))))
((and (ffnnamep fn body)
(not (member-eq fn clique)))
(er soft ctx
"The :CLIQUE of a :DEFINITION must ~
contain the defined function, ~x0, if ~
the body calls the function. See :DOC ~
definition."
fn))
((and clique
(not (member-eq fn clique)))
(er soft ctx
"The :CLIQUE of a :DEFINITION, when ~
non-nil, must contain the function ~
defined. ~x0 does not contain ~x1. ~
See :DOC definition."
(cadr alist)
fn))
(t (value clique)))))))))
(:CONTROLLER-ALIST
(cond
((not (eq token :DEFINITION))
(er soft ctx
"Only :DEFINITION rule classes are permitted to have ~
a :CONTROLLER-ALIST component. Thus, ~x0 is ~
illegal. See :DOC ~@1."
x
(symbol-name token)))
(t
; Actually, the rules on a controller alist involve the clique in question.
; We don't necessarily know the clique yet. We wait until the end, when
; :CLIQUE will have been processed, to check that the following value is ok.
(value (cadr alist)))))
(:INSTALL-BODY
(cond
((not (eq token :DEFINITION))
(er soft ctx
"Only :DEFINITION rule classes are permitted to have ~
an :INSTALL-BODY component. Thus, ~x0 is illegal. ~
See :DOC ~@1."
x
(symbol-name token)))
((not (member-eq (cadr alist)
'(t nil :NORMALIZE)))
(er soft ctx
"The :INSTALL-BODY component of a :DEFINITION rule ~
class must have one of the values ~v0. Thus, ~x1 ~
is illegal. See :DOC ~@2."
'(t nil :NORMALIZE)
(cadr alist)
(symbol-name token)))
(t
(value (cadr alist)))))
(:LOOP-STOPPER
(cond
((not (eq token :REWRITE))
(er soft ctx
"Only :REWRITE rule classes are permitted to have a ~
:LOOP-STOPPER component. Thus, ~x0 is illegal. ~
See :DOC rule-classes."
x))
(t (mv-let
(flg loop-stopper-alist)
(fix-loop-stopper-alist
(cadr alist) (macro-aliases wrld) wrld)
(cond
((eq flg :error)
(er soft ctx
"The :LOOP-STOPPER for a rule class must be a ~
list whose elements have the form (variable1 ~
variable2 . fns), where variable1 and ~
variable2 are distinct variables and fns is a ~
list of function symbols (or macro-aliases for ~
function symbols), but ~x0 does not have this ~
form. Thus, ~x1 is illegal. See :DOC ~
rule-classes."
(cadr alist)
x))
((not (subsetp-eq
(union-eq (strip-cars loop-stopper-alist)
(strip-cadrs loop-stopper-alist))
(all-vars corollary)))
(let ((bad-vars
(set-difference-eq
(union-eq (strip-cars loop-stopper-alist)
(strip-cadrs loop-stopper-alist))
(all-vars corollary))))
(er soft ctx
"The variables from elements (variable1 ~
variable2 . fns) of a :LOOP-STOPPER ~
specified for a rule class must all appear ~
in the :COROLLARY theorem for that rule ~
class. However, the ~#0~[variables ~&1 ~
do~/variable ~&1 does~] not appear in ~p2. ~
Thus, ~x3 is illegal. See :DOC rule-classes."
(if (cdr bad-vars) 0 1)
bad-vars
(untranslate corollary t wrld)
x)))
(t
(value loop-stopper-alist)))))))
(:PATTERN
(cond
((not (eq token :INDUCTION))
(er soft ctx
"Only :INDUCTION rule classes are permitted to have ~
a :PATTERN component. Thus, ~x0 is illegal. See ~
:DOC ~@1."
x
(symbol-name token)))
(t (er-let*
((term (translate (cadr alist) t t t ctx wrld state)))
; known-stobjs = t (stobjs-out = t)
(cond
((or (variablep term)
(fquotep term)
(flambdap (ffn-symb term)))
(er soft ctx
"The :PATTERN term of an :INDUCTION rule class ~
may not be a variable symbol, constant, or ~
the application of a lambda expression. Thus ~
~x0 is illegal. See :DOC induction."
x))
(t (value term)))))))
(:CONDITION
(cond
((not (eq token :INDUCTION))
(er soft ctx
"Only :INDUCTION rule classes are permitted to have ~
a :CONDITION component. Thus, ~x0 is illegal. See ~
:DOC ~@1."
x
(symbol-name token)))
(t (er-let*
((term (translate (cadr alist) t t t ctx wrld state)))
; known-stobjs = t (stobjs-out = t)
(value term)))))
(:SCHEME
(cond
((not (eq token :INDUCTION))
(er soft ctx
"Only :INDUCTION rule classes are permitted to have ~
a :SCHEME component. Thus, ~x0 is illegal. See ~
:DOC ~@1."
x
(symbol-name token)))
(t (er-let*
((term (translate (cadr alist) t t t ctx wrld state)))
; known-stobjs = t (stobjs-out = t)
(cond
((or (variablep term)
(fquotep term)
(flambdap (ffn-symb term)))
(er soft ctx
"The :SCHEME term of an :INDUCTION rule class ~
may not be a variable symbol, constant, or ~
the application of a lambda expression. Thus ~
~x0 is illegal. See :DOC induction."
x))
((not (or (getpropc (ffn-symb term)
'induction-machine
nil wrld)
(getpropc (ffn-symb term) 'induction-rules
nil wrld)))
(er soft ctx
"The function symbol of the :SCHEME term of an ~
:INDUCTION rule class must, at least ~
sometimes, suggest an induction and ~x0 does ~
not. See :DOC induction."
(ffn-symb term)))
(t (value term)))))))
(:TYPE-SET
(cond
((not (eq token :TYPE-SET-INVERTER))
(er soft ctx
"Only :TYPE-SET-INVERTER rule classes are permitted ~
to have a :TYPE-SET component. Thus ~x0 is ~
illegal. See :DOC type-set-inverter."
x))
((not (and (integerp (cadr alist))
(<= *min-type-set* (cadr alist))
(<= (cadr alist) *max-type-set*)))
(er soft ctx
"The :TYPE-SET of a :TYPE-SET-INVERTER rule must be ~
a type-set, i.e., an integer between ~x0 and ~x1, ~
inclusive. ~x2 is not a type-set. See :DOC ~
type-set and :DOC type-set-inverter."
*min-type-set*
*max-type-set*
(cadr alist)))
(t (value (cadr alist)))))
(otherwise
(er soft ctx
"The key ~x0 is unrecognized as a rule class ~
component. See :DOC rule-classes."
(car alist))))))
(translate-rule-class-alist token (cddr alist)
(cons (cons (car alist) val) seen)
corollary
name x ctx ens wrld state))))))
(defun translate-rule-class1 (class tflg name x ctx ens wrld state)
; Class is a candidate rule class. We know it is of the form (:key
; :key1 val1 ... :keyn valn). We know that among the :keyi is
; :COROLLARY and that if tflg is on then the :COROLLARY value has
; already been translated. Make sure class is syntactically legal and
; translate all the vals in it. X is the user's original
; specification of this class and is used only in error messages.
; Name is the name of the event for which this class is being
; translated.
; The binding below exhibits all the rule tokens and identifies the
; special additional keywords allowed (or required) by them. All of
; the tokens allow the keywords :COROLLARY, :HINTS, :INSTRUCTIONS, and
; :OTF-FLG.
; Note: The "definitive" description of the fields in our rule classes is to be
; found in :DOC rule-classes. It is hygenic to compare periodically the
; setting below to the form described there.
(let ((rule-tokens '(:REWRITE
:LINEAR ; :TRIGGER-TERMS (optional)
:WELL-FOUNDED-RELATION
:BUILT-IN-CLAUSE
:COMPOUND-RECOGNIZER
:ELIM
:GENERALIZE
:META ; :TRIGGER-FNS
:FORWARD-CHAINING ; :TRIGGER-TERMS (optional)
:EQUIVALENCE
:REFINEMENT
:CONGRUENCE
:TYPE-PRESCRIPTION ; :TYPED-TERM (optional)
:DEFINITION ; :CLIQUE and :CONTROLLER-ALIST
:INDUCTION ; :PATTERN, :CONDITION (optional),
; and :SCHEME
:TYPE-SET-INVERTER ; :TYPE-SET (optional)
:CLAUSE-PROCESSOR
:TAU-SYSTEM
)))
(cond
((not (member-eq (car class) rule-tokens))
(er soft ctx
"~x0 is not one of the known rule tokens, ~&1. See :DOC ~
rule-classes."
(car class)
rule-tokens))
(t (er-let*
((corollary
(cond (tflg (value (cadr (assoc-keyword :corollary (cdr class)))))
(t (translate (cadr (assoc-keyword :corollary (cdr class)))
t t t ctx wrld state))))
; known-stobjs = t (stobjs-out = t)
(alist
(translate-rule-class-alist (car class)
(cdr class)
nil
corollary
name x ctx ens wrld state)))
(value (cons (car class) alist)))))))
(defun reason-for-non-keyword-value-listp (x)
(cond
((atom x)
(cond
((null x)
(er hard 'reason-for-non-keyword-value-listp
"Uh oh, it was a keyword-value-listp after all!"))
(t
(msg "there is a non-nil final cdr of ~x0"
x))))
((not (keywordp (car x)))
(msg "we found a non-keyword, ~x0, where a keyword was expected"
(car x)))
((atom (cdr x))
(msg "the value corresponding to the final key of ~x0 was missing"
(car x)))
(t
(reason-for-non-keyword-value-listp (cddr x)))))
(defun translate-rule-class (name x thm ctx ens wrld state)
; Warning: We depend on the property that the resulting :corollary field is
; independent of context. See redundant-theoremp.
; X is an untranslated rule class. For example, x may be :REWRITE or (:META
; :TRIGGER-FNS (fn1 ... fnk)) or even (:REWRITE :COROLLARY (IMPLIES p q) :HINTS
; ...). We either translate x into a "fully elaborated" rule class or else
; cause an error. A fully elaborated rule class starts with one of the rule
; class keywords, token, followed by an alternating keyword/value list. Every
; fully elaborated class has a :COROLLARY component. In addition, every :META
; class has a :TRIGGER-FNS component, every :FORWARD-CHAINING class has a
; :TRIGGER-TERMS component, and every :TYPE-PRESCRIPTION has a :TYPED-TERM
; component. No keyword is bound twice in the list and the values associated
; with each keyword is syntactically correct in a local sense, e.g., alleged
; function symbols are really function symbols, alleged terms are translated
; terms, alleged hints are translated hints, etc. We do not make the non-local
; checks, such as that the :COROLLARY of a :TYPE-PRESCRIPTION rule actually
; prescribes the type of the :TYPED-TERM. Those checks are made by the
; individual acceptability checkers.
(let ((er-string
"The object ~x0 is not a rule class. Rule classes are either certain ~
keywords, e.g., :REWRITE, or lists of the form (:rule-token :key1 ~
val1 :key2 val2 ...), as in (:REWRITE :COROLLARY term :HINTS ...). ~
In your case, ~@1. See :DOC rule-classes."))
(cond
((or (keywordp x)
(and (consp x)
(keywordp (car x))
(keyword-value-listp (cdr x))))
(translate-rule-class1
; Note that we observe the requirement dicussed in the comment (warning) at the
; top of this definition, about the :corollary field being independent of
; context.
(cond ((symbolp x) (list x :COROLLARY thm))
((assoc-keyword :COROLLARY (cdr x)) x)
(t `(,(car x) :COROLLARY ,thm ,@(cdr x))))
(or (symbolp x)
(not (assoc-keyword :COROLLARY (cdr x))))
name x ctx ens wrld state))
((not (consp x))
(er soft ctx
er-string
x "the rule class is a non-keyword atom"))
((not (keywordp (car x)))
(er soft ctx
er-string
x
"the rule class starts with the non-keyword ~x2"
(car x)))
(t
(er soft ctx er-string
x (reason-for-non-keyword-value-listp (cdr x)))))))
(defun translate-rule-classes1 (name classes thm ctx ens wrld state)
; We make sure that classes is a true list of legal rule classes. We
; translate the terms that occur in the classes and return the
; translated list of classes, i.e., a list of fully elaborated rule
; classes.
(cond
((atom classes)
(cond ((null classes) (value nil))
(t (er soft ctx
"The list of rule classes is supposed to a true ~
list, but your list ends in ~x0. See :DOC ~
rule-classes."
classes))))
(t (er-let*
((class (translate-rule-class name (car classes) thm ctx ens wrld
state))
(rst (translate-rule-classes1 name (cdr classes) thm ctx ens wrld
state)))
(value (cons class rst))))))
(defun translate-rule-classes (name classes thm ctx ens wrld state)
; We adopt the convention that if a non-nil atomic classes is provided
; it is understood as the singleton list containing that atom. Thus,
; one is permitted to write
; :rule-classes :elim
; and have it understood as
; :rule-classes (:elim).
; However, it is not possible to so abbreviate non-atomic classes.
; That is, one might expect to be able to write:
; :rule-classes (:TYPE-PRESCRIPTION :TYPED-TERM (foo a b))
; but one would be disappointed if one did. Any non-atomic value for
; classes is treated as though it were a list of rule classes. The effect
; intended by the above example can only be achieved by writing
; :rule-classes ((:TYPE-PRESCRIPTION :TYPED-TERM (foo a b))).
(translate-rule-classes1 name
(cond ((null classes) nil)
((atom classes) (list classes))
(t classes))
thm
ctx ens wrld state))
; We now turn our attention to the function that checks that a given
; term generates acceptable rules in all of a specified set of
; classes. The basic function is the one below, that takes a class
; token and calls the appropriate acceptability checker. In all of
; the code below we can assume that "class" is one of the objects
; produced by translate-rule-class above and "classes" is a true list
; of such objects.
(defun chk-acceptable-x-rule (name class ctx ens wrld state)
; We check that the :COROLLARY term of class can be used as a rule of
; the class specified. Class is a fully elaborated, translated rule
; class. This function is just a big switch. Each exit subroutine
; returns a ttree justifying the claim that class describes a rule.
(let ((term (cadr (assoc-keyword :COROLLARY (cdr class)))))
(case (car class)
(:REWRITE
(chk-acceptable-rewrite-rule name
(cadr (assoc-keyword :MATCH-FREE
(cdr class)))
(cadr (assoc-keyword :LOOP-STOPPER
(cdr class)))
term ctx ens wrld state))
(:LINEAR
(chk-acceptable-linear-rule
name
(cadr (assoc-keyword :MATCH-FREE (cdr class)))
(cadr (assoc-keyword :TRIGGER-TERMS (cdr class)))
term ctx ens wrld state))
(:WELL-FOUNDED-RELATION
(chk-acceptable-well-founded-relation-rule name term ctx wrld state))
(:BUILT-IN-CLAUSE
(chk-acceptable-built-in-clause-rule name term ctx wrld state))
(:COMPOUND-RECOGNIZER
(chk-acceptable-compound-recognizer-rule name term ctx ens wrld
state))
(:ELIM
(chk-acceptable-elim-rule name term ctx wrld state))
(:GENERALIZE
(chk-acceptable-generalize-rule name term ctx wrld state))
(:EQUIVALENCE
(chk-acceptable-equivalence-rule name term ctx wrld state))
(:CONGRUENCE
(chk-acceptable-congruence-rule name term ctx wrld state))
(:REFINEMENT
(chk-acceptable-refinement-rule name term ctx wrld state))
(:META
; We already know that the :TRIGGER-FNS of a :META rule class are all function
; symbols. However, we need them in order to produce warning messages when
; metafunctions produce non-termps. See chk-acceptable-meta-rule.
(chk-acceptable-meta-rule
name
(cadr (assoc-keyword :TRIGGER-FNS (cdr class)))
term ctx ens wrld state))
(:CLAUSE-PROCESSOR
(chk-acceptable-clause-processor-rule name term ctx wrld state))
(:FORWARD-CHAINING
(chk-acceptable-forward-chaining-rule
name
(cadr (assoc-keyword :MATCH-FREE (cdr class)))
(cadr (assoc-keyword :TRIGGER-TERMS (cdr class)))
term ctx ens wrld state))
(:TYPE-PRESCRIPTION
(chk-acceptable-type-prescription-rule
name
(cadr (assoc-keyword :TYPED-TERM (cdr class)))
term
(assoc-keyword :BACKCHAIN-LIMIT-LST (cdr class))
ctx ens wrld state))
(:DEFINITION
(chk-acceptable-definition-rule
name
(cadr (assoc-keyword :CLIQUE (cdr class)))
(cadr (assoc-keyword :CONTROLLER-ALIST (cdr class)))
(assoc-keyword :INSTALL-BODY (cdr class))
term ctx ens wrld state))
(:INDUCTION
(chk-acceptable-induction-rule name term ctx wrld state))
(:TYPE-SET-INVERTER
(chk-acceptable-type-set-inverter-rule
name
(cadr (assoc-keyword :TYPE-SET (cdr class)))
term ctx ens wrld state))
(:TAU-SYSTEM
(chk-acceptable-tau-rule name term ctx wrld state))
(otherwise
(value (er hard ctx
"Unrecognized rule class token ~x0 in CHK-ACCEPTABLE-X-RULE."
(car class)))))))
(defun chk-acceptable-x-rules (name classes ctx ens wrld state)
; Classes has already been translated and hence is known to be a true
; list of fully elaborated rule classes. Each class has a :COROLLARY
; term and we check that the term can be used as a rule of the
; indicated class. We return a tag-tree supporting the claim.
(cond ((null classes) (value nil))
(t (er-let*
((ttree1 (chk-acceptable-x-rule name (car classes) ctx ens wrld
state))
(ttree (chk-acceptable-x-rules name (cdr classes) ctx ens wrld
state)))
(value (cons-tag-trees ttree1 ttree))))))
(defun collect-keys-eq (sym-list alist)
(cond ((endp alist) nil)
((member-eq (caar alist) sym-list)
(cons (car alist) (collect-keys-eq sym-list (cdr alist))))
(t (collect-keys-eq sym-list (cdr alist)))))
; So here is how you check that it is legal to add the rules from a
; thm term, named name, in all of the classes classes.
(defun chk-acceptable-rules (name classes ctx ens wrld state)
; The classes have already been translated, so we do not need to worry
; about unrecognized classes. Each class contains a :COROLLARY which
; is a translated term. We check that the :COROLLARY term can be used
; as a rule of the class indicated. We either cause an error or
; return a ttree justifying whatever pre/post-processing is done to
; store the rules. If we are not doing proofs we skip the checks.
(let ((classes
(cond ((or (eq (ld-skip-proofsp state) 'include-book)
(eq (ld-skip-proofsp state) 'include-book-with-locals))
; We avoid the check for :REWRITE rules, tolerating a rare hard error as a
; result. See the comment just above the hard error in add-rewrite-rule2.
; We need to check :meta and :clause-processor rules even when skipping proofs.
; Below is a slight modification of a proof of nil sent by Dave Greve and Jared
; Davis, which is no longer possible after this check (namely: meta-foo-rule
; fails). In this example, the :meta rule is not supported by an evaluator in
; the second pass through the encapsulate. The Essay on Correctness of Meta
; Reasoning makes it clear that we need the evaluator axioms to justify the
; application of a :meta or :clause-processor rule.
; (defun meta-foo (term)
; (if (and (consp term)
; (equal (car term) 'foo))
; *nil*
; term))
;
; (encapsulate
; (((evx * *) => *)
; ((evx-list * *) => *)
; ((foo *) => *))
;
; (local
; (defun foo (x)
; (declare (ignore x))
; nil))
;
; (local
; (defevaluator evx evx-list
; ((foo x))))
;
; (defthm meta-foo-rule
; (equal (evx term a)
; (evx (meta-foo term) a))
; :rule-classes ((:meta :trigger-fns (foo)))))
;
; (defun goo (x)
; (declare (ignore x))
; t)
;
; (defthm qed
; (not (goo x))
; :hints (("goal" :use (:functional-instance (:theorem (not (foo x)))
; (foo goo))
; :in-theory (disable
; goo
; (:type-prescription goo)
; (goo))))
; :rule-classes nil)
;
; (defthm contradiction
; nil
; :hints (("goal" :use qed :in-theory (enable goo)))
; :rule-classes nil)
(collect-keys-eq '(:meta :clause-processor) classes))
(t classes))))
(cond
((null classes) ; optimization
(value nil))
(t
(er-let* ((ttree1 (chk-acceptable-x-rules name classes ctx ens wrld
state)))
; At one time we accumulated ttree1 into state. But that caused rules to be
; reported during a failed proof that are not actually used in the proof. It
; is better to let install-event take care of accumulating this ttree (as part
; of the final ttree) into state, so that users can see the relevant
; explanatory message, "The storage of ... depends upon ...".
(er-progn
(chk-assumption-free-ttree ttree1 ctx state)
(value ttree1)))))))
; We now turn to actually adding the rules generated. The development is
; exactly analogous to the checking above.
(defun add-x-rule (rune nume class ens wrld state)
; We add the rules of class class derived from term.
; WARNING: If this function is changed, change info-for-x-rules (and/or
; subsidiaries) and find-rules-of-rune2.
; WARNING: If you add a new type of rule record, update access-x-rule-rune.
(let ((term (cadr (assoc-keyword :COROLLARY (cdr class)))))
(case (car class)
(:REWRITE
(add-rewrite-rule rune nume
(assoc-keyword :LOOP-STOPPER (cdr class))
term
(assoc-keyword :BACKCHAIN-LIMIT-LST (cdr class))
(cadr (assoc-keyword :MATCH-FREE (cdr class)))
ens
wrld))
(:LINEAR
(add-linear-rule rune nume
(cadr (assoc-keyword :TRIGGER-TERMS (cdr class)))
term
(assoc-keyword :BACKCHAIN-LIMIT-LST (cdr class))
(cadr (assoc-keyword :MATCH-FREE (cdr class)))
ens wrld state))
(:WELL-FOUNDED-RELATION
(add-well-founded-relation-rule rune nume term wrld))
(:BUILT-IN-CLAUSE
(add-built-in-clause-rule rune nume term wrld))
(:COMPOUND-RECOGNIZER
(add-compound-recognizer-rule rune nume term ens wrld))
(:ELIM
(add-elim-rule rune nume term wrld))
(:GENERALIZE
(add-generalize-rule rune nume term wrld))
(:EQUIVALENCE
(add-equivalence-rule rune nume term ens wrld))
(:REFINEMENT
(add-refinement-rule rune nume term wrld))
(:CONGRUENCE
(add-congruence-rule rune nume term wrld))
(:META
(add-meta-rule rune nume
(cadr (assoc-keyword :TRIGGER-FNS (cdr class)))
(cadr (assoc-keyword :WELL-FORMEDNESS-GUARANTEE
(cdr class)))
term
(assoc-keyword :BACKCHAIN-LIMIT-LST (cdr class))
wrld))
(:CLAUSE-PROCESSOR
(add-clause-processor-rule (base-symbol rune)
(cadr (assoc-keyword
:WELL-FORMEDNESS-GUARANTEE
(cdr class)))
term wrld))
(:FORWARD-CHAINING
(add-forward-chaining-rule rune nume
(cadr (assoc-keyword :TRIGGER-TERMS
(cdr class)))
term
(cadr (assoc-keyword :MATCH-FREE
(cdr class)))
wrld))
(:TYPE-PRESCRIPTION
(add-type-prescription-rule rune nume
(cadr (assoc-keyword :TYPED-TERM
(cdr class)))
term
(assoc-keyword :BACKCHAIN-LIMIT-LST
(cdr class))
ens wrld nil))
(:DEFINITION
(add-definition-rule rune nume
(cadr (assoc-keyword :CLIQUE (cdr class)))
(cadr (assoc-keyword :CONTROLLER-ALIST
(cdr class)))
(let ((pair (assoc-keyword :INSTALL-BODY
(cdr class))))
(if pair
(cadr pair)
:NORMALIZE))
term ens wrld))
(:INDUCTION
(add-induction-rule rune nume
(cadr (assoc-keyword :PATTERN (cdr class)))
(cadr (assoc-keyword :CONDITION (cdr class)))
(cadr (assoc-keyword :SCHEME (cdr class)))
term wrld))
(:TYPE-SET-INVERTER
(add-type-set-inverter-rule
rune nume
(cadr (assoc-keyword :TYPE-SET (cdr class)))
term ens wrld))
(:TAU-SYSTEM
; One might think that :tau-system rules are added here, since every other rule
; class is handled here. But one would be wrong! Because of the automatic mode in
; the tau system and because of the facility for regenerating the tau database,
; :tau-system rules are added by the tau-visit code invoked most often from
; install-event.
wrld)
; WARNING: If this function is changed, change info-for-x-rules (and/or
; subsidiaries) and find-rules-of-rune2.
; WARNING: If you add a new type of rule record, update access-x-rule-rune.
(otherwise
(er hard 'add-x-rule
"Unrecognized rule class token ~x0 in ADD-X-RULE."
(car class))))))
(defun add-rules1 (mapping-pairs classes ens wrld state)
; Mapping-pairs is in 1:1 correspondence with classes. Each mapping
; pair is of the form (nume . rune) and gives the nume and rune we are
; to use for the rule built according to the corresponding element of
; classes. Recall that each element of classes has a :COROLLARY component
; which is the term describing the rule. Thus, term (above) is actually
; not used to build any rule.
(cond ((null classes) wrld)
(t (add-rules1 (cdr mapping-pairs)
(cdr classes)
ens
(add-x-rule (cdr (car mapping-pairs))
(car (car mapping-pairs))
(car classes)
ens wrld state)
state))))
(defun truncate-class-alist (alist term)
; Alist is the cdr of a fully elaborated rule class and hence is a
; keyword-alistp -- not a regular alist! As such it contains a :COROLLARY
; field and perhaps :HINTS and :INSTRUCTIONS. A truncated class is a fully
; elaborated class with the :HINTS and :INSTRUCTIONS fields thrown out. In
; addition, we throw out the :COROLLARY field if its value is term.
(cond ((null alist) nil)
((or (eq (car alist) :HINTS)
(eq (car alist) :INSTRUCTIONS)
(and (eq (car alist) :COROLLARY)
(equal (cadr alist) term)))
(truncate-class-alist (cddr alist) term))
(t (cons (car alist)
(cons (cadr alist)
(truncate-class-alist (cddr alist) term))))))
(defun truncate-classes (classes term)
; This function generates the value we store under the
; 'truncated-classes property of an event whose 'theorem property is
; term. It seems sensible to us to store the fully elaborated rule
; classes for a name and term. For example, from them you can recover
; the exact logical expression of a given rule. But a fully
; elaborated rule class can be an exceedingly large object to display,
; e.g., with :PROPS, because its translated :HINTS fields may contain
; large theories. Thus, we "truncate" the elaborated classes,
; throwing away :HINTS, :INSTRUCTIONS, and perhaps (if it is identical
; to term, the 'theorem field of the event).
(cond ((null classes) nil)
(t (cons (cons (caar classes)
(truncate-class-alist (cdar classes) term))
(truncate-classes (cdr classes) term)))))
(defun make-runes1 (event-name classes runes)
; Event-name is a symbol and classes is a list of fully elaborated
; rule classes. Hence, each element of classes is a list that starts
; with a rule token keyword, e.g., :REWRITE, :META, etc. We make up a
; list of runes in 1:1 correspondence with classes. The general form
; of a name is (token event-name . i), where token is the keyword for
; the class and i enumerates how many occurrences we have already
; counted for that keyword. So for example, suppose event-name is FOO
; and classes contains, in order two :REWRITE classes and an :ELIM
; class, then we will name them (:REWRITE FOO . 1) (:REWRITE FOO . 2)
; (:ELIM FOO). Note the oddity: if there is just one rule with a
; given token, its i is nil; otherwise i is an integer that counts
; from 1.
(cond
((null classes) (revappend runes nil))
(t (let* ((token (caar classes))
(temp (assoc-eq token runes)))
(make-runes1
event-name
(cdr classes)
; The new name we add is of the form (token event-name . i) where
; i is: 1, if we haven't seen token before but there is another occurrence
; of token in classes; nil, if we haven't seen token before and we won't
; see it again; and one more than the last i for token if we've seen
; token before.
(cons
(cons token
(cons event-name
(cond ((null temp)
(cond ((assoc-eq token (cdr classes))
1)
(t nil)))
(t (1+ (cddr temp))))))
runes))))))
(defun make-runes (event-name classes)
; Given an event name and the rule classes for the event we create the
; list of runes naming each rule. The list is in 1:1 correspondence
; with classes.
(make-runes1 event-name classes nil))
(defun make-runic-mapping-pairs (nume runes)
; Given the nume to be assigned to the first rune in a list of runes,
; we return a list, in ascending order by nume, of the mapping pairs,
; each pair of the form (nume . rune), in 1:1 correspondence with
; runes.
(cond ((null runes)
(prog2$ (or (<= nume (fixnum-bound))
(max-nume-exceeded-error 'make-runic-mapping-pairs))
nil))
(t (cons (cons nume (car runes))
(make-runic-mapping-pairs (1+ nume) (cdr runes))))))
(defun add-rules (name classes term untranslated-term ens wrld state)
; Name is an event name. We store term under the 'theorem property
; for name. Under the 'truncated-classes for name we store the
; truncated, but otherwise fully elaborated, rule classes. Under the
; 'runic-mapping-pairs we store the alist mapping numes to runes,
; i.e., ((n1 . rune1) ... (nk . runek)), where the runes are in 1:1
; correspondence with classes. The numes are consecutive integers
; uniquely associated with the corresponding runes. N1 is the least,
; Nk is the greatest, and thus Nk+1 is the next available nume in the
; world resulting from this addition. For more on runes and numes,
; see runep. See also the Essay on the Assignment of Runes and Numes
; by DEFUNS.
(let ((runic-mapping-pairs
(make-runic-mapping-pairs (get-next-nume wrld)
(make-runes name classes))))
(putprop name 'runic-mapping-pairs runic-mapping-pairs
(putprop name 'theorem term
(putprop name 'untranslated-theorem untranslated-term
(putprop name 'classes (truncate-classes classes term)
(add-rules1 runic-mapping-pairs classes ens wrld state)))))))
(defun redundant-theoremp (name term classes event-form wrld)
; We know name is a symbol, but it may or may not be new. We return t if name
; is already defined as the name of the theorem term with the given
; rule-classes, or if event-form -- which is a defthm or defaxiom event -- is
; an existing event in the world. We do the first test first since perhaps it
; is more efficient.
; Through Version_6.5 we had only the first test of this disjunction. But
; Jared Davis and Sol Swords sent us small examples including the following,
; which failed because the translated rule-classes had changed.
; (defund foop (x) (consp x))
;
; (defthm booleanp-of-foop
; (booleanp (foop x))
; :rule-classes :type-prescription)
;
; (in-theory (disable booleanp-compound-recognizer))
;
; ; Was not redundant, because the generated corollary's :typed-term changes:
; (defthm booleanp-of-foop
; (booleanp (foop x))
; :rule-classes :type-prescription)
; Now that we treat the second event as redundant, imagine a book consisting of
; the four events above except that the first defthm is local. Then we get a
; different rule when including the book. That seems harmless enough, but
; perhaps we should be more concerned if using encapsulate instead of a book,
; since we have seen soundness bugs when constraints change. There are two
; reasons why we don't see a soundness issue here.
; First, if there is a soundness issue here, then there was already a soundness
; issue by converting each (defthm ...) to (encapsulate () (defthm ...)),
; because syntactic equality implies redundancy for encapsulate events.
; Second, the :corollary for a rule is independent of context; for example, the
; enabled status of booleanp-compound-recognizer in the example above only
; affects the :typed-term for the rule, not the :corollary. The reason is that
; when a :corollary is implicit, then translate-rule-class generates the
; :corollary to be exactly the original theorem.
(or (and (equal term (getpropc name 'theorem 0 wrld))
(equal (truncate-classes classes term)
(getpropc name 'classes 0 wrld)))
(assert$ event-form
(equal event-form
(get-event name wrld)))))
; The next part develops the functions for proving that each alleged
; corollary in a rule class follows from the theorem proved.
(defun non-tautological-classes (term classes)
; Term is a translated term (indeed, it known to be a theorem).
; Classes is a list of translated rule classes, each therefore having
; a :COROLLARY field. We'll say an element of classes is
; "tautological" if its :COROLLARY is implied by term, e.g., if
; (IMPLIES term corollary) is a theorem. Return that sublist of
; classes consisting of the non-tautological elements.
(cond ((null classes) nil)
((let ((cor
(cadr (assoc-keyword :COROLLARY (cdr (car classes))))))
(or (equal term cor)
(if-tautologyp (mcons-term* 'if term cor *t*))))
(non-tautological-classes term (cdr classes)))
(t (cons (car classes)
(non-tautological-classes term (cdr classes))))))
(defun prove-corollaries1 (name term i n rule-classes ens wrld ctx state ttree)
; Term is a theorem just proved. Rule-classes is a list of translated
; rule classes and each is known to be non-tautological wrt term. We
; prove that term implies the :corollary of each rule class, or cause
; an error. We return the ttree accumulated from all the proofs. The
; two variables i and n are integers and used merely to control the
; output that enumerates where we are in the process: i is a 1-based
; counter indicating the position in the enumeration of the next rule
; class; n is the number of rule classes in all.
(cond
((null rule-classes) (value ttree))
(t (let ((goal (fcons-term* 'implies
term
(cadr (assoc-keyword
:COROLLARY
(cdr (car rule-classes))))))
(otf-flg (cadr (assoc-keyword :OTF-FLG (cdr (car rule-classes)))))
(hints (cadr (assoc-keyword :HINTS (cdr (car rule-classes)))))
(instructions (cadr (assoc-keyword :INSTRUCTIONS
(cdr (car rule-classes))))))
(er-let*
((hints (if hints
(value hints) ; already translated, with default-hints
(let ((default-hints (default-hints wrld)))
(if default-hints ; not yet translated; no explicit hints
(translate-hints
(cons "Corollary of " name)
default-hints ctx wrld state)
(value nil))))))
(pprogn
(io? event nil state
(wrld goal n i)
(fms "The~#0~[~/ first~/ second~/ next~/ last~] goal is ~p1.~%"
(list (cons #\0 (cond ((and (= i 1) (= n 1)) 0)
((= i 1) 1)
((= i 2) 2)
((= i n) 4)
(t 3)))
(cons #\1 (untranslate goal t wrld)))
(proofs-co state)
state
(term-evisc-tuple nil state)))
(er-let*
((ttree1 (cond
(instructions
(proof-checker nil (untranslate goal t wrld)
goal nil instructions
wrld state))
(t (prove goal
(make-pspv ens wrld state
:displayed-goal goal
:otf-flg otf-flg)
hints ens wrld ctx state)))))
(prove-corollaries1 name term (1+ i) n (cdr rule-classes) ens wrld
ctx state
(cons-tag-trees ttree1 ttree)))))))))
(defun prove-corollaries (name term rule-classes ens wrld ctx state)
; Rule-classes is a list of translated rule classes. The basic idea
; is to prove the :COROLLARY of every class in rule-classes. Like
; prove, we return an error triple; the non-erroneous value is a ttree
; signalling the successful proof of all the corollaries.
(let* ((classes (non-tautological-classes term rule-classes))
(n (length classes)))
(cond
((= n 0)
(value nil))
(t (pprogn
(io? event nil state
(rule-classes n)
(fms
"~%We now consider~#2~[ the~/, in turn, the ~x0~]~#1~[~/ ~
non-trivial~] ~#2~[corollary~/corollaries~] claimed in the ~
specified rule ~#3~[class~/classes~].~%"
(list (cons #\0 n)
(cons #\1 (if (= (length rule-classes) 1) 0 1))
(cons #\2 (if (= n 1) 0 1))
(cons #\3 (if (= (length rule-classes) 1) 0 1)))
(proofs-co state)
state
(term-evisc-tuple nil state)))
(prove-corollaries1 name term 1 n classes ens wrld ctx state nil))))))
;---------------------------------------------------------------------------
; Section: More History Management and Command Stuff
; While we are at it, we here develop the code for printing out all the
; rules added by a particular event.
(defun enabled-runep-string (rune ens wrld)
(if (enabled-runep rune ens wrld)
"Enabled"
"Disabled"))
(defun untranslate-hyps (hyps wrld)
(cond ((null hyps) t)
((null (cdr hyps)) (untranslate (car hyps) t wrld))
(t (cons 'and (untranslate-lst hyps t wrld)))))
(defun info-for-lemmas (lemmas numes ens wrld)
(if (null lemmas)
nil
(let* ((rule (car lemmas))
(nume (access rewrite-rule rule :nume))
(rune (access rewrite-rule rule :rune))
(subclass (access rewrite-rule rule :subclass))
(lhs (access rewrite-rule rule :lhs))
(rhs (access rewrite-rule rule :rhs))
(hyps (access rewrite-rule rule :hyps))
(equiv (access rewrite-rule rule :equiv))
(backchain-limit-lst (access rewrite-rule rule
:backchain-limit-lst))
(heuristic-info (access rewrite-rule rule :heuristic-info)))
(if (or (eq numes t)
(member nume numes))
(cons `((:rune ,rune :rewrite ,nume)
(:enabled ,(and (enabled-runep rune ens wrld) t))
,@(if (eq subclass 'meta)
`((:hyp-fn ,(or hyps :none) hyps)
(:equiv ,equiv)
(:meta-fn ,lhs))
`((:hyps ,(untranslate-hyps hyps wrld) hyps)
(:equiv ,equiv)
(:lhs ,(untranslate lhs nil wrld) lhs)
(:rhs ,(untranslate rhs nil wrld) rhs)))
(:backchain-limit-lst ,backchain-limit-lst)
(:subclass ,subclass)
,@(cond ((eq subclass 'backchain)
`((:loop-stopper ,heuristic-info)))
((eq subclass 'definition)
`((:clique ,(car heuristic-info))
(:controller-alist ,(cdr heuristic-info))))
(t
nil)))
(info-for-lemmas (cdr lemmas) numes ens wrld))
(info-for-lemmas (cdr lemmas) numes ens wrld)))))
(defun world-to-next-event (wrld)
(cond ((null wrld) nil)
((and (eq (caar wrld) 'event-landmark)
(eq (cadar wrld) 'global-value))
nil)
(t (cons (car wrld)
(world-to-next-event (cdr wrld))))))
(defun assoc-eq-eq (x y alist)
; We look for a pair on alist of the form (x y . val) where we compare with x
; and y using eq. We return the pair or nil.
(cond ((endp alist) nil)
((and (eq (car (car alist)) x)
(eq (car (cdr (car alist))) y))
(car alist))
(t (assoc-eq-eq x y (cdr alist)))))
(defun actual-props (props seen acc)
; Props is a list whose elements have the form (sym key . val), where val could
; be *acl2-property-unbound*. Seen is the list containing some (sym key . &)
; for each pair (sym key) that has already been seen.
(cond
((null props)
(prog2$ (fast-alist-free seen)
(reverse acc)))
((member-eq (cadar props) (cdr (hons-get (caar props) seen)))
(actual-props (cdr props) seen acc))
((eq (cddr (car props)) *acl2-property-unbound*)
(actual-props (cdr props)
(hons-acons (caar props)
(cons (cadar props)
(cdr (hons-get (caar props) seen)))
seen)
acc))
(t
(actual-props (cdr props)
(hons-acons (caar props)
(cons (cadar props)
(cdr (hons-get (caar props) seen)))
seen)
(cons (car props) acc)))))
(defun info-for-well-founded-relation-rules (rules)
; There is not record class corresponding to well-founded-relation rules. But
; the well-founded-relation-alist contains triples of the form (rel mp . rune)
; and we assume rules is a list of such triples.
(if (null rules)
nil
(let* ((rule (car rules))
(rune (cddr rule)))
(cons (list (list :rune rune :well-founded-relation)
(list :domain-predicate (cadr rule))
(list :well-founded-relation (car rule)))
(info-for-well-founded-relation-rules (cdr rules))))))
(defun info-for-built-in-clause-rules1 (rules numes ens wrld)
(if (null rules)
nil
(let* ((rule (car rules))
(nume (access built-in-clause rule :nume))
(rune (access built-in-clause rule :rune))
(clause (access built-in-clause rule :clause)))
(if (or (eq numes t)
(member nume numes))
(cons (list (list :rune rune
:built-in-clause nume)
(list :enabled (and (enabled-runep rune ens wrld) t))
(list :clause (prettyify-clause clause nil wrld)
clause))
(info-for-built-in-clause-rules1 (cdr rules) numes ens wrld))
(info-for-built-in-clause-rules1 (cdr rules) numes ens wrld)))))
(defun info-for-built-in-clause-rules (alist numes ens wrld)
(if (null alist)
nil
(append (info-for-built-in-clause-rules1 (cdar alist) numes ens wrld)
(info-for-built-in-clause-rules (cdr alist) numes ens wrld))))
(defun info-for-compound-recognizer-rules (rules numes ens wrld)
(if (null rules)
nil
(let* ((rule (car rules))
(nume (access recognizer-tuple rule :nume))
(rune (access recognizer-tuple rule :rune))
(true-ts (access recognizer-tuple rule :true-ts))
(false-ts (access recognizer-tuple rule :false-ts))
(strongp (access recognizer-tuple rule :strongp)))
(if (or (eq numes t)
(member nume numes))
(cons (list (list :rune rune
:compound-recognizer nume)
(list :enabled (and (enabled-runep rune ens wrld) t))
(list :fn (access recognizer-tuple rule :fn))
(list :true-ts (decode-type-set true-ts)
true-ts)
(list :false-ts (decode-type-set false-ts)
false-ts)
(list :strongp
strongp))
(info-for-compound-recognizer-rules (cdr rules) numes ens wrld))
(info-for-compound-recognizer-rules (cdr rules) numes ens wrld)))))
(defun info-for-generalize-rules (rules numes ens wrld)
(if (null rules)
nil
(let* ((rule (car rules))
(nume (access generalize-rule rule :nume))
(rune (access generalize-rule rule :rune))
(formula (access generalize-rule rule :formula)))
(if (or (eq numes t)
(member nume numes))
(cons (list (list :rune rune
:generalize nume)
(list :enabled (and (enabled-runep rune ens wrld) t))
(list :formula (untranslate formula t wrld)
formula))
(info-for-generalize-rules (cdr rules) numes ens wrld))
(info-for-generalize-rules (cdr rules) numes ens wrld)))))
(defun info-for-linear-lemmas (rules numes ens wrld)
(if (null rules)
nil
(let* ((rule (car rules))
(nume (access linear-lemma rule :nume))
(rune (access linear-lemma rule :rune))
(hyps (access linear-lemma rule :hyps))
(concl (access linear-lemma rule :concl))
(max-term (access linear-lemma rule :max-term))
(backchain-limit-lst (access linear-lemma rule
:backchain-limit-lst)))
(if (or (eq numes t)
(member nume numes))
(cons (list (list :rune rune
:linear nume)
(list :enabled (and (enabled-runep rune
ens
wrld)
t))
(list :hyps (untranslate-hyps hyps wrld)
hyps)
(list :concl (untranslate concl nil wrld)
concl)
(list :max-term (untranslate max-term nil
wrld)
max-term)
(list :backchain-limit-lst backchain-limit-lst))
(info-for-linear-lemmas (cdr rules) numes ens wrld))
(info-for-linear-lemmas (cdr rules) numes ens wrld)))))
(defun info-for-eliminate-destructors-rule (rule numes ens wrld)
(let ((rune (access elim-rule rule :rune))
(nume (access elim-rule rule :nume))
(hyps (access elim-rule rule :hyps))
(equiv (access elim-rule rule :equiv))
(lhs (access elim-rule rule :lhs))
(rhs (access elim-rule rule :rhs))
(destructor-term (access elim-rule rule :destructor-term))
(destructor-terms (access elim-rule rule :destructor-terms))
(crucial-position (access elim-rule rule :crucial-position)))
(if (or (eq numes t)
(member nume numes))
(list (list (list :rune rune
:elim nume)
(list :enabled (and (enabled-runep rune ens wrld) t))
(list :hyps (untranslate-hyps hyps wrld)
hyps)
(list :equiv equiv)
(list :lhs (untranslate lhs nil wrld)
lhs)
(list :rhs (untranslate rhs nil wrld)
rhs)
(list :destructor-term (untranslate destructor-term nil wrld)
destructor-term)
(list :destructor-terms (untranslate-lst destructor-terms nil
wrld)
destructor-terms)
(list :crucial-position crucial-position)))
nil)))
(defun info-for-congruences (val numes ens wrld)
; val is of the form (equiv geneqv1 ... geneqvk ... geneqvn).
; This seems complicated so we'll punt for now.
(declare (ignore val numes ens wrld))
nil)
(defun info-for-pequivs (val numes ens wrld)
; This seems complicated so we'll punt for now.
(declare (ignore val numes ens wrld))
nil)
(defun info-for-coarsenings (val numes ens wrld)
; It is not obvious how to determine which coarsenings are really new, so we
; print nothing.
(declare (ignore val numes ens wrld))
nil)
(defun info-for-forward-chaining-rules (rules numes ens wrld)
(if (null rules)
nil
(let* ((rule (car rules))
(rune (access forward-chaining-rule rule :rune))
(nume (access forward-chaining-rule rule :nume))
(trigger (access forward-chaining-rule rule :trigger))
(hyps (access forward-chaining-rule rule :hyps))
(concls (access forward-chaining-rule rule :concls)))
(if (or (eq numes t)
(member nume numes))
(cons (list (list :rune rune
:forward-chaining nume)
(list :enabled (and (enabled-runep rune ens wrld) t))
(list :trigger (untranslate trigger nil wrld)
trigger)
(list :hyps (untranslate-hyps hyps wrld)
hyps)
(list :concls
; The :concls of a forward-chaining rule is really a implicit conjunction of
; all the conclusions you can draw. So we untranslate the list and put an
; AND on the front, which is just what untranslate-hyps does, oddly enough.
(untranslate-hyps concls wrld) concls))
(info-for-forward-chaining-rules (cdr rules) numes ens wrld))
(info-for-forward-chaining-rules (cdr rules) numes ens wrld)))))
(defun decode-type-set-lst (lst)
(if lst
(cons (decode-type-set (car lst))
(decode-type-set-lst (cdr lst)))
nil))
(defun info-for-type-prescriptions (rules numes ens wrld)
(if (null rules)
nil
(let* ((rule (car rules))
(rune (access type-prescription rule :rune))
(nume (access type-prescription rule :nume))
(term (access type-prescription rule :term))
(hyps (access type-prescription rule :hyps))
(backchain-limit-lst (access type-prescription rule
:backchain-limit-lst))
(basic-ts (access type-prescription rule :basic-ts))
(vars (access type-prescription rule :vars))
(corollary (access type-prescription rule :corollary)))
(if (or (eq numes t)
(member nume numes))
(cons (list (list :rune rune :type-prescription nume)
(list :enabled (and (enabled-runep rune ens wrld) t))
(list :hyps (untranslate-hyps hyps wrld)
hyps)
(list :term (untranslate term nil wrld)
term)
(list :backchain-limit-lst backchain-limit-lst)
(list :basic-ts (decode-type-set basic-ts)
basic-ts)
(list :vars vars)
(list :corollary (untranslate corollary t wrld)
corollary))
(info-for-type-prescriptions (cdr rules) numes ens wrld))
(info-for-type-prescriptions (cdr rules) numes ens wrld)))))
(defun info-for-induction-rules (rules numes ens wrld)
(if (null rules)
nil
(let* ((rule (car rules))
(rune (access induction-rule rule :rune))
(nume (access induction-rule rule :nume))
(pattern (access induction-rule rule :pattern))
(condition (access induction-rule rule :condition))
(scheme (access induction-rule rule :scheme)))
(if (or (eq numes t)
(member nume numes))
(cons (list (list :rune rune
:induction nume)
(list :enabled (and (enabled-runep rune ens wrld) t))
(list :pattern (untranslate pattern nil wrld)
pattern)
(list :condition (untranslate condition t wrld)
condition)
(list :scheme (untranslate scheme nil wrld)
scheme))
(info-for-induction-rules (cdr rules) numes ens wrld))
(info-for-induction-rules (cdr rules) numes ens wrld)))))
(defun info-for-type-set-inverter-rules (rules numes ens wrld)
(if (null rules)
nil
(let* ((rule (car rules))
(rune (access type-set-inverter-rule rule :rune))
(nume (access type-set-inverter-rule rule :nume))
(type-set (access type-set-inverter-rule rule :ts))
(terms (access type-set-inverter-rule rule :terms))
)
(if (or (eq numes t)
(member nume numes))
(cons (list (list :rune rune
:type-set-inverter nume)
(list :enabled (and (enabled-runep rune ens wrld) t))
(list :type-set type-set)
(list :condition (untranslate-hyps terms wrld)
terms))
(info-for-type-set-inverter-rules (cdr rules) numes ens wrld))
(info-for-type-set-inverter-rules (cdr rules) numes ens wrld)))))
(defun info-for-x-rules (sym key val numes ens wrld)
; See add-x-rule for an enumeration of rule classes that generate the
; properties shown below.
; Warning: Keep this function in sync with find-rules-of-rune2. In that
; spirit, tau rules are completely invisible and so we return nil for
; any property affected by tau rules.
; Info functions inspect the various rules and turn them into alists of the
; form:
; (key . (value1 ... valueN))
; When we print these alists with :pr, we only print "key: value1". This lets
; you store additional information in later values. For example, value1 might
; want to untranslate the term for prettier printing to the user, or decode the
; type-set, etc. Value2 can then include the original term or undecoded
; type-set, so that programs can use that value instead.
(cond
((eq key 'global-value)
(case sym
(well-founded-relation-alist
; Avoid printing the built-in anonymous rule if that is all we have here.
(if (consp (cdr val))
(info-for-well-founded-relation-rules val)
nil))
(built-in-clauses
(info-for-built-in-clause-rules val numes ens wrld))
(type-set-inverter-rules
(info-for-type-set-inverter-rules val numes ens wrld))
(recognizer-alist
(info-for-compound-recognizer-rules val numes ens wrld))
(generalize-rules
(info-for-generalize-rules val numes ens wrld))
(otherwise nil)))
(t
(case key
(lemmas
(info-for-lemmas val numes ens wrld))
(linear-lemmas
(info-for-linear-lemmas val numes ens wrld))
(eliminate-destructors-rule
(info-for-eliminate-destructors-rule val numes ens wrld))
(congruences
(info-for-congruences val numes ens wrld))
(pequivs
(info-for-pequivs val numes ens wrld))
(coarsenings
(info-for-coarsenings val numes ens wrld))
(forward-chaining-rules
(info-for-forward-chaining-rules val numes ens wrld))
(type-prescriptions
(info-for-type-prescriptions val numes ens wrld))
(induction-rules
(info-for-induction-rules val numes ens wrld))
(otherwise nil)))))
(defun info-for-rules (props numes ens wrld)
(cond ((null props)
nil)
((eq (cadar props) *acl2-property-unbound*)
(info-for-rules (cdr props) numes ens wrld))
(t
(append (info-for-x-rules (caar props) (cadar props) (cddar props)
numes ens wrld)
(info-for-rules (cdr props) numes ens wrld)))))
(defun print-info-for-rules-entry (keys vals chan state)
(if (not (consp keys))
state
(mv-let (col state)
(fmt1 "~s0:"
(list (cons #\0 (let* ((name (symbol-name (car keys)))
(lst (coerce name 'list)))
(coerce (cons (car lst)
(string-downcase1 (cdr lst)))
'string))))
0 chan state nil)
(mv-let (col state)
(cond ((< col 14)
(fmt1 "~t0~q1"
(list (cons #\0 14)
(cons #\1 (caar vals)))
col chan state nil))
(t (fmt1 " ~q1"
(list (cons #\0 14)
(cons #\1 (caar vals)))
col chan state nil)))
(declare (ignore col))
(print-info-for-rules-entry (cdr keys) (cdr vals) chan
state)))))
(defun print-info-for-rules (info chan state)
(if (not (consp info))
(value :invisible)
(pprogn (newline chan state)
(print-info-for-rules-entry (strip-cars (car info))
(strip-cdrs (car info))
chan
state)
(print-info-for-rules (cdr info) chan state))))
(defun pr-body (wrld-segment numes wrld state)
(print-info-for-rules
(info-for-rules (actual-props wrld-segment nil nil)
numes
(ens-maybe-brr state)
wrld)
(standard-co state)
state))
(defun pr-fn (name state)
(cond ((and (symbolp name)
(not (keywordp name)))
(let* ((wrld (w state))
(name (deref-macro-name name (macro-aliases wrld)))
(numes (strip-cars
(getpropc name 'runic-mapping-pairs nil wrld)))
(wrld-segment (world-to-next-event
(cdr (decode-logical-name name wrld)))))
(pr-body wrld-segment numes wrld state)))
(t (er soft 'pr
"The argument to PR must be a non-keyword symbol. Perhaps you ~
should use PR! instead."))))
(defun print-clause-processor-rules1 (alist wrld state)
(if (null alist)
(value :invisible)
(let* ((pair (car alist))
(name (car pair))
(term (cdr pair)))
(pprogn (fms "Rule ~x0:~|~P12~|"
(list (cons #\0 name)
(cons #\1 (untranslate term nil wrld))
(cons #\2 (term-evisc-tuple nil state)))
(standard-co state) state nil)
(print-clause-processor-rules1 (cdr alist) wrld state)))))
(defmacro print-clause-processor-rules ()
'(let ((wrld (w state)))
(print-clause-processor-rules1 (global-val 'clause-processor-rules wrld)
wrld
state)))
(defun new-numes (world-segment)
(cond
((null world-segment)
nil)
((and (eq (cadr (car world-segment)) 'runic-mapping-pairs)
(not (eq (cddr (car world-segment)) *acl2-property-unbound*)))
(append (strip-cars (cddr (car world-segment)))
(new-numes (cdr world-segment))))
(t
(new-numes (cdr world-segment)))))
(defun world-to-next-command (wrld ans)
(cond ((null wrld) (reverse ans))
((and (eq (caar wrld) 'command-landmark)
(eq (cadar wrld) 'global-value))
(reverse ans))
(t (world-to-next-command (cdr wrld) (cons (car wrld) ans)))))
(defun pr!-fn (cd state)
; We assume that the world starts with a command landmark.
(let ((wrld (w state)))
(er-let* ((wrld-tail (er-decode-cd cd wrld 'print-new-rules state)))
(pr-body (world-to-next-command (cdr wrld-tail) nil)
t wrld state))))
(defmacro pr (name)
(list 'pr-fn name 'state))
(defmacro pr! (cd)
(list 'pr!-fn cd 'state))
(defun disabledp-fn-lst (runic-mapping-pairs ens)
(cond ((null runic-mapping-pairs) nil)
((enabled-numep (caar runic-mapping-pairs) ens)
(disabledp-fn-lst (cdr runic-mapping-pairs) ens))
(t (cons (cdar runic-mapping-pairs)
(disabledp-fn-lst (cdr runic-mapping-pairs) ens)))))
(defun disabledp-fn (name ens wrld)
(declare (xargs :guard t))
(cond ((symbolp name)
(let ((name2 (deref-macro-name name (macro-aliases wrld))))
(cond
((and (not (eq name2 :here))
name2
(logical-namep name2 wrld))
(disabledp-fn-lst (getpropc name2 'runic-mapping-pairs nil wrld)
ens))
(t (er hard 'disabledp
"Illegal call of disabledp on symbolp argument ~x0. See ~
:DOC disabledp."
name)))))
(t (let* ((rune (translate-abbrev-rune name (macro-aliases wrld))))
(cond
((runep rune wrld)
(not (enabled-runep rune ens wrld)))
(t (er hard 'disabledp
"Illegal call of disabledp: ~x0 does not designate a ~
rune or a list of runes. See :DOC disabledp."
name)))))))
(defmacro disabledp (name)
`(disabledp-fn ,name (ens-maybe-brr state) (w state)))
(defun access-x-rule-rune (x rule)
; Given a rule object, rule, of record type x, we return the :rune of rule.
; This is thus typically ``(access x rule :rune).''
; Note: We include with every case the rule-class tokens that create this rule
; so that we can search for any such tokens and find this function when adding
; a new, similar, rule-class.
; There is no record object generated only by ;;; :refinement
; ;;; :tau-system
(case x
(recognizer-tuple ;;; :compound-recognizer
(access recognizer-tuple rule :rune))
(type-prescription ;;; :type-prescription
(access type-prescription rule :rune))
(congruence-rule ;;; :congruence
;;; :equivalence
(access congruence-rule rule :rune))
(pequiv ;;; :congruence
(access congruence-rule
(access pequiv rule :congruence-rule)
:rune))
(rewrite-rule ;;; :rewrite
;;; :meta
;;; :definition
(access rewrite-rule rule :rune))
(well-founded-relation-rule ;;; :well-founded-relation
; No such record type, but we pretend!
(cddr rule))
(linear-lemma ;;; :linear
(access linear-lemma rule :rune))
(forward-chaining-rule ;;; :forward-chaining
(access forward-chaining-rule rule :rune))
(built-in-clause ;;; :built-in-clause
(access built-in-clause rule :rune))
(elim-rule ;;; :elim
(access elim-rule rule :rune))
(generalize-rule ;;; :generalize
(access generalize-rule rule :rune))
(induction-rule ;;; :induction
(access induction-rule rule :rune))
(type-set-inverter-rule ;;; :type-set-inverter
(access type-set-inverter-rule rule :rune))
(otherwise (er hard 'access-x-rule-rune
"Unrecognized rule class, ~x0."
x))))
(defun collect-x-rules-of-rune (x rune lst ans)
; Lst is a list of rules of type x. We collect all those elements of lst
; with :rune rune.
(cond ((null lst) ans)
((equal rune (access-x-rule-rune x (car lst)))
(collect-x-rules-of-rune x rune (cdr lst)
(add-to-set-equal (car lst) ans)))
(t (collect-x-rules-of-rune x rune (cdr lst) ans))))
(defun collect-congruence-rules-of-rune-in-geneqv-lst (geneqv-lst rune ans)
; A geneqv is a list of congruence rules. Geneqv-lst, above, is a list of
; geneqvs. We scan every congruence rule in geneqv-lst and collect those with
; the :rune rune.
(cond
((null geneqv-lst) ans)
(t (collect-congruence-rules-of-rune-in-geneqv-lst
(cdr geneqv-lst) rune
(collect-x-rules-of-rune 'congruence-rule rune (car geneqv-lst) ans)))))
(defun collect-congruence-rules-of-rune (congruences rune ans)
; The 'congruences property of an n-ary function symbol is a list of tuples,
; each of which is of the form (equiv geneqv1 ... geneqvn), where each geneqvi
; is a list of congruence rules. Congruences is the 'congruences property of
; some function. We scan it and collect every congruence rule in it that has
; :rune rune.
(cond
((null congruences) ans)
(t (collect-congruence-rules-of-rune
(cdr congruences) rune
(collect-congruence-rules-of-rune-in-geneqv-lst (cdr (car congruences))
rune ans)))))
(defun collect-pequivs-of-rune (alist rune ans)
; Alist has the form of the :deep or :shallow field of the 'pequivs property of
; a function symbol. Thus, each element of alist is of the form (equiv pequiv1
; ... pequivn), where each pequivi is a pequiv record. We scan this alist and
; collect every pequiv record in it whose :rune is rune.
(cond
((null alist) ans)
(t (collect-pequivs-of-rune
(cdr alist)
rune
(collect-x-rules-of-rune 'pequiv rune (cdr (car alist)) ans)))))
(defun find-rules-of-rune2 (rune sym key val ans)
; (sym key . val) is a member of wrld. We collect all the rules in val with
; :rune rune. This function is patterned after info-for-x-rules.
; Wart: If key is 'eliminate-destructors-rule, then val is a single rule, not a
; list of rules. We handle this case specially below.
; Warning: Keep this function in sync with info-for-x-rules. In that spirit,
; note that tau rules never store runes and hence are completely ignored
; here, as in info-for-x-rules.
(let ((token (car rune)))
; As an efficiency, we do not look for rune in places where it cannot occur.
; For example, if token is :elim then there is no point in searching through
; the 'lemmas properties. In general, each case below insists that token is of
; the appropriate class. Sometimes there are more than one. For example, the
; 'lemmas property may contain :rewrite, :definition, and :meta runes, all of
; which are stored as REWRITE-RULEs.
(cond
((eq key 'global-value)
(case sym
(well-founded-relation-alist
(if (eq token :well-founded-relation)
(collect-x-rules-of-rune 'well-founded-relation-rule rune
val ans)
ans))
(built-in-clauses
(if (eq token :built-in-clause)
(collect-x-rules-of-rune 'built-in-clause rune val ans)
ans))
(type-set-inverter-rules
(if (eq token :type-set-inverter)
(collect-x-rules-of-rune 'type-set-inverter-rule rune
val ans)
ans))
(recognizer-alist
(if (eq token :compound-recognizer)
(collect-x-rules-of-rune 'recognizer-tuple rune val ans)
ans))
(generalize-rules
(if (eq token :generalize)
(collect-x-rules-of-rune 'generalize-rule rune val ans)
ans))
(otherwise ans)))
(t
(case key
(lemmas
(if (member-eq token '(:rewrite :meta :definition))
(collect-x-rules-of-rune 'rewrite-rule rune val ans)
ans))
(linear-lemmas
(if (eq token :linear)
(collect-x-rules-of-rune 'linear-lemma rune val ans)
ans))
(eliminate-destructors-rule
(if (eq token :elim)
(collect-x-rules-of-rune 'elim-rule rune (list val) ans)
ans))
(congruences
(if (member-eq token '(:congruence :equivalence))
(collect-congruence-rules-of-rune val rune ans)
ans))
(pequivs
(if (eq token :congruence)
(collect-pequivs-of-rune
(access pequivs-property val :deep)
rune
(collect-pequivs-of-rune
(access pequivs-property val :shallow)
rune
ans))
ans))
(coarsenings
; :Refinement rules add to the 'coarsenings property. If equiv1 is a
; refinement of equiv2, then equiv2 is a coarsening of equiv1 and the lemma
; establishing that fact adds equiv2 to the 'coarsenings property of equiv1.
; There is no rule object corresponding to this fact. Hence, even if rune is
; the :refinement rune responsible for adding some equiv2 to this list, we
; won't find a rule object here by the name rune.
; Similar comments apply to :equivalence rules. They add to the 'coarsenings
; property but no rule object exists. It should be noted that some congruence
; rules are added by lemmas of class :equivalence and those rules are named by
; :equivalence runes and are found among the 'congruences properties.
ans)
(forward-chaining-rules
(if (eq token :forward-chaining)
(collect-x-rules-of-rune 'forward-chaining-rule rune val ans)
ans))
(type-prescriptions
(if (eq token :type-prescription)
(collect-x-rules-of-rune 'type-prescription rune val ans)
ans))
(induction-rules
(if (eq token :induction)
(collect-x-rules-of-rune 'induction-rule rune val ans)
ans))
(otherwise ans))))))
(defun find-rules-of-rune1 (rune props ans)
; Props is a list of triples and can be considered a segment of some wrld. (It
; is not only because duplicates have been removed.) We visit every property
; and collect all the rules with :rune rune.
(cond ((null props) ans)
((eq (cddar props) *acl2-property-unbound*)
(find-rules-of-rune1 rune (cdr props) ans))
(t (find-rules-of-rune1 rune (cdr props)
(find-rules-of-rune2 rune
(caar props)
(cadar props)
(cddar props)
ans)))))
(defun find-rules-of-rune (rune wrld)
; Find all the rules in wrld with :rune rune. We do this by first obtaining
; that segment of wrld consisting of the properties stored by the event
; named by the base symbol of rune. Then we collect every rule mentioned
; in the segment, provided the rule has :rune rune.
(declare (xargs :guard (and (plist-worldp wrld)
(runep rune wrld))))
(let ((wrld-tail (decode-logical-name (base-symbol rune) wrld)))
(find-rules-of-rune1 rune
(actual-props
(world-to-next-event (cdr wrld-tail))
'find-rules-of-rune1
nil)
nil)))
(defun collect-abbreviation-subclass (rules)
; Rules is a list of REWRITE-RULEs. We collect all those that are of :subclass
; 'ABBREVIATION.
(cond ((null rules) nil)
((eq (access rewrite-rule (car rules) :subclass) 'ABBREVIATION)
(cons (car rules) (collect-abbreviation-subclass (cdr rules))))
(t (collect-abbreviation-subclass (cdr rules)))))
(defun runes-to-monitor-warnings (runes wrld ctx state
only-simple only-simple-count
some-simple some-s-all some-s-bad)
; This function assumes that "Monitor" warnings are enabled.
(cond
((endp runes)
(pprogn (cond
(only-simple
(warning$ ctx ("Monitor")
"The rune~#0~[~/s~] ~&0 name~#1~[s only a~/ only~] ~
simple abbreviation rule~#1~[~/s~]. Monitors can be ~
installed on abbreviation rules, but will not fire ~
during preprocessing, so you may want to supply the ~
hint :DO-NOT '(PREPROCESS); see :DOC hints. For an ~
explanation of what a simple abbreviation rule is, ~
see :DOC simple. Also, see :DOC monitor."
only-simple
(if (> only-simple-count 1) 1 0)))
(t state))
(cond
(some-simple
(assert$
(< 1 some-s-all)
(warning$ ctx ("Monitor")
"Among the ~n0 rules named ~v1 ~#2~[is a simple ~
abbreviation rule~/are ~n3 simple abbreviation ~
rules~]. Such rules can be monitored, but will not ~
fire during preprocessing, so you may want to ~
supply the hint :DO-NOT '(PREPROCESS); see :DOC ~
hints, For an explanation of what a simple ~
abbreviation rule is, see :DOC simple. Also, see ~
:DOC monitor."
some-s-all
some-simple
(if (< 1 some-s-bad) 1 0)
some-s-bad)))
(t state))))
(t
(let ((rune (car runes)))
(cond
((member-eq (car rune) '(:rewrite :definition))
(let* ((rules (find-rules-of-rune rune wrld))
(bad-rewrite-rules (collect-abbreviation-subclass rules)))
(assert$
rules
(cond
((equal (length bad-rewrite-rules) (length rules))
(runes-to-monitor-warnings
(cdr runes) wrld ctx state
(cons rune only-simple)
(+ (length rules) only-simple-count)
some-simple some-s-all some-s-bad))
(bad-rewrite-rules
(runes-to-monitor-warnings
(cdr runes) wrld ctx state
only-simple only-simple-count
(cons rune some-simple)
(+ (length rules) some-s-all)
(+ (length bad-rewrite-rules) some-s-bad)))
(t (runes-to-monitor-warnings (cdr runes) wrld ctx state
only-simple only-simple-count
some-simple some-s-all some-s-bad))))))
(t (runes-to-monitor-warnings (cdr runes) wrld ctx state
only-simple only-simple-count
some-simple some-s-all some-s-bad)))))))
(defconst *monitorable-rune-types*
'(:rewrite :definition :linear))
(defun monitorable-runes (lst)
(cond ((endp lst) nil)
((member-eq (caar lst) *monitorable-rune-types*)
(cons (car lst)
(monitorable-runes (cdr lst))))
(t (monitorable-runes (cdr lst)))))
(defun monitorable-runes-from-mapping-pairs (sym wrld)
; Warning: keep this in sync with convert-theory-to-unordered-mapping-pairs1.
; In both cases we are guided by the discussion of runic designators in :doc
; theories. However, here we do not include :induction runes, and we do not
; accommodate theories because we wonder what complexity that might introduce
; in providing useful errors and warnings from :monitor, and we don't (yet?)
; consider it likely that users will want to monitor theories.
; We accumuate runic mapping pairs of sym into ans, except in the case that sym
; is a defined function, we only include the :definition rune and, if indp is
; true, the induction rune.
(let ((temp (strip-cdrs
(getpropc (deref-macro-name sym (macro-aliases wrld))
'runic-mapping-pairs nil wrld))))
(cond
((and temp
(eq (car (cdr (car temp))) :DEFINITION)
(eq (car (cdr (cadr temp))) :EXECUTABLE-COUNTERPART))
(list (car temp)))
(t (monitorable-runes temp)))))
(defun runes-to-monitor (x ctx state)
(er-let* ((wrld (value (w state)))
(runes
(cond
((symbolp x)
(let ((runes (monitorable-runes-from-mapping-pairs x wrld)))
(cond ((null runes)
(er soft ctx
"The symbol ~x0 does not represent any runes to ~
be monitored. See :DOC monitor."
x))
(t (value runes)))))
(t
(let ((rune (translate-abbrev-rune x (macro-aliases wrld))))
(cond
((not (runep rune wrld))
(er soft ctx "~x0 does not designate a (valid) rune."
rune))
((not (member-eq (car rune) *monitorable-rune-types*))
(er soft ctx
"Only ~&0 runes may be monitored. We cannot break ~x1."
*monitorable-rune-types*
rune))
(t (value (list rune)))))))))
(pprogn (cond ((warning-disabled-p "Monitor") state)
(t (runes-to-monitor-warnings runes wrld ctx state
nil 0
nil 0 0)))
(value runes))))
(defun delete-assoc-equal? (key alist)
(cond ((assoc-equal key alist)
(delete-assoc-equal key alist))
(t alist)))
(defun delete-assoc-equal?-lst (lst alist)
(declare (xargs :guard (alistp alist)))
(if (consp lst)
(delete-assoc-equal?-lst (cdr lst)
(delete-assoc-equal? (car lst) alist))
alist))
(defun monitor1 (x form ctx state)
; The list of monitored runes modified by this function is a brr-global.
; Thus, this function should only be evaluated within a wormhole. The macro
; monitor can be called in either a wormhole state or a normal state.
(er-let* ((runes (runes-to-monitor x ctx state))
(term (translate-break-condition form ctx state)))
(prog2$
(or (f-get-global 'gstackp state)
(cw "Note: Enable break-rewrite with :brr t.~%"))
(pprogn
(f-put-global 'brr-monitored-runes
(append (pairlis-x2 runes (list term))
(delete-assoc-equal?-lst
runes
(get-brr-global 'brr-monitored-runes
state)))
state)
(value (get-brr-global 'brr-monitored-runes state))))))
(defun delete-assoc-equal-lst (lst alist)
(declare (xargs :guard (alistp alist)))
(if (consp lst)
(delete-assoc-equal-lst (cdr lst)
(delete-assoc-eq (car lst) alist))
alist))
(defun set-difference-assoc-equal (lst alist)
(declare (xargs :guard (and (true-listp lst)
(alistp alist))))
(cond ((endp lst) nil)
((assoc-equal (car lst) alist)
(set-difference-assoc-equal (cdr lst) alist))
(t (cons (car lst) (set-difference-assoc-equal (cdr lst) alist)))))
(defun unmonitor1 (x ctx state)
(let* ((wrld (w state))
(runes (cond
((symbolp x)
(monitorable-runes-from-mapping-pairs x wrld))
(t (list (translate-abbrev-rune x (macro-aliases wrld)))))))
(cond
((null runes)
(er soft ctx
"The value ~x0 does not specify any runes that could be monitored."
x))
(t
(let* ((monitored-runes-alist
(get-brr-global 'brr-monitored-runes state))
(bad-runes ; specified to unmonitor, but not monitored
(set-difference-assoc-equal runes monitored-runes-alist)))
(er-progn
(cond ((null bad-runes)
(value nil))
((not (intersectp-equal runes (strip-cars monitored-runes-alist)))
(cond
((null (cdr runes)) ; common case
(er soft ctx "~x0 is not monitored." (car runes)))
(t
(er soft ctx
"None of the ~n0 runes specified to be unmonitored is ~
currently monitored."
(length runes)))))
(t
(pprogn (warning$ ctx "Monitor"
"Skipping the rune~#0~[~/s~] ~&0, as ~
~#0~[it is~/they are~] not currently ~
monitored."
bad-runes)
(value nil))))
(pprogn
(f-put-global 'brr-monitored-runes
(delete-assoc-equal-lst runes monitored-runes-alist)
state)
(prog2$
(cond ((and (f-get-global 'gstackp state)
(null monitored-runes-alist))
(cw "Note: No runes are being monitored. Disable ~
break-rewrite with :brr nil.~%"))
(t nil))
(value monitored-runes-alist)))))))))
(defun monitor-fn (x expr state)
; If we are not in a wormhole, get into one. Then we set brr-monitored-runes
; appropriately. We always print the final value of brr-monitored-runes to the
; comment window and we always return (value :invisible).
(cond
((eq (f-get-global 'wormhole-name state) 'brr)
(er-progn
(monitor1 x expr 'monitor state)
(prog2$
(cw "~Y01~|" (get-brr-global 'brr-monitored-runes state) nil)
(value :invisible))))
(t (prog2$
(brr-wormhole
'(lambda (whs)
(set-wormhole-entry-code whs :ENTER))
nil
`(er-progn
(monitor1 ',x ',expr 'monitor state)
(prog2$
(cw "~Y01~|" (get-brr-global 'brr-monitored-runes state) nil)
(value nil)))
nil)
(value :invisible)))))
(defun unmonitor-fn (x ctx state)
(cond
((eq (f-get-global 'wormhole-name state) 'brr)
(er-progn
(cond ((eq x :all)
(pprogn (f-put-global 'brr-monitored-runes nil state)
(value nil)))
(t (unmonitor1 x ctx state)))
(prog2$
(cw "~Y01~|" (get-brr-global 'brr-monitored-runes state) nil)
(value :invisible))))
(t
(prog2$
(brr-wormhole
'(lambda (whs)
(set-wormhole-entry-code whs :ENTER))
nil
`(er-progn
(cond ((eq ',x :all)
(pprogn (f-put-global 'brr-monitored-runes nil state)
(value nil)))
(t (unmonitor1 ',x ',ctx state)))
(prog2$
(cw "~Y01~|" (get-brr-global 'brr-monitored-runes state) nil)
(value nil)))
nil)
(value :invisible)))))
(defun monitored-runes-fn (state)
(cond
((eq (f-get-global 'wormhole-name state) 'brr)
(prog2$ (cw "~Y01~|" (get-brr-global 'brr-monitored-runes state) nil)
(value :invisible)))
(t
(prog2$
(brr-wormhole
'(lambda (whs)
(set-wormhole-entry-code whs :ENTER))
nil
`(prog2$ (cw "~Y01~|" (get-brr-global 'brr-monitored-runes state) nil)
(value nil))
nil)
(value :invisible)))))
(defun brr-fn (flg state)
(cond
(flg
(pprogn
(f-put-global 'gstackp t state)
(prog2$
(cw "Use :a! to exit break-rewrite.~|See :DOC set-evisc-tuple to ~
control suppression of details when printing.~|~%The monitored ~
runes are:~%")
(er-progn
(monitored-runes-fn state)
(value t)))))
(t (pprogn (f-put-global 'gstackp nil state)
(value nil)))))
(defmacro brr (flg)
`(brr-fn ,flg state))
(defmacro brr@ (sym)
(declare (xargs :guard (member-eq sym '(:target
:unify-subst
:wonp
:rewritten-rhs
:poly-list
:failure-reason
:lemma
:type-alist
:ancestors
:initial-ttree
:final-ttree
:gstack))))
(case sym
(:target '(get-brr-local 'target state))
(:unify-subst '(get-brr-local 'unify-subst state))
(:wonp '(get-brr-local 'wonp state))
(:rewritten-rhs '(get-brr-local 'brr-result state))
(:poly-list '(brr-result state))
(:failure-reason '(get-brr-local 'failure-reason state))
(:lemma '(get-brr-local 'lemma state))
(:type-alist '(get-brr-local 'type-alist state))
(:ancestors '(get-brr-local 'ancestors state))
(:initial-ttree '(get-brr-local 'initial-ttree state))
(:final-ttree '(get-brr-local 'final-ttree state))
(otherwise '(get-brr-global 'brr-gstack state))))
(defmacro monitor (x expr)
`(monitor-fn ,x ,expr state))
(defmacro unmonitor (rune)
`(unmonitor-fn ,rune 'unmonitor state))
(defmacro monitored-runes ()
`(monitored-runes-fn state))
(defun proceed-from-brkpt1 (action runes ctx state)
; Action may be
; silent - exit brr with no output except the closing parenthesis
; print - exit brr after printing results of attempted application
; break - do not exit brr
; Runes is allegedly either t or a list of runes (or any runic designators
; legal for monitoring) to be used as brr-monitored-runes after pairing every
; rune with *t*. If it is t, it means use the same brr-monitored-runes.
; Otherwise, we check that they are all legal. If not, we warn and do not
; exit. We may wish someday to provide the capability of proceeding with
; conditions other than *t* on the various runes, but I haven't seen a nice
; design for that yet.
(er-let*
((lst (if (eq runes t)
(value nil)
(runes-to-monitor runes ctx state))))
(pprogn
(put-brr-local 'saved-standard-oi
(f-get-global 'standard-oi state)
state)
(put-brr-local 'saved-brr-monitored-runes
(get-brr-global 'brr-monitored-runes state)
state)
(if (eq runes t)
state
(f-put-global 'brr-monitored-runes lst state))
(put-brr-local 'action action state)
(exit-brr-wormhole state))))
(defun exit-brr (state)
; The assoc-eq on 'wonp below determines if we are in brkpt2 or brkpt1.
(cond
((assoc-eq 'wonp (get-brr-global 'brr-alist state))
(prog2$ (cw "~F0)~%" (get-brr-local 'depth state))
(pprogn (pop-brr-stack-frame state)
(exit-brr-wormhole state))))
(t (proceed-from-brkpt1 'silent t 'exit-brr state))))
(defun ok-if-fn (term state)
(er-let*
((pair
(simple-translate-and-eval term nil '(state)
"The ok-if test" 'ok-if (w state) state t)))
(cond ((cdr pair) (exit-brr state))
(t (value nil)))))
(defmacro ok-if (term)
`(ok-if-fn ,term state))
;---------------------------------------------------------------------------
; Section: The DEFAXIOM Event
(defun print-rule-storage-dependencies (name ttree state)
(cond
((ld-skip-proofsp state) (value nil))
(t (pprogn
(io? event nil state
(name ttree)
(let ((simp-phrase (tilde-*-simp-phrase ttree)))
(cond ((nth 4 simp-phrase)
(fms "The storage of ~x0 depends upon ~*1.~%"
(list (cons #\0 name)
(cons #\1 simp-phrase))
(proofs-co state)
state
nil))
(t state))))
(value nil)))))
(defun defaxiom-supporters (tterm name ctx wrld state)
; Here we document requirements on disjointness of the sets of evaluator
; functions and defaxiom supporters.
; First, consider the following comment from relevant-constraints (which should
; be kept in sync with that comment), regarding functional instantiation of a
; theorem, thm, using a functional substitution, alist.
; The relevant theorems are the set of all terms, term, such that
; (a) term mentions some function symbol in the domain of alist,
; AND
; (b) either
; (i) term arises from a definition of or constraint on a function symbol
; ancestral either in thm or in some defaxiom,
; OR
; (ii) term is the body of a defaxiom.
; Then when we (conceptually at least) functionally instantiate a :meta or
; :clause-processor rule using a functional substitution of the form ((evl
; evl') (evl-list evl'-list)), we need to know that the above proof obligations
; are met.
; ACL2 insists (in function chk-evaluator-use-in-rule) that the evaluator of a
; proposed :meta or :clause-processor rule is not ancestral in any defaxiom or
; in the definition of, or constraint on, the rule's metafunctions, nor is the
; evaluator ancestral in meta-extract-global-fact+ and
; meta-extract-contextual-fact if they are used in the rule. Thus, when we
; imagine functionally instantiating the rule as discussed above, at the point
; of its application, the only relevant theorems for (i) above are the
; constraints on the evaluator, and there are no relevant theorems for (ii)
; above. We can use our usual computation of "ancestral", which does not
; explore below functions that are not instantiablep, since (presumably!)
; non-instantiablep functions are primitives in which no evaluator functions is
; ancestral.
; But there is a subtlety not fully addressed above. Consider the following
; case: a legitimate :meta (or :clause-processor) rule, with evaluator evl, is
; followed by a defaxiom event for which evl (or evl-list) is ancestral. Does
; this new defaxiom invalidate the existing rule? The answer is no, but the
; argument above doesn't quite explain why, so we elaborate here. Let C0 be
; the chronology in which the meta rule was proved and let C1 be the current
; chronology, which extends C0. Let C2 be the result of extending C0 with a
; defstub for every function symbol of C1 that is not in C0, except for the
; evaluator pair evl'/evl'-list, introduced at the end for all function symbols
; of C1. Then the argument applies to C2, so the desired functional instance
; is a theorem of C2. But the theory of C2 is a subtheory of C1, so the
; desired functional instance is a theorem of C1.
(declare (ignore name ctx))
(let ((supporters (instantiable-ancestors (all-fnnames tterm) wrld nil)))
(value supporters)))
(defun defaxiom-fn (name term state rule-classes event-form)
; Important Note: Don't change the formals of this function without reading the
; *initial-event-defmacros* discussion in axioms.lisp.
(when-logic
"DEFAXIOM"
(with-ctx-summarized
(if (output-in-infixp state) event-form (cons 'defaxiom name))
; At one time we thought that event-form could be nil. It is simplest, for
; checking redundancy, not to consider the case of manufacturing an event-form,
; so now we insist on event-form being supplied (not nil).
(assert$
event-form
(let ((wrld (w state))
(ens (ens state)))
(er-progn
(chk-all-but-new-name name ctx nil wrld state)
(er-let* ((tterm (translate term t t t ctx wrld state))
; known-stobjs = t (stobjs-out = t)
(supporters (defaxiom-supporters tterm name ctx wrld state))
(classes (translate-rule-classes name rule-classes tterm ctx
ens wrld state)))
(cond
((redundant-theoremp name tterm classes event-form wrld)
(stop-redundant-event ctx state))
(t
; Next we implement Defaxiom Restriction for Defattach from The Essay on
; Defattach: no ancestor (according to the transitive closure of the
; immediate-supporter relation) of a defaxiom event has an attachment. Since
; this is all about logic, we remove guard-holders from term before doing this
; check.
(let ((attached-fns
(attached-fns (canonical-ancestors-lst
(all-ffn-symbs (remove-guard-holders tterm)
nil)
wrld)
wrld)))
(cond
(attached-fns
(er soft ctx
"The following function~#0~[ has an attachment, but is~/s ~
have attachments, but are~] ancestral in the proposed ~
axiom: ~&0. ~ See :DOC defattach."
attached-fns))
(t
(enforce-redundancy
event-form ctx wrld
(er-let*
((ttree1 (chk-acceptable-rules name classes ctx ens wrld
state))
(wrld1 (chk-just-new-name name nil 'theorem nil ctx wrld
state))
(ttree3
(cond ((ld-skip-proofsp state)
(value nil))
(t
(prove-corollaries name tterm classes ens wrld1 ctx
state)))))
(let* ((wrld2
(add-rules name classes tterm term ens wrld1 state))
(wrld3 (global-set
'nonconstructive-axiom-names
(cons name
(global-val 'nonconstructive-axiom-names wrld))
wrld2))
(wrld4 (maybe-putprop-lst supporters 'defaxiom-supporter
name wrld3))
(ttree4 (cons-tag-trees ttree1 ttree3)))
(pprogn
(f-put-global 'axiomsp t state)
(er-progn
(chk-assumption-free-ttree ttree4 ctx state)
(print-rule-storage-dependencies name ttree1 state)
(install-event name
event-form
'defaxiom
name
ttree4
nil :protect ctx wrld4
state))))))))))))))))))
;---------------------------------------------------------------------------
; Section: The DEFTHM Event
(defun warn-on-inappropriate-defun-mode (assumep event-form ctx state)
(if (or assumep
(eq (default-defun-mode (w state)) :logic))
state
(warning$ ctx "Defun-Mode"
"It is perhaps unusual to execute the event ~x0 in the ~
:program default-defun-mode when ld-skip-proofsp has not been ~
set to T."
event-form)))
;; RAG - this trio of functions adds the hypothesis "(standardp x)"
;; for each variable x in the theorem.
#+:non-standard-analysis
(defun add-hyp-standardp-var-lst (vars)
(if (consp vars)
(cons (list 'standardp (car vars))
(add-hyp-standardp-var-lst (cdr vars)))
nil))
#+:non-standard-analysis
(defun strengthen-hyps-using-transfer-principle (hyps vars)
; Hyps is an untranslated expression.
(cons 'and
(append (add-hyp-standardp-var-lst vars)
(if (and (consp hyps)
(eq (car hyps) 'and))
(cdr hyps)
(list hyps)))))
#+:non-standard-analysis
(defun weaken-using-transfer-principle (term)
; Term is an untranslated expression.
(let ((vars (all-vars term)))
(case-match term
(('implies hyps ('standardp subterm))
(declare (ignore subterm))
(list 'implies
hyps
(cons 'and (add-hyp-standardp-var-lst vars))))
(('standardp subterm)
(declare (ignore subterm))
(cons 'and (add-hyp-standardp-var-lst vars)))
(('implies hyps concls)
(list 'implies
(strengthen-hyps-using-transfer-principle hyps vars)
concls))
(&
(list 'implies
(cons 'and (add-hyp-standardp-var-lst vars))
term)))))
#+:non-standard-analysis
(defun remove-standardp-hyp (tterm)
(if (and (consp tterm)
(eq (car tterm) 'standardp)
(variablep (car (cdr tterm))))
(list 'eq (car (cdr tterm)) (car (cdr tterm)))
tterm))
#+:non-standard-analysis
(defun remove-standardp-hyps (tterm)
(if (and (consp tterm)
(eq (car tterm) 'if)
(equal (car (cdr (cdr (cdr tterm))))
(list 'quote nil)))
(list 'if
(remove-standardp-hyp (car (cdr tterm)))
(remove-standardp-hyps (car (cdr (cdr tterm))))
(list 'quote nil))
(remove-standardp-hyp tterm)))
#+:non-standard-analysis
(defun remove-standardp-hyps-and-standardp-conclusion (tterm)
(case-match tterm
(('implies hyps ('standardp subterm))
(list 'implies
(remove-standardp-hyps hyps)
subterm))
(('standardp subterm)
subterm)
(& tterm)))
#+:non-standard-analysis
(defun chk-classical-term-or-standardp-of-classical-term (tterm term ctx wrld state)
; Tterm is the translation of term.
(let* ((names (all-fnnames (remove-standardp-hyps-and-standardp-conclusion tterm)))
(non-classical-fns (get-non-classical-fns-from-list names wrld nil)))
(if (null non-classical-fns)
(value nil)
(er soft ctx
"It is illegal to use DEFTHM-STD to prove non-classical ~
formulas. However, there has been an attempt to prove ~
the formula ~x0 using DEFTHM-STD, even though it ~
contains the non-classical function ~*1."
term
`("<MissingFunction>" "~x*" "~x* and " "~x*,"
,non-classical-fns)))))
#+(and acl2-par (not acl2-loop-only))
(defmacro with-waterfall-parallelism-timings (name form)
`(unwind-protect-disable-interrupts-during-cleanup
(progn (setup-waterfall-parallelism-ht-for-name ,name)
(reset-future-queue-length-history)
(setf *acl2p-starting-proof-time*
(get-internal-real-time))
,form)
(clear-current-waterfall-parallelism-ht)))
#-(and acl2-par (not acl2-loop-only))
(defmacro with-waterfall-parallelism-timings (name form)
(declare (ignore name))
form)
(defun defthm-fn1 (name term state
rule-classes
instructions
hints
otf-flg
event-form
#+:non-standard-analysis std-p)
(with-ctx-summarized
(if (output-in-infixp state) event-form (cons 'defthm name))
; At one time we thought that event-form could be nil. It is simplest, for
; checking redundancy, not to consider the case of manufacturing an event-form,
; so now we insist on event-form being supplied (not nil).
(assert$
event-form
(let ((wrld (w state))
(ens (ens state))
(event-form (or event-form
(list* 'defthm name term
(append (if (not (equal rule-classes
'(:REWRITE)))
(list :rule-classes rule-classes)
nil)
(if instructions
(list :instructions instructions)
nil)
(if hints
(list :hints hints)
nil)
(if otf-flg
(list :otf-flg otf-flg)
nil)))))
(ld-skip-proofsp (ld-skip-proofsp state)))
(pprogn
(warn-on-inappropriate-defun-mode ld-skip-proofsp event-form ctx state)
#+acl2-par
(erase-acl2p-checkpoints-for-summary state)
(with-waterfall-parallelism-timings
name
(er-progn
(chk-all-but-new-name name ctx nil wrld state)
(er-let*
((tterm0 (translate term t t t ctx wrld state))
; known-stobjs = t (stobjs-out = t)
(tterm
#+:non-standard-analysis
(if std-p
(er-progn
(chk-classical-term-or-standardp-of-classical-term
tterm0 term ctx wrld state)
(translate (weaken-using-transfer-principle term)
t t t ctx wrld state))
(value tterm0))
#-:non-standard-analysis
(value tterm0))
(classes
; (#+:non-standard-analysis) We compute rule classes with respect to the
; original (translated) term. The modified term is only relevant for proof.
(translate-rule-classes name rule-classes tterm0 ctx ens wrld
state)))
(cond
((redundant-theoremp name tterm0 classes event-form wrld)
(stop-redundant-event ctx state))
(t
(enforce-redundancy
event-form ctx wrld
(er-let*
((ttree1 (chk-acceptable-rules name classes ctx ens wrld
state))
(wrld1 (chk-just-new-name name nil 'theorem nil ctx wrld
state)))
(er-let*
((instructions (if (or (eq ld-skip-proofsp 'include-book)
(eq ld-skip-proofsp
'include-book-with-locals)
(eq ld-skip-proofsp 'initialize-acl2))
(value nil)
(translate-instructions name instructions
ctx wrld1 state)))
; Observe that we do not translate the hints if ld-skip-proofsp is non-nil.
; Once upon a time we translated the hints unless ld-skip-proofsp was
; 'include-book, which meant we translated them if it was t, which meant we did
; it during initialize-acl2. That caused a failure due to the fact that ENABLE
; was not defined when it was first used in axioms.lisp. This choice is
; a little unsettling because it means
(hints (if (or (eq ld-skip-proofsp 'include-book)
(eq ld-skip-proofsp 'include-book-with-locals)
(eq ld-skip-proofsp 'initialize-acl2))
(value nil)
(translate-hints+ name
hints
; If there are :instructions, then default hints are to be ignored; otherwise
; the error just below will prevent :instructions in the presence of default
; hints.
(and (null instructions)
(default-hints wrld1))
ctx wrld1 state)))
(ttree2 (cond (instructions
(er-progn
(cond (hints (er soft ctx
"It is not permitted to ~
supply both :INSTRUCTIONS ~
and :HINTS to DEFTHM."))
(t (value nil)))
#+:non-standard-analysis
(if std-p
; How could this happen? Presumably the user created a defthm event using the
; proof-checker, and then absent-mindedly somehow suffixed "-std" on to the
; car, defthm, of that form.
(er soft ctx
":INSTRUCTIONS are not supported for ~
defthm-std events.")
(value nil))
(proof-checker name term
tterm classes instructions
wrld1 state)))
(t (prove tterm
(make-pspv ens wrld1 state
:displayed-goal term
:otf-flg otf-flg)
hints ens wrld1 ctx state))))
(ttree3 (cond (ld-skip-proofsp (value nil))
(t (prove-corollaries name tterm0 classes ens wrld1
ctx state)))))
(let ((wrld2
(add-rules name classes tterm0 term ens wrld1 state))
(ttree4 (cons-tag-trees ttree1
(cons-tag-trees ttree2 ttree3))))
(er-progn
(chk-assumption-free-ttree ttree4 ctx state)
(print-rule-storage-dependencies name ttree1 state)
(install-event name
event-form
'defthm
name
ttree4
nil :protect ctx wrld2
state))))))))))))))))
(defun defthm-fn (name term state
rule-classes
instructions
hints
otf-flg
event-form
#+:non-standard-analysis std-p)
; Important Note: Don't change the formals of this function without
; reading the *initial-event-defmacros* discussion in axioms.lisp.
(when-logic
"DEFTHM"
(defthm-fn1 name term state
rule-classes
instructions
hints
otf-flg
event-form
#+:non-standard-analysis std-p)))
(defmacro thm (term &key hints otf-flg)
(list 'thm-fn
(list 'quote term)
'state
(list 'quote hints)
(list 'quote otf-flg)))
(defun thm-fn (term state hints otf-flg)
(er-progn
(with-ctx-summarized
(if (output-in-infixp state)
(list* 'THM term (if (or hints otf-flg) '(irrelevant) nil))
"( THM ...)")
(let ((wrld (w state))
(ens (ens state)))
(er-let* ((hints (translate-hints+ 'thm
hints
(default-hints wrld)
ctx wrld state)))
(er-let* ((tterm (translate term t t t ctx wrld state))
; known-stobjs = t (stobjs-out = t)
(ttree (prove tterm
(make-pspv ens wrld state
:displayed-goal term
:otf-flg otf-flg)
hints ens wrld ctx state)))
(value nil)))))
(pprogn (io? prove nil state
nil
(fms "Proof succeeded.~%" nil
(proofs-co state) state nil))
(value :invisible))))
; Note: During boot-strapping the thm macro is unavailable because it is
; not one of the *initial-event-defmacros*.
;---------------------------------------------------------------------------
; Section: Some Convenient Abbreviations for Defthm
(defun chk-extensible-rule-classes (rule-classes ctx state)
(cond ((or (symbolp rule-classes)
(true-listp rule-classes))
(value nil))
(t (er soft ctx
"The :rule-classes argument to must be either ~
a symbol or a true-listp. Your rule-classes is ~x0."
rule-classes))))
(defun extend-rule-classes (class rule-classes)
(cond ((symbolp rule-classes)
(cond ((null rule-classes)
class)
((eq rule-classes class)
rule-classes)
(t (list class rule-classes))))
((member-eq class rule-classes)
rule-classes)
(t (cons class rule-classes))))
(defun gen-new-name-in-package-of-symbol1 (char-lst cnt pkgsym wrld)
; This function generates a symbol in the same package as pkgsym that
; is guaranteed to be a new-namep in wrld. We form a symbol by
; concatenating char-lst and the decimal representation of the natural
; number cnt (separated by a hyphen). Clearly, for some sufficiently
; large cnt that symbol is a new name.
(let ((sym (intern-in-package-of-symbol
(coerce
(append char-lst
(cons #\- (explode-nonnegative-integer cnt 10 nil)))
'string)
pkgsym)))
(cond ((new-namep sym wrld)
sym)
(t
(gen-new-name-in-package-of-symbol1 char-lst (1+ cnt) pkgsym
wrld)))))
(defun gen-new-name-in-package-of-symbol (sym pkgsym wrld)
; We generate a symbol, sym', in the same package as pkgsym, such that
; (new-namep sym' wrld). If sym itself will not do, we start trying
; the extension of sym with successive integers, e.g., sym-0, sym-1,
; sym-2, ...
(let ((sym1 (if (equal (symbol-package-name sym)
(symbol-package-name pkgsym))
sym
(intern-in-package-of-symbol
(symbol-name sym)
pkgsym))))
(cond ((new-namep sym1 wrld) sym1)
(t (gen-new-name-in-package-of-symbol1
(coerce (symbol-name sym) 'list)
0
pkgsym
wrld)))))
(defmacro defequiv (equiv
&key (rule-classes '(:EQUIVALENCE))
instructions
hints
otf-flg
event-name
doc)
`(defthm ,(or event-name
(intern-in-package-of-symbol
(coerce (packn1 (list equiv "-IS-AN-EQUIVALENCE")) 'string)
equiv))
,(equivalence-relation-condition equiv)
:rule-classes
,(extend-rule-classes :equivalence rule-classes)
,@(if instructions (list :instructions instructions) nil)
,@(if hints (list :hints hints) nil)
,@(if otf-flg (list :otf-flg otf-flg) nil)
,@(if doc (list :doc doc) nil)))
(defmacro defrefinement (equiv1 equiv2
&key (rule-classes '(:REFINEMENT))
instructions
hints
otf-flg
event-name
doc)
`(defthm
,(or event-name
(intern-in-package-of-symbol
(coerce (packn1 (list equiv1 "-REFINES-" equiv2)) 'string)
equiv1))
(implies (,equiv1 x y) (,equiv2 x y))
:rule-classes
,(extend-rule-classes :REFINEMENT rule-classes)
,@(if instructions (list :instructions instructions) nil)
,@(if hints (list :hints hints) nil)
,@(if otf-flg (list :otf-flg otf-flg) nil)
,@(if doc (list :doc doc) nil)))
(defmacro defcong (&whole x
equiv1 equiv2 fn-args k
&key (rule-classes '(:CONGRUENCE))
instructions
hints
otf-flg
event-name
doc)
(cond
((not (and (symbolp equiv1)
(symbolp equiv2)
(integerp k)
(< 0 k)
(symbol-listp fn-args)
(no-duplicatesp-equal (cdr fn-args))
(< k (length fn-args))))
`(er soft 'defcong
"The form of a defcong event is (defcong equiv1 equiv2 term k ...), ~
where equiv1 and equiv2 are symbols and k is a positive integer less ~
than the length of term, where term should be a call of a function ~
symbol on distinct variable arguments. However, ~x0 does not have ~
this form. See :DOC defcong."
',x))
(t
(let ((sym (if (equal (symbol-package-name equiv1)
*main-lisp-package-name*)
(pkg-witness "ACL2")
equiv1)))
`(defthm
,(or event-name
(intern-in-package-of-symbol
(coerce (packn1 (list equiv1 "-IMPLIES-"
equiv2 "-" (car fn-args) "-" k)) 'string)
sym))
,(let ((arg-k-equiv (intern-in-package-of-symbol
(coerce (packn1 (list (nth k fn-args) '-equiv))
'string)
sym)))
`(implies (,equiv1 ,(nth k fn-args)
,arg-k-equiv)
(,equiv2 ,fn-args
,(update-nth k arg-k-equiv fn-args))))
:rule-classes
,(extend-rule-classes :CONGRUENCE rule-classes)
,@(if instructions (list :instructions instructions) nil)
,@(if hints (list :hints hints) nil)
,@(if otf-flg (list :otf-flg otf-flg) nil)
,@(if doc (list :doc doc) nil))))))
|