This file is indexed.

/usr/share/acl2-7.2dfsg/doc.lisp is in acl2-source 7.2dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
   100
   101
   102
   103
   104
   105
   106
   107
   108
   109
   110
   111
   112
   113
   114
   115
   116
   117
   118
   119
   120
   121
   122
   123
   124
   125
   126
   127
   128
   129
   130
   131
   132
   133
   134
   135
   136
   137
   138
   139
   140
   141
   142
   143
   144
   145
   146
   147
   148
   149
   150
   151
   152
   153
   154
   155
   156
   157
   158
   159
   160
   161
   162
   163
   164
   165
   166
   167
   168
   169
   170
   171
   172
   173
   174
   175
   176
   177
   178
   179
   180
   181
   182
   183
   184
   185
   186
   187
   188
   189
   190
   191
   192
   193
   194
   195
   196
   197
   198
   199
   200
   201
   202
   203
   204
   205
   206
   207
   208
   209
   210
   211
   212
   213
   214
   215
   216
   217
   218
   219
   220
   221
   222
   223
   224
   225
   226
   227
   228
   229
   230
   231
   232
   233
   234
   235
   236
   237
   238
   239
   240
   241
   242
   243
   244
   245
   246
   247
   248
   249
   250
   251
   252
   253
   254
   255
   256
   257
   258
   259
   260
   261
   262
   263
   264
   265
   266
   267
   268
   269
   270
   271
   272
   273
   274
   275
   276
   277
   278
   279
   280
   281
   282
   283
   284
   285
   286
   287
   288
   289
   290
   291
   292
   293
   294
   295
   296
   297
   298
   299
   300
   301
   302
   303
   304
   305
   306
   307
   308
   309
   310
   311
   312
   313
   314
   315
   316
   317
   318
   319
   320
   321
   322
   323
   324
   325
   326
   327
   328
   329
   330
   331
   332
   333
   334
   335
   336
   337
   338
   339
   340
   341
   342
   343
   344
   345
   346
   347
   348
   349
   350
   351
   352
   353
   354
   355
   356
   357
   358
   359
   360
   361
   362
   363
   364
   365
   366
   367
   368
   369
   370
   371
   372
   373
   374
   375
   376
   377
   378
   379
   380
   381
   382
   383
   384
   385
   386
   387
   388
   389
   390
   391
   392
   393
   394
   395
   396
   397
   398
   399
   400
   401
   402
   403
   404
   405
   406
   407
   408
   409
   410
   411
   412
   413
   414
   415
   416
   417
   418
   419
   420
   421
   422
   423
   424
   425
   426
   427
   428
   429
   430
   431
   432
   433
   434
   435
   436
   437
   438
   439
   440
   441
   442
   443
   444
   445
   446
   447
   448
   449
   450
   451
   452
   453
   454
   455
   456
   457
   458
   459
   460
   461
   462
   463
   464
   465
   466
   467
   468
   469
   470
   471
   472
   473
   474
   475
   476
   477
   478
   479
   480
   481
   482
   483
   484
   485
   486
   487
   488
   489
   490
   491
   492
   493
   494
   495
   496
   497
   498
   499
   500
   501
   502
   503
   504
   505
   506
   507
   508
   509
   510
   511
   512
   513
   514
   515
   516
   517
   518
   519
   520
   521
   522
   523
   524
   525
   526
   527
   528
   529
   530
   531
   532
   533
   534
   535
   536
   537
   538
   539
   540
   541
   542
   543
   544
   545
   546
   547
   548
   549
   550
   551
   552
   553
   554
   555
   556
   557
   558
   559
   560
   561
   562
   563
   564
   565
   566
   567
   568
   569
   570
   571
   572
   573
   574
   575
   576
   577
   578
   579
   580
   581
   582
   583
   584
   585
   586
   587
   588
   589
   590
   591
   592
   593
   594
   595
   596
   597
   598
   599
   600
   601
   602
   603
   604
   605
   606
   607
   608
   609
   610
   611
   612
   613
   614
   615
   616
   617
   618
   619
   620
   621
   622
   623
   624
   625
   626
   627
   628
   629
   630
   631
   632
   633
   634
   635
   636
   637
   638
   639
   640
   641
   642
   643
   644
   645
   646
   647
   648
   649
   650
   651
   652
   653
   654
   655
   656
   657
   658
   659
   660
   661
   662
   663
   664
   665
   666
   667
   668
   669
   670
   671
   672
   673
   674
   675
   676
   677
   678
   679
   680
   681
   682
   683
   684
   685
   686
   687
   688
   689
   690
   691
   692
   693
   694
   695
   696
   697
   698
   699
   700
   701
   702
   703
   704
   705
   706
   707
   708
   709
   710
   711
   712
   713
   714
   715
   716
   717
   718
   719
   720
   721
   722
   723
   724
   725
   726
   727
   728
   729
   730
   731
   732
   733
   734
   735
   736
   737
   738
   739
   740
   741
   742
   743
   744
   745
   746
   747
   748
   749
   750
   751
   752
   753
   754
   755
   756
   757
   758
   759
   760
   761
   762
   763
   764
   765
   766
   767
   768
   769
   770
   771
   772
   773
   774
   775
   776
   777
   778
   779
   780
   781
   782
   783
   784
   785
   786
   787
   788
   789
   790
   791
   792
   793
   794
   795
   796
   797
   798
   799
   800
   801
   802
   803
   804
   805
   806
   807
   808
   809
   810
   811
   812
   813
   814
   815
   816
   817
   818
   819
   820
   821
   822
   823
   824
   825
   826
   827
   828
   829
   830
   831
   832
   833
   834
   835
   836
   837
   838
   839
   840
   841
   842
   843
   844
   845
   846
   847
   848
   849
   850
   851
   852
   853
   854
   855
   856
   857
   858
   859
   860
   861
   862
   863
   864
   865
   866
   867
   868
   869
   870
   871
   872
   873
   874
   875
   876
   877
   878
   879
   880
   881
   882
   883
   884
   885
   886
   887
   888
   889
   890
   891
   892
   893
   894
   895
   896
   897
   898
   899
   900
   901
   902
   903
   904
   905
   906
   907
   908
   909
   910
   911
   912
   913
   914
   915
   916
   917
   918
   919
   920
   921
   922
   923
   924
   925
   926
   927
   928
   929
   930
   931
   932
   933
   934
   935
   936
   937
   938
   939
   940
   941
   942
   943
   944
   945
   946
   947
   948
   949
   950
   951
   952
   953
   954
   955
   956
   957
   958
   959
   960
   961
   962
   963
   964
   965
   966
   967
   968
   969
   970
   971
   972
   973
   974
   975
   976
   977
   978
   979
   980
   981
   982
   983
   984
   985
   986
   987
   988
   989
   990
   991
   992
   993
   994
   995
   996
   997
   998
   999
  1000
  1001
  1002
  1003
  1004
  1005
  1006
  1007
  1008
  1009
  1010
  1011
  1012
  1013
  1014
  1015
  1016
  1017
  1018
  1019
  1020
  1021
  1022
  1023
  1024
  1025
  1026
  1027
  1028
  1029
  1030
  1031
  1032
  1033
  1034
  1035
  1036
  1037
  1038
  1039
  1040
  1041
  1042
  1043
  1044
  1045
  1046
  1047
  1048
  1049
  1050
  1051
  1052
  1053
  1054
  1055
  1056
  1057
  1058
  1059
  1060
  1061
  1062
  1063
  1064
  1065
  1066
  1067
  1068
  1069
  1070
  1071
  1072
  1073
  1074
  1075
  1076
  1077
  1078
  1079
  1080
  1081
  1082
  1083
  1084
  1085
  1086
  1087
  1088
  1089
  1090
  1091
  1092
  1093
  1094
  1095
  1096
  1097
  1098
  1099
  1100
  1101
  1102
  1103
  1104
  1105
  1106
  1107
  1108
  1109
  1110
  1111
  1112
  1113
  1114
  1115
  1116
  1117
  1118
  1119
  1120
  1121
  1122
  1123
  1124
  1125
  1126
  1127
  1128
  1129
  1130
  1131
  1132
  1133
  1134
  1135
  1136
  1137
  1138
  1139
  1140
  1141
  1142
  1143
  1144
  1145
  1146
  1147
  1148
  1149
  1150
  1151
  1152
  1153
  1154
  1155
  1156
  1157
  1158
  1159
  1160
  1161
  1162
  1163
  1164
  1165
  1166
  1167
  1168
  1169
  1170
  1171
  1172
  1173
  1174
  1175
  1176
  1177
  1178
  1179
  1180
  1181
  1182
  1183
  1184
  1185
  1186
  1187
  1188
  1189
  1190
  1191
  1192
  1193
  1194
  1195
  1196
  1197
  1198
  1199
  1200
  1201
  1202
  1203
  1204
  1205
  1206
  1207
  1208
  1209
  1210
  1211
  1212
  1213
  1214
  1215
  1216
  1217
  1218
  1219
  1220
  1221
  1222
  1223
  1224
  1225
  1226
  1227
  1228
  1229
  1230
  1231
  1232
  1233
  1234
  1235
  1236
  1237
  1238
  1239
  1240
  1241
  1242
  1243
  1244
  1245
  1246
  1247
  1248
  1249
  1250
  1251
  1252
  1253
  1254
  1255
  1256
  1257
  1258
  1259
  1260
  1261
  1262
  1263
  1264
  1265
  1266
  1267
  1268
  1269
  1270
  1271
  1272
  1273
  1274
  1275
  1276
  1277
  1278
  1279
  1280
  1281
  1282
  1283
  1284
  1285
  1286
  1287
  1288
  1289
  1290
  1291
  1292
  1293
  1294
  1295
  1296
  1297
  1298
  1299
  1300
  1301
  1302
  1303
  1304
  1305
  1306
  1307
  1308
  1309
  1310
  1311
  1312
  1313
  1314
  1315
  1316
  1317
  1318
  1319
  1320
  1321
  1322
  1323
  1324
  1325
  1326
  1327
  1328
  1329
  1330
  1331
  1332
  1333
  1334
  1335
  1336
  1337
  1338
  1339
  1340
  1341
  1342
  1343
  1344
  1345
  1346
  1347
  1348
  1349
  1350
  1351
  1352
  1353
  1354
  1355
  1356
  1357
  1358
  1359
  1360
  1361
  1362
  1363
  1364
  1365
  1366
  1367
  1368
  1369
  1370
  1371
  1372
  1373
  1374
  1375
  1376
  1377
  1378
  1379
  1380
  1381
  1382
  1383
  1384
  1385
  1386
  1387
  1388
  1389
  1390
  1391
  1392
  1393
  1394
  1395
  1396
  1397
  1398
  1399
  1400
  1401
  1402
  1403
  1404
  1405
  1406
  1407
  1408
  1409
  1410
  1411
  1412
  1413
  1414
  1415
  1416
  1417
  1418
  1419
  1420
  1421
  1422
  1423
  1424
  1425
  1426
  1427
  1428
  1429
  1430
  1431
  1432
  1433
  1434
  1435
  1436
  1437
  1438
  1439
  1440
  1441
  1442
  1443
  1444
  1445
  1446
  1447
  1448
  1449
  1450
  1451
  1452
  1453
  1454
  1455
  1456
  1457
  1458
  1459
  1460
  1461
  1462
  1463
  1464
  1465
  1466
  1467
  1468
  1469
  1470
  1471
  1472
  1473
  1474
  1475
  1476
  1477
  1478
  1479
  1480
  1481
  1482
  1483
  1484
  1485
  1486
  1487
  1488
  1489
  1490
  1491
  1492
  1493
  1494
  1495
  1496
  1497
  1498
  1499
  1500
  1501
  1502
  1503
  1504
  1505
  1506
  1507
  1508
  1509
  1510
  1511
  1512
  1513
  1514
  1515
  1516
  1517
  1518
  1519
  1520
  1521
  1522
  1523
  1524
  1525
  1526
  1527
  1528
  1529
  1530
  1531
  1532
  1533
  1534
  1535
  1536
  1537
  1538
  1539
  1540
  1541
  1542
  1543
  1544
  1545
  1546
  1547
  1548
  1549
  1550
  1551
  1552
  1553
  1554
  1555
  1556
  1557
  1558
  1559
  1560
  1561
  1562
  1563
  1564
  1565
  1566
  1567
  1568
  1569
  1570
  1571
  1572
  1573
  1574
  1575
  1576
  1577
  1578
  1579
  1580
  1581
  1582
  1583
  1584
  1585
  1586
  1587
  1588
  1589
  1590
  1591
  1592
  1593
  1594
  1595
  1596
  1597
  1598
  1599
  1600
  1601
  1602
  1603
  1604
  1605
  1606
  1607
  1608
  1609
  1610
  1611
  1612
  1613
  1614
  1615
  1616
  1617
  1618
  1619
  1620
  1621
  1622
  1623
  1624
  1625
  1626
  1627
  1628
  1629
  1630
  1631
  1632
  1633
  1634
  1635
  1636
  1637
  1638
  1639
  1640
  1641
  1642
  1643
  1644
  1645
  1646
  1647
  1648
  1649
  1650
  1651
  1652
  1653
  1654
  1655
  1656
  1657
  1658
  1659
  1660
  1661
  1662
  1663
  1664
  1665
  1666
  1667
  1668
  1669
  1670
  1671
  1672
  1673
  1674
  1675
  1676
  1677
  1678
  1679
  1680
  1681
  1682
  1683
  1684
  1685
  1686
  1687
  1688
  1689
  1690
  1691
  1692
  1693
  1694
  1695
  1696
  1697
  1698
  1699
  1700
  1701
  1702
  1703
  1704
  1705
  1706
  1707
  1708
  1709
  1710
  1711
  1712
  1713
  1714
  1715
  1716
  1717
  1718
  1719
  1720
  1721
  1722
  1723
  1724
  1725
  1726
  1727
  1728
  1729
  1730
  1731
  1732
  1733
  1734
  1735
  1736
  1737
  1738
  1739
  1740
  1741
  1742
  1743
  1744
  1745
  1746
  1747
  1748
  1749
  1750
  1751
  1752
  1753
  1754
  1755
  1756
  1757
  1758
  1759
  1760
  1761
  1762
  1763
  1764
  1765
  1766
  1767
  1768
  1769
  1770
  1771
  1772
  1773
  1774
  1775
  1776
  1777
  1778
  1779
  1780
  1781
  1782
  1783
  1784
  1785
  1786
  1787
  1788
  1789
  1790
  1791
  1792
  1793
  1794
  1795
  1796
  1797
  1798
  1799
  1800
  1801
  1802
  1803
  1804
  1805
  1806
  1807
  1808
  1809
  1810
  1811
  1812
  1813
  1814
  1815
  1816
  1817
  1818
  1819
  1820
  1821
  1822
  1823
  1824
  1825
  1826
  1827
  1828
  1829
  1830
  1831
  1832
  1833
  1834
  1835
  1836
  1837
  1838
  1839
  1840
  1841
  1842
  1843
  1844
  1845
  1846
  1847
  1848
  1849
  1850
  1851
  1852
  1853
  1854
  1855
  1856
  1857
  1858
  1859
  1860
  1861
  1862
  1863
  1864
  1865
  1866
  1867
  1868
  1869
  1870
  1871
  1872
  1873
  1874
  1875
  1876
  1877
  1878
  1879
  1880
  1881
  1882
  1883
  1884
  1885
  1886
  1887
  1888
  1889
  1890
  1891
  1892
  1893
  1894
  1895
  1896
  1897
  1898
  1899
  1900
  1901
  1902
  1903
  1904
  1905
  1906
  1907
  1908
  1909
  1910
  1911
  1912
  1913
  1914
  1915
  1916
  1917
  1918
  1919
  1920
  1921
  1922
  1923
  1924
  1925
  1926
  1927
  1928
  1929
  1930
  1931
  1932
  1933
  1934
  1935
  1936
  1937
  1938
  1939
  1940
  1941
  1942
  1943
  1944
  1945
  1946
  1947
  1948
  1949
  1950
  1951
  1952
  1953
  1954
  1955
  1956
  1957
  1958
  1959
  1960
  1961
  1962
  1963
  1964
  1965
  1966
  1967
  1968
  1969
  1970
  1971
  1972
  1973
  1974
  1975
  1976
  1977
  1978
  1979
  1980
  1981
  1982
  1983
  1984
  1985
  1986
  1987
  1988
  1989
  1990
  1991
  1992
  1993
  1994
  1995
  1996
  1997
  1998
  1999
  2000
  2001
  2002
  2003
  2004
  2005
  2006
  2007
  2008
  2009
  2010
  2011
  2012
  2013
  2014
  2015
  2016
  2017
  2018
  2019
  2020
  2021
  2022
  2023
  2024
  2025
  2026
  2027
  2028
  2029
  2030
  2031
  2032
  2033
  2034
  2035
  2036
  2037
  2038
  2039
  2040
  2041
  2042
  2043
  2044
  2045
  2046
  2047
  2048
  2049
  2050
  2051
  2052
  2053
  2054
  2055
  2056
  2057
  2058
  2059
  2060
  2061
  2062
  2063
  2064
  2065
  2066
  2067
  2068
  2069
  2070
  2071
  2072
  2073
  2074
  2075
  2076
  2077
  2078
  2079
  2080
  2081
  2082
  2083
  2084
  2085
  2086
  2087
  2088
  2089
  2090
  2091
  2092
  2093
  2094
  2095
  2096
  2097
  2098
  2099
  2100
  2101
  2102
  2103
  2104
  2105
  2106
  2107
  2108
  2109
  2110
  2111
  2112
  2113
  2114
  2115
  2116
  2117
  2118
  2119
  2120
  2121
  2122
  2123
  2124
  2125
  2126
  2127
  2128
  2129
  2130
  2131
  2132
  2133
  2134
  2135
  2136
  2137
  2138
  2139
  2140
  2141
  2142
  2143
  2144
  2145
  2146
  2147
  2148
  2149
  2150
  2151
  2152
  2153
  2154
  2155
  2156
  2157
  2158
  2159
  2160
  2161
  2162
  2163
  2164
  2165
  2166
  2167
  2168
  2169
  2170
  2171
  2172
  2173
  2174
  2175
  2176
  2177
  2178
  2179
  2180
  2181
  2182
  2183
  2184
  2185
  2186
  2187
  2188
  2189
  2190
  2191
  2192
  2193
  2194
  2195
  2196
  2197
  2198
  2199
  2200
  2201
  2202
  2203
  2204
  2205
  2206
  2207
  2208
  2209
  2210
  2211
  2212
  2213
  2214
  2215
  2216
  2217
  2218
  2219
  2220
  2221
  2222
  2223
  2224
  2225
  2226
  2227
  2228
  2229
  2230
  2231
  2232
  2233
  2234
  2235
  2236
  2237
  2238
  2239
  2240
  2241
  2242
  2243
  2244
  2245
  2246
  2247
  2248
  2249
  2250
  2251
  2252
  2253
  2254
  2255
  2256
  2257
  2258
  2259
  2260
  2261
  2262
  2263
  2264
  2265
  2266
  2267
  2268
  2269
  2270
  2271
  2272
  2273
  2274
  2275
  2276
  2277
  2278
  2279
  2280
  2281
  2282
  2283
  2284
  2285
  2286
  2287
  2288
  2289
  2290
  2291
  2292
  2293
  2294
  2295
  2296
  2297
  2298
  2299
  2300
  2301
  2302
  2303
  2304
  2305
  2306
  2307
  2308
  2309
  2310
  2311
  2312
  2313
  2314
  2315
  2316
  2317
  2318
  2319
  2320
  2321
  2322
  2323
  2324
  2325
  2326
  2327
  2328
  2329
  2330
  2331
  2332
  2333
  2334
  2335
  2336
  2337
  2338
  2339
  2340
  2341
  2342
  2343
  2344
  2345
  2346
  2347
  2348
  2349
  2350
  2351
  2352
  2353
  2354
  2355
  2356
  2357
  2358
  2359
  2360
  2361
  2362
  2363
  2364
  2365
  2366
  2367
  2368
  2369
  2370
  2371
  2372
  2373
  2374
  2375
  2376
  2377
  2378
  2379
  2380
  2381
  2382
  2383
  2384
  2385
  2386
  2387
  2388
  2389
  2390
  2391
  2392
  2393
  2394
  2395
  2396
  2397
  2398
  2399
  2400
  2401
  2402
  2403
  2404
  2405
  2406
  2407
  2408
  2409
  2410
  2411
  2412
  2413
  2414
  2415
  2416
  2417
  2418
  2419
  2420
  2421
  2422
  2423
  2424
  2425
  2426
  2427
  2428
  2429
  2430
  2431
  2432
  2433
  2434
  2435
  2436
  2437
  2438
  2439
  2440
  2441
  2442
  2443
  2444
  2445
  2446
  2447
  2448
  2449
  2450
  2451
  2452
  2453
  2454
  2455
  2456
  2457
  2458
  2459
  2460
  2461
  2462
  2463
  2464
  2465
  2466
  2467
  2468
  2469
  2470
  2471
  2472
  2473
  2474
  2475
  2476
  2477
  2478
  2479
  2480
  2481
  2482
  2483
  2484
  2485
  2486
  2487
  2488
  2489
  2490
  2491
  2492
  2493
  2494
  2495
  2496
  2497
  2498
  2499
  2500
  2501
  2502
  2503
  2504
  2505
  2506
  2507
  2508
  2509
  2510
  2511
  2512
  2513
  2514
  2515
  2516
  2517
  2518
  2519
  2520
  2521
  2522
  2523
  2524
  2525
  2526
  2527
  2528
  2529
  2530
  2531
  2532
  2533
  2534
  2535
  2536
  2537
  2538
  2539
  2540
  2541
  2542
  2543
  2544
  2545
  2546
  2547
  2548
  2549
  2550
  2551
  2552
  2553
  2554
  2555
  2556
  2557
  2558
  2559
  2560
  2561
  2562
  2563
  2564
  2565
  2566
  2567
  2568
  2569
  2570
  2571
  2572
  2573
  2574
  2575
  2576
  2577
  2578
  2579
  2580
  2581
  2582
  2583
  2584
  2585
  2586
  2587
  2588
  2589
  2590
  2591
  2592
  2593
  2594
  2595
  2596
  2597
  2598
  2599
  2600
  2601
  2602
  2603
  2604
  2605
  2606
  2607
  2608
  2609
  2610
  2611
  2612
  2613
  2614
  2615
  2616
  2617
  2618
  2619
  2620
  2621
  2622
  2623
  2624
  2625
  2626
  2627
  2628
  2629
  2630
  2631
  2632
  2633
  2634
  2635
  2636
  2637
  2638
  2639
  2640
  2641
  2642
  2643
  2644
  2645
  2646
  2647
  2648
  2649
  2650
  2651
  2652
  2653
  2654
  2655
  2656
  2657
  2658
  2659
  2660
  2661
  2662
  2663
  2664
  2665
  2666
  2667
  2668
  2669
  2670
  2671
  2672
  2673
  2674
  2675
  2676
  2677
  2678
  2679
  2680
  2681
  2682
  2683
  2684
  2685
  2686
  2687
  2688
  2689
  2690
  2691
  2692
  2693
  2694
  2695
  2696
  2697
  2698
  2699
  2700
  2701
  2702
  2703
  2704
  2705
  2706
  2707
  2708
  2709
  2710
  2711
  2712
  2713
  2714
  2715
  2716
  2717
  2718
  2719
  2720
  2721
  2722
  2723
  2724
  2725
  2726
  2727
  2728
  2729
  2730
  2731
  2732
  2733
  2734
  2735
  2736
  2737
  2738
  2739
  2740
  2741
  2742
  2743
  2744
  2745
  2746
  2747
  2748
  2749
  2750
  2751
  2752
  2753
  2754
  2755
  2756
  2757
  2758
  2759
  2760
  2761
  2762
  2763
  2764
  2765
  2766
  2767
  2768
  2769
  2770
  2771
  2772
  2773
  2774
  2775
  2776
  2777
  2778
  2779
  2780
  2781
  2782
  2783
  2784
  2785
  2786
  2787
  2788
  2789
  2790
  2791
  2792
  2793
  2794
  2795
  2796
  2797
  2798
  2799
  2800
  2801
  2802
  2803
  2804
  2805
  2806
  2807
  2808
  2809
  2810
  2811
  2812
  2813
  2814
  2815
  2816
  2817
  2818
  2819
  2820
  2821
  2822
  2823
  2824
  2825
  2826
  2827
  2828
  2829
  2830
  2831
  2832
  2833
  2834
  2835
  2836
  2837
  2838
  2839
  2840
  2841
  2842
  2843
  2844
  2845
  2846
  2847
  2848
  2849
  2850
  2851
  2852
  2853
  2854
  2855
  2856
  2857
  2858
  2859
  2860
  2861
  2862
  2863
  2864
  2865
  2866
  2867
  2868
  2869
  2870
  2871
  2872
  2873
  2874
  2875
  2876
  2877
  2878
  2879
  2880
  2881
  2882
  2883
  2884
  2885
  2886
  2887
  2888
  2889
  2890
  2891
  2892
  2893
  2894
  2895
  2896
  2897
  2898
  2899
  2900
  2901
  2902
  2903
  2904
  2905
  2906
  2907
  2908
  2909
  2910
  2911
  2912
  2913
  2914
  2915
  2916
  2917
  2918
  2919
  2920
  2921
  2922
  2923
  2924
  2925
  2926
  2927
  2928
  2929
  2930
  2931
  2932
  2933
  2934
  2935
  2936
  2937
  2938
  2939
  2940
  2941
  2942
  2943
  2944
  2945
  2946
  2947
  2948
  2949
  2950
  2951
  2952
  2953
  2954
  2955
  2956
  2957
  2958
  2959
  2960
  2961
  2962
  2963
  2964
  2965
  2966
  2967
  2968
  2969
  2970
  2971
  2972
  2973
  2974
  2975
  2976
  2977
  2978
  2979
  2980
  2981
  2982
  2983
  2984
  2985
  2986
  2987
  2988
  2989
  2990
  2991
  2992
  2993
  2994
  2995
  2996
  2997
  2998
  2999
  3000
  3001
  3002
  3003
  3004
  3005
  3006
  3007
  3008
  3009
  3010
  3011
  3012
  3013
  3014
  3015
  3016
  3017
  3018
  3019
  3020
  3021
  3022
  3023
  3024
  3025
  3026
  3027
  3028
  3029
  3030
  3031
  3032
  3033
  3034
  3035
  3036
  3037
  3038
  3039
  3040
  3041
  3042
  3043
  3044
  3045
  3046
  3047
  3048
  3049
  3050
  3051
  3052
  3053
  3054
  3055
  3056
  3057
  3058
  3059
  3060
  3061
  3062
  3063
  3064
  3065
  3066
  3067
  3068
  3069
  3070
  3071
  3072
  3073
  3074
  3075
  3076
  3077
  3078
  3079
  3080
  3081
  3082
  3083
  3084
  3085
  3086
  3087
  3088
  3089
  3090
  3091
  3092
  3093
  3094
  3095
  3096
  3097
  3098
  3099
  3100
  3101
  3102
  3103
  3104
  3105
  3106
  3107
  3108
  3109
  3110
  3111
  3112
  3113
  3114
  3115
  3116
  3117
  3118
  3119
  3120
  3121
  3122
  3123
  3124
  3125
  3126
  3127
  3128
  3129
  3130
  3131
  3132
  3133
  3134
  3135
  3136
  3137
  3138
  3139
  3140
  3141
  3142
  3143
  3144
  3145
  3146
  3147
  3148
  3149
  3150
  3151
  3152
  3153
  3154
  3155
  3156
  3157
  3158
  3159
  3160
  3161
  3162
  3163
  3164
  3165
  3166
  3167
  3168
  3169
  3170
  3171
  3172
  3173
  3174
  3175
  3176
  3177
  3178
  3179
  3180
  3181
  3182
  3183
  3184
  3185
  3186
  3187
  3188
  3189
  3190
  3191
  3192
  3193
  3194
  3195
  3196
  3197
  3198
  3199
  3200
  3201
  3202
  3203
  3204
  3205
  3206
  3207
  3208
  3209
  3210
  3211
  3212
  3213
  3214
  3215
  3216
  3217
  3218
  3219
  3220
  3221
  3222
  3223
  3224
  3225
  3226
  3227
  3228
  3229
  3230
  3231
  3232
  3233
  3234
  3235
  3236
  3237
  3238
  3239
  3240
  3241
  3242
  3243
  3244
  3245
  3246
  3247
  3248
  3249
  3250
  3251
  3252
  3253
  3254
  3255
  3256
  3257
  3258
  3259
  3260
  3261
  3262
  3263
  3264
  3265
  3266
  3267
  3268
  3269
  3270
  3271
  3272
  3273
  3274
  3275
  3276
  3277
  3278
  3279
  3280
  3281
  3282
  3283
  3284
  3285
  3286
  3287
  3288
  3289
  3290
  3291
  3292
  3293
  3294
  3295
  3296
  3297
  3298
  3299
  3300
  3301
  3302
  3303
  3304
  3305
  3306
  3307
  3308
  3309
  3310
  3311
  3312
  3313
  3314
  3315
  3316
  3317
  3318
  3319
  3320
  3321
  3322
  3323
  3324
  3325
  3326
  3327
  3328
  3329
  3330
  3331
  3332
  3333
  3334
  3335
  3336
  3337
  3338
  3339
  3340
  3341
  3342
  3343
  3344
  3345
  3346
  3347
  3348
  3349
  3350
  3351
  3352
  3353
  3354
  3355
  3356
  3357
  3358
  3359
  3360
  3361
  3362
  3363
  3364
  3365
  3366
  3367
  3368
  3369
  3370
  3371
  3372
  3373
  3374
  3375
  3376
  3377
  3378
  3379
  3380
  3381
  3382
  3383
  3384
  3385
  3386
  3387
  3388
  3389
  3390
  3391
  3392
  3393
  3394
  3395
  3396
  3397
  3398
  3399
  3400
  3401
  3402
  3403
  3404
  3405
  3406
  3407
  3408
  3409
  3410
  3411
  3412
  3413
  3414
  3415
  3416
  3417
  3418
  3419
  3420
  3421
  3422
  3423
  3424
  3425
  3426
  3427
  3428
  3429
  3430
  3431
  3432
  3433
  3434
  3435
  3436
  3437
  3438
  3439
  3440
  3441
  3442
  3443
  3444
  3445
  3446
  3447
  3448
  3449
  3450
  3451
  3452
  3453
  3454
  3455
  3456
  3457
  3458
  3459
  3460
  3461
  3462
  3463
  3464
  3465
  3466
  3467
  3468
  3469
  3470
  3471
  3472
  3473
  3474
  3475
  3476
  3477
  3478
  3479
  3480
  3481
  3482
  3483
  3484
  3485
  3486
  3487
  3488
  3489
  3490
  3491
  3492
  3493
  3494
  3495
  3496
  3497
  3498
  3499
  3500
  3501
  3502
  3503
  3504
  3505
  3506
  3507
  3508
  3509
  3510
  3511
  3512
  3513
  3514
  3515
  3516
  3517
  3518
  3519
  3520
  3521
  3522
  3523
  3524
  3525
  3526
  3527
  3528
  3529
  3530
  3531
  3532
  3533
  3534
  3535
  3536
  3537
  3538
  3539
  3540
  3541
  3542
  3543
  3544
  3545
  3546
  3547
  3548
  3549
  3550
  3551
  3552
  3553
  3554
  3555
  3556
  3557
  3558
  3559
  3560
  3561
  3562
  3563
  3564
  3565
  3566
  3567
  3568
  3569
  3570
  3571
  3572
  3573
  3574
  3575
  3576
  3577
  3578
  3579
  3580
  3581
  3582
  3583
  3584
  3585
  3586
  3587
  3588
  3589
  3590
  3591
  3592
  3593
  3594
  3595
  3596
  3597
  3598
  3599
  3600
  3601
  3602
  3603
  3604
  3605
  3606
  3607
  3608
  3609
  3610
  3611
  3612
  3613
  3614
  3615
  3616
  3617
  3618
  3619
  3620
  3621
  3622
  3623
  3624
  3625
  3626
  3627
  3628
  3629
  3630
  3631
  3632
  3633
  3634
  3635
  3636
  3637
  3638
  3639
  3640
  3641
  3642
  3643
  3644
  3645
  3646
  3647
  3648
  3649
  3650
  3651
  3652
  3653
  3654
  3655
  3656
  3657
  3658
  3659
  3660
  3661
  3662
  3663
  3664
  3665
  3666
  3667
  3668
  3669
  3670
  3671
  3672
  3673
  3674
  3675
  3676
  3677
  3678
  3679
  3680
  3681
  3682
  3683
  3684
  3685
  3686
  3687
  3688
  3689
  3690
  3691
  3692
  3693
  3694
  3695
  3696
  3697
  3698
  3699
  3700
  3701
  3702
  3703
  3704
  3705
  3706
  3707
  3708
  3709
  3710
  3711
  3712
  3713
  3714
  3715
  3716
  3717
  3718
  3719
  3720
  3721
  3722
  3723
  3724
  3725
  3726
  3727
  3728
  3729
  3730
  3731
  3732
  3733
  3734
  3735
  3736
  3737
  3738
  3739
  3740
  3741
  3742
  3743
  3744
  3745
  3746
  3747
  3748
  3749
  3750
  3751
  3752
  3753
  3754
  3755
  3756
  3757
  3758
  3759
  3760
  3761
  3762
  3763
  3764
  3765
  3766
  3767
  3768
  3769
  3770
  3771
  3772
  3773
  3774
  3775
  3776
  3777
  3778
  3779
  3780
  3781
  3782
  3783
  3784
  3785
  3786
  3787
  3788
  3789
  3790
  3791
  3792
  3793
  3794
  3795
  3796
  3797
  3798
  3799
  3800
  3801
  3802
  3803
  3804
  3805
  3806
  3807
  3808
  3809
  3810
  3811
  3812
  3813
  3814
  3815
  3816
  3817
  3818
  3819
  3820
  3821
  3822
  3823
  3824
  3825
  3826
  3827
  3828
  3829
  3830
  3831
  3832
  3833
  3834
  3835
  3836
  3837
  3838
  3839
  3840
  3841
  3842
  3843
  3844
  3845
  3846
  3847
  3848
  3849
  3850
  3851
  3852
  3853
  3854
  3855
  3856
  3857
  3858
  3859
  3860
  3861
  3862
  3863
  3864
  3865
  3866
  3867
  3868
  3869
  3870
  3871
  3872
  3873
  3874
  3875
  3876
  3877
  3878
  3879
  3880
  3881
  3882
  3883
  3884
  3885
  3886
  3887
  3888
  3889
  3890
  3891
  3892
  3893
  3894
  3895
  3896
  3897
  3898
  3899
  3900
  3901
  3902
  3903
  3904
  3905
  3906
  3907
  3908
  3909
  3910
  3911
  3912
  3913
  3914
  3915
  3916
  3917
  3918
  3919
  3920
  3921
  3922
  3923
  3924
  3925
  3926
  3927
  3928
  3929
  3930
  3931
  3932
  3933
  3934
  3935
  3936
  3937
  3938
  3939
  3940
  3941
  3942
  3943
  3944
  3945
  3946
  3947
  3948
  3949
  3950
  3951
  3952
  3953
  3954
  3955
  3956
  3957
  3958
  3959
  3960
  3961
  3962
  3963
  3964
  3965
  3966
  3967
  3968
  3969
  3970
  3971
  3972
  3973
  3974
  3975
  3976
  3977
  3978
  3979
  3980
  3981
  3982
  3983
  3984
  3985
  3986
  3987
  3988
  3989
  3990
  3991
  3992
  3993
  3994
  3995
  3996
  3997
  3998
  3999
  4000
  4001
  4002
  4003
  4004
  4005
  4006
  4007
  4008
  4009
  4010
  4011
  4012
  4013
  4014
  4015
  4016
  4017
  4018
  4019
  4020
  4021
  4022
  4023
  4024
  4025
  4026
  4027
  4028
  4029
  4030
  4031
  4032
  4033
  4034
  4035
  4036
  4037
  4038
  4039
  4040
  4041
  4042
  4043
  4044
  4045
  4046
  4047
  4048
  4049
  4050
  4051
  4052
  4053
  4054
  4055
  4056
  4057
  4058
  4059
  4060
  4061
  4062
  4063
  4064
  4065
  4066
  4067
  4068
  4069
  4070
  4071
  4072
  4073
  4074
  4075
  4076
  4077
  4078
  4079
  4080
  4081
  4082
  4083
  4084
  4085
  4086
  4087
  4088
  4089
  4090
  4091
  4092
  4093
  4094
  4095
  4096
  4097
  4098
  4099
  4100
  4101
  4102
  4103
  4104
  4105
  4106
  4107
  4108
  4109
  4110
  4111
  4112
  4113
  4114
  4115
  4116
  4117
  4118
  4119
  4120
  4121
  4122
  4123
  4124
  4125
  4126
  4127
  4128
  4129
  4130
  4131
  4132
  4133
  4134
  4135
  4136
  4137
  4138
  4139
  4140
  4141
  4142
  4143
  4144
  4145
  4146
  4147
  4148
  4149
  4150
  4151
  4152
  4153
  4154
  4155
  4156
  4157
  4158
  4159
  4160
  4161
  4162
  4163
  4164
  4165
  4166
  4167
  4168
  4169
  4170
  4171
  4172
  4173
  4174
  4175
  4176
  4177
  4178
  4179
  4180
  4181
  4182
  4183
  4184
  4185
  4186
  4187
  4188
  4189
  4190
  4191
  4192
  4193
  4194
  4195
  4196
  4197
  4198
  4199
  4200
  4201
  4202
  4203
  4204
  4205
  4206
  4207
  4208
  4209
  4210
  4211
  4212
  4213
  4214
  4215
  4216
  4217
  4218
  4219
  4220
  4221
  4222
  4223
  4224
  4225
  4226
  4227
  4228
  4229
  4230
  4231
  4232
  4233
  4234
  4235
  4236
  4237
  4238
  4239
  4240
  4241
  4242
  4243
  4244
  4245
  4246
  4247
  4248
  4249
  4250
  4251
  4252
  4253
  4254
  4255
  4256
  4257
  4258
  4259
  4260
  4261
  4262
  4263
  4264
  4265
  4266
  4267
  4268
  4269
  4270
  4271
  4272
  4273
  4274
  4275
  4276
  4277
  4278
  4279
  4280
  4281
  4282
  4283
  4284
  4285
  4286
  4287
  4288
  4289
  4290
  4291
  4292
  4293
  4294
  4295
  4296
  4297
  4298
  4299
  4300
  4301
  4302
  4303
  4304
  4305
  4306
  4307
  4308
  4309
  4310
  4311
  4312
  4313
  4314
  4315
  4316
  4317
  4318
  4319
  4320
  4321
  4322
  4323
  4324
  4325
  4326
  4327
  4328
  4329
  4330
  4331
  4332
  4333
  4334
  4335
  4336
  4337
  4338
  4339
  4340
  4341
  4342
  4343
  4344
  4345
  4346
  4347
  4348
  4349
  4350
  4351
  4352
  4353
  4354
  4355
  4356
  4357
  4358
  4359
  4360
  4361
  4362
  4363
  4364
  4365
  4366
  4367
  4368
  4369
  4370
  4371
  4372
  4373
  4374
  4375
  4376
  4377
  4378
  4379
  4380
  4381
  4382
  4383
  4384
  4385
  4386
  4387
  4388
  4389
  4390
  4391
  4392
  4393
  4394
  4395
  4396
  4397
  4398
  4399
  4400
  4401
  4402
  4403
  4404
  4405
  4406
  4407
  4408
  4409
  4410
  4411
  4412
  4413
  4414
  4415
  4416
  4417
  4418
  4419
  4420
  4421
  4422
  4423
  4424
  4425
  4426
  4427
  4428
  4429
  4430
  4431
  4432
  4433
  4434
  4435
  4436
  4437
  4438
  4439
  4440
  4441
  4442
  4443
  4444
  4445
  4446
  4447
  4448
  4449
  4450
  4451
  4452
  4453
  4454
  4455
  4456
  4457
  4458
  4459
  4460
  4461
  4462
  4463
  4464
  4465
  4466
  4467
  4468
  4469
  4470
  4471
  4472
  4473
  4474
  4475
  4476
  4477
  4478
  4479
  4480
  4481
  4482
  4483
  4484
  4485
  4486
  4487
  4488
  4489
  4490
  4491
  4492
  4493
  4494
  4495
  4496
  4497
  4498
  4499
  4500
  4501
  4502
  4503
  4504
  4505
  4506
  4507
  4508
  4509
  4510
  4511
  4512
  4513
  4514
  4515
  4516
  4517
  4518
  4519
  4520
  4521
  4522
  4523
  4524
  4525
  4526
  4527
  4528
  4529
  4530
  4531
  4532
  4533
  4534
  4535
  4536
  4537
  4538
  4539
  4540
  4541
  4542
  4543
  4544
  4545
  4546
  4547
  4548
  4549
  4550
  4551
  4552
  4553
  4554
  4555
  4556
  4557
  4558
  4559
  4560
  4561
  4562
  4563
  4564
  4565
  4566
  4567
  4568
  4569
  4570
  4571
  4572
  4573
  4574
  4575
  4576
  4577
  4578
  4579
  4580
  4581
  4582
  4583
  4584
  4585
  4586
  4587
  4588
  4589
  4590
  4591
  4592
  4593
  4594
  4595
  4596
  4597
  4598
  4599
  4600
  4601
  4602
  4603
  4604
  4605
  4606
  4607
  4608
  4609
  4610
  4611
  4612
  4613
  4614
  4615
  4616
  4617
  4618
  4619
  4620
  4621
  4622
  4623
  4624
  4625
  4626
  4627
  4628
  4629
  4630
  4631
  4632
  4633
  4634
  4635
  4636
  4637
  4638
  4639
  4640
  4641
  4642
  4643
  4644
  4645
  4646
  4647
  4648
  4649
  4650
  4651
  4652
  4653
  4654
  4655
  4656
  4657
  4658
  4659
  4660
  4661
  4662
  4663
  4664
  4665
  4666
  4667
  4668
  4669
  4670
  4671
  4672
  4673
  4674
  4675
  4676
  4677
  4678
  4679
  4680
  4681
  4682
  4683
  4684
  4685
  4686
  4687
  4688
  4689
  4690
  4691
  4692
  4693
  4694
  4695
  4696
  4697
  4698
  4699
  4700
  4701
  4702
  4703
  4704
  4705
  4706
  4707
  4708
  4709
  4710
  4711
  4712
  4713
  4714
  4715
  4716
  4717
  4718
  4719
  4720
  4721
  4722
  4723
  4724
  4725
  4726
  4727
  4728
  4729
  4730
  4731
  4732
  4733
  4734
  4735
  4736
  4737
  4738
  4739
  4740
  4741
  4742
  4743
  4744
  4745
  4746
  4747
  4748
  4749
  4750
  4751
  4752
  4753
  4754
  4755
  4756
  4757
  4758
  4759
  4760
  4761
  4762
  4763
  4764
  4765
  4766
  4767
  4768
  4769
  4770
  4771
  4772
  4773
  4774
  4775
  4776
  4777
  4778
  4779
  4780
  4781
  4782
  4783
  4784
  4785
  4786
  4787
  4788
  4789
  4790
  4791
  4792
  4793
  4794
  4795
  4796
  4797
  4798
  4799
  4800
  4801
  4802
  4803
  4804
  4805
  4806
  4807
  4808
  4809
  4810
  4811
  4812
  4813
  4814
  4815
  4816
  4817
  4818
  4819
  4820
  4821
  4822
  4823
  4824
  4825
  4826
  4827
  4828
  4829
  4830
  4831
  4832
  4833
  4834
  4835
  4836
  4837
  4838
  4839
  4840
  4841
  4842
  4843
  4844
  4845
  4846
  4847
  4848
  4849
  4850
  4851
  4852
  4853
  4854
  4855
  4856
  4857
  4858
  4859
  4860
  4861
  4862
  4863
  4864
  4865
  4866
  4867
  4868
  4869
  4870
  4871
  4872
  4873
  4874
  4875
  4876
  4877
  4878
  4879
  4880
  4881
  4882
  4883
  4884
  4885
  4886
  4887
  4888
  4889
  4890
  4891
  4892
  4893
  4894
  4895
  4896
  4897
  4898
  4899
  4900
  4901
  4902
  4903
  4904
  4905
  4906
  4907
  4908
  4909
  4910
  4911
  4912
  4913
  4914
  4915
  4916
  4917
  4918
  4919
  4920
  4921
  4922
  4923
  4924
  4925
  4926
  4927
  4928
  4929
  4930
  4931
  4932
  4933
  4934
  4935
  4936
  4937
  4938
  4939
  4940
  4941
  4942
  4943
  4944
  4945
  4946
  4947
  4948
  4949
  4950
  4951
  4952
  4953
  4954
  4955
  4956
  4957
  4958
  4959
  4960
  4961
  4962
  4963
  4964
  4965
  4966
  4967
  4968
  4969
  4970
  4971
  4972
  4973
  4974
  4975
  4976
  4977
  4978
  4979
  4980
  4981
  4982
  4983
  4984
  4985
  4986
  4987
  4988
  4989
  4990
  4991
  4992
  4993
  4994
  4995
  4996
  4997
  4998
  4999
  5000
  5001
  5002
  5003
  5004
  5005
  5006
  5007
  5008
  5009
  5010
  5011
  5012
  5013
  5014
  5015
  5016
  5017
  5018
  5019
  5020
  5021
  5022
  5023
  5024
  5025
  5026
  5027
  5028
  5029
  5030
  5031
  5032
  5033
  5034
  5035
  5036
  5037
  5038
  5039
  5040
  5041
  5042
  5043
  5044
  5045
  5046
  5047
  5048
  5049
  5050
  5051
  5052
  5053
  5054
  5055
  5056
  5057
  5058
  5059
  5060
  5061
  5062
  5063
  5064
  5065
  5066
  5067
  5068
  5069
  5070
  5071
  5072
  5073
  5074
  5075
  5076
  5077
  5078
  5079
  5080
  5081
  5082
  5083
  5084
  5085
  5086
  5087
  5088
  5089
  5090
  5091
  5092
  5093
  5094
  5095
  5096
  5097
  5098
  5099
  5100
  5101
  5102
  5103
  5104
  5105
  5106
  5107
  5108
  5109
  5110
  5111
  5112
  5113
  5114
  5115
  5116
  5117
  5118
  5119
  5120
  5121
  5122
  5123
  5124
  5125
  5126
  5127
  5128
  5129
  5130
  5131
  5132
  5133
  5134
  5135
  5136
  5137
  5138
  5139
  5140
  5141
  5142
  5143
  5144
  5145
  5146
  5147
  5148
  5149
  5150
  5151
  5152
  5153
  5154
  5155
  5156
  5157
  5158
  5159
  5160
  5161
  5162
  5163
  5164
  5165
  5166
  5167
  5168
  5169
  5170
  5171
  5172
  5173
  5174
  5175
  5176
  5177
  5178
  5179
  5180
  5181
  5182
  5183
  5184
  5185
  5186
  5187
  5188
  5189
  5190
  5191
  5192
  5193
  5194
  5195
  5196
  5197
  5198
  5199
  5200
  5201
  5202
  5203
  5204
  5205
  5206
  5207
  5208
  5209
  5210
  5211
  5212
  5213
  5214
  5215
  5216
  5217
  5218
  5219
  5220
  5221
  5222
  5223
  5224
  5225
  5226
  5227
  5228
  5229
  5230
  5231
  5232
  5233
  5234
  5235
  5236
  5237
  5238
  5239
  5240
  5241
  5242
  5243
  5244
  5245
  5246
  5247
  5248
  5249
  5250
  5251
  5252
  5253
  5254
  5255
  5256
  5257
  5258
  5259
  5260
  5261
  5262
  5263
  5264
  5265
  5266
  5267
  5268
  5269
  5270
  5271
  5272
  5273
  5274
  5275
  5276
  5277
  5278
  5279
  5280
  5281
  5282
  5283
  5284
  5285
  5286
  5287
  5288
  5289
  5290
  5291
  5292
  5293
  5294
  5295
  5296
  5297
  5298
  5299
  5300
  5301
  5302
  5303
  5304
  5305
  5306
  5307
  5308
  5309
  5310
  5311
  5312
  5313
  5314
  5315
  5316
  5317
  5318
  5319
  5320
  5321
  5322
  5323
  5324
  5325
  5326
  5327
  5328
  5329
  5330
  5331
  5332
  5333
  5334
  5335
  5336
  5337
  5338
  5339
  5340
  5341
  5342
  5343
  5344
  5345
  5346
  5347
  5348
  5349
  5350
  5351
  5352
  5353
  5354
  5355
  5356
  5357
  5358
  5359
  5360
  5361
  5362
  5363
  5364
  5365
  5366
  5367
  5368
  5369
  5370
  5371
  5372
  5373
  5374
  5375
  5376
  5377
  5378
  5379
  5380
  5381
  5382
  5383
  5384
  5385
  5386
  5387
  5388
  5389
  5390
  5391
  5392
  5393
  5394
  5395
  5396
  5397
  5398
  5399
  5400
  5401
  5402
  5403
  5404
  5405
  5406
  5407
  5408
  5409
  5410
  5411
  5412
  5413
  5414
  5415
  5416
  5417
  5418
  5419
  5420
  5421
  5422
  5423
  5424
  5425
  5426
  5427
  5428
  5429
  5430
  5431
  5432
  5433
  5434
  5435
  5436
  5437
  5438
  5439
  5440
  5441
  5442
  5443
  5444
  5445
  5446
  5447
  5448
  5449
  5450
  5451
  5452
  5453
  5454
  5455
  5456
  5457
  5458
  5459
  5460
  5461
  5462
  5463
  5464
  5465
  5466
  5467
  5468
  5469
  5470
  5471
  5472
  5473
  5474
  5475
  5476
  5477
  5478
  5479
  5480
  5481
  5482
  5483
  5484
  5485
  5486
  5487
  5488
  5489
  5490
  5491
  5492
  5493
  5494
  5495
  5496
  5497
  5498
  5499
  5500
  5501
  5502
  5503
  5504
  5505
  5506
  5507
  5508
  5509
  5510
  5511
  5512
  5513
  5514
  5515
  5516
  5517
  5518
  5519
  5520
  5521
  5522
  5523
  5524
  5525
  5526
  5527
  5528
  5529
  5530
  5531
  5532
  5533
  5534
  5535
  5536
  5537
  5538
  5539
  5540
  5541
  5542
  5543
  5544
  5545
  5546
  5547
  5548
  5549
  5550
  5551
  5552
  5553
  5554
  5555
  5556
  5557
  5558
  5559
  5560
  5561
  5562
  5563
  5564
  5565
  5566
  5567
  5568
  5569
  5570
  5571
  5572
  5573
  5574
  5575
  5576
  5577
  5578
  5579
  5580
  5581
  5582
  5583
  5584
  5585
  5586
  5587
  5588
  5589
  5590
  5591
  5592
  5593
  5594
  5595
  5596
  5597
  5598
  5599
  5600
  5601
  5602
  5603
  5604
  5605
  5606
  5607
  5608
  5609
  5610
  5611
  5612
  5613
  5614
  5615
  5616
  5617
  5618
  5619
  5620
  5621
  5622
  5623
  5624
  5625
  5626
  5627
  5628
  5629
  5630
  5631
  5632
  5633
  5634
  5635
  5636
  5637
  5638
  5639
  5640
  5641
  5642
  5643
  5644
  5645
  5646
  5647
  5648
  5649
  5650
  5651
  5652
  5653
  5654
  5655
  5656
  5657
  5658
  5659
  5660
  5661
  5662
  5663
  5664
  5665
  5666
  5667
  5668
  5669
  5670
  5671
  5672
  5673
  5674
  5675
  5676
  5677
  5678
  5679
  5680
  5681
  5682
  5683
  5684
  5685
  5686
  5687
  5688
  5689
  5690
  5691
  5692
  5693
  5694
  5695
  5696
  5697
  5698
  5699
  5700
  5701
  5702
  5703
  5704
  5705
  5706
  5707
  5708
  5709
  5710
  5711
  5712
  5713
  5714
  5715
  5716
  5717
  5718
  5719
  5720
  5721
  5722
  5723
  5724
  5725
  5726
  5727
  5728
  5729
  5730
  5731
  5732
  5733
  5734
  5735
  5736
  5737
  5738
  5739
  5740
  5741
  5742
  5743
  5744
  5745
  5746
  5747
  5748
  5749
  5750
  5751
  5752
  5753
  5754
  5755
  5756
  5757
  5758
  5759
  5760
  5761
  5762
  5763
  5764
  5765
  5766
  5767
  5768
  5769
  5770
  5771
  5772
  5773
  5774
  5775
  5776
  5777
  5778
  5779
  5780
  5781
  5782
  5783
  5784
  5785
  5786
  5787
  5788
  5789
  5790
  5791
  5792
  5793
  5794
  5795
  5796
  5797
  5798
  5799
  5800
  5801
  5802
  5803
  5804
  5805
  5806
  5807
  5808
  5809
  5810
  5811
  5812
  5813
  5814
  5815
  5816
  5817
  5818
  5819
  5820
  5821
  5822
  5823
  5824
  5825
  5826
  5827
  5828
  5829
  5830
  5831
  5832
  5833
  5834
  5835
  5836
  5837
  5838
  5839
  5840
  5841
  5842
  5843
  5844
  5845
  5846
  5847
  5848
  5849
  5850
  5851
  5852
  5853
  5854
  5855
  5856
  5857
  5858
  5859
  5860
  5861
  5862
  5863
  5864
  5865
  5866
  5867
  5868
  5869
  5870
  5871
  5872
  5873
  5874
  5875
  5876
  5877
  5878
  5879
  5880
  5881
  5882
  5883
  5884
  5885
  5886
  5887
  5888
  5889
  5890
  5891
  5892
  5893
  5894
  5895
  5896
  5897
  5898
  5899
  5900
  5901
  5902
  5903
  5904
  5905
  5906
  5907
  5908
  5909
  5910
  5911
  5912
  5913
  5914
  5915
  5916
  5917
  5918
  5919
  5920
  5921
  5922
  5923
  5924
  5925
  5926
  5927
  5928
  5929
  5930
  5931
  5932
  5933
  5934
  5935
  5936
  5937
  5938
  5939
  5940
  5941
  5942
  5943
  5944
  5945
  5946
  5947
  5948
  5949
  5950
  5951
  5952
  5953
  5954
  5955
  5956
  5957
  5958
  5959
  5960
  5961
  5962
  5963
  5964
  5965
  5966
  5967
  5968
  5969
  5970
  5971
  5972
  5973
  5974
  5975
  5976
  5977
  5978
  5979
  5980
  5981
  5982
  5983
  5984
  5985
  5986
  5987
  5988
  5989
  5990
  5991
  5992
  5993
  5994
  5995
  5996
  5997
  5998
  5999
  6000
  6001
  6002
  6003
  6004
  6005
  6006
  6007
  6008
  6009
  6010
  6011
  6012
  6013
  6014
  6015
  6016
  6017
  6018
  6019
  6020
  6021
  6022
  6023
  6024
  6025
  6026
  6027
  6028
  6029
  6030
  6031
  6032
  6033
  6034
  6035
  6036
  6037
  6038
  6039
  6040
  6041
  6042
  6043
  6044
  6045
  6046
  6047
  6048
  6049
  6050
  6051
  6052
  6053
  6054
  6055
  6056
  6057
  6058
  6059
  6060
  6061
  6062
  6063
  6064
  6065
  6066
  6067
  6068
  6069
  6070
  6071
  6072
  6073
  6074
  6075
  6076
  6077
  6078
  6079
  6080
  6081
  6082
  6083
  6084
  6085
  6086
  6087
  6088
  6089
  6090
  6091
  6092
  6093
  6094
  6095
  6096
  6097
  6098
  6099
  6100
  6101
  6102
  6103
  6104
  6105
  6106
  6107
  6108
  6109
  6110
  6111
  6112
  6113
  6114
  6115
  6116
  6117
  6118
  6119
  6120
  6121
  6122
  6123
  6124
  6125
  6126
  6127
  6128
  6129
  6130
  6131
  6132
  6133
  6134
  6135
  6136
  6137
  6138
  6139
  6140
  6141
  6142
  6143
  6144
  6145
  6146
  6147
  6148
  6149
  6150
  6151
  6152
  6153
  6154
  6155
  6156
  6157
  6158
  6159
  6160
  6161
  6162
  6163
  6164
  6165
  6166
  6167
  6168
  6169
  6170
  6171
  6172
  6173
  6174
  6175
  6176
  6177
  6178
  6179
  6180
  6181
  6182
  6183
  6184
  6185
  6186
  6187
  6188
  6189
  6190
  6191
  6192
  6193
  6194
  6195
  6196
  6197
  6198
  6199
  6200
  6201
  6202
  6203
  6204
  6205
  6206
  6207
  6208
  6209
  6210
  6211
  6212
  6213
  6214
  6215
  6216
  6217
  6218
  6219
  6220
  6221
  6222
  6223
  6224
  6225
  6226
  6227
  6228
  6229
  6230
  6231
  6232
  6233
  6234
  6235
  6236
  6237
  6238
  6239
  6240
  6241
  6242
  6243
  6244
  6245
  6246
  6247
  6248
  6249
  6250
  6251
  6252
  6253
  6254
  6255
  6256
  6257
  6258
  6259
  6260
  6261
  6262
  6263
  6264
  6265
  6266
  6267
  6268
  6269
  6270
  6271
  6272
  6273
  6274
  6275
  6276
  6277
  6278
  6279
  6280
  6281
  6282
  6283
  6284
  6285
  6286
  6287
  6288
  6289
  6290
  6291
  6292
  6293
  6294
  6295
  6296
  6297
  6298
  6299
  6300
  6301
  6302
  6303
  6304
  6305
  6306
  6307
  6308
  6309
  6310
  6311
  6312
  6313
  6314
  6315
  6316
  6317
  6318
  6319
  6320
  6321
  6322
  6323
  6324
  6325
  6326
  6327
  6328
  6329
  6330
  6331
  6332
  6333
  6334
  6335
  6336
  6337
  6338
  6339
  6340
  6341
  6342
  6343
  6344
  6345
  6346
  6347
  6348
  6349
  6350
  6351
  6352
  6353
  6354
  6355
  6356
  6357
  6358
  6359
  6360
  6361
  6362
  6363
  6364
  6365
  6366
  6367
  6368
  6369
  6370
  6371
  6372
  6373
  6374
  6375
  6376
  6377
  6378
  6379
  6380
  6381
  6382
  6383
  6384
  6385
  6386
  6387
  6388
  6389
  6390
  6391
  6392
  6393
  6394
  6395
  6396
  6397
  6398
  6399
  6400
  6401
  6402
  6403
  6404
  6405
  6406
  6407
  6408
  6409
  6410
  6411
  6412
  6413
  6414
  6415
  6416
  6417
  6418
  6419
  6420
  6421
  6422
  6423
  6424
  6425
  6426
  6427
  6428
  6429
  6430
  6431
  6432
  6433
  6434
  6435
  6436
  6437
  6438
  6439
  6440
  6441
  6442
  6443
  6444
  6445
  6446
  6447
  6448
  6449
  6450
  6451
  6452
  6453
  6454
  6455
  6456
  6457
  6458
  6459
  6460
  6461
  6462
  6463
  6464
  6465
  6466
  6467
  6468
  6469
  6470
  6471
  6472
  6473
  6474
  6475
  6476
  6477
  6478
  6479
  6480
  6481
  6482
  6483
  6484
  6485
  6486
  6487
  6488
  6489
  6490
  6491
  6492
  6493
  6494
  6495
  6496
  6497
  6498
  6499
  6500
  6501
  6502
  6503
  6504
  6505
  6506
  6507
  6508
  6509
  6510
  6511
  6512
  6513
  6514
  6515
  6516
  6517
  6518
  6519
  6520
  6521
  6522
  6523
  6524
  6525
  6526
  6527
  6528
  6529
  6530
  6531
  6532
  6533
  6534
  6535
  6536
  6537
  6538
  6539
  6540
  6541
  6542
  6543
  6544
  6545
  6546
  6547
  6548
  6549
  6550
  6551
  6552
  6553
  6554
  6555
  6556
  6557
  6558
  6559
  6560
  6561
  6562
  6563
  6564
  6565
  6566
  6567
  6568
  6569
  6570
  6571
  6572
  6573
  6574
  6575
  6576
  6577
  6578
  6579
  6580
  6581
  6582
  6583
  6584
  6585
  6586
  6587
  6588
  6589
  6590
  6591
  6592
  6593
  6594
  6595
  6596
  6597
  6598
  6599
  6600
  6601
  6602
  6603
  6604
  6605
  6606
  6607
  6608
  6609
  6610
  6611
  6612
  6613
  6614
  6615
  6616
  6617
  6618
  6619
  6620
  6621
  6622
  6623
  6624
  6625
  6626
  6627
  6628
  6629
  6630
  6631
  6632
  6633
  6634
  6635
  6636
  6637
  6638
  6639
  6640
  6641
  6642
  6643
  6644
  6645
  6646
  6647
  6648
  6649
  6650
  6651
  6652
  6653
  6654
  6655
  6656
  6657
  6658
  6659
  6660
  6661
  6662
  6663
  6664
  6665
  6666
  6667
  6668
  6669
  6670
  6671
  6672
  6673
  6674
  6675
  6676
  6677
  6678
  6679
  6680
  6681
  6682
  6683
  6684
  6685
  6686
  6687
  6688
  6689
  6690
  6691
  6692
  6693
  6694
  6695
  6696
  6697
  6698
  6699
  6700
  6701
  6702
  6703
  6704
  6705
  6706
  6707
  6708
  6709
  6710
  6711
  6712
  6713
  6714
  6715
  6716
  6717
  6718
  6719
  6720
  6721
  6722
  6723
  6724
  6725
  6726
  6727
  6728
  6729
  6730
  6731
  6732
  6733
  6734
  6735
  6736
  6737
  6738
  6739
  6740
  6741
  6742
  6743
  6744
  6745
  6746
  6747
  6748
  6749
  6750
  6751
  6752
  6753
  6754
  6755
  6756
  6757
  6758
  6759
  6760
  6761
  6762
  6763
  6764
  6765
  6766
  6767
  6768
  6769
  6770
  6771
  6772
  6773
  6774
  6775
  6776
  6777
  6778
  6779
  6780
  6781
  6782
  6783
  6784
  6785
  6786
  6787
  6788
  6789
  6790
  6791
  6792
  6793
  6794
  6795
  6796
  6797
  6798
  6799
  6800
  6801
  6802
  6803
  6804
  6805
  6806
  6807
  6808
  6809
  6810
  6811
  6812
  6813
  6814
  6815
  6816
  6817
  6818
  6819
  6820
  6821
  6822
  6823
  6824
  6825
  6826
  6827
  6828
  6829
  6830
  6831
  6832
  6833
  6834
  6835
  6836
  6837
  6838
  6839
  6840
  6841
  6842
  6843
  6844
  6845
  6846
  6847
  6848
  6849
  6850
  6851
  6852
  6853
  6854
  6855
  6856
  6857
  6858
  6859
  6860
  6861
  6862
  6863
  6864
  6865
  6866
  6867
  6868
  6869
  6870
  6871
  6872
  6873
  6874
  6875
  6876
  6877
  6878
  6879
  6880
  6881
  6882
  6883
  6884
  6885
  6886
  6887
  6888
  6889
  6890
  6891
  6892
  6893
  6894
  6895
  6896
  6897
  6898
  6899
  6900
  6901
  6902
  6903
  6904
  6905
  6906
  6907
  6908
  6909
  6910
  6911
  6912
  6913
  6914
  6915
  6916
  6917
  6918
  6919
  6920
  6921
  6922
  6923
  6924
  6925
  6926
  6927
  6928
  6929
  6930
  6931
  6932
  6933
  6934
  6935
  6936
  6937
  6938
  6939
  6940
  6941
  6942
  6943
  6944
  6945
  6946
  6947
  6948
  6949
  6950
  6951
  6952
  6953
  6954
  6955
  6956
  6957
  6958
  6959
  6960
  6961
  6962
  6963
  6964
  6965
  6966
  6967
  6968
  6969
  6970
  6971
  6972
  6973
  6974
  6975
  6976
  6977
  6978
  6979
  6980
  6981
  6982
  6983
  6984
  6985
  6986
  6987
  6988
  6989
  6990
  6991
  6992
  6993
  6994
  6995
  6996
  6997
  6998
  6999
  7000
  7001
  7002
  7003
  7004
  7005
  7006
  7007
  7008
  7009
  7010
  7011
  7012
  7013
  7014
  7015
  7016
  7017
  7018
  7019
  7020
  7021
  7022
  7023
  7024
  7025
  7026
  7027
  7028
  7029
  7030
  7031
  7032
  7033
  7034
  7035
  7036
  7037
  7038
  7039
  7040
  7041
  7042
  7043
  7044
  7045
  7046
  7047
  7048
  7049
  7050
  7051
  7052
  7053
  7054
  7055
  7056
  7057
  7058
  7059
  7060
  7061
  7062
  7063
  7064
  7065
  7066
  7067
  7068
  7069
  7070
  7071
  7072
  7073
  7074
  7075
  7076
  7077
  7078
  7079
  7080
  7081
  7082
  7083
  7084
  7085
  7086
  7087
  7088
  7089
  7090
  7091
  7092
  7093
  7094
  7095
  7096
  7097
  7098
  7099
  7100
  7101
  7102
  7103
  7104
  7105
  7106
  7107
  7108
  7109
  7110
  7111
  7112
  7113
  7114
  7115
  7116
  7117
  7118
  7119
  7120
  7121
  7122
  7123
  7124
  7125
  7126
  7127
  7128
  7129
  7130
  7131
  7132
  7133
  7134
  7135
  7136
  7137
  7138
  7139
  7140
  7141
  7142
  7143
  7144
  7145
  7146
  7147
  7148
  7149
  7150
  7151
  7152
  7153
  7154
  7155
  7156
  7157
  7158
  7159
  7160
  7161
  7162
  7163
  7164
  7165
  7166
  7167
  7168
  7169
  7170
  7171
  7172
  7173
  7174
  7175
  7176
  7177
  7178
  7179
  7180
  7181
  7182
  7183
  7184
  7185
  7186
  7187
  7188
  7189
  7190
  7191
  7192
  7193
  7194
  7195
  7196
  7197
  7198
  7199
  7200
  7201
  7202
  7203
  7204
  7205
  7206
  7207
  7208
  7209
  7210
  7211
  7212
  7213
  7214
  7215
  7216
  7217
  7218
  7219
  7220
  7221
  7222
  7223
  7224
  7225
  7226
  7227
  7228
  7229
  7230
  7231
  7232
  7233
  7234
  7235
  7236
  7237
  7238
  7239
  7240
  7241
  7242
  7243
  7244
  7245
  7246
  7247
  7248
  7249
  7250
  7251
  7252
  7253
  7254
  7255
  7256
  7257
  7258
  7259
  7260
  7261
  7262
  7263
  7264
  7265
  7266
  7267
  7268
  7269
  7270
  7271
  7272
  7273
  7274
  7275
  7276
  7277
  7278
  7279
  7280
  7281
  7282
  7283
  7284
  7285
  7286
  7287
  7288
  7289
  7290
  7291
  7292
  7293
  7294
  7295
  7296
  7297
  7298
  7299
  7300
  7301
  7302
  7303
  7304
  7305
  7306
  7307
  7308
  7309
  7310
  7311
  7312
  7313
  7314
  7315
  7316
  7317
  7318
  7319
  7320
  7321
  7322
  7323
  7324
  7325
  7326
  7327
  7328
  7329
  7330
  7331
  7332
  7333
  7334
  7335
  7336
  7337
  7338
  7339
  7340
  7341
  7342
  7343
  7344
  7345
  7346
  7347
  7348
  7349
  7350
  7351
  7352
  7353
  7354
  7355
  7356
  7357
  7358
  7359
  7360
  7361
  7362
  7363
  7364
  7365
  7366
  7367
  7368
  7369
  7370
  7371
  7372
  7373
  7374
  7375
  7376
  7377
  7378
  7379
  7380
  7381
  7382
  7383
  7384
  7385
  7386
  7387
  7388
  7389
  7390
  7391
  7392
  7393
  7394
  7395
  7396
  7397
  7398
  7399
  7400
  7401
  7402
  7403
  7404
  7405
  7406
  7407
  7408
  7409
  7410
  7411
  7412
  7413
  7414
  7415
  7416
  7417
  7418
  7419
  7420
  7421
  7422
  7423
  7424
  7425
  7426
  7427
  7428
  7429
  7430
  7431
  7432
  7433
  7434
  7435
  7436
  7437
  7438
  7439
  7440
  7441
  7442
  7443
  7444
  7445
  7446
  7447
  7448
  7449
  7450
  7451
  7452
  7453
  7454
  7455
  7456
  7457
  7458
  7459
  7460
  7461
  7462
  7463
  7464
  7465
  7466
  7467
  7468
  7469
  7470
  7471
  7472
  7473
  7474
  7475
  7476
  7477
  7478
  7479
  7480
  7481
  7482
  7483
  7484
  7485
  7486
  7487
  7488
  7489
  7490
  7491
  7492
  7493
  7494
  7495
  7496
  7497
  7498
  7499
  7500
  7501
  7502
  7503
  7504
  7505
  7506
  7507
  7508
  7509
  7510
  7511
  7512
  7513
  7514
  7515
  7516
  7517
  7518
  7519
  7520
  7521
  7522
  7523
  7524
  7525
  7526
  7527
  7528
  7529
  7530
  7531
  7532
  7533
  7534
  7535
  7536
  7537
  7538
  7539
  7540
  7541
  7542
  7543
  7544
  7545
  7546
  7547
  7548
  7549
  7550
  7551
  7552
  7553
  7554
  7555
  7556
  7557
  7558
  7559
  7560
  7561
  7562
  7563
  7564
  7565
  7566
  7567
  7568
  7569
  7570
  7571
  7572
  7573
  7574
  7575
  7576
  7577
  7578
  7579
  7580
  7581
  7582
  7583
  7584
  7585
  7586
  7587
  7588
  7589
  7590
  7591
  7592
  7593
  7594
  7595
  7596
  7597
  7598
  7599
  7600
  7601
  7602
  7603
  7604
  7605
  7606
  7607
  7608
  7609
  7610
  7611
  7612
  7613
  7614
  7615
  7616
  7617
  7618
  7619
  7620
  7621
  7622
  7623
  7624
  7625
  7626
  7627
  7628
  7629
  7630
  7631
  7632
  7633
  7634
  7635
  7636
  7637
  7638
  7639
  7640
  7641
  7642
  7643
  7644
  7645
  7646
  7647
  7648
  7649
  7650
  7651
  7652
  7653
  7654
  7655
  7656
  7657
  7658
  7659
  7660
  7661
  7662
  7663
  7664
  7665
  7666
  7667
  7668
  7669
  7670
  7671
  7672
  7673
  7674
  7675
  7676
  7677
  7678
  7679
  7680
  7681
  7682
  7683
  7684
  7685
  7686
  7687
  7688
  7689
  7690
  7691
  7692
  7693
  7694
  7695
  7696
  7697
  7698
  7699
  7700
  7701
  7702
  7703
  7704
  7705
  7706
  7707
  7708
  7709
  7710
  7711
  7712
  7713
  7714
  7715
  7716
  7717
  7718
  7719
  7720
  7721
  7722
  7723
  7724
  7725
  7726
  7727
  7728
  7729
  7730
  7731
  7732
  7733
  7734
  7735
  7736
  7737
  7738
  7739
  7740
  7741
  7742
  7743
  7744
  7745
  7746
  7747
  7748
  7749
  7750
  7751
  7752
  7753
  7754
  7755
  7756
  7757
  7758
  7759
  7760
  7761
  7762
  7763
  7764
  7765
  7766
  7767
  7768
  7769
  7770
  7771
  7772
  7773
  7774
  7775
  7776
  7777
  7778
  7779
  7780
  7781
  7782
  7783
  7784
  7785
  7786
  7787
  7788
  7789
  7790
  7791
  7792
  7793
  7794
  7795
  7796
  7797
  7798
  7799
  7800
  7801
  7802
  7803
  7804
  7805
  7806
  7807
  7808
  7809
  7810
  7811
  7812
  7813
  7814
  7815
  7816
  7817
  7818
  7819
  7820
  7821
  7822
  7823
  7824
  7825
  7826
  7827
  7828
  7829
  7830
  7831
  7832
  7833
  7834
  7835
  7836
  7837
  7838
  7839
  7840
  7841
  7842
  7843
  7844
  7845
  7846
  7847
  7848
  7849
  7850
  7851
  7852
  7853
  7854
  7855
  7856
  7857
  7858
  7859
  7860
  7861
  7862
  7863
  7864
  7865
  7866
  7867
  7868
  7869
  7870
  7871
  7872
  7873
  7874
  7875
  7876
  7877
  7878
  7879
  7880
  7881
  7882
  7883
  7884
  7885
  7886
  7887
  7888
  7889
  7890
  7891
  7892
  7893
  7894
  7895
  7896
  7897
  7898
  7899
  7900
  7901
  7902
  7903
  7904
  7905
  7906
  7907
  7908
  7909
  7910
  7911
  7912
  7913
  7914
  7915
  7916
  7917
  7918
  7919
  7920
  7921
  7922
  7923
  7924
  7925
  7926
  7927
  7928
  7929
  7930
  7931
  7932
  7933
  7934
  7935
  7936
  7937
  7938
  7939
  7940
  7941
  7942
  7943
  7944
  7945
  7946
  7947
  7948
  7949
  7950
  7951
  7952
  7953
  7954
  7955
  7956
  7957
  7958
  7959
  7960
  7961
  7962
  7963
  7964
  7965
  7966
  7967
  7968
  7969
  7970
  7971
  7972
  7973
  7974
  7975
  7976
  7977
  7978
  7979
  7980
  7981
  7982
  7983
  7984
  7985
  7986
  7987
  7988
  7989
  7990
  7991
  7992
  7993
  7994
  7995
  7996
  7997
  7998
  7999
  8000
  8001
  8002
  8003
  8004
  8005
  8006
  8007
  8008
  8009
  8010
  8011
  8012
  8013
  8014
  8015
  8016
  8017
  8018
  8019
  8020
  8021
  8022
  8023
  8024
  8025
  8026
  8027
  8028
  8029
  8030
  8031
  8032
  8033
  8034
  8035
  8036
  8037
  8038
  8039
  8040
  8041
  8042
  8043
  8044
  8045
  8046
  8047
  8048
  8049
  8050
  8051
  8052
  8053
  8054
  8055
  8056
  8057
  8058
  8059
  8060
  8061
  8062
  8063
  8064
  8065
  8066
  8067
  8068
  8069
  8070
  8071
  8072
  8073
  8074
  8075
  8076
  8077
  8078
  8079
  8080
  8081
  8082
  8083
  8084
  8085
  8086
  8087
  8088
  8089
  8090
  8091
  8092
  8093
  8094
  8095
  8096
  8097
  8098
  8099
  8100
  8101
  8102
  8103
  8104
  8105
  8106
  8107
  8108
  8109
  8110
  8111
  8112
  8113
  8114
  8115
  8116
  8117
  8118
  8119
  8120
  8121
  8122
  8123
  8124
  8125
  8126
  8127
  8128
  8129
  8130
  8131
  8132
  8133
  8134
  8135
  8136
  8137
  8138
  8139
  8140
  8141
  8142
  8143
  8144
  8145
  8146
  8147
  8148
  8149
  8150
  8151
  8152
  8153
  8154
  8155
  8156
  8157
  8158
  8159
  8160
  8161
  8162
  8163
  8164
  8165
  8166
  8167
  8168
  8169
  8170
  8171
  8172
  8173
  8174
  8175
  8176
  8177
  8178
  8179
  8180
  8181
  8182
  8183
  8184
  8185
  8186
  8187
  8188
  8189
  8190
  8191
  8192
  8193
  8194
  8195
  8196
  8197
  8198
  8199
  8200
  8201
  8202
  8203
  8204
  8205
  8206
  8207
  8208
  8209
  8210
  8211
  8212
  8213
  8214
  8215
  8216
  8217
  8218
  8219
  8220
  8221
  8222
  8223
  8224
  8225
  8226
  8227
  8228
  8229
  8230
  8231
  8232
  8233
  8234
  8235
  8236
  8237
  8238
  8239
  8240
  8241
  8242
  8243
  8244
  8245
  8246
  8247
  8248
  8249
  8250
  8251
  8252
  8253
  8254
  8255
  8256
  8257
  8258
  8259
  8260
  8261
  8262
  8263
  8264
  8265
  8266
  8267
  8268
  8269
  8270
  8271
  8272
  8273
  8274
  8275
  8276
  8277
  8278
  8279
  8280
  8281
  8282
  8283
  8284
  8285
  8286
  8287
  8288
  8289
  8290
  8291
  8292
  8293
  8294
  8295
  8296
  8297
  8298
  8299
  8300
  8301
  8302
  8303
  8304
  8305
  8306
  8307
  8308
  8309
  8310
  8311
  8312
  8313
  8314
  8315
  8316
  8317
  8318
  8319
  8320
  8321
  8322
  8323
  8324
  8325
  8326
  8327
  8328
  8329
  8330
  8331
  8332
  8333
  8334
  8335
  8336
  8337
  8338
  8339
  8340
  8341
  8342
  8343
  8344
  8345
  8346
  8347
  8348
  8349
  8350
  8351
  8352
  8353
  8354
  8355
  8356
  8357
  8358
  8359
  8360
  8361
  8362
  8363
  8364
  8365
  8366
  8367
  8368
  8369
  8370
  8371
  8372
  8373
  8374
  8375
  8376
  8377
  8378
  8379
  8380
  8381
  8382
  8383
  8384
  8385
  8386
  8387
  8388
  8389
  8390
  8391
  8392
  8393
  8394
  8395
  8396
  8397
  8398
  8399
  8400
  8401
  8402
  8403
  8404
  8405
  8406
  8407
  8408
  8409
  8410
  8411
  8412
  8413
  8414
  8415
  8416
  8417
  8418
  8419
  8420
  8421
  8422
  8423
  8424
  8425
  8426
  8427
  8428
  8429
  8430
  8431
  8432
  8433
  8434
  8435
  8436
  8437
  8438
  8439
  8440
  8441
  8442
  8443
  8444
  8445
  8446
  8447
  8448
  8449
  8450
  8451
  8452
  8453
  8454
  8455
  8456
  8457
  8458
  8459
  8460
  8461
  8462
  8463
  8464
  8465
  8466
  8467
  8468
  8469
  8470
  8471
  8472
  8473
  8474
  8475
  8476
  8477
  8478
  8479
  8480
  8481
  8482
  8483
  8484
  8485
  8486
  8487
  8488
  8489
  8490
  8491
  8492
  8493
  8494
  8495
  8496
  8497
  8498
  8499
  8500
  8501
  8502
  8503
  8504
  8505
  8506
  8507
  8508
  8509
  8510
  8511
  8512
  8513
  8514
  8515
  8516
  8517
  8518
  8519
  8520
  8521
  8522
  8523
  8524
  8525
  8526
  8527
  8528
  8529
  8530
  8531
  8532
  8533
  8534
  8535
  8536
  8537
  8538
  8539
  8540
  8541
  8542
  8543
  8544
  8545
  8546
  8547
  8548
  8549
  8550
  8551
  8552
  8553
  8554
  8555
  8556
  8557
  8558
  8559
  8560
  8561
  8562
  8563
  8564
  8565
  8566
  8567
  8568
  8569
  8570
  8571
  8572
  8573
  8574
  8575
  8576
  8577
  8578
  8579
  8580
  8581
  8582
  8583
  8584
  8585
  8586
  8587
  8588
  8589
  8590
  8591
  8592
  8593
  8594
  8595
  8596
  8597
  8598
  8599
  8600
  8601
  8602
  8603
  8604
  8605
  8606
  8607
  8608
  8609
  8610
  8611
  8612
  8613
  8614
  8615
  8616
  8617
  8618
  8619
  8620
  8621
  8622
  8623
  8624
  8625
  8626
  8627
  8628
  8629
  8630
  8631
  8632
  8633
  8634
  8635
  8636
  8637
  8638
  8639
  8640
  8641
  8642
  8643
  8644
  8645
  8646
  8647
  8648
  8649
  8650
  8651
  8652
  8653
  8654
  8655
  8656
  8657
  8658
  8659
  8660
  8661
  8662
  8663
  8664
  8665
  8666
  8667
  8668
  8669
  8670
  8671
  8672
  8673
  8674
  8675
  8676
  8677
  8678
  8679
  8680
  8681
  8682
  8683
  8684
  8685
  8686
  8687
  8688
  8689
  8690
  8691
  8692
  8693
  8694
  8695
  8696
  8697
  8698
  8699
  8700
  8701
  8702
  8703
  8704
  8705
  8706
  8707
  8708
  8709
  8710
  8711
  8712
  8713
  8714
  8715
  8716
  8717
  8718
  8719
  8720
  8721
  8722
  8723
  8724
  8725
  8726
  8727
  8728
  8729
  8730
  8731
  8732
  8733
  8734
  8735
  8736
  8737
  8738
  8739
  8740
  8741
  8742
  8743
  8744
  8745
  8746
  8747
  8748
  8749
  8750
  8751
  8752
  8753
  8754
  8755
  8756
  8757
  8758
  8759
  8760
  8761
  8762
  8763
  8764
  8765
  8766
  8767
  8768
  8769
  8770
  8771
  8772
  8773
  8774
  8775
  8776
  8777
  8778
  8779
  8780
  8781
  8782
  8783
  8784
  8785
  8786
  8787
  8788
  8789
  8790
  8791
  8792
  8793
  8794
  8795
  8796
  8797
  8798
  8799
  8800
  8801
  8802
  8803
  8804
  8805
  8806
  8807
  8808
  8809
  8810
  8811
  8812
  8813
  8814
  8815
  8816
  8817
  8818
  8819
  8820
  8821
  8822
  8823
  8824
  8825
  8826
  8827
  8828
  8829
  8830
  8831
  8832
  8833
  8834
  8835
  8836
  8837
  8838
  8839
  8840
  8841
  8842
  8843
  8844
  8845
  8846
  8847
  8848
  8849
  8850
  8851
  8852
  8853
  8854
  8855
  8856
  8857
  8858
  8859
  8860
  8861
  8862
  8863
  8864
  8865
  8866
  8867
  8868
  8869
  8870
  8871
  8872
  8873
  8874
  8875
  8876
  8877
  8878
  8879
  8880
  8881
  8882
  8883
  8884
  8885
  8886
  8887
  8888
  8889
  8890
  8891
  8892
  8893
  8894
  8895
  8896
  8897
  8898
  8899
  8900
  8901
  8902
  8903
  8904
  8905
  8906
  8907
  8908
  8909
  8910
  8911
  8912
  8913
  8914
  8915
  8916
  8917
  8918
  8919
  8920
  8921
  8922
  8923
  8924
  8925
  8926
  8927
  8928
  8929
  8930
  8931
  8932
  8933
  8934
  8935
  8936
  8937
  8938
  8939
  8940
  8941
  8942
  8943
  8944
  8945
  8946
  8947
  8948
  8949
  8950
  8951
  8952
  8953
  8954
  8955
  8956
  8957
  8958
  8959
  8960
  8961
  8962
  8963
  8964
  8965
  8966
  8967
  8968
  8969
  8970
  8971
  8972
  8973
  8974
  8975
  8976
  8977
  8978
  8979
  8980
  8981
  8982
  8983
  8984
  8985
  8986
  8987
  8988
  8989
  8990
  8991
  8992
  8993
  8994
  8995
  8996
  8997
  8998
  8999
  9000
  9001
  9002
  9003
  9004
  9005
  9006
  9007
  9008
  9009
  9010
  9011
  9012
  9013
  9014
  9015
  9016
  9017
  9018
  9019
  9020
  9021
  9022
  9023
  9024
  9025
  9026
  9027
  9028
  9029
  9030
  9031
  9032
  9033
  9034
  9035
  9036
  9037
  9038
  9039
  9040
  9041
  9042
  9043
  9044
  9045
  9046
  9047
  9048
  9049
  9050
  9051
  9052
  9053
  9054
  9055
  9056
  9057
  9058
  9059
  9060
  9061
  9062
  9063
  9064
  9065
  9066
  9067
  9068
  9069
  9070
  9071
  9072
  9073
  9074
  9075
  9076
  9077
  9078
  9079
  9080
  9081
  9082
  9083
  9084
  9085
  9086
  9087
  9088
  9089
  9090
  9091
  9092
  9093
  9094
  9095
  9096
  9097
  9098
  9099
  9100
  9101
  9102
  9103
  9104
  9105
  9106
  9107
  9108
  9109
  9110
  9111
  9112
  9113
  9114
  9115
  9116
  9117
  9118
  9119
  9120
  9121
  9122
  9123
  9124
  9125
  9126
  9127
  9128
  9129
  9130
  9131
  9132
  9133
  9134
  9135
  9136
  9137
  9138
  9139
  9140
  9141
  9142
  9143
  9144
  9145
  9146
  9147
  9148
  9149
  9150
  9151
  9152
  9153
  9154
  9155
  9156
  9157
  9158
  9159
  9160
  9161
  9162
  9163
  9164
  9165
  9166
  9167
  9168
  9169
  9170
  9171
  9172
  9173
  9174
  9175
  9176
  9177
  9178
  9179
  9180
  9181
  9182
  9183
  9184
  9185
  9186
  9187
  9188
  9189
  9190
  9191
  9192
  9193
  9194
  9195
  9196
  9197
  9198
  9199
  9200
  9201
  9202
  9203
  9204
  9205
  9206
  9207
  9208
  9209
  9210
  9211
  9212
  9213
  9214
  9215
  9216
  9217
  9218
  9219
  9220
  9221
  9222
  9223
  9224
  9225
  9226
  9227
  9228
  9229
  9230
  9231
  9232
  9233
  9234
  9235
  9236
  9237
  9238
  9239
  9240
  9241
  9242
  9243
  9244
  9245
  9246
  9247
  9248
  9249
  9250
  9251
  9252
  9253
  9254
  9255
  9256
  9257
  9258
  9259
  9260
  9261
  9262
  9263
  9264
  9265
  9266
  9267
  9268
  9269
  9270
  9271
  9272
  9273
  9274
  9275
  9276
  9277
  9278
  9279
  9280
  9281
  9282
  9283
  9284
  9285
  9286
  9287
  9288
  9289
  9290
  9291
  9292
  9293
  9294
  9295
  9296
  9297
  9298
  9299
  9300
  9301
  9302
  9303
  9304
  9305
  9306
  9307
  9308
  9309
  9310
  9311
  9312
  9313
  9314
  9315
  9316
  9317
  9318
  9319
  9320
  9321
  9322
  9323
  9324
  9325
  9326
  9327
  9328
  9329
  9330
  9331
  9332
  9333
  9334
  9335
  9336
  9337
  9338
  9339
  9340
  9341
  9342
  9343
  9344
  9345
  9346
  9347
  9348
  9349
  9350
  9351
  9352
  9353
  9354
  9355
  9356
  9357
  9358
  9359
  9360
  9361
  9362
  9363
  9364
  9365
  9366
  9367
  9368
  9369
  9370
  9371
  9372
  9373
  9374
  9375
  9376
  9377
  9378
  9379
  9380
  9381
  9382
  9383
  9384
  9385
  9386
  9387
  9388
  9389
  9390
  9391
  9392
  9393
  9394
  9395
  9396
  9397
  9398
  9399
  9400
  9401
  9402
  9403
  9404
  9405
  9406
  9407
  9408
  9409
  9410
  9411
  9412
  9413
  9414
  9415
  9416
  9417
  9418
  9419
  9420
  9421
  9422
  9423
  9424
  9425
  9426
  9427
  9428
  9429
  9430
  9431
  9432
  9433
  9434
  9435
  9436
  9437
  9438
  9439
  9440
  9441
  9442
  9443
  9444
  9445
  9446
  9447
  9448
  9449
  9450
  9451
  9452
  9453
  9454
  9455
  9456
  9457
  9458
  9459
  9460
  9461
  9462
  9463
  9464
  9465
  9466
  9467
  9468
  9469
  9470
  9471
  9472
  9473
  9474
  9475
  9476
  9477
  9478
  9479
  9480
  9481
  9482
  9483
  9484
  9485
  9486
  9487
  9488
  9489
  9490
  9491
  9492
  9493
  9494
  9495
  9496
  9497
  9498
  9499
  9500
  9501
  9502
  9503
  9504
  9505
  9506
  9507
  9508
  9509
  9510
  9511
  9512
  9513
  9514
  9515
  9516
  9517
  9518
  9519
  9520
  9521
  9522
  9523
  9524
  9525
  9526
  9527
  9528
  9529
  9530
  9531
  9532
  9533
  9534
  9535
  9536
  9537
  9538
  9539
  9540
  9541
  9542
  9543
  9544
  9545
  9546
  9547
  9548
  9549
  9550
  9551
  9552
  9553
  9554
  9555
  9556
  9557
  9558
  9559
  9560
  9561
  9562
  9563
  9564
  9565
  9566
  9567
  9568
  9569
  9570
  9571
  9572
  9573
  9574
  9575
  9576
  9577
  9578
  9579
  9580
  9581
  9582
  9583
  9584
  9585
  9586
  9587
  9588
  9589
  9590
  9591
  9592
  9593
  9594
  9595
  9596
  9597
  9598
  9599
  9600
  9601
  9602
  9603
  9604
  9605
  9606
  9607
  9608
  9609
  9610
  9611
  9612
  9613
  9614
  9615
  9616
  9617
  9618
  9619
  9620
  9621
  9622
  9623
  9624
  9625
  9626
  9627
  9628
  9629
  9630
  9631
  9632
  9633
  9634
  9635
  9636
  9637
  9638
  9639
  9640
  9641
  9642
  9643
  9644
  9645
  9646
  9647
  9648
  9649
  9650
  9651
  9652
  9653
  9654
  9655
  9656
  9657
  9658
  9659
  9660
  9661
  9662
  9663
  9664
  9665
  9666
  9667
  9668
  9669
  9670
  9671
  9672
  9673
  9674
  9675
  9676
  9677
  9678
  9679
  9680
  9681
  9682
  9683
  9684
  9685
  9686
  9687
  9688
  9689
  9690
  9691
  9692
  9693
  9694
  9695
  9696
  9697
  9698
  9699
  9700
  9701
  9702
  9703
  9704
  9705
  9706
  9707
  9708
  9709
  9710
  9711
  9712
  9713
  9714
  9715
  9716
  9717
  9718
  9719
  9720
  9721
  9722
  9723
  9724
  9725
  9726
  9727
  9728
  9729
  9730
  9731
  9732
  9733
  9734
  9735
  9736
  9737
  9738
  9739
  9740
  9741
  9742
  9743
  9744
  9745
  9746
  9747
  9748
  9749
  9750
  9751
  9752
  9753
  9754
  9755
  9756
  9757
  9758
  9759
  9760
  9761
  9762
  9763
  9764
  9765
  9766
  9767
  9768
  9769
  9770
  9771
  9772
  9773
  9774
  9775
  9776
  9777
  9778
  9779
  9780
  9781
  9782
  9783
  9784
  9785
  9786
  9787
  9788
  9789
  9790
  9791
  9792
  9793
  9794
  9795
  9796
  9797
  9798
  9799
  9800
  9801
  9802
  9803
  9804
  9805
  9806
  9807
  9808
  9809
  9810
  9811
  9812
  9813
  9814
  9815
  9816
  9817
  9818
  9819
  9820
  9821
  9822
  9823
  9824
  9825
  9826
  9827
  9828
  9829
  9830
  9831
  9832
  9833
  9834
  9835
  9836
  9837
  9838
  9839
  9840
  9841
  9842
  9843
  9844
  9845
  9846
  9847
  9848
  9849
  9850
  9851
  9852
  9853
  9854
  9855
  9856
  9857
  9858
  9859
  9860
  9861
  9862
  9863
  9864
  9865
  9866
  9867
  9868
  9869
  9870
  9871
  9872
  9873
  9874
  9875
  9876
  9877
  9878
  9879
  9880
  9881
  9882
  9883
  9884
  9885
  9886
  9887
  9888
  9889
  9890
  9891
  9892
  9893
  9894
  9895
  9896
  9897
  9898
  9899
  9900
  9901
  9902
  9903
  9904
  9905
  9906
  9907
  9908
  9909
  9910
  9911
  9912
  9913
  9914
  9915
  9916
  9917
  9918
  9919
  9920
  9921
  9922
  9923
  9924
  9925
  9926
  9927
  9928
  9929
  9930
  9931
  9932
  9933
  9934
  9935
  9936
  9937
  9938
  9939
  9940
  9941
  9942
  9943
  9944
  9945
  9946
  9947
  9948
  9949
  9950
  9951
  9952
  9953
  9954
  9955
  9956
  9957
  9958
  9959
  9960
  9961
  9962
  9963
  9964
  9965
  9966
  9967
  9968
  9969
  9970
  9971
  9972
  9973
  9974
  9975
  9976
  9977
  9978
  9979
  9980
  9981
  9982
  9983
  9984
  9985
  9986
  9987
  9988
  9989
  9990
  9991
  9992
  9993
  9994
  9995
  9996
  9997
  9998
  9999
 10000
 10001
 10002
 10003
 10004
 10005
 10006
 10007
 10008
 10009
 10010
 10011
 10012
 10013
 10014
 10015
 10016
 10017
 10018
 10019
 10020
 10021
 10022
 10023
 10024
 10025
 10026
 10027
 10028
 10029
 10030
 10031
 10032
 10033
 10034
 10035
 10036
 10037
 10038
 10039
 10040
 10041
 10042
 10043
 10044
 10045
 10046
 10047
 10048
 10049
 10050
 10051
 10052
 10053
 10054
 10055
 10056
 10057
 10058
 10059
 10060
 10061
 10062
 10063
 10064
 10065
 10066
 10067
 10068
 10069
 10070
 10071
 10072
 10073
 10074
 10075
 10076
 10077
 10078
 10079
 10080
 10081
 10082
 10083
 10084
 10085
 10086
 10087
 10088
 10089
 10090
 10091
 10092
 10093
 10094
 10095
 10096
 10097
 10098
 10099
 10100
 10101
 10102
 10103
 10104
 10105
 10106
 10107
 10108
 10109
 10110
 10111
 10112
 10113
 10114
 10115
 10116
 10117
 10118
 10119
 10120
 10121
 10122
 10123
 10124
 10125
 10126
 10127
 10128
 10129
 10130
 10131
 10132
 10133
 10134
 10135
 10136
 10137
 10138
 10139
 10140
 10141
 10142
 10143
 10144
 10145
 10146
 10147
 10148
 10149
 10150
 10151
 10152
 10153
 10154
 10155
 10156
 10157
 10158
 10159
 10160
 10161
 10162
 10163
 10164
 10165
 10166
 10167
 10168
 10169
 10170
 10171
 10172
 10173
 10174
 10175
 10176
 10177
 10178
 10179
 10180
 10181
 10182
 10183
 10184
 10185
 10186
 10187
 10188
 10189
 10190
 10191
 10192
 10193
 10194
 10195
 10196
 10197
 10198
 10199
 10200
 10201
 10202
 10203
 10204
 10205
 10206
 10207
 10208
 10209
 10210
 10211
 10212
 10213
 10214
 10215
 10216
 10217
 10218
 10219
 10220
 10221
 10222
 10223
 10224
 10225
 10226
 10227
 10228
 10229
 10230
 10231
 10232
 10233
 10234
 10235
 10236
 10237
 10238
 10239
 10240
 10241
 10242
 10243
 10244
 10245
 10246
 10247
 10248
 10249
 10250
 10251
 10252
 10253
 10254
 10255
 10256
 10257
 10258
 10259
 10260
 10261
 10262
 10263
 10264
 10265
 10266
 10267
 10268
 10269
 10270
 10271
 10272
 10273
 10274
 10275
 10276
 10277
 10278
 10279
 10280
 10281
 10282
 10283
 10284
 10285
 10286
 10287
 10288
 10289
 10290
 10291
 10292
 10293
 10294
 10295
 10296
 10297
 10298
 10299
 10300
 10301
 10302
 10303
 10304
 10305
 10306
 10307
 10308
 10309
 10310
 10311
 10312
 10313
 10314
 10315
 10316
 10317
 10318
 10319
 10320
 10321
 10322
 10323
 10324
 10325
 10326
 10327
 10328
 10329
 10330
 10331
 10332
 10333
 10334
 10335
 10336
 10337
 10338
 10339
 10340
 10341
 10342
 10343
 10344
 10345
 10346
 10347
 10348
 10349
 10350
 10351
 10352
 10353
 10354
 10355
 10356
 10357
 10358
 10359
 10360
 10361
 10362
 10363
 10364
 10365
 10366
 10367
 10368
 10369
 10370
 10371
 10372
 10373
 10374
 10375
 10376
 10377
 10378
 10379
 10380
 10381
 10382
 10383
 10384
 10385
 10386
 10387
 10388
 10389
 10390
 10391
 10392
 10393
 10394
 10395
 10396
 10397
 10398
 10399
 10400
 10401
 10402
 10403
 10404
 10405
 10406
 10407
 10408
 10409
 10410
 10411
 10412
 10413
 10414
 10415
 10416
 10417
 10418
 10419
 10420
 10421
 10422
 10423
 10424
 10425
 10426
 10427
 10428
 10429
 10430
 10431
 10432
 10433
 10434
 10435
 10436
 10437
 10438
 10439
 10440
 10441
 10442
 10443
 10444
 10445
 10446
 10447
 10448
 10449
 10450
 10451
 10452
 10453
 10454
 10455
 10456
 10457
 10458
 10459
 10460
 10461
 10462
 10463
 10464
 10465
 10466
 10467
 10468
 10469
 10470
 10471
 10472
 10473
 10474
 10475
 10476
 10477
 10478
 10479
 10480
 10481
 10482
 10483
 10484
 10485
 10486
 10487
 10488
 10489
 10490
 10491
 10492
 10493
 10494
 10495
 10496
 10497
 10498
 10499
 10500
 10501
 10502
 10503
 10504
 10505
 10506
 10507
 10508
 10509
 10510
 10511
 10512
 10513
 10514
 10515
 10516
 10517
 10518
 10519
 10520
 10521
 10522
 10523
 10524
 10525
 10526
 10527
 10528
 10529
 10530
 10531
 10532
 10533
 10534
 10535
 10536
 10537
 10538
 10539
 10540
 10541
 10542
 10543
 10544
 10545
 10546
 10547
 10548
 10549
 10550
 10551
 10552
 10553
 10554
 10555
 10556
 10557
 10558
 10559
 10560
 10561
 10562
 10563
 10564
 10565
 10566
 10567
 10568
 10569
 10570
 10571
 10572
 10573
 10574
 10575
 10576
 10577
 10578
 10579
 10580
 10581
 10582
 10583
 10584
 10585
 10586
 10587
 10588
 10589
 10590
 10591
 10592
 10593
 10594
 10595
 10596
 10597
 10598
 10599
 10600
 10601
 10602
 10603
 10604
 10605
 10606
 10607
 10608
 10609
 10610
 10611
 10612
 10613
 10614
 10615
 10616
 10617
 10618
 10619
 10620
 10621
 10622
 10623
 10624
 10625
 10626
 10627
 10628
 10629
 10630
 10631
 10632
 10633
 10634
 10635
 10636
 10637
 10638
 10639
 10640
 10641
 10642
 10643
 10644
 10645
 10646
 10647
 10648
 10649
 10650
 10651
 10652
 10653
 10654
 10655
 10656
 10657
 10658
 10659
 10660
 10661
 10662
 10663
 10664
 10665
 10666
 10667
 10668
 10669
 10670
 10671
 10672
 10673
 10674
 10675
 10676
 10677
 10678
 10679
 10680
 10681
 10682
 10683
 10684
 10685
 10686
 10687
 10688
 10689
 10690
 10691
 10692
 10693
 10694
 10695
 10696
 10697
 10698
 10699
 10700
 10701
 10702
 10703
 10704
 10705
 10706
 10707
 10708
 10709
 10710
 10711
 10712
 10713
 10714
 10715
 10716
 10717
 10718
 10719
 10720
 10721
 10722
 10723
 10724
 10725
 10726
 10727
 10728
 10729
 10730
 10731
 10732
 10733
 10734
 10735
 10736
 10737
 10738
 10739
 10740
 10741
 10742
 10743
 10744
 10745
 10746
 10747
 10748
 10749
 10750
 10751
 10752
 10753
 10754
 10755
 10756
 10757
 10758
 10759
 10760
 10761
 10762
 10763
 10764
 10765
 10766
 10767
 10768
 10769
 10770
 10771
 10772
 10773
 10774
 10775
 10776
 10777
 10778
 10779
 10780
 10781
 10782
 10783
 10784
 10785
 10786
 10787
 10788
 10789
 10790
 10791
 10792
 10793
 10794
 10795
 10796
 10797
 10798
 10799
 10800
 10801
 10802
 10803
 10804
 10805
 10806
 10807
 10808
 10809
 10810
 10811
 10812
 10813
 10814
 10815
 10816
 10817
 10818
 10819
 10820
 10821
 10822
 10823
 10824
 10825
 10826
 10827
 10828
 10829
 10830
 10831
 10832
 10833
 10834
 10835
 10836
 10837
 10838
 10839
 10840
 10841
 10842
 10843
 10844
 10845
 10846
 10847
 10848
 10849
 10850
 10851
 10852
 10853
 10854
 10855
 10856
 10857
 10858
 10859
 10860
 10861
 10862
 10863
 10864
 10865
 10866
 10867
 10868
 10869
 10870
 10871
 10872
 10873
 10874
 10875
 10876
 10877
 10878
 10879
 10880
 10881
 10882
 10883
 10884
 10885
 10886
 10887
 10888
 10889
 10890
 10891
 10892
 10893
 10894
 10895
 10896
 10897
 10898
 10899
 10900
 10901
 10902
 10903
 10904
 10905
 10906
 10907
 10908
 10909
 10910
 10911
 10912
 10913
 10914
 10915
 10916
 10917
 10918
 10919
 10920
 10921
 10922
 10923
 10924
 10925
 10926
 10927
 10928
 10929
 10930
 10931
 10932
 10933
 10934
 10935
 10936
 10937
 10938
 10939
 10940
 10941
 10942
 10943
 10944
 10945
 10946
 10947
 10948
 10949
 10950
 10951
 10952
 10953
 10954
 10955
 10956
 10957
 10958
 10959
 10960
 10961
 10962
 10963
 10964
 10965
 10966
 10967
 10968
 10969
 10970
 10971
 10972
 10973
 10974
 10975
 10976
 10977
 10978
 10979
 10980
 10981
 10982
 10983
 10984
 10985
 10986
 10987
 10988
 10989
 10990
 10991
 10992
 10993
 10994
 10995
 10996
 10997
 10998
 10999
 11000
 11001
 11002
 11003
 11004
 11005
 11006
 11007
 11008
 11009
 11010
 11011
 11012
 11013
 11014
 11015
 11016
 11017
 11018
 11019
 11020
 11021
 11022
 11023
 11024
 11025
 11026
 11027
 11028
 11029
 11030
 11031
 11032
 11033
 11034
 11035
 11036
 11037
 11038
 11039
 11040
 11041
 11042
 11043
 11044
 11045
 11046
 11047
 11048
 11049
 11050
 11051
 11052
 11053
 11054
 11055
 11056
 11057
 11058
 11059
 11060
 11061
 11062
 11063
 11064
 11065
 11066
 11067
 11068
 11069
 11070
 11071
 11072
 11073
 11074
 11075
 11076
 11077
 11078
 11079
 11080
 11081
 11082
 11083
 11084
 11085
 11086
 11087
 11088
 11089
 11090
 11091
 11092
 11093
 11094
 11095
 11096
 11097
 11098
 11099
 11100
 11101
 11102
 11103
 11104
 11105
 11106
 11107
 11108
 11109
 11110
 11111
 11112
 11113
 11114
 11115
 11116
 11117
 11118
 11119
 11120
 11121
 11122
 11123
 11124
 11125
 11126
 11127
 11128
 11129
 11130
 11131
 11132
 11133
 11134
 11135
 11136
 11137
 11138
 11139
 11140
 11141
 11142
 11143
 11144
 11145
 11146
 11147
 11148
 11149
 11150
 11151
 11152
 11153
 11154
 11155
 11156
 11157
 11158
 11159
 11160
 11161
 11162
 11163
 11164
 11165
 11166
 11167
 11168
 11169
 11170
 11171
 11172
 11173
 11174
 11175
 11176
 11177
 11178
 11179
 11180
 11181
 11182
 11183
 11184
 11185
 11186
 11187
 11188
 11189
 11190
 11191
 11192
 11193
 11194
 11195
 11196
 11197
 11198
 11199
 11200
 11201
 11202
 11203
 11204
 11205
 11206
 11207
 11208
 11209
 11210
 11211
 11212
 11213
 11214
 11215
 11216
 11217
 11218
 11219
 11220
 11221
 11222
 11223
 11224
 11225
 11226
 11227
 11228
 11229
 11230
 11231
 11232
 11233
 11234
 11235
 11236
 11237
 11238
 11239
 11240
 11241
 11242
 11243
 11244
 11245
 11246
 11247
 11248
 11249
 11250
 11251
 11252
 11253
 11254
 11255
 11256
 11257
 11258
 11259
 11260
 11261
 11262
 11263
 11264
 11265
 11266
 11267
 11268
 11269
 11270
 11271
 11272
 11273
 11274
 11275
 11276
 11277
 11278
 11279
 11280
 11281
 11282
 11283
 11284
 11285
 11286
 11287
 11288
 11289
 11290
 11291
 11292
 11293
 11294
 11295
 11296
 11297
 11298
 11299
 11300
 11301
 11302
 11303
 11304
 11305
 11306
 11307
 11308
 11309
 11310
 11311
 11312
 11313
 11314
 11315
 11316
 11317
 11318
 11319
 11320
 11321
 11322
 11323
 11324
 11325
 11326
 11327
 11328
 11329
 11330
 11331
 11332
 11333
 11334
 11335
 11336
 11337
 11338
 11339
 11340
 11341
 11342
 11343
 11344
 11345
 11346
 11347
 11348
 11349
 11350
 11351
 11352
 11353
 11354
 11355
 11356
 11357
 11358
 11359
 11360
 11361
 11362
 11363
 11364
 11365
 11366
 11367
 11368
 11369
 11370
 11371
 11372
 11373
 11374
 11375
 11376
 11377
 11378
 11379
 11380
 11381
 11382
 11383
 11384
 11385
 11386
 11387
 11388
 11389
 11390
 11391
 11392
 11393
 11394
 11395
 11396
 11397
 11398
 11399
 11400
 11401
 11402
 11403
 11404
 11405
 11406
 11407
 11408
 11409
 11410
 11411
 11412
 11413
 11414
 11415
 11416
 11417
 11418
 11419
 11420
 11421
 11422
 11423
 11424
 11425
 11426
 11427
 11428
 11429
 11430
 11431
 11432
 11433
 11434
 11435
 11436
 11437
 11438
 11439
 11440
 11441
 11442
 11443
 11444
 11445
 11446
 11447
 11448
 11449
 11450
 11451
 11452
 11453
 11454
 11455
 11456
 11457
 11458
 11459
 11460
 11461
 11462
 11463
 11464
 11465
 11466
 11467
 11468
 11469
 11470
 11471
 11472
 11473
 11474
 11475
 11476
 11477
 11478
 11479
 11480
 11481
 11482
 11483
 11484
 11485
 11486
 11487
 11488
 11489
 11490
 11491
 11492
 11493
 11494
 11495
 11496
 11497
 11498
 11499
 11500
 11501
 11502
 11503
 11504
 11505
 11506
 11507
 11508
 11509
 11510
 11511
 11512
 11513
 11514
 11515
 11516
 11517
 11518
 11519
 11520
 11521
 11522
 11523
 11524
 11525
 11526
 11527
 11528
 11529
 11530
 11531
 11532
 11533
 11534
 11535
 11536
 11537
 11538
 11539
 11540
 11541
 11542
 11543
 11544
 11545
 11546
 11547
 11548
 11549
 11550
 11551
 11552
 11553
 11554
 11555
 11556
 11557
 11558
 11559
 11560
 11561
 11562
 11563
 11564
 11565
 11566
 11567
 11568
 11569
 11570
 11571
 11572
 11573
 11574
 11575
 11576
 11577
 11578
 11579
 11580
 11581
 11582
 11583
 11584
 11585
 11586
 11587
 11588
 11589
 11590
 11591
 11592
 11593
 11594
 11595
 11596
 11597
 11598
 11599
 11600
 11601
 11602
 11603
 11604
 11605
 11606
 11607
 11608
 11609
 11610
 11611
 11612
 11613
 11614
 11615
 11616
 11617
 11618
 11619
 11620
 11621
 11622
 11623
 11624
 11625
 11626
 11627
 11628
 11629
 11630
 11631
 11632
 11633
 11634
 11635
 11636
 11637
 11638
 11639
 11640
 11641
 11642
 11643
 11644
 11645
 11646
 11647
 11648
 11649
 11650
 11651
 11652
 11653
 11654
 11655
 11656
 11657
 11658
 11659
 11660
 11661
 11662
 11663
 11664
 11665
 11666
 11667
 11668
 11669
 11670
 11671
 11672
 11673
 11674
 11675
 11676
 11677
 11678
 11679
 11680
 11681
 11682
 11683
 11684
 11685
 11686
 11687
 11688
 11689
 11690
 11691
 11692
 11693
 11694
 11695
 11696
 11697
 11698
 11699
 11700
 11701
 11702
 11703
 11704
 11705
 11706
 11707
 11708
 11709
 11710
 11711
 11712
 11713
 11714
 11715
 11716
 11717
 11718
 11719
 11720
 11721
 11722
 11723
 11724
 11725
 11726
 11727
 11728
 11729
 11730
 11731
 11732
 11733
 11734
 11735
 11736
 11737
 11738
 11739
 11740
 11741
 11742
 11743
 11744
 11745
 11746
 11747
 11748
 11749
 11750
 11751
 11752
 11753
 11754
 11755
 11756
 11757
 11758
 11759
 11760
 11761
 11762
 11763
 11764
 11765
 11766
 11767
 11768
 11769
 11770
 11771
 11772
 11773
 11774
 11775
 11776
 11777
 11778
 11779
 11780
 11781
 11782
 11783
 11784
 11785
 11786
 11787
 11788
 11789
 11790
 11791
 11792
 11793
 11794
 11795
 11796
 11797
 11798
 11799
 11800
 11801
 11802
 11803
 11804
 11805
 11806
 11807
 11808
 11809
 11810
 11811
 11812
 11813
 11814
 11815
 11816
 11817
 11818
 11819
 11820
 11821
 11822
 11823
 11824
 11825
 11826
 11827
 11828
 11829
 11830
 11831
 11832
 11833
 11834
 11835
 11836
 11837
 11838
 11839
 11840
 11841
 11842
 11843
 11844
 11845
 11846
 11847
 11848
 11849
 11850
 11851
 11852
 11853
 11854
 11855
 11856
 11857
 11858
 11859
 11860
 11861
 11862
 11863
 11864
 11865
 11866
 11867
 11868
 11869
 11870
 11871
 11872
 11873
 11874
 11875
 11876
 11877
 11878
 11879
 11880
 11881
 11882
 11883
 11884
 11885
 11886
 11887
 11888
 11889
 11890
 11891
 11892
 11893
 11894
 11895
 11896
 11897
 11898
 11899
 11900
 11901
 11902
 11903
 11904
 11905
 11906
 11907
 11908
 11909
 11910
 11911
 11912
 11913
 11914
 11915
 11916
 11917
 11918
 11919
 11920
 11921
 11922
 11923
 11924
 11925
 11926
 11927
 11928
 11929
 11930
 11931
 11932
 11933
 11934
 11935
 11936
 11937
 11938
 11939
 11940
 11941
 11942
 11943
 11944
 11945
 11946
 11947
 11948
 11949
 11950
 11951
 11952
 11953
 11954
 11955
 11956
 11957
 11958
 11959
 11960
 11961
 11962
 11963
 11964
 11965
 11966
 11967
 11968
 11969
 11970
 11971
 11972
 11973
 11974
 11975
 11976
 11977
 11978
 11979
 11980
 11981
 11982
 11983
 11984
 11985
 11986
 11987
 11988
 11989
 11990
 11991
 11992
 11993
 11994
 11995
 11996
 11997
 11998
 11999
 12000
 12001
 12002
 12003
 12004
 12005
 12006
 12007
 12008
 12009
 12010
 12011
 12012
 12013
 12014
 12015
 12016
 12017
 12018
 12019
 12020
 12021
 12022
 12023
 12024
 12025
 12026
 12027
 12028
 12029
 12030
 12031
 12032
 12033
 12034
 12035
 12036
 12037
 12038
 12039
 12040
 12041
 12042
 12043
 12044
 12045
 12046
 12047
 12048
 12049
 12050
 12051
 12052
 12053
 12054
 12055
 12056
 12057
 12058
 12059
 12060
 12061
 12062
 12063
 12064
 12065
 12066
 12067
 12068
 12069
 12070
 12071
 12072
 12073
 12074
 12075
 12076
 12077
 12078
 12079
 12080
 12081
 12082
 12083
 12084
 12085
 12086
 12087
 12088
 12089
 12090
 12091
 12092
 12093
 12094
 12095
 12096
 12097
 12098
 12099
 12100
 12101
 12102
 12103
 12104
 12105
 12106
 12107
 12108
 12109
 12110
 12111
 12112
 12113
 12114
 12115
 12116
 12117
 12118
 12119
 12120
 12121
 12122
 12123
 12124
 12125
 12126
 12127
 12128
 12129
 12130
 12131
 12132
 12133
 12134
 12135
 12136
 12137
 12138
 12139
 12140
 12141
 12142
 12143
 12144
 12145
 12146
 12147
 12148
 12149
 12150
 12151
 12152
 12153
 12154
 12155
 12156
 12157
 12158
 12159
 12160
 12161
 12162
 12163
 12164
 12165
 12166
 12167
 12168
 12169
 12170
 12171
 12172
 12173
 12174
 12175
 12176
 12177
 12178
 12179
 12180
 12181
 12182
 12183
 12184
 12185
 12186
 12187
 12188
 12189
 12190
 12191
 12192
 12193
 12194
 12195
 12196
 12197
 12198
 12199
 12200
 12201
 12202
 12203
 12204
 12205
 12206
 12207
 12208
 12209
 12210
 12211
 12212
 12213
 12214
 12215
 12216
 12217
 12218
 12219
 12220
 12221
 12222
 12223
 12224
 12225
 12226
 12227
 12228
 12229
 12230
 12231
 12232
 12233
 12234
 12235
 12236
 12237
 12238
 12239
 12240
 12241
 12242
 12243
 12244
 12245
 12246
 12247
 12248
 12249
 12250
 12251
 12252
 12253
 12254
 12255
 12256
 12257
 12258
 12259
 12260
 12261
 12262
 12263
 12264
 12265
 12266
 12267
 12268
 12269
 12270
 12271
 12272
 12273
 12274
 12275
 12276
 12277
 12278
 12279
 12280
 12281
 12282
 12283
 12284
 12285
 12286
 12287
 12288
 12289
 12290
 12291
 12292
 12293
 12294
 12295
 12296
 12297
 12298
 12299
 12300
 12301
 12302
 12303
 12304
 12305
 12306
 12307
 12308
 12309
 12310
 12311
 12312
 12313
 12314
 12315
 12316
 12317
 12318
 12319
 12320
 12321
 12322
 12323
 12324
 12325
 12326
 12327
 12328
 12329
 12330
 12331
 12332
 12333
 12334
 12335
 12336
 12337
 12338
 12339
 12340
 12341
 12342
 12343
 12344
 12345
 12346
 12347
 12348
 12349
 12350
 12351
 12352
 12353
 12354
 12355
 12356
 12357
 12358
 12359
 12360
 12361
 12362
 12363
 12364
 12365
 12366
 12367
 12368
 12369
 12370
 12371
 12372
 12373
 12374
 12375
 12376
 12377
 12378
 12379
 12380
 12381
 12382
 12383
 12384
 12385
 12386
 12387
 12388
 12389
 12390
 12391
 12392
 12393
 12394
 12395
 12396
 12397
 12398
 12399
 12400
 12401
 12402
 12403
 12404
 12405
 12406
 12407
 12408
 12409
 12410
 12411
 12412
 12413
 12414
 12415
 12416
 12417
 12418
 12419
 12420
 12421
 12422
 12423
 12424
 12425
 12426
 12427
 12428
 12429
 12430
 12431
 12432
 12433
 12434
 12435
 12436
 12437
 12438
 12439
 12440
 12441
 12442
 12443
 12444
 12445
 12446
 12447
 12448
 12449
 12450
 12451
 12452
 12453
 12454
 12455
 12456
 12457
 12458
 12459
 12460
 12461
 12462
 12463
 12464
 12465
 12466
 12467
 12468
 12469
 12470
 12471
 12472
 12473
 12474
 12475
 12476
 12477
 12478
 12479
 12480
 12481
 12482
 12483
 12484
 12485
 12486
 12487
 12488
 12489
 12490
 12491
 12492
 12493
 12494
 12495
 12496
 12497
 12498
 12499
 12500
 12501
 12502
 12503
 12504
 12505
 12506
 12507
 12508
 12509
 12510
 12511
 12512
 12513
 12514
 12515
 12516
 12517
 12518
 12519
 12520
 12521
 12522
 12523
 12524
 12525
 12526
 12527
 12528
 12529
 12530
 12531
 12532
 12533
 12534
 12535
 12536
 12537
 12538
 12539
 12540
 12541
 12542
 12543
 12544
 12545
 12546
 12547
 12548
 12549
 12550
 12551
 12552
 12553
 12554
 12555
 12556
 12557
 12558
 12559
 12560
 12561
 12562
 12563
 12564
 12565
 12566
 12567
 12568
 12569
 12570
 12571
 12572
 12573
 12574
 12575
 12576
 12577
 12578
 12579
 12580
 12581
 12582
 12583
 12584
 12585
 12586
 12587
 12588
 12589
 12590
 12591
 12592
 12593
 12594
 12595
 12596
 12597
 12598
 12599
 12600
 12601
 12602
 12603
 12604
 12605
 12606
 12607
 12608
 12609
 12610
 12611
 12612
 12613
 12614
 12615
 12616
 12617
 12618
 12619
 12620
 12621
 12622
 12623
 12624
 12625
 12626
 12627
 12628
 12629
 12630
 12631
 12632
 12633
 12634
 12635
 12636
 12637
 12638
 12639
 12640
 12641
 12642
 12643
 12644
 12645
 12646
 12647
 12648
 12649
 12650
 12651
 12652
 12653
 12654
 12655
 12656
 12657
 12658
 12659
 12660
 12661
 12662
 12663
 12664
 12665
 12666
 12667
 12668
 12669
 12670
 12671
 12672
 12673
 12674
 12675
 12676
 12677
 12678
 12679
 12680
 12681
 12682
 12683
 12684
 12685
 12686
 12687
 12688
 12689
 12690
 12691
 12692
 12693
 12694
 12695
 12696
 12697
 12698
 12699
 12700
 12701
 12702
 12703
 12704
 12705
 12706
 12707
 12708
 12709
 12710
 12711
 12712
 12713
 12714
 12715
 12716
 12717
 12718
 12719
 12720
 12721
 12722
 12723
 12724
 12725
 12726
 12727
 12728
 12729
 12730
 12731
 12732
 12733
 12734
 12735
 12736
 12737
 12738
 12739
 12740
 12741
 12742
 12743
 12744
 12745
 12746
 12747
 12748
 12749
 12750
 12751
 12752
 12753
 12754
 12755
 12756
 12757
 12758
 12759
 12760
 12761
 12762
 12763
 12764
 12765
 12766
 12767
 12768
 12769
 12770
 12771
 12772
 12773
 12774
 12775
 12776
 12777
 12778
 12779
 12780
 12781
 12782
 12783
 12784
 12785
 12786
 12787
 12788
 12789
 12790
 12791
 12792
 12793
 12794
 12795
 12796
 12797
 12798
 12799
 12800
 12801
 12802
 12803
 12804
 12805
 12806
 12807
 12808
 12809
 12810
 12811
 12812
 12813
 12814
 12815
 12816
 12817
 12818
 12819
 12820
 12821
 12822
 12823
 12824
 12825
 12826
 12827
 12828
 12829
 12830
 12831
 12832
 12833
 12834
 12835
 12836
 12837
 12838
 12839
 12840
 12841
 12842
 12843
 12844
 12845
 12846
 12847
 12848
 12849
 12850
 12851
 12852
 12853
 12854
 12855
 12856
 12857
 12858
 12859
 12860
 12861
 12862
 12863
 12864
 12865
 12866
 12867
 12868
 12869
 12870
 12871
 12872
 12873
 12874
 12875
 12876
 12877
 12878
 12879
 12880
 12881
 12882
 12883
 12884
 12885
 12886
 12887
 12888
 12889
 12890
 12891
 12892
 12893
 12894
 12895
 12896
 12897
 12898
 12899
 12900
 12901
 12902
 12903
 12904
 12905
 12906
 12907
 12908
 12909
 12910
 12911
 12912
 12913
 12914
 12915
 12916
 12917
 12918
 12919
 12920
 12921
 12922
 12923
 12924
 12925
 12926
 12927
 12928
 12929
 12930
 12931
 12932
 12933
 12934
 12935
 12936
 12937
 12938
 12939
 12940
 12941
 12942
 12943
 12944
 12945
 12946
 12947
 12948
 12949
 12950
 12951
 12952
 12953
 12954
 12955
 12956
 12957
 12958
 12959
 12960
 12961
 12962
 12963
 12964
 12965
 12966
 12967
 12968
 12969
 12970
 12971
 12972
 12973
 12974
 12975
 12976
 12977
 12978
 12979
 12980
 12981
 12982
 12983
 12984
 12985
 12986
 12987
 12988
 12989
 12990
 12991
 12992
 12993
 12994
 12995
 12996
 12997
 12998
 12999
 13000
 13001
 13002
 13003
 13004
 13005
 13006
 13007
 13008
 13009
 13010
 13011
 13012
 13013
 13014
 13015
 13016
 13017
 13018
 13019
 13020
 13021
 13022
 13023
 13024
 13025
 13026
 13027
 13028
 13029
 13030
 13031
 13032
 13033
 13034
 13035
 13036
 13037
 13038
 13039
 13040
 13041
 13042
 13043
 13044
 13045
 13046
 13047
 13048
 13049
 13050
 13051
 13052
 13053
 13054
 13055
 13056
 13057
 13058
 13059
 13060
 13061
 13062
 13063
 13064
 13065
 13066
 13067
 13068
 13069
 13070
 13071
 13072
 13073
 13074
 13075
 13076
 13077
 13078
 13079
 13080
 13081
 13082
 13083
 13084
 13085
 13086
 13087
 13088
 13089
 13090
 13091
 13092
 13093
 13094
 13095
 13096
 13097
 13098
 13099
 13100
 13101
 13102
 13103
 13104
 13105
 13106
 13107
 13108
 13109
 13110
 13111
 13112
 13113
 13114
 13115
 13116
 13117
 13118
 13119
 13120
 13121
 13122
 13123
 13124
 13125
 13126
 13127
 13128
 13129
 13130
 13131
 13132
 13133
 13134
 13135
 13136
 13137
 13138
 13139
 13140
 13141
 13142
 13143
 13144
 13145
 13146
 13147
 13148
 13149
 13150
 13151
 13152
 13153
 13154
 13155
 13156
 13157
 13158
 13159
 13160
 13161
 13162
 13163
 13164
 13165
 13166
 13167
 13168
 13169
 13170
 13171
 13172
 13173
 13174
 13175
 13176
 13177
 13178
 13179
 13180
 13181
 13182
 13183
 13184
 13185
 13186
 13187
 13188
 13189
 13190
 13191
 13192
 13193
 13194
 13195
 13196
 13197
 13198
 13199
 13200
 13201
 13202
 13203
 13204
 13205
 13206
 13207
 13208
 13209
 13210
 13211
 13212
 13213
 13214
 13215
 13216
 13217
 13218
 13219
 13220
 13221
 13222
 13223
 13224
 13225
 13226
 13227
 13228
 13229
 13230
 13231
 13232
 13233
 13234
 13235
 13236
 13237
 13238
 13239
 13240
 13241
 13242
 13243
 13244
 13245
 13246
 13247
 13248
 13249
 13250
 13251
 13252
 13253
 13254
 13255
 13256
 13257
 13258
 13259
 13260
 13261
 13262
 13263
 13264
 13265
 13266
 13267
 13268
 13269
 13270
 13271
 13272
 13273
 13274
 13275
 13276
 13277
 13278
 13279
 13280
 13281
 13282
 13283
 13284
 13285
 13286
 13287
 13288
 13289
 13290
 13291
 13292
 13293
 13294
 13295
 13296
 13297
 13298
 13299
 13300
 13301
 13302
 13303
 13304
 13305
 13306
 13307
 13308
 13309
 13310
 13311
 13312
 13313
 13314
 13315
 13316
 13317
 13318
 13319
 13320
 13321
 13322
 13323
 13324
 13325
 13326
 13327
 13328
 13329
 13330
 13331
 13332
 13333
 13334
 13335
 13336
 13337
 13338
 13339
 13340
 13341
 13342
 13343
 13344
 13345
 13346
 13347
 13348
 13349
 13350
 13351
 13352
 13353
 13354
 13355
 13356
 13357
 13358
 13359
 13360
 13361
 13362
 13363
 13364
 13365
 13366
 13367
 13368
 13369
 13370
 13371
 13372
 13373
 13374
 13375
 13376
 13377
 13378
 13379
 13380
 13381
 13382
 13383
 13384
 13385
 13386
 13387
 13388
 13389
 13390
 13391
 13392
 13393
 13394
 13395
 13396
 13397
 13398
 13399
 13400
 13401
 13402
 13403
 13404
 13405
 13406
 13407
 13408
 13409
 13410
 13411
 13412
 13413
 13414
 13415
 13416
 13417
 13418
 13419
 13420
 13421
 13422
 13423
 13424
 13425
 13426
 13427
 13428
 13429
 13430
 13431
 13432
 13433
 13434
 13435
 13436
 13437
 13438
 13439
 13440
 13441
 13442
 13443
 13444
 13445
 13446
 13447
 13448
 13449
 13450
 13451
 13452
 13453
 13454
 13455
 13456
 13457
 13458
 13459
 13460
 13461
 13462
 13463
 13464
 13465
 13466
 13467
 13468
 13469
 13470
 13471
 13472
 13473
 13474
 13475
 13476
 13477
 13478
 13479
 13480
 13481
 13482
 13483
 13484
 13485
 13486
 13487
 13488
 13489
 13490
 13491
 13492
 13493
 13494
 13495
 13496
 13497
 13498
 13499
 13500
 13501
 13502
 13503
 13504
 13505
 13506
 13507
 13508
 13509
 13510
 13511
 13512
 13513
 13514
 13515
 13516
 13517
 13518
 13519
 13520
 13521
 13522
 13523
 13524
 13525
 13526
 13527
 13528
 13529
 13530
 13531
 13532
 13533
 13534
 13535
 13536
 13537
 13538
 13539
 13540
 13541
 13542
 13543
 13544
 13545
 13546
 13547
 13548
 13549
 13550
 13551
 13552
 13553
 13554
 13555
 13556
 13557
 13558
 13559
 13560
 13561
 13562
 13563
 13564
 13565
 13566
 13567
 13568
 13569
 13570
 13571
 13572
 13573
 13574
 13575
 13576
 13577
 13578
 13579
 13580
 13581
 13582
 13583
 13584
 13585
 13586
 13587
 13588
 13589
 13590
 13591
 13592
 13593
 13594
 13595
 13596
 13597
 13598
 13599
 13600
 13601
 13602
 13603
 13604
 13605
 13606
 13607
 13608
 13609
 13610
 13611
 13612
 13613
 13614
 13615
 13616
 13617
 13618
 13619
 13620
 13621
 13622
 13623
 13624
 13625
 13626
 13627
 13628
 13629
 13630
 13631
 13632
 13633
 13634
 13635
 13636
 13637
 13638
 13639
 13640
 13641
 13642
 13643
 13644
 13645
 13646
 13647
 13648
 13649
 13650
 13651
 13652
 13653
 13654
 13655
 13656
 13657
 13658
 13659
 13660
 13661
 13662
 13663
 13664
 13665
 13666
 13667
 13668
 13669
 13670
 13671
 13672
 13673
 13674
 13675
 13676
 13677
 13678
 13679
 13680
 13681
 13682
 13683
 13684
 13685
 13686
 13687
 13688
 13689
 13690
 13691
 13692
 13693
 13694
 13695
 13696
 13697
 13698
 13699
 13700
 13701
 13702
 13703
 13704
 13705
 13706
 13707
 13708
 13709
 13710
 13711
 13712
 13713
 13714
 13715
 13716
 13717
 13718
 13719
 13720
 13721
 13722
 13723
 13724
 13725
 13726
 13727
 13728
 13729
 13730
 13731
 13732
 13733
 13734
 13735
 13736
 13737
 13738
 13739
 13740
 13741
 13742
 13743
 13744
 13745
 13746
 13747
 13748
 13749
 13750
 13751
 13752
 13753
 13754
 13755
 13756
 13757
 13758
 13759
 13760
 13761
 13762
 13763
 13764
 13765
 13766
 13767
 13768
 13769
 13770
 13771
 13772
 13773
 13774
 13775
 13776
 13777
 13778
 13779
 13780
 13781
 13782
 13783
 13784
 13785
 13786
 13787
 13788
 13789
 13790
 13791
 13792
 13793
 13794
 13795
 13796
 13797
 13798
 13799
 13800
 13801
 13802
 13803
 13804
 13805
 13806
 13807
 13808
 13809
 13810
 13811
 13812
 13813
 13814
 13815
 13816
 13817
 13818
 13819
 13820
 13821
 13822
 13823
 13824
 13825
 13826
 13827
 13828
 13829
 13830
 13831
 13832
 13833
 13834
 13835
 13836
 13837
 13838
 13839
 13840
 13841
 13842
 13843
 13844
 13845
 13846
 13847
 13848
 13849
 13850
 13851
 13852
 13853
 13854
 13855
 13856
 13857
 13858
 13859
 13860
 13861
 13862
 13863
 13864
 13865
 13866
 13867
 13868
 13869
 13870
 13871
 13872
 13873
 13874
 13875
 13876
 13877
 13878
 13879
 13880
 13881
 13882
 13883
 13884
 13885
 13886
 13887
 13888
 13889
 13890
 13891
 13892
 13893
 13894
 13895
 13896
 13897
 13898
 13899
 13900
 13901
 13902
 13903
 13904
 13905
 13906
 13907
 13908
 13909
 13910
 13911
 13912
 13913
 13914
 13915
 13916
 13917
 13918
 13919
 13920
 13921
 13922
 13923
 13924
 13925
 13926
 13927
 13928
 13929
 13930
 13931
 13932
 13933
 13934
 13935
 13936
 13937
 13938
 13939
 13940
 13941
 13942
 13943
 13944
 13945
 13946
 13947
 13948
 13949
 13950
 13951
 13952
 13953
 13954
 13955
 13956
 13957
 13958
 13959
 13960
 13961
 13962
 13963
 13964
 13965
 13966
 13967
 13968
 13969
 13970
 13971
 13972
 13973
 13974
 13975
 13976
 13977
 13978
 13979
 13980
 13981
 13982
 13983
 13984
 13985
 13986
 13987
 13988
 13989
 13990
 13991
 13992
 13993
 13994
 13995
 13996
 13997
 13998
 13999
 14000
 14001
 14002
 14003
 14004
 14005
 14006
 14007
 14008
 14009
 14010
 14011
 14012
 14013
 14014
 14015
 14016
 14017
 14018
 14019
 14020
 14021
 14022
 14023
 14024
 14025
 14026
 14027
 14028
 14029
 14030
 14031
 14032
 14033
 14034
 14035
 14036
 14037
 14038
 14039
 14040
 14041
 14042
 14043
 14044
 14045
 14046
 14047
 14048
 14049
 14050
 14051
 14052
 14053
 14054
 14055
 14056
 14057
 14058
 14059
 14060
 14061
 14062
 14063
 14064
 14065
 14066
 14067
 14068
 14069
 14070
 14071
 14072
 14073
 14074
 14075
 14076
 14077
 14078
 14079
 14080
 14081
 14082
 14083
 14084
 14085
 14086
 14087
 14088
 14089
 14090
 14091
 14092
 14093
 14094
 14095
 14096
 14097
 14098
 14099
 14100
 14101
 14102
 14103
 14104
 14105
 14106
 14107
 14108
 14109
 14110
 14111
 14112
 14113
 14114
 14115
 14116
 14117
 14118
 14119
 14120
 14121
 14122
 14123
 14124
 14125
 14126
 14127
 14128
 14129
 14130
 14131
 14132
 14133
 14134
 14135
 14136
 14137
 14138
 14139
 14140
 14141
 14142
 14143
 14144
 14145
 14146
 14147
 14148
 14149
 14150
 14151
 14152
 14153
 14154
 14155
 14156
 14157
 14158
 14159
 14160
 14161
 14162
 14163
 14164
 14165
 14166
 14167
 14168
 14169
 14170
 14171
 14172
 14173
 14174
 14175
 14176
 14177
 14178
 14179
 14180
 14181
 14182
 14183
 14184
 14185
 14186
 14187
 14188
 14189
 14190
 14191
 14192
 14193
 14194
 14195
 14196
 14197
 14198
 14199
 14200
 14201
 14202
 14203
 14204
 14205
 14206
 14207
 14208
 14209
 14210
 14211
 14212
 14213
 14214
 14215
 14216
 14217
 14218
 14219
 14220
 14221
 14222
 14223
 14224
 14225
 14226
 14227
 14228
 14229
 14230
 14231
 14232
 14233
 14234
 14235
 14236
 14237
 14238
 14239
 14240
 14241
 14242
 14243
 14244
 14245
 14246
 14247
 14248
 14249
 14250
 14251
 14252
 14253
 14254
 14255
 14256
 14257
 14258
 14259
 14260
 14261
 14262
 14263
 14264
 14265
 14266
 14267
 14268
 14269
 14270
 14271
 14272
 14273
 14274
 14275
 14276
 14277
 14278
 14279
 14280
 14281
 14282
 14283
 14284
 14285
 14286
 14287
 14288
 14289
 14290
 14291
 14292
 14293
 14294
 14295
 14296
 14297
 14298
 14299
 14300
 14301
 14302
 14303
 14304
 14305
 14306
 14307
 14308
 14309
 14310
 14311
 14312
 14313
 14314
 14315
 14316
 14317
 14318
 14319
 14320
 14321
 14322
 14323
 14324
 14325
 14326
 14327
 14328
 14329
 14330
 14331
 14332
 14333
 14334
 14335
 14336
 14337
 14338
 14339
 14340
 14341
 14342
 14343
 14344
 14345
 14346
 14347
 14348
 14349
 14350
 14351
 14352
 14353
 14354
 14355
 14356
 14357
 14358
 14359
 14360
 14361
 14362
 14363
 14364
 14365
 14366
 14367
 14368
 14369
 14370
 14371
 14372
 14373
 14374
 14375
 14376
 14377
 14378
 14379
 14380
 14381
 14382
 14383
 14384
 14385
 14386
 14387
 14388
 14389
 14390
 14391
 14392
 14393
 14394
 14395
 14396
 14397
 14398
 14399
 14400
 14401
 14402
 14403
 14404
 14405
 14406
 14407
 14408
 14409
 14410
 14411
 14412
 14413
 14414
 14415
 14416
 14417
 14418
 14419
 14420
 14421
 14422
 14423
 14424
 14425
 14426
 14427
 14428
 14429
 14430
 14431
 14432
 14433
 14434
 14435
 14436
 14437
 14438
 14439
 14440
 14441
 14442
 14443
 14444
 14445
 14446
 14447
 14448
 14449
 14450
 14451
 14452
 14453
 14454
 14455
 14456
 14457
 14458
 14459
 14460
 14461
 14462
 14463
 14464
 14465
 14466
 14467
 14468
 14469
 14470
 14471
 14472
 14473
 14474
 14475
 14476
 14477
 14478
 14479
 14480
 14481
 14482
 14483
 14484
 14485
 14486
 14487
 14488
 14489
 14490
 14491
 14492
 14493
 14494
 14495
 14496
 14497
 14498
 14499
 14500
 14501
 14502
 14503
 14504
 14505
 14506
 14507
 14508
 14509
 14510
 14511
 14512
 14513
 14514
 14515
 14516
 14517
 14518
 14519
 14520
 14521
 14522
 14523
 14524
 14525
 14526
 14527
 14528
 14529
 14530
 14531
 14532
 14533
 14534
 14535
 14536
 14537
 14538
 14539
 14540
 14541
 14542
 14543
 14544
 14545
 14546
 14547
 14548
 14549
 14550
 14551
 14552
 14553
 14554
 14555
 14556
 14557
 14558
 14559
 14560
 14561
 14562
 14563
 14564
 14565
 14566
 14567
 14568
 14569
 14570
 14571
 14572
 14573
 14574
 14575
 14576
 14577
 14578
 14579
 14580
 14581
 14582
 14583
 14584
 14585
 14586
 14587
 14588
 14589
 14590
 14591
 14592
 14593
 14594
 14595
 14596
 14597
 14598
 14599
 14600
 14601
 14602
 14603
 14604
 14605
 14606
 14607
 14608
 14609
 14610
 14611
 14612
 14613
 14614
 14615
 14616
 14617
 14618
 14619
 14620
 14621
 14622
 14623
 14624
 14625
 14626
 14627
 14628
 14629
 14630
 14631
 14632
 14633
 14634
 14635
 14636
 14637
 14638
 14639
 14640
 14641
 14642
 14643
 14644
 14645
 14646
 14647
 14648
 14649
 14650
 14651
 14652
 14653
 14654
 14655
 14656
 14657
 14658
 14659
 14660
 14661
 14662
 14663
 14664
 14665
 14666
 14667
 14668
 14669
 14670
 14671
 14672
 14673
 14674
 14675
 14676
 14677
 14678
 14679
 14680
 14681
 14682
 14683
 14684
 14685
 14686
 14687
 14688
 14689
 14690
 14691
 14692
 14693
 14694
 14695
 14696
 14697
 14698
 14699
 14700
 14701
 14702
 14703
 14704
 14705
 14706
 14707
 14708
 14709
 14710
 14711
 14712
 14713
 14714
 14715
 14716
 14717
 14718
 14719
 14720
 14721
 14722
 14723
 14724
 14725
 14726
 14727
 14728
 14729
 14730
 14731
 14732
 14733
 14734
 14735
 14736
 14737
 14738
 14739
 14740
 14741
 14742
 14743
 14744
 14745
 14746
 14747
 14748
 14749
 14750
 14751
 14752
 14753
 14754
 14755
 14756
 14757
 14758
 14759
 14760
 14761
 14762
 14763
 14764
 14765
 14766
 14767
 14768
 14769
 14770
 14771
 14772
 14773
 14774
 14775
 14776
 14777
 14778
 14779
 14780
 14781
 14782
 14783
 14784
 14785
 14786
 14787
 14788
 14789
 14790
 14791
 14792
 14793
 14794
 14795
 14796
 14797
 14798
 14799
 14800
 14801
 14802
 14803
 14804
 14805
 14806
 14807
 14808
 14809
 14810
 14811
 14812
 14813
 14814
 14815
 14816
 14817
 14818
 14819
 14820
 14821
 14822
 14823
 14824
 14825
 14826
 14827
 14828
 14829
 14830
 14831
 14832
 14833
 14834
 14835
 14836
 14837
 14838
 14839
 14840
 14841
 14842
 14843
 14844
 14845
 14846
 14847
 14848
 14849
 14850
 14851
 14852
 14853
 14854
 14855
 14856
 14857
 14858
 14859
 14860
 14861
 14862
 14863
 14864
 14865
 14866
 14867
 14868
 14869
 14870
 14871
 14872
 14873
 14874
 14875
 14876
 14877
 14878
 14879
 14880
 14881
 14882
 14883
 14884
 14885
 14886
 14887
 14888
 14889
 14890
 14891
 14892
 14893
 14894
 14895
 14896
 14897
 14898
 14899
 14900
 14901
 14902
 14903
 14904
 14905
 14906
 14907
 14908
 14909
 14910
 14911
 14912
 14913
 14914
 14915
 14916
 14917
 14918
 14919
 14920
 14921
 14922
 14923
 14924
 14925
 14926
 14927
 14928
 14929
 14930
 14931
 14932
 14933
 14934
 14935
 14936
 14937
 14938
 14939
 14940
 14941
 14942
 14943
 14944
 14945
 14946
 14947
 14948
 14949
 14950
 14951
 14952
 14953
 14954
 14955
 14956
 14957
 14958
 14959
 14960
 14961
 14962
 14963
 14964
 14965
 14966
 14967
 14968
 14969
 14970
 14971
 14972
 14973
 14974
 14975
 14976
 14977
 14978
 14979
 14980
 14981
 14982
 14983
 14984
 14985
 14986
 14987
 14988
 14989
 14990
 14991
 14992
 14993
 14994
 14995
 14996
 14997
 14998
 14999
 15000
 15001
 15002
 15003
 15004
 15005
 15006
 15007
 15008
 15009
 15010
 15011
 15012
 15013
 15014
 15015
 15016
 15017
 15018
 15019
 15020
 15021
 15022
 15023
 15024
 15025
 15026
 15027
 15028
 15029
 15030
 15031
 15032
 15033
 15034
 15035
 15036
 15037
 15038
 15039
 15040
 15041
 15042
 15043
 15044
 15045
 15046
 15047
 15048
 15049
 15050
 15051
 15052
 15053
 15054
 15055
 15056
 15057
 15058
 15059
 15060
 15061
 15062
 15063
 15064
 15065
 15066
 15067
 15068
 15069
 15070
 15071
 15072
 15073
 15074
 15075
 15076
 15077
 15078
 15079
 15080
 15081
 15082
 15083
 15084
 15085
 15086
 15087
 15088
 15089
 15090
 15091
 15092
 15093
 15094
 15095
 15096
 15097
 15098
 15099
 15100
 15101
 15102
 15103
 15104
 15105
 15106
 15107
 15108
 15109
 15110
 15111
 15112
 15113
 15114
 15115
 15116
 15117
 15118
 15119
 15120
 15121
 15122
 15123
 15124
 15125
 15126
 15127
 15128
 15129
 15130
 15131
 15132
 15133
 15134
 15135
 15136
 15137
 15138
 15139
 15140
 15141
 15142
 15143
 15144
 15145
 15146
 15147
 15148
 15149
 15150
 15151
 15152
 15153
 15154
 15155
 15156
 15157
 15158
 15159
 15160
 15161
 15162
 15163
 15164
 15165
 15166
 15167
 15168
 15169
 15170
 15171
 15172
 15173
 15174
 15175
 15176
 15177
 15178
 15179
 15180
 15181
 15182
 15183
 15184
 15185
 15186
 15187
 15188
 15189
 15190
 15191
 15192
 15193
 15194
 15195
 15196
 15197
 15198
 15199
 15200
 15201
 15202
 15203
 15204
 15205
 15206
 15207
 15208
 15209
 15210
 15211
 15212
 15213
 15214
 15215
 15216
 15217
 15218
 15219
 15220
 15221
 15222
 15223
 15224
 15225
 15226
 15227
 15228
 15229
 15230
 15231
 15232
 15233
 15234
 15235
 15236
 15237
 15238
 15239
 15240
 15241
 15242
 15243
 15244
 15245
 15246
 15247
 15248
 15249
 15250
 15251
 15252
 15253
 15254
 15255
 15256
 15257
 15258
 15259
 15260
 15261
 15262
 15263
 15264
 15265
 15266
 15267
 15268
 15269
 15270
 15271
 15272
 15273
 15274
 15275
 15276
 15277
 15278
 15279
 15280
 15281
 15282
 15283
 15284
 15285
 15286
 15287
 15288
 15289
 15290
 15291
 15292
 15293
 15294
 15295
 15296
 15297
 15298
 15299
 15300
 15301
 15302
 15303
 15304
 15305
 15306
 15307
 15308
 15309
 15310
 15311
 15312
 15313
 15314
 15315
 15316
 15317
 15318
 15319
 15320
 15321
 15322
 15323
 15324
 15325
 15326
 15327
 15328
 15329
 15330
 15331
 15332
 15333
 15334
 15335
 15336
 15337
 15338
 15339
 15340
 15341
 15342
 15343
 15344
 15345
 15346
 15347
 15348
 15349
 15350
 15351
 15352
 15353
 15354
 15355
 15356
 15357
 15358
 15359
 15360
 15361
 15362
 15363
 15364
 15365
 15366
 15367
 15368
 15369
 15370
 15371
 15372
 15373
 15374
 15375
 15376
 15377
 15378
 15379
 15380
 15381
 15382
 15383
 15384
 15385
 15386
 15387
 15388
 15389
 15390
 15391
 15392
 15393
 15394
 15395
 15396
 15397
 15398
 15399
 15400
 15401
 15402
 15403
 15404
 15405
 15406
 15407
 15408
 15409
 15410
 15411
 15412
 15413
 15414
 15415
 15416
 15417
 15418
 15419
 15420
 15421
 15422
 15423
 15424
 15425
 15426
 15427
 15428
 15429
 15430
 15431
 15432
 15433
 15434
 15435
 15436
 15437
 15438
 15439
 15440
 15441
 15442
 15443
 15444
 15445
 15446
 15447
 15448
 15449
 15450
 15451
 15452
 15453
 15454
 15455
 15456
 15457
 15458
 15459
 15460
 15461
 15462
 15463
 15464
 15465
 15466
 15467
 15468
 15469
 15470
 15471
 15472
 15473
 15474
 15475
 15476
 15477
 15478
 15479
 15480
 15481
 15482
 15483
 15484
 15485
 15486
 15487
 15488
 15489
 15490
 15491
 15492
 15493
 15494
 15495
 15496
 15497
 15498
 15499
 15500
 15501
 15502
 15503
 15504
 15505
 15506
 15507
 15508
 15509
 15510
 15511
 15512
 15513
 15514
 15515
 15516
 15517
 15518
 15519
 15520
 15521
 15522
 15523
 15524
 15525
 15526
 15527
 15528
 15529
 15530
 15531
 15532
 15533
 15534
 15535
 15536
 15537
 15538
 15539
 15540
 15541
 15542
 15543
 15544
 15545
 15546
 15547
 15548
 15549
 15550
 15551
 15552
 15553
 15554
 15555
 15556
 15557
 15558
 15559
 15560
 15561
 15562
 15563
 15564
 15565
 15566
 15567
 15568
 15569
 15570
 15571
 15572
 15573
 15574
 15575
 15576
 15577
 15578
 15579
 15580
 15581
 15582
 15583
 15584
 15585
 15586
 15587
 15588
 15589
 15590
 15591
 15592
 15593
 15594
 15595
 15596
 15597
 15598
 15599
 15600
 15601
 15602
 15603
 15604
 15605
 15606
 15607
 15608
 15609
 15610
 15611
 15612
 15613
 15614
 15615
 15616
 15617
 15618
 15619
 15620
 15621
 15622
 15623
 15624
 15625
 15626
 15627
 15628
 15629
 15630
 15631
 15632
 15633
 15634
 15635
 15636
 15637
 15638
 15639
 15640
 15641
 15642
 15643
 15644
 15645
 15646
 15647
 15648
 15649
 15650
 15651
 15652
 15653
 15654
 15655
 15656
 15657
 15658
 15659
 15660
 15661
 15662
 15663
 15664
 15665
 15666
 15667
 15668
 15669
 15670
 15671
 15672
 15673
 15674
 15675
 15676
 15677
 15678
 15679
 15680
 15681
 15682
 15683
 15684
 15685
 15686
 15687
 15688
 15689
 15690
 15691
 15692
 15693
 15694
 15695
 15696
 15697
 15698
 15699
 15700
 15701
 15702
 15703
 15704
 15705
 15706
 15707
 15708
 15709
 15710
 15711
 15712
 15713
 15714
 15715
 15716
 15717
 15718
 15719
 15720
 15721
 15722
 15723
 15724
 15725
 15726
 15727
 15728
 15729
 15730
 15731
 15732
 15733
 15734
 15735
 15736
 15737
 15738
 15739
 15740
 15741
 15742
 15743
 15744
 15745
 15746
 15747
 15748
 15749
 15750
 15751
 15752
 15753
 15754
 15755
 15756
 15757
 15758
 15759
 15760
 15761
 15762
 15763
 15764
 15765
 15766
 15767
 15768
 15769
 15770
 15771
 15772
 15773
 15774
 15775
 15776
 15777
 15778
 15779
 15780
 15781
 15782
 15783
 15784
 15785
 15786
 15787
 15788
 15789
 15790
 15791
 15792
 15793
 15794
 15795
 15796
 15797
 15798
 15799
 15800
 15801
 15802
 15803
 15804
 15805
 15806
 15807
 15808
 15809
 15810
 15811
 15812
 15813
 15814
 15815
 15816
 15817
 15818
 15819
 15820
 15821
 15822
 15823
 15824
 15825
 15826
 15827
 15828
 15829
 15830
 15831
 15832
 15833
 15834
 15835
 15836
 15837
 15838
 15839
 15840
 15841
 15842
 15843
 15844
 15845
 15846
 15847
 15848
 15849
 15850
 15851
 15852
 15853
 15854
 15855
 15856
 15857
 15858
 15859
 15860
 15861
 15862
 15863
 15864
 15865
 15866
 15867
 15868
 15869
 15870
 15871
 15872
 15873
 15874
 15875
 15876
 15877
 15878
 15879
 15880
 15881
 15882
 15883
 15884
 15885
 15886
 15887
 15888
 15889
 15890
 15891
 15892
 15893
 15894
 15895
 15896
 15897
 15898
 15899
 15900
 15901
 15902
 15903
 15904
 15905
 15906
 15907
 15908
 15909
 15910
 15911
 15912
 15913
 15914
 15915
 15916
 15917
 15918
 15919
 15920
 15921
 15922
 15923
 15924
 15925
 15926
 15927
 15928
 15929
 15930
 15931
 15932
 15933
 15934
 15935
 15936
 15937
 15938
 15939
 15940
 15941
 15942
 15943
 15944
 15945
 15946
 15947
 15948
 15949
 15950
 15951
 15952
 15953
 15954
 15955
 15956
 15957
 15958
 15959
 15960
 15961
 15962
 15963
 15964
 15965
 15966
 15967
 15968
 15969
 15970
 15971
 15972
 15973
 15974
 15975
 15976
 15977
 15978
 15979
 15980
 15981
 15982
 15983
 15984
 15985
 15986
 15987
 15988
 15989
 15990
 15991
 15992
 15993
 15994
 15995
 15996
 15997
 15998
 15999
 16000
 16001
 16002
 16003
 16004
 16005
 16006
 16007
 16008
 16009
 16010
 16011
 16012
 16013
 16014
 16015
 16016
 16017
 16018
 16019
 16020
 16021
 16022
 16023
 16024
 16025
 16026
 16027
 16028
 16029
 16030
 16031
 16032
 16033
 16034
 16035
 16036
 16037
 16038
 16039
 16040
 16041
 16042
 16043
 16044
 16045
 16046
 16047
 16048
 16049
 16050
 16051
 16052
 16053
 16054
 16055
 16056
 16057
 16058
 16059
 16060
 16061
 16062
 16063
 16064
 16065
 16066
 16067
 16068
 16069
 16070
 16071
 16072
 16073
 16074
 16075
 16076
 16077
 16078
 16079
 16080
 16081
 16082
 16083
 16084
 16085
 16086
 16087
 16088
 16089
 16090
 16091
 16092
 16093
 16094
 16095
 16096
 16097
 16098
 16099
 16100
 16101
 16102
 16103
 16104
 16105
 16106
 16107
 16108
 16109
 16110
 16111
 16112
 16113
 16114
 16115
 16116
 16117
 16118
 16119
 16120
 16121
 16122
 16123
 16124
 16125
 16126
 16127
 16128
 16129
 16130
 16131
 16132
 16133
 16134
 16135
 16136
 16137
 16138
 16139
 16140
 16141
 16142
 16143
 16144
 16145
 16146
 16147
 16148
 16149
 16150
 16151
 16152
 16153
 16154
 16155
 16156
 16157
 16158
 16159
 16160
 16161
 16162
 16163
 16164
 16165
 16166
 16167
 16168
 16169
 16170
 16171
 16172
 16173
 16174
 16175
 16176
 16177
 16178
 16179
 16180
 16181
 16182
 16183
 16184
 16185
 16186
 16187
 16188
 16189
 16190
 16191
 16192
 16193
 16194
 16195
 16196
 16197
 16198
 16199
 16200
 16201
 16202
 16203
 16204
 16205
 16206
 16207
 16208
 16209
 16210
 16211
 16212
 16213
 16214
 16215
 16216
 16217
 16218
 16219
 16220
 16221
 16222
 16223
 16224
 16225
 16226
 16227
 16228
 16229
 16230
 16231
 16232
 16233
 16234
 16235
 16236
 16237
 16238
 16239
 16240
 16241
 16242
 16243
 16244
 16245
 16246
 16247
 16248
 16249
 16250
 16251
 16252
 16253
 16254
 16255
 16256
 16257
 16258
 16259
 16260
 16261
 16262
 16263
 16264
 16265
 16266
 16267
 16268
 16269
 16270
 16271
 16272
 16273
 16274
 16275
 16276
 16277
 16278
 16279
 16280
 16281
 16282
 16283
 16284
 16285
 16286
 16287
 16288
 16289
 16290
 16291
 16292
 16293
 16294
 16295
 16296
 16297
 16298
 16299
 16300
 16301
 16302
 16303
 16304
 16305
 16306
 16307
 16308
 16309
 16310
 16311
 16312
 16313
 16314
 16315
 16316
 16317
 16318
 16319
 16320
 16321
 16322
 16323
 16324
 16325
 16326
 16327
 16328
 16329
 16330
 16331
 16332
 16333
 16334
 16335
 16336
 16337
 16338
 16339
 16340
 16341
 16342
 16343
 16344
 16345
 16346
 16347
 16348
 16349
 16350
 16351
 16352
 16353
 16354
 16355
 16356
 16357
 16358
 16359
 16360
 16361
 16362
 16363
 16364
 16365
 16366
 16367
 16368
 16369
 16370
 16371
 16372
 16373
 16374
 16375
 16376
 16377
 16378
 16379
 16380
 16381
 16382
 16383
 16384
 16385
 16386
 16387
 16388
 16389
 16390
 16391
 16392
 16393
 16394
 16395
 16396
 16397
 16398
 16399
 16400
 16401
 16402
 16403
 16404
 16405
 16406
 16407
 16408
 16409
 16410
 16411
 16412
 16413
 16414
 16415
 16416
 16417
 16418
 16419
 16420
 16421
 16422
 16423
 16424
 16425
 16426
 16427
 16428
 16429
 16430
 16431
 16432
 16433
 16434
 16435
 16436
 16437
 16438
 16439
 16440
 16441
 16442
 16443
 16444
 16445
 16446
 16447
 16448
 16449
 16450
 16451
 16452
 16453
 16454
 16455
 16456
 16457
 16458
 16459
 16460
 16461
 16462
 16463
 16464
 16465
 16466
 16467
 16468
 16469
 16470
 16471
 16472
 16473
 16474
 16475
 16476
 16477
 16478
 16479
 16480
 16481
 16482
 16483
 16484
 16485
 16486
 16487
 16488
 16489
 16490
 16491
 16492
 16493
 16494
 16495
 16496
 16497
 16498
 16499
 16500
 16501
 16502
 16503
 16504
 16505
 16506
 16507
 16508
 16509
 16510
 16511
 16512
 16513
 16514
 16515
 16516
 16517
 16518
 16519
 16520
 16521
 16522
 16523
 16524
 16525
 16526
 16527
 16528
 16529
 16530
 16531
 16532
 16533
 16534
 16535
 16536
 16537
 16538
 16539
 16540
 16541
 16542
 16543
 16544
 16545
 16546
 16547
 16548
 16549
 16550
 16551
 16552
 16553
 16554
 16555
 16556
 16557
 16558
 16559
 16560
 16561
 16562
 16563
 16564
 16565
 16566
 16567
 16568
 16569
 16570
 16571
 16572
 16573
 16574
 16575
 16576
 16577
 16578
 16579
 16580
 16581
 16582
 16583
 16584
 16585
 16586
 16587
 16588
 16589
 16590
 16591
 16592
 16593
 16594
 16595
 16596
 16597
 16598
 16599
 16600
 16601
 16602
 16603
 16604
 16605
 16606
 16607
 16608
 16609
 16610
 16611
 16612
 16613
 16614
 16615
 16616
 16617
 16618
 16619
 16620
 16621
 16622
 16623
 16624
 16625
 16626
 16627
 16628
 16629
 16630
 16631
 16632
 16633
 16634
 16635
 16636
 16637
 16638
 16639
 16640
 16641
 16642
 16643
 16644
 16645
 16646
 16647
 16648
 16649
 16650
 16651
 16652
 16653
 16654
 16655
 16656
 16657
 16658
 16659
 16660
 16661
 16662
 16663
 16664
 16665
 16666
 16667
 16668
 16669
 16670
 16671
 16672
 16673
 16674
 16675
 16676
 16677
 16678
 16679
 16680
 16681
 16682
 16683
 16684
 16685
 16686
 16687
 16688
 16689
 16690
 16691
 16692
 16693
 16694
 16695
 16696
 16697
 16698
 16699
 16700
 16701
 16702
 16703
 16704
 16705
 16706
 16707
 16708
 16709
 16710
 16711
 16712
 16713
 16714
 16715
 16716
 16717
 16718
 16719
 16720
 16721
 16722
 16723
 16724
 16725
 16726
 16727
 16728
 16729
 16730
 16731
 16732
 16733
 16734
 16735
 16736
 16737
 16738
 16739
 16740
 16741
 16742
 16743
 16744
 16745
 16746
 16747
 16748
 16749
 16750
 16751
 16752
 16753
 16754
 16755
 16756
 16757
 16758
 16759
 16760
 16761
 16762
 16763
 16764
 16765
 16766
 16767
 16768
 16769
 16770
 16771
 16772
 16773
 16774
 16775
 16776
 16777
 16778
 16779
 16780
 16781
 16782
 16783
 16784
 16785
 16786
 16787
 16788
 16789
 16790
 16791
 16792
 16793
 16794
 16795
 16796
 16797
 16798
 16799
 16800
 16801
 16802
 16803
 16804
 16805
 16806
 16807
 16808
 16809
 16810
 16811
 16812
 16813
 16814
 16815
 16816
 16817
 16818
 16819
 16820
 16821
 16822
 16823
 16824
 16825
 16826
 16827
 16828
 16829
 16830
 16831
 16832
 16833
 16834
 16835
 16836
 16837
 16838
 16839
 16840
 16841
 16842
 16843
 16844
 16845
 16846
 16847
 16848
 16849
 16850
 16851
 16852
 16853
 16854
 16855
 16856
 16857
 16858
 16859
 16860
 16861
 16862
 16863
 16864
 16865
 16866
 16867
 16868
 16869
 16870
 16871
 16872
 16873
 16874
 16875
 16876
 16877
 16878
 16879
 16880
 16881
 16882
 16883
 16884
 16885
 16886
 16887
 16888
 16889
 16890
 16891
 16892
 16893
 16894
 16895
 16896
 16897
 16898
 16899
 16900
 16901
 16902
 16903
 16904
 16905
 16906
 16907
 16908
 16909
 16910
 16911
 16912
 16913
 16914
 16915
 16916
 16917
 16918
 16919
 16920
 16921
 16922
 16923
 16924
 16925
 16926
 16927
 16928
 16929
 16930
 16931
 16932
 16933
 16934
 16935
 16936
 16937
 16938
 16939
 16940
 16941
 16942
 16943
 16944
 16945
 16946
 16947
 16948
 16949
 16950
 16951
 16952
 16953
 16954
 16955
 16956
 16957
 16958
 16959
 16960
 16961
 16962
 16963
 16964
 16965
 16966
 16967
 16968
 16969
 16970
 16971
 16972
 16973
 16974
 16975
 16976
 16977
 16978
 16979
 16980
 16981
 16982
 16983
 16984
 16985
 16986
 16987
 16988
 16989
 16990
 16991
 16992
 16993
 16994
 16995
 16996
 16997
 16998
 16999
 17000
 17001
 17002
 17003
 17004
 17005
 17006
 17007
 17008
 17009
 17010
 17011
 17012
 17013
 17014
 17015
 17016
 17017
 17018
 17019
 17020
 17021
 17022
 17023
 17024
 17025
 17026
 17027
 17028
 17029
 17030
 17031
 17032
 17033
 17034
 17035
 17036
 17037
 17038
 17039
 17040
 17041
 17042
 17043
 17044
 17045
 17046
 17047
 17048
 17049
 17050
 17051
 17052
 17053
 17054
 17055
 17056
 17057
 17058
 17059
 17060
 17061
 17062
 17063
 17064
 17065
 17066
 17067
 17068
 17069
 17070
 17071
 17072
 17073
 17074
 17075
 17076
 17077
 17078
 17079
 17080
 17081
 17082
 17083
 17084
 17085
 17086
 17087
 17088
 17089
 17090
 17091
 17092
 17093
 17094
 17095
 17096
 17097
 17098
 17099
 17100
 17101
 17102
 17103
 17104
 17105
 17106
 17107
 17108
 17109
 17110
 17111
 17112
 17113
 17114
 17115
 17116
 17117
 17118
 17119
 17120
 17121
 17122
 17123
 17124
 17125
 17126
 17127
 17128
 17129
 17130
 17131
 17132
 17133
 17134
 17135
 17136
 17137
 17138
 17139
 17140
 17141
 17142
 17143
 17144
 17145
 17146
 17147
 17148
 17149
 17150
 17151
 17152
 17153
 17154
 17155
 17156
 17157
 17158
 17159
 17160
 17161
 17162
 17163
 17164
 17165
 17166
 17167
 17168
 17169
 17170
 17171
 17172
 17173
 17174
 17175
 17176
 17177
 17178
 17179
 17180
 17181
 17182
 17183
 17184
 17185
 17186
 17187
 17188
 17189
 17190
 17191
 17192
 17193
 17194
 17195
 17196
 17197
 17198
 17199
 17200
 17201
 17202
 17203
 17204
 17205
 17206
 17207
 17208
 17209
 17210
 17211
 17212
 17213
 17214
 17215
 17216
 17217
 17218
 17219
 17220
 17221
 17222
 17223
 17224
 17225
 17226
 17227
 17228
 17229
 17230
 17231
 17232
 17233
 17234
 17235
 17236
 17237
 17238
 17239
 17240
 17241
 17242
 17243
 17244
 17245
 17246
 17247
 17248
 17249
 17250
 17251
 17252
 17253
 17254
 17255
 17256
 17257
 17258
 17259
 17260
 17261
 17262
 17263
 17264
 17265
 17266
 17267
 17268
 17269
 17270
 17271
 17272
 17273
 17274
 17275
 17276
 17277
 17278
 17279
 17280
 17281
 17282
 17283
 17284
 17285
 17286
 17287
 17288
 17289
 17290
 17291
 17292
 17293
 17294
 17295
 17296
 17297
 17298
 17299
 17300
 17301
 17302
 17303
 17304
 17305
 17306
 17307
 17308
 17309
 17310
 17311
 17312
 17313
 17314
 17315
 17316
 17317
 17318
 17319
 17320
 17321
 17322
 17323
 17324
 17325
 17326
 17327
 17328
 17329
 17330
 17331
 17332
 17333
 17334
 17335
 17336
 17337
 17338
 17339
 17340
 17341
 17342
 17343
 17344
 17345
 17346
 17347
 17348
 17349
 17350
 17351
 17352
 17353
 17354
 17355
 17356
 17357
 17358
 17359
 17360
 17361
 17362
 17363
 17364
 17365
 17366
 17367
 17368
 17369
 17370
 17371
 17372
 17373
 17374
 17375
 17376
 17377
 17378
 17379
 17380
 17381
 17382
 17383
 17384
 17385
 17386
 17387
 17388
 17389
 17390
 17391
 17392
 17393
 17394
 17395
 17396
 17397
 17398
 17399
 17400
 17401
 17402
 17403
 17404
 17405
 17406
 17407
 17408
 17409
 17410
 17411
 17412
 17413
 17414
 17415
 17416
 17417
 17418
 17419
 17420
 17421
 17422
 17423
 17424
 17425
 17426
 17427
 17428
 17429
 17430
 17431
 17432
 17433
 17434
 17435
 17436
 17437
 17438
 17439
 17440
 17441
 17442
 17443
 17444
 17445
 17446
 17447
 17448
 17449
 17450
 17451
 17452
 17453
 17454
 17455
 17456
 17457
 17458
 17459
 17460
 17461
 17462
 17463
 17464
 17465
 17466
 17467
 17468
 17469
 17470
 17471
 17472
 17473
 17474
 17475
 17476
 17477
 17478
 17479
 17480
 17481
 17482
 17483
 17484
 17485
 17486
 17487
 17488
 17489
 17490
 17491
 17492
 17493
 17494
 17495
 17496
 17497
 17498
 17499
 17500
 17501
 17502
 17503
 17504
 17505
 17506
 17507
 17508
 17509
 17510
 17511
 17512
 17513
 17514
 17515
 17516
 17517
 17518
 17519
 17520
 17521
 17522
 17523
 17524
 17525
 17526
 17527
 17528
 17529
 17530
 17531
 17532
 17533
 17534
 17535
 17536
 17537
 17538
 17539
 17540
 17541
 17542
 17543
 17544
 17545
 17546
 17547
 17548
 17549
 17550
 17551
 17552
 17553
 17554
 17555
 17556
 17557
 17558
 17559
 17560
 17561
 17562
 17563
 17564
 17565
 17566
 17567
 17568
 17569
 17570
 17571
 17572
 17573
 17574
 17575
 17576
 17577
 17578
 17579
 17580
 17581
 17582
 17583
 17584
 17585
 17586
 17587
 17588
 17589
 17590
 17591
 17592
 17593
 17594
 17595
 17596
 17597
 17598
 17599
 17600
 17601
 17602
 17603
 17604
 17605
 17606
 17607
 17608
 17609
 17610
 17611
 17612
 17613
 17614
 17615
 17616
 17617
 17618
 17619
 17620
 17621
 17622
 17623
 17624
 17625
 17626
 17627
 17628
 17629
 17630
 17631
 17632
 17633
 17634
 17635
 17636
 17637
 17638
 17639
 17640
 17641
 17642
 17643
 17644
 17645
 17646
 17647
 17648
 17649
 17650
 17651
 17652
 17653
 17654
 17655
 17656
 17657
 17658
 17659
 17660
 17661
 17662
 17663
 17664
 17665
 17666
 17667
 17668
 17669
 17670
 17671
 17672
 17673
 17674
 17675
 17676
 17677
 17678
 17679
 17680
 17681
 17682
 17683
 17684
 17685
 17686
 17687
 17688
 17689
 17690
 17691
 17692
 17693
 17694
 17695
 17696
 17697
 17698
 17699
 17700
 17701
 17702
 17703
 17704
 17705
 17706
 17707
 17708
 17709
 17710
 17711
 17712
 17713
 17714
 17715
 17716
 17717
 17718
 17719
 17720
 17721
 17722
 17723
 17724
 17725
 17726
 17727
 17728
 17729
 17730
 17731
 17732
 17733
 17734
 17735
 17736
 17737
 17738
 17739
 17740
 17741
 17742
 17743
 17744
 17745
 17746
 17747
 17748
 17749
 17750
 17751
 17752
 17753
 17754
 17755
 17756
 17757
 17758
 17759
 17760
 17761
 17762
 17763
 17764
 17765
 17766
 17767
 17768
 17769
 17770
 17771
 17772
 17773
 17774
 17775
 17776
 17777
 17778
 17779
 17780
 17781
 17782
 17783
 17784
 17785
 17786
 17787
 17788
 17789
 17790
 17791
 17792
 17793
 17794
 17795
 17796
 17797
 17798
 17799
 17800
 17801
 17802
 17803
 17804
 17805
 17806
 17807
 17808
 17809
 17810
 17811
 17812
 17813
 17814
 17815
 17816
 17817
 17818
 17819
 17820
 17821
 17822
 17823
 17824
 17825
 17826
 17827
 17828
 17829
 17830
 17831
 17832
 17833
 17834
 17835
 17836
 17837
 17838
 17839
 17840
 17841
 17842
 17843
 17844
 17845
 17846
 17847
 17848
 17849
 17850
 17851
 17852
 17853
 17854
 17855
 17856
 17857
 17858
 17859
 17860
 17861
 17862
 17863
 17864
 17865
 17866
 17867
 17868
 17869
 17870
 17871
 17872
 17873
 17874
 17875
 17876
 17877
 17878
 17879
 17880
 17881
 17882
 17883
 17884
 17885
 17886
 17887
 17888
 17889
 17890
 17891
 17892
 17893
 17894
 17895
 17896
 17897
 17898
 17899
 17900
 17901
 17902
 17903
 17904
 17905
 17906
 17907
 17908
 17909
 17910
 17911
 17912
 17913
 17914
 17915
 17916
 17917
 17918
 17919
 17920
 17921
 17922
 17923
 17924
 17925
 17926
 17927
 17928
 17929
 17930
 17931
 17932
 17933
 17934
 17935
 17936
 17937
 17938
 17939
 17940
 17941
 17942
 17943
 17944
 17945
 17946
 17947
 17948
 17949
 17950
 17951
 17952
 17953
 17954
 17955
 17956
 17957
 17958
 17959
 17960
 17961
 17962
 17963
 17964
 17965
 17966
 17967
 17968
 17969
 17970
 17971
 17972
 17973
 17974
 17975
 17976
 17977
 17978
 17979
 17980
 17981
 17982
 17983
 17984
 17985
 17986
 17987
 17988
 17989
 17990
 17991
 17992
 17993
 17994
 17995
 17996
 17997
 17998
 17999
 18000
 18001
 18002
 18003
 18004
 18005
 18006
 18007
 18008
 18009
 18010
 18011
 18012
 18013
 18014
 18015
 18016
 18017
 18018
 18019
 18020
 18021
 18022
 18023
 18024
 18025
 18026
 18027
 18028
 18029
 18030
 18031
 18032
 18033
 18034
 18035
 18036
 18037
 18038
 18039
 18040
 18041
 18042
 18043
 18044
 18045
 18046
 18047
 18048
 18049
 18050
 18051
 18052
 18053
 18054
 18055
 18056
 18057
 18058
 18059
 18060
 18061
 18062
 18063
 18064
 18065
 18066
 18067
 18068
 18069
 18070
 18071
 18072
 18073
 18074
 18075
 18076
 18077
 18078
 18079
 18080
 18081
 18082
 18083
 18084
 18085
 18086
 18087
 18088
 18089
 18090
 18091
 18092
 18093
 18094
 18095
 18096
 18097
 18098
 18099
 18100
 18101
 18102
 18103
 18104
 18105
 18106
 18107
 18108
 18109
 18110
 18111
 18112
 18113
 18114
 18115
 18116
 18117
 18118
 18119
 18120
 18121
 18122
 18123
 18124
 18125
 18126
 18127
 18128
 18129
 18130
 18131
 18132
 18133
 18134
 18135
 18136
 18137
 18138
 18139
 18140
 18141
 18142
 18143
 18144
 18145
 18146
 18147
 18148
 18149
 18150
 18151
 18152
 18153
 18154
 18155
 18156
 18157
 18158
 18159
 18160
 18161
 18162
 18163
 18164
 18165
 18166
 18167
 18168
 18169
 18170
 18171
 18172
 18173
 18174
 18175
 18176
 18177
 18178
 18179
 18180
 18181
 18182
 18183
 18184
 18185
 18186
 18187
 18188
 18189
 18190
 18191
 18192
 18193
 18194
 18195
 18196
 18197
 18198
 18199
 18200
 18201
 18202
 18203
 18204
 18205
 18206
 18207
 18208
 18209
 18210
 18211
 18212
 18213
 18214
 18215
 18216
 18217
 18218
 18219
 18220
 18221
 18222
 18223
 18224
 18225
 18226
 18227
 18228
 18229
 18230
 18231
 18232
 18233
 18234
 18235
 18236
 18237
 18238
 18239
 18240
 18241
 18242
 18243
 18244
 18245
 18246
 18247
 18248
 18249
 18250
 18251
 18252
 18253
 18254
 18255
 18256
 18257
 18258
 18259
 18260
 18261
 18262
 18263
 18264
 18265
 18266
 18267
 18268
 18269
 18270
 18271
 18272
 18273
 18274
 18275
 18276
 18277
 18278
 18279
 18280
 18281
 18282
 18283
 18284
 18285
 18286
 18287
 18288
 18289
 18290
 18291
 18292
 18293
 18294
 18295
 18296
 18297
 18298
 18299
 18300
 18301
 18302
 18303
 18304
 18305
 18306
 18307
 18308
 18309
 18310
 18311
 18312
 18313
 18314
 18315
 18316
 18317
 18318
 18319
 18320
 18321
 18322
 18323
 18324
 18325
 18326
 18327
 18328
 18329
 18330
 18331
 18332
 18333
 18334
 18335
 18336
 18337
 18338
 18339
 18340
 18341
 18342
 18343
 18344
 18345
 18346
 18347
 18348
 18349
 18350
 18351
 18352
 18353
 18354
 18355
 18356
 18357
 18358
 18359
 18360
 18361
 18362
 18363
 18364
 18365
 18366
 18367
 18368
 18369
 18370
 18371
 18372
 18373
 18374
 18375
 18376
 18377
 18378
 18379
 18380
 18381
 18382
 18383
 18384
 18385
 18386
 18387
 18388
 18389
 18390
 18391
 18392
 18393
 18394
 18395
 18396
 18397
 18398
 18399
 18400
 18401
 18402
 18403
 18404
 18405
 18406
 18407
 18408
 18409
 18410
 18411
 18412
 18413
 18414
 18415
 18416
 18417
 18418
 18419
 18420
 18421
 18422
 18423
 18424
 18425
 18426
 18427
 18428
 18429
 18430
 18431
 18432
 18433
 18434
 18435
 18436
 18437
 18438
 18439
 18440
 18441
 18442
 18443
 18444
 18445
 18446
 18447
 18448
 18449
 18450
 18451
 18452
 18453
 18454
 18455
 18456
 18457
 18458
 18459
 18460
 18461
 18462
 18463
 18464
 18465
 18466
 18467
 18468
 18469
 18470
 18471
 18472
 18473
 18474
 18475
 18476
 18477
 18478
 18479
 18480
 18481
 18482
 18483
 18484
 18485
 18486
 18487
 18488
 18489
 18490
 18491
 18492
 18493
 18494
 18495
 18496
 18497
 18498
 18499
 18500
 18501
 18502
 18503
 18504
 18505
 18506
 18507
 18508
 18509
 18510
 18511
 18512
 18513
 18514
 18515
 18516
 18517
 18518
 18519
 18520
 18521
 18522
 18523
 18524
 18525
 18526
 18527
 18528
 18529
 18530
 18531
 18532
 18533
 18534
 18535
 18536
 18537
 18538
 18539
 18540
 18541
 18542
 18543
 18544
 18545
 18546
 18547
 18548
 18549
 18550
 18551
 18552
 18553
 18554
 18555
 18556
 18557
 18558
 18559
 18560
 18561
 18562
 18563
 18564
 18565
 18566
 18567
 18568
 18569
 18570
 18571
 18572
 18573
 18574
 18575
 18576
 18577
 18578
 18579
 18580
 18581
 18582
 18583
 18584
 18585
 18586
 18587
 18588
 18589
 18590
 18591
 18592
 18593
 18594
 18595
 18596
 18597
 18598
 18599
 18600
 18601
 18602
 18603
 18604
 18605
 18606
 18607
 18608
 18609
 18610
 18611
 18612
 18613
 18614
 18615
 18616
 18617
 18618
 18619
 18620
 18621
 18622
 18623
 18624
 18625
 18626
 18627
 18628
 18629
 18630
 18631
 18632
 18633
 18634
 18635
 18636
 18637
 18638
 18639
 18640
 18641
 18642
 18643
 18644
 18645
 18646
 18647
 18648
 18649
 18650
 18651
 18652
 18653
 18654
 18655
 18656
 18657
 18658
 18659
 18660
 18661
 18662
 18663
 18664
 18665
 18666
 18667
 18668
 18669
 18670
 18671
 18672
 18673
 18674
 18675
 18676
 18677
 18678
 18679
 18680
 18681
 18682
 18683
 18684
 18685
 18686
 18687
 18688
 18689
 18690
 18691
 18692
 18693
 18694
 18695
 18696
 18697
 18698
 18699
 18700
 18701
 18702
 18703
 18704
 18705
 18706
 18707
 18708
 18709
 18710
 18711
 18712
 18713
 18714
 18715
 18716
 18717
 18718
 18719
 18720
 18721
 18722
 18723
 18724
 18725
 18726
 18727
 18728
 18729
 18730
 18731
 18732
 18733
 18734
 18735
 18736
 18737
 18738
 18739
 18740
 18741
 18742
 18743
 18744
 18745
 18746
 18747
 18748
 18749
 18750
 18751
 18752
 18753
 18754
 18755
 18756
 18757
 18758
 18759
 18760
 18761
 18762
 18763
 18764
 18765
 18766
 18767
 18768
 18769
 18770
 18771
 18772
 18773
 18774
 18775
 18776
 18777
 18778
 18779
 18780
 18781
 18782
 18783
 18784
 18785
 18786
 18787
 18788
 18789
 18790
 18791
 18792
 18793
 18794
 18795
 18796
 18797
 18798
 18799
 18800
 18801
 18802
 18803
 18804
 18805
 18806
 18807
 18808
 18809
 18810
 18811
 18812
 18813
 18814
 18815
 18816
 18817
 18818
 18819
 18820
 18821
 18822
 18823
 18824
 18825
 18826
 18827
 18828
 18829
 18830
 18831
 18832
 18833
 18834
 18835
 18836
 18837
 18838
 18839
 18840
 18841
 18842
 18843
 18844
 18845
 18846
 18847
 18848
 18849
 18850
 18851
 18852
 18853
 18854
 18855
 18856
 18857
 18858
 18859
 18860
 18861
 18862
 18863
 18864
 18865
 18866
 18867
 18868
 18869
 18870
 18871
 18872
 18873
 18874
 18875
 18876
 18877
 18878
 18879
 18880
 18881
 18882
 18883
 18884
 18885
 18886
 18887
 18888
 18889
 18890
 18891
 18892
 18893
 18894
 18895
 18896
 18897
 18898
 18899
 18900
 18901
 18902
 18903
 18904
 18905
 18906
 18907
 18908
 18909
 18910
 18911
 18912
 18913
 18914
 18915
 18916
 18917
 18918
 18919
 18920
 18921
 18922
 18923
 18924
 18925
 18926
 18927
 18928
 18929
 18930
 18931
 18932
 18933
 18934
 18935
 18936
 18937
 18938
 18939
 18940
 18941
 18942
 18943
 18944
 18945
 18946
 18947
 18948
 18949
 18950
 18951
 18952
 18953
 18954
 18955
 18956
 18957
 18958
 18959
 18960
 18961
 18962
 18963
 18964
 18965
 18966
 18967
 18968
 18969
 18970
 18971
 18972
 18973
 18974
 18975
 18976
 18977
 18978
 18979
 18980
 18981
 18982
 18983
 18984
 18985
 18986
 18987
 18988
 18989
 18990
 18991
 18992
 18993
 18994
 18995
 18996
 18997
 18998
 18999
 19000
 19001
 19002
 19003
 19004
 19005
 19006
 19007
 19008
 19009
 19010
 19011
 19012
 19013
 19014
 19015
 19016
 19017
 19018
 19019
 19020
 19021
 19022
 19023
 19024
 19025
 19026
 19027
 19028
 19029
 19030
 19031
 19032
 19033
 19034
 19035
 19036
 19037
 19038
 19039
 19040
 19041
 19042
 19043
 19044
 19045
 19046
 19047
 19048
 19049
 19050
 19051
 19052
 19053
 19054
 19055
 19056
 19057
 19058
 19059
 19060
 19061
 19062
 19063
 19064
 19065
 19066
 19067
 19068
 19069
 19070
 19071
 19072
 19073
 19074
 19075
 19076
 19077
 19078
 19079
 19080
 19081
 19082
 19083
 19084
 19085
 19086
 19087
 19088
 19089
 19090
 19091
 19092
 19093
 19094
 19095
 19096
 19097
 19098
 19099
 19100
 19101
 19102
 19103
 19104
 19105
 19106
 19107
 19108
 19109
 19110
 19111
 19112
 19113
 19114
 19115
 19116
 19117
 19118
 19119
 19120
 19121
 19122
 19123
 19124
 19125
 19126
 19127
 19128
 19129
 19130
 19131
 19132
 19133
 19134
 19135
 19136
 19137
 19138
 19139
 19140
 19141
 19142
 19143
 19144
 19145
 19146
 19147
 19148
 19149
 19150
 19151
 19152
 19153
 19154
 19155
 19156
 19157
 19158
 19159
 19160
 19161
 19162
 19163
 19164
 19165
 19166
 19167
 19168
 19169
 19170
 19171
 19172
 19173
 19174
 19175
 19176
 19177
 19178
 19179
 19180
 19181
 19182
 19183
 19184
 19185
 19186
 19187
 19188
 19189
 19190
 19191
 19192
 19193
 19194
 19195
 19196
 19197
 19198
 19199
 19200
 19201
 19202
 19203
 19204
 19205
 19206
 19207
 19208
 19209
 19210
 19211
 19212
 19213
 19214
 19215
 19216
 19217
 19218
 19219
 19220
 19221
 19222
 19223
 19224
 19225
 19226
 19227
 19228
 19229
 19230
 19231
 19232
 19233
 19234
 19235
 19236
 19237
 19238
 19239
 19240
 19241
 19242
 19243
 19244
 19245
 19246
 19247
 19248
 19249
 19250
 19251
 19252
 19253
 19254
 19255
 19256
 19257
 19258
 19259
 19260
 19261
 19262
 19263
 19264
 19265
 19266
 19267
 19268
 19269
 19270
 19271
 19272
 19273
 19274
 19275
 19276
 19277
 19278
 19279
 19280
 19281
 19282
 19283
 19284
 19285
 19286
 19287
 19288
 19289
 19290
 19291
 19292
 19293
 19294
 19295
 19296
 19297
 19298
 19299
 19300
 19301
 19302
 19303
 19304
 19305
 19306
 19307
 19308
 19309
 19310
 19311
 19312
 19313
 19314
 19315
 19316
 19317
 19318
 19319
 19320
 19321
 19322
 19323
 19324
 19325
 19326
 19327
 19328
 19329
 19330
 19331
 19332
 19333
 19334
 19335
 19336
 19337
 19338
 19339
 19340
 19341
 19342
 19343
 19344
 19345
 19346
 19347
 19348
 19349
 19350
 19351
 19352
 19353
 19354
 19355
 19356
 19357
 19358
 19359
 19360
 19361
 19362
 19363
 19364
 19365
 19366
 19367
 19368
 19369
 19370
 19371
 19372
 19373
 19374
 19375
 19376
 19377
 19378
 19379
 19380
 19381
 19382
 19383
 19384
 19385
 19386
 19387
 19388
 19389
 19390
 19391
 19392
 19393
 19394
 19395
 19396
 19397
 19398
 19399
 19400
 19401
 19402
 19403
 19404
 19405
 19406
 19407
 19408
 19409
 19410
 19411
 19412
 19413
 19414
 19415
 19416
 19417
 19418
 19419
 19420
 19421
 19422
 19423
 19424
 19425
 19426
 19427
 19428
 19429
 19430
 19431
 19432
 19433
 19434
 19435
 19436
 19437
 19438
 19439
 19440
 19441
 19442
 19443
 19444
 19445
 19446
 19447
 19448
 19449
 19450
 19451
 19452
 19453
 19454
 19455
 19456
 19457
 19458
 19459
 19460
 19461
 19462
 19463
 19464
 19465
 19466
 19467
 19468
 19469
 19470
 19471
 19472
 19473
 19474
 19475
 19476
 19477
 19478
 19479
 19480
 19481
 19482
 19483
 19484
 19485
 19486
 19487
 19488
 19489
 19490
 19491
 19492
 19493
 19494
 19495
 19496
 19497
 19498
 19499
 19500
 19501
 19502
 19503
 19504
 19505
 19506
 19507
 19508
 19509
 19510
 19511
 19512
 19513
 19514
 19515
 19516
 19517
 19518
 19519
 19520
 19521
 19522
 19523
 19524
 19525
 19526
 19527
 19528
 19529
 19530
 19531
 19532
 19533
 19534
 19535
 19536
 19537
 19538
 19539
 19540
 19541
 19542
 19543
 19544
 19545
 19546
 19547
 19548
 19549
 19550
 19551
 19552
 19553
 19554
 19555
 19556
 19557
 19558
 19559
 19560
 19561
 19562
 19563
 19564
 19565
 19566
 19567
 19568
 19569
 19570
 19571
 19572
 19573
 19574
 19575
 19576
 19577
 19578
 19579
 19580
 19581
 19582
 19583
 19584
 19585
 19586
 19587
 19588
 19589
 19590
 19591
 19592
 19593
 19594
 19595
 19596
 19597
 19598
 19599
 19600
 19601
 19602
 19603
 19604
 19605
 19606
 19607
 19608
 19609
 19610
 19611
 19612
 19613
 19614
 19615
 19616
 19617
 19618
 19619
 19620
 19621
 19622
 19623
 19624
 19625
 19626
 19627
 19628
 19629
 19630
 19631
 19632
 19633
 19634
 19635
 19636
 19637
 19638
 19639
 19640
 19641
 19642
 19643
 19644
 19645
 19646
 19647
 19648
 19649
 19650
 19651
 19652
 19653
 19654
 19655
 19656
 19657
 19658
 19659
 19660
 19661
 19662
 19663
 19664
 19665
 19666
 19667
 19668
 19669
 19670
 19671
 19672
 19673
 19674
 19675
 19676
 19677
 19678
 19679
 19680
 19681
 19682
 19683
 19684
 19685
 19686
 19687
 19688
 19689
 19690
 19691
 19692
 19693
 19694
 19695
 19696
 19697
 19698
 19699
 19700
 19701
 19702
 19703
 19704
 19705
 19706
 19707
 19708
 19709
 19710
 19711
 19712
 19713
 19714
 19715
 19716
 19717
 19718
 19719
 19720
 19721
 19722
 19723
 19724
 19725
 19726
 19727
 19728
 19729
 19730
 19731
 19732
 19733
 19734
 19735
 19736
 19737
 19738
 19739
 19740
 19741
 19742
 19743
 19744
 19745
 19746
 19747
 19748
 19749
 19750
 19751
 19752
 19753
 19754
 19755
 19756
 19757
 19758
 19759
 19760
 19761
 19762
 19763
 19764
 19765
 19766
 19767
 19768
 19769
 19770
 19771
 19772
 19773
 19774
 19775
 19776
 19777
 19778
 19779
 19780
 19781
 19782
 19783
 19784
 19785
 19786
 19787
 19788
 19789
 19790
 19791
 19792
 19793
 19794
 19795
 19796
 19797
 19798
 19799
 19800
 19801
 19802
 19803
 19804
 19805
 19806
 19807
 19808
 19809
 19810
 19811
 19812
 19813
 19814
 19815
 19816
 19817
 19818
 19819
 19820
 19821
 19822
 19823
 19824
 19825
 19826
 19827
 19828
 19829
 19830
 19831
 19832
 19833
 19834
 19835
 19836
 19837
 19838
 19839
 19840
 19841
 19842
 19843
 19844
 19845
 19846
 19847
 19848
 19849
 19850
 19851
 19852
 19853
 19854
 19855
 19856
 19857
 19858
 19859
 19860
 19861
 19862
 19863
 19864
 19865
 19866
 19867
 19868
 19869
 19870
 19871
 19872
 19873
 19874
 19875
 19876
 19877
 19878
 19879
 19880
 19881
 19882
 19883
 19884
 19885
 19886
 19887
 19888
 19889
 19890
 19891
 19892
 19893
 19894
 19895
 19896
 19897
 19898
 19899
 19900
 19901
 19902
 19903
 19904
 19905
 19906
 19907
 19908
 19909
 19910
 19911
 19912
 19913
 19914
 19915
 19916
 19917
 19918
 19919
 19920
 19921
 19922
 19923
 19924
 19925
 19926
 19927
 19928
 19929
 19930
 19931
 19932
 19933
 19934
 19935
 19936
 19937
 19938
 19939
 19940
 19941
 19942
 19943
 19944
 19945
 19946
 19947
 19948
 19949
 19950
 19951
 19952
 19953
 19954
 19955
 19956
 19957
 19958
 19959
 19960
 19961
 19962
 19963
 19964
 19965
 19966
 19967
 19968
 19969
 19970
 19971
 19972
 19973
 19974
 19975
 19976
 19977
 19978
 19979
 19980
 19981
 19982
 19983
 19984
 19985
 19986
 19987
 19988
 19989
 19990
 19991
 19992
 19993
 19994
 19995
 19996
 19997
 19998
 19999
 20000
 20001
 20002
 20003
 20004
 20005
 20006
 20007
 20008
 20009
 20010
 20011
 20012
 20013
 20014
 20015
 20016
 20017
 20018
 20019
 20020
 20021
 20022
 20023
 20024
 20025
 20026
 20027
 20028
 20029
 20030
 20031
 20032
 20033
 20034
 20035
 20036
 20037
 20038
 20039
 20040
 20041
 20042
 20043
 20044
 20045
 20046
 20047
 20048
 20049
 20050
 20051
 20052
 20053
 20054
 20055
 20056
 20057
 20058
 20059
 20060
 20061
 20062
 20063
 20064
 20065
 20066
 20067
 20068
 20069
 20070
 20071
 20072
 20073
 20074
 20075
 20076
 20077
 20078
 20079
 20080
 20081
 20082
 20083
 20084
 20085
 20086
 20087
 20088
 20089
 20090
 20091
 20092
 20093
 20094
 20095
 20096
 20097
 20098
 20099
 20100
 20101
 20102
 20103
 20104
 20105
 20106
 20107
 20108
 20109
 20110
 20111
 20112
 20113
 20114
 20115
 20116
 20117
 20118
 20119
 20120
 20121
 20122
 20123
 20124
 20125
 20126
 20127
 20128
 20129
 20130
 20131
 20132
 20133
 20134
 20135
 20136
 20137
 20138
 20139
 20140
 20141
 20142
 20143
 20144
 20145
 20146
 20147
 20148
 20149
 20150
 20151
 20152
 20153
 20154
 20155
 20156
 20157
 20158
 20159
 20160
 20161
 20162
 20163
 20164
 20165
 20166
 20167
 20168
 20169
 20170
 20171
 20172
 20173
 20174
 20175
 20176
 20177
 20178
 20179
 20180
 20181
 20182
 20183
 20184
 20185
 20186
 20187
 20188
 20189
 20190
 20191
 20192
 20193
 20194
 20195
 20196
 20197
 20198
 20199
 20200
 20201
 20202
 20203
 20204
 20205
 20206
 20207
 20208
 20209
 20210
 20211
 20212
 20213
 20214
 20215
 20216
 20217
 20218
 20219
 20220
 20221
 20222
 20223
 20224
 20225
 20226
 20227
 20228
 20229
 20230
 20231
 20232
 20233
 20234
 20235
 20236
 20237
 20238
 20239
 20240
 20241
 20242
 20243
 20244
 20245
 20246
 20247
 20248
 20249
 20250
 20251
 20252
 20253
 20254
 20255
 20256
 20257
 20258
 20259
 20260
 20261
 20262
 20263
 20264
 20265
 20266
 20267
 20268
 20269
 20270
 20271
 20272
 20273
 20274
 20275
 20276
 20277
 20278
 20279
 20280
 20281
 20282
 20283
 20284
 20285
 20286
 20287
 20288
 20289
 20290
 20291
 20292
 20293
 20294
 20295
 20296
 20297
 20298
 20299
 20300
 20301
 20302
 20303
 20304
 20305
 20306
 20307
 20308
 20309
 20310
 20311
 20312
 20313
 20314
 20315
 20316
 20317
 20318
 20319
 20320
 20321
 20322
 20323
 20324
 20325
 20326
 20327
 20328
 20329
 20330
 20331
 20332
 20333
 20334
 20335
 20336
 20337
 20338
 20339
 20340
 20341
 20342
 20343
 20344
 20345
 20346
 20347
 20348
 20349
 20350
 20351
 20352
 20353
 20354
 20355
 20356
 20357
 20358
 20359
 20360
 20361
 20362
 20363
 20364
 20365
 20366
 20367
 20368
 20369
 20370
 20371
 20372
 20373
 20374
 20375
 20376
 20377
 20378
 20379
 20380
 20381
 20382
 20383
 20384
 20385
 20386
 20387
 20388
 20389
 20390
 20391
 20392
 20393
 20394
 20395
 20396
 20397
 20398
 20399
 20400
 20401
 20402
 20403
 20404
 20405
 20406
 20407
 20408
 20409
 20410
 20411
 20412
 20413
 20414
 20415
 20416
 20417
 20418
 20419
 20420
 20421
 20422
 20423
 20424
 20425
 20426
 20427
 20428
 20429
 20430
 20431
 20432
 20433
 20434
 20435
 20436
 20437
 20438
 20439
 20440
 20441
 20442
 20443
 20444
 20445
 20446
 20447
 20448
 20449
 20450
 20451
 20452
 20453
 20454
 20455
 20456
 20457
 20458
 20459
 20460
 20461
 20462
 20463
 20464
 20465
 20466
 20467
 20468
 20469
 20470
 20471
 20472
 20473
 20474
 20475
 20476
 20477
 20478
 20479
 20480
 20481
 20482
 20483
 20484
 20485
 20486
 20487
 20488
 20489
 20490
 20491
 20492
 20493
 20494
 20495
 20496
 20497
 20498
 20499
 20500
 20501
 20502
 20503
 20504
 20505
 20506
 20507
 20508
 20509
 20510
 20511
 20512
 20513
 20514
 20515
 20516
 20517
 20518
 20519
 20520
 20521
 20522
 20523
 20524
 20525
 20526
 20527
 20528
 20529
 20530
 20531
 20532
 20533
 20534
 20535
 20536
 20537
 20538
 20539
 20540
 20541
 20542
 20543
 20544
 20545
 20546
 20547
 20548
 20549
 20550
 20551
 20552
 20553
 20554
 20555
 20556
 20557
 20558
 20559
 20560
 20561
 20562
 20563
 20564
 20565
 20566
 20567
 20568
 20569
 20570
 20571
 20572
 20573
 20574
 20575
 20576
 20577
 20578
 20579
 20580
 20581
 20582
 20583
 20584
 20585
 20586
 20587
 20588
 20589
 20590
 20591
 20592
 20593
 20594
 20595
 20596
 20597
 20598
 20599
 20600
 20601
 20602
 20603
 20604
 20605
 20606
 20607
 20608
 20609
 20610
 20611
 20612
 20613
 20614
 20615
 20616
 20617
 20618
 20619
 20620
 20621
 20622
 20623
 20624
 20625
 20626
 20627
 20628
 20629
 20630
 20631
 20632
 20633
 20634
 20635
 20636
 20637
 20638
 20639
 20640
 20641
 20642
 20643
 20644
 20645
 20646
 20647
 20648
 20649
 20650
 20651
 20652
 20653
 20654
 20655
 20656
 20657
 20658
 20659
 20660
 20661
 20662
 20663
 20664
 20665
 20666
 20667
 20668
 20669
 20670
 20671
 20672
 20673
 20674
 20675
 20676
 20677
 20678
 20679
 20680
 20681
 20682
 20683
 20684
 20685
 20686
 20687
 20688
 20689
 20690
 20691
 20692
 20693
 20694
 20695
 20696
 20697
 20698
 20699
 20700
 20701
 20702
 20703
 20704
 20705
 20706
 20707
 20708
 20709
 20710
 20711
 20712
 20713
 20714
 20715
 20716
 20717
 20718
 20719
 20720
 20721
 20722
 20723
 20724
 20725
 20726
 20727
 20728
 20729
 20730
 20731
 20732
 20733
 20734
 20735
 20736
 20737
 20738
 20739
 20740
 20741
 20742
 20743
 20744
 20745
 20746
 20747
 20748
 20749
 20750
 20751
 20752
 20753
 20754
 20755
 20756
 20757
 20758
 20759
 20760
 20761
 20762
 20763
 20764
 20765
 20766
 20767
 20768
 20769
 20770
 20771
 20772
 20773
 20774
 20775
 20776
 20777
 20778
 20779
 20780
 20781
 20782
 20783
 20784
 20785
 20786
 20787
 20788
 20789
 20790
 20791
 20792
 20793
 20794
 20795
 20796
 20797
 20798
 20799
 20800
 20801
 20802
 20803
 20804
 20805
 20806
 20807
 20808
 20809
 20810
 20811
 20812
 20813
 20814
 20815
 20816
 20817
 20818
 20819
 20820
 20821
 20822
 20823
 20824
 20825
 20826
 20827
 20828
 20829
 20830
 20831
 20832
 20833
 20834
 20835
 20836
 20837
 20838
 20839
 20840
 20841
 20842
 20843
 20844
 20845
 20846
 20847
 20848
 20849
 20850
 20851
 20852
 20853
 20854
 20855
 20856
 20857
 20858
 20859
 20860
 20861
 20862
 20863
 20864
 20865
 20866
 20867
 20868
 20869
 20870
 20871
 20872
 20873
 20874
 20875
 20876
 20877
 20878
 20879
 20880
 20881
 20882
 20883
 20884
 20885
 20886
 20887
 20888
 20889
 20890
 20891
 20892
 20893
 20894
 20895
 20896
 20897
 20898
 20899
 20900
 20901
 20902
 20903
 20904
 20905
 20906
 20907
 20908
 20909
 20910
 20911
 20912
 20913
 20914
 20915
 20916
 20917
 20918
 20919
 20920
 20921
 20922
 20923
 20924
 20925
 20926
 20927
 20928
 20929
 20930
 20931
 20932
 20933
 20934
 20935
 20936
 20937
 20938
 20939
 20940
 20941
 20942
 20943
 20944
 20945
 20946
 20947
 20948
 20949
 20950
 20951
 20952
 20953
 20954
 20955
 20956
 20957
 20958
 20959
 20960
 20961
 20962
 20963
 20964
 20965
 20966
 20967
 20968
 20969
 20970
 20971
 20972
 20973
 20974
 20975
 20976
 20977
 20978
 20979
 20980
 20981
 20982
 20983
 20984
 20985
 20986
 20987
 20988
 20989
 20990
 20991
 20992
 20993
 20994
 20995
 20996
 20997
 20998
 20999
 21000
 21001
 21002
 21003
 21004
 21005
 21006
 21007
 21008
 21009
 21010
 21011
 21012
 21013
 21014
 21015
 21016
 21017
 21018
 21019
 21020
 21021
 21022
 21023
 21024
 21025
 21026
 21027
 21028
 21029
 21030
 21031
 21032
 21033
 21034
 21035
 21036
 21037
 21038
 21039
 21040
 21041
 21042
 21043
 21044
 21045
 21046
 21047
 21048
 21049
 21050
 21051
 21052
 21053
 21054
 21055
 21056
 21057
 21058
 21059
 21060
 21061
 21062
 21063
 21064
 21065
 21066
 21067
 21068
 21069
 21070
 21071
 21072
 21073
 21074
 21075
 21076
 21077
 21078
 21079
 21080
 21081
 21082
 21083
 21084
 21085
 21086
 21087
 21088
 21089
 21090
 21091
 21092
 21093
 21094
 21095
 21096
 21097
 21098
 21099
 21100
 21101
 21102
 21103
 21104
 21105
 21106
 21107
 21108
 21109
 21110
 21111
 21112
 21113
 21114
 21115
 21116
 21117
 21118
 21119
 21120
 21121
 21122
 21123
 21124
 21125
 21126
 21127
 21128
 21129
 21130
 21131
 21132
 21133
 21134
 21135
 21136
 21137
 21138
 21139
 21140
 21141
 21142
 21143
 21144
 21145
 21146
 21147
 21148
 21149
 21150
 21151
 21152
 21153
 21154
 21155
 21156
 21157
 21158
 21159
 21160
 21161
 21162
 21163
 21164
 21165
 21166
 21167
 21168
 21169
 21170
 21171
 21172
 21173
 21174
 21175
 21176
 21177
 21178
 21179
 21180
 21181
 21182
 21183
 21184
 21185
 21186
 21187
 21188
 21189
 21190
 21191
 21192
 21193
 21194
 21195
 21196
 21197
 21198
 21199
 21200
 21201
 21202
 21203
 21204
 21205
 21206
 21207
 21208
 21209
 21210
 21211
 21212
 21213
 21214
 21215
 21216
 21217
 21218
 21219
 21220
 21221
 21222
 21223
 21224
 21225
 21226
 21227
 21228
 21229
 21230
 21231
 21232
 21233
 21234
 21235
 21236
 21237
 21238
 21239
 21240
 21241
 21242
 21243
 21244
 21245
 21246
 21247
 21248
 21249
 21250
 21251
 21252
 21253
 21254
 21255
 21256
 21257
 21258
 21259
 21260
 21261
 21262
 21263
 21264
 21265
 21266
 21267
 21268
 21269
 21270
 21271
 21272
 21273
 21274
 21275
 21276
 21277
 21278
 21279
 21280
 21281
 21282
 21283
 21284
 21285
 21286
 21287
 21288
 21289
 21290
 21291
 21292
 21293
 21294
 21295
 21296
 21297
 21298
 21299
 21300
 21301
 21302
 21303
 21304
 21305
 21306
 21307
 21308
 21309
 21310
 21311
 21312
 21313
 21314
 21315
 21316
 21317
 21318
 21319
 21320
 21321
 21322
 21323
 21324
 21325
 21326
 21327
 21328
 21329
 21330
 21331
 21332
 21333
 21334
 21335
 21336
 21337
 21338
 21339
 21340
 21341
 21342
 21343
 21344
 21345
 21346
 21347
 21348
 21349
 21350
 21351
 21352
 21353
 21354
 21355
 21356
 21357
 21358
 21359
 21360
 21361
 21362
 21363
 21364
 21365
 21366
 21367
 21368
 21369
 21370
 21371
 21372
 21373
 21374
 21375
 21376
 21377
 21378
 21379
 21380
 21381
 21382
 21383
 21384
 21385
 21386
 21387
 21388
 21389
 21390
 21391
 21392
 21393
 21394
 21395
 21396
 21397
 21398
 21399
 21400
 21401
 21402
 21403
 21404
 21405
 21406
 21407
 21408
 21409
 21410
 21411
 21412
 21413
 21414
 21415
 21416
 21417
 21418
 21419
 21420
 21421
 21422
 21423
 21424
 21425
 21426
 21427
 21428
 21429
 21430
 21431
 21432
 21433
 21434
 21435
 21436
 21437
 21438
 21439
 21440
 21441
 21442
 21443
 21444
 21445
 21446
 21447
 21448
 21449
 21450
 21451
 21452
 21453
 21454
 21455
 21456
 21457
 21458
 21459
 21460
 21461
 21462
 21463
 21464
 21465
 21466
 21467
 21468
 21469
 21470
 21471
 21472
 21473
 21474
 21475
 21476
 21477
 21478
 21479
 21480
 21481
 21482
 21483
 21484
 21485
 21486
 21487
 21488
 21489
 21490
 21491
 21492
 21493
 21494
 21495
 21496
 21497
 21498
 21499
 21500
 21501
 21502
 21503
 21504
 21505
 21506
 21507
 21508
 21509
 21510
 21511
 21512
 21513
 21514
 21515
 21516
 21517
 21518
 21519
 21520
 21521
 21522
 21523
 21524
 21525
 21526
 21527
 21528
 21529
 21530
 21531
 21532
 21533
 21534
 21535
 21536
 21537
 21538
 21539
 21540
 21541
 21542
 21543
 21544
 21545
 21546
 21547
 21548
 21549
 21550
 21551
 21552
 21553
 21554
 21555
 21556
 21557
 21558
 21559
 21560
 21561
 21562
 21563
 21564
 21565
 21566
 21567
 21568
 21569
 21570
 21571
 21572
 21573
 21574
 21575
 21576
 21577
 21578
 21579
 21580
 21581
 21582
 21583
 21584
 21585
 21586
 21587
 21588
 21589
 21590
 21591
 21592
 21593
 21594
 21595
 21596
 21597
 21598
 21599
 21600
 21601
 21602
 21603
 21604
 21605
 21606
 21607
 21608
 21609
 21610
 21611
 21612
 21613
 21614
 21615
 21616
 21617
 21618
 21619
 21620
 21621
 21622
 21623
 21624
 21625
 21626
 21627
 21628
 21629
 21630
 21631
 21632
 21633
 21634
 21635
 21636
 21637
 21638
 21639
 21640
 21641
 21642
 21643
 21644
 21645
 21646
 21647
 21648
 21649
 21650
 21651
 21652
 21653
 21654
 21655
 21656
 21657
 21658
 21659
 21660
 21661
 21662
 21663
 21664
 21665
 21666
 21667
 21668
 21669
 21670
 21671
 21672
 21673
 21674
 21675
 21676
 21677
 21678
 21679
 21680
 21681
 21682
 21683
 21684
 21685
 21686
 21687
 21688
 21689
 21690
 21691
 21692
 21693
 21694
 21695
 21696
 21697
 21698
 21699
 21700
 21701
 21702
 21703
 21704
 21705
 21706
 21707
 21708
 21709
 21710
 21711
 21712
 21713
 21714
 21715
 21716
 21717
 21718
 21719
 21720
 21721
 21722
 21723
 21724
 21725
 21726
 21727
 21728
 21729
 21730
 21731
 21732
 21733
 21734
 21735
 21736
 21737
 21738
 21739
 21740
 21741
 21742
 21743
 21744
 21745
 21746
 21747
 21748
 21749
 21750
 21751
 21752
 21753
 21754
 21755
 21756
 21757
 21758
 21759
 21760
 21761
 21762
 21763
 21764
 21765
 21766
 21767
 21768
 21769
 21770
 21771
 21772
 21773
 21774
 21775
 21776
 21777
 21778
 21779
 21780
 21781
 21782
 21783
 21784
 21785
 21786
 21787
 21788
 21789
 21790
 21791
 21792
 21793
 21794
 21795
 21796
 21797
 21798
 21799
 21800
 21801
 21802
 21803
 21804
 21805
 21806
 21807
 21808
 21809
 21810
 21811
 21812
 21813
 21814
 21815
 21816
 21817
 21818
 21819
 21820
 21821
 21822
 21823
 21824
 21825
 21826
 21827
 21828
 21829
 21830
 21831
 21832
 21833
 21834
 21835
 21836
 21837
 21838
 21839
 21840
 21841
 21842
 21843
 21844
 21845
 21846
 21847
 21848
 21849
 21850
 21851
 21852
 21853
 21854
 21855
 21856
 21857
 21858
 21859
 21860
 21861
 21862
 21863
 21864
 21865
 21866
 21867
 21868
 21869
 21870
 21871
 21872
 21873
 21874
 21875
 21876
 21877
 21878
 21879
 21880
 21881
 21882
 21883
 21884
 21885
 21886
 21887
 21888
 21889
 21890
 21891
 21892
 21893
 21894
 21895
 21896
 21897
 21898
 21899
 21900
 21901
 21902
 21903
 21904
 21905
 21906
 21907
 21908
 21909
 21910
 21911
 21912
 21913
 21914
 21915
 21916
 21917
 21918
 21919
 21920
 21921
 21922
 21923
 21924
 21925
 21926
 21927
 21928
 21929
 21930
 21931
 21932
 21933
 21934
 21935
 21936
 21937
 21938
 21939
 21940
 21941
 21942
 21943
 21944
 21945
 21946
 21947
 21948
 21949
 21950
 21951
 21952
 21953
 21954
 21955
 21956
 21957
 21958
 21959
 21960
 21961
 21962
 21963
 21964
 21965
 21966
 21967
 21968
 21969
 21970
 21971
 21972
 21973
 21974
 21975
 21976
 21977
 21978
 21979
 21980
 21981
 21982
 21983
 21984
 21985
 21986
 21987
 21988
 21989
 21990
 21991
 21992
 21993
 21994
 21995
 21996
 21997
 21998
 21999
 22000
 22001
 22002
 22003
 22004
 22005
 22006
 22007
 22008
 22009
 22010
 22011
 22012
 22013
 22014
 22015
 22016
 22017
 22018
 22019
 22020
 22021
 22022
 22023
 22024
 22025
 22026
 22027
 22028
 22029
 22030
 22031
 22032
 22033
 22034
 22035
 22036
 22037
 22038
 22039
 22040
 22041
 22042
 22043
 22044
 22045
 22046
 22047
 22048
 22049
 22050
 22051
 22052
 22053
 22054
 22055
 22056
 22057
 22058
 22059
 22060
 22061
 22062
 22063
 22064
 22065
 22066
 22067
 22068
 22069
 22070
 22071
 22072
 22073
 22074
 22075
 22076
 22077
 22078
 22079
 22080
 22081
 22082
 22083
 22084
 22085
 22086
 22087
 22088
 22089
 22090
 22091
 22092
 22093
 22094
 22095
 22096
 22097
 22098
 22099
 22100
 22101
 22102
 22103
 22104
 22105
 22106
 22107
 22108
 22109
 22110
 22111
 22112
 22113
 22114
 22115
 22116
 22117
 22118
 22119
 22120
 22121
 22122
 22123
 22124
 22125
 22126
 22127
 22128
 22129
 22130
 22131
 22132
 22133
 22134
 22135
 22136
 22137
 22138
 22139
 22140
 22141
 22142
 22143
 22144
 22145
 22146
 22147
 22148
 22149
 22150
 22151
 22152
 22153
 22154
 22155
 22156
 22157
 22158
 22159
 22160
 22161
 22162
 22163
 22164
 22165
 22166
 22167
 22168
 22169
 22170
 22171
 22172
 22173
 22174
 22175
 22176
 22177
 22178
 22179
 22180
 22181
 22182
 22183
 22184
 22185
 22186
 22187
 22188
 22189
 22190
 22191
 22192
 22193
 22194
 22195
 22196
 22197
 22198
 22199
 22200
 22201
 22202
 22203
 22204
 22205
 22206
 22207
 22208
 22209
 22210
 22211
 22212
 22213
 22214
 22215
 22216
 22217
 22218
 22219
 22220
 22221
 22222
 22223
 22224
 22225
 22226
 22227
 22228
 22229
 22230
 22231
 22232
 22233
 22234
 22235
 22236
 22237
 22238
 22239
 22240
 22241
 22242
 22243
 22244
 22245
 22246
 22247
 22248
 22249
 22250
 22251
 22252
 22253
 22254
 22255
 22256
 22257
 22258
 22259
 22260
 22261
 22262
 22263
 22264
 22265
 22266
 22267
 22268
 22269
 22270
 22271
 22272
 22273
 22274
 22275
 22276
 22277
 22278
 22279
 22280
 22281
 22282
 22283
 22284
 22285
 22286
 22287
 22288
 22289
 22290
 22291
 22292
 22293
 22294
 22295
 22296
 22297
 22298
 22299
 22300
 22301
 22302
 22303
 22304
 22305
 22306
 22307
 22308
 22309
 22310
 22311
 22312
 22313
 22314
 22315
 22316
 22317
 22318
 22319
 22320
 22321
 22322
 22323
 22324
 22325
 22326
 22327
 22328
 22329
 22330
 22331
 22332
 22333
 22334
 22335
 22336
 22337
 22338
 22339
 22340
 22341
 22342
 22343
 22344
 22345
 22346
 22347
 22348
 22349
 22350
 22351
 22352
 22353
 22354
 22355
 22356
 22357
 22358
 22359
 22360
 22361
 22362
 22363
 22364
 22365
 22366
 22367
 22368
 22369
 22370
 22371
 22372
 22373
 22374
 22375
 22376
 22377
 22378
 22379
 22380
 22381
 22382
 22383
 22384
 22385
 22386
 22387
 22388
 22389
 22390
 22391
 22392
 22393
 22394
 22395
 22396
 22397
 22398
 22399
 22400
 22401
 22402
 22403
 22404
 22405
 22406
 22407
 22408
 22409
 22410
 22411
 22412
 22413
 22414
 22415
 22416
 22417
 22418
 22419
 22420
 22421
 22422
 22423
 22424
 22425
 22426
 22427
 22428
 22429
 22430
 22431
 22432
 22433
 22434
 22435
 22436
 22437
 22438
 22439
 22440
 22441
 22442
 22443
 22444
 22445
 22446
 22447
 22448
 22449
 22450
 22451
 22452
 22453
 22454
 22455
 22456
 22457
 22458
 22459
 22460
 22461
 22462
 22463
 22464
 22465
 22466
 22467
 22468
 22469
 22470
 22471
 22472
 22473
 22474
 22475
 22476
 22477
 22478
 22479
 22480
 22481
 22482
 22483
 22484
 22485
 22486
 22487
 22488
 22489
 22490
 22491
 22492
 22493
 22494
 22495
 22496
 22497
 22498
 22499
 22500
 22501
 22502
 22503
 22504
 22505
 22506
 22507
 22508
 22509
 22510
 22511
 22512
 22513
 22514
 22515
 22516
 22517
 22518
 22519
 22520
 22521
 22522
 22523
 22524
 22525
 22526
 22527
 22528
 22529
 22530
 22531
 22532
 22533
 22534
 22535
 22536
 22537
 22538
 22539
 22540
 22541
 22542
 22543
 22544
 22545
 22546
 22547
 22548
 22549
 22550
 22551
 22552
 22553
 22554
 22555
 22556
 22557
 22558
 22559
 22560
 22561
 22562
 22563
 22564
 22565
 22566
 22567
 22568
 22569
 22570
 22571
 22572
 22573
 22574
 22575
 22576
 22577
 22578
 22579
 22580
 22581
 22582
 22583
 22584
 22585
 22586
 22587
 22588
 22589
 22590
 22591
 22592
 22593
 22594
 22595
 22596
 22597
 22598
 22599
 22600
 22601
 22602
 22603
 22604
 22605
 22606
 22607
 22608
 22609
 22610
 22611
 22612
 22613
 22614
 22615
 22616
 22617
 22618
 22619
 22620
 22621
 22622
 22623
 22624
 22625
 22626
 22627
 22628
 22629
 22630
 22631
 22632
 22633
 22634
 22635
 22636
 22637
 22638
 22639
 22640
 22641
 22642
 22643
 22644
 22645
 22646
 22647
 22648
 22649
 22650
 22651
 22652
 22653
 22654
 22655
 22656
 22657
 22658
 22659
 22660
 22661
 22662
 22663
 22664
 22665
 22666
 22667
 22668
 22669
 22670
 22671
 22672
 22673
 22674
 22675
 22676
 22677
 22678
 22679
 22680
 22681
 22682
 22683
 22684
 22685
 22686
 22687
 22688
 22689
 22690
 22691
 22692
 22693
 22694
 22695
 22696
 22697
 22698
 22699
 22700
 22701
 22702
 22703
 22704
 22705
 22706
 22707
 22708
 22709
 22710
 22711
 22712
 22713
 22714
 22715
 22716
 22717
 22718
 22719
 22720
 22721
 22722
 22723
 22724
 22725
 22726
 22727
 22728
 22729
 22730
 22731
 22732
 22733
 22734
 22735
 22736
 22737
 22738
 22739
 22740
 22741
 22742
 22743
 22744
 22745
 22746
 22747
 22748
 22749
 22750
 22751
 22752
 22753
 22754
 22755
 22756
 22757
 22758
 22759
 22760
 22761
 22762
 22763
 22764
 22765
 22766
 22767
 22768
 22769
 22770
 22771
 22772
 22773
 22774
 22775
 22776
 22777
 22778
 22779
 22780
 22781
 22782
 22783
 22784
 22785
 22786
 22787
 22788
 22789
 22790
 22791
 22792
 22793
 22794
 22795
 22796
 22797
 22798
 22799
 22800
 22801
 22802
 22803
 22804
 22805
 22806
 22807
 22808
 22809
 22810
 22811
 22812
 22813
 22814
 22815
 22816
 22817
 22818
 22819
 22820
 22821
 22822
 22823
 22824
 22825
 22826
 22827
 22828
 22829
 22830
 22831
 22832
 22833
 22834
 22835
 22836
 22837
 22838
 22839
 22840
 22841
 22842
 22843
 22844
 22845
 22846
 22847
 22848
 22849
 22850
 22851
 22852
 22853
 22854
 22855
 22856
 22857
 22858
 22859
 22860
 22861
 22862
 22863
 22864
 22865
 22866
 22867
 22868
 22869
 22870
 22871
 22872
 22873
 22874
 22875
 22876
 22877
 22878
 22879
 22880
 22881
 22882
 22883
 22884
 22885
 22886
 22887
 22888
 22889
 22890
 22891
 22892
 22893
 22894
 22895
 22896
 22897
 22898
 22899
 22900
 22901
 22902
 22903
 22904
 22905
 22906
 22907
 22908
 22909
 22910
 22911
 22912
 22913
 22914
 22915
 22916
 22917
 22918
 22919
 22920
 22921
 22922
 22923
 22924
 22925
 22926
 22927
 22928
 22929
 22930
 22931
 22932
 22933
 22934
 22935
 22936
 22937
 22938
 22939
 22940
 22941
 22942
 22943
 22944
 22945
 22946
 22947
 22948
 22949
 22950
 22951
 22952
 22953
 22954
 22955
 22956
 22957
 22958
 22959
 22960
 22961
 22962
 22963
 22964
 22965
 22966
 22967
 22968
 22969
 22970
 22971
 22972
 22973
 22974
 22975
 22976
 22977
 22978
 22979
 22980
 22981
 22982
 22983
 22984
 22985
 22986
 22987
 22988
 22989
 22990
 22991
 22992
 22993
 22994
 22995
 22996
 22997
 22998
 22999
 23000
 23001
 23002
 23003
 23004
 23005
 23006
 23007
 23008
 23009
 23010
 23011
 23012
 23013
 23014
 23015
 23016
 23017
 23018
 23019
 23020
 23021
 23022
 23023
 23024
 23025
 23026
 23027
 23028
 23029
 23030
 23031
 23032
 23033
 23034
 23035
 23036
 23037
 23038
 23039
 23040
 23041
 23042
 23043
 23044
 23045
 23046
 23047
 23048
 23049
 23050
 23051
 23052
 23053
 23054
 23055
 23056
 23057
 23058
 23059
 23060
 23061
 23062
 23063
 23064
 23065
 23066
 23067
 23068
 23069
 23070
 23071
 23072
 23073
 23074
 23075
 23076
 23077
 23078
 23079
 23080
 23081
 23082
 23083
 23084
 23085
 23086
 23087
 23088
 23089
 23090
 23091
 23092
 23093
 23094
 23095
 23096
 23097
 23098
 23099
 23100
 23101
 23102
 23103
 23104
 23105
 23106
 23107
 23108
 23109
 23110
 23111
 23112
 23113
 23114
 23115
 23116
 23117
 23118
 23119
 23120
 23121
 23122
 23123
 23124
 23125
 23126
 23127
 23128
 23129
 23130
 23131
 23132
 23133
 23134
 23135
 23136
 23137
 23138
 23139
 23140
 23141
 23142
 23143
 23144
 23145
 23146
 23147
 23148
 23149
 23150
 23151
 23152
 23153
 23154
 23155
 23156
 23157
 23158
 23159
 23160
 23161
 23162
 23163
 23164
 23165
 23166
 23167
 23168
 23169
 23170
 23171
 23172
 23173
 23174
 23175
 23176
 23177
 23178
 23179
 23180
 23181
 23182
 23183
 23184
 23185
 23186
 23187
 23188
 23189
 23190
 23191
 23192
 23193
 23194
 23195
 23196
 23197
 23198
 23199
 23200
 23201
 23202
 23203
 23204
 23205
 23206
 23207
 23208
 23209
 23210
 23211
 23212
 23213
 23214
 23215
 23216
 23217
 23218
 23219
 23220
 23221
 23222
 23223
 23224
 23225
 23226
 23227
 23228
 23229
 23230
 23231
 23232
 23233
 23234
 23235
 23236
 23237
 23238
 23239
 23240
 23241
 23242
 23243
 23244
 23245
 23246
 23247
 23248
 23249
 23250
 23251
 23252
 23253
 23254
 23255
 23256
 23257
 23258
 23259
 23260
 23261
 23262
 23263
 23264
 23265
 23266
 23267
 23268
 23269
 23270
 23271
 23272
 23273
 23274
 23275
 23276
 23277
 23278
 23279
 23280
 23281
 23282
 23283
 23284
 23285
 23286
 23287
 23288
 23289
 23290
 23291
 23292
 23293
 23294
 23295
 23296
 23297
 23298
 23299
 23300
 23301
 23302
 23303
 23304
 23305
 23306
 23307
 23308
 23309
 23310
 23311
 23312
 23313
 23314
 23315
 23316
 23317
 23318
 23319
 23320
 23321
 23322
 23323
 23324
 23325
 23326
 23327
 23328
 23329
 23330
 23331
 23332
 23333
 23334
 23335
 23336
 23337
 23338
 23339
 23340
 23341
 23342
 23343
 23344
 23345
 23346
 23347
 23348
 23349
 23350
 23351
 23352
 23353
 23354
 23355
 23356
 23357
 23358
 23359
 23360
 23361
 23362
 23363
 23364
 23365
 23366
 23367
 23368
 23369
 23370
 23371
 23372
 23373
 23374
 23375
 23376
 23377
 23378
 23379
 23380
 23381
 23382
 23383
 23384
 23385
 23386
 23387
 23388
 23389
 23390
 23391
 23392
 23393
 23394
 23395
 23396
 23397
 23398
 23399
 23400
 23401
 23402
 23403
 23404
 23405
 23406
 23407
 23408
 23409
 23410
 23411
 23412
 23413
 23414
 23415
 23416
 23417
 23418
 23419
 23420
 23421
 23422
 23423
 23424
 23425
 23426
 23427
 23428
 23429
 23430
 23431
 23432
 23433
 23434
 23435
 23436
 23437
 23438
 23439
 23440
 23441
 23442
 23443
 23444
 23445
 23446
 23447
 23448
 23449
 23450
 23451
 23452
 23453
 23454
 23455
 23456
 23457
 23458
 23459
 23460
 23461
 23462
 23463
 23464
 23465
 23466
 23467
 23468
 23469
 23470
 23471
 23472
 23473
 23474
 23475
 23476
 23477
 23478
 23479
 23480
 23481
 23482
 23483
 23484
 23485
 23486
 23487
 23488
 23489
 23490
 23491
 23492
 23493
 23494
 23495
 23496
 23497
 23498
 23499
 23500
 23501
 23502
 23503
 23504
 23505
 23506
 23507
 23508
 23509
 23510
 23511
 23512
 23513
 23514
 23515
 23516
 23517
 23518
 23519
 23520
 23521
 23522
 23523
 23524
 23525
 23526
 23527
 23528
 23529
 23530
 23531
 23532
 23533
 23534
 23535
 23536
 23537
 23538
 23539
 23540
 23541
 23542
 23543
 23544
 23545
 23546
 23547
 23548
 23549
 23550
 23551
 23552
 23553
 23554
 23555
 23556
 23557
 23558
 23559
 23560
 23561
 23562
 23563
 23564
 23565
 23566
 23567
 23568
 23569
 23570
 23571
 23572
 23573
 23574
 23575
 23576
 23577
 23578
 23579
 23580
 23581
 23582
 23583
 23584
 23585
 23586
 23587
 23588
 23589
 23590
 23591
 23592
 23593
 23594
 23595
 23596
 23597
 23598
 23599
 23600
 23601
 23602
 23603
 23604
 23605
 23606
 23607
 23608
 23609
 23610
 23611
 23612
 23613
 23614
 23615
 23616
 23617
 23618
 23619
 23620
 23621
 23622
 23623
 23624
 23625
 23626
 23627
 23628
 23629
 23630
 23631
 23632
 23633
 23634
 23635
 23636
 23637
 23638
 23639
 23640
 23641
 23642
 23643
 23644
 23645
 23646
 23647
 23648
 23649
 23650
 23651
 23652
 23653
 23654
 23655
 23656
 23657
 23658
 23659
 23660
 23661
 23662
 23663
 23664
 23665
 23666
 23667
 23668
 23669
 23670
 23671
 23672
 23673
 23674
 23675
 23676
 23677
 23678
 23679
 23680
 23681
 23682
 23683
 23684
 23685
 23686
 23687
 23688
 23689
 23690
 23691
 23692
 23693
 23694
 23695
 23696
 23697
 23698
 23699
 23700
 23701
 23702
 23703
 23704
 23705
 23706
 23707
 23708
 23709
 23710
 23711
 23712
 23713
 23714
 23715
 23716
 23717
 23718
 23719
 23720
 23721
 23722
 23723
 23724
 23725
 23726
 23727
 23728
 23729
 23730
 23731
 23732
 23733
 23734
 23735
 23736
 23737
 23738
 23739
 23740
 23741
 23742
 23743
 23744
 23745
 23746
 23747
 23748
 23749
 23750
 23751
 23752
 23753
 23754
 23755
 23756
 23757
 23758
 23759
 23760
 23761
 23762
 23763
 23764
 23765
 23766
 23767
 23768
 23769
 23770
 23771
 23772
 23773
 23774
 23775
 23776
 23777
 23778
 23779
 23780
 23781
 23782
 23783
 23784
 23785
 23786
 23787
 23788
 23789
 23790
 23791
 23792
 23793
 23794
 23795
 23796
 23797
 23798
 23799
 23800
 23801
 23802
 23803
 23804
 23805
 23806
 23807
 23808
 23809
 23810
 23811
 23812
 23813
 23814
 23815
 23816
 23817
 23818
 23819
 23820
 23821
 23822
 23823
 23824
 23825
 23826
 23827
 23828
 23829
 23830
 23831
 23832
 23833
 23834
 23835
 23836
 23837
 23838
 23839
 23840
 23841
 23842
 23843
 23844
 23845
 23846
 23847
 23848
 23849
 23850
 23851
 23852
 23853
 23854
 23855
 23856
 23857
 23858
 23859
 23860
 23861
 23862
 23863
 23864
 23865
 23866
 23867
 23868
 23869
 23870
 23871
 23872
 23873
 23874
 23875
 23876
 23877
 23878
 23879
 23880
 23881
 23882
 23883
 23884
 23885
 23886
 23887
 23888
 23889
 23890
 23891
 23892
 23893
 23894
 23895
 23896
 23897
 23898
 23899
 23900
 23901
 23902
 23903
 23904
 23905
 23906
 23907
 23908
 23909
 23910
 23911
 23912
 23913
 23914
 23915
 23916
 23917
 23918
 23919
 23920
 23921
 23922
 23923
 23924
 23925
 23926
 23927
 23928
 23929
 23930
 23931
 23932
 23933
 23934
 23935
 23936
 23937
 23938
 23939
 23940
 23941
 23942
 23943
 23944
 23945
 23946
 23947
 23948
 23949
 23950
 23951
 23952
 23953
 23954
 23955
 23956
 23957
 23958
 23959
 23960
 23961
 23962
 23963
 23964
 23965
 23966
 23967
 23968
 23969
 23970
 23971
 23972
 23973
 23974
 23975
 23976
 23977
 23978
 23979
 23980
 23981
 23982
 23983
 23984
 23985
 23986
 23987
 23988
 23989
 23990
 23991
 23992
 23993
 23994
 23995
 23996
 23997
 23998
 23999
 24000
 24001
 24002
 24003
 24004
 24005
 24006
 24007
 24008
 24009
 24010
 24011
 24012
 24013
 24014
 24015
 24016
 24017
 24018
 24019
 24020
 24021
 24022
 24023
 24024
 24025
 24026
 24027
 24028
 24029
 24030
 24031
 24032
 24033
 24034
 24035
 24036
 24037
 24038
 24039
 24040
 24041
 24042
 24043
 24044
 24045
 24046
 24047
 24048
 24049
 24050
 24051
 24052
 24053
 24054
 24055
 24056
 24057
 24058
 24059
 24060
 24061
 24062
 24063
 24064
 24065
 24066
 24067
 24068
 24069
 24070
 24071
 24072
 24073
 24074
 24075
 24076
 24077
 24078
 24079
 24080
 24081
 24082
 24083
 24084
 24085
 24086
 24087
 24088
 24089
 24090
 24091
 24092
 24093
 24094
 24095
 24096
 24097
 24098
 24099
 24100
 24101
 24102
 24103
 24104
 24105
 24106
 24107
 24108
 24109
 24110
 24111
 24112
 24113
 24114
 24115
 24116
 24117
 24118
 24119
 24120
 24121
 24122
 24123
 24124
 24125
 24126
 24127
 24128
 24129
 24130
 24131
 24132
 24133
 24134
 24135
 24136
 24137
 24138
 24139
 24140
 24141
 24142
 24143
 24144
 24145
 24146
 24147
 24148
 24149
 24150
 24151
 24152
 24153
 24154
 24155
 24156
 24157
 24158
 24159
 24160
 24161
 24162
 24163
 24164
 24165
 24166
 24167
 24168
 24169
 24170
 24171
 24172
 24173
 24174
 24175
 24176
 24177
 24178
 24179
 24180
 24181
 24182
 24183
 24184
 24185
 24186
 24187
 24188
 24189
 24190
 24191
 24192
 24193
 24194
 24195
 24196
 24197
 24198
 24199
 24200
 24201
 24202
 24203
 24204
 24205
 24206
 24207
 24208
 24209
 24210
 24211
 24212
 24213
 24214
 24215
 24216
 24217
 24218
 24219
 24220
 24221
 24222
 24223
 24224
 24225
 24226
 24227
 24228
 24229
 24230
 24231
 24232
 24233
 24234
 24235
 24236
 24237
 24238
 24239
 24240
 24241
 24242
 24243
 24244
 24245
 24246
 24247
 24248
 24249
 24250
 24251
 24252
 24253
 24254
 24255
 24256
 24257
 24258
 24259
 24260
 24261
 24262
 24263
 24264
 24265
 24266
 24267
 24268
 24269
 24270
 24271
 24272
 24273
 24274
 24275
 24276
 24277
 24278
 24279
 24280
 24281
 24282
 24283
 24284
 24285
 24286
 24287
 24288
 24289
 24290
 24291
 24292
 24293
 24294
 24295
 24296
 24297
 24298
 24299
 24300
 24301
 24302
 24303
 24304
 24305
 24306
 24307
 24308
 24309
 24310
 24311
 24312
 24313
 24314
 24315
 24316
 24317
 24318
 24319
 24320
 24321
 24322
 24323
 24324
 24325
 24326
 24327
 24328
 24329
 24330
 24331
 24332
 24333
 24334
 24335
 24336
 24337
 24338
 24339
 24340
 24341
 24342
 24343
 24344
 24345
 24346
 24347
 24348
 24349
 24350
 24351
 24352
 24353
 24354
 24355
 24356
 24357
 24358
 24359
 24360
 24361
 24362
 24363
 24364
 24365
 24366
 24367
 24368
 24369
 24370
 24371
 24372
 24373
 24374
 24375
 24376
 24377
 24378
 24379
 24380
 24381
 24382
 24383
 24384
 24385
 24386
 24387
 24388
 24389
 24390
 24391
 24392
 24393
 24394
 24395
 24396
 24397
 24398
 24399
 24400
 24401
 24402
 24403
 24404
 24405
 24406
 24407
 24408
 24409
 24410
 24411
 24412
 24413
 24414
 24415
 24416
 24417
 24418
 24419
 24420
 24421
 24422
 24423
 24424
 24425
 24426
 24427
 24428
 24429
 24430
 24431
 24432
 24433
 24434
 24435
 24436
 24437
 24438
 24439
 24440
 24441
 24442
 24443
 24444
 24445
 24446
 24447
 24448
 24449
 24450
 24451
 24452
 24453
 24454
 24455
 24456
 24457
 24458
 24459
 24460
 24461
 24462
 24463
 24464
 24465
 24466
 24467
 24468
 24469
 24470
 24471
 24472
 24473
 24474
 24475
 24476
 24477
 24478
 24479
 24480
 24481
 24482
 24483
 24484
 24485
 24486
 24487
 24488
 24489
 24490
 24491
 24492
 24493
 24494
 24495
 24496
 24497
 24498
 24499
 24500
 24501
 24502
 24503
 24504
 24505
 24506
 24507
 24508
 24509
 24510
 24511
 24512
 24513
 24514
 24515
 24516
 24517
 24518
 24519
 24520
 24521
 24522
 24523
 24524
 24525
 24526
 24527
 24528
 24529
 24530
 24531
 24532
 24533
 24534
 24535
 24536
 24537
 24538
 24539
 24540
 24541
 24542
 24543
 24544
 24545
 24546
 24547
 24548
 24549
 24550
 24551
 24552
 24553
 24554
 24555
 24556
 24557
 24558
 24559
 24560
 24561
 24562
 24563
 24564
 24565
 24566
 24567
 24568
 24569
 24570
 24571
 24572
 24573
 24574
 24575
 24576
 24577
 24578
 24579
 24580
 24581
 24582
 24583
 24584
 24585
 24586
 24587
 24588
 24589
 24590
 24591
 24592
 24593
 24594
 24595
 24596
 24597
 24598
 24599
 24600
 24601
 24602
 24603
 24604
 24605
 24606
 24607
 24608
 24609
 24610
 24611
 24612
 24613
 24614
 24615
 24616
 24617
 24618
 24619
 24620
 24621
 24622
 24623
 24624
 24625
 24626
 24627
 24628
 24629
 24630
 24631
 24632
 24633
 24634
 24635
 24636
 24637
 24638
 24639
 24640
 24641
 24642
 24643
 24644
 24645
 24646
 24647
 24648
 24649
 24650
 24651
 24652
 24653
 24654
 24655
 24656
 24657
 24658
 24659
 24660
 24661
 24662
 24663
 24664
 24665
 24666
 24667
 24668
 24669
 24670
 24671
 24672
 24673
 24674
 24675
 24676
 24677
 24678
 24679
 24680
 24681
 24682
 24683
 24684
 24685
 24686
 24687
 24688
 24689
 24690
 24691
 24692
 24693
 24694
 24695
 24696
 24697
 24698
 24699
 24700
 24701
 24702
 24703
 24704
 24705
 24706
 24707
 24708
 24709
 24710
 24711
 24712
 24713
 24714
 24715
 24716
 24717
 24718
 24719
 24720
 24721
 24722
 24723
 24724
 24725
 24726
 24727
 24728
 24729
 24730
 24731
 24732
 24733
 24734
 24735
 24736
 24737
 24738
 24739
 24740
 24741
 24742
 24743
 24744
 24745
 24746
 24747
 24748
 24749
 24750
 24751
 24752
 24753
 24754
 24755
 24756
 24757
 24758
 24759
 24760
 24761
 24762
 24763
 24764
 24765
 24766
 24767
 24768
 24769
 24770
 24771
 24772
 24773
 24774
 24775
 24776
 24777
 24778
 24779
 24780
 24781
 24782
 24783
 24784
 24785
 24786
 24787
 24788
 24789
 24790
 24791
 24792
 24793
 24794
 24795
 24796
 24797
 24798
 24799
 24800
 24801
 24802
 24803
 24804
 24805
 24806
 24807
 24808
 24809
 24810
 24811
 24812
 24813
 24814
 24815
 24816
 24817
 24818
 24819
 24820
 24821
 24822
 24823
 24824
 24825
 24826
 24827
 24828
 24829
 24830
 24831
 24832
 24833
 24834
 24835
 24836
 24837
 24838
 24839
 24840
 24841
 24842
 24843
 24844
 24845
 24846
 24847
 24848
 24849
 24850
 24851
 24852
 24853
 24854
 24855
 24856
 24857
 24858
 24859
 24860
 24861
 24862
 24863
 24864
 24865
 24866
 24867
 24868
 24869
 24870
 24871
 24872
 24873
 24874
 24875
 24876
 24877
 24878
 24879
 24880
 24881
 24882
 24883
 24884
 24885
 24886
 24887
 24888
 24889
 24890
 24891
 24892
 24893
 24894
 24895
 24896
 24897
 24898
 24899
 24900
 24901
 24902
 24903
 24904
 24905
 24906
 24907
 24908
 24909
 24910
 24911
 24912
 24913
 24914
 24915
 24916
 24917
 24918
 24919
 24920
 24921
 24922
 24923
 24924
 24925
 24926
 24927
 24928
 24929
 24930
 24931
 24932
 24933
 24934
 24935
 24936
 24937
 24938
 24939
 24940
 24941
 24942
 24943
 24944
 24945
 24946
 24947
 24948
 24949
 24950
 24951
 24952
 24953
 24954
 24955
 24956
 24957
 24958
 24959
 24960
 24961
 24962
 24963
 24964
 24965
 24966
 24967
 24968
 24969
 24970
 24971
 24972
 24973
 24974
 24975
 24976
 24977
 24978
 24979
 24980
 24981
 24982
 24983
 24984
 24985
 24986
 24987
 24988
 24989
 24990
 24991
 24992
 24993
 24994
 24995
 24996
 24997
 24998
 24999
 25000
 25001
 25002
 25003
 25004
 25005
 25006
 25007
 25008
 25009
 25010
 25011
 25012
 25013
 25014
 25015
 25016
 25017
 25018
 25019
 25020
 25021
 25022
 25023
 25024
 25025
 25026
 25027
 25028
 25029
 25030
 25031
 25032
 25033
 25034
 25035
 25036
 25037
 25038
 25039
 25040
 25041
 25042
 25043
 25044
 25045
 25046
 25047
 25048
 25049
 25050
 25051
 25052
 25053
 25054
 25055
 25056
 25057
 25058
 25059
 25060
 25061
 25062
 25063
 25064
 25065
 25066
 25067
 25068
 25069
 25070
 25071
 25072
 25073
 25074
 25075
 25076
 25077
 25078
 25079
 25080
 25081
 25082
 25083
 25084
 25085
 25086
 25087
 25088
 25089
 25090
 25091
 25092
 25093
 25094
 25095
 25096
 25097
 25098
 25099
 25100
 25101
 25102
 25103
 25104
 25105
 25106
 25107
 25108
 25109
 25110
 25111
 25112
 25113
 25114
 25115
 25116
 25117
 25118
 25119
 25120
 25121
 25122
 25123
 25124
 25125
 25126
 25127
 25128
 25129
 25130
 25131
 25132
 25133
 25134
 25135
 25136
 25137
 25138
 25139
 25140
 25141
 25142
 25143
 25144
 25145
 25146
 25147
 25148
 25149
 25150
 25151
 25152
 25153
 25154
 25155
 25156
 25157
 25158
 25159
 25160
 25161
 25162
 25163
 25164
 25165
 25166
 25167
 25168
 25169
 25170
 25171
 25172
 25173
 25174
 25175
 25176
 25177
 25178
 25179
 25180
 25181
 25182
 25183
 25184
 25185
 25186
 25187
 25188
 25189
 25190
 25191
 25192
 25193
 25194
 25195
 25196
 25197
 25198
 25199
 25200
 25201
 25202
 25203
 25204
 25205
 25206
 25207
 25208
 25209
 25210
 25211
 25212
 25213
 25214
 25215
 25216
 25217
 25218
 25219
 25220
 25221
 25222
 25223
 25224
 25225
 25226
 25227
 25228
 25229
 25230
 25231
 25232
 25233
 25234
 25235
 25236
 25237
 25238
 25239
 25240
 25241
 25242
 25243
 25244
 25245
 25246
 25247
 25248
 25249
 25250
 25251
 25252
 25253
 25254
 25255
 25256
 25257
 25258
 25259
 25260
 25261
 25262
 25263
 25264
 25265
 25266
 25267
 25268
 25269
 25270
 25271
 25272
 25273
 25274
 25275
 25276
 25277
 25278
 25279
 25280
 25281
 25282
 25283
 25284
 25285
 25286
 25287
 25288
 25289
 25290
 25291
 25292
 25293
 25294
 25295
 25296
 25297
 25298
 25299
 25300
 25301
 25302
 25303
 25304
 25305
 25306
 25307
 25308
 25309
 25310
 25311
 25312
 25313
 25314
 25315
 25316
 25317
 25318
 25319
 25320
 25321
 25322
 25323
 25324
 25325
 25326
 25327
 25328
 25329
 25330
 25331
 25332
 25333
 25334
 25335
 25336
 25337
 25338
 25339
 25340
 25341
 25342
 25343
 25344
 25345
 25346
 25347
 25348
 25349
 25350
 25351
 25352
 25353
 25354
 25355
 25356
 25357
 25358
 25359
 25360
 25361
 25362
 25363
 25364
 25365
 25366
 25367
 25368
 25369
 25370
 25371
 25372
 25373
 25374
 25375
 25376
 25377
 25378
 25379
 25380
 25381
 25382
 25383
 25384
 25385
 25386
 25387
 25388
 25389
 25390
 25391
 25392
 25393
 25394
 25395
 25396
 25397
 25398
 25399
 25400
 25401
 25402
 25403
 25404
 25405
 25406
 25407
 25408
 25409
 25410
 25411
 25412
 25413
 25414
 25415
 25416
 25417
 25418
 25419
 25420
 25421
 25422
 25423
 25424
 25425
 25426
 25427
 25428
 25429
 25430
 25431
 25432
 25433
 25434
 25435
 25436
 25437
 25438
 25439
 25440
 25441
 25442
 25443
 25444
 25445
 25446
 25447
 25448
 25449
 25450
 25451
 25452
 25453
 25454
 25455
 25456
 25457
 25458
 25459
 25460
 25461
 25462
 25463
 25464
 25465
 25466
 25467
 25468
 25469
 25470
 25471
 25472
 25473
 25474
 25475
 25476
 25477
 25478
 25479
 25480
 25481
 25482
 25483
 25484
 25485
 25486
 25487
 25488
 25489
 25490
 25491
 25492
 25493
 25494
 25495
 25496
 25497
 25498
 25499
 25500
 25501
 25502
 25503
 25504
 25505
 25506
 25507
 25508
 25509
 25510
 25511
 25512
 25513
 25514
 25515
 25516
 25517
 25518
 25519
 25520
 25521
 25522
 25523
 25524
 25525
 25526
 25527
 25528
 25529
 25530
 25531
 25532
 25533
 25534
 25535
 25536
 25537
 25538
 25539
 25540
 25541
 25542
 25543
 25544
 25545
 25546
 25547
 25548
 25549
 25550
 25551
 25552
 25553
 25554
 25555
 25556
 25557
 25558
 25559
 25560
 25561
 25562
 25563
 25564
 25565
 25566
 25567
 25568
 25569
 25570
 25571
 25572
 25573
 25574
 25575
 25576
 25577
 25578
 25579
 25580
 25581
 25582
 25583
 25584
 25585
 25586
 25587
 25588
 25589
 25590
 25591
 25592
 25593
 25594
 25595
 25596
 25597
 25598
 25599
 25600
 25601
 25602
 25603
 25604
 25605
 25606
 25607
 25608
 25609
 25610
 25611
 25612
 25613
 25614
 25615
 25616
 25617
 25618
 25619
 25620
 25621
 25622
 25623
 25624
 25625
 25626
 25627
 25628
 25629
 25630
 25631
 25632
 25633
 25634
 25635
 25636
 25637
 25638
 25639
 25640
 25641
 25642
 25643
 25644
 25645
 25646
 25647
 25648
 25649
 25650
 25651
 25652
 25653
 25654
 25655
 25656
 25657
 25658
 25659
 25660
 25661
 25662
 25663
 25664
 25665
 25666
 25667
 25668
 25669
 25670
 25671
 25672
 25673
 25674
 25675
 25676
 25677
 25678
 25679
 25680
 25681
 25682
 25683
 25684
 25685
 25686
 25687
 25688
 25689
 25690
 25691
 25692
 25693
 25694
 25695
 25696
 25697
 25698
 25699
 25700
 25701
 25702
 25703
 25704
 25705
 25706
 25707
 25708
 25709
 25710
 25711
 25712
 25713
 25714
 25715
 25716
 25717
 25718
 25719
 25720
 25721
 25722
 25723
 25724
 25725
 25726
 25727
 25728
 25729
 25730
 25731
 25732
 25733
 25734
 25735
 25736
 25737
 25738
 25739
 25740
 25741
 25742
 25743
 25744
 25745
 25746
 25747
 25748
 25749
 25750
 25751
 25752
 25753
 25754
 25755
 25756
 25757
 25758
 25759
 25760
 25761
 25762
 25763
 25764
 25765
 25766
 25767
 25768
 25769
 25770
 25771
 25772
 25773
 25774
 25775
 25776
 25777
 25778
 25779
 25780
 25781
 25782
 25783
 25784
 25785
 25786
 25787
 25788
 25789
 25790
 25791
 25792
 25793
 25794
 25795
 25796
 25797
 25798
 25799
 25800
 25801
 25802
 25803
 25804
 25805
 25806
 25807
 25808
 25809
 25810
 25811
 25812
 25813
 25814
 25815
 25816
 25817
 25818
 25819
 25820
 25821
 25822
 25823
 25824
 25825
 25826
 25827
 25828
 25829
 25830
 25831
 25832
 25833
 25834
 25835
 25836
 25837
 25838
 25839
 25840
 25841
 25842
 25843
 25844
 25845
 25846
 25847
 25848
 25849
 25850
 25851
 25852
 25853
 25854
 25855
 25856
 25857
 25858
 25859
 25860
 25861
 25862
 25863
 25864
 25865
 25866
 25867
 25868
 25869
 25870
 25871
 25872
 25873
 25874
 25875
 25876
 25877
 25878
 25879
 25880
 25881
 25882
 25883
 25884
 25885
 25886
 25887
 25888
 25889
 25890
 25891
 25892
 25893
 25894
 25895
 25896
 25897
 25898
 25899
 25900
 25901
 25902
 25903
 25904
 25905
 25906
 25907
 25908
 25909
 25910
 25911
 25912
 25913
 25914
 25915
 25916
 25917
 25918
 25919
 25920
 25921
 25922
 25923
 25924
 25925
 25926
 25927
 25928
 25929
 25930
 25931
 25932
 25933
 25934
 25935
 25936
 25937
 25938
 25939
 25940
 25941
 25942
 25943
 25944
 25945
 25946
 25947
 25948
 25949
 25950
 25951
 25952
 25953
 25954
 25955
 25956
 25957
 25958
 25959
 25960
 25961
 25962
 25963
 25964
 25965
 25966
 25967
 25968
 25969
 25970
 25971
 25972
 25973
 25974
 25975
 25976
 25977
 25978
 25979
 25980
 25981
 25982
 25983
 25984
 25985
 25986
 25987
 25988
 25989
 25990
 25991
 25992
 25993
 25994
 25995
 25996
 25997
 25998
 25999
 26000
 26001
 26002
 26003
 26004
 26005
 26006
 26007
 26008
 26009
 26010
 26011
 26012
 26013
 26014
 26015
 26016
 26017
 26018
 26019
 26020
 26021
 26022
 26023
 26024
 26025
 26026
 26027
 26028
 26029
 26030
 26031
 26032
 26033
 26034
 26035
 26036
 26037
 26038
 26039
 26040
 26041
 26042
 26043
 26044
 26045
 26046
 26047
 26048
 26049
 26050
 26051
 26052
 26053
 26054
 26055
 26056
 26057
 26058
 26059
 26060
 26061
 26062
 26063
 26064
 26065
 26066
 26067
 26068
 26069
 26070
 26071
 26072
 26073
 26074
 26075
 26076
 26077
 26078
 26079
 26080
 26081
 26082
 26083
 26084
 26085
 26086
 26087
 26088
 26089
 26090
 26091
 26092
 26093
 26094
 26095
 26096
 26097
 26098
 26099
 26100
 26101
 26102
 26103
 26104
 26105
 26106
 26107
 26108
 26109
 26110
 26111
 26112
 26113
 26114
 26115
 26116
 26117
 26118
 26119
 26120
 26121
 26122
 26123
 26124
 26125
 26126
 26127
 26128
 26129
 26130
 26131
 26132
 26133
 26134
 26135
 26136
 26137
 26138
 26139
 26140
 26141
 26142
 26143
 26144
 26145
 26146
 26147
 26148
 26149
 26150
 26151
 26152
 26153
 26154
 26155
 26156
 26157
 26158
 26159
 26160
 26161
 26162
 26163
 26164
 26165
 26166
 26167
 26168
 26169
 26170
 26171
 26172
 26173
 26174
 26175
 26176
 26177
 26178
 26179
 26180
 26181
 26182
 26183
 26184
 26185
 26186
 26187
 26188
 26189
 26190
 26191
 26192
 26193
 26194
 26195
 26196
 26197
 26198
 26199
 26200
 26201
 26202
 26203
 26204
 26205
 26206
 26207
 26208
 26209
 26210
 26211
 26212
 26213
 26214
 26215
 26216
 26217
 26218
 26219
 26220
 26221
 26222
 26223
 26224
 26225
 26226
 26227
 26228
 26229
 26230
 26231
 26232
 26233
 26234
 26235
 26236
 26237
 26238
 26239
 26240
 26241
 26242
 26243
 26244
 26245
 26246
 26247
 26248
 26249
 26250
 26251
 26252
 26253
 26254
 26255
 26256
 26257
 26258
 26259
 26260
 26261
 26262
 26263
 26264
 26265
 26266
 26267
 26268
 26269
 26270
 26271
 26272
 26273
 26274
 26275
 26276
 26277
 26278
 26279
 26280
 26281
 26282
 26283
 26284
 26285
 26286
 26287
 26288
 26289
 26290
 26291
 26292
 26293
 26294
 26295
 26296
 26297
 26298
 26299
 26300
 26301
 26302
 26303
 26304
 26305
 26306
 26307
 26308
 26309
 26310
 26311
 26312
 26313
 26314
 26315
 26316
 26317
 26318
 26319
 26320
 26321
 26322
 26323
 26324
 26325
 26326
 26327
 26328
 26329
 26330
 26331
 26332
 26333
 26334
 26335
 26336
 26337
 26338
 26339
 26340
 26341
 26342
 26343
 26344
 26345
 26346
 26347
 26348
 26349
 26350
 26351
 26352
 26353
 26354
 26355
 26356
 26357
 26358
 26359
 26360
 26361
 26362
 26363
 26364
 26365
 26366
 26367
 26368
 26369
 26370
 26371
 26372
 26373
 26374
 26375
 26376
 26377
 26378
 26379
 26380
 26381
 26382
 26383
 26384
 26385
 26386
 26387
 26388
 26389
 26390
 26391
 26392
 26393
 26394
 26395
 26396
 26397
 26398
 26399
 26400
 26401
 26402
 26403
 26404
 26405
 26406
 26407
 26408
 26409
 26410
 26411
 26412
 26413
 26414
 26415
 26416
 26417
 26418
 26419
 26420
 26421
 26422
 26423
 26424
 26425
 26426
 26427
 26428
 26429
 26430
 26431
 26432
 26433
 26434
 26435
 26436
 26437
 26438
 26439
 26440
 26441
 26442
 26443
 26444
 26445
 26446
 26447
 26448
 26449
 26450
 26451
 26452
 26453
 26454
 26455
 26456
 26457
 26458
 26459
 26460
 26461
 26462
 26463
 26464
 26465
 26466
 26467
 26468
 26469
 26470
 26471
 26472
 26473
 26474
 26475
 26476
 26477
 26478
 26479
 26480
 26481
 26482
 26483
 26484
 26485
 26486
 26487
 26488
 26489
 26490
 26491
 26492
 26493
 26494
 26495
 26496
 26497
 26498
 26499
 26500
 26501
 26502
 26503
 26504
 26505
 26506
 26507
 26508
 26509
 26510
 26511
 26512
 26513
 26514
 26515
 26516
 26517
 26518
 26519
 26520
 26521
 26522
 26523
 26524
 26525
 26526
 26527
 26528
 26529
 26530
 26531
 26532
 26533
 26534
 26535
 26536
 26537
 26538
 26539
 26540
 26541
 26542
 26543
 26544
 26545
 26546
 26547
 26548
 26549
 26550
 26551
 26552
 26553
 26554
 26555
 26556
 26557
 26558
 26559
 26560
 26561
 26562
 26563
 26564
 26565
 26566
 26567
 26568
 26569
 26570
 26571
 26572
 26573
 26574
 26575
 26576
 26577
 26578
 26579
 26580
 26581
 26582
 26583
 26584
 26585
 26586
 26587
 26588
 26589
 26590
 26591
 26592
 26593
 26594
 26595
 26596
 26597
 26598
 26599
 26600
 26601
 26602
 26603
 26604
 26605
 26606
 26607
 26608
 26609
 26610
 26611
 26612
 26613
 26614
 26615
 26616
 26617
 26618
 26619
 26620
 26621
 26622
 26623
 26624
 26625
 26626
 26627
 26628
 26629
 26630
 26631
 26632
 26633
 26634
 26635
 26636
 26637
 26638
 26639
 26640
 26641
 26642
 26643
 26644
 26645
 26646
 26647
 26648
 26649
 26650
 26651
 26652
 26653
 26654
 26655
 26656
 26657
 26658
 26659
 26660
 26661
 26662
 26663
 26664
 26665
 26666
 26667
 26668
 26669
 26670
 26671
 26672
 26673
 26674
 26675
 26676
 26677
 26678
 26679
 26680
 26681
 26682
 26683
 26684
 26685
 26686
 26687
 26688
 26689
 26690
 26691
 26692
 26693
 26694
 26695
 26696
 26697
 26698
 26699
 26700
 26701
 26702
 26703
 26704
 26705
 26706
 26707
 26708
 26709
 26710
 26711
 26712
 26713
 26714
 26715
 26716
 26717
 26718
 26719
 26720
 26721
 26722
 26723
 26724
 26725
 26726
 26727
 26728
 26729
 26730
 26731
 26732
 26733
 26734
 26735
 26736
 26737
 26738
 26739
 26740
 26741
 26742
 26743
 26744
 26745
 26746
 26747
 26748
 26749
 26750
 26751
 26752
 26753
 26754
 26755
 26756
 26757
 26758
 26759
 26760
 26761
 26762
 26763
 26764
 26765
 26766
 26767
 26768
 26769
 26770
 26771
 26772
 26773
 26774
 26775
 26776
 26777
 26778
 26779
 26780
 26781
 26782
 26783
 26784
 26785
 26786
 26787
 26788
 26789
 26790
 26791
 26792
 26793
 26794
 26795
 26796
 26797
 26798
 26799
 26800
 26801
 26802
 26803
 26804
 26805
 26806
 26807
 26808
 26809
 26810
 26811
 26812
 26813
 26814
 26815
 26816
 26817
 26818
 26819
 26820
 26821
 26822
 26823
 26824
 26825
 26826
 26827
 26828
 26829
 26830
 26831
 26832
 26833
 26834
 26835
 26836
 26837
 26838
 26839
 26840
 26841
 26842
 26843
 26844
 26845
 26846
 26847
 26848
 26849
 26850
 26851
 26852
 26853
 26854
 26855
 26856
 26857
 26858
 26859
 26860
 26861
 26862
 26863
 26864
 26865
 26866
 26867
 26868
 26869
 26870
 26871
 26872
 26873
 26874
 26875
 26876
 26877
 26878
 26879
 26880
 26881
 26882
 26883
 26884
 26885
 26886
 26887
 26888
 26889
 26890
 26891
 26892
 26893
 26894
 26895
 26896
 26897
 26898
 26899
 26900
 26901
 26902
 26903
 26904
 26905
 26906
 26907
 26908
 26909
 26910
 26911
 26912
 26913
 26914
 26915
 26916
 26917
 26918
 26919
 26920
 26921
 26922
 26923
 26924
 26925
 26926
 26927
 26928
 26929
 26930
 26931
 26932
 26933
 26934
 26935
 26936
 26937
 26938
 26939
 26940
 26941
 26942
 26943
 26944
 26945
 26946
 26947
 26948
 26949
 26950
 26951
 26952
 26953
 26954
 26955
 26956
 26957
 26958
 26959
 26960
 26961
 26962
 26963
 26964
 26965
 26966
 26967
 26968
 26969
 26970
 26971
 26972
 26973
 26974
 26975
 26976
 26977
 26978
 26979
 26980
 26981
 26982
 26983
 26984
 26985
 26986
 26987
 26988
 26989
 26990
 26991
 26992
 26993
 26994
 26995
 26996
 26997
 26998
 26999
 27000
 27001
 27002
 27003
 27004
 27005
 27006
 27007
 27008
 27009
 27010
 27011
 27012
 27013
 27014
 27015
 27016
 27017
 27018
 27019
 27020
 27021
 27022
 27023
 27024
 27025
 27026
 27027
 27028
 27029
 27030
 27031
 27032
 27033
 27034
 27035
 27036
 27037
 27038
 27039
 27040
 27041
 27042
 27043
 27044
 27045
 27046
 27047
 27048
 27049
 27050
 27051
 27052
 27053
 27054
 27055
 27056
 27057
 27058
 27059
 27060
 27061
 27062
 27063
 27064
 27065
 27066
 27067
 27068
 27069
 27070
 27071
 27072
 27073
 27074
 27075
 27076
 27077
 27078
 27079
 27080
 27081
 27082
 27083
 27084
 27085
 27086
 27087
 27088
 27089
 27090
 27091
 27092
 27093
 27094
 27095
 27096
 27097
 27098
 27099
 27100
 27101
 27102
 27103
 27104
 27105
 27106
 27107
 27108
 27109
 27110
 27111
 27112
 27113
 27114
 27115
 27116
 27117
 27118
 27119
 27120
 27121
 27122
 27123
 27124
 27125
 27126
 27127
 27128
 27129
 27130
 27131
 27132
 27133
 27134
 27135
 27136
 27137
 27138
 27139
 27140
 27141
 27142
 27143
 27144
 27145
 27146
 27147
 27148
 27149
 27150
 27151
 27152
 27153
 27154
 27155
 27156
 27157
 27158
 27159
 27160
 27161
 27162
 27163
 27164
 27165
 27166
 27167
 27168
 27169
 27170
 27171
 27172
 27173
 27174
 27175
 27176
 27177
 27178
 27179
 27180
 27181
 27182
 27183
 27184
 27185
 27186
 27187
 27188
 27189
 27190
 27191
 27192
 27193
 27194
 27195
 27196
 27197
 27198
 27199
 27200
 27201
 27202
 27203
 27204
 27205
 27206
 27207
 27208
 27209
 27210
 27211
 27212
 27213
 27214
 27215
 27216
 27217
 27218
 27219
 27220
 27221
 27222
 27223
 27224
 27225
 27226
 27227
 27228
 27229
 27230
 27231
 27232
 27233
 27234
 27235
 27236
 27237
 27238
 27239
 27240
 27241
 27242
 27243
 27244
 27245
 27246
 27247
 27248
 27249
 27250
 27251
 27252
 27253
 27254
 27255
 27256
 27257
 27258
 27259
 27260
 27261
 27262
 27263
 27264
 27265
 27266
 27267
 27268
 27269
 27270
 27271
 27272
 27273
 27274
 27275
 27276
 27277
 27278
 27279
 27280
 27281
 27282
 27283
 27284
 27285
 27286
 27287
 27288
 27289
 27290
 27291
 27292
 27293
 27294
 27295
 27296
 27297
 27298
 27299
 27300
 27301
 27302
 27303
 27304
 27305
 27306
 27307
 27308
 27309
 27310
 27311
 27312
 27313
 27314
 27315
 27316
 27317
 27318
 27319
 27320
 27321
 27322
 27323
 27324
 27325
 27326
 27327
 27328
 27329
 27330
 27331
 27332
 27333
 27334
 27335
 27336
 27337
 27338
 27339
 27340
 27341
 27342
 27343
 27344
 27345
 27346
 27347
 27348
 27349
 27350
 27351
 27352
 27353
 27354
 27355
 27356
 27357
 27358
 27359
 27360
 27361
 27362
 27363
 27364
 27365
 27366
 27367
 27368
 27369
 27370
 27371
 27372
 27373
 27374
 27375
 27376
 27377
 27378
 27379
 27380
 27381
 27382
 27383
 27384
 27385
 27386
 27387
 27388
 27389
 27390
 27391
 27392
 27393
 27394
 27395
 27396
 27397
 27398
 27399
 27400
 27401
 27402
 27403
 27404
 27405
 27406
 27407
 27408
 27409
 27410
 27411
 27412
 27413
 27414
 27415
 27416
 27417
 27418
 27419
 27420
 27421
 27422
 27423
 27424
 27425
 27426
 27427
 27428
 27429
 27430
 27431
 27432
 27433
 27434
 27435
 27436
 27437
 27438
 27439
 27440
 27441
 27442
 27443
 27444
 27445
 27446
 27447
 27448
 27449
 27450
 27451
 27452
 27453
 27454
 27455
 27456
 27457
 27458
 27459
 27460
 27461
 27462
 27463
 27464
 27465
 27466
 27467
 27468
 27469
 27470
 27471
 27472
 27473
 27474
 27475
 27476
 27477
 27478
 27479
 27480
 27481
 27482
 27483
 27484
 27485
 27486
 27487
 27488
 27489
 27490
 27491
 27492
 27493
 27494
 27495
 27496
 27497
 27498
 27499
 27500
 27501
 27502
 27503
 27504
 27505
 27506
 27507
 27508
 27509
 27510
 27511
 27512
 27513
 27514
 27515
 27516
 27517
 27518
 27519
 27520
 27521
 27522
 27523
 27524
 27525
 27526
 27527
 27528
 27529
 27530
 27531
 27532
 27533
 27534
 27535
 27536
 27537
 27538
 27539
 27540
 27541
 27542
 27543
 27544
 27545
 27546
 27547
 27548
 27549
 27550
 27551
 27552
 27553
 27554
 27555
 27556
 27557
 27558
 27559
 27560
 27561
 27562
 27563
 27564
 27565
 27566
 27567
 27568
 27569
 27570
 27571
 27572
 27573
 27574
 27575
 27576
 27577
 27578
 27579
 27580
 27581
 27582
 27583
 27584
 27585
 27586
 27587
 27588
 27589
 27590
 27591
 27592
 27593
 27594
 27595
 27596
 27597
 27598
 27599
 27600
 27601
 27602
 27603
 27604
 27605
 27606
 27607
 27608
 27609
 27610
 27611
 27612
 27613
 27614
 27615
 27616
 27617
 27618
 27619
 27620
 27621
 27622
 27623
 27624
 27625
 27626
 27627
 27628
 27629
 27630
 27631
 27632
 27633
 27634
 27635
 27636
 27637
 27638
 27639
 27640
 27641
 27642
 27643
 27644
 27645
 27646
 27647
 27648
 27649
 27650
 27651
 27652
 27653
 27654
 27655
 27656
 27657
 27658
 27659
 27660
 27661
 27662
 27663
 27664
 27665
 27666
 27667
 27668
 27669
 27670
 27671
 27672
 27673
 27674
 27675
 27676
 27677
 27678
 27679
 27680
 27681
 27682
 27683
 27684
 27685
 27686
 27687
 27688
 27689
 27690
 27691
 27692
 27693
 27694
 27695
 27696
 27697
 27698
 27699
 27700
 27701
 27702
 27703
 27704
 27705
 27706
 27707
 27708
 27709
 27710
 27711
 27712
 27713
 27714
 27715
 27716
 27717
 27718
 27719
 27720
 27721
 27722
 27723
 27724
 27725
 27726
 27727
 27728
 27729
 27730
 27731
 27732
 27733
 27734
 27735
 27736
 27737
 27738
 27739
 27740
 27741
 27742
 27743
 27744
 27745
 27746
 27747
 27748
 27749
 27750
 27751
 27752
 27753
 27754
 27755
 27756
 27757
 27758
 27759
 27760
 27761
 27762
 27763
 27764
 27765
 27766
 27767
 27768
 27769
 27770
 27771
 27772
 27773
 27774
 27775
 27776
 27777
 27778
 27779
 27780
 27781
 27782
 27783
 27784
 27785
 27786
 27787
 27788
 27789
 27790
 27791
 27792
 27793
 27794
 27795
 27796
 27797
 27798
 27799
 27800
 27801
 27802
 27803
 27804
 27805
 27806
 27807
 27808
 27809
 27810
 27811
 27812
 27813
 27814
 27815
 27816
 27817
 27818
 27819
 27820
 27821
 27822
 27823
 27824
 27825
 27826
 27827
 27828
 27829
 27830
 27831
 27832
 27833
 27834
 27835
 27836
 27837
 27838
 27839
 27840
 27841
 27842
 27843
 27844
 27845
 27846
 27847
 27848
 27849
 27850
 27851
 27852
 27853
 27854
 27855
 27856
 27857
 27858
 27859
 27860
 27861
 27862
 27863
 27864
 27865
 27866
 27867
 27868
 27869
 27870
 27871
 27872
 27873
 27874
 27875
 27876
 27877
 27878
 27879
 27880
 27881
 27882
 27883
 27884
 27885
 27886
 27887
 27888
 27889
 27890
 27891
 27892
 27893
 27894
 27895
 27896
 27897
 27898
 27899
 27900
 27901
 27902
 27903
 27904
 27905
 27906
 27907
 27908
 27909
 27910
 27911
 27912
 27913
 27914
 27915
 27916
 27917
 27918
 27919
 27920
 27921
 27922
 27923
 27924
 27925
 27926
 27927
 27928
 27929
 27930
 27931
 27932
 27933
 27934
 27935
 27936
 27937
 27938
 27939
 27940
 27941
 27942
 27943
 27944
 27945
 27946
 27947
 27948
 27949
 27950
 27951
 27952
 27953
 27954
 27955
 27956
 27957
 27958
 27959
 27960
 27961
 27962
 27963
 27964
 27965
 27966
 27967
 27968
 27969
 27970
 27971
 27972
 27973
 27974
 27975
 27976
 27977
 27978
 27979
 27980
 27981
 27982
 27983
 27984
 27985
 27986
 27987
 27988
 27989
 27990
 27991
 27992
 27993
 27994
 27995
 27996
 27997
 27998
 27999
 28000
 28001
 28002
 28003
 28004
 28005
 28006
 28007
 28008
 28009
 28010
 28011
 28012
 28013
 28014
 28015
 28016
 28017
 28018
 28019
 28020
 28021
 28022
 28023
 28024
 28025
 28026
 28027
 28028
 28029
 28030
 28031
 28032
 28033
 28034
 28035
 28036
 28037
 28038
 28039
 28040
 28041
 28042
 28043
 28044
 28045
 28046
 28047
 28048
 28049
 28050
 28051
 28052
 28053
 28054
 28055
 28056
 28057
 28058
 28059
 28060
 28061
 28062
 28063
 28064
 28065
 28066
 28067
 28068
 28069
 28070
 28071
 28072
 28073
 28074
 28075
 28076
 28077
 28078
 28079
 28080
 28081
 28082
 28083
 28084
 28085
 28086
 28087
 28088
 28089
 28090
 28091
 28092
 28093
 28094
 28095
 28096
 28097
 28098
 28099
 28100
 28101
 28102
 28103
 28104
 28105
 28106
 28107
 28108
 28109
 28110
 28111
 28112
 28113
 28114
 28115
 28116
 28117
 28118
 28119
 28120
 28121
 28122
 28123
 28124
 28125
 28126
 28127
 28128
 28129
 28130
 28131
 28132
 28133
 28134
 28135
 28136
 28137
 28138
 28139
 28140
 28141
 28142
 28143
 28144
 28145
 28146
 28147
 28148
 28149
 28150
 28151
 28152
 28153
 28154
 28155
 28156
 28157
 28158
 28159
 28160
 28161
 28162
 28163
 28164
 28165
 28166
 28167
 28168
 28169
 28170
 28171
 28172
 28173
 28174
 28175
 28176
 28177
 28178
 28179
 28180
 28181
 28182
 28183
 28184
 28185
 28186
 28187
 28188
 28189
 28190
 28191
 28192
 28193
 28194
 28195
 28196
 28197
 28198
 28199
 28200
 28201
 28202
 28203
 28204
 28205
 28206
 28207
 28208
 28209
 28210
 28211
 28212
 28213
 28214
 28215
 28216
 28217
 28218
 28219
 28220
 28221
 28222
 28223
 28224
 28225
 28226
 28227
 28228
 28229
 28230
 28231
 28232
 28233
 28234
 28235
 28236
 28237
 28238
 28239
 28240
 28241
 28242
 28243
 28244
 28245
 28246
 28247
 28248
 28249
 28250
 28251
 28252
 28253
 28254
 28255
 28256
 28257
 28258
 28259
 28260
 28261
 28262
 28263
 28264
 28265
 28266
 28267
 28268
 28269
 28270
 28271
 28272
 28273
 28274
 28275
 28276
 28277
 28278
 28279
 28280
 28281
 28282
 28283
 28284
 28285
 28286
 28287
 28288
 28289
 28290
 28291
 28292
 28293
 28294
 28295
 28296
 28297
 28298
 28299
 28300
 28301
 28302
 28303
 28304
 28305
 28306
 28307
 28308
 28309
 28310
 28311
 28312
 28313
 28314
 28315
 28316
 28317
 28318
 28319
 28320
 28321
 28322
 28323
 28324
 28325
 28326
 28327
 28328
 28329
 28330
 28331
 28332
 28333
 28334
 28335
 28336
 28337
 28338
 28339
 28340
 28341
 28342
 28343
 28344
 28345
 28346
 28347
 28348
 28349
 28350
 28351
 28352
 28353
 28354
 28355
 28356
 28357
 28358
 28359
 28360
 28361
 28362
 28363
 28364
 28365
 28366
 28367
 28368
 28369
 28370
 28371
 28372
 28373
 28374
 28375
 28376
 28377
 28378
 28379
 28380
 28381
 28382
 28383
 28384
 28385
 28386
 28387
 28388
 28389
 28390
 28391
 28392
 28393
 28394
 28395
 28396
 28397
 28398
 28399
 28400
 28401
 28402
 28403
 28404
 28405
 28406
 28407
 28408
 28409
 28410
 28411
 28412
 28413
 28414
 28415
 28416
 28417
 28418
 28419
 28420
 28421
 28422
 28423
 28424
 28425
 28426
 28427
 28428
 28429
 28430
 28431
 28432
 28433
 28434
 28435
 28436
 28437
 28438
 28439
 28440
 28441
 28442
 28443
 28444
 28445
 28446
 28447
 28448
 28449
 28450
 28451
 28452
 28453
 28454
 28455
 28456
 28457
 28458
 28459
 28460
 28461
 28462
 28463
 28464
 28465
 28466
 28467
 28468
 28469
 28470
 28471
 28472
 28473
 28474
 28475
 28476
 28477
 28478
 28479
 28480
 28481
 28482
 28483
 28484
 28485
 28486
 28487
 28488
 28489
 28490
 28491
 28492
 28493
 28494
 28495
 28496
 28497
 28498
 28499
 28500
 28501
 28502
 28503
 28504
 28505
 28506
 28507
 28508
 28509
 28510
 28511
 28512
 28513
 28514
 28515
 28516
 28517
 28518
 28519
 28520
 28521
 28522
 28523
 28524
 28525
 28526
 28527
 28528
 28529
 28530
 28531
 28532
 28533
 28534
 28535
 28536
 28537
 28538
 28539
 28540
 28541
 28542
 28543
 28544
 28545
 28546
 28547
 28548
 28549
 28550
 28551
 28552
 28553
 28554
 28555
 28556
 28557
 28558
 28559
 28560
 28561
 28562
 28563
 28564
 28565
 28566
 28567
 28568
 28569
 28570
 28571
 28572
 28573
 28574
 28575
 28576
 28577
 28578
 28579
 28580
 28581
 28582
 28583
 28584
 28585
 28586
 28587
 28588
 28589
 28590
 28591
 28592
 28593
 28594
 28595
 28596
 28597
 28598
 28599
 28600
 28601
 28602
 28603
 28604
 28605
 28606
 28607
 28608
 28609
 28610
 28611
 28612
 28613
 28614
 28615
 28616
 28617
 28618
 28619
 28620
 28621
 28622
 28623
 28624
 28625
 28626
 28627
 28628
 28629
 28630
 28631
 28632
 28633
 28634
 28635
 28636
 28637
 28638
 28639
 28640
 28641
 28642
 28643
 28644
 28645
 28646
 28647
 28648
 28649
 28650
 28651
 28652
 28653
 28654
 28655
 28656
 28657
 28658
 28659
 28660
 28661
 28662
 28663
 28664
 28665
 28666
 28667
 28668
 28669
 28670
 28671
 28672
 28673
 28674
 28675
 28676
 28677
 28678
 28679
 28680
 28681
 28682
 28683
 28684
 28685
 28686
 28687
 28688
 28689
 28690
 28691
 28692
 28693
 28694
 28695
 28696
 28697
 28698
 28699
 28700
 28701
 28702
 28703
 28704
 28705
 28706
 28707
 28708
 28709
 28710
 28711
 28712
 28713
 28714
 28715
 28716
 28717
 28718
 28719
 28720
 28721
 28722
 28723
 28724
 28725
 28726
 28727
 28728
 28729
 28730
 28731
 28732
 28733
 28734
 28735
 28736
 28737
 28738
 28739
 28740
 28741
 28742
 28743
 28744
 28745
 28746
 28747
 28748
 28749
 28750
 28751
 28752
 28753
 28754
 28755
 28756
 28757
 28758
 28759
 28760
 28761
 28762
 28763
 28764
 28765
 28766
 28767
 28768
 28769
 28770
 28771
 28772
 28773
 28774
 28775
 28776
 28777
 28778
 28779
 28780
 28781
 28782
 28783
 28784
 28785
 28786
 28787
 28788
 28789
 28790
 28791
 28792
 28793
 28794
 28795
 28796
 28797
 28798
 28799
 28800
 28801
 28802
 28803
 28804
 28805
 28806
 28807
 28808
 28809
 28810
 28811
 28812
 28813
 28814
 28815
 28816
 28817
 28818
 28819
 28820
 28821
 28822
 28823
 28824
 28825
 28826
 28827
 28828
 28829
 28830
 28831
 28832
 28833
 28834
 28835
 28836
 28837
 28838
 28839
 28840
 28841
 28842
 28843
 28844
 28845
 28846
 28847
 28848
 28849
 28850
 28851
 28852
 28853
 28854
 28855
 28856
 28857
 28858
 28859
 28860
 28861
 28862
 28863
 28864
 28865
 28866
 28867
 28868
 28869
 28870
 28871
 28872
 28873
 28874
 28875
 28876
 28877
 28878
 28879
 28880
 28881
 28882
 28883
 28884
 28885
 28886
 28887
 28888
 28889
 28890
 28891
 28892
 28893
 28894
 28895
 28896
 28897
 28898
 28899
 28900
 28901
 28902
 28903
 28904
 28905
 28906
 28907
 28908
 28909
 28910
 28911
 28912
 28913
 28914
 28915
 28916
 28917
 28918
 28919
 28920
 28921
 28922
 28923
 28924
 28925
 28926
 28927
 28928
 28929
 28930
 28931
 28932
 28933
 28934
 28935
 28936
 28937
 28938
 28939
 28940
 28941
 28942
 28943
 28944
 28945
 28946
 28947
 28948
 28949
 28950
 28951
 28952
 28953
 28954
 28955
 28956
 28957
 28958
 28959
 28960
 28961
 28962
 28963
 28964
 28965
 28966
 28967
 28968
 28969
 28970
 28971
 28972
 28973
 28974
 28975
 28976
 28977
 28978
 28979
 28980
 28981
 28982
 28983
 28984
 28985
 28986
 28987
 28988
 28989
 28990
 28991
 28992
 28993
 28994
 28995
 28996
 28997
 28998
 28999
 29000
 29001
 29002
 29003
 29004
 29005
 29006
 29007
 29008
 29009
 29010
 29011
 29012
 29013
 29014
 29015
 29016
 29017
 29018
 29019
 29020
 29021
 29022
 29023
 29024
 29025
 29026
 29027
 29028
 29029
 29030
 29031
 29032
 29033
 29034
 29035
 29036
 29037
 29038
 29039
 29040
 29041
 29042
 29043
 29044
 29045
 29046
 29047
 29048
 29049
 29050
 29051
 29052
 29053
 29054
 29055
 29056
 29057
 29058
 29059
 29060
 29061
 29062
 29063
 29064
 29065
 29066
 29067
 29068
 29069
 29070
 29071
 29072
 29073
 29074
 29075
 29076
 29077
 29078
 29079
 29080
 29081
 29082
 29083
 29084
 29085
 29086
 29087
 29088
 29089
 29090
 29091
 29092
 29093
 29094
 29095
 29096
 29097
 29098
 29099
 29100
 29101
 29102
 29103
 29104
 29105
 29106
 29107
 29108
 29109
 29110
 29111
 29112
 29113
 29114
 29115
 29116
 29117
 29118
 29119
 29120
 29121
 29122
 29123
 29124
 29125
 29126
 29127
 29128
 29129
 29130
 29131
 29132
 29133
 29134
 29135
 29136
 29137
 29138
 29139
 29140
 29141
 29142
 29143
 29144
 29145
 29146
 29147
 29148
 29149
 29150
 29151
 29152
 29153
 29154
 29155
 29156
 29157
 29158
 29159
 29160
 29161
 29162
 29163
 29164
 29165
 29166
 29167
 29168
 29169
 29170
 29171
 29172
 29173
 29174
 29175
 29176
 29177
 29178
 29179
 29180
 29181
 29182
 29183
 29184
 29185
 29186
 29187
 29188
 29189
 29190
 29191
 29192
 29193
 29194
 29195
 29196
 29197
 29198
 29199
 29200
 29201
 29202
 29203
 29204
 29205
 29206
 29207
 29208
 29209
 29210
 29211
 29212
 29213
 29214
 29215
 29216
 29217
 29218
 29219
 29220
 29221
 29222
 29223
 29224
 29225
 29226
 29227
 29228
 29229
 29230
 29231
 29232
 29233
 29234
 29235
 29236
 29237
 29238
 29239
 29240
 29241
 29242
 29243
 29244
 29245
 29246
 29247
 29248
 29249
 29250
 29251
 29252
 29253
 29254
 29255
 29256
 29257
 29258
 29259
 29260
 29261
 29262
 29263
 29264
 29265
 29266
 29267
 29268
 29269
 29270
 29271
 29272
 29273
 29274
 29275
 29276
 29277
 29278
 29279
 29280
 29281
 29282
 29283
 29284
 29285
 29286
 29287
 29288
 29289
 29290
 29291
 29292
 29293
 29294
 29295
 29296
 29297
 29298
 29299
 29300
 29301
 29302
 29303
 29304
 29305
 29306
 29307
 29308
 29309
 29310
 29311
 29312
 29313
 29314
 29315
 29316
 29317
 29318
 29319
 29320
 29321
 29322
 29323
 29324
 29325
 29326
 29327
 29328
 29329
 29330
 29331
 29332
 29333
 29334
 29335
 29336
 29337
 29338
 29339
 29340
 29341
 29342
 29343
 29344
 29345
 29346
 29347
 29348
 29349
 29350
 29351
 29352
 29353
 29354
 29355
 29356
 29357
 29358
 29359
 29360
 29361
 29362
 29363
 29364
 29365
 29366
 29367
 29368
 29369
 29370
 29371
 29372
 29373
 29374
 29375
 29376
 29377
 29378
 29379
 29380
 29381
 29382
 29383
 29384
 29385
 29386
 29387
 29388
 29389
 29390
 29391
 29392
 29393
 29394
 29395
 29396
 29397
 29398
 29399
 29400
 29401
 29402
 29403
 29404
 29405
 29406
 29407
 29408
 29409
 29410
 29411
 29412
 29413
 29414
 29415
 29416
 29417
 29418
 29419
 29420
 29421
 29422
 29423
 29424
 29425
 29426
 29427
 29428
 29429
 29430
 29431
 29432
 29433
 29434
 29435
 29436
 29437
 29438
 29439
 29440
 29441
 29442
 29443
 29444
 29445
 29446
 29447
 29448
 29449
 29450
 29451
 29452
 29453
 29454
 29455
 29456
 29457
 29458
 29459
 29460
 29461
 29462
 29463
 29464
 29465
 29466
 29467
 29468
 29469
 29470
 29471
 29472
 29473
 29474
 29475
 29476
 29477
 29478
 29479
 29480
 29481
 29482
 29483
 29484
 29485
 29486
 29487
 29488
 29489
 29490
 29491
 29492
 29493
 29494
 29495
 29496
 29497
 29498
 29499
 29500
 29501
 29502
 29503
 29504
 29505
 29506
 29507
 29508
 29509
 29510
 29511
 29512
 29513
 29514
 29515
 29516
 29517
 29518
 29519
 29520
 29521
 29522
 29523
 29524
 29525
 29526
 29527
 29528
 29529
 29530
 29531
 29532
 29533
 29534
 29535
 29536
 29537
 29538
 29539
 29540
 29541
 29542
 29543
 29544
 29545
 29546
 29547
 29548
 29549
 29550
 29551
 29552
 29553
 29554
 29555
 29556
 29557
 29558
 29559
 29560
 29561
 29562
 29563
 29564
 29565
 29566
 29567
 29568
 29569
 29570
 29571
 29572
 29573
 29574
 29575
 29576
 29577
 29578
 29579
 29580
 29581
 29582
 29583
 29584
 29585
 29586
 29587
 29588
 29589
 29590
 29591
 29592
 29593
 29594
 29595
 29596
 29597
 29598
 29599
 29600
 29601
 29602
 29603
 29604
 29605
 29606
 29607
 29608
 29609
 29610
 29611
 29612
 29613
 29614
 29615
 29616
 29617
 29618
 29619
 29620
 29621
 29622
 29623
 29624
 29625
 29626
 29627
 29628
 29629
 29630
 29631
 29632
 29633
 29634
 29635
 29636
 29637
 29638
 29639
 29640
 29641
 29642
 29643
 29644
 29645
 29646
 29647
 29648
 29649
 29650
 29651
 29652
 29653
 29654
 29655
 29656
 29657
 29658
 29659
 29660
 29661
 29662
 29663
 29664
 29665
 29666
 29667
 29668
 29669
 29670
 29671
 29672
 29673
 29674
 29675
 29676
 29677
 29678
 29679
 29680
 29681
 29682
 29683
 29684
 29685
 29686
 29687
 29688
 29689
 29690
 29691
 29692
 29693
 29694
 29695
 29696
 29697
 29698
 29699
 29700
 29701
 29702
 29703
 29704
 29705
 29706
 29707
 29708
 29709
 29710
 29711
 29712
 29713
 29714
 29715
 29716
 29717
 29718
 29719
 29720
 29721
 29722
 29723
 29724
 29725
 29726
 29727
 29728
 29729
 29730
 29731
 29732
 29733
 29734
 29735
 29736
 29737
 29738
 29739
 29740
 29741
 29742
 29743
 29744
 29745
 29746
 29747
 29748
 29749
 29750
 29751
 29752
 29753
 29754
 29755
 29756
 29757
 29758
 29759
 29760
 29761
 29762
 29763
 29764
 29765
 29766
 29767
 29768
 29769
 29770
 29771
 29772
 29773
 29774
 29775
 29776
 29777
 29778
 29779
 29780
 29781
 29782
 29783
 29784
 29785
 29786
 29787
 29788
 29789
 29790
 29791
 29792
 29793
 29794
 29795
 29796
 29797
 29798
 29799
 29800
 29801
 29802
 29803
 29804
 29805
 29806
 29807
 29808
 29809
 29810
 29811
 29812
 29813
 29814
 29815
 29816
 29817
 29818
 29819
 29820
 29821
 29822
 29823
 29824
 29825
 29826
 29827
 29828
 29829
 29830
 29831
 29832
 29833
 29834
 29835
 29836
 29837
 29838
 29839
 29840
 29841
 29842
 29843
 29844
 29845
 29846
 29847
 29848
 29849
 29850
 29851
 29852
 29853
 29854
 29855
 29856
 29857
 29858
 29859
 29860
 29861
 29862
 29863
 29864
 29865
 29866
 29867
 29868
 29869
 29870
 29871
 29872
 29873
 29874
 29875
 29876
 29877
 29878
 29879
 29880
 29881
 29882
 29883
 29884
 29885
 29886
 29887
 29888
 29889
 29890
 29891
 29892
 29893
 29894
 29895
 29896
 29897
 29898
 29899
 29900
 29901
 29902
 29903
 29904
 29905
 29906
 29907
 29908
 29909
 29910
 29911
 29912
 29913
 29914
 29915
 29916
 29917
 29918
 29919
 29920
 29921
 29922
 29923
 29924
 29925
 29926
 29927
 29928
 29929
 29930
 29931
 29932
 29933
 29934
 29935
 29936
 29937
 29938
 29939
 29940
 29941
 29942
 29943
 29944
 29945
 29946
 29947
 29948
 29949
 29950
 29951
 29952
 29953
 29954
 29955
 29956
 29957
 29958
 29959
 29960
 29961
 29962
 29963
 29964
 29965
 29966
 29967
 29968
 29969
 29970
 29971
 29972
 29973
 29974
 29975
 29976
 29977
 29978
 29979
 29980
 29981
 29982
 29983
 29984
 29985
 29986
 29987
 29988
 29989
 29990
 29991
 29992
 29993
 29994
 29995
 29996
 29997
 29998
 29999
 30000
 30001
 30002
 30003
 30004
 30005
 30006
 30007
 30008
 30009
 30010
 30011
 30012
 30013
 30014
 30015
 30016
 30017
 30018
 30019
 30020
 30021
 30022
 30023
 30024
 30025
 30026
 30027
 30028
 30029
 30030
 30031
 30032
 30033
 30034
 30035
 30036
 30037
 30038
 30039
 30040
 30041
 30042
 30043
 30044
 30045
 30046
 30047
 30048
 30049
 30050
 30051
 30052
 30053
 30054
 30055
 30056
 30057
 30058
 30059
 30060
 30061
 30062
 30063
 30064
 30065
 30066
 30067
 30068
 30069
 30070
 30071
 30072
 30073
 30074
 30075
 30076
 30077
 30078
 30079
 30080
 30081
 30082
 30083
 30084
 30085
 30086
 30087
 30088
 30089
 30090
 30091
 30092
 30093
 30094
 30095
 30096
 30097
 30098
 30099
 30100
 30101
 30102
 30103
 30104
 30105
 30106
 30107
 30108
 30109
 30110
 30111
 30112
 30113
 30114
 30115
 30116
 30117
 30118
 30119
 30120
 30121
 30122
 30123
 30124
 30125
 30126
 30127
 30128
 30129
 30130
 30131
 30132
 30133
 30134
 30135
 30136
 30137
 30138
 30139
 30140
 30141
 30142
 30143
 30144
 30145
 30146
 30147
 30148
 30149
 30150
 30151
 30152
 30153
 30154
 30155
 30156
 30157
 30158
 30159
 30160
 30161
 30162
 30163
 30164
 30165
 30166
 30167
 30168
 30169
 30170
 30171
 30172
 30173
 30174
 30175
 30176
 30177
 30178
 30179
 30180
 30181
 30182
 30183
 30184
 30185
 30186
 30187
 30188
 30189
 30190
 30191
 30192
 30193
 30194
 30195
 30196
 30197
 30198
 30199
 30200
 30201
 30202
 30203
 30204
 30205
 30206
 30207
 30208
 30209
 30210
 30211
 30212
 30213
 30214
 30215
 30216
 30217
 30218
 30219
 30220
 30221
 30222
 30223
 30224
 30225
 30226
 30227
 30228
 30229
 30230
 30231
 30232
 30233
 30234
 30235
 30236
 30237
 30238
 30239
 30240
 30241
 30242
 30243
 30244
 30245
 30246
 30247
 30248
 30249
 30250
 30251
 30252
 30253
 30254
 30255
 30256
 30257
 30258
 30259
 30260
 30261
 30262
 30263
 30264
 30265
 30266
 30267
 30268
 30269
 30270
 30271
 30272
 30273
 30274
 30275
 30276
 30277
 30278
 30279
 30280
 30281
 30282
 30283
 30284
 30285
 30286
 30287
 30288
 30289
 30290
 30291
 30292
 30293
 30294
 30295
 30296
 30297
 30298
 30299
 30300
 30301
 30302
 30303
 30304
 30305
 30306
 30307
 30308
 30309
 30310
 30311
 30312
 30313
 30314
 30315
 30316
 30317
 30318
 30319
 30320
 30321
 30322
 30323
 30324
 30325
 30326
 30327
 30328
 30329
 30330
 30331
 30332
 30333
 30334
 30335
 30336
 30337
 30338
 30339
 30340
 30341
 30342
 30343
 30344
 30345
 30346
 30347
 30348
 30349
 30350
 30351
 30352
 30353
 30354
 30355
 30356
 30357
 30358
 30359
 30360
 30361
 30362
 30363
 30364
 30365
 30366
 30367
 30368
 30369
 30370
 30371
 30372
 30373
 30374
 30375
 30376
 30377
 30378
 30379
 30380
 30381
 30382
 30383
 30384
 30385
 30386
 30387
 30388
 30389
 30390
 30391
 30392
 30393
 30394
 30395
 30396
 30397
 30398
 30399
 30400
 30401
 30402
 30403
 30404
 30405
 30406
 30407
 30408
 30409
 30410
 30411
 30412
 30413
 30414
 30415
 30416
 30417
 30418
 30419
 30420
 30421
 30422
 30423
 30424
 30425
 30426
 30427
 30428
 30429
 30430
 30431
 30432
 30433
 30434
 30435
 30436
 30437
 30438
 30439
 30440
 30441
 30442
 30443
 30444
 30445
 30446
 30447
 30448
 30449
 30450
 30451
 30452
 30453
 30454
 30455
 30456
 30457
 30458
 30459
 30460
 30461
 30462
 30463
 30464
 30465
 30466
 30467
 30468
 30469
 30470
 30471
 30472
 30473
 30474
 30475
 30476
 30477
 30478
 30479
 30480
 30481
 30482
 30483
 30484
 30485
 30486
 30487
 30488
 30489
 30490
 30491
 30492
 30493
 30494
 30495
 30496
 30497
 30498
 30499
 30500
 30501
 30502
 30503
 30504
 30505
 30506
 30507
 30508
 30509
 30510
 30511
 30512
 30513
 30514
 30515
 30516
 30517
 30518
 30519
 30520
 30521
 30522
 30523
 30524
 30525
 30526
 30527
 30528
 30529
 30530
 30531
 30532
 30533
 30534
 30535
 30536
 30537
 30538
 30539
 30540
 30541
 30542
 30543
 30544
 30545
 30546
 30547
 30548
 30549
 30550
 30551
 30552
 30553
 30554
 30555
 30556
 30557
 30558
 30559
 30560
 30561
 30562
 30563
 30564
 30565
 30566
 30567
 30568
 30569
 30570
 30571
 30572
 30573
 30574
 30575
 30576
 30577
 30578
 30579
 30580
 30581
 30582
 30583
 30584
 30585
 30586
 30587
 30588
 30589
 30590
 30591
 30592
 30593
 30594
 30595
 30596
 30597
 30598
 30599
 30600
 30601
 30602
 30603
 30604
 30605
 30606
 30607
 30608
 30609
 30610
 30611
 30612
 30613
 30614
 30615
 30616
 30617
 30618
 30619
 30620
 30621
 30622
 30623
 30624
 30625
 30626
 30627
 30628
 30629
 30630
 30631
 30632
 30633
 30634
 30635
 30636
 30637
 30638
 30639
 30640
 30641
 30642
 30643
 30644
 30645
 30646
 30647
 30648
 30649
 30650
 30651
 30652
 30653
 30654
 30655
 30656
 30657
 30658
 30659
 30660
 30661
 30662
 30663
 30664
 30665
 30666
 30667
 30668
 30669
 30670
 30671
 30672
 30673
 30674
 30675
 30676
 30677
 30678
 30679
 30680
 30681
 30682
 30683
 30684
 30685
 30686
 30687
 30688
 30689
 30690
 30691
 30692
 30693
 30694
 30695
 30696
 30697
 30698
 30699
 30700
 30701
 30702
 30703
 30704
 30705
 30706
 30707
 30708
 30709
 30710
 30711
 30712
 30713
 30714
 30715
 30716
 30717
 30718
 30719
 30720
 30721
 30722
 30723
 30724
 30725
 30726
 30727
 30728
 30729
 30730
 30731
 30732
 30733
 30734
 30735
 30736
 30737
 30738
 30739
 30740
 30741
 30742
 30743
 30744
 30745
 30746
 30747
 30748
 30749
 30750
 30751
 30752
 30753
 30754
 30755
 30756
 30757
 30758
 30759
 30760
 30761
 30762
 30763
 30764
 30765
 30766
 30767
 30768
 30769
 30770
 30771
 30772
 30773
 30774
 30775
 30776
 30777
 30778
 30779
 30780
 30781
 30782
 30783
 30784
 30785
 30786
 30787
 30788
 30789
 30790
 30791
 30792
 30793
 30794
 30795
 30796
 30797
 30798
 30799
 30800
 30801
 30802
 30803
 30804
 30805
 30806
 30807
 30808
 30809
 30810
 30811
 30812
 30813
 30814
 30815
 30816
 30817
 30818
 30819
 30820
 30821
 30822
 30823
 30824
 30825
 30826
 30827
 30828
 30829
 30830
 30831
 30832
 30833
 30834
 30835
 30836
 30837
 30838
 30839
 30840
 30841
 30842
 30843
 30844
 30845
 30846
 30847
 30848
 30849
 30850
 30851
 30852
 30853
 30854
 30855
 30856
 30857
 30858
 30859
 30860
 30861
 30862
 30863
 30864
 30865
 30866
 30867
 30868
 30869
 30870
 30871
 30872
 30873
 30874
 30875
 30876
 30877
 30878
 30879
 30880
 30881
 30882
 30883
 30884
 30885
 30886
 30887
 30888
 30889
 30890
 30891
 30892
 30893
 30894
 30895
 30896
 30897
 30898
 30899
 30900
 30901
 30902
 30903
 30904
 30905
 30906
 30907
 30908
 30909
 30910
 30911
 30912
 30913
 30914
 30915
 30916
 30917
 30918
 30919
 30920
 30921
 30922
 30923
 30924
 30925
 30926
 30927
 30928
 30929
 30930
 30931
 30932
 30933
 30934
 30935
 30936
 30937
 30938
 30939
 30940
 30941
 30942
 30943
 30944
 30945
 30946
 30947
 30948
 30949
 30950
 30951
 30952
 30953
 30954
 30955
 30956
 30957
 30958
 30959
 30960
 30961
 30962
 30963
 30964
 30965
 30966
 30967
 30968
 30969
 30970
 30971
 30972
 30973
 30974
 30975
 30976
 30977
 30978
 30979
 30980
 30981
 30982
 30983
 30984
 30985
 30986
 30987
 30988
 30989
 30990
 30991
 30992
 30993
 30994
 30995
 30996
 30997
 30998
 30999
 31000
 31001
 31002
 31003
 31004
 31005
 31006
 31007
 31008
 31009
 31010
 31011
 31012
 31013
 31014
 31015
 31016
 31017
 31018
 31019
 31020
 31021
 31022
 31023
 31024
 31025
 31026
 31027
 31028
 31029
 31030
 31031
 31032
 31033
 31034
 31035
 31036
 31037
 31038
 31039
 31040
 31041
 31042
 31043
 31044
 31045
 31046
 31047
 31048
 31049
 31050
 31051
 31052
 31053
 31054
 31055
 31056
 31057
 31058
 31059
 31060
 31061
 31062
 31063
 31064
 31065
 31066
 31067
 31068
 31069
 31070
 31071
 31072
 31073
 31074
 31075
 31076
 31077
 31078
 31079
 31080
 31081
 31082
 31083
 31084
 31085
 31086
 31087
 31088
 31089
 31090
 31091
 31092
 31093
 31094
 31095
 31096
 31097
 31098
 31099
 31100
 31101
 31102
 31103
 31104
 31105
 31106
 31107
 31108
 31109
 31110
 31111
 31112
 31113
 31114
 31115
 31116
 31117
 31118
 31119
 31120
 31121
 31122
 31123
 31124
 31125
 31126
 31127
 31128
 31129
 31130
 31131
 31132
 31133
 31134
 31135
 31136
 31137
 31138
 31139
 31140
 31141
 31142
 31143
 31144
 31145
 31146
 31147
 31148
 31149
 31150
 31151
 31152
 31153
 31154
 31155
 31156
 31157
 31158
 31159
 31160
 31161
 31162
 31163
 31164
 31165
 31166
 31167
 31168
 31169
 31170
 31171
 31172
 31173
 31174
 31175
 31176
 31177
 31178
 31179
 31180
 31181
 31182
 31183
 31184
 31185
 31186
 31187
 31188
 31189
 31190
 31191
 31192
 31193
 31194
 31195
 31196
 31197
 31198
 31199
 31200
 31201
 31202
 31203
 31204
 31205
 31206
 31207
 31208
 31209
 31210
 31211
 31212
 31213
 31214
 31215
 31216
 31217
 31218
 31219
 31220
 31221
 31222
 31223
 31224
 31225
 31226
 31227
 31228
 31229
 31230
 31231
 31232
 31233
 31234
 31235
 31236
 31237
 31238
 31239
 31240
 31241
 31242
 31243
 31244
 31245
 31246
 31247
 31248
 31249
 31250
 31251
 31252
 31253
 31254
 31255
 31256
 31257
 31258
 31259
 31260
 31261
 31262
 31263
 31264
 31265
 31266
 31267
 31268
 31269
 31270
 31271
 31272
 31273
 31274
 31275
 31276
 31277
 31278
 31279
 31280
 31281
 31282
 31283
 31284
 31285
 31286
 31287
 31288
 31289
 31290
 31291
 31292
 31293
 31294
 31295
 31296
 31297
 31298
 31299
 31300
 31301
 31302
 31303
 31304
 31305
 31306
 31307
 31308
 31309
 31310
 31311
 31312
 31313
 31314
 31315
 31316
 31317
 31318
 31319
 31320
 31321
 31322
 31323
 31324
 31325
 31326
 31327
 31328
 31329
 31330
 31331
 31332
 31333
 31334
 31335
 31336
 31337
 31338
 31339
 31340
 31341
 31342
 31343
 31344
 31345
 31346
 31347
 31348
 31349
 31350
 31351
 31352
 31353
 31354
 31355
 31356
 31357
 31358
 31359
 31360
 31361
 31362
 31363
 31364
 31365
 31366
 31367
 31368
 31369
 31370
 31371
 31372
 31373
 31374
 31375
 31376
 31377
 31378
 31379
 31380
 31381
 31382
 31383
 31384
 31385
 31386
 31387
 31388
 31389
 31390
 31391
 31392
 31393
 31394
 31395
 31396
 31397
 31398
 31399
 31400
 31401
 31402
 31403
 31404
 31405
 31406
 31407
 31408
 31409
 31410
 31411
 31412
 31413
 31414
 31415
 31416
 31417
 31418
 31419
 31420
 31421
 31422
 31423
 31424
 31425
 31426
 31427
 31428
 31429
 31430
 31431
 31432
 31433
 31434
 31435
 31436
 31437
 31438
 31439
 31440
 31441
 31442
 31443
 31444
 31445
 31446
 31447
 31448
 31449
 31450
 31451
 31452
 31453
 31454
 31455
 31456
 31457
 31458
 31459
 31460
 31461
 31462
 31463
 31464
 31465
 31466
 31467
 31468
 31469
 31470
 31471
 31472
 31473
 31474
 31475
 31476
 31477
 31478
 31479
 31480
 31481
 31482
 31483
 31484
 31485
 31486
 31487
 31488
 31489
 31490
 31491
 31492
 31493
 31494
 31495
 31496
 31497
 31498
 31499
 31500
 31501
 31502
 31503
 31504
 31505
 31506
 31507
 31508
 31509
 31510
 31511
 31512
 31513
 31514
 31515
 31516
 31517
 31518
 31519
 31520
 31521
 31522
 31523
 31524
 31525
 31526
 31527
 31528
 31529
 31530
 31531
 31532
 31533
 31534
 31535
 31536
 31537
 31538
 31539
 31540
 31541
 31542
 31543
 31544
 31545
 31546
 31547
 31548
 31549
 31550
 31551
 31552
 31553
 31554
 31555
 31556
 31557
 31558
 31559
 31560
 31561
 31562
 31563
 31564
 31565
 31566
 31567
 31568
 31569
 31570
 31571
 31572
 31573
 31574
 31575
 31576
 31577
 31578
 31579
 31580
 31581
 31582
 31583
 31584
 31585
 31586
 31587
 31588
 31589
 31590
 31591
 31592
 31593
 31594
 31595
 31596
 31597
 31598
 31599
 31600
 31601
 31602
 31603
 31604
 31605
 31606
 31607
 31608
 31609
 31610
 31611
 31612
 31613
 31614
 31615
 31616
 31617
 31618
 31619
 31620
 31621
 31622
 31623
 31624
 31625
 31626
 31627
 31628
 31629
 31630
 31631
 31632
 31633
 31634
 31635
 31636
 31637
 31638
 31639
 31640
 31641
 31642
 31643
 31644
 31645
 31646
 31647
 31648
 31649
 31650
 31651
 31652
 31653
 31654
 31655
 31656
 31657
 31658
 31659
 31660
 31661
 31662
 31663
 31664
 31665
 31666
 31667
 31668
 31669
 31670
 31671
 31672
 31673
 31674
 31675
 31676
 31677
 31678
 31679
 31680
 31681
 31682
 31683
 31684
 31685
 31686
 31687
 31688
 31689
 31690
 31691
 31692
 31693
 31694
 31695
 31696
 31697
 31698
 31699
 31700
 31701
 31702
 31703
 31704
 31705
 31706
 31707
 31708
 31709
 31710
 31711
 31712
 31713
 31714
 31715
 31716
 31717
 31718
 31719
 31720
 31721
 31722
 31723
 31724
 31725
 31726
 31727
 31728
 31729
 31730
 31731
 31732
 31733
 31734
 31735
 31736
 31737
 31738
 31739
 31740
 31741
 31742
 31743
 31744
 31745
 31746
 31747
 31748
 31749
 31750
 31751
 31752
 31753
 31754
 31755
 31756
 31757
 31758
 31759
 31760
 31761
 31762
 31763
 31764
 31765
 31766
 31767
 31768
 31769
 31770
 31771
 31772
 31773
 31774
 31775
 31776
 31777
 31778
 31779
 31780
 31781
 31782
 31783
 31784
 31785
 31786
 31787
 31788
 31789
 31790
 31791
 31792
 31793
 31794
 31795
 31796
 31797
 31798
 31799
 31800
 31801
 31802
 31803
 31804
 31805
 31806
 31807
 31808
 31809
 31810
 31811
 31812
 31813
 31814
 31815
 31816
 31817
 31818
 31819
 31820
 31821
 31822
 31823
 31824
 31825
 31826
 31827
 31828
 31829
 31830
 31831
 31832
 31833
 31834
 31835
 31836
 31837
 31838
 31839
 31840
 31841
 31842
 31843
 31844
 31845
 31846
 31847
 31848
 31849
 31850
 31851
 31852
 31853
 31854
 31855
 31856
 31857
 31858
 31859
 31860
 31861
 31862
 31863
 31864
 31865
 31866
 31867
 31868
 31869
 31870
 31871
 31872
 31873
 31874
 31875
 31876
 31877
 31878
 31879
 31880
 31881
 31882
 31883
 31884
 31885
 31886
 31887
 31888
 31889
 31890
 31891
 31892
 31893
 31894
 31895
 31896
 31897
 31898
 31899
 31900
 31901
 31902
 31903
 31904
 31905
 31906
 31907
 31908
 31909
 31910
 31911
 31912
 31913
 31914
 31915
 31916
 31917
 31918
 31919
 31920
 31921
 31922
 31923
 31924
 31925
 31926
 31927
 31928
 31929
 31930
 31931
 31932
 31933
 31934
 31935
 31936
 31937
 31938
 31939
 31940
 31941
 31942
 31943
 31944
 31945
 31946
 31947
 31948
 31949
 31950
 31951
 31952
 31953
 31954
 31955
 31956
 31957
 31958
 31959
 31960
 31961
 31962
 31963
 31964
 31965
 31966
 31967
 31968
 31969
 31970
 31971
 31972
 31973
 31974
 31975
 31976
 31977
 31978
 31979
 31980
 31981
 31982
 31983
 31984
 31985
 31986
 31987
 31988
 31989
 31990
 31991
 31992
 31993
 31994
 31995
 31996
 31997
 31998
 31999
 32000
 32001
 32002
 32003
 32004
 32005
 32006
 32007
 32008
 32009
 32010
 32011
 32012
 32013
 32014
 32015
 32016
 32017
 32018
 32019
 32020
 32021
 32022
 32023
 32024
 32025
 32026
 32027
 32028
 32029
 32030
 32031
 32032
 32033
 32034
 32035
 32036
 32037
 32038
 32039
 32040
 32041
 32042
 32043
 32044
 32045
 32046
 32047
 32048
 32049
 32050
 32051
 32052
 32053
 32054
 32055
 32056
 32057
 32058
 32059
 32060
 32061
 32062
 32063
 32064
 32065
 32066
 32067
 32068
 32069
 32070
 32071
 32072
 32073
 32074
 32075
 32076
 32077
 32078
 32079
 32080
 32081
 32082
 32083
 32084
 32085
 32086
 32087
 32088
 32089
 32090
 32091
 32092
 32093
 32094
 32095
 32096
 32097
 32098
 32099
 32100
 32101
 32102
 32103
 32104
 32105
 32106
 32107
 32108
 32109
 32110
 32111
 32112
 32113
 32114
 32115
 32116
 32117
 32118
 32119
 32120
 32121
 32122
 32123
 32124
 32125
 32126
 32127
 32128
 32129
 32130
 32131
 32132
 32133
 32134
 32135
 32136
 32137
 32138
 32139
 32140
 32141
 32142
 32143
 32144
 32145
 32146
 32147
 32148
 32149
 32150
 32151
 32152
 32153
 32154
 32155
 32156
 32157
 32158
 32159
 32160
 32161
 32162
 32163
 32164
 32165
 32166
 32167
 32168
 32169
 32170
 32171
 32172
 32173
 32174
 32175
 32176
 32177
 32178
 32179
 32180
 32181
 32182
 32183
 32184
 32185
 32186
 32187
 32188
 32189
 32190
 32191
 32192
 32193
 32194
 32195
 32196
 32197
 32198
 32199
 32200
 32201
 32202
 32203
 32204
 32205
 32206
 32207
 32208
 32209
 32210
 32211
 32212
 32213
 32214
 32215
 32216
 32217
 32218
 32219
 32220
 32221
 32222
 32223
 32224
 32225
 32226
 32227
 32228
 32229
 32230
 32231
 32232
 32233
 32234
 32235
 32236
 32237
 32238
 32239
 32240
 32241
 32242
 32243
 32244
 32245
 32246
 32247
 32248
 32249
 32250
 32251
 32252
 32253
 32254
 32255
 32256
 32257
 32258
 32259
 32260
 32261
 32262
 32263
 32264
 32265
 32266
 32267
 32268
 32269
 32270
 32271
 32272
 32273
 32274
 32275
 32276
 32277
 32278
 32279
 32280
 32281
 32282
 32283
 32284
 32285
 32286
 32287
 32288
 32289
 32290
 32291
 32292
 32293
 32294
 32295
 32296
 32297
 32298
 32299
 32300
 32301
 32302
 32303
 32304
 32305
 32306
 32307
 32308
 32309
 32310
 32311
 32312
 32313
 32314
 32315
 32316
 32317
 32318
 32319
 32320
 32321
 32322
 32323
 32324
 32325
 32326
 32327
 32328
 32329
 32330
 32331
 32332
 32333
 32334
 32335
 32336
 32337
 32338
 32339
 32340
 32341
 32342
 32343
 32344
 32345
 32346
 32347
 32348
 32349
 32350
 32351
 32352
 32353
 32354
 32355
 32356
 32357
 32358
 32359
 32360
 32361
 32362
 32363
 32364
 32365
 32366
 32367
 32368
 32369
 32370
 32371
 32372
 32373
 32374
 32375
 32376
 32377
 32378
 32379
 32380
 32381
 32382
 32383
 32384
 32385
 32386
 32387
 32388
 32389
 32390
 32391
 32392
 32393
 32394
 32395
 32396
 32397
 32398
 32399
 32400
 32401
 32402
 32403
 32404
 32405
 32406
 32407
 32408
 32409
 32410
 32411
 32412
 32413
 32414
 32415
 32416
 32417
 32418
 32419
 32420
 32421
 32422
 32423
 32424
 32425
 32426
 32427
 32428
 32429
 32430
 32431
 32432
 32433
 32434
 32435
 32436
 32437
 32438
 32439
 32440
 32441
 32442
 32443
 32444
 32445
 32446
 32447
 32448
 32449
 32450
 32451
 32452
 32453
 32454
 32455
 32456
 32457
 32458
 32459
 32460
 32461
 32462
 32463
 32464
 32465
 32466
 32467
 32468
 32469
 32470
 32471
 32472
 32473
 32474
 32475
 32476
 32477
 32478
 32479
 32480
 32481
 32482
 32483
 32484
 32485
 32486
 32487
 32488
 32489
 32490
 32491
 32492
 32493
 32494
 32495
 32496
 32497
 32498
 32499
 32500
 32501
 32502
 32503
 32504
 32505
 32506
 32507
 32508
 32509
 32510
 32511
 32512
 32513
 32514
 32515
 32516
 32517
 32518
 32519
 32520
 32521
 32522
 32523
 32524
 32525
 32526
 32527
 32528
 32529
 32530
 32531
 32532
 32533
 32534
 32535
 32536
 32537
 32538
 32539
 32540
 32541
 32542
 32543
 32544
 32545
 32546
 32547
 32548
 32549
 32550
 32551
 32552
 32553
 32554
 32555
 32556
 32557
 32558
 32559
 32560
 32561
 32562
 32563
 32564
 32565
 32566
 32567
 32568
 32569
 32570
 32571
 32572
 32573
 32574
 32575
 32576
 32577
 32578
 32579
 32580
 32581
 32582
 32583
 32584
 32585
 32586
 32587
 32588
 32589
 32590
 32591
 32592
 32593
 32594
 32595
 32596
 32597
 32598
 32599
 32600
 32601
 32602
 32603
 32604
 32605
 32606
 32607
 32608
 32609
 32610
 32611
 32612
 32613
 32614
 32615
 32616
 32617
 32618
 32619
 32620
 32621
 32622
 32623
 32624
 32625
 32626
 32627
 32628
 32629
 32630
 32631
 32632
 32633
 32634
 32635
 32636
 32637
 32638
 32639
 32640
 32641
 32642
 32643
 32644
 32645
 32646
 32647
 32648
 32649
 32650
 32651
 32652
 32653
 32654
 32655
 32656
 32657
 32658
 32659
 32660
 32661
 32662
 32663
 32664
 32665
 32666
 32667
 32668
 32669
 32670
 32671
 32672
 32673
 32674
 32675
 32676
 32677
 32678
 32679
 32680
 32681
 32682
 32683
 32684
 32685
 32686
 32687
 32688
 32689
 32690
 32691
 32692
 32693
 32694
 32695
 32696
 32697
 32698
 32699
 32700
 32701
 32702
 32703
 32704
 32705
 32706
 32707
 32708
 32709
 32710
 32711
 32712
 32713
 32714
 32715
 32716
 32717
 32718
 32719
 32720
 32721
 32722
 32723
 32724
 32725
 32726
 32727
 32728
 32729
 32730
 32731
 32732
 32733
 32734
 32735
 32736
 32737
 32738
 32739
 32740
 32741
 32742
 32743
 32744
 32745
 32746
 32747
 32748
 32749
 32750
 32751
 32752
 32753
 32754
 32755
 32756
 32757
 32758
 32759
 32760
 32761
 32762
 32763
 32764
 32765
 32766
 32767
 32768
 32769
 32770
 32771
 32772
 32773
 32774
 32775
 32776
 32777
 32778
 32779
 32780
 32781
 32782
 32783
 32784
 32785
 32786
 32787
 32788
 32789
 32790
 32791
 32792
 32793
 32794
 32795
 32796
 32797
 32798
 32799
 32800
 32801
 32802
 32803
 32804
 32805
 32806
 32807
 32808
 32809
 32810
 32811
 32812
 32813
 32814
 32815
 32816
 32817
 32818
 32819
 32820
 32821
 32822
 32823
 32824
 32825
 32826
 32827
 32828
 32829
 32830
 32831
 32832
 32833
 32834
 32835
 32836
 32837
 32838
 32839
 32840
 32841
 32842
 32843
 32844
 32845
 32846
 32847
 32848
 32849
 32850
 32851
 32852
 32853
 32854
 32855
 32856
 32857
 32858
 32859
 32860
 32861
 32862
 32863
 32864
 32865
 32866
 32867
 32868
 32869
 32870
 32871
 32872
 32873
 32874
 32875
 32876
 32877
 32878
 32879
 32880
 32881
 32882
 32883
 32884
 32885
 32886
 32887
 32888
 32889
 32890
 32891
 32892
 32893
 32894
 32895
 32896
 32897
 32898
 32899
 32900
 32901
 32902
 32903
 32904
 32905
 32906
 32907
 32908
 32909
 32910
 32911
 32912
 32913
 32914
 32915
 32916
 32917
 32918
 32919
 32920
 32921
 32922
 32923
 32924
 32925
 32926
 32927
 32928
 32929
 32930
 32931
 32932
 32933
 32934
 32935
 32936
 32937
 32938
 32939
 32940
 32941
 32942
 32943
 32944
 32945
 32946
 32947
 32948
 32949
 32950
 32951
 32952
 32953
 32954
 32955
 32956
 32957
 32958
 32959
 32960
 32961
 32962
 32963
 32964
 32965
 32966
 32967
 32968
 32969
 32970
 32971
 32972
 32973
 32974
 32975
 32976
 32977
 32978
 32979
 32980
 32981
 32982
 32983
 32984
 32985
 32986
 32987
 32988
 32989
 32990
 32991
 32992
 32993
 32994
 32995
 32996
 32997
 32998
 32999
 33000
 33001
 33002
 33003
 33004
 33005
 33006
 33007
 33008
 33009
 33010
 33011
 33012
 33013
 33014
 33015
 33016
 33017
 33018
 33019
 33020
 33021
 33022
 33023
 33024
 33025
 33026
 33027
 33028
 33029
 33030
 33031
 33032
 33033
 33034
 33035
 33036
 33037
 33038
 33039
 33040
 33041
 33042
 33043
 33044
 33045
 33046
 33047
 33048
 33049
 33050
 33051
 33052
 33053
 33054
 33055
 33056
 33057
 33058
 33059
 33060
 33061
 33062
 33063
 33064
 33065
 33066
 33067
 33068
 33069
 33070
 33071
 33072
 33073
 33074
 33075
 33076
 33077
 33078
 33079
 33080
 33081
 33082
 33083
 33084
 33085
 33086
 33087
 33088
 33089
 33090
 33091
 33092
 33093
 33094
 33095
 33096
 33097
 33098
 33099
 33100
 33101
 33102
 33103
 33104
 33105
 33106
 33107
 33108
 33109
 33110
 33111
 33112
 33113
 33114
 33115
 33116
 33117
 33118
 33119
 33120
 33121
 33122
 33123
 33124
 33125
 33126
 33127
 33128
 33129
 33130
 33131
 33132
 33133
 33134
 33135
 33136
 33137
 33138
 33139
 33140
 33141
 33142
 33143
 33144
 33145
 33146
 33147
 33148
 33149
 33150
 33151
 33152
 33153
 33154
 33155
 33156
 33157
 33158
 33159
 33160
 33161
 33162
 33163
 33164
 33165
 33166
 33167
 33168
 33169
 33170
 33171
 33172
 33173
 33174
 33175
 33176
 33177
 33178
 33179
 33180
 33181
 33182
 33183
 33184
 33185
 33186
 33187
 33188
 33189
 33190
 33191
 33192
 33193
 33194
 33195
 33196
 33197
 33198
 33199
 33200
 33201
 33202
 33203
 33204
 33205
 33206
 33207
 33208
 33209
 33210
 33211
 33212
 33213
 33214
 33215
 33216
 33217
 33218
 33219
 33220
 33221
 33222
 33223
 33224
 33225
 33226
 33227
 33228
 33229
 33230
 33231
 33232
 33233
 33234
 33235
 33236
 33237
 33238
 33239
 33240
 33241
 33242
 33243
 33244
 33245
 33246
 33247
 33248
 33249
 33250
 33251
 33252
 33253
 33254
 33255
 33256
 33257
 33258
 33259
 33260
 33261
 33262
 33263
 33264
 33265
 33266
 33267
 33268
 33269
 33270
 33271
 33272
 33273
 33274
 33275
 33276
 33277
 33278
 33279
 33280
 33281
 33282
 33283
 33284
 33285
 33286
 33287
 33288
 33289
 33290
 33291
 33292
 33293
 33294
 33295
 33296
 33297
 33298
 33299
 33300
 33301
 33302
 33303
 33304
 33305
 33306
 33307
 33308
 33309
 33310
 33311
 33312
 33313
 33314
 33315
 33316
 33317
 33318
 33319
 33320
 33321
 33322
 33323
 33324
 33325
 33326
 33327
 33328
 33329
 33330
 33331
 33332
 33333
 33334
 33335
 33336
 33337
 33338
 33339
 33340
 33341
 33342
 33343
 33344
 33345
 33346
 33347
 33348
 33349
 33350
 33351
 33352
 33353
 33354
 33355
 33356
 33357
 33358
 33359
 33360
 33361
 33362
 33363
 33364
 33365
 33366
 33367
 33368
 33369
 33370
 33371
 33372
 33373
 33374
 33375
 33376
 33377
 33378
 33379
 33380
 33381
 33382
 33383
 33384
 33385
 33386
 33387
 33388
 33389
 33390
 33391
 33392
 33393
 33394
 33395
 33396
 33397
 33398
 33399
 33400
 33401
 33402
 33403
 33404
 33405
 33406
 33407
 33408
 33409
 33410
 33411
 33412
 33413
 33414
 33415
 33416
 33417
 33418
 33419
 33420
 33421
 33422
 33423
 33424
 33425
 33426
 33427
 33428
 33429
 33430
 33431
 33432
 33433
 33434
 33435
 33436
 33437
 33438
 33439
 33440
 33441
 33442
 33443
 33444
 33445
 33446
 33447
 33448
 33449
 33450
 33451
 33452
 33453
 33454
 33455
 33456
 33457
 33458
 33459
 33460
 33461
 33462
 33463
 33464
 33465
 33466
 33467
 33468
 33469
 33470
 33471
 33472
 33473
 33474
 33475
 33476
 33477
 33478
 33479
 33480
 33481
 33482
 33483
 33484
 33485
 33486
 33487
 33488
 33489
 33490
 33491
 33492
 33493
 33494
 33495
 33496
 33497
 33498
 33499
 33500
 33501
 33502
 33503
 33504
 33505
 33506
 33507
 33508
 33509
 33510
 33511
 33512
 33513
 33514
 33515
 33516
 33517
 33518
 33519
 33520
 33521
 33522
 33523
 33524
 33525
 33526
 33527
 33528
 33529
 33530
 33531
 33532
 33533
 33534
 33535
 33536
 33537
 33538
 33539
 33540
 33541
 33542
 33543
 33544
 33545
 33546
 33547
 33548
 33549
 33550
 33551
 33552
 33553
 33554
 33555
 33556
 33557
 33558
 33559
 33560
 33561
 33562
 33563
 33564
 33565
 33566
 33567
 33568
 33569
 33570
 33571
 33572
 33573
 33574
 33575
 33576
 33577
 33578
 33579
 33580
 33581
 33582
 33583
 33584
 33585
 33586
 33587
 33588
 33589
 33590
 33591
 33592
 33593
 33594
 33595
 33596
 33597
 33598
 33599
 33600
 33601
 33602
 33603
 33604
 33605
 33606
 33607
 33608
 33609
 33610
 33611
 33612
 33613
 33614
 33615
 33616
 33617
 33618
 33619
 33620
 33621
 33622
 33623
 33624
 33625
 33626
 33627
 33628
 33629
 33630
 33631
 33632
 33633
 33634
 33635
 33636
 33637
 33638
 33639
 33640
 33641
 33642
 33643
 33644
 33645
 33646
 33647
 33648
 33649
 33650
 33651
 33652
 33653
 33654
 33655
 33656
 33657
 33658
 33659
 33660
 33661
 33662
 33663
 33664
 33665
 33666
 33667
 33668
 33669
 33670
 33671
 33672
 33673
 33674
 33675
 33676
 33677
 33678
 33679
 33680
 33681
 33682
 33683
 33684
 33685
 33686
 33687
 33688
 33689
 33690
 33691
 33692
 33693
 33694
 33695
 33696
 33697
 33698
 33699
 33700
 33701
 33702
 33703
 33704
 33705
 33706
 33707
 33708
 33709
 33710
 33711
 33712
 33713
 33714
 33715
 33716
 33717
 33718
 33719
 33720
 33721
 33722
 33723
 33724
 33725
 33726
 33727
 33728
 33729
 33730
 33731
 33732
 33733
 33734
 33735
 33736
 33737
 33738
 33739
 33740
 33741
 33742
 33743
 33744
 33745
 33746
 33747
 33748
 33749
 33750
 33751
 33752
 33753
 33754
 33755
 33756
 33757
 33758
 33759
 33760
 33761
 33762
 33763
 33764
 33765
 33766
 33767
 33768
 33769
 33770
 33771
 33772
 33773
 33774
 33775
 33776
 33777
 33778
 33779
 33780
 33781
 33782
 33783
 33784
 33785
 33786
 33787
 33788
 33789
 33790
 33791
 33792
 33793
 33794
 33795
 33796
 33797
 33798
 33799
 33800
 33801
 33802
 33803
 33804
 33805
 33806
 33807
 33808
 33809
 33810
 33811
 33812
 33813
 33814
 33815
 33816
 33817
 33818
 33819
 33820
 33821
 33822
 33823
 33824
 33825
 33826
 33827
 33828
 33829
 33830
 33831
 33832
 33833
 33834
 33835
 33836
 33837
 33838
 33839
 33840
 33841
 33842
 33843
 33844
 33845
 33846
 33847
 33848
 33849
 33850
 33851
 33852
 33853
 33854
 33855
 33856
 33857
 33858
 33859
 33860
 33861
 33862
 33863
 33864
 33865
 33866
 33867
 33868
 33869
 33870
 33871
 33872
 33873
 33874
 33875
 33876
 33877
 33878
 33879
 33880
 33881
 33882
 33883
 33884
 33885
 33886
 33887
 33888
 33889
 33890
 33891
 33892
 33893
 33894
 33895
 33896
 33897
 33898
 33899
 33900
 33901
 33902
 33903
 33904
 33905
 33906
 33907
 33908
 33909
 33910
 33911
 33912
 33913
 33914
 33915
 33916
 33917
 33918
 33919
 33920
 33921
 33922
 33923
 33924
 33925
 33926
 33927
 33928
 33929
 33930
 33931
 33932
 33933
 33934
 33935
 33936
 33937
 33938
 33939
 33940
 33941
 33942
 33943
 33944
 33945
 33946
 33947
 33948
 33949
 33950
 33951
 33952
 33953
 33954
 33955
 33956
 33957
 33958
 33959
 33960
 33961
 33962
 33963
 33964
 33965
 33966
 33967
 33968
 33969
 33970
 33971
 33972
 33973
 33974
 33975
 33976
 33977
 33978
 33979
 33980
 33981
 33982
 33983
 33984
 33985
 33986
 33987
 33988
 33989
 33990
 33991
 33992
 33993
 33994
 33995
 33996
 33997
 33998
 33999
 34000
 34001
 34002
 34003
 34004
 34005
 34006
 34007
 34008
 34009
 34010
 34011
 34012
 34013
 34014
 34015
 34016
 34017
 34018
 34019
 34020
 34021
 34022
 34023
 34024
 34025
 34026
 34027
 34028
 34029
 34030
 34031
 34032
 34033
 34034
 34035
 34036
 34037
 34038
 34039
 34040
 34041
 34042
 34043
 34044
 34045
 34046
 34047
 34048
 34049
 34050
 34051
 34052
 34053
 34054
 34055
 34056
 34057
 34058
 34059
 34060
 34061
 34062
 34063
 34064
 34065
 34066
 34067
 34068
 34069
 34070
 34071
 34072
 34073
 34074
 34075
 34076
 34077
 34078
 34079
 34080
 34081
 34082
 34083
 34084
 34085
 34086
 34087
 34088
 34089
 34090
 34091
 34092
 34093
 34094
 34095
 34096
 34097
 34098
 34099
 34100
 34101
 34102
 34103
 34104
 34105
 34106
 34107
 34108
 34109
 34110
 34111
 34112
 34113
 34114
 34115
 34116
 34117
 34118
 34119
 34120
 34121
 34122
 34123
 34124
 34125
 34126
 34127
 34128
 34129
 34130
 34131
 34132
 34133
 34134
 34135
 34136
 34137
 34138
 34139
 34140
 34141
 34142
 34143
 34144
 34145
 34146
 34147
 34148
 34149
 34150
 34151
 34152
 34153
 34154
 34155
 34156
 34157
 34158
 34159
 34160
 34161
 34162
 34163
 34164
 34165
 34166
 34167
 34168
 34169
 34170
 34171
 34172
 34173
 34174
 34175
 34176
 34177
 34178
 34179
 34180
 34181
 34182
 34183
 34184
 34185
 34186
 34187
 34188
 34189
 34190
 34191
 34192
 34193
 34194
 34195
 34196
 34197
 34198
 34199
 34200
 34201
 34202
 34203
 34204
 34205
 34206
 34207
 34208
 34209
 34210
 34211
 34212
 34213
 34214
 34215
 34216
 34217
 34218
 34219
 34220
 34221
 34222
 34223
 34224
 34225
 34226
 34227
 34228
 34229
 34230
 34231
 34232
 34233
 34234
 34235
 34236
 34237
 34238
 34239
 34240
 34241
 34242
 34243
 34244
 34245
 34246
 34247
 34248
 34249
 34250
 34251
 34252
 34253
 34254
 34255
 34256
 34257
 34258
 34259
 34260
 34261
 34262
 34263
 34264
 34265
 34266
 34267
 34268
 34269
 34270
 34271
 34272
 34273
 34274
 34275
 34276
 34277
 34278
 34279
 34280
 34281
 34282
 34283
 34284
 34285
 34286
 34287
 34288
 34289
 34290
 34291
 34292
 34293
 34294
 34295
 34296
 34297
 34298
 34299
 34300
 34301
 34302
 34303
 34304
 34305
 34306
 34307
 34308
 34309
 34310
 34311
 34312
 34313
 34314
 34315
 34316
 34317
 34318
 34319
 34320
 34321
 34322
 34323
 34324
 34325
 34326
 34327
 34328
 34329
 34330
 34331
 34332
 34333
 34334
 34335
 34336
 34337
 34338
 34339
 34340
 34341
 34342
 34343
 34344
 34345
 34346
 34347
 34348
 34349
 34350
 34351
 34352
 34353
 34354
 34355
 34356
 34357
 34358
 34359
 34360
 34361
 34362
 34363
 34364
 34365
 34366
 34367
 34368
 34369
 34370
 34371
 34372
 34373
 34374
 34375
 34376
 34377
 34378
 34379
 34380
 34381
 34382
 34383
 34384
 34385
 34386
 34387
 34388
 34389
 34390
 34391
 34392
 34393
 34394
 34395
 34396
 34397
 34398
 34399
 34400
 34401
 34402
 34403
 34404
 34405
 34406
 34407
 34408
 34409
 34410
 34411
 34412
 34413
 34414
 34415
 34416
 34417
 34418
 34419
 34420
 34421
 34422
 34423
 34424
 34425
 34426
 34427
 34428
 34429
 34430
 34431
 34432
 34433
 34434
 34435
 34436
 34437
 34438
 34439
 34440
 34441
 34442
 34443
 34444
 34445
 34446
 34447
 34448
 34449
 34450
 34451
 34452
 34453
 34454
 34455
 34456
 34457
 34458
 34459
 34460
 34461
 34462
 34463
 34464
 34465
 34466
 34467
 34468
 34469
 34470
 34471
 34472
 34473
 34474
 34475
 34476
 34477
 34478
 34479
 34480
 34481
 34482
 34483
 34484
 34485
 34486
 34487
 34488
 34489
 34490
 34491
 34492
 34493
 34494
 34495
 34496
 34497
 34498
 34499
 34500
 34501
 34502
 34503
 34504
 34505
 34506
 34507
 34508
 34509
 34510
 34511
 34512
 34513
 34514
 34515
 34516
 34517
 34518
 34519
 34520
 34521
 34522
 34523
 34524
 34525
 34526
 34527
 34528
 34529
 34530
 34531
 34532
 34533
 34534
 34535
 34536
 34537
 34538
 34539
 34540
 34541
 34542
 34543
 34544
 34545
 34546
 34547
 34548
 34549
 34550
 34551
 34552
 34553
 34554
 34555
 34556
 34557
 34558
 34559
 34560
 34561
 34562
 34563
 34564
 34565
 34566
 34567
 34568
 34569
 34570
 34571
 34572
 34573
 34574
 34575
 34576
 34577
 34578
 34579
 34580
 34581
 34582
 34583
 34584
 34585
 34586
 34587
 34588
 34589
 34590
 34591
 34592
 34593
 34594
 34595
 34596
 34597
 34598
 34599
 34600
 34601
 34602
 34603
 34604
 34605
 34606
 34607
 34608
 34609
 34610
 34611
 34612
 34613
 34614
 34615
 34616
 34617
 34618
 34619
 34620
 34621
 34622
 34623
 34624
 34625
 34626
 34627
 34628
 34629
 34630
 34631
 34632
 34633
 34634
 34635
 34636
 34637
 34638
 34639
 34640
 34641
 34642
 34643
 34644
 34645
 34646
 34647
 34648
 34649
 34650
 34651
 34652
 34653
 34654
 34655
 34656
 34657
 34658
 34659
 34660
 34661
 34662
 34663
 34664
 34665
 34666
 34667
 34668
 34669
 34670
 34671
 34672
 34673
 34674
 34675
 34676
 34677
 34678
 34679
 34680
 34681
 34682
 34683
 34684
 34685
 34686
 34687
 34688
 34689
 34690
 34691
 34692
 34693
 34694
 34695
 34696
 34697
 34698
 34699
 34700
 34701
 34702
 34703
 34704
 34705
 34706
 34707
 34708
 34709
 34710
 34711
 34712
 34713
 34714
 34715
 34716
 34717
 34718
 34719
 34720
 34721
 34722
 34723
 34724
 34725
 34726
 34727
 34728
 34729
 34730
 34731
 34732
 34733
 34734
 34735
 34736
 34737
 34738
 34739
 34740
 34741
 34742
 34743
 34744
 34745
 34746
 34747
 34748
 34749
 34750
 34751
 34752
 34753
 34754
 34755
 34756
 34757
 34758
 34759
 34760
 34761
 34762
 34763
 34764
 34765
 34766
 34767
 34768
 34769
 34770
 34771
 34772
 34773
 34774
 34775
 34776
 34777
 34778
 34779
 34780
 34781
 34782
 34783
 34784
 34785
 34786
 34787
 34788
 34789
 34790
 34791
 34792
 34793
 34794
 34795
 34796
 34797
 34798
 34799
 34800
 34801
 34802
 34803
 34804
 34805
 34806
 34807
 34808
 34809
 34810
 34811
 34812
 34813
 34814
 34815
 34816
 34817
 34818
 34819
 34820
 34821
 34822
 34823
 34824
 34825
 34826
 34827
 34828
 34829
 34830
 34831
 34832
 34833
 34834
 34835
 34836
 34837
 34838
 34839
 34840
 34841
 34842
 34843
 34844
 34845
 34846
 34847
 34848
 34849
 34850
 34851
 34852
 34853
 34854
 34855
 34856
 34857
 34858
 34859
 34860
 34861
 34862
 34863
 34864
 34865
 34866
 34867
 34868
 34869
 34870
 34871
 34872
 34873
 34874
 34875
 34876
 34877
 34878
 34879
 34880
 34881
 34882
 34883
 34884
 34885
 34886
 34887
 34888
 34889
 34890
 34891
 34892
 34893
 34894
 34895
 34896
 34897
 34898
 34899
 34900
 34901
 34902
 34903
 34904
 34905
 34906
 34907
 34908
 34909
 34910
 34911
 34912
 34913
 34914
 34915
 34916
 34917
 34918
 34919
 34920
 34921
 34922
 34923
 34924
 34925
 34926
 34927
 34928
 34929
 34930
 34931
 34932
 34933
 34934
 34935
 34936
 34937
 34938
 34939
 34940
 34941
 34942
 34943
 34944
 34945
 34946
 34947
 34948
 34949
 34950
 34951
 34952
 34953
 34954
 34955
 34956
 34957
 34958
 34959
 34960
 34961
 34962
 34963
 34964
 34965
 34966
 34967
 34968
 34969
 34970
 34971
 34972
 34973
 34974
 34975
 34976
 34977
 34978
 34979
 34980
 34981
 34982
 34983
 34984
 34985
 34986
 34987
 34988
 34989
 34990
 34991
 34992
 34993
 34994
 34995
 34996
 34997
 34998
 34999
 35000
 35001
 35002
 35003
 35004
 35005
 35006
 35007
 35008
 35009
 35010
 35011
 35012
 35013
 35014
 35015
 35016
 35017
 35018
 35019
 35020
 35021
 35022
 35023
 35024
 35025
 35026
 35027
 35028
 35029
 35030
 35031
 35032
 35033
 35034
 35035
 35036
 35037
 35038
 35039
 35040
 35041
 35042
 35043
 35044
 35045
 35046
 35047
 35048
 35049
 35050
 35051
 35052
 35053
 35054
 35055
 35056
 35057
 35058
 35059
 35060
 35061
 35062
 35063
 35064
 35065
 35066
 35067
 35068
 35069
 35070
 35071
 35072
 35073
 35074
 35075
 35076
 35077
 35078
 35079
 35080
 35081
 35082
 35083
 35084
 35085
 35086
 35087
 35088
 35089
 35090
 35091
 35092
 35093
 35094
 35095
 35096
 35097
 35098
 35099
 35100
 35101
 35102
 35103
 35104
 35105
 35106
 35107
 35108
 35109
 35110
 35111
 35112
 35113
 35114
 35115
 35116
 35117
 35118
 35119
 35120
 35121
 35122
 35123
 35124
 35125
 35126
 35127
 35128
 35129
 35130
 35131
 35132
 35133
 35134
 35135
 35136
 35137
 35138
 35139
 35140
 35141
 35142
 35143
 35144
 35145
 35146
 35147
 35148
 35149
 35150
 35151
 35152
 35153
 35154
 35155
 35156
 35157
 35158
 35159
 35160
 35161
 35162
 35163
 35164
 35165
 35166
 35167
 35168
 35169
 35170
 35171
 35172
 35173
 35174
 35175
 35176
 35177
 35178
 35179
 35180
 35181
 35182
 35183
 35184
 35185
 35186
 35187
 35188
 35189
 35190
 35191
 35192
 35193
 35194
 35195
 35196
 35197
 35198
 35199
 35200
 35201
 35202
 35203
 35204
 35205
 35206
 35207
 35208
 35209
 35210
 35211
 35212
 35213
 35214
 35215
 35216
 35217
 35218
 35219
 35220
 35221
 35222
 35223
 35224
 35225
 35226
 35227
 35228
 35229
 35230
 35231
 35232
 35233
 35234
 35235
 35236
 35237
 35238
 35239
 35240
 35241
 35242
 35243
 35244
 35245
 35246
 35247
 35248
 35249
 35250
 35251
 35252
 35253
 35254
 35255
 35256
 35257
 35258
 35259
 35260
 35261
 35262
 35263
 35264
 35265
 35266
 35267
 35268
 35269
 35270
 35271
 35272
 35273
 35274
 35275
 35276
 35277
 35278
 35279
 35280
 35281
 35282
 35283
 35284
 35285
 35286
 35287
 35288
 35289
 35290
 35291
 35292
 35293
 35294
 35295
 35296
 35297
 35298
 35299
 35300
 35301
 35302
 35303
 35304
 35305
 35306
 35307
 35308
 35309
 35310
 35311
 35312
 35313
 35314
 35315
 35316
 35317
 35318
 35319
 35320
 35321
 35322
 35323
 35324
 35325
 35326
 35327
 35328
 35329
 35330
 35331
 35332
 35333
 35334
 35335
 35336
 35337
 35338
 35339
 35340
 35341
 35342
 35343
 35344
 35345
 35346
 35347
 35348
 35349
 35350
 35351
 35352
 35353
 35354
 35355
 35356
 35357
 35358
 35359
 35360
 35361
 35362
 35363
 35364
 35365
 35366
 35367
 35368
 35369
 35370
 35371
 35372
 35373
 35374
 35375
 35376
 35377
 35378
 35379
 35380
 35381
 35382
 35383
 35384
 35385
 35386
 35387
 35388
 35389
 35390
 35391
 35392
 35393
 35394
 35395
 35396
 35397
 35398
 35399
 35400
 35401
 35402
 35403
 35404
 35405
 35406
 35407
 35408
 35409
 35410
 35411
 35412
 35413
 35414
 35415
 35416
 35417
 35418
 35419
 35420
 35421
 35422
 35423
 35424
 35425
 35426
 35427
 35428
 35429
 35430
 35431
 35432
 35433
 35434
 35435
 35436
 35437
 35438
 35439
 35440
 35441
 35442
 35443
 35444
 35445
 35446
 35447
 35448
 35449
 35450
 35451
 35452
 35453
 35454
 35455
 35456
 35457
 35458
 35459
 35460
 35461
 35462
 35463
 35464
 35465
 35466
 35467
 35468
 35469
 35470
 35471
 35472
 35473
 35474
 35475
 35476
 35477
 35478
 35479
 35480
 35481
 35482
 35483
 35484
 35485
 35486
 35487
 35488
 35489
 35490
 35491
 35492
 35493
 35494
 35495
 35496
 35497
 35498
 35499
 35500
 35501
 35502
 35503
 35504
 35505
 35506
 35507
 35508
 35509
 35510
 35511
 35512
 35513
 35514
 35515
 35516
 35517
 35518
 35519
 35520
 35521
 35522
 35523
 35524
 35525
 35526
 35527
 35528
 35529
 35530
 35531
 35532
 35533
 35534
 35535
 35536
 35537
 35538
 35539
 35540
 35541
 35542
 35543
 35544
 35545
 35546
 35547
 35548
 35549
 35550
 35551
 35552
 35553
 35554
 35555
 35556
 35557
 35558
 35559
 35560
 35561
 35562
 35563
 35564
 35565
 35566
 35567
 35568
 35569
 35570
 35571
 35572
 35573
 35574
 35575
 35576
 35577
 35578
 35579
 35580
 35581
 35582
 35583
 35584
 35585
 35586
 35587
 35588
 35589
 35590
 35591
 35592
 35593
 35594
 35595
 35596
 35597
 35598
 35599
 35600
 35601
 35602
 35603
 35604
 35605
 35606
 35607
 35608
 35609
 35610
 35611
 35612
 35613
 35614
 35615
 35616
 35617
 35618
 35619
 35620
 35621
 35622
 35623
 35624
 35625
 35626
 35627
 35628
 35629
 35630
 35631
 35632
 35633
 35634
 35635
 35636
 35637
 35638
 35639
 35640
 35641
 35642
 35643
 35644
 35645
 35646
 35647
 35648
 35649
 35650
 35651
 35652
 35653
 35654
 35655
 35656
 35657
 35658
 35659
 35660
 35661
 35662
 35663
 35664
 35665
 35666
 35667
 35668
 35669
 35670
 35671
 35672
 35673
 35674
 35675
 35676
 35677
 35678
 35679
 35680
 35681
 35682
 35683
 35684
 35685
 35686
 35687
 35688
 35689
 35690
 35691
 35692
 35693
 35694
 35695
 35696
 35697
 35698
 35699
 35700
 35701
 35702
 35703
 35704
 35705
 35706
 35707
 35708
 35709
 35710
 35711
 35712
 35713
 35714
 35715
 35716
 35717
 35718
 35719
 35720
 35721
 35722
 35723
 35724
 35725
 35726
 35727
 35728
 35729
 35730
 35731
 35732
 35733
 35734
 35735
 35736
 35737
 35738
 35739
 35740
 35741
 35742
 35743
 35744
 35745
 35746
 35747
 35748
 35749
 35750
 35751
 35752
 35753
 35754
 35755
 35756
 35757
 35758
 35759
 35760
 35761
 35762
 35763
 35764
 35765
 35766
 35767
 35768
 35769
 35770
 35771
 35772
 35773
 35774
 35775
 35776
 35777
 35778
 35779
 35780
 35781
 35782
 35783
 35784
 35785
 35786
 35787
 35788
 35789
 35790
 35791
 35792
 35793
 35794
 35795
 35796
 35797
 35798
 35799
 35800
 35801
 35802
 35803
 35804
 35805
 35806
 35807
 35808
 35809
 35810
 35811
 35812
 35813
 35814
 35815
 35816
 35817
 35818
 35819
 35820
 35821
 35822
 35823
 35824
 35825
 35826
 35827
 35828
 35829
 35830
 35831
 35832
 35833
 35834
 35835
 35836
 35837
 35838
 35839
 35840
 35841
 35842
 35843
 35844
 35845
 35846
 35847
 35848
 35849
 35850
 35851
 35852
 35853
 35854
 35855
 35856
 35857
 35858
 35859
 35860
 35861
 35862
 35863
 35864
 35865
 35866
 35867
 35868
 35869
 35870
 35871
 35872
 35873
 35874
 35875
 35876
 35877
 35878
 35879
 35880
 35881
 35882
 35883
 35884
 35885
 35886
 35887
 35888
 35889
 35890
 35891
 35892
 35893
 35894
 35895
 35896
 35897
 35898
 35899
 35900
 35901
 35902
 35903
 35904
 35905
 35906
 35907
 35908
 35909
 35910
 35911
 35912
 35913
 35914
 35915
 35916
 35917
 35918
 35919
 35920
 35921
 35922
 35923
 35924
 35925
 35926
 35927
 35928
 35929
 35930
 35931
 35932
 35933
 35934
 35935
 35936
 35937
 35938
 35939
 35940
 35941
 35942
 35943
 35944
 35945
 35946
 35947
 35948
 35949
 35950
 35951
 35952
 35953
 35954
 35955
 35956
 35957
 35958
 35959
 35960
 35961
 35962
 35963
 35964
 35965
 35966
 35967
 35968
 35969
 35970
 35971
 35972
 35973
 35974
 35975
 35976
 35977
 35978
 35979
 35980
 35981
 35982
 35983
 35984
 35985
 35986
 35987
 35988
 35989
 35990
 35991
 35992
 35993
 35994
 35995
 35996
 35997
 35998
 35999
 36000
 36001
 36002
 36003
 36004
 36005
 36006
 36007
 36008
 36009
 36010
 36011
 36012
 36013
 36014
 36015
 36016
 36017
 36018
 36019
 36020
 36021
 36022
 36023
 36024
 36025
 36026
 36027
 36028
 36029
 36030
 36031
 36032
 36033
 36034
 36035
 36036
 36037
 36038
 36039
 36040
 36041
 36042
 36043
 36044
 36045
 36046
 36047
 36048
 36049
 36050
 36051
 36052
 36053
 36054
 36055
 36056
 36057
 36058
 36059
 36060
 36061
 36062
 36063
 36064
 36065
 36066
 36067
 36068
 36069
 36070
 36071
 36072
 36073
 36074
 36075
 36076
 36077
 36078
 36079
 36080
 36081
 36082
 36083
 36084
 36085
 36086
 36087
 36088
 36089
 36090
 36091
 36092
 36093
 36094
 36095
 36096
 36097
 36098
 36099
 36100
 36101
 36102
 36103
 36104
 36105
 36106
 36107
 36108
 36109
 36110
 36111
 36112
 36113
 36114
 36115
 36116
 36117
 36118
 36119
 36120
 36121
 36122
 36123
 36124
 36125
 36126
 36127
 36128
 36129
 36130
 36131
 36132
 36133
 36134
 36135
 36136
 36137
 36138
 36139
 36140
 36141
 36142
 36143
 36144
 36145
 36146
 36147
 36148
 36149
 36150
 36151
 36152
 36153
 36154
 36155
 36156
 36157
 36158
 36159
 36160
 36161
 36162
 36163
 36164
 36165
 36166
 36167
 36168
 36169
 36170
 36171
 36172
 36173
 36174
 36175
 36176
 36177
 36178
 36179
 36180
 36181
 36182
 36183
 36184
 36185
 36186
 36187
 36188
 36189
 36190
 36191
 36192
 36193
 36194
 36195
 36196
 36197
 36198
 36199
 36200
 36201
 36202
 36203
 36204
 36205
 36206
 36207
 36208
 36209
 36210
 36211
 36212
 36213
 36214
 36215
 36216
 36217
 36218
 36219
 36220
 36221
 36222
 36223
 36224
 36225
 36226
 36227
 36228
 36229
 36230
 36231
 36232
 36233
 36234
 36235
 36236
 36237
 36238
 36239
 36240
 36241
 36242
 36243
 36244
 36245
 36246
 36247
 36248
 36249
 36250
 36251
 36252
 36253
 36254
 36255
 36256
 36257
 36258
 36259
 36260
 36261
 36262
 36263
 36264
 36265
 36266
 36267
 36268
 36269
 36270
 36271
 36272
 36273
 36274
 36275
 36276
 36277
 36278
 36279
 36280
 36281
 36282
 36283
 36284
 36285
 36286
 36287
 36288
 36289
 36290
 36291
 36292
 36293
 36294
 36295
 36296
 36297
 36298
 36299
 36300
 36301
 36302
 36303
 36304
 36305
 36306
 36307
 36308
 36309
 36310
 36311
 36312
 36313
 36314
 36315
 36316
 36317
 36318
 36319
 36320
 36321
 36322
 36323
 36324
 36325
 36326
 36327
 36328
 36329
 36330
 36331
 36332
 36333
 36334
 36335
 36336
 36337
 36338
 36339
 36340
 36341
 36342
 36343
 36344
 36345
 36346
 36347
 36348
 36349
 36350
 36351
 36352
 36353
 36354
 36355
 36356
 36357
 36358
 36359
 36360
 36361
 36362
 36363
 36364
 36365
 36366
 36367
 36368
 36369
 36370
 36371
 36372
 36373
 36374
 36375
 36376
 36377
 36378
 36379
 36380
 36381
 36382
 36383
 36384
 36385
 36386
 36387
 36388
 36389
 36390
 36391
 36392
 36393
 36394
 36395
 36396
 36397
 36398
 36399
 36400
 36401
 36402
 36403
 36404
 36405
 36406
 36407
 36408
 36409
 36410
 36411
 36412
 36413
 36414
 36415
 36416
 36417
 36418
 36419
 36420
 36421
 36422
 36423
 36424
 36425
 36426
 36427
 36428
 36429
 36430
 36431
 36432
 36433
 36434
 36435
 36436
 36437
 36438
 36439
 36440
 36441
 36442
 36443
 36444
 36445
 36446
 36447
 36448
 36449
 36450
 36451
 36452
 36453
 36454
 36455
 36456
 36457
 36458
 36459
 36460
 36461
 36462
 36463
 36464
 36465
 36466
 36467
 36468
 36469
 36470
 36471
 36472
 36473
 36474
 36475
 36476
 36477
 36478
 36479
 36480
 36481
 36482
 36483
 36484
 36485
 36486
 36487
 36488
 36489
 36490
 36491
 36492
 36493
 36494
 36495
 36496
 36497
 36498
 36499
 36500
 36501
 36502
 36503
 36504
 36505
 36506
 36507
 36508
 36509
 36510
 36511
 36512
 36513
 36514
 36515
 36516
 36517
 36518
 36519
 36520
 36521
 36522
 36523
 36524
 36525
 36526
 36527
 36528
 36529
 36530
 36531
 36532
 36533
 36534
 36535
 36536
 36537
 36538
 36539
 36540
 36541
 36542
 36543
 36544
 36545
 36546
 36547
 36548
 36549
 36550
 36551
 36552
 36553
 36554
 36555
 36556
 36557
 36558
 36559
 36560
 36561
 36562
 36563
 36564
 36565
 36566
 36567
 36568
 36569
 36570
 36571
 36572
 36573
 36574
 36575
 36576
 36577
 36578
 36579
 36580
 36581
 36582
 36583
 36584
 36585
 36586
 36587
 36588
 36589
 36590
 36591
 36592
 36593
 36594
 36595
 36596
 36597
 36598
 36599
 36600
 36601
 36602
 36603
 36604
 36605
 36606
 36607
 36608
 36609
 36610
 36611
 36612
 36613
 36614
 36615
 36616
 36617
 36618
 36619
 36620
 36621
 36622
 36623
 36624
 36625
 36626
 36627
 36628
 36629
 36630
 36631
 36632
 36633
 36634
 36635
 36636
 36637
 36638
 36639
 36640
 36641
 36642
 36643
 36644
 36645
 36646
 36647
 36648
 36649
 36650
 36651
 36652
 36653
 36654
 36655
 36656
 36657
 36658
 36659
 36660
 36661
 36662
 36663
 36664
 36665
 36666
 36667
 36668
 36669
 36670
 36671
 36672
 36673
 36674
 36675
 36676
 36677
 36678
 36679
 36680
 36681
 36682
 36683
 36684
 36685
 36686
 36687
 36688
 36689
 36690
 36691
 36692
 36693
 36694
 36695
 36696
 36697
 36698
 36699
 36700
 36701
 36702
 36703
 36704
 36705
 36706
 36707
 36708
 36709
 36710
 36711
 36712
 36713
 36714
 36715
 36716
 36717
 36718
 36719
 36720
 36721
 36722
 36723
 36724
 36725
 36726
 36727
 36728
 36729
 36730
 36731
 36732
 36733
 36734
 36735
 36736
 36737
 36738
 36739
 36740
 36741
 36742
 36743
 36744
 36745
 36746
 36747
 36748
 36749
 36750
 36751
 36752
 36753
 36754
 36755
 36756
 36757
 36758
 36759
 36760
 36761
 36762
 36763
 36764
 36765
 36766
 36767
 36768
 36769
 36770
 36771
 36772
 36773
 36774
 36775
 36776
 36777
 36778
 36779
 36780
 36781
 36782
 36783
 36784
 36785
 36786
 36787
 36788
 36789
 36790
 36791
 36792
 36793
 36794
 36795
 36796
 36797
 36798
 36799
 36800
 36801
 36802
 36803
 36804
 36805
 36806
 36807
 36808
 36809
 36810
 36811
 36812
 36813
 36814
 36815
 36816
 36817
 36818
 36819
 36820
 36821
 36822
 36823
 36824
 36825
 36826
 36827
 36828
 36829
 36830
 36831
 36832
 36833
 36834
 36835
 36836
 36837
 36838
 36839
 36840
 36841
 36842
 36843
 36844
 36845
 36846
 36847
 36848
 36849
 36850
 36851
 36852
 36853
 36854
 36855
 36856
 36857
 36858
 36859
 36860
 36861
 36862
 36863
 36864
 36865
 36866
 36867
 36868
 36869
 36870
 36871
 36872
 36873
 36874
 36875
 36876
 36877
 36878
 36879
 36880
 36881
 36882
 36883
 36884
 36885
 36886
 36887
 36888
 36889
 36890
 36891
 36892
 36893
 36894
 36895
 36896
 36897
 36898
 36899
 36900
 36901
 36902
 36903
 36904
 36905
 36906
 36907
 36908
 36909
 36910
 36911
 36912
 36913
 36914
 36915
 36916
 36917
 36918
 36919
 36920
 36921
 36922
 36923
 36924
 36925
 36926
 36927
 36928
 36929
 36930
 36931
 36932
 36933
 36934
 36935
 36936
 36937
 36938
 36939
 36940
 36941
 36942
 36943
 36944
 36945
 36946
 36947
 36948
 36949
 36950
 36951
 36952
 36953
 36954
 36955
 36956
 36957
 36958
 36959
 36960
 36961
 36962
 36963
 36964
 36965
 36966
 36967
 36968
 36969
 36970
 36971
 36972
 36973
 36974
 36975
 36976
 36977
 36978
 36979
 36980
 36981
 36982
 36983
 36984
 36985
 36986
 36987
 36988
 36989
 36990
 36991
 36992
 36993
 36994
 36995
 36996
 36997
 36998
 36999
 37000
 37001
 37002
 37003
 37004
 37005
 37006
 37007
 37008
 37009
 37010
 37011
 37012
 37013
 37014
 37015
 37016
 37017
 37018
 37019
 37020
 37021
 37022
 37023
 37024
 37025
 37026
 37027
 37028
 37029
 37030
 37031
 37032
 37033
 37034
 37035
 37036
 37037
 37038
 37039
 37040
 37041
 37042
 37043
 37044
 37045
 37046
 37047
 37048
 37049
 37050
 37051
 37052
 37053
 37054
 37055
 37056
 37057
 37058
 37059
 37060
 37061
 37062
 37063
 37064
 37065
 37066
 37067
 37068
 37069
 37070
 37071
 37072
 37073
 37074
 37075
 37076
 37077
 37078
 37079
 37080
 37081
 37082
 37083
 37084
 37085
 37086
 37087
 37088
 37089
 37090
 37091
 37092
 37093
 37094
 37095
 37096
 37097
 37098
 37099
 37100
 37101
 37102
 37103
 37104
 37105
 37106
 37107
 37108
 37109
 37110
 37111
 37112
 37113
 37114
 37115
 37116
 37117
 37118
 37119
 37120
 37121
 37122
 37123
 37124
 37125
 37126
 37127
 37128
 37129
 37130
 37131
 37132
 37133
 37134
 37135
 37136
 37137
 37138
 37139
 37140
 37141
 37142
 37143
 37144
 37145
 37146
 37147
 37148
 37149
 37150
 37151
 37152
 37153
 37154
 37155
 37156
 37157
 37158
 37159
 37160
 37161
 37162
 37163
 37164
 37165
 37166
 37167
 37168
 37169
 37170
 37171
 37172
 37173
 37174
 37175
 37176
 37177
 37178
 37179
 37180
 37181
 37182
 37183
 37184
 37185
 37186
 37187
 37188
 37189
 37190
 37191
 37192
 37193
 37194
 37195
 37196
 37197
 37198
 37199
 37200
 37201
 37202
 37203
 37204
 37205
 37206
 37207
 37208
 37209
 37210
 37211
 37212
 37213
 37214
 37215
 37216
 37217
 37218
 37219
 37220
 37221
 37222
 37223
 37224
 37225
 37226
 37227
 37228
 37229
 37230
 37231
 37232
 37233
 37234
 37235
 37236
 37237
 37238
 37239
 37240
 37241
 37242
 37243
 37244
 37245
 37246
 37247
 37248
 37249
 37250
 37251
 37252
 37253
 37254
 37255
 37256
 37257
 37258
 37259
 37260
 37261
 37262
 37263
 37264
 37265
 37266
 37267
 37268
 37269
 37270
 37271
 37272
 37273
 37274
 37275
 37276
 37277
 37278
 37279
 37280
 37281
 37282
 37283
 37284
 37285
 37286
 37287
 37288
 37289
 37290
 37291
 37292
 37293
 37294
 37295
 37296
 37297
 37298
 37299
 37300
 37301
 37302
 37303
 37304
 37305
 37306
 37307
 37308
 37309
 37310
 37311
 37312
 37313
 37314
 37315
 37316
 37317
 37318
 37319
 37320
 37321
 37322
 37323
 37324
 37325
 37326
 37327
 37328
 37329
 37330
 37331
 37332
 37333
 37334
 37335
 37336
 37337
 37338
 37339
 37340
 37341
 37342
 37343
 37344
 37345
 37346
 37347
 37348
 37349
 37350
 37351
 37352
 37353
 37354
 37355
 37356
 37357
 37358
 37359
 37360
 37361
 37362
 37363
 37364
 37365
 37366
 37367
 37368
 37369
 37370
 37371
 37372
 37373
 37374
 37375
 37376
 37377
 37378
 37379
 37380
 37381
 37382
 37383
 37384
 37385
 37386
 37387
 37388
 37389
 37390
 37391
 37392
 37393
 37394
 37395
 37396
 37397
 37398
 37399
 37400
 37401
 37402
 37403
 37404
 37405
 37406
 37407
 37408
 37409
 37410
 37411
 37412
 37413
 37414
 37415
 37416
 37417
 37418
 37419
 37420
 37421
 37422
 37423
 37424
 37425
 37426
 37427
 37428
 37429
 37430
 37431
 37432
 37433
 37434
 37435
 37436
 37437
 37438
 37439
 37440
 37441
 37442
 37443
 37444
 37445
 37446
 37447
 37448
 37449
 37450
 37451
 37452
 37453
 37454
 37455
 37456
 37457
 37458
 37459
 37460
 37461
 37462
 37463
 37464
 37465
 37466
 37467
 37468
 37469
 37470
 37471
 37472
 37473
 37474
 37475
 37476
 37477
 37478
 37479
 37480
 37481
 37482
 37483
 37484
 37485
 37486
 37487
 37488
 37489
 37490
 37491
 37492
 37493
 37494
 37495
 37496
 37497
 37498
 37499
 37500
 37501
 37502
 37503
 37504
 37505
 37506
 37507
 37508
 37509
 37510
 37511
 37512
 37513
 37514
 37515
 37516
 37517
 37518
 37519
 37520
 37521
 37522
 37523
 37524
 37525
 37526
 37527
 37528
 37529
 37530
 37531
 37532
 37533
 37534
 37535
 37536
 37537
 37538
 37539
 37540
 37541
 37542
 37543
 37544
 37545
 37546
 37547
 37548
 37549
 37550
 37551
 37552
 37553
 37554
 37555
 37556
 37557
 37558
 37559
 37560
 37561
 37562
 37563
 37564
 37565
 37566
 37567
 37568
 37569
 37570
 37571
 37572
 37573
 37574
 37575
 37576
 37577
 37578
 37579
 37580
 37581
 37582
 37583
 37584
 37585
 37586
 37587
 37588
 37589
 37590
 37591
 37592
 37593
 37594
 37595
 37596
 37597
 37598
 37599
 37600
 37601
 37602
 37603
 37604
 37605
 37606
 37607
 37608
 37609
 37610
 37611
 37612
 37613
 37614
 37615
 37616
 37617
 37618
 37619
 37620
 37621
 37622
 37623
 37624
 37625
 37626
 37627
 37628
 37629
 37630
 37631
 37632
 37633
 37634
 37635
 37636
 37637
 37638
 37639
 37640
 37641
 37642
 37643
 37644
 37645
 37646
 37647
 37648
 37649
 37650
 37651
 37652
 37653
 37654
 37655
 37656
 37657
 37658
 37659
 37660
 37661
 37662
 37663
 37664
 37665
 37666
 37667
 37668
 37669
 37670
 37671
 37672
 37673
 37674
 37675
 37676
 37677
 37678
 37679
 37680
 37681
 37682
 37683
 37684
 37685
 37686
 37687
 37688
 37689
 37690
 37691
 37692
 37693
 37694
 37695
 37696
 37697
 37698
 37699
 37700
 37701
 37702
 37703
 37704
 37705
 37706
 37707
 37708
 37709
 37710
 37711
 37712
 37713
 37714
 37715
 37716
 37717
 37718
 37719
 37720
 37721
 37722
 37723
 37724
 37725
 37726
 37727
 37728
 37729
 37730
 37731
 37732
 37733
 37734
 37735
 37736
 37737
 37738
 37739
 37740
 37741
 37742
 37743
 37744
 37745
 37746
 37747
 37748
 37749
 37750
 37751
 37752
 37753
 37754
 37755
 37756
 37757
 37758
 37759
 37760
 37761
 37762
 37763
 37764
 37765
 37766
 37767
 37768
 37769
 37770
 37771
 37772
 37773
 37774
 37775
 37776
 37777
 37778
 37779
 37780
 37781
 37782
 37783
 37784
 37785
 37786
 37787
 37788
 37789
 37790
 37791
 37792
 37793
 37794
 37795
 37796
 37797
 37798
 37799
 37800
 37801
 37802
 37803
 37804
 37805
 37806
 37807
 37808
 37809
 37810
 37811
 37812
 37813
 37814
 37815
 37816
 37817
 37818
 37819
 37820
 37821
 37822
 37823
 37824
 37825
 37826
 37827
 37828
 37829
 37830
 37831
 37832
 37833
 37834
 37835
 37836
 37837
 37838
 37839
 37840
 37841
 37842
 37843
 37844
 37845
 37846
 37847
 37848
 37849
 37850
 37851
 37852
 37853
 37854
 37855
 37856
 37857
 37858
 37859
 37860
 37861
 37862
 37863
 37864
 37865
 37866
 37867
 37868
 37869
 37870
 37871
 37872
 37873
 37874
 37875
 37876
 37877
 37878
 37879
 37880
 37881
 37882
 37883
 37884
 37885
 37886
 37887
 37888
 37889
 37890
 37891
 37892
 37893
 37894
 37895
 37896
 37897
 37898
 37899
 37900
 37901
 37902
 37903
 37904
 37905
 37906
 37907
 37908
 37909
 37910
 37911
 37912
 37913
 37914
 37915
 37916
 37917
 37918
 37919
 37920
 37921
 37922
 37923
 37924
 37925
 37926
 37927
 37928
 37929
 37930
 37931
 37932
 37933
 37934
 37935
 37936
 37937
 37938
 37939
 37940
 37941
 37942
 37943
 37944
 37945
 37946
 37947
 37948
 37949
 37950
 37951
 37952
 37953
 37954
 37955
 37956
 37957
 37958
 37959
 37960
 37961
 37962
 37963
 37964
 37965
 37966
 37967
 37968
 37969
 37970
 37971
 37972
 37973
 37974
 37975
 37976
 37977
 37978
 37979
 37980
 37981
 37982
 37983
 37984
 37985
 37986
 37987
 37988
 37989
 37990
 37991
 37992
 37993
 37994
 37995
 37996
 37997
 37998
 37999
 38000
 38001
 38002
 38003
 38004
 38005
 38006
 38007
 38008
 38009
 38010
 38011
 38012
 38013
 38014
 38015
 38016
 38017
 38018
 38019
 38020
 38021
 38022
 38023
 38024
 38025
 38026
 38027
 38028
 38029
 38030
 38031
 38032
 38033
 38034
 38035
 38036
 38037
 38038
 38039
 38040
 38041
 38042
 38043
 38044
 38045
 38046
 38047
 38048
 38049
 38050
 38051
 38052
 38053
 38054
 38055
 38056
 38057
 38058
 38059
 38060
 38061
 38062
 38063
 38064
 38065
 38066
 38067
 38068
 38069
 38070
 38071
 38072
 38073
 38074
 38075
 38076
 38077
 38078
 38079
 38080
 38081
 38082
 38083
 38084
 38085
 38086
 38087
 38088
 38089
 38090
 38091
 38092
 38093
 38094
 38095
 38096
 38097
 38098
 38099
 38100
 38101
 38102
 38103
 38104
 38105
 38106
 38107
 38108
 38109
 38110
 38111
 38112
 38113
 38114
 38115
 38116
 38117
 38118
 38119
 38120
 38121
 38122
 38123
 38124
 38125
 38126
 38127
 38128
 38129
 38130
 38131
 38132
 38133
 38134
 38135
 38136
 38137
 38138
 38139
 38140
 38141
 38142
 38143
 38144
 38145
 38146
 38147
 38148
 38149
 38150
 38151
 38152
 38153
 38154
 38155
 38156
 38157
 38158
 38159
 38160
 38161
 38162
 38163
 38164
 38165
 38166
 38167
 38168
 38169
 38170
 38171
 38172
 38173
 38174
 38175
 38176
 38177
 38178
 38179
 38180
 38181
 38182
 38183
 38184
 38185
 38186
 38187
 38188
 38189
 38190
 38191
 38192
 38193
 38194
 38195
 38196
 38197
 38198
 38199
 38200
 38201
 38202
 38203
 38204
 38205
 38206
 38207
 38208
 38209
 38210
 38211
 38212
 38213
 38214
 38215
 38216
 38217
 38218
 38219
 38220
 38221
 38222
 38223
 38224
 38225
 38226
 38227
 38228
 38229
 38230
 38231
 38232
 38233
 38234
 38235
 38236
 38237
 38238
 38239
 38240
 38241
 38242
 38243
 38244
 38245
 38246
 38247
 38248
 38249
 38250
 38251
 38252
 38253
 38254
 38255
 38256
 38257
 38258
 38259
 38260
 38261
 38262
 38263
 38264
 38265
 38266
 38267
 38268
 38269
 38270
 38271
 38272
 38273
 38274
 38275
 38276
 38277
 38278
 38279
 38280
 38281
 38282
 38283
 38284
 38285
 38286
 38287
 38288
 38289
 38290
 38291
 38292
 38293
 38294
 38295
 38296
 38297
 38298
 38299
 38300
 38301
 38302
 38303
 38304
 38305
 38306
 38307
 38308
 38309
 38310
 38311
 38312
 38313
 38314
 38315
 38316
 38317
 38318
 38319
 38320
 38321
 38322
 38323
 38324
 38325
 38326
 38327
 38328
 38329
 38330
 38331
 38332
 38333
 38334
 38335
 38336
 38337
 38338
 38339
 38340
 38341
 38342
 38343
 38344
 38345
 38346
 38347
 38348
 38349
 38350
 38351
 38352
 38353
 38354
 38355
 38356
 38357
 38358
 38359
 38360
 38361
 38362
 38363
 38364
 38365
 38366
 38367
 38368
 38369
 38370
 38371
 38372
 38373
 38374
 38375
 38376
 38377
 38378
 38379
 38380
 38381
 38382
 38383
 38384
 38385
 38386
 38387
 38388
 38389
 38390
 38391
 38392
 38393
 38394
 38395
 38396
 38397
 38398
 38399
 38400
 38401
 38402
 38403
 38404
 38405
 38406
 38407
 38408
 38409
 38410
 38411
 38412
 38413
 38414
 38415
 38416
 38417
 38418
 38419
 38420
 38421
 38422
 38423
 38424
 38425
 38426
 38427
 38428
 38429
 38430
 38431
 38432
 38433
 38434
 38435
 38436
 38437
 38438
 38439
 38440
 38441
 38442
 38443
 38444
 38445
 38446
 38447
 38448
 38449
 38450
 38451
 38452
 38453
 38454
 38455
 38456
 38457
 38458
 38459
 38460
 38461
 38462
 38463
 38464
 38465
 38466
 38467
 38468
 38469
 38470
 38471
 38472
 38473
 38474
 38475
 38476
 38477
 38478
 38479
 38480
 38481
 38482
 38483
 38484
 38485
 38486
 38487
 38488
 38489
 38490
 38491
 38492
 38493
 38494
 38495
 38496
 38497
 38498
 38499
 38500
 38501
 38502
 38503
 38504
 38505
 38506
 38507
 38508
 38509
 38510
 38511
 38512
 38513
 38514
 38515
 38516
 38517
 38518
 38519
 38520
 38521
 38522
 38523
 38524
 38525
 38526
 38527
 38528
 38529
 38530
 38531
 38532
 38533
 38534
 38535
 38536
 38537
 38538
 38539
 38540
 38541
 38542
 38543
 38544
 38545
 38546
 38547
 38548
 38549
 38550
 38551
 38552
 38553
 38554
 38555
 38556
 38557
 38558
 38559
 38560
 38561
 38562
 38563
 38564
 38565
 38566
 38567
 38568
 38569
 38570
 38571
 38572
 38573
 38574
 38575
 38576
 38577
 38578
 38579
 38580
 38581
 38582
 38583
 38584
 38585
 38586
 38587
 38588
 38589
 38590
 38591
 38592
 38593
 38594
 38595
 38596
 38597
 38598
 38599
 38600
 38601
 38602
 38603
 38604
 38605
 38606
 38607
 38608
 38609
 38610
 38611
 38612
 38613
 38614
 38615
 38616
 38617
 38618
 38619
 38620
 38621
 38622
 38623
 38624
 38625
 38626
 38627
 38628
 38629
 38630
 38631
 38632
 38633
 38634
 38635
 38636
 38637
 38638
 38639
 38640
 38641
 38642
 38643
 38644
 38645
 38646
 38647
 38648
 38649
 38650
 38651
 38652
 38653
 38654
 38655
 38656
 38657
 38658
 38659
 38660
 38661
 38662
 38663
 38664
 38665
 38666
 38667
 38668
 38669
 38670
 38671
 38672
 38673
 38674
 38675
 38676
 38677
 38678
 38679
 38680
 38681
 38682
 38683
 38684
 38685
 38686
 38687
 38688
 38689
 38690
 38691
 38692
 38693
 38694
 38695
 38696
 38697
 38698
 38699
 38700
 38701
 38702
 38703
 38704
 38705
 38706
 38707
 38708
 38709
 38710
 38711
 38712
 38713
 38714
 38715
 38716
 38717
 38718
 38719
 38720
 38721
 38722
 38723
 38724
 38725
 38726
 38727
 38728
 38729
 38730
 38731
 38732
 38733
 38734
 38735
 38736
 38737
 38738
 38739
 38740
 38741
 38742
 38743
 38744
 38745
 38746
 38747
 38748
 38749
 38750
 38751
 38752
 38753
 38754
 38755
 38756
 38757
 38758
 38759
 38760
 38761
 38762
 38763
 38764
 38765
 38766
 38767
 38768
 38769
 38770
 38771
 38772
 38773
 38774
 38775
 38776
 38777
 38778
 38779
 38780
 38781
 38782
 38783
 38784
 38785
 38786
 38787
 38788
 38789
 38790
 38791
 38792
 38793
 38794
 38795
 38796
 38797
 38798
 38799
 38800
 38801
 38802
 38803
 38804
 38805
 38806
 38807
 38808
 38809
 38810
 38811
 38812
 38813
 38814
 38815
 38816
 38817
 38818
 38819
 38820
 38821
 38822
 38823
 38824
 38825
 38826
 38827
 38828
 38829
 38830
 38831
 38832
 38833
 38834
 38835
 38836
 38837
 38838
 38839
 38840
 38841
 38842
 38843
 38844
 38845
 38846
 38847
 38848
 38849
 38850
 38851
 38852
 38853
 38854
 38855
 38856
 38857
 38858
 38859
 38860
 38861
 38862
 38863
 38864
 38865
 38866
 38867
 38868
 38869
 38870
 38871
 38872
 38873
 38874
 38875
 38876
 38877
 38878
 38879
 38880
 38881
 38882
 38883
 38884
 38885
 38886
 38887
 38888
 38889
 38890
 38891
 38892
 38893
 38894
 38895
 38896
 38897
 38898
 38899
 38900
 38901
 38902
 38903
 38904
 38905
 38906
 38907
 38908
 38909
 38910
 38911
 38912
 38913
 38914
 38915
 38916
 38917
 38918
 38919
 38920
 38921
 38922
 38923
 38924
 38925
 38926
 38927
 38928
 38929
 38930
 38931
 38932
 38933
 38934
 38935
 38936
 38937
 38938
 38939
 38940
 38941
 38942
 38943
 38944
 38945
 38946
 38947
 38948
 38949
 38950
 38951
 38952
 38953
 38954
 38955
 38956
 38957
 38958
 38959
 38960
 38961
 38962
 38963
 38964
 38965
 38966
 38967
 38968
 38969
 38970
 38971
 38972
 38973
 38974
 38975
 38976
 38977
 38978
 38979
 38980
 38981
 38982
 38983
 38984
 38985
 38986
 38987
 38988
 38989
 38990
 38991
 38992
 38993
 38994
 38995
 38996
 38997
 38998
 38999
 39000
 39001
 39002
 39003
 39004
 39005
 39006
 39007
 39008
 39009
 39010
 39011
 39012
 39013
 39014
 39015
 39016
 39017
 39018
 39019
 39020
 39021
 39022
 39023
 39024
 39025
 39026
 39027
 39028
 39029
 39030
 39031
 39032
 39033
 39034
 39035
 39036
 39037
 39038
 39039
 39040
 39041
 39042
 39043
 39044
 39045
 39046
 39047
 39048
 39049
 39050
 39051
 39052
 39053
 39054
 39055
 39056
 39057
 39058
 39059
 39060
 39061
 39062
 39063
 39064
 39065
 39066
 39067
 39068
 39069
 39070
 39071
 39072
 39073
 39074
 39075
 39076
 39077
 39078
 39079
 39080
 39081
 39082
 39083
 39084
 39085
 39086
 39087
 39088
 39089
 39090
 39091
 39092
 39093
 39094
 39095
 39096
 39097
 39098
 39099
 39100
 39101
 39102
 39103
 39104
 39105
 39106
 39107
 39108
 39109
 39110
 39111
 39112
 39113
 39114
 39115
 39116
 39117
 39118
 39119
 39120
 39121
 39122
 39123
 39124
 39125
 39126
 39127
 39128
 39129
 39130
 39131
 39132
 39133
 39134
 39135
 39136
 39137
 39138
 39139
 39140
 39141
 39142
 39143
 39144
 39145
 39146
 39147
 39148
 39149
 39150
 39151
 39152
 39153
 39154
 39155
 39156
 39157
 39158
 39159
 39160
 39161
 39162
 39163
 39164
 39165
 39166
 39167
 39168
 39169
 39170
 39171
 39172
 39173
 39174
 39175
 39176
 39177
 39178
 39179
 39180
 39181
 39182
 39183
 39184
 39185
 39186
 39187
 39188
 39189
 39190
 39191
 39192
 39193
 39194
 39195
 39196
 39197
 39198
 39199
 39200
 39201
 39202
 39203
 39204
 39205
 39206
 39207
 39208
 39209
 39210
 39211
 39212
 39213
 39214
 39215
 39216
 39217
 39218
 39219
 39220
 39221
 39222
 39223
 39224
 39225
 39226
 39227
 39228
 39229
 39230
 39231
 39232
 39233
 39234
 39235
 39236
 39237
 39238
 39239
 39240
 39241
 39242
 39243
 39244
 39245
 39246
 39247
 39248
 39249
 39250
 39251
 39252
 39253
 39254
 39255
 39256
 39257
 39258
 39259
 39260
 39261
 39262
 39263
 39264
 39265
 39266
 39267
 39268
 39269
 39270
 39271
 39272
 39273
 39274
 39275
 39276
 39277
 39278
 39279
 39280
 39281
 39282
 39283
 39284
 39285
 39286
 39287
 39288
 39289
 39290
 39291
 39292
 39293
 39294
 39295
 39296
 39297
 39298
 39299
 39300
 39301
 39302
 39303
 39304
 39305
 39306
 39307
 39308
 39309
 39310
 39311
 39312
 39313
 39314
 39315
 39316
 39317
 39318
 39319
 39320
 39321
 39322
 39323
 39324
 39325
 39326
 39327
 39328
 39329
 39330
 39331
 39332
 39333
 39334
 39335
 39336
 39337
 39338
 39339
 39340
 39341
 39342
 39343
 39344
 39345
 39346
 39347
 39348
 39349
 39350
 39351
 39352
 39353
 39354
 39355
 39356
 39357
 39358
 39359
 39360
 39361
 39362
 39363
 39364
 39365
 39366
 39367
 39368
 39369
 39370
 39371
 39372
 39373
 39374
 39375
 39376
 39377
 39378
 39379
 39380
 39381
 39382
 39383
 39384
 39385
 39386
 39387
 39388
 39389
 39390
 39391
 39392
 39393
 39394
 39395
 39396
 39397
 39398
 39399
 39400
 39401
 39402
 39403
 39404
 39405
 39406
 39407
 39408
 39409
 39410
 39411
 39412
 39413
 39414
 39415
 39416
 39417
 39418
 39419
 39420
 39421
 39422
 39423
 39424
 39425
 39426
 39427
 39428
 39429
 39430
 39431
 39432
 39433
 39434
 39435
 39436
 39437
 39438
 39439
 39440
 39441
 39442
 39443
 39444
 39445
 39446
 39447
 39448
 39449
 39450
 39451
 39452
 39453
 39454
 39455
 39456
 39457
 39458
 39459
 39460
 39461
 39462
 39463
 39464
 39465
 39466
 39467
 39468
 39469
 39470
 39471
 39472
 39473
 39474
 39475
 39476
 39477
 39478
 39479
 39480
 39481
 39482
 39483
 39484
 39485
 39486
 39487
 39488
 39489
 39490
 39491
 39492
 39493
 39494
 39495
 39496
 39497
 39498
 39499
 39500
 39501
 39502
 39503
 39504
 39505
 39506
 39507
 39508
 39509
 39510
 39511
 39512
 39513
 39514
 39515
 39516
 39517
 39518
 39519
 39520
 39521
 39522
 39523
 39524
 39525
 39526
 39527
 39528
 39529
 39530
 39531
 39532
 39533
 39534
 39535
 39536
 39537
 39538
 39539
 39540
 39541
 39542
 39543
 39544
 39545
 39546
 39547
 39548
 39549
 39550
 39551
 39552
 39553
 39554
 39555
 39556
 39557
 39558
 39559
 39560
 39561
 39562
 39563
 39564
 39565
 39566
 39567
 39568
 39569
 39570
 39571
 39572
 39573
 39574
 39575
 39576
 39577
 39578
 39579
 39580
 39581
 39582
 39583
 39584
 39585
 39586
 39587
 39588
 39589
 39590
 39591
 39592
 39593
 39594
 39595
 39596
 39597
 39598
 39599
 39600
 39601
 39602
 39603
 39604
 39605
 39606
 39607
 39608
 39609
 39610
 39611
 39612
 39613
 39614
 39615
 39616
 39617
 39618
 39619
 39620
 39621
 39622
 39623
 39624
 39625
 39626
 39627
 39628
 39629
 39630
 39631
 39632
 39633
 39634
 39635
 39636
 39637
 39638
 39639
 39640
 39641
 39642
 39643
 39644
 39645
 39646
 39647
 39648
 39649
 39650
 39651
 39652
 39653
 39654
 39655
 39656
 39657
 39658
 39659
 39660
 39661
 39662
 39663
 39664
 39665
 39666
 39667
 39668
 39669
 39670
 39671
 39672
 39673
 39674
 39675
 39676
 39677
 39678
 39679
 39680
 39681
 39682
 39683
 39684
 39685
 39686
 39687
 39688
 39689
 39690
 39691
 39692
 39693
 39694
 39695
 39696
 39697
 39698
 39699
 39700
 39701
 39702
 39703
 39704
 39705
 39706
 39707
 39708
 39709
 39710
 39711
 39712
 39713
 39714
 39715
 39716
 39717
 39718
 39719
 39720
 39721
 39722
 39723
 39724
 39725
 39726
 39727
 39728
 39729
 39730
 39731
 39732
 39733
 39734
 39735
 39736
 39737
 39738
 39739
 39740
 39741
 39742
 39743
 39744
 39745
 39746
 39747
 39748
 39749
 39750
 39751
 39752
 39753
 39754
 39755
 39756
 39757
 39758
 39759
 39760
 39761
 39762
 39763
 39764
 39765
 39766
 39767
 39768
 39769
 39770
 39771
 39772
 39773
 39774
 39775
 39776
 39777
 39778
 39779
 39780
 39781
 39782
 39783
 39784
 39785
 39786
 39787
 39788
 39789
 39790
 39791
 39792
 39793
 39794
 39795
 39796
 39797
 39798
 39799
 39800
 39801
 39802
 39803
 39804
 39805
 39806
 39807
 39808
 39809
 39810
 39811
 39812
 39813
 39814
 39815
 39816
 39817
 39818
 39819
 39820
 39821
 39822
 39823
 39824
 39825
 39826
 39827
 39828
 39829
 39830
 39831
 39832
 39833
 39834
 39835
 39836
 39837
 39838
 39839
 39840
 39841
 39842
 39843
 39844
 39845
 39846
 39847
 39848
 39849
 39850
 39851
 39852
 39853
 39854
 39855
 39856
 39857
 39858
 39859
 39860
 39861
 39862
 39863
 39864
 39865
 39866
 39867
 39868
 39869
 39870
 39871
 39872
 39873
 39874
 39875
 39876
 39877
 39878
 39879
 39880
 39881
 39882
 39883
 39884
 39885
 39886
 39887
 39888
 39889
 39890
 39891
 39892
 39893
 39894
 39895
 39896
 39897
 39898
 39899
 39900
 39901
 39902
 39903
 39904
 39905
 39906
 39907
 39908
 39909
 39910
 39911
 39912
 39913
 39914
 39915
 39916
 39917
 39918
 39919
 39920
 39921
 39922
 39923
 39924
 39925
 39926
 39927
 39928
 39929
 39930
 39931
 39932
 39933
 39934
 39935
 39936
 39937
 39938
 39939
 39940
 39941
 39942
 39943
 39944
 39945
 39946
 39947
 39948
 39949
 39950
 39951
 39952
 39953
 39954
 39955
 39956
 39957
 39958
 39959
 39960
 39961
 39962
 39963
 39964
 39965
 39966
 39967
 39968
 39969
 39970
 39971
 39972
 39973
 39974
 39975
 39976
 39977
 39978
 39979
 39980
 39981
 39982
 39983
 39984
 39985
 39986
 39987
 39988
 39989
 39990
 39991
 39992
 39993
 39994
 39995
 39996
 39997
 39998
 39999
 40000
 40001
 40002
 40003
 40004
 40005
 40006
 40007
 40008
 40009
 40010
 40011
 40012
 40013
 40014
 40015
 40016
 40017
 40018
 40019
 40020
 40021
 40022
 40023
 40024
 40025
 40026
 40027
 40028
 40029
 40030
 40031
 40032
 40033
 40034
 40035
 40036
 40037
 40038
 40039
 40040
 40041
 40042
 40043
 40044
 40045
 40046
 40047
 40048
 40049
 40050
 40051
 40052
 40053
 40054
 40055
 40056
 40057
 40058
 40059
 40060
 40061
 40062
 40063
 40064
 40065
 40066
 40067
 40068
 40069
 40070
 40071
 40072
 40073
 40074
 40075
 40076
 40077
 40078
 40079
 40080
 40081
 40082
 40083
 40084
 40085
 40086
 40087
 40088
 40089
 40090
 40091
 40092
 40093
 40094
 40095
 40096
 40097
 40098
 40099
 40100
 40101
 40102
 40103
 40104
 40105
 40106
 40107
 40108
 40109
 40110
 40111
 40112
 40113
 40114
 40115
 40116
 40117
 40118
 40119
 40120
 40121
 40122
 40123
 40124
 40125
 40126
 40127
 40128
 40129
 40130
 40131
 40132
 40133
 40134
 40135
 40136
 40137
 40138
 40139
 40140
 40141
 40142
 40143
 40144
 40145
 40146
 40147
 40148
 40149
 40150
 40151
 40152
 40153
 40154
 40155
 40156
 40157
 40158
 40159
 40160
 40161
 40162
 40163
 40164
 40165
 40166
 40167
 40168
 40169
 40170
 40171
 40172
 40173
 40174
 40175
 40176
 40177
 40178
 40179
 40180
 40181
 40182
 40183
 40184
 40185
 40186
 40187
 40188
 40189
 40190
 40191
 40192
 40193
 40194
 40195
 40196
 40197
 40198
 40199
 40200
 40201
 40202
 40203
 40204
 40205
 40206
 40207
 40208
 40209
 40210
 40211
 40212
 40213
 40214
 40215
 40216
 40217
 40218
 40219
 40220
 40221
 40222
 40223
 40224
 40225
 40226
 40227
 40228
 40229
 40230
 40231
 40232
 40233
 40234
 40235
 40236
 40237
 40238
 40239
 40240
 40241
 40242
 40243
 40244
 40245
 40246
 40247
 40248
 40249
 40250
 40251
 40252
 40253
 40254
 40255
 40256
 40257
 40258
 40259
 40260
 40261
 40262
 40263
 40264
 40265
 40266
 40267
 40268
 40269
 40270
 40271
 40272
 40273
 40274
 40275
 40276
 40277
 40278
 40279
 40280
 40281
 40282
 40283
 40284
 40285
 40286
 40287
 40288
 40289
 40290
 40291
 40292
 40293
 40294
 40295
 40296
 40297
 40298
 40299
 40300
 40301
 40302
 40303
 40304
 40305
 40306
 40307
 40308
 40309
 40310
 40311
 40312
 40313
 40314
 40315
 40316
 40317
 40318
 40319
 40320
 40321
 40322
 40323
 40324
 40325
 40326
 40327
 40328
 40329
 40330
 40331
 40332
 40333
 40334
 40335
 40336
 40337
 40338
 40339
 40340
 40341
 40342
 40343
 40344
 40345
 40346
 40347
 40348
 40349
 40350
 40351
 40352
 40353
 40354
 40355
 40356
 40357
 40358
 40359
 40360
 40361
 40362
 40363
 40364
 40365
 40366
 40367
 40368
 40369
 40370
 40371
 40372
 40373
 40374
 40375
 40376
 40377
 40378
 40379
 40380
 40381
 40382
 40383
 40384
 40385
 40386
 40387
 40388
 40389
 40390
 40391
 40392
 40393
 40394
 40395
 40396
 40397
 40398
 40399
 40400
 40401
 40402
 40403
 40404
 40405
 40406
 40407
 40408
 40409
 40410
 40411
 40412
 40413
 40414
 40415
 40416
 40417
 40418
 40419
 40420
 40421
 40422
 40423
 40424
 40425
 40426
 40427
 40428
 40429
 40430
 40431
 40432
 40433
 40434
 40435
 40436
 40437
 40438
 40439
 40440
 40441
 40442
 40443
 40444
 40445
 40446
 40447
 40448
 40449
 40450
 40451
 40452
 40453
 40454
 40455
 40456
 40457
 40458
 40459
 40460
 40461
 40462
 40463
 40464
 40465
 40466
 40467
 40468
 40469
 40470
 40471
 40472
 40473
 40474
 40475
 40476
 40477
 40478
 40479
 40480
 40481
 40482
 40483
 40484
 40485
 40486
 40487
 40488
 40489
 40490
 40491
 40492
 40493
 40494
 40495
 40496
 40497
 40498
 40499
 40500
 40501
 40502
 40503
 40504
 40505
 40506
 40507
 40508
 40509
 40510
 40511
 40512
 40513
 40514
 40515
 40516
 40517
 40518
 40519
 40520
 40521
 40522
 40523
 40524
 40525
 40526
 40527
 40528
 40529
 40530
 40531
 40532
 40533
 40534
 40535
 40536
 40537
 40538
 40539
 40540
 40541
 40542
 40543
 40544
 40545
 40546
 40547
 40548
 40549
 40550
 40551
 40552
 40553
 40554
 40555
 40556
 40557
 40558
 40559
 40560
 40561
 40562
 40563
 40564
 40565
 40566
 40567
 40568
 40569
 40570
 40571
 40572
 40573
 40574
 40575
 40576
 40577
 40578
 40579
 40580
 40581
 40582
 40583
 40584
 40585
 40586
 40587
 40588
 40589
 40590
 40591
 40592
 40593
 40594
 40595
 40596
 40597
 40598
 40599
 40600
 40601
 40602
 40603
 40604
 40605
 40606
 40607
 40608
 40609
 40610
 40611
 40612
 40613
 40614
 40615
 40616
 40617
 40618
 40619
 40620
 40621
 40622
 40623
 40624
 40625
 40626
 40627
 40628
 40629
 40630
 40631
 40632
 40633
 40634
 40635
 40636
 40637
 40638
 40639
 40640
 40641
 40642
 40643
 40644
 40645
 40646
 40647
 40648
 40649
 40650
 40651
 40652
 40653
 40654
 40655
 40656
 40657
 40658
 40659
 40660
 40661
 40662
 40663
 40664
 40665
 40666
 40667
 40668
 40669
 40670
 40671
 40672
 40673
 40674
 40675
 40676
 40677
 40678
 40679
 40680
 40681
 40682
 40683
 40684
 40685
 40686
 40687
 40688
 40689
 40690
 40691
 40692
 40693
 40694
 40695
 40696
 40697
 40698
 40699
 40700
 40701
 40702
 40703
 40704
 40705
 40706
 40707
 40708
 40709
 40710
 40711
 40712
 40713
 40714
 40715
 40716
 40717
 40718
 40719
 40720
 40721
 40722
 40723
 40724
 40725
 40726
 40727
 40728
 40729
 40730
 40731
 40732
 40733
 40734
 40735
 40736
 40737
 40738
 40739
 40740
 40741
 40742
 40743
 40744
 40745
 40746
 40747
 40748
 40749
 40750
 40751
 40752
 40753
 40754
 40755
 40756
 40757
 40758
 40759
 40760
 40761
 40762
 40763
 40764
 40765
 40766
 40767
 40768
 40769
 40770
 40771
 40772
 40773
 40774
 40775
 40776
 40777
 40778
 40779
 40780
 40781
 40782
 40783
 40784
 40785
 40786
 40787
 40788
 40789
 40790
 40791
 40792
 40793
 40794
 40795
 40796
 40797
 40798
 40799
 40800
 40801
 40802
 40803
 40804
 40805
 40806
 40807
 40808
 40809
 40810
 40811
 40812
 40813
 40814
 40815
 40816
 40817
 40818
 40819
 40820
 40821
 40822
 40823
 40824
 40825
 40826
 40827
 40828
 40829
 40830
 40831
 40832
 40833
 40834
 40835
 40836
 40837
 40838
 40839
 40840
 40841
 40842
 40843
 40844
 40845
 40846
 40847
 40848
 40849
 40850
 40851
 40852
 40853
 40854
 40855
 40856
 40857
 40858
 40859
 40860
 40861
 40862
 40863
 40864
 40865
 40866
 40867
 40868
 40869
 40870
 40871
 40872
 40873
 40874
 40875
 40876
 40877
 40878
 40879
 40880
 40881
 40882
 40883
 40884
 40885
 40886
 40887
 40888
 40889
 40890
 40891
 40892
 40893
 40894
 40895
 40896
 40897
 40898
 40899
 40900
 40901
 40902
 40903
 40904
 40905
 40906
 40907
 40908
 40909
 40910
 40911
 40912
 40913
 40914
 40915
 40916
 40917
 40918
 40919
 40920
 40921
 40922
 40923
 40924
 40925
 40926
 40927
 40928
 40929
 40930
 40931
 40932
 40933
 40934
 40935
 40936
 40937
 40938
 40939
 40940
 40941
 40942
 40943
 40944
 40945
 40946
 40947
 40948
 40949
 40950
 40951
 40952
 40953
 40954
 40955
 40956
 40957
 40958
 40959
 40960
 40961
 40962
 40963
 40964
 40965
 40966
 40967
 40968
 40969
 40970
 40971
 40972
 40973
 40974
 40975
 40976
 40977
 40978
 40979
 40980
 40981
 40982
 40983
 40984
 40985
 40986
 40987
 40988
 40989
 40990
 40991
 40992
 40993
 40994
 40995
 40996
 40997
 40998
 40999
 41000
 41001
 41002
 41003
 41004
 41005
 41006
 41007
 41008
 41009
 41010
 41011
 41012
 41013
 41014
 41015
 41016
 41017
 41018
 41019
 41020
 41021
 41022
 41023
 41024
 41025
 41026
 41027
 41028
 41029
 41030
 41031
 41032
 41033
 41034
 41035
 41036
 41037
 41038
 41039
 41040
 41041
 41042
 41043
 41044
 41045
 41046
 41047
 41048
 41049
 41050
 41051
 41052
 41053
 41054
 41055
 41056
 41057
 41058
 41059
 41060
 41061
 41062
 41063
 41064
 41065
 41066
 41067
 41068
 41069
 41070
 41071
 41072
 41073
 41074
 41075
 41076
 41077
 41078
 41079
 41080
 41081
 41082
 41083
 41084
 41085
 41086
 41087
 41088
 41089
 41090
 41091
 41092
 41093
 41094
 41095
 41096
 41097
 41098
 41099
 41100
 41101
 41102
 41103
 41104
 41105
 41106
 41107
 41108
 41109
 41110
 41111
 41112
 41113
 41114
 41115
 41116
 41117
 41118
 41119
 41120
 41121
 41122
 41123
 41124
 41125
 41126
 41127
 41128
 41129
 41130
 41131
 41132
 41133
 41134
 41135
 41136
 41137
 41138
 41139
 41140
 41141
 41142
 41143
 41144
 41145
 41146
 41147
 41148
 41149
 41150
 41151
 41152
 41153
 41154
 41155
 41156
 41157
 41158
 41159
 41160
 41161
 41162
 41163
 41164
 41165
 41166
 41167
 41168
 41169
 41170
 41171
 41172
 41173
 41174
 41175
 41176
 41177
 41178
 41179
 41180
 41181
 41182
 41183
 41184
 41185
 41186
 41187
 41188
 41189
 41190
 41191
 41192
 41193
 41194
 41195
 41196
 41197
 41198
 41199
 41200
 41201
 41202
 41203
 41204
 41205
 41206
 41207
 41208
 41209
 41210
 41211
 41212
 41213
 41214
 41215
 41216
 41217
 41218
 41219
 41220
 41221
 41222
 41223
 41224
 41225
 41226
 41227
 41228
 41229
 41230
 41231
 41232
 41233
 41234
 41235
 41236
 41237
 41238
 41239
 41240
 41241
 41242
 41243
 41244
 41245
 41246
 41247
 41248
 41249
 41250
 41251
 41252
 41253
 41254
 41255
 41256
 41257
 41258
 41259
 41260
 41261
 41262
 41263
 41264
 41265
 41266
 41267
 41268
 41269
 41270
 41271
 41272
 41273
 41274
 41275
 41276
 41277
 41278
 41279
 41280
 41281
 41282
 41283
 41284
 41285
 41286
 41287
 41288
 41289
 41290
 41291
 41292
 41293
 41294
 41295
 41296
 41297
 41298
 41299
 41300
 41301
 41302
 41303
 41304
 41305
 41306
 41307
 41308
 41309
 41310
 41311
 41312
 41313
 41314
 41315
 41316
 41317
 41318
 41319
 41320
 41321
 41322
 41323
 41324
 41325
 41326
 41327
 41328
 41329
 41330
 41331
 41332
 41333
 41334
 41335
 41336
 41337
 41338
 41339
 41340
 41341
 41342
 41343
 41344
 41345
 41346
 41347
 41348
 41349
 41350
 41351
 41352
 41353
 41354
 41355
 41356
 41357
 41358
 41359
 41360
 41361
 41362
 41363
 41364
 41365
 41366
 41367
 41368
 41369
 41370
 41371
 41372
 41373
 41374
 41375
 41376
 41377
 41378
 41379
 41380
 41381
 41382
 41383
 41384
 41385
 41386
 41387
 41388
 41389
 41390
 41391
 41392
 41393
 41394
 41395
 41396
 41397
 41398
 41399
 41400
 41401
 41402
 41403
 41404
 41405
 41406
 41407
 41408
 41409
 41410
 41411
 41412
 41413
 41414
 41415
 41416
 41417
 41418
 41419
 41420
 41421
 41422
 41423
 41424
 41425
 41426
 41427
 41428
 41429
 41430
 41431
 41432
 41433
 41434
 41435
 41436
 41437
 41438
 41439
 41440
 41441
 41442
 41443
 41444
 41445
 41446
 41447
 41448
 41449
 41450
 41451
 41452
 41453
 41454
 41455
 41456
 41457
 41458
 41459
 41460
 41461
 41462
 41463
 41464
 41465
 41466
 41467
 41468
 41469
 41470
 41471
 41472
 41473
 41474
 41475
 41476
 41477
 41478
 41479
 41480
 41481
 41482
 41483
 41484
 41485
 41486
 41487
 41488
 41489
 41490
 41491
 41492
 41493
 41494
 41495
 41496
 41497
 41498
 41499
 41500
 41501
 41502
 41503
 41504
 41505
 41506
 41507
 41508
 41509
 41510
 41511
 41512
 41513
 41514
 41515
 41516
 41517
 41518
 41519
 41520
 41521
 41522
 41523
 41524
 41525
 41526
 41527
 41528
 41529
 41530
 41531
 41532
 41533
 41534
 41535
 41536
 41537
 41538
 41539
 41540
 41541
 41542
 41543
 41544
 41545
 41546
 41547
 41548
 41549
 41550
 41551
 41552
 41553
 41554
 41555
 41556
 41557
 41558
 41559
 41560
 41561
 41562
 41563
 41564
 41565
 41566
 41567
 41568
 41569
 41570
 41571
 41572
 41573
 41574
 41575
 41576
 41577
 41578
 41579
 41580
 41581
 41582
 41583
 41584
 41585
 41586
 41587
 41588
 41589
 41590
 41591
 41592
 41593
 41594
 41595
 41596
 41597
 41598
 41599
 41600
 41601
 41602
 41603
 41604
 41605
 41606
 41607
 41608
 41609
 41610
 41611
 41612
 41613
 41614
 41615
 41616
 41617
 41618
 41619
 41620
 41621
 41622
 41623
 41624
 41625
 41626
 41627
 41628
 41629
 41630
 41631
 41632
 41633
 41634
 41635
 41636
 41637
 41638
 41639
 41640
 41641
 41642
 41643
 41644
 41645
 41646
 41647
 41648
 41649
 41650
 41651
 41652
 41653
 41654
 41655
 41656
 41657
 41658
 41659
 41660
 41661
 41662
 41663
 41664
 41665
 41666
 41667
 41668
 41669
 41670
 41671
 41672
 41673
 41674
 41675
 41676
 41677
 41678
 41679
 41680
 41681
 41682
 41683
 41684
 41685
 41686
 41687
 41688
 41689
 41690
 41691
 41692
 41693
 41694
 41695
 41696
 41697
 41698
 41699
 41700
 41701
 41702
 41703
 41704
 41705
 41706
 41707
 41708
 41709
 41710
 41711
 41712
 41713
 41714
 41715
 41716
 41717
 41718
 41719
 41720
 41721
 41722
 41723
 41724
 41725
 41726
 41727
 41728
 41729
 41730
 41731
 41732
 41733
 41734
 41735
 41736
 41737
 41738
 41739
 41740
 41741
 41742
 41743
 41744
 41745
 41746
 41747
 41748
 41749
 41750
 41751
 41752
 41753
 41754
 41755
 41756
 41757
 41758
 41759
 41760
 41761
 41762
 41763
 41764
 41765
 41766
 41767
 41768
 41769
 41770
 41771
 41772
 41773
 41774
 41775
 41776
 41777
 41778
 41779
 41780
 41781
 41782
 41783
 41784
 41785
 41786
 41787
 41788
 41789
 41790
 41791
 41792
 41793
 41794
 41795
 41796
 41797
 41798
 41799
 41800
 41801
 41802
 41803
 41804
 41805
 41806
 41807
 41808
 41809
 41810
 41811
 41812
 41813
 41814
 41815
 41816
 41817
 41818
 41819
 41820
 41821
 41822
 41823
 41824
 41825
 41826
 41827
 41828
 41829
 41830
 41831
 41832
 41833
 41834
 41835
 41836
 41837
 41838
 41839
 41840
 41841
 41842
 41843
 41844
 41845
 41846
 41847
 41848
 41849
 41850
 41851
 41852
 41853
 41854
 41855
 41856
 41857
 41858
 41859
 41860
 41861
 41862
 41863
 41864
 41865
 41866
 41867
 41868
 41869
 41870
 41871
 41872
 41873
 41874
 41875
 41876
 41877
 41878
 41879
 41880
 41881
 41882
 41883
 41884
 41885
 41886
 41887
 41888
 41889
 41890
 41891
 41892
 41893
 41894
 41895
 41896
 41897
 41898
 41899
 41900
 41901
 41902
 41903
 41904
 41905
 41906
 41907
 41908
 41909
 41910
 41911
 41912
 41913
 41914
 41915
 41916
 41917
 41918
 41919
 41920
 41921
 41922
 41923
 41924
 41925
 41926
 41927
 41928
 41929
 41930
 41931
 41932
 41933
 41934
 41935
 41936
 41937
 41938
 41939
 41940
 41941
 41942
 41943
 41944
 41945
 41946
 41947
 41948
 41949
 41950
 41951
 41952
 41953
 41954
 41955
 41956
 41957
 41958
 41959
 41960
 41961
 41962
 41963
 41964
 41965
 41966
 41967
 41968
 41969
 41970
 41971
 41972
 41973
 41974
 41975
 41976
 41977
 41978
 41979
 41980
 41981
 41982
 41983
 41984
 41985
 41986
 41987
 41988
 41989
 41990
 41991
 41992
 41993
 41994
 41995
 41996
 41997
 41998
 41999
 42000
 42001
 42002
 42003
 42004
 42005
 42006
 42007
 42008
 42009
 42010
 42011
 42012
 42013
 42014
 42015
 42016
 42017
 42018
 42019
 42020
 42021
 42022
 42023
 42024
 42025
 42026
 42027
 42028
 42029
 42030
 42031
 42032
 42033
 42034
 42035
 42036
 42037
 42038
 42039
 42040
 42041
 42042
 42043
 42044
 42045
 42046
 42047
 42048
 42049
 42050
 42051
 42052
 42053
 42054
 42055
 42056
 42057
 42058
 42059
 42060
 42061
 42062
 42063
 42064
 42065
 42066
 42067
 42068
 42069
 42070
 42071
 42072
 42073
 42074
 42075
 42076
 42077
 42078
 42079
 42080
 42081
 42082
 42083
 42084
 42085
 42086
 42087
 42088
 42089
 42090
 42091
 42092
 42093
 42094
 42095
 42096
 42097
 42098
 42099
 42100
 42101
 42102
 42103
 42104
 42105
 42106
 42107
 42108
 42109
 42110
 42111
 42112
 42113
 42114
 42115
 42116
 42117
 42118
 42119
 42120
 42121
 42122
 42123
 42124
 42125
 42126
 42127
 42128
 42129
 42130
 42131
 42132
 42133
 42134
 42135
 42136
 42137
 42138
 42139
 42140
 42141
 42142
 42143
 42144
 42145
 42146
 42147
 42148
 42149
 42150
 42151
 42152
 42153
 42154
 42155
 42156
 42157
 42158
 42159
 42160
 42161
 42162
 42163
 42164
 42165
 42166
 42167
 42168
 42169
 42170
 42171
 42172
 42173
 42174
 42175
 42176
 42177
 42178
 42179
 42180
 42181
 42182
 42183
 42184
 42185
 42186
 42187
 42188
 42189
 42190
 42191
 42192
 42193
 42194
 42195
 42196
 42197
 42198
 42199
 42200
 42201
 42202
 42203
 42204
 42205
 42206
 42207
 42208
 42209
 42210
 42211
 42212
 42213
 42214
 42215
 42216
 42217
 42218
 42219
 42220
 42221
 42222
 42223
 42224
 42225
 42226
 42227
 42228
 42229
 42230
 42231
 42232
 42233
 42234
 42235
 42236
 42237
 42238
 42239
 42240
 42241
 42242
 42243
 42244
 42245
 42246
 42247
 42248
 42249
 42250
 42251
 42252
 42253
 42254
 42255
 42256
 42257
 42258
 42259
 42260
 42261
 42262
 42263
 42264
 42265
 42266
 42267
 42268
 42269
 42270
 42271
 42272
 42273
 42274
 42275
 42276
 42277
 42278
 42279
 42280
 42281
 42282
 42283
 42284
 42285
 42286
 42287
 42288
 42289
 42290
 42291
 42292
 42293
 42294
 42295
 42296
 42297
 42298
 42299
 42300
 42301
 42302
 42303
 42304
 42305
 42306
 42307
 42308
 42309
 42310
 42311
 42312
 42313
 42314
 42315
 42316
 42317
 42318
 42319
 42320
 42321
 42322
 42323
 42324
 42325
 42326
 42327
 42328
 42329
 42330
 42331
 42332
 42333
 42334
 42335
 42336
 42337
 42338
 42339
 42340
 42341
 42342
 42343
 42344
 42345
 42346
 42347
 42348
 42349
 42350
 42351
 42352
 42353
 42354
 42355
 42356
 42357
 42358
 42359
 42360
 42361
 42362
 42363
 42364
 42365
 42366
 42367
 42368
 42369
 42370
 42371
 42372
 42373
 42374
 42375
 42376
 42377
 42378
 42379
 42380
 42381
 42382
 42383
 42384
 42385
 42386
 42387
 42388
 42389
 42390
 42391
 42392
 42393
 42394
 42395
 42396
 42397
 42398
 42399
 42400
 42401
 42402
 42403
 42404
 42405
 42406
 42407
 42408
 42409
 42410
 42411
 42412
 42413
 42414
 42415
 42416
 42417
 42418
 42419
 42420
 42421
 42422
 42423
 42424
 42425
 42426
 42427
 42428
 42429
 42430
 42431
 42432
 42433
 42434
 42435
 42436
 42437
 42438
 42439
 42440
 42441
 42442
 42443
 42444
 42445
 42446
 42447
 42448
 42449
 42450
 42451
 42452
 42453
 42454
 42455
 42456
 42457
 42458
 42459
 42460
 42461
 42462
 42463
 42464
 42465
 42466
 42467
 42468
 42469
 42470
 42471
 42472
 42473
 42474
 42475
 42476
 42477
 42478
 42479
 42480
 42481
 42482
 42483
 42484
 42485
 42486
 42487
 42488
 42489
 42490
 42491
 42492
 42493
 42494
 42495
 42496
 42497
 42498
 42499
 42500
 42501
 42502
 42503
 42504
 42505
 42506
 42507
 42508
 42509
 42510
 42511
 42512
 42513
 42514
 42515
 42516
 42517
 42518
 42519
 42520
 42521
 42522
 42523
 42524
 42525
 42526
 42527
 42528
 42529
 42530
 42531
 42532
 42533
 42534
 42535
 42536
 42537
 42538
 42539
 42540
 42541
 42542
 42543
 42544
 42545
 42546
 42547
 42548
 42549
 42550
 42551
 42552
 42553
 42554
 42555
 42556
 42557
 42558
 42559
 42560
 42561
 42562
 42563
 42564
 42565
 42566
 42567
 42568
 42569
 42570
 42571
 42572
 42573
 42574
 42575
 42576
 42577
 42578
 42579
 42580
 42581
 42582
 42583
 42584
 42585
 42586
 42587
 42588
 42589
 42590
 42591
 42592
 42593
 42594
 42595
 42596
 42597
 42598
 42599
 42600
 42601
 42602
 42603
 42604
 42605
 42606
 42607
 42608
 42609
 42610
 42611
 42612
 42613
 42614
 42615
 42616
 42617
 42618
 42619
 42620
 42621
 42622
 42623
 42624
 42625
 42626
 42627
 42628
 42629
 42630
 42631
 42632
 42633
 42634
 42635
 42636
 42637
 42638
 42639
 42640
 42641
 42642
 42643
 42644
 42645
 42646
 42647
 42648
 42649
 42650
 42651
 42652
 42653
 42654
 42655
 42656
 42657
 42658
 42659
 42660
 42661
 42662
 42663
 42664
 42665
 42666
 42667
 42668
 42669
 42670
 42671
 42672
 42673
 42674
 42675
 42676
 42677
 42678
 42679
 42680
 42681
 42682
 42683
 42684
 42685
 42686
 42687
 42688
 42689
 42690
 42691
 42692
 42693
 42694
 42695
 42696
 42697
 42698
 42699
 42700
 42701
 42702
 42703
 42704
 42705
 42706
 42707
 42708
 42709
 42710
 42711
 42712
 42713
 42714
 42715
 42716
 42717
 42718
 42719
 42720
 42721
 42722
 42723
 42724
 42725
 42726
 42727
 42728
 42729
 42730
 42731
 42732
 42733
 42734
 42735
 42736
 42737
 42738
 42739
 42740
 42741
 42742
 42743
 42744
 42745
 42746
 42747
 42748
 42749
 42750
 42751
 42752
 42753
 42754
 42755
 42756
 42757
 42758
 42759
 42760
 42761
 42762
 42763
 42764
 42765
 42766
 42767
 42768
 42769
 42770
 42771
 42772
 42773
 42774
 42775
 42776
 42777
 42778
 42779
 42780
 42781
 42782
 42783
 42784
 42785
 42786
 42787
 42788
 42789
 42790
 42791
 42792
 42793
 42794
 42795
 42796
 42797
 42798
 42799
 42800
 42801
 42802
 42803
 42804
 42805
 42806
 42807
 42808
 42809
 42810
 42811
 42812
 42813
 42814
 42815
 42816
 42817
 42818
 42819
 42820
 42821
 42822
 42823
 42824
 42825
 42826
 42827
 42828
 42829
 42830
 42831
 42832
 42833
 42834
 42835
 42836
 42837
 42838
 42839
 42840
 42841
 42842
 42843
 42844
 42845
 42846
 42847
 42848
 42849
 42850
 42851
 42852
 42853
 42854
 42855
 42856
 42857
 42858
 42859
 42860
 42861
 42862
 42863
 42864
 42865
 42866
 42867
 42868
 42869
 42870
 42871
 42872
 42873
 42874
 42875
 42876
 42877
 42878
 42879
 42880
 42881
 42882
 42883
 42884
 42885
 42886
 42887
 42888
 42889
 42890
 42891
 42892
 42893
 42894
 42895
 42896
 42897
 42898
 42899
 42900
 42901
 42902
 42903
 42904
 42905
 42906
 42907
 42908
 42909
 42910
 42911
 42912
 42913
 42914
 42915
 42916
 42917
 42918
 42919
 42920
 42921
 42922
 42923
 42924
 42925
 42926
 42927
 42928
 42929
 42930
 42931
 42932
 42933
 42934
 42935
 42936
 42937
 42938
 42939
 42940
 42941
 42942
 42943
 42944
 42945
 42946
 42947
 42948
 42949
 42950
 42951
 42952
 42953
 42954
 42955
 42956
 42957
 42958
 42959
 42960
 42961
 42962
 42963
 42964
 42965
 42966
 42967
 42968
 42969
 42970
 42971
 42972
 42973
 42974
 42975
 42976
 42977
 42978
 42979
 42980
 42981
 42982
 42983
 42984
 42985
 42986
 42987
 42988
 42989
 42990
 42991
 42992
 42993
 42994
 42995
 42996
 42997
 42998
 42999
 43000
 43001
 43002
 43003
 43004
 43005
 43006
 43007
 43008
 43009
 43010
 43011
 43012
 43013
 43014
 43015
 43016
 43017
 43018
 43019
 43020
 43021
 43022
 43023
 43024
 43025
 43026
 43027
 43028
 43029
 43030
 43031
 43032
 43033
 43034
 43035
 43036
 43037
 43038
 43039
 43040
 43041
 43042
 43043
 43044
 43045
 43046
 43047
 43048
 43049
 43050
 43051
 43052
 43053
 43054
 43055
 43056
 43057
 43058
 43059
 43060
 43061
 43062
 43063
 43064
 43065
 43066
 43067
 43068
 43069
 43070
 43071
 43072
 43073
 43074
 43075
 43076
 43077
 43078
 43079
 43080
 43081
 43082
 43083
 43084
 43085
 43086
 43087
 43088
 43089
 43090
 43091
 43092
 43093
 43094
 43095
 43096
 43097
 43098
 43099
 43100
 43101
 43102
 43103
 43104
 43105
 43106
 43107
 43108
 43109
 43110
 43111
 43112
 43113
 43114
 43115
 43116
 43117
 43118
 43119
 43120
 43121
 43122
 43123
 43124
 43125
 43126
 43127
 43128
 43129
 43130
 43131
 43132
 43133
 43134
 43135
 43136
 43137
 43138
 43139
 43140
 43141
 43142
 43143
 43144
 43145
 43146
 43147
 43148
 43149
 43150
 43151
 43152
 43153
 43154
 43155
 43156
 43157
 43158
 43159
 43160
 43161
 43162
 43163
 43164
 43165
 43166
 43167
 43168
 43169
 43170
 43171
 43172
 43173
 43174
 43175
 43176
 43177
 43178
 43179
 43180
 43181
 43182
 43183
 43184
 43185
 43186
 43187
 43188
 43189
 43190
 43191
 43192
 43193
 43194
 43195
 43196
 43197
 43198
 43199
 43200
 43201
 43202
 43203
 43204
 43205
 43206
 43207
 43208
 43209
 43210
 43211
 43212
 43213
 43214
 43215
 43216
 43217
 43218
 43219
 43220
 43221
 43222
 43223
 43224
 43225
 43226
 43227
 43228
 43229
 43230
 43231
 43232
 43233
 43234
 43235
 43236
 43237
 43238
 43239
 43240
 43241
 43242
 43243
 43244
 43245
 43246
 43247
 43248
 43249
 43250
 43251
 43252
 43253
 43254
 43255
 43256
 43257
 43258
 43259
 43260
 43261
 43262
 43263
 43264
 43265
 43266
 43267
 43268
 43269
 43270
 43271
 43272
 43273
 43274
 43275
 43276
 43277
 43278
 43279
 43280
 43281
 43282
 43283
 43284
 43285
 43286
 43287
 43288
 43289
 43290
 43291
 43292
 43293
 43294
 43295
 43296
 43297
 43298
 43299
 43300
 43301
 43302
 43303
 43304
 43305
 43306
 43307
 43308
 43309
 43310
 43311
 43312
 43313
 43314
 43315
 43316
 43317
 43318
 43319
 43320
 43321
 43322
 43323
 43324
 43325
 43326
 43327
 43328
 43329
 43330
 43331
 43332
 43333
 43334
 43335
 43336
 43337
 43338
 43339
 43340
 43341
 43342
 43343
 43344
 43345
 43346
 43347
 43348
 43349
 43350
 43351
 43352
 43353
 43354
 43355
 43356
 43357
 43358
 43359
 43360
 43361
 43362
 43363
 43364
 43365
 43366
 43367
 43368
 43369
 43370
 43371
 43372
 43373
 43374
 43375
 43376
 43377
 43378
 43379
 43380
 43381
 43382
 43383
 43384
 43385
 43386
 43387
 43388
 43389
 43390
 43391
 43392
 43393
 43394
 43395
 43396
 43397
 43398
 43399
 43400
 43401
 43402
 43403
 43404
 43405
 43406
 43407
 43408
 43409
 43410
 43411
 43412
 43413
 43414
 43415
 43416
 43417
 43418
 43419
 43420
 43421
 43422
 43423
 43424
 43425
 43426
 43427
 43428
 43429
 43430
 43431
 43432
 43433
 43434
 43435
 43436
 43437
 43438
 43439
 43440
 43441
 43442
 43443
 43444
 43445
 43446
 43447
 43448
 43449
 43450
 43451
 43452
 43453
 43454
 43455
 43456
 43457
 43458
 43459
 43460
 43461
 43462
 43463
 43464
 43465
 43466
 43467
 43468
 43469
 43470
 43471
 43472
 43473
 43474
 43475
 43476
 43477
 43478
 43479
 43480
 43481
 43482
 43483
 43484
 43485
 43486
 43487
 43488
 43489
 43490
 43491
 43492
 43493
 43494
 43495
 43496
 43497
 43498
 43499
 43500
 43501
 43502
 43503
 43504
 43505
 43506
 43507
 43508
 43509
 43510
 43511
 43512
 43513
 43514
 43515
 43516
 43517
 43518
 43519
 43520
 43521
 43522
 43523
 43524
 43525
 43526
 43527
 43528
 43529
 43530
 43531
 43532
 43533
 43534
 43535
 43536
 43537
 43538
 43539
 43540
 43541
 43542
 43543
 43544
 43545
 43546
 43547
 43548
 43549
 43550
 43551
 43552
 43553
 43554
 43555
 43556
 43557
 43558
 43559
 43560
 43561
 43562
 43563
 43564
 43565
 43566
 43567
 43568
 43569
 43570
 43571
 43572
 43573
 43574
 43575
 43576
 43577
 43578
 43579
 43580
 43581
 43582
 43583
 43584
 43585
 43586
 43587
 43588
 43589
 43590
 43591
 43592
 43593
 43594
 43595
 43596
 43597
 43598
 43599
 43600
 43601
 43602
 43603
 43604
 43605
 43606
 43607
 43608
 43609
 43610
 43611
 43612
 43613
 43614
 43615
 43616
 43617
 43618
 43619
 43620
 43621
 43622
 43623
 43624
 43625
 43626
 43627
 43628
 43629
 43630
 43631
 43632
 43633
 43634
 43635
 43636
 43637
 43638
 43639
 43640
 43641
 43642
 43643
 43644
 43645
 43646
 43647
 43648
 43649
 43650
 43651
 43652
 43653
 43654
 43655
 43656
 43657
 43658
 43659
 43660
 43661
 43662
 43663
 43664
 43665
 43666
 43667
 43668
 43669
 43670
 43671
 43672
 43673
 43674
 43675
 43676
 43677
 43678
 43679
 43680
 43681
 43682
 43683
 43684
 43685
 43686
 43687
 43688
 43689
 43690
 43691
 43692
 43693
 43694
 43695
 43696
 43697
 43698
 43699
 43700
 43701
 43702
 43703
 43704
 43705
 43706
 43707
 43708
 43709
 43710
 43711
 43712
 43713
 43714
 43715
 43716
 43717
 43718
 43719
 43720
 43721
 43722
 43723
 43724
 43725
 43726
 43727
 43728
 43729
 43730
 43731
 43732
 43733
 43734
 43735
 43736
 43737
 43738
 43739
 43740
 43741
 43742
 43743
 43744
 43745
 43746
 43747
 43748
 43749
 43750
 43751
 43752
 43753
 43754
 43755
 43756
 43757
 43758
 43759
 43760
 43761
 43762
 43763
 43764
 43765
 43766
 43767
 43768
 43769
 43770
 43771
 43772
 43773
 43774
 43775
 43776
 43777
 43778
 43779
 43780
 43781
 43782
 43783
 43784
 43785
 43786
 43787
 43788
 43789
 43790
 43791
 43792
 43793
 43794
 43795
 43796
 43797
 43798
 43799
 43800
 43801
 43802
 43803
 43804
 43805
 43806
 43807
 43808
 43809
 43810
 43811
 43812
 43813
 43814
 43815
 43816
 43817
 43818
 43819
 43820
 43821
 43822
 43823
 43824
 43825
 43826
 43827
 43828
 43829
 43830
 43831
 43832
 43833
 43834
 43835
 43836
 43837
 43838
 43839
 43840
 43841
 43842
 43843
 43844
 43845
 43846
 43847
 43848
 43849
 43850
 43851
 43852
 43853
 43854
 43855
 43856
 43857
 43858
 43859
 43860
 43861
 43862
 43863
 43864
 43865
 43866
 43867
 43868
 43869
 43870
 43871
 43872
 43873
 43874
 43875
 43876
 43877
 43878
 43879
 43880
 43881
 43882
 43883
 43884
 43885
 43886
 43887
 43888
 43889
 43890
 43891
 43892
 43893
 43894
 43895
 43896
 43897
 43898
 43899
 43900
 43901
 43902
 43903
 43904
 43905
 43906
 43907
 43908
 43909
 43910
 43911
 43912
 43913
 43914
 43915
 43916
 43917
 43918
 43919
 43920
 43921
 43922
 43923
 43924
 43925
 43926
 43927
 43928
 43929
 43930
 43931
 43932
 43933
 43934
 43935
 43936
 43937
 43938
 43939
 43940
 43941
 43942
 43943
 43944
 43945
 43946
 43947
 43948
 43949
 43950
 43951
 43952
 43953
 43954
 43955
 43956
 43957
 43958
 43959
 43960
 43961
 43962
 43963
 43964
 43965
 43966
 43967
 43968
 43969
 43970
 43971
 43972
 43973
 43974
 43975
 43976
 43977
 43978
 43979
 43980
 43981
 43982
 43983
 43984
 43985
 43986
 43987
 43988
 43989
 43990
 43991
 43992
 43993
 43994
 43995
 43996
 43997
 43998
 43999
 44000
 44001
 44002
 44003
 44004
 44005
 44006
 44007
 44008
 44009
 44010
 44011
 44012
 44013
 44014
 44015
 44016
 44017
 44018
 44019
 44020
 44021
 44022
 44023
 44024
 44025
 44026
 44027
 44028
 44029
 44030
 44031
 44032
 44033
 44034
 44035
 44036
 44037
 44038
 44039
 44040
 44041
 44042
 44043
 44044
 44045
 44046
 44047
 44048
 44049
 44050
 44051
 44052
 44053
 44054
 44055
 44056
 44057
 44058
 44059
 44060
 44061
 44062
 44063
 44064
 44065
 44066
 44067
 44068
 44069
 44070
 44071
 44072
 44073
 44074
 44075
 44076
 44077
 44078
 44079
 44080
 44081
 44082
 44083
 44084
 44085
 44086
 44087
 44088
 44089
 44090
 44091
 44092
 44093
 44094
 44095
 44096
 44097
 44098
 44099
 44100
 44101
 44102
 44103
 44104
 44105
 44106
 44107
 44108
 44109
 44110
 44111
 44112
 44113
 44114
 44115
 44116
 44117
 44118
 44119
 44120
 44121
 44122
 44123
 44124
 44125
 44126
 44127
 44128
 44129
 44130
 44131
 44132
 44133
 44134
 44135
 44136
 44137
 44138
 44139
 44140
 44141
 44142
 44143
 44144
 44145
 44146
 44147
 44148
 44149
 44150
 44151
 44152
 44153
 44154
 44155
 44156
 44157
 44158
 44159
 44160
 44161
 44162
 44163
 44164
 44165
 44166
 44167
 44168
 44169
 44170
 44171
 44172
 44173
 44174
 44175
 44176
 44177
 44178
 44179
 44180
 44181
 44182
 44183
 44184
 44185
 44186
 44187
 44188
 44189
 44190
 44191
 44192
 44193
 44194
 44195
 44196
 44197
 44198
 44199
 44200
 44201
 44202
 44203
 44204
 44205
 44206
 44207
 44208
 44209
 44210
 44211
 44212
 44213
 44214
 44215
 44216
 44217
 44218
 44219
 44220
 44221
 44222
 44223
 44224
 44225
 44226
 44227
 44228
 44229
 44230
 44231
 44232
 44233
 44234
 44235
 44236
 44237
 44238
 44239
 44240
 44241
 44242
 44243
 44244
 44245
 44246
 44247
 44248
 44249
 44250
 44251
 44252
 44253
 44254
 44255
 44256
 44257
 44258
 44259
 44260
 44261
 44262
 44263
 44264
 44265
 44266
 44267
 44268
 44269
 44270
 44271
 44272
 44273
 44274
 44275
 44276
 44277
 44278
 44279
 44280
 44281
 44282
 44283
 44284
 44285
 44286
 44287
 44288
 44289
 44290
 44291
 44292
 44293
 44294
 44295
 44296
 44297
 44298
 44299
 44300
 44301
 44302
 44303
 44304
 44305
 44306
 44307
 44308
 44309
 44310
 44311
 44312
 44313
 44314
 44315
 44316
 44317
 44318
 44319
 44320
 44321
 44322
 44323
 44324
 44325
 44326
 44327
 44328
 44329
 44330
 44331
 44332
 44333
 44334
 44335
 44336
 44337
 44338
 44339
 44340
 44341
 44342
 44343
 44344
 44345
 44346
 44347
 44348
 44349
 44350
 44351
 44352
 44353
 44354
 44355
 44356
 44357
 44358
 44359
 44360
 44361
 44362
 44363
 44364
 44365
 44366
 44367
 44368
 44369
 44370
 44371
 44372
 44373
 44374
 44375
 44376
 44377
 44378
 44379
 44380
 44381
 44382
 44383
 44384
 44385
 44386
 44387
 44388
 44389
 44390
 44391
 44392
 44393
 44394
 44395
 44396
 44397
 44398
 44399
 44400
 44401
 44402
 44403
 44404
 44405
 44406
 44407
 44408
 44409
 44410
 44411
 44412
 44413
 44414
 44415
 44416
 44417
 44418
 44419
 44420
 44421
 44422
 44423
 44424
 44425
 44426
 44427
 44428
 44429
 44430
 44431
 44432
 44433
 44434
 44435
 44436
 44437
 44438
 44439
 44440
 44441
 44442
 44443
 44444
 44445
 44446
 44447
 44448
 44449
 44450
 44451
 44452
 44453
 44454
 44455
 44456
 44457
 44458
 44459
 44460
 44461
 44462
 44463
 44464
 44465
 44466
 44467
 44468
 44469
 44470
 44471
 44472
 44473
 44474
 44475
 44476
 44477
 44478
 44479
 44480
 44481
 44482
 44483
 44484
 44485
 44486
 44487
 44488
 44489
 44490
 44491
 44492
 44493
 44494
 44495
 44496
 44497
 44498
 44499
 44500
 44501
 44502
 44503
 44504
 44505
 44506
 44507
 44508
 44509
 44510
 44511
 44512
 44513
 44514
 44515
 44516
 44517
 44518
 44519
 44520
 44521
 44522
 44523
 44524
 44525
 44526
 44527
 44528
 44529
 44530
 44531
 44532
 44533
 44534
 44535
 44536
 44537
 44538
 44539
 44540
 44541
 44542
 44543
 44544
 44545
 44546
 44547
 44548
 44549
 44550
 44551
 44552
 44553
 44554
 44555
 44556
 44557
 44558
 44559
 44560
 44561
 44562
 44563
 44564
 44565
 44566
 44567
 44568
 44569
 44570
 44571
 44572
 44573
 44574
 44575
 44576
 44577
 44578
 44579
 44580
 44581
 44582
 44583
 44584
 44585
 44586
 44587
 44588
 44589
 44590
 44591
 44592
 44593
 44594
 44595
 44596
 44597
 44598
 44599
 44600
 44601
 44602
 44603
 44604
 44605
 44606
 44607
 44608
 44609
 44610
 44611
 44612
 44613
 44614
 44615
 44616
 44617
 44618
 44619
 44620
 44621
 44622
 44623
 44624
 44625
 44626
 44627
 44628
 44629
 44630
 44631
 44632
 44633
 44634
 44635
 44636
 44637
 44638
 44639
 44640
 44641
 44642
 44643
 44644
 44645
 44646
 44647
 44648
 44649
 44650
 44651
 44652
 44653
 44654
 44655
 44656
 44657
 44658
 44659
 44660
 44661
 44662
 44663
 44664
 44665
 44666
 44667
 44668
 44669
 44670
 44671
 44672
 44673
 44674
 44675
 44676
 44677
 44678
 44679
 44680
 44681
 44682
 44683
 44684
 44685
 44686
 44687
 44688
 44689
 44690
 44691
 44692
 44693
 44694
 44695
 44696
 44697
 44698
 44699
 44700
 44701
 44702
 44703
 44704
 44705
 44706
 44707
 44708
 44709
 44710
 44711
 44712
 44713
 44714
 44715
 44716
 44717
 44718
 44719
 44720
 44721
 44722
 44723
 44724
 44725
 44726
 44727
 44728
 44729
 44730
 44731
 44732
 44733
 44734
 44735
 44736
 44737
 44738
 44739
 44740
 44741
 44742
 44743
 44744
 44745
 44746
 44747
 44748
 44749
 44750
 44751
 44752
 44753
 44754
 44755
 44756
 44757
 44758
 44759
 44760
 44761
 44762
 44763
 44764
 44765
 44766
 44767
 44768
 44769
 44770
 44771
 44772
 44773
 44774
 44775
 44776
 44777
 44778
 44779
 44780
 44781
 44782
 44783
 44784
 44785
 44786
 44787
 44788
 44789
 44790
 44791
 44792
 44793
 44794
 44795
 44796
 44797
 44798
 44799
 44800
 44801
 44802
 44803
 44804
 44805
 44806
 44807
 44808
 44809
 44810
 44811
 44812
 44813
 44814
 44815
 44816
 44817
 44818
 44819
 44820
 44821
 44822
 44823
 44824
 44825
 44826
 44827
 44828
 44829
 44830
 44831
 44832
 44833
 44834
 44835
 44836
 44837
 44838
 44839
 44840
 44841
 44842
 44843
 44844
 44845
 44846
 44847
 44848
 44849
 44850
 44851
 44852
 44853
 44854
 44855
 44856
 44857
 44858
 44859
 44860
 44861
 44862
 44863
 44864
 44865
 44866
 44867
 44868
 44869
 44870
 44871
 44872
 44873
 44874
 44875
 44876
 44877
 44878
 44879
 44880
 44881
 44882
 44883
 44884
 44885
 44886
 44887
 44888
 44889
 44890
 44891
 44892
 44893
 44894
 44895
 44896
 44897
 44898
 44899
 44900
 44901
 44902
 44903
 44904
 44905
 44906
 44907
 44908
 44909
 44910
 44911
 44912
 44913
 44914
 44915
 44916
 44917
 44918
 44919
 44920
 44921
 44922
 44923
 44924
 44925
 44926
 44927
 44928
 44929
 44930
 44931
 44932
 44933
 44934
 44935
 44936
 44937
 44938
 44939
 44940
 44941
 44942
 44943
 44944
 44945
 44946
 44947
 44948
 44949
 44950
 44951
 44952
 44953
 44954
 44955
 44956
 44957
 44958
 44959
 44960
 44961
 44962
 44963
 44964
 44965
 44966
 44967
 44968
 44969
 44970
 44971
 44972
 44973
 44974
 44975
 44976
 44977
 44978
 44979
 44980
 44981
 44982
 44983
 44984
 44985
 44986
 44987
 44988
 44989
 44990
 44991
 44992
 44993
 44994
 44995
 44996
 44997
 44998
 44999
 45000
 45001
 45002
 45003
 45004
 45005
 45006
 45007
 45008
 45009
 45010
 45011
 45012
 45013
 45014
 45015
 45016
 45017
 45018
 45019
 45020
 45021
 45022
 45023
 45024
 45025
 45026
 45027
 45028
 45029
 45030
 45031
 45032
 45033
 45034
 45035
 45036
 45037
 45038
 45039
 45040
 45041
 45042
 45043
 45044
 45045
 45046
 45047
 45048
 45049
 45050
 45051
 45052
 45053
 45054
 45055
 45056
 45057
 45058
 45059
 45060
 45061
 45062
 45063
 45064
 45065
 45066
 45067
 45068
 45069
 45070
 45071
 45072
 45073
 45074
 45075
 45076
 45077
 45078
 45079
 45080
 45081
 45082
 45083
 45084
 45085
 45086
 45087
 45088
 45089
 45090
 45091
 45092
 45093
 45094
 45095
 45096
 45097
 45098
 45099
 45100
 45101
 45102
 45103
 45104
 45105
 45106
 45107
 45108
 45109
 45110
 45111
 45112
 45113
 45114
 45115
 45116
 45117
 45118
 45119
 45120
 45121
 45122
 45123
 45124
 45125
 45126
 45127
 45128
 45129
 45130
 45131
 45132
 45133
 45134
 45135
 45136
 45137
 45138
 45139
 45140
 45141
 45142
 45143
 45144
 45145
 45146
 45147
 45148
 45149
 45150
 45151
 45152
 45153
 45154
 45155
 45156
 45157
 45158
 45159
 45160
 45161
 45162
 45163
 45164
 45165
 45166
 45167
 45168
 45169
 45170
 45171
 45172
 45173
 45174
 45175
 45176
 45177
 45178
 45179
 45180
 45181
 45182
 45183
 45184
 45185
 45186
 45187
 45188
 45189
 45190
 45191
 45192
 45193
 45194
 45195
 45196
 45197
 45198
 45199
 45200
 45201
 45202
 45203
 45204
 45205
 45206
 45207
 45208
 45209
 45210
 45211
 45212
 45213
 45214
 45215
 45216
 45217
 45218
 45219
 45220
 45221
 45222
 45223
 45224
 45225
 45226
 45227
 45228
 45229
 45230
 45231
 45232
 45233
 45234
 45235
 45236
 45237
 45238
 45239
 45240
 45241
 45242
 45243
 45244
 45245
 45246
 45247
 45248
 45249
 45250
 45251
 45252
 45253
 45254
 45255
 45256
 45257
 45258
 45259
 45260
 45261
 45262
 45263
 45264
 45265
 45266
 45267
 45268
 45269
 45270
 45271
 45272
 45273
 45274
 45275
 45276
 45277
 45278
 45279
 45280
 45281
 45282
 45283
 45284
 45285
 45286
 45287
 45288
 45289
 45290
 45291
 45292
 45293
 45294
 45295
 45296
 45297
 45298
 45299
 45300
 45301
 45302
 45303
 45304
 45305
 45306
 45307
 45308
 45309
 45310
 45311
 45312
 45313
 45314
 45315
 45316
 45317
 45318
 45319
 45320
 45321
 45322
 45323
 45324
 45325
 45326
 45327
 45328
 45329
 45330
 45331
 45332
 45333
 45334
 45335
 45336
 45337
 45338
 45339
 45340
 45341
 45342
 45343
 45344
 45345
 45346
 45347
 45348
 45349
 45350
 45351
 45352
 45353
 45354
 45355
 45356
 45357
 45358
 45359
 45360
 45361
 45362
 45363
 45364
 45365
 45366
 45367
 45368
 45369
 45370
 45371
 45372
 45373
 45374
 45375
 45376
 45377
 45378
 45379
 45380
 45381
 45382
 45383
 45384
 45385
 45386
 45387
 45388
 45389
 45390
 45391
 45392
 45393
 45394
 45395
 45396
 45397
 45398
 45399
 45400
 45401
 45402
 45403
 45404
 45405
 45406
 45407
 45408
 45409
 45410
 45411
 45412
 45413
 45414
 45415
 45416
 45417
 45418
 45419
 45420
 45421
 45422
 45423
 45424
 45425
 45426
 45427
 45428
 45429
 45430
 45431
 45432
 45433
 45434
 45435
 45436
 45437
 45438
 45439
 45440
 45441
 45442
 45443
 45444
 45445
 45446
 45447
 45448
 45449
 45450
 45451
 45452
 45453
 45454
 45455
 45456
 45457
 45458
 45459
 45460
 45461
 45462
 45463
 45464
 45465
 45466
 45467
 45468
 45469
 45470
 45471
 45472
 45473
 45474
 45475
 45476
 45477
 45478
 45479
 45480
 45481
 45482
 45483
 45484
 45485
 45486
 45487
 45488
 45489
 45490
 45491
 45492
 45493
 45494
 45495
 45496
 45497
 45498
 45499
 45500
 45501
 45502
 45503
 45504
 45505
 45506
 45507
 45508
 45509
 45510
 45511
 45512
 45513
 45514
 45515
 45516
 45517
 45518
 45519
 45520
 45521
 45522
 45523
 45524
 45525
 45526
 45527
 45528
 45529
 45530
 45531
 45532
 45533
 45534
 45535
 45536
 45537
 45538
 45539
 45540
 45541
 45542
 45543
 45544
 45545
 45546
 45547
 45548
 45549
 45550
 45551
 45552
 45553
 45554
 45555
 45556
 45557
 45558
 45559
 45560
 45561
 45562
 45563
 45564
 45565
 45566
 45567
 45568
 45569
 45570
 45571
 45572
 45573
 45574
 45575
 45576
 45577
 45578
 45579
 45580
 45581
 45582
 45583
 45584
 45585
 45586
 45587
 45588
 45589
 45590
 45591
 45592
 45593
 45594
 45595
 45596
 45597
 45598
 45599
 45600
 45601
 45602
 45603
 45604
 45605
 45606
 45607
 45608
 45609
 45610
 45611
 45612
 45613
 45614
 45615
 45616
 45617
 45618
 45619
 45620
 45621
 45622
 45623
 45624
 45625
 45626
 45627
 45628
 45629
 45630
 45631
 45632
 45633
 45634
 45635
 45636
 45637
 45638
 45639
 45640
 45641
 45642
 45643
 45644
 45645
 45646
 45647
 45648
 45649
 45650
 45651
 45652
 45653
 45654
 45655
 45656
 45657
 45658
 45659
 45660
 45661
 45662
 45663
 45664
 45665
 45666
 45667
 45668
 45669
 45670
 45671
 45672
 45673
 45674
 45675
 45676
 45677
 45678
 45679
 45680
 45681
 45682
 45683
 45684
 45685
 45686
 45687
 45688
 45689
 45690
 45691
 45692
 45693
 45694
 45695
 45696
 45697
 45698
 45699
 45700
 45701
 45702
 45703
 45704
 45705
 45706
 45707
 45708
 45709
 45710
 45711
 45712
 45713
 45714
 45715
 45716
 45717
 45718
 45719
 45720
 45721
 45722
 45723
 45724
 45725
 45726
 45727
 45728
 45729
 45730
 45731
 45732
 45733
 45734
 45735
 45736
 45737
 45738
 45739
 45740
 45741
 45742
 45743
 45744
 45745
 45746
 45747
 45748
 45749
 45750
 45751
 45752
 45753
 45754
 45755
 45756
 45757
 45758
 45759
 45760
 45761
 45762
 45763
 45764
 45765
 45766
 45767
 45768
 45769
 45770
 45771
 45772
 45773
 45774
 45775
 45776
 45777
 45778
 45779
 45780
 45781
 45782
 45783
 45784
 45785
 45786
 45787
 45788
 45789
 45790
 45791
 45792
 45793
 45794
 45795
 45796
 45797
 45798
 45799
 45800
 45801
 45802
 45803
 45804
 45805
 45806
 45807
 45808
 45809
 45810
 45811
 45812
 45813
 45814
 45815
 45816
 45817
 45818
 45819
 45820
 45821
 45822
 45823
 45824
 45825
 45826
 45827
 45828
 45829
 45830
 45831
 45832
 45833
 45834
 45835
 45836
 45837
 45838
 45839
 45840
 45841
 45842
 45843
 45844
 45845
 45846
 45847
 45848
 45849
 45850
 45851
 45852
 45853
 45854
 45855
 45856
 45857
 45858
 45859
 45860
 45861
 45862
 45863
 45864
 45865
 45866
 45867
 45868
 45869
 45870
 45871
 45872
 45873
 45874
 45875
 45876
 45877
 45878
 45879
 45880
 45881
 45882
 45883
 45884
 45885
 45886
 45887
 45888
 45889
 45890
 45891
 45892
 45893
 45894
 45895
 45896
 45897
 45898
 45899
 45900
 45901
 45902
 45903
 45904
 45905
 45906
 45907
 45908
 45909
 45910
 45911
 45912
 45913
 45914
 45915
 45916
 45917
 45918
 45919
 45920
 45921
 45922
 45923
 45924
 45925
 45926
 45927
 45928
 45929
 45930
 45931
 45932
 45933
 45934
 45935
 45936
 45937
 45938
 45939
 45940
 45941
 45942
 45943
 45944
 45945
 45946
 45947
 45948
 45949
 45950
 45951
 45952
 45953
 45954
 45955
 45956
 45957
 45958
 45959
 45960
 45961
 45962
 45963
 45964
 45965
 45966
 45967
 45968
 45969
 45970
 45971
 45972
 45973
 45974
 45975
 45976
 45977
 45978
 45979
 45980
 45981
 45982
 45983
 45984
 45985
 45986
 45987
 45988
 45989
 45990
 45991
 45992
 45993
 45994
 45995
 45996
 45997
 45998
 45999
 46000
 46001
 46002
 46003
 46004
 46005
 46006
 46007
 46008
 46009
 46010
 46011
 46012
 46013
 46014
 46015
 46016
 46017
 46018
 46019
 46020
 46021
 46022
 46023
 46024
 46025
 46026
 46027
 46028
 46029
 46030
 46031
 46032
 46033
 46034
 46035
 46036
 46037
 46038
 46039
 46040
 46041
 46042
 46043
 46044
 46045
 46046
 46047
 46048
 46049
 46050
 46051
 46052
 46053
 46054
 46055
 46056
 46057
 46058
 46059
 46060
 46061
 46062
 46063
 46064
 46065
 46066
 46067
 46068
 46069
 46070
 46071
 46072
 46073
 46074
 46075
 46076
 46077
 46078
 46079
 46080
 46081
 46082
 46083
 46084
 46085
 46086
 46087
 46088
 46089
 46090
 46091
 46092
 46093
 46094
 46095
 46096
 46097
 46098
 46099
 46100
 46101
 46102
 46103
 46104
 46105
 46106
 46107
 46108
 46109
 46110
 46111
 46112
 46113
 46114
 46115
 46116
 46117
 46118
 46119
 46120
 46121
 46122
 46123
 46124
 46125
 46126
 46127
 46128
 46129
 46130
 46131
 46132
 46133
 46134
 46135
 46136
 46137
 46138
 46139
 46140
 46141
 46142
 46143
 46144
 46145
 46146
 46147
 46148
 46149
 46150
 46151
 46152
 46153
 46154
 46155
 46156
 46157
 46158
 46159
 46160
 46161
 46162
 46163
 46164
 46165
 46166
 46167
 46168
 46169
 46170
 46171
 46172
 46173
 46174
 46175
 46176
 46177
 46178
 46179
 46180
 46181
 46182
 46183
 46184
 46185
 46186
 46187
 46188
 46189
 46190
 46191
 46192
 46193
 46194
 46195
 46196
 46197
 46198
 46199
 46200
 46201
 46202
 46203
 46204
 46205
 46206
 46207
 46208
 46209
 46210
 46211
 46212
 46213
 46214
 46215
 46216
 46217
 46218
 46219
 46220
 46221
 46222
 46223
 46224
 46225
 46226
 46227
 46228
 46229
 46230
 46231
 46232
 46233
 46234
 46235
 46236
 46237
 46238
 46239
 46240
 46241
 46242
 46243
 46244
 46245
 46246
 46247
 46248
 46249
 46250
 46251
 46252
 46253
 46254
 46255
 46256
 46257
 46258
 46259
 46260
 46261
 46262
 46263
 46264
 46265
 46266
 46267
 46268
 46269
 46270
 46271
 46272
 46273
 46274
 46275
 46276
 46277
 46278
 46279
 46280
 46281
 46282
 46283
 46284
 46285
 46286
 46287
 46288
 46289
 46290
 46291
 46292
 46293
 46294
 46295
 46296
 46297
 46298
 46299
 46300
 46301
 46302
 46303
 46304
 46305
 46306
 46307
 46308
 46309
 46310
 46311
 46312
 46313
 46314
 46315
 46316
 46317
 46318
 46319
 46320
 46321
 46322
 46323
 46324
 46325
 46326
 46327
 46328
 46329
 46330
 46331
 46332
 46333
 46334
 46335
 46336
 46337
 46338
 46339
 46340
 46341
 46342
 46343
 46344
 46345
 46346
 46347
 46348
 46349
 46350
 46351
 46352
 46353
 46354
 46355
 46356
 46357
 46358
 46359
 46360
 46361
 46362
 46363
 46364
 46365
 46366
 46367
 46368
 46369
 46370
 46371
 46372
 46373
 46374
 46375
 46376
 46377
 46378
 46379
 46380
 46381
 46382
 46383
 46384
 46385
 46386
 46387
 46388
 46389
 46390
 46391
 46392
 46393
 46394
 46395
 46396
 46397
 46398
 46399
 46400
 46401
 46402
 46403
 46404
 46405
 46406
 46407
 46408
 46409
 46410
 46411
 46412
 46413
 46414
 46415
 46416
 46417
 46418
 46419
 46420
 46421
 46422
 46423
 46424
 46425
 46426
 46427
 46428
 46429
 46430
 46431
 46432
 46433
 46434
 46435
 46436
 46437
 46438
 46439
 46440
 46441
 46442
 46443
 46444
 46445
 46446
 46447
 46448
 46449
 46450
 46451
 46452
 46453
 46454
 46455
 46456
 46457
 46458
 46459
 46460
 46461
 46462
 46463
 46464
 46465
 46466
 46467
 46468
 46469
 46470
 46471
 46472
 46473
 46474
 46475
 46476
 46477
 46478
 46479
 46480
 46481
 46482
 46483
 46484
 46485
 46486
 46487
 46488
 46489
 46490
 46491
 46492
 46493
 46494
 46495
 46496
 46497
 46498
 46499
 46500
 46501
 46502
 46503
 46504
 46505
 46506
 46507
 46508
 46509
 46510
 46511
 46512
 46513
 46514
 46515
 46516
 46517
 46518
 46519
 46520
 46521
 46522
 46523
 46524
 46525
 46526
 46527
 46528
 46529
 46530
 46531
 46532
 46533
 46534
 46535
 46536
 46537
 46538
 46539
 46540
 46541
 46542
 46543
 46544
 46545
 46546
 46547
 46548
 46549
 46550
 46551
 46552
 46553
 46554
 46555
 46556
 46557
 46558
 46559
 46560
 46561
 46562
 46563
 46564
 46565
 46566
 46567
 46568
 46569
 46570
 46571
 46572
 46573
 46574
 46575
 46576
 46577
 46578
 46579
 46580
 46581
 46582
 46583
 46584
 46585
 46586
 46587
 46588
 46589
 46590
 46591
 46592
 46593
 46594
 46595
 46596
 46597
 46598
 46599
 46600
 46601
 46602
 46603
 46604
 46605
 46606
 46607
 46608
 46609
 46610
 46611
 46612
 46613
 46614
 46615
 46616
 46617
 46618
 46619
 46620
 46621
 46622
 46623
 46624
 46625
 46626
 46627
 46628
 46629
 46630
 46631
 46632
 46633
 46634
 46635
 46636
 46637
 46638
 46639
 46640
 46641
 46642
 46643
 46644
 46645
 46646
 46647
 46648
 46649
 46650
 46651
 46652
 46653
 46654
 46655
 46656
 46657
 46658
 46659
 46660
 46661
 46662
 46663
 46664
 46665
 46666
 46667
 46668
 46669
 46670
 46671
 46672
 46673
 46674
 46675
 46676
 46677
 46678
 46679
 46680
 46681
 46682
 46683
 46684
 46685
 46686
 46687
 46688
 46689
 46690
 46691
 46692
 46693
 46694
 46695
 46696
 46697
 46698
 46699
 46700
 46701
 46702
 46703
 46704
 46705
 46706
 46707
 46708
 46709
 46710
 46711
 46712
 46713
 46714
 46715
 46716
 46717
 46718
 46719
 46720
 46721
 46722
 46723
 46724
 46725
 46726
 46727
 46728
 46729
 46730
 46731
 46732
 46733
 46734
 46735
 46736
 46737
 46738
 46739
 46740
 46741
 46742
 46743
 46744
 46745
 46746
 46747
 46748
 46749
 46750
 46751
 46752
 46753
 46754
 46755
 46756
 46757
 46758
 46759
 46760
 46761
 46762
 46763
 46764
 46765
 46766
 46767
 46768
 46769
 46770
 46771
 46772
 46773
 46774
 46775
 46776
 46777
 46778
 46779
 46780
 46781
 46782
 46783
 46784
 46785
 46786
 46787
 46788
 46789
 46790
 46791
 46792
 46793
 46794
 46795
 46796
 46797
 46798
 46799
 46800
 46801
 46802
 46803
 46804
 46805
 46806
 46807
 46808
 46809
 46810
 46811
 46812
 46813
 46814
 46815
 46816
 46817
 46818
 46819
 46820
 46821
 46822
 46823
 46824
 46825
 46826
 46827
 46828
 46829
 46830
 46831
 46832
 46833
 46834
 46835
 46836
 46837
 46838
 46839
 46840
 46841
 46842
 46843
 46844
 46845
 46846
 46847
 46848
 46849
 46850
 46851
 46852
 46853
 46854
 46855
 46856
 46857
 46858
 46859
 46860
 46861
 46862
 46863
 46864
 46865
 46866
 46867
 46868
 46869
 46870
 46871
 46872
 46873
 46874
 46875
 46876
 46877
 46878
 46879
 46880
 46881
 46882
 46883
 46884
 46885
 46886
 46887
 46888
 46889
 46890
 46891
 46892
 46893
 46894
 46895
 46896
 46897
 46898
 46899
 46900
 46901
 46902
 46903
 46904
 46905
 46906
 46907
 46908
 46909
 46910
 46911
 46912
 46913
 46914
 46915
 46916
 46917
 46918
 46919
 46920
 46921
 46922
 46923
 46924
 46925
 46926
 46927
 46928
 46929
 46930
 46931
 46932
 46933
 46934
 46935
 46936
 46937
 46938
 46939
 46940
 46941
 46942
 46943
 46944
 46945
 46946
 46947
 46948
 46949
 46950
 46951
 46952
 46953
 46954
 46955
 46956
 46957
 46958
 46959
 46960
 46961
 46962
 46963
 46964
 46965
 46966
 46967
 46968
 46969
 46970
 46971
 46972
 46973
 46974
 46975
 46976
 46977
 46978
 46979
 46980
 46981
 46982
 46983
 46984
 46985
 46986
 46987
 46988
 46989
 46990
 46991
 46992
 46993
 46994
 46995
 46996
 46997
 46998
 46999
 47000
 47001
 47002
 47003
 47004
 47005
 47006
 47007
 47008
 47009
 47010
 47011
 47012
 47013
 47014
 47015
 47016
 47017
 47018
 47019
 47020
 47021
 47022
 47023
 47024
 47025
 47026
 47027
 47028
 47029
 47030
 47031
 47032
 47033
 47034
 47035
 47036
 47037
 47038
 47039
 47040
 47041
 47042
 47043
 47044
 47045
 47046
 47047
 47048
 47049
 47050
 47051
 47052
 47053
 47054
 47055
 47056
 47057
 47058
 47059
 47060
 47061
 47062
 47063
 47064
 47065
 47066
 47067
 47068
 47069
 47070
 47071
 47072
 47073
 47074
 47075
 47076
 47077
 47078
 47079
 47080
 47081
 47082
 47083
 47084
 47085
 47086
 47087
 47088
 47089
 47090
 47091
 47092
 47093
 47094
 47095
 47096
 47097
 47098
 47099
 47100
 47101
 47102
 47103
 47104
 47105
 47106
 47107
 47108
 47109
 47110
 47111
 47112
 47113
 47114
 47115
 47116
 47117
 47118
 47119
 47120
 47121
 47122
 47123
 47124
 47125
 47126
 47127
 47128
 47129
 47130
 47131
 47132
 47133
 47134
 47135
 47136
 47137
 47138
 47139
 47140
 47141
 47142
 47143
 47144
 47145
 47146
 47147
 47148
 47149
 47150
 47151
 47152
 47153
 47154
 47155
 47156
 47157
 47158
 47159
 47160
 47161
 47162
 47163
 47164
 47165
 47166
 47167
 47168
 47169
 47170
 47171
 47172
 47173
 47174
 47175
 47176
 47177
 47178
 47179
 47180
 47181
 47182
 47183
 47184
 47185
 47186
 47187
 47188
 47189
 47190
 47191
 47192
 47193
 47194
 47195
 47196
 47197
 47198
 47199
 47200
 47201
 47202
 47203
 47204
 47205
 47206
 47207
 47208
 47209
 47210
 47211
 47212
 47213
 47214
 47215
 47216
 47217
 47218
 47219
 47220
 47221
 47222
 47223
 47224
 47225
 47226
 47227
 47228
 47229
 47230
 47231
 47232
 47233
 47234
 47235
 47236
 47237
 47238
 47239
 47240
 47241
 47242
 47243
 47244
 47245
 47246
 47247
 47248
 47249
 47250
 47251
 47252
 47253
 47254
 47255
 47256
 47257
 47258
 47259
 47260
 47261
 47262
 47263
 47264
 47265
 47266
 47267
 47268
 47269
 47270
 47271
 47272
 47273
 47274
 47275
 47276
 47277
 47278
 47279
 47280
 47281
 47282
 47283
 47284
 47285
 47286
 47287
 47288
 47289
 47290
 47291
 47292
 47293
 47294
 47295
 47296
 47297
 47298
 47299
 47300
 47301
 47302
 47303
 47304
 47305
 47306
 47307
 47308
 47309
 47310
 47311
 47312
 47313
 47314
 47315
 47316
 47317
 47318
 47319
 47320
 47321
 47322
 47323
 47324
 47325
 47326
 47327
 47328
 47329
 47330
 47331
 47332
 47333
 47334
 47335
 47336
 47337
 47338
 47339
 47340
 47341
 47342
 47343
 47344
 47345
 47346
 47347
 47348
 47349
 47350
 47351
 47352
 47353
 47354
 47355
 47356
 47357
 47358
 47359
 47360
 47361
 47362
 47363
 47364
 47365
 47366
 47367
 47368
 47369
 47370
 47371
 47372
 47373
 47374
 47375
 47376
 47377
 47378
 47379
 47380
 47381
 47382
 47383
 47384
 47385
 47386
 47387
 47388
 47389
 47390
 47391
 47392
 47393
 47394
 47395
 47396
 47397
 47398
 47399
 47400
 47401
 47402
 47403
 47404
 47405
 47406
 47407
 47408
 47409
 47410
 47411
 47412
 47413
 47414
 47415
 47416
 47417
 47418
 47419
 47420
 47421
 47422
 47423
 47424
 47425
 47426
 47427
 47428
 47429
 47430
 47431
 47432
 47433
 47434
 47435
 47436
 47437
 47438
 47439
 47440
 47441
 47442
 47443
 47444
 47445
 47446
 47447
 47448
 47449
 47450
 47451
 47452
 47453
 47454
 47455
 47456
 47457
 47458
 47459
 47460
 47461
 47462
 47463
 47464
 47465
 47466
 47467
 47468
 47469
 47470
 47471
 47472
 47473
 47474
 47475
 47476
 47477
 47478
 47479
 47480
 47481
 47482
 47483
 47484
 47485
 47486
 47487
 47488
 47489
 47490
 47491
 47492
 47493
 47494
 47495
 47496
 47497
 47498
 47499
 47500
 47501
 47502
 47503
 47504
 47505
 47506
 47507
 47508
 47509
 47510
 47511
 47512
 47513
 47514
 47515
 47516
 47517
 47518
 47519
 47520
 47521
 47522
 47523
 47524
 47525
 47526
 47527
 47528
 47529
 47530
 47531
 47532
 47533
 47534
 47535
 47536
 47537
 47538
 47539
 47540
 47541
 47542
 47543
 47544
 47545
 47546
 47547
 47548
 47549
 47550
 47551
 47552
 47553
 47554
 47555
 47556
 47557
 47558
 47559
 47560
 47561
 47562
 47563
 47564
 47565
 47566
 47567
 47568
 47569
 47570
 47571
 47572
 47573
 47574
 47575
 47576
 47577
 47578
 47579
 47580
 47581
 47582
 47583
 47584
 47585
 47586
 47587
 47588
 47589
 47590
 47591
 47592
 47593
 47594
 47595
 47596
 47597
 47598
 47599
 47600
 47601
 47602
 47603
 47604
 47605
 47606
 47607
 47608
 47609
 47610
 47611
 47612
 47613
 47614
 47615
 47616
 47617
 47618
 47619
 47620
 47621
 47622
 47623
 47624
 47625
 47626
 47627
 47628
 47629
 47630
 47631
 47632
 47633
 47634
 47635
 47636
 47637
 47638
 47639
 47640
 47641
 47642
 47643
 47644
 47645
 47646
 47647
 47648
 47649
 47650
 47651
 47652
 47653
 47654
 47655
 47656
 47657
 47658
 47659
 47660
 47661
 47662
 47663
 47664
 47665
 47666
 47667
 47668
 47669
 47670
 47671
 47672
 47673
 47674
 47675
 47676
 47677
 47678
 47679
 47680
 47681
 47682
 47683
 47684
 47685
 47686
 47687
 47688
 47689
 47690
 47691
 47692
 47693
 47694
 47695
 47696
 47697
 47698
 47699
 47700
 47701
 47702
 47703
 47704
 47705
 47706
 47707
 47708
 47709
 47710
 47711
 47712
 47713
 47714
 47715
 47716
 47717
 47718
 47719
 47720
 47721
 47722
 47723
 47724
 47725
 47726
 47727
 47728
 47729
 47730
 47731
 47732
 47733
 47734
 47735
 47736
 47737
 47738
 47739
 47740
 47741
 47742
 47743
 47744
 47745
 47746
 47747
 47748
 47749
 47750
 47751
 47752
 47753
 47754
 47755
 47756
 47757
 47758
 47759
 47760
 47761
 47762
 47763
 47764
 47765
 47766
 47767
 47768
 47769
 47770
 47771
 47772
 47773
 47774
 47775
 47776
 47777
 47778
 47779
 47780
 47781
 47782
 47783
 47784
 47785
 47786
 47787
 47788
 47789
 47790
 47791
 47792
 47793
 47794
 47795
 47796
 47797
 47798
 47799
 47800
 47801
 47802
 47803
 47804
 47805
 47806
 47807
 47808
 47809
 47810
 47811
 47812
 47813
 47814
 47815
 47816
 47817
 47818
 47819
 47820
 47821
 47822
 47823
 47824
 47825
 47826
 47827
 47828
 47829
 47830
 47831
 47832
 47833
 47834
 47835
 47836
 47837
 47838
 47839
 47840
 47841
 47842
 47843
 47844
 47845
 47846
 47847
 47848
 47849
 47850
 47851
 47852
 47853
 47854
 47855
 47856
 47857
 47858
 47859
 47860
 47861
 47862
 47863
 47864
 47865
 47866
 47867
 47868
 47869
 47870
 47871
 47872
 47873
 47874
 47875
 47876
 47877
 47878
 47879
 47880
 47881
 47882
 47883
 47884
 47885
 47886
 47887
 47888
 47889
 47890
 47891
 47892
 47893
 47894
 47895
 47896
 47897
 47898
 47899
 47900
 47901
 47902
 47903
 47904
 47905
 47906
 47907
 47908
 47909
 47910
 47911
 47912
 47913
 47914
 47915
 47916
 47917
 47918
 47919
 47920
 47921
 47922
 47923
 47924
 47925
 47926
 47927
 47928
 47929
 47930
 47931
 47932
 47933
 47934
 47935
 47936
 47937
 47938
 47939
 47940
 47941
 47942
 47943
 47944
 47945
 47946
 47947
 47948
 47949
 47950
 47951
 47952
 47953
 47954
 47955
 47956
 47957
 47958
 47959
 47960
 47961
 47962
 47963
 47964
 47965
 47966
 47967
 47968
 47969
 47970
 47971
 47972
 47973
 47974
 47975
 47976
 47977
 47978
 47979
 47980
 47981
 47982
 47983
 47984
 47985
 47986
 47987
 47988
 47989
 47990
 47991
 47992
 47993
 47994
 47995
 47996
 47997
 47998
 47999
 48000
 48001
 48002
 48003
 48004
 48005
 48006
 48007
 48008
 48009
 48010
 48011
 48012
 48013
 48014
 48015
 48016
 48017
 48018
 48019
 48020
 48021
 48022
 48023
 48024
 48025
 48026
 48027
 48028
 48029
 48030
 48031
 48032
 48033
 48034
 48035
 48036
 48037
 48038
 48039
 48040
 48041
 48042
 48043
 48044
 48045
 48046
 48047
 48048
 48049
 48050
 48051
 48052
 48053
 48054
 48055
 48056
 48057
 48058
 48059
 48060
 48061
 48062
 48063
 48064
 48065
 48066
 48067
 48068
 48069
 48070
 48071
 48072
 48073
 48074
 48075
 48076
 48077
 48078
 48079
 48080
 48081
 48082
 48083
 48084
 48085
 48086
 48087
 48088
 48089
 48090
 48091
 48092
 48093
 48094
 48095
 48096
 48097
 48098
 48099
 48100
 48101
 48102
 48103
 48104
 48105
 48106
 48107
 48108
 48109
 48110
 48111
 48112
 48113
 48114
 48115
 48116
 48117
 48118
 48119
 48120
 48121
 48122
 48123
 48124
 48125
 48126
 48127
 48128
 48129
 48130
 48131
 48132
 48133
 48134
 48135
 48136
 48137
 48138
 48139
 48140
 48141
 48142
 48143
 48144
 48145
 48146
 48147
 48148
 48149
 48150
 48151
 48152
 48153
 48154
 48155
 48156
 48157
 48158
 48159
 48160
 48161
 48162
 48163
 48164
 48165
 48166
 48167
 48168
 48169
 48170
 48171
 48172
 48173
 48174
 48175
 48176
 48177
 48178
 48179
 48180
 48181
 48182
 48183
 48184
 48185
 48186
 48187
 48188
 48189
 48190
 48191
 48192
 48193
 48194
 48195
 48196
 48197
 48198
 48199
 48200
 48201
 48202
 48203
 48204
 48205
 48206
 48207
 48208
 48209
 48210
 48211
 48212
 48213
 48214
 48215
 48216
 48217
 48218
 48219
 48220
 48221
 48222
 48223
 48224
 48225
 48226
 48227
 48228
 48229
 48230
 48231
 48232
 48233
 48234
 48235
 48236
 48237
 48238
 48239
 48240
 48241
 48242
 48243
 48244
 48245
 48246
 48247
 48248
 48249
 48250
 48251
 48252
 48253
 48254
 48255
 48256
 48257
 48258
 48259
 48260
 48261
 48262
 48263
 48264
 48265
 48266
 48267
 48268
 48269
 48270
 48271
 48272
 48273
 48274
 48275
 48276
 48277
 48278
 48279
 48280
 48281
 48282
 48283
 48284
 48285
 48286
 48287
 48288
 48289
 48290
 48291
 48292
 48293
 48294
 48295
 48296
 48297
 48298
 48299
 48300
 48301
 48302
 48303
 48304
 48305
 48306
 48307
 48308
 48309
 48310
 48311
 48312
 48313
 48314
 48315
 48316
 48317
 48318
 48319
 48320
 48321
 48322
 48323
 48324
 48325
 48326
 48327
 48328
 48329
 48330
 48331
 48332
 48333
 48334
 48335
 48336
 48337
 48338
 48339
 48340
 48341
 48342
 48343
 48344
 48345
 48346
 48347
 48348
 48349
 48350
 48351
 48352
 48353
 48354
 48355
 48356
 48357
 48358
 48359
 48360
 48361
 48362
 48363
 48364
 48365
 48366
 48367
 48368
 48369
 48370
 48371
 48372
 48373
 48374
 48375
 48376
 48377
 48378
 48379
 48380
 48381
 48382
 48383
 48384
 48385
 48386
 48387
 48388
 48389
 48390
 48391
 48392
 48393
 48394
 48395
 48396
 48397
 48398
 48399
 48400
 48401
 48402
 48403
 48404
 48405
 48406
 48407
 48408
 48409
 48410
 48411
 48412
 48413
 48414
 48415
 48416
 48417
 48418
 48419
 48420
 48421
 48422
 48423
 48424
 48425
 48426
 48427
 48428
 48429
 48430
 48431
 48432
 48433
 48434
 48435
 48436
 48437
 48438
 48439
 48440
 48441
 48442
 48443
 48444
 48445
 48446
 48447
 48448
 48449
 48450
 48451
 48452
 48453
 48454
 48455
 48456
 48457
 48458
 48459
 48460
 48461
 48462
 48463
 48464
 48465
 48466
 48467
 48468
 48469
 48470
 48471
 48472
 48473
 48474
 48475
 48476
 48477
 48478
 48479
 48480
 48481
 48482
 48483
 48484
 48485
 48486
 48487
 48488
 48489
 48490
 48491
 48492
 48493
 48494
 48495
 48496
 48497
 48498
 48499
 48500
 48501
 48502
 48503
 48504
 48505
 48506
 48507
 48508
 48509
 48510
 48511
 48512
 48513
 48514
 48515
 48516
 48517
 48518
 48519
 48520
 48521
 48522
 48523
 48524
 48525
 48526
 48527
 48528
 48529
 48530
 48531
 48532
 48533
 48534
 48535
 48536
 48537
 48538
 48539
 48540
 48541
 48542
 48543
 48544
 48545
 48546
 48547
 48548
 48549
 48550
 48551
 48552
 48553
 48554
 48555
 48556
 48557
 48558
 48559
 48560
 48561
 48562
 48563
 48564
 48565
 48566
 48567
 48568
 48569
 48570
 48571
 48572
 48573
 48574
 48575
 48576
 48577
 48578
 48579
 48580
 48581
 48582
 48583
 48584
 48585
 48586
 48587
 48588
 48589
 48590
 48591
 48592
 48593
 48594
 48595
 48596
 48597
 48598
 48599
 48600
 48601
 48602
 48603
 48604
 48605
 48606
 48607
 48608
 48609
 48610
 48611
 48612
 48613
 48614
 48615
 48616
 48617
 48618
 48619
 48620
 48621
 48622
 48623
 48624
 48625
 48626
 48627
 48628
 48629
 48630
 48631
 48632
 48633
 48634
 48635
 48636
 48637
 48638
 48639
 48640
 48641
 48642
 48643
 48644
 48645
 48646
 48647
 48648
 48649
 48650
 48651
 48652
 48653
 48654
 48655
 48656
 48657
 48658
 48659
 48660
 48661
 48662
 48663
 48664
 48665
 48666
 48667
 48668
 48669
 48670
 48671
 48672
 48673
 48674
 48675
 48676
 48677
 48678
 48679
 48680
 48681
 48682
 48683
 48684
 48685
 48686
 48687
 48688
 48689
 48690
 48691
 48692
 48693
 48694
 48695
 48696
 48697
 48698
 48699
 48700
 48701
 48702
 48703
 48704
 48705
 48706
 48707
 48708
 48709
 48710
 48711
 48712
 48713
 48714
 48715
 48716
 48717
 48718
 48719
 48720
 48721
 48722
 48723
 48724
 48725
 48726
 48727
 48728
 48729
 48730
 48731
 48732
 48733
 48734
 48735
 48736
 48737
 48738
 48739
 48740
 48741
 48742
 48743
 48744
 48745
 48746
 48747
 48748
 48749
 48750
 48751
 48752
 48753
 48754
 48755
 48756
 48757
 48758
 48759
 48760
 48761
 48762
 48763
 48764
 48765
 48766
 48767
 48768
 48769
 48770
 48771
 48772
 48773
 48774
 48775
 48776
 48777
 48778
 48779
 48780
 48781
 48782
 48783
 48784
 48785
 48786
 48787
 48788
 48789
 48790
 48791
 48792
 48793
 48794
 48795
 48796
 48797
 48798
 48799
 48800
 48801
 48802
 48803
 48804
 48805
 48806
 48807
 48808
 48809
 48810
 48811
 48812
 48813
 48814
 48815
 48816
 48817
 48818
 48819
 48820
 48821
 48822
 48823
 48824
 48825
 48826
 48827
 48828
 48829
 48830
 48831
 48832
 48833
 48834
 48835
 48836
 48837
 48838
 48839
 48840
 48841
 48842
 48843
 48844
 48845
 48846
 48847
 48848
 48849
 48850
 48851
 48852
 48853
 48854
 48855
 48856
 48857
 48858
 48859
 48860
 48861
 48862
 48863
 48864
 48865
 48866
 48867
 48868
 48869
 48870
 48871
 48872
 48873
 48874
 48875
 48876
 48877
 48878
 48879
 48880
 48881
 48882
 48883
 48884
 48885
 48886
 48887
 48888
 48889
 48890
 48891
 48892
 48893
 48894
 48895
 48896
 48897
 48898
 48899
 48900
 48901
 48902
 48903
 48904
 48905
 48906
 48907
 48908
 48909
 48910
 48911
 48912
 48913
 48914
 48915
 48916
 48917
 48918
 48919
 48920
 48921
 48922
 48923
 48924
 48925
 48926
 48927
 48928
 48929
 48930
 48931
 48932
 48933
 48934
 48935
 48936
 48937
 48938
 48939
 48940
 48941
 48942
 48943
 48944
 48945
 48946
 48947
 48948
 48949
 48950
 48951
 48952
 48953
 48954
 48955
 48956
 48957
 48958
 48959
 48960
 48961
 48962
 48963
 48964
 48965
 48966
 48967
 48968
 48969
 48970
 48971
 48972
 48973
 48974
 48975
 48976
 48977
 48978
 48979
 48980
 48981
 48982
 48983
 48984
 48985
 48986
 48987
 48988
 48989
 48990
 48991
 48992
 48993
 48994
 48995
 48996
 48997
 48998
 48999
 49000
 49001
 49002
 49003
 49004
 49005
 49006
 49007
 49008
 49009
 49010
 49011
 49012
 49013
 49014
 49015
 49016
 49017
 49018
 49019
 49020
 49021
 49022
 49023
 49024
 49025
 49026
 49027
 49028
 49029
 49030
 49031
 49032
 49033
 49034
 49035
 49036
 49037
 49038
 49039
 49040
 49041
 49042
 49043
 49044
 49045
 49046
 49047
 49048
 49049
 49050
 49051
 49052
 49053
 49054
 49055
 49056
 49057
 49058
 49059
 49060
 49061
 49062
 49063
 49064
 49065
 49066
 49067
 49068
 49069
 49070
 49071
 49072
 49073
 49074
 49075
 49076
 49077
 49078
 49079
 49080
 49081
 49082
 49083
 49084
 49085
 49086
 49087
 49088
 49089
 49090
 49091
 49092
 49093
 49094
 49095
 49096
 49097
 49098
 49099
 49100
 49101
 49102
 49103
 49104
 49105
 49106
 49107
 49108
 49109
 49110
 49111
 49112
 49113
 49114
 49115
 49116
 49117
 49118
 49119
 49120
 49121
 49122
 49123
 49124
 49125
 49126
 49127
 49128
 49129
 49130
 49131
 49132
 49133
 49134
 49135
 49136
 49137
 49138
 49139
 49140
 49141
 49142
 49143
 49144
 49145
 49146
 49147
 49148
 49149
 49150
 49151
 49152
 49153
 49154
 49155
 49156
 49157
 49158
 49159
 49160
 49161
 49162
 49163
 49164
 49165
 49166
 49167
 49168
 49169
 49170
 49171
 49172
 49173
 49174
 49175
 49176
 49177
 49178
 49179
 49180
 49181
 49182
 49183
 49184
 49185
 49186
 49187
 49188
 49189
 49190
 49191
 49192
 49193
 49194
 49195
 49196
 49197
 49198
 49199
 49200
 49201
 49202
 49203
 49204
 49205
 49206
 49207
 49208
 49209
 49210
 49211
 49212
 49213
 49214
 49215
 49216
 49217
 49218
 49219
 49220
 49221
 49222
 49223
 49224
 49225
 49226
 49227
 49228
 49229
 49230
 49231
 49232
 49233
 49234
 49235
 49236
 49237
 49238
 49239
 49240
 49241
 49242
 49243
 49244
 49245
 49246
 49247
 49248
 49249
 49250
 49251
 49252
 49253
 49254
 49255
 49256
 49257
 49258
 49259
 49260
 49261
 49262
 49263
 49264
 49265
 49266
 49267
 49268
 49269
 49270
 49271
 49272
 49273
 49274
 49275
 49276
 49277
 49278
 49279
 49280
 49281
 49282
 49283
 49284
 49285
 49286
 49287
 49288
 49289
 49290
 49291
 49292
 49293
 49294
 49295
 49296
 49297
 49298
 49299
 49300
 49301
 49302
 49303
 49304
 49305
 49306
 49307
 49308
 49309
 49310
 49311
 49312
 49313
 49314
 49315
 49316
 49317
 49318
 49319
 49320
 49321
 49322
 49323
 49324
 49325
 49326
 49327
 49328
 49329
 49330
 49331
 49332
 49333
 49334
 49335
 49336
 49337
 49338
 49339
 49340
 49341
 49342
 49343
 49344
 49345
 49346
 49347
 49348
 49349
 49350
 49351
 49352
 49353
 49354
 49355
 49356
 49357
 49358
 49359
 49360
 49361
 49362
 49363
 49364
 49365
 49366
 49367
 49368
 49369
 49370
 49371
 49372
 49373
 49374
 49375
 49376
 49377
 49378
 49379
 49380
 49381
 49382
 49383
 49384
 49385
 49386
 49387
 49388
 49389
 49390
 49391
 49392
 49393
 49394
 49395
 49396
 49397
 49398
 49399
 49400
 49401
 49402
 49403
 49404
 49405
 49406
 49407
 49408
 49409
 49410
 49411
 49412
 49413
 49414
 49415
 49416
 49417
 49418
 49419
 49420
 49421
 49422
 49423
 49424
 49425
 49426
 49427
 49428
 49429
 49430
 49431
 49432
 49433
 49434
 49435
 49436
 49437
 49438
 49439
 49440
 49441
 49442
 49443
 49444
 49445
 49446
 49447
 49448
 49449
 49450
 49451
 49452
 49453
 49454
 49455
 49456
 49457
 49458
 49459
 49460
 49461
 49462
 49463
 49464
 49465
 49466
 49467
 49468
 49469
 49470
 49471
 49472
 49473
 49474
 49475
 49476
 49477
 49478
 49479
 49480
 49481
 49482
 49483
 49484
 49485
 49486
 49487
 49488
 49489
 49490
 49491
 49492
 49493
 49494
 49495
 49496
 49497
 49498
 49499
 49500
 49501
 49502
 49503
 49504
 49505
 49506
 49507
 49508
 49509
 49510
 49511
 49512
 49513
 49514
 49515
 49516
 49517
 49518
 49519
 49520
 49521
 49522
 49523
 49524
 49525
 49526
 49527
 49528
 49529
 49530
 49531
 49532
 49533
 49534
 49535
 49536
 49537
 49538
 49539
 49540
 49541
 49542
 49543
 49544
 49545
 49546
 49547
 49548
 49549
 49550
 49551
 49552
 49553
 49554
 49555
 49556
 49557
 49558
 49559
 49560
 49561
 49562
 49563
 49564
 49565
 49566
 49567
 49568
 49569
 49570
 49571
 49572
 49573
 49574
 49575
 49576
 49577
 49578
 49579
 49580
 49581
 49582
 49583
 49584
 49585
 49586
 49587
 49588
 49589
 49590
 49591
 49592
 49593
 49594
 49595
 49596
 49597
 49598
 49599
 49600
 49601
 49602
 49603
 49604
 49605
 49606
 49607
 49608
 49609
 49610
 49611
 49612
 49613
 49614
 49615
 49616
 49617
 49618
 49619
 49620
 49621
 49622
 49623
 49624
 49625
 49626
 49627
 49628
 49629
 49630
 49631
 49632
 49633
 49634
 49635
 49636
 49637
 49638
 49639
 49640
 49641
 49642
 49643
 49644
 49645
 49646
 49647
 49648
 49649
 49650
 49651
 49652
 49653
 49654
 49655
 49656
 49657
 49658
 49659
 49660
 49661
 49662
 49663
 49664
 49665
 49666
 49667
 49668
 49669
 49670
 49671
 49672
 49673
 49674
 49675
 49676
 49677
 49678
 49679
 49680
 49681
 49682
 49683
 49684
 49685
 49686
 49687
 49688
 49689
 49690
 49691
 49692
 49693
 49694
 49695
 49696
 49697
 49698
 49699
 49700
 49701
 49702
 49703
 49704
 49705
 49706
 49707
 49708
 49709
 49710
 49711
 49712
 49713
 49714
 49715
 49716
 49717
 49718
 49719
 49720
 49721
 49722
 49723
 49724
 49725
 49726
 49727
 49728
 49729
 49730
 49731
 49732
 49733
 49734
 49735
 49736
 49737
 49738
 49739
 49740
 49741
 49742
 49743
 49744
 49745
 49746
 49747
 49748
 49749
 49750
 49751
 49752
 49753
 49754
 49755
 49756
 49757
 49758
 49759
 49760
 49761
 49762
 49763
 49764
 49765
 49766
 49767
 49768
 49769
 49770
 49771
 49772
 49773
 49774
 49775
 49776
 49777
 49778
 49779
 49780
 49781
 49782
 49783
 49784
 49785
 49786
 49787
 49788
 49789
 49790
 49791
 49792
 49793
 49794
 49795
 49796
 49797
 49798
 49799
 49800
 49801
 49802
 49803
 49804
 49805
 49806
 49807
 49808
 49809
 49810
 49811
 49812
 49813
 49814
 49815
 49816
 49817
 49818
 49819
 49820
 49821
 49822
 49823
 49824
 49825
 49826
 49827
 49828
 49829
 49830
 49831
 49832
 49833
 49834
 49835
 49836
 49837
 49838
 49839
 49840
 49841
 49842
 49843
 49844
 49845
 49846
 49847
 49848
 49849
 49850
 49851
 49852
 49853
 49854
 49855
 49856
 49857
 49858
 49859
 49860
 49861
 49862
 49863
 49864
 49865
 49866
 49867
 49868
 49869
 49870
 49871
 49872
 49873
 49874
 49875
 49876
 49877
 49878
 49879
 49880
 49881
 49882
 49883
 49884
 49885
 49886
 49887
 49888
 49889
 49890
 49891
 49892
 49893
 49894
 49895
 49896
 49897
 49898
 49899
 49900
 49901
 49902
 49903
 49904
 49905
 49906
 49907
 49908
 49909
 49910
 49911
 49912
 49913
 49914
 49915
 49916
 49917
 49918
 49919
 49920
 49921
 49922
 49923
 49924
 49925
 49926
 49927
 49928
 49929
 49930
 49931
 49932
 49933
 49934
 49935
 49936
 49937
 49938
 49939
 49940
 49941
 49942
 49943
 49944
 49945
 49946
 49947
 49948
 49949
 49950
 49951
 49952
 49953
 49954
 49955
 49956
 49957
 49958
 49959
 49960
 49961
 49962
 49963
 49964
 49965
 49966
 49967
 49968
 49969
 49970
 49971
 49972
 49973
 49974
 49975
 49976
 49977
 49978
 49979
 49980
 49981
 49982
 49983
 49984
 49985
 49986
 49987
 49988
 49989
 49990
 49991
 49992
 49993
 49994
 49995
 49996
 49997
 49998
 49999
 50000
 50001
 50002
 50003
 50004
 50005
 50006
 50007
 50008
 50009
 50010
 50011
 50012
 50013
 50014
 50015
 50016
 50017
 50018
 50019
 50020
 50021
 50022
 50023
 50024
 50025
 50026
 50027
 50028
 50029
 50030
 50031
 50032
 50033
 50034
 50035
 50036
 50037
 50038
 50039
 50040
 50041
 50042
 50043
 50044
 50045
 50046
 50047
 50048
 50049
 50050
 50051
 50052
 50053
 50054
 50055
 50056
 50057
 50058
 50059
 50060
 50061
 50062
 50063
 50064
 50065
 50066
 50067
 50068
 50069
 50070
 50071
 50072
 50073
 50074
 50075
 50076
 50077
 50078
 50079
 50080
 50081
 50082
 50083
 50084
 50085
 50086
 50087
 50088
 50089
 50090
 50091
 50092
 50093
 50094
 50095
 50096
 50097
 50098
 50099
 50100
 50101
 50102
 50103
 50104
 50105
 50106
 50107
 50108
 50109
 50110
 50111
 50112
 50113
 50114
 50115
 50116
 50117
 50118
 50119
 50120
 50121
 50122
 50123
 50124
 50125
 50126
 50127
 50128
 50129
 50130
 50131
 50132
 50133
 50134
 50135
 50136
 50137
 50138
 50139
 50140
 50141
 50142
 50143
 50144
 50145
 50146
 50147
 50148
 50149
 50150
 50151
 50152
 50153
 50154
 50155
 50156
 50157
 50158
 50159
 50160
 50161
 50162
 50163
 50164
 50165
 50166
 50167
 50168
 50169
 50170
 50171
 50172
 50173
 50174
 50175
 50176
 50177
 50178
 50179
 50180
 50181
 50182
 50183
 50184
 50185
 50186
 50187
 50188
 50189
 50190
 50191
 50192
 50193
 50194
 50195
 50196
 50197
 50198
 50199
 50200
 50201
 50202
 50203
 50204
 50205
 50206
 50207
 50208
 50209
 50210
 50211
 50212
 50213
 50214
 50215
 50216
 50217
 50218
 50219
 50220
 50221
 50222
 50223
 50224
 50225
 50226
 50227
 50228
 50229
 50230
 50231
 50232
 50233
 50234
 50235
 50236
 50237
 50238
 50239
 50240
 50241
 50242
 50243
 50244
 50245
 50246
 50247
 50248
 50249
 50250
 50251
 50252
 50253
 50254
 50255
 50256
 50257
 50258
 50259
 50260
 50261
 50262
 50263
 50264
 50265
 50266
 50267
 50268
 50269
 50270
 50271
 50272
 50273
 50274
 50275
 50276
 50277
 50278
 50279
 50280
 50281
 50282
 50283
 50284
 50285
 50286
 50287
 50288
 50289
 50290
 50291
 50292
 50293
 50294
 50295
 50296
 50297
 50298
 50299
 50300
 50301
 50302
 50303
 50304
 50305
 50306
 50307
 50308
 50309
 50310
 50311
 50312
 50313
 50314
 50315
 50316
 50317
 50318
 50319
 50320
 50321
 50322
 50323
 50324
 50325
 50326
 50327
 50328
 50329
 50330
 50331
 50332
 50333
 50334
 50335
 50336
 50337
 50338
 50339
 50340
 50341
 50342
 50343
 50344
 50345
 50346
 50347
 50348
 50349
 50350
 50351
 50352
 50353
 50354
 50355
 50356
 50357
 50358
 50359
 50360
 50361
 50362
 50363
 50364
 50365
 50366
 50367
 50368
 50369
 50370
 50371
 50372
 50373
 50374
 50375
 50376
 50377
 50378
 50379
 50380
 50381
 50382
 50383
 50384
 50385
 50386
 50387
 50388
 50389
 50390
 50391
 50392
 50393
 50394
 50395
 50396
 50397
 50398
 50399
 50400
 50401
 50402
 50403
 50404
 50405
 50406
 50407
 50408
 50409
 50410
 50411
 50412
 50413
 50414
 50415
 50416
 50417
 50418
 50419
 50420
 50421
 50422
 50423
 50424
 50425
 50426
 50427
 50428
 50429
 50430
 50431
 50432
 50433
 50434
 50435
 50436
 50437
 50438
 50439
 50440
 50441
 50442
 50443
 50444
 50445
 50446
 50447
 50448
 50449
 50450
 50451
 50452
 50453
 50454
 50455
 50456
 50457
 50458
 50459
 50460
 50461
 50462
 50463
 50464
 50465
 50466
 50467
 50468
 50469
 50470
 50471
 50472
 50473
 50474
 50475
 50476
 50477
 50478
 50479
 50480
 50481
 50482
 50483
 50484
 50485
 50486
 50487
 50488
 50489
 50490
 50491
 50492
 50493
 50494
 50495
 50496
 50497
 50498
 50499
 50500
 50501
 50502
 50503
 50504
 50505
 50506
 50507
 50508
 50509
 50510
 50511
 50512
 50513
 50514
 50515
 50516
 50517
 50518
 50519
 50520
 50521
 50522
 50523
 50524
 50525
 50526
 50527
 50528
 50529
 50530
 50531
 50532
 50533
 50534
 50535
 50536
 50537
 50538
 50539
 50540
 50541
 50542
 50543
 50544
 50545
 50546
 50547
 50548
 50549
 50550
 50551
 50552
 50553
 50554
 50555
 50556
 50557
 50558
 50559
 50560
 50561
 50562
 50563
 50564
 50565
 50566
 50567
 50568
 50569
 50570
 50571
 50572
 50573
 50574
 50575
 50576
 50577
 50578
 50579
 50580
 50581
 50582
 50583
 50584
 50585
 50586
 50587
 50588
 50589
 50590
 50591
 50592
 50593
 50594
 50595
 50596
 50597
 50598
 50599
 50600
 50601
 50602
 50603
 50604
 50605
 50606
 50607
 50608
 50609
 50610
 50611
 50612
 50613
 50614
 50615
 50616
 50617
 50618
 50619
 50620
 50621
 50622
 50623
 50624
 50625
 50626
 50627
 50628
 50629
 50630
 50631
 50632
 50633
 50634
 50635
 50636
 50637
 50638
 50639
 50640
 50641
 50642
 50643
 50644
 50645
 50646
 50647
 50648
 50649
 50650
 50651
 50652
 50653
 50654
 50655
 50656
 50657
 50658
 50659
 50660
 50661
 50662
 50663
 50664
 50665
 50666
 50667
 50668
 50669
 50670
 50671
 50672
 50673
 50674
 50675
 50676
 50677
 50678
 50679
 50680
 50681
 50682
 50683
 50684
 50685
 50686
 50687
 50688
 50689
 50690
 50691
 50692
 50693
 50694
 50695
 50696
 50697
 50698
 50699
 50700
 50701
 50702
 50703
 50704
 50705
 50706
 50707
 50708
 50709
 50710
 50711
 50712
 50713
 50714
 50715
 50716
 50717
 50718
 50719
 50720
 50721
 50722
 50723
 50724
 50725
 50726
 50727
 50728
 50729
 50730
 50731
 50732
 50733
 50734
 50735
 50736
 50737
 50738
 50739
 50740
 50741
 50742
 50743
 50744
 50745
 50746
 50747
 50748
 50749
 50750
 50751
 50752
 50753
 50754
 50755
 50756
 50757
 50758
 50759
 50760
 50761
 50762
 50763
 50764
 50765
 50766
 50767
 50768
 50769
 50770
 50771
 50772
 50773
 50774
 50775
 50776
 50777
 50778
 50779
 50780
 50781
 50782
 50783
 50784
 50785
 50786
 50787
 50788
 50789
 50790
 50791
 50792
 50793
 50794
 50795
 50796
 50797
 50798
 50799
 50800
 50801
 50802
 50803
 50804
 50805
 50806
 50807
 50808
 50809
 50810
 50811
 50812
 50813
 50814
 50815
 50816
 50817
 50818
 50819
 50820
 50821
 50822
 50823
 50824
 50825
 50826
 50827
 50828
 50829
 50830
 50831
 50832
 50833
 50834
 50835
 50836
 50837
 50838
 50839
 50840
 50841
 50842
 50843
 50844
 50845
 50846
 50847
 50848
 50849
 50850
 50851
 50852
 50853
 50854
 50855
 50856
 50857
 50858
 50859
 50860
 50861
 50862
 50863
 50864
 50865
 50866
 50867
 50868
 50869
 50870
 50871
 50872
 50873
 50874
 50875
 50876
 50877
 50878
 50879
 50880
 50881
 50882
 50883
 50884
 50885
 50886
 50887
 50888
 50889
 50890
 50891
 50892
 50893
 50894
 50895
 50896
 50897
 50898
 50899
 50900
 50901
 50902
 50903
 50904
 50905
 50906
 50907
 50908
 50909
 50910
 50911
 50912
 50913
 50914
 50915
 50916
 50917
 50918
 50919
 50920
 50921
 50922
 50923
 50924
 50925
 50926
 50927
 50928
 50929
 50930
 50931
 50932
 50933
 50934
 50935
 50936
 50937
 50938
 50939
 50940
 50941
 50942
 50943
 50944
 50945
 50946
 50947
 50948
 50949
 50950
 50951
 50952
 50953
 50954
 50955
 50956
 50957
 50958
 50959
 50960
 50961
 50962
 50963
 50964
 50965
 50966
 50967
 50968
 50969
 50970
 50971
 50972
 50973
 50974
 50975
 50976
 50977
 50978
 50979
 50980
 50981
 50982
 50983
 50984
 50985
 50986
 50987
 50988
 50989
 50990
 50991
 50992
 50993
 50994
 50995
 50996
 50997
 50998
 50999
 51000
 51001
 51002
 51003
 51004
 51005
 51006
 51007
 51008
 51009
 51010
 51011
 51012
 51013
 51014
 51015
 51016
 51017
 51018
 51019
 51020
 51021
 51022
 51023
 51024
 51025
 51026
 51027
 51028
 51029
 51030
 51031
 51032
 51033
 51034
 51035
 51036
 51037
 51038
 51039
 51040
 51041
 51042
 51043
 51044
 51045
 51046
 51047
 51048
 51049
 51050
 51051
 51052
 51053
 51054
 51055
 51056
 51057
 51058
 51059
 51060
 51061
 51062
 51063
 51064
 51065
 51066
 51067
 51068
 51069
 51070
 51071
 51072
 51073
 51074
 51075
 51076
 51077
 51078
 51079
 51080
 51081
 51082
 51083
 51084
 51085
 51086
 51087
 51088
 51089
 51090
 51091
 51092
 51093
 51094
 51095
 51096
 51097
 51098
 51099
 51100
 51101
 51102
 51103
 51104
 51105
 51106
 51107
 51108
 51109
 51110
 51111
 51112
 51113
 51114
 51115
 51116
 51117
 51118
 51119
 51120
 51121
 51122
 51123
 51124
 51125
 51126
 51127
 51128
 51129
 51130
 51131
 51132
 51133
 51134
 51135
 51136
 51137
 51138
 51139
 51140
 51141
 51142
 51143
 51144
 51145
 51146
 51147
 51148
 51149
 51150
 51151
 51152
 51153
 51154
 51155
 51156
 51157
 51158
 51159
 51160
 51161
 51162
 51163
 51164
 51165
 51166
 51167
 51168
 51169
 51170
 51171
 51172
 51173
 51174
 51175
 51176
 51177
 51178
 51179
 51180
 51181
 51182
 51183
 51184
 51185
 51186
 51187
 51188
 51189
 51190
 51191
 51192
 51193
 51194
 51195
 51196
 51197
 51198
 51199
 51200
 51201
 51202
 51203
 51204
 51205
 51206
 51207
 51208
 51209
 51210
 51211
 51212
 51213
 51214
 51215
 51216
 51217
 51218
 51219
 51220
 51221
 51222
 51223
 51224
 51225
 51226
 51227
 51228
 51229
 51230
 51231
 51232
 51233
 51234
 51235
 51236
 51237
 51238
 51239
 51240
 51241
 51242
 51243
 51244
 51245
 51246
 51247
 51248
 51249
 51250
 51251
 51252
 51253
 51254
 51255
 51256
 51257
 51258
 51259
 51260
 51261
 51262
 51263
 51264
 51265
 51266
 51267
 51268
 51269
 51270
 51271
 51272
 51273
 51274
 51275
 51276
 51277
 51278
 51279
 51280
 51281
 51282
 51283
 51284
 51285
 51286
 51287
 51288
 51289
 51290
 51291
 51292
 51293
 51294
 51295
 51296
 51297
 51298
 51299
 51300
 51301
 51302
 51303
 51304
 51305
 51306
 51307
 51308
 51309
 51310
 51311
 51312
 51313
 51314
 51315
 51316
 51317
 51318
 51319
 51320
 51321
 51322
 51323
 51324
 51325
 51326
 51327
 51328
 51329
 51330
 51331
 51332
 51333
 51334
 51335
 51336
 51337
 51338
 51339
 51340
 51341
 51342
 51343
 51344
 51345
 51346
 51347
 51348
 51349
 51350
 51351
 51352
 51353
 51354
 51355
 51356
 51357
 51358
 51359
 51360
 51361
 51362
 51363
 51364
 51365
 51366
 51367
 51368
 51369
 51370
 51371
 51372
 51373
 51374
 51375
 51376
 51377
 51378
 51379
 51380
 51381
 51382
 51383
 51384
 51385
 51386
 51387
 51388
 51389
 51390
 51391
 51392
 51393
 51394
 51395
 51396
 51397
 51398
 51399
 51400
 51401
 51402
 51403
 51404
 51405
 51406
 51407
 51408
 51409
 51410
 51411
 51412
 51413
 51414
 51415
 51416
 51417
 51418
 51419
 51420
 51421
 51422
 51423
 51424
 51425
 51426
 51427
 51428
 51429
 51430
 51431
 51432
 51433
 51434
 51435
 51436
 51437
 51438
 51439
 51440
 51441
 51442
 51443
 51444
 51445
 51446
 51447
 51448
 51449
 51450
 51451
 51452
 51453
 51454
 51455
 51456
 51457
 51458
 51459
 51460
 51461
 51462
 51463
 51464
 51465
 51466
 51467
 51468
 51469
 51470
 51471
 51472
 51473
 51474
 51475
 51476
 51477
 51478
 51479
 51480
 51481
 51482
 51483
 51484
 51485
 51486
 51487
 51488
 51489
 51490
 51491
 51492
 51493
 51494
 51495
 51496
 51497
 51498
 51499
 51500
 51501
 51502
 51503
 51504
 51505
 51506
 51507
 51508
 51509
 51510
 51511
 51512
 51513
 51514
 51515
 51516
 51517
 51518
 51519
 51520
 51521
 51522
 51523
 51524
 51525
 51526
 51527
 51528
 51529
 51530
 51531
 51532
 51533
 51534
 51535
 51536
 51537
 51538
 51539
 51540
 51541
 51542
 51543
 51544
 51545
 51546
 51547
 51548
 51549
 51550
 51551
 51552
 51553
 51554
 51555
 51556
 51557
 51558
 51559
 51560
 51561
 51562
 51563
 51564
 51565
 51566
 51567
 51568
 51569
 51570
 51571
 51572
 51573
 51574
 51575
 51576
 51577
 51578
 51579
 51580
 51581
 51582
 51583
 51584
 51585
 51586
 51587
 51588
 51589
 51590
 51591
 51592
 51593
 51594
 51595
 51596
 51597
 51598
 51599
 51600
 51601
 51602
 51603
 51604
 51605
 51606
 51607
 51608
 51609
 51610
 51611
 51612
 51613
 51614
 51615
 51616
 51617
 51618
 51619
 51620
 51621
 51622
 51623
 51624
 51625
 51626
 51627
 51628
 51629
 51630
 51631
 51632
 51633
 51634
 51635
 51636
 51637
 51638
 51639
 51640
 51641
 51642
 51643
 51644
 51645
 51646
 51647
 51648
 51649
 51650
 51651
 51652
 51653
 51654
 51655
 51656
 51657
 51658
 51659
 51660
 51661
 51662
 51663
 51664
 51665
 51666
 51667
 51668
 51669
 51670
 51671
 51672
 51673
 51674
 51675
 51676
 51677
 51678
 51679
 51680
 51681
 51682
 51683
 51684
 51685
 51686
 51687
 51688
 51689
 51690
 51691
 51692
 51693
 51694
 51695
 51696
 51697
 51698
 51699
 51700
 51701
 51702
 51703
 51704
 51705
 51706
 51707
 51708
 51709
 51710
 51711
 51712
 51713
 51714
 51715
 51716
 51717
 51718
 51719
 51720
 51721
 51722
 51723
 51724
 51725
 51726
 51727
 51728
 51729
 51730
 51731
 51732
 51733
 51734
 51735
 51736
 51737
 51738
 51739
 51740
 51741
 51742
 51743
 51744
 51745
 51746
 51747
 51748
 51749
 51750
 51751
 51752
 51753
 51754
 51755
 51756
 51757
 51758
 51759
 51760
 51761
 51762
 51763
 51764
 51765
 51766
 51767
 51768
 51769
 51770
 51771
 51772
 51773
 51774
 51775
 51776
 51777
 51778
 51779
 51780
 51781
 51782
 51783
 51784
 51785
 51786
 51787
 51788
 51789
 51790
 51791
 51792
 51793
 51794
 51795
 51796
 51797
 51798
 51799
 51800
 51801
 51802
 51803
 51804
 51805
 51806
 51807
 51808
 51809
 51810
 51811
 51812
 51813
 51814
 51815
 51816
 51817
 51818
 51819
 51820
 51821
 51822
 51823
 51824
 51825
 51826
 51827
 51828
 51829
 51830
 51831
 51832
 51833
 51834
 51835
 51836
 51837
 51838
 51839
 51840
 51841
 51842
 51843
 51844
 51845
 51846
 51847
 51848
 51849
 51850
 51851
 51852
 51853
 51854
 51855
 51856
 51857
 51858
 51859
 51860
 51861
 51862
 51863
 51864
 51865
 51866
 51867
 51868
 51869
 51870
 51871
 51872
 51873
 51874
 51875
 51876
 51877
 51878
 51879
 51880
 51881
 51882
 51883
 51884
 51885
 51886
 51887
 51888
 51889
 51890
 51891
 51892
 51893
 51894
 51895
 51896
 51897
 51898
 51899
 51900
 51901
 51902
 51903
 51904
 51905
 51906
 51907
 51908
 51909
 51910
 51911
 51912
 51913
 51914
 51915
 51916
 51917
 51918
 51919
 51920
 51921
 51922
 51923
 51924
 51925
 51926
 51927
 51928
 51929
 51930
 51931
 51932
 51933
 51934
 51935
 51936
 51937
 51938
 51939
 51940
 51941
 51942
 51943
 51944
 51945
 51946
 51947
 51948
 51949
 51950
 51951
 51952
 51953
 51954
 51955
 51956
 51957
 51958
 51959
 51960
 51961
 51962
 51963
 51964
 51965
 51966
 51967
 51968
 51969
 51970
 51971
 51972
 51973
 51974
 51975
 51976
 51977
 51978
 51979
 51980
 51981
 51982
 51983
 51984
 51985
 51986
 51987
 51988
 51989
 51990
 51991
 51992
 51993
 51994
 51995
 51996
 51997
 51998
 51999
 52000
 52001
 52002
 52003
 52004
 52005
 52006
 52007
 52008
 52009
 52010
 52011
 52012
 52013
 52014
 52015
 52016
 52017
 52018
 52019
 52020
 52021
 52022
 52023
 52024
 52025
 52026
 52027
 52028
 52029
 52030
 52031
 52032
 52033
 52034
 52035
 52036
 52037
 52038
 52039
 52040
 52041
 52042
 52043
 52044
 52045
 52046
 52047
 52048
 52049
 52050
 52051
 52052
 52053
 52054
 52055
 52056
 52057
 52058
 52059
 52060
 52061
 52062
 52063
 52064
 52065
 52066
 52067
 52068
 52069
 52070
 52071
 52072
 52073
 52074
 52075
 52076
 52077
 52078
 52079
 52080
 52081
 52082
 52083
 52084
 52085
 52086
 52087
 52088
 52089
 52090
 52091
 52092
 52093
 52094
 52095
 52096
 52097
 52098
 52099
 52100
 52101
 52102
 52103
 52104
 52105
 52106
 52107
 52108
 52109
 52110
 52111
 52112
 52113
 52114
 52115
 52116
 52117
 52118
 52119
 52120
 52121
 52122
 52123
 52124
 52125
 52126
 52127
 52128
 52129
 52130
 52131
 52132
 52133
 52134
 52135
 52136
 52137
 52138
 52139
 52140
 52141
 52142
 52143
 52144
 52145
 52146
 52147
 52148
 52149
 52150
 52151
 52152
 52153
 52154
 52155
 52156
 52157
 52158
 52159
 52160
 52161
 52162
 52163
 52164
 52165
 52166
 52167
 52168
 52169
 52170
 52171
 52172
 52173
 52174
 52175
 52176
 52177
 52178
 52179
 52180
 52181
 52182
 52183
 52184
 52185
 52186
 52187
 52188
 52189
 52190
 52191
 52192
 52193
 52194
 52195
 52196
 52197
 52198
 52199
 52200
 52201
 52202
 52203
 52204
 52205
 52206
 52207
 52208
 52209
 52210
 52211
 52212
 52213
 52214
 52215
 52216
 52217
 52218
 52219
 52220
 52221
 52222
 52223
 52224
 52225
 52226
 52227
 52228
 52229
 52230
 52231
 52232
 52233
 52234
 52235
 52236
 52237
 52238
 52239
 52240
 52241
 52242
 52243
 52244
 52245
 52246
 52247
 52248
 52249
 52250
 52251
 52252
 52253
 52254
 52255
 52256
 52257
 52258
 52259
 52260
 52261
 52262
 52263
 52264
 52265
 52266
 52267
 52268
 52269
 52270
 52271
 52272
 52273
 52274
 52275
 52276
 52277
 52278
 52279
 52280
 52281
 52282
 52283
 52284
 52285
 52286
 52287
 52288
 52289
 52290
 52291
 52292
 52293
 52294
 52295
 52296
 52297
 52298
 52299
 52300
 52301
 52302
 52303
 52304
 52305
 52306
 52307
 52308
 52309
 52310
 52311
 52312
 52313
 52314
 52315
 52316
 52317
 52318
 52319
 52320
 52321
 52322
 52323
 52324
 52325
 52326
 52327
 52328
 52329
 52330
 52331
 52332
 52333
 52334
 52335
 52336
 52337
 52338
 52339
 52340
 52341
 52342
 52343
 52344
 52345
 52346
 52347
 52348
 52349
 52350
 52351
 52352
 52353
 52354
 52355
 52356
 52357
 52358
 52359
 52360
 52361
 52362
 52363
 52364
 52365
 52366
 52367
 52368
 52369
 52370
 52371
 52372
 52373
 52374
 52375
 52376
 52377
 52378
 52379
 52380
 52381
 52382
 52383
 52384
 52385
 52386
 52387
 52388
 52389
 52390
 52391
 52392
 52393
 52394
 52395
 52396
 52397
 52398
 52399
 52400
 52401
 52402
 52403
 52404
 52405
 52406
 52407
 52408
 52409
 52410
 52411
 52412
 52413
 52414
 52415
 52416
 52417
 52418
 52419
 52420
 52421
 52422
 52423
 52424
 52425
 52426
 52427
 52428
 52429
 52430
 52431
 52432
 52433
 52434
 52435
 52436
 52437
 52438
 52439
 52440
 52441
 52442
 52443
 52444
 52445
 52446
 52447
 52448
 52449
 52450
 52451
 52452
 52453
 52454
 52455
 52456
 52457
 52458
 52459
 52460
 52461
 52462
 52463
 52464
 52465
 52466
 52467
 52468
 52469
 52470
 52471
 52472
 52473
 52474
 52475
 52476
 52477
 52478
 52479
 52480
 52481
 52482
 52483
 52484
 52485
 52486
 52487
 52488
 52489
 52490
 52491
 52492
 52493
 52494
 52495
 52496
 52497
 52498
 52499
 52500
 52501
 52502
 52503
 52504
 52505
 52506
 52507
 52508
 52509
 52510
 52511
 52512
 52513
 52514
 52515
 52516
 52517
 52518
 52519
 52520
 52521
 52522
 52523
 52524
 52525
 52526
 52527
 52528
 52529
 52530
 52531
 52532
 52533
 52534
 52535
 52536
 52537
 52538
 52539
 52540
 52541
 52542
 52543
 52544
 52545
 52546
 52547
 52548
 52549
 52550
 52551
 52552
 52553
 52554
 52555
 52556
 52557
 52558
 52559
 52560
 52561
 52562
 52563
 52564
 52565
 52566
 52567
 52568
 52569
 52570
 52571
 52572
 52573
 52574
 52575
 52576
 52577
 52578
 52579
 52580
 52581
 52582
 52583
 52584
 52585
 52586
 52587
 52588
 52589
 52590
 52591
 52592
 52593
 52594
 52595
 52596
 52597
 52598
 52599
 52600
 52601
 52602
 52603
 52604
 52605
 52606
 52607
 52608
 52609
 52610
 52611
 52612
 52613
 52614
 52615
 52616
 52617
 52618
 52619
 52620
 52621
 52622
 52623
 52624
 52625
 52626
 52627
 52628
 52629
 52630
 52631
 52632
 52633
 52634
 52635
 52636
 52637
 52638
 52639
 52640
 52641
 52642
 52643
 52644
 52645
 52646
 52647
 52648
 52649
 52650
 52651
 52652
 52653
 52654
 52655
 52656
 52657
 52658
 52659
 52660
 52661
 52662
 52663
 52664
 52665
 52666
 52667
 52668
 52669
 52670
 52671
 52672
 52673
 52674
 52675
 52676
 52677
 52678
 52679
 52680
 52681
 52682
 52683
 52684
 52685
 52686
 52687
 52688
 52689
 52690
 52691
 52692
 52693
 52694
 52695
 52696
 52697
 52698
 52699
 52700
 52701
 52702
 52703
 52704
 52705
 52706
 52707
 52708
 52709
 52710
 52711
 52712
 52713
 52714
 52715
 52716
 52717
 52718
 52719
 52720
 52721
 52722
 52723
 52724
 52725
 52726
 52727
 52728
 52729
 52730
 52731
 52732
 52733
 52734
 52735
 52736
 52737
 52738
 52739
 52740
 52741
 52742
 52743
 52744
 52745
 52746
 52747
 52748
 52749
 52750
 52751
 52752
 52753
 52754
 52755
 52756
 52757
 52758
 52759
 52760
 52761
 52762
 52763
 52764
 52765
 52766
 52767
 52768
 52769
 52770
 52771
 52772
 52773
 52774
 52775
 52776
 52777
 52778
 52779
 52780
 52781
 52782
 52783
 52784
 52785
 52786
 52787
 52788
 52789
 52790
 52791
 52792
 52793
 52794
 52795
 52796
 52797
 52798
 52799
 52800
 52801
 52802
 52803
 52804
 52805
 52806
 52807
 52808
 52809
 52810
 52811
 52812
 52813
 52814
 52815
 52816
 52817
 52818
 52819
 52820
 52821
 52822
 52823
 52824
 52825
 52826
 52827
 52828
 52829
 52830
 52831
 52832
 52833
 52834
 52835
 52836
 52837
 52838
 52839
 52840
 52841
 52842
 52843
 52844
 52845
 52846
 52847
 52848
 52849
 52850
 52851
 52852
 52853
 52854
 52855
 52856
 52857
 52858
 52859
 52860
 52861
 52862
 52863
 52864
 52865
 52866
 52867
 52868
 52869
 52870
 52871
 52872
 52873
 52874
 52875
 52876
 52877
 52878
 52879
 52880
 52881
 52882
 52883
 52884
 52885
 52886
 52887
 52888
 52889
 52890
 52891
 52892
 52893
 52894
 52895
 52896
 52897
 52898
 52899
 52900
 52901
 52902
 52903
 52904
 52905
 52906
 52907
 52908
 52909
 52910
 52911
 52912
 52913
 52914
 52915
 52916
 52917
 52918
 52919
 52920
 52921
 52922
 52923
 52924
 52925
 52926
 52927
 52928
 52929
 52930
 52931
 52932
 52933
 52934
 52935
 52936
 52937
 52938
 52939
 52940
 52941
 52942
 52943
 52944
 52945
 52946
 52947
 52948
 52949
 52950
 52951
 52952
 52953
 52954
 52955
 52956
 52957
 52958
 52959
 52960
 52961
 52962
 52963
 52964
 52965
 52966
 52967
 52968
 52969
 52970
 52971
 52972
 52973
 52974
 52975
 52976
 52977
 52978
 52979
 52980
 52981
 52982
 52983
 52984
 52985
 52986
 52987
 52988
 52989
 52990
 52991
 52992
 52993
 52994
 52995
 52996
 52997
 52998
 52999
 53000
 53001
 53002
 53003
 53004
 53005
 53006
 53007
 53008
 53009
 53010
 53011
 53012
 53013
 53014
 53015
 53016
 53017
 53018
 53019
 53020
 53021
 53022
 53023
 53024
 53025
 53026
 53027
 53028
 53029
 53030
 53031
 53032
 53033
 53034
 53035
 53036
 53037
 53038
 53039
 53040
 53041
 53042
 53043
 53044
 53045
 53046
 53047
 53048
 53049
 53050
 53051
 53052
 53053
 53054
 53055
 53056
 53057
 53058
 53059
 53060
 53061
 53062
 53063
 53064
 53065
 53066
 53067
 53068
 53069
 53070
 53071
 53072
 53073
 53074
 53075
 53076
 53077
 53078
 53079
 53080
 53081
 53082
 53083
 53084
 53085
 53086
 53087
 53088
 53089
 53090
 53091
 53092
 53093
 53094
 53095
 53096
 53097
 53098
 53099
 53100
 53101
 53102
 53103
 53104
 53105
 53106
 53107
 53108
 53109
 53110
 53111
 53112
 53113
 53114
 53115
 53116
 53117
 53118
 53119
 53120
 53121
 53122
 53123
 53124
 53125
 53126
 53127
 53128
 53129
 53130
 53131
 53132
 53133
 53134
 53135
 53136
 53137
 53138
 53139
 53140
 53141
 53142
 53143
 53144
 53145
 53146
 53147
 53148
 53149
 53150
 53151
 53152
 53153
 53154
 53155
 53156
 53157
 53158
 53159
 53160
 53161
 53162
 53163
 53164
 53165
 53166
 53167
 53168
 53169
 53170
 53171
 53172
 53173
 53174
 53175
 53176
 53177
 53178
 53179
 53180
 53181
 53182
 53183
 53184
 53185
 53186
 53187
 53188
 53189
 53190
 53191
 53192
 53193
 53194
 53195
 53196
 53197
 53198
 53199
 53200
 53201
 53202
 53203
 53204
 53205
 53206
 53207
 53208
 53209
 53210
 53211
 53212
 53213
 53214
 53215
 53216
 53217
 53218
 53219
 53220
 53221
 53222
 53223
 53224
 53225
 53226
 53227
 53228
 53229
 53230
 53231
 53232
 53233
 53234
 53235
 53236
 53237
 53238
 53239
 53240
 53241
 53242
 53243
 53244
 53245
 53246
 53247
 53248
 53249
 53250
 53251
 53252
 53253
 53254
 53255
 53256
 53257
 53258
 53259
 53260
 53261
 53262
 53263
 53264
 53265
 53266
 53267
 53268
 53269
 53270
 53271
 53272
 53273
 53274
 53275
 53276
 53277
 53278
 53279
 53280
 53281
 53282
 53283
 53284
 53285
 53286
 53287
 53288
 53289
 53290
 53291
 53292
 53293
 53294
 53295
 53296
 53297
 53298
 53299
 53300
 53301
 53302
 53303
 53304
 53305
 53306
 53307
 53308
 53309
 53310
 53311
 53312
 53313
 53314
 53315
 53316
 53317
 53318
 53319
 53320
 53321
 53322
 53323
 53324
 53325
 53326
 53327
 53328
 53329
 53330
 53331
 53332
 53333
 53334
 53335
 53336
 53337
 53338
 53339
 53340
 53341
 53342
 53343
 53344
 53345
 53346
 53347
 53348
 53349
 53350
 53351
 53352
 53353
 53354
 53355
 53356
 53357
 53358
 53359
 53360
 53361
 53362
 53363
 53364
 53365
 53366
 53367
 53368
 53369
 53370
 53371
 53372
 53373
 53374
 53375
 53376
 53377
 53378
 53379
 53380
 53381
 53382
 53383
 53384
 53385
 53386
 53387
 53388
 53389
 53390
 53391
 53392
 53393
 53394
 53395
 53396
 53397
 53398
 53399
 53400
 53401
 53402
 53403
 53404
 53405
 53406
 53407
 53408
 53409
 53410
 53411
 53412
 53413
 53414
 53415
 53416
 53417
 53418
 53419
 53420
 53421
 53422
 53423
 53424
 53425
 53426
 53427
 53428
 53429
 53430
 53431
 53432
 53433
 53434
 53435
 53436
 53437
 53438
 53439
 53440
 53441
 53442
 53443
 53444
 53445
 53446
 53447
 53448
 53449
 53450
 53451
 53452
 53453
 53454
 53455
 53456
 53457
 53458
 53459
 53460
 53461
 53462
 53463
 53464
 53465
 53466
 53467
 53468
 53469
 53470
 53471
 53472
 53473
 53474
 53475
 53476
 53477
 53478
 53479
 53480
 53481
 53482
 53483
 53484
 53485
 53486
 53487
 53488
 53489
 53490
 53491
 53492
 53493
 53494
 53495
 53496
 53497
 53498
 53499
 53500
 53501
 53502
 53503
 53504
 53505
 53506
 53507
 53508
 53509
 53510
 53511
 53512
 53513
 53514
 53515
 53516
 53517
 53518
 53519
 53520
 53521
 53522
 53523
 53524
 53525
 53526
 53527
 53528
 53529
 53530
 53531
 53532
 53533
 53534
 53535
 53536
 53537
 53538
 53539
 53540
 53541
 53542
 53543
 53544
 53545
 53546
 53547
 53548
 53549
 53550
 53551
 53552
 53553
 53554
 53555
 53556
 53557
 53558
 53559
 53560
 53561
 53562
 53563
 53564
 53565
 53566
 53567
 53568
 53569
 53570
 53571
 53572
 53573
 53574
 53575
 53576
 53577
 53578
 53579
 53580
 53581
 53582
 53583
 53584
 53585
 53586
 53587
 53588
 53589
 53590
 53591
 53592
 53593
 53594
 53595
 53596
 53597
 53598
 53599
 53600
 53601
 53602
 53603
 53604
 53605
 53606
 53607
 53608
 53609
 53610
 53611
 53612
 53613
 53614
 53615
 53616
 53617
 53618
 53619
 53620
 53621
 53622
 53623
 53624
 53625
 53626
 53627
 53628
 53629
 53630
 53631
 53632
 53633
 53634
 53635
 53636
 53637
 53638
 53639
 53640
 53641
 53642
 53643
 53644
 53645
 53646
 53647
 53648
 53649
 53650
 53651
 53652
 53653
 53654
 53655
 53656
 53657
 53658
 53659
 53660
 53661
 53662
 53663
 53664
 53665
 53666
 53667
 53668
 53669
 53670
 53671
 53672
 53673
 53674
 53675
 53676
 53677
 53678
 53679
 53680
 53681
 53682
 53683
 53684
 53685
 53686
 53687
 53688
 53689
 53690
 53691
 53692
 53693
 53694
 53695
 53696
 53697
 53698
 53699
 53700
 53701
 53702
 53703
 53704
 53705
 53706
 53707
 53708
 53709
 53710
 53711
 53712
 53713
 53714
 53715
 53716
 53717
 53718
 53719
 53720
 53721
 53722
 53723
 53724
 53725
 53726
 53727
 53728
 53729
 53730
 53731
 53732
 53733
 53734
 53735
 53736
 53737
 53738
 53739
 53740
 53741
 53742
 53743
 53744
 53745
 53746
 53747
 53748
 53749
 53750
 53751
 53752
 53753
 53754
 53755
 53756
 53757
 53758
 53759
 53760
 53761
 53762
 53763
 53764
 53765
 53766
 53767
 53768
 53769
 53770
 53771
 53772
 53773
 53774
 53775
 53776
 53777
 53778
 53779
 53780
 53781
 53782
 53783
 53784
 53785
 53786
 53787
 53788
 53789
 53790
 53791
 53792
 53793
 53794
 53795
 53796
 53797
 53798
 53799
 53800
 53801
 53802
 53803
 53804
 53805
 53806
 53807
 53808
 53809
 53810
 53811
 53812
 53813
 53814
 53815
 53816
 53817
 53818
 53819
 53820
 53821
 53822
 53823
 53824
 53825
 53826
 53827
 53828
 53829
 53830
 53831
 53832
 53833
 53834
 53835
 53836
 53837
 53838
 53839
 53840
 53841
 53842
 53843
 53844
 53845
 53846
 53847
 53848
 53849
 53850
 53851
 53852
 53853
 53854
 53855
 53856
 53857
 53858
 53859
 53860
 53861
 53862
 53863
 53864
 53865
 53866
 53867
 53868
 53869
 53870
 53871
 53872
 53873
 53874
 53875
 53876
 53877
 53878
 53879
 53880
 53881
 53882
 53883
 53884
 53885
 53886
 53887
 53888
 53889
 53890
 53891
 53892
 53893
 53894
 53895
 53896
 53897
 53898
 53899
 53900
 53901
 53902
 53903
 53904
 53905
 53906
 53907
 53908
 53909
 53910
 53911
 53912
 53913
 53914
 53915
 53916
 53917
 53918
 53919
 53920
 53921
 53922
 53923
 53924
 53925
 53926
 53927
 53928
 53929
 53930
 53931
 53932
 53933
 53934
 53935
 53936
 53937
 53938
 53939
 53940
 53941
 53942
 53943
 53944
 53945
 53946
 53947
 53948
 53949
 53950
 53951
 53952
 53953
 53954
 53955
 53956
 53957
 53958
 53959
 53960
 53961
 53962
 53963
 53964
 53965
 53966
 53967
 53968
 53969
 53970
 53971
 53972
 53973
 53974
 53975
 53976
 53977
 53978
 53979
 53980
 53981
 53982
 53983
 53984
 53985
 53986
 53987
 53988
 53989
 53990
 53991
 53992
 53993
 53994
 53995
 53996
 53997
 53998
 53999
 54000
 54001
 54002
 54003
 54004
 54005
 54006
 54007
 54008
 54009
 54010
 54011
 54012
 54013
 54014
 54015
 54016
 54017
 54018
 54019
 54020
 54021
 54022
 54023
 54024
 54025
 54026
 54027
 54028
 54029
 54030
 54031
 54032
 54033
 54034
 54035
 54036
 54037
 54038
 54039
 54040
 54041
 54042
 54043
 54044
 54045
 54046
 54047
 54048
 54049
 54050
 54051
 54052
 54053
 54054
 54055
 54056
 54057
 54058
 54059
 54060
 54061
 54062
 54063
 54064
 54065
 54066
 54067
 54068
 54069
 54070
 54071
 54072
 54073
 54074
 54075
 54076
 54077
 54078
 54079
 54080
 54081
 54082
 54083
 54084
 54085
 54086
 54087
 54088
 54089
 54090
 54091
 54092
 54093
 54094
 54095
 54096
 54097
 54098
 54099
 54100
 54101
 54102
 54103
 54104
 54105
 54106
 54107
 54108
 54109
 54110
 54111
 54112
 54113
 54114
 54115
 54116
 54117
 54118
 54119
 54120
 54121
 54122
 54123
 54124
 54125
 54126
 54127
 54128
 54129
 54130
 54131
 54132
 54133
 54134
 54135
 54136
 54137
 54138
 54139
 54140
 54141
 54142
 54143
 54144
 54145
 54146
 54147
 54148
 54149
 54150
 54151
 54152
 54153
 54154
 54155
 54156
 54157
 54158
 54159
 54160
 54161
 54162
 54163
 54164
 54165
 54166
 54167
 54168
 54169
 54170
 54171
 54172
 54173
 54174
 54175
 54176
 54177
 54178
 54179
 54180
 54181
 54182
 54183
 54184
 54185
 54186
 54187
 54188
 54189
 54190
 54191
 54192
 54193
 54194
 54195
 54196
 54197
 54198
 54199
 54200
 54201
 54202
 54203
 54204
 54205
 54206
 54207
 54208
 54209
 54210
 54211
 54212
 54213
 54214
 54215
 54216
 54217
 54218
 54219
 54220
 54221
 54222
 54223
 54224
 54225
 54226
 54227
 54228
 54229
 54230
 54231
 54232
 54233
 54234
 54235
 54236
 54237
 54238
 54239
 54240
 54241
 54242
 54243
 54244
 54245
 54246
 54247
 54248
 54249
 54250
 54251
 54252
 54253
 54254
 54255
 54256
 54257
 54258
 54259
 54260
 54261
 54262
 54263
 54264
 54265
 54266
 54267
 54268
 54269
 54270
 54271
 54272
 54273
 54274
 54275
 54276
 54277
 54278
 54279
 54280
 54281
 54282
 54283
 54284
 54285
 54286
 54287
 54288
 54289
 54290
 54291
 54292
 54293
 54294
 54295
 54296
 54297
 54298
 54299
 54300
 54301
 54302
 54303
 54304
 54305
 54306
 54307
 54308
 54309
 54310
 54311
 54312
 54313
 54314
 54315
 54316
 54317
 54318
 54319
 54320
 54321
 54322
 54323
 54324
 54325
 54326
 54327
 54328
 54329
 54330
 54331
 54332
 54333
 54334
 54335
 54336
 54337
 54338
 54339
 54340
 54341
 54342
 54343
 54344
 54345
 54346
 54347
 54348
 54349
 54350
 54351
 54352
 54353
 54354
 54355
 54356
 54357
 54358
 54359
 54360
 54361
 54362
 54363
 54364
 54365
 54366
 54367
 54368
 54369
 54370
 54371
 54372
 54373
 54374
 54375
 54376
 54377
 54378
 54379
 54380
 54381
 54382
 54383
 54384
 54385
 54386
 54387
 54388
 54389
 54390
 54391
 54392
 54393
 54394
 54395
 54396
 54397
 54398
 54399
 54400
 54401
 54402
 54403
 54404
 54405
 54406
 54407
 54408
 54409
 54410
 54411
 54412
 54413
 54414
 54415
 54416
 54417
 54418
 54419
 54420
 54421
 54422
 54423
 54424
 54425
 54426
 54427
 54428
 54429
 54430
 54431
 54432
 54433
 54434
 54435
 54436
 54437
 54438
 54439
 54440
 54441
 54442
 54443
 54444
 54445
 54446
 54447
 54448
 54449
 54450
 54451
 54452
 54453
 54454
 54455
 54456
 54457
 54458
 54459
 54460
 54461
 54462
 54463
 54464
 54465
 54466
 54467
 54468
 54469
 54470
 54471
 54472
 54473
 54474
 54475
 54476
 54477
 54478
 54479
 54480
 54481
 54482
 54483
 54484
 54485
 54486
 54487
 54488
 54489
 54490
 54491
 54492
 54493
 54494
 54495
 54496
 54497
 54498
 54499
 54500
 54501
 54502
 54503
 54504
 54505
 54506
 54507
 54508
 54509
 54510
 54511
 54512
 54513
 54514
 54515
 54516
 54517
 54518
 54519
 54520
 54521
 54522
 54523
 54524
 54525
 54526
 54527
 54528
 54529
 54530
 54531
 54532
 54533
 54534
 54535
 54536
 54537
 54538
 54539
 54540
 54541
 54542
 54543
 54544
 54545
 54546
 54547
 54548
 54549
 54550
 54551
 54552
 54553
 54554
 54555
 54556
 54557
 54558
 54559
 54560
 54561
 54562
 54563
 54564
 54565
 54566
 54567
 54568
 54569
 54570
 54571
 54572
 54573
 54574
 54575
 54576
 54577
 54578
 54579
 54580
 54581
 54582
 54583
 54584
 54585
 54586
 54587
 54588
 54589
 54590
 54591
 54592
 54593
 54594
 54595
 54596
 54597
 54598
 54599
 54600
 54601
 54602
 54603
 54604
 54605
 54606
 54607
 54608
 54609
 54610
 54611
 54612
 54613
 54614
 54615
 54616
 54617
 54618
 54619
 54620
 54621
 54622
 54623
 54624
 54625
 54626
 54627
 54628
 54629
 54630
 54631
 54632
 54633
 54634
 54635
 54636
 54637
 54638
 54639
 54640
 54641
 54642
 54643
 54644
 54645
 54646
 54647
 54648
 54649
 54650
 54651
 54652
 54653
 54654
 54655
 54656
 54657
 54658
 54659
 54660
 54661
 54662
 54663
 54664
 54665
 54666
 54667
 54668
 54669
 54670
 54671
 54672
 54673
 54674
 54675
 54676
 54677
 54678
 54679
 54680
 54681
 54682
 54683
 54684
 54685
 54686
 54687
 54688
 54689
 54690
 54691
 54692
 54693
 54694
 54695
 54696
 54697
 54698
 54699
 54700
 54701
 54702
 54703
 54704
 54705
 54706
 54707
 54708
 54709
 54710
 54711
 54712
 54713
 54714
 54715
 54716
 54717
 54718
 54719
 54720
 54721
 54722
 54723
 54724
 54725
 54726
 54727
 54728
 54729
 54730
 54731
 54732
 54733
 54734
 54735
 54736
 54737
 54738
 54739
 54740
 54741
 54742
 54743
 54744
 54745
 54746
 54747
 54748
 54749
 54750
 54751
 54752
 54753
 54754
 54755
 54756
 54757
 54758
 54759
 54760
 54761
 54762
 54763
 54764
 54765
 54766
 54767
 54768
 54769
 54770
 54771
 54772
 54773
 54774
 54775
 54776
 54777
 54778
 54779
 54780
 54781
 54782
 54783
 54784
 54785
 54786
 54787
 54788
 54789
 54790
 54791
 54792
 54793
 54794
 54795
 54796
 54797
 54798
 54799
 54800
 54801
 54802
 54803
 54804
 54805
 54806
 54807
 54808
 54809
 54810
 54811
 54812
 54813
 54814
 54815
 54816
 54817
 54818
 54819
 54820
 54821
 54822
 54823
 54824
 54825
 54826
 54827
 54828
 54829
 54830
 54831
 54832
 54833
 54834
 54835
 54836
 54837
 54838
 54839
 54840
 54841
 54842
 54843
 54844
 54845
 54846
 54847
 54848
 54849
 54850
 54851
 54852
 54853
 54854
 54855
 54856
 54857
 54858
 54859
 54860
 54861
 54862
 54863
 54864
 54865
 54866
 54867
 54868
 54869
 54870
 54871
 54872
 54873
 54874
 54875
 54876
 54877
 54878
 54879
 54880
 54881
 54882
 54883
 54884
 54885
 54886
 54887
 54888
 54889
 54890
 54891
 54892
 54893
 54894
 54895
 54896
 54897
 54898
 54899
 54900
 54901
 54902
 54903
 54904
 54905
 54906
 54907
 54908
 54909
 54910
 54911
 54912
 54913
 54914
 54915
 54916
 54917
 54918
 54919
 54920
 54921
 54922
 54923
 54924
 54925
 54926
 54927
 54928
 54929
 54930
 54931
 54932
 54933
 54934
 54935
 54936
 54937
 54938
 54939
 54940
 54941
 54942
 54943
 54944
 54945
 54946
 54947
 54948
 54949
 54950
 54951
 54952
 54953
 54954
 54955
 54956
 54957
 54958
 54959
 54960
 54961
 54962
 54963
 54964
 54965
 54966
 54967
 54968
 54969
 54970
 54971
 54972
 54973
 54974
 54975
 54976
 54977
 54978
 54979
 54980
 54981
 54982
 54983
 54984
 54985
 54986
 54987
 54988
 54989
 54990
 54991
 54992
 54993
 54994
 54995
 54996
 54997
 54998
 54999
 55000
 55001
 55002
 55003
 55004
 55005
 55006
 55007
 55008
 55009
 55010
 55011
 55012
 55013
 55014
 55015
 55016
 55017
 55018
 55019
 55020
 55021
 55022
 55023
 55024
 55025
 55026
 55027
 55028
 55029
 55030
 55031
 55032
 55033
 55034
 55035
 55036
 55037
 55038
 55039
 55040
 55041
 55042
 55043
 55044
 55045
 55046
 55047
 55048
 55049
 55050
 55051
 55052
 55053
 55054
 55055
 55056
 55057
 55058
 55059
 55060
 55061
 55062
 55063
 55064
 55065
 55066
 55067
 55068
 55069
 55070
 55071
 55072
 55073
 55074
 55075
 55076
 55077
 55078
 55079
 55080
 55081
 55082
 55083
 55084
 55085
 55086
 55087
 55088
 55089
 55090
 55091
 55092
 55093
 55094
 55095
 55096
 55097
 55098
 55099
 55100
 55101
 55102
 55103
 55104
 55105
 55106
 55107
 55108
 55109
 55110
 55111
 55112
 55113
 55114
 55115
 55116
 55117
 55118
 55119
 55120
 55121
 55122
 55123
 55124
 55125
 55126
 55127
 55128
 55129
 55130
 55131
 55132
 55133
 55134
 55135
 55136
 55137
 55138
 55139
 55140
 55141
 55142
 55143
 55144
 55145
 55146
 55147
 55148
 55149
 55150
 55151
 55152
 55153
 55154
 55155
 55156
 55157
 55158
 55159
 55160
 55161
 55162
 55163
 55164
 55165
 55166
 55167
 55168
 55169
 55170
 55171
 55172
 55173
 55174
 55175
 55176
 55177
 55178
 55179
 55180
 55181
 55182
 55183
 55184
 55185
 55186
 55187
 55188
 55189
 55190
 55191
 55192
 55193
 55194
 55195
 55196
 55197
 55198
 55199
 55200
 55201
 55202
 55203
 55204
 55205
 55206
 55207
 55208
 55209
 55210
 55211
 55212
 55213
 55214
 55215
 55216
 55217
 55218
 55219
 55220
 55221
 55222
 55223
 55224
 55225
 55226
 55227
 55228
 55229
 55230
 55231
 55232
 55233
 55234
 55235
 55236
 55237
 55238
 55239
 55240
 55241
 55242
 55243
 55244
 55245
 55246
 55247
 55248
 55249
 55250
 55251
 55252
 55253
 55254
 55255
 55256
 55257
 55258
 55259
 55260
 55261
 55262
 55263
 55264
 55265
 55266
 55267
 55268
 55269
 55270
 55271
 55272
 55273
 55274
 55275
 55276
 55277
 55278
 55279
 55280
 55281
 55282
 55283
 55284
 55285
 55286
 55287
 55288
 55289
 55290
 55291
 55292
 55293
 55294
 55295
 55296
 55297
 55298
 55299
 55300
 55301
 55302
 55303
 55304
 55305
 55306
 55307
 55308
 55309
 55310
 55311
 55312
 55313
 55314
 55315
 55316
 55317
 55318
 55319
 55320
 55321
 55322
 55323
 55324
 55325
 55326
 55327
 55328
 55329
 55330
 55331
 55332
 55333
 55334
 55335
 55336
 55337
 55338
 55339
 55340
 55341
 55342
 55343
 55344
 55345
 55346
 55347
 55348
 55349
 55350
 55351
 55352
 55353
 55354
 55355
 55356
 55357
 55358
 55359
 55360
 55361
 55362
 55363
 55364
 55365
 55366
 55367
 55368
 55369
 55370
 55371
 55372
 55373
 55374
 55375
 55376
 55377
 55378
 55379
 55380
 55381
 55382
 55383
 55384
 55385
 55386
 55387
 55388
 55389
 55390
 55391
 55392
 55393
 55394
 55395
 55396
 55397
 55398
 55399
 55400
 55401
 55402
 55403
 55404
 55405
 55406
 55407
 55408
 55409
 55410
 55411
 55412
 55413
 55414
 55415
 55416
 55417
 55418
 55419
 55420
 55421
 55422
 55423
 55424
 55425
 55426
 55427
 55428
 55429
 55430
 55431
 55432
 55433
 55434
 55435
 55436
 55437
 55438
 55439
 55440
 55441
 55442
 55443
 55444
 55445
 55446
 55447
 55448
 55449
 55450
 55451
 55452
 55453
 55454
 55455
 55456
 55457
 55458
 55459
 55460
 55461
 55462
 55463
 55464
 55465
 55466
 55467
 55468
 55469
 55470
 55471
 55472
 55473
 55474
 55475
 55476
 55477
 55478
 55479
 55480
 55481
 55482
 55483
 55484
 55485
 55486
 55487
 55488
 55489
 55490
 55491
 55492
 55493
 55494
 55495
 55496
 55497
 55498
 55499
 55500
 55501
 55502
 55503
 55504
 55505
 55506
 55507
 55508
 55509
 55510
 55511
 55512
 55513
 55514
 55515
 55516
 55517
 55518
 55519
 55520
 55521
 55522
 55523
 55524
 55525
 55526
 55527
 55528
 55529
 55530
 55531
 55532
 55533
 55534
 55535
 55536
 55537
 55538
 55539
 55540
 55541
 55542
 55543
 55544
 55545
 55546
 55547
 55548
 55549
 55550
 55551
 55552
 55553
 55554
 55555
 55556
 55557
 55558
 55559
 55560
 55561
 55562
 55563
 55564
 55565
 55566
 55567
 55568
 55569
 55570
 55571
 55572
 55573
 55574
 55575
 55576
 55577
 55578
 55579
 55580
 55581
 55582
 55583
 55584
 55585
 55586
 55587
 55588
 55589
 55590
 55591
 55592
 55593
 55594
 55595
 55596
 55597
 55598
 55599
 55600
 55601
 55602
 55603
 55604
 55605
 55606
 55607
 55608
 55609
 55610
 55611
 55612
 55613
 55614
 55615
 55616
 55617
 55618
 55619
 55620
 55621
 55622
 55623
 55624
 55625
 55626
 55627
 55628
 55629
 55630
 55631
 55632
 55633
 55634
 55635
 55636
 55637
 55638
 55639
 55640
 55641
 55642
 55643
 55644
 55645
 55646
 55647
 55648
 55649
 55650
 55651
 55652
 55653
 55654
 55655
 55656
 55657
 55658
 55659
 55660
 55661
 55662
 55663
 55664
 55665
 55666
 55667
 55668
 55669
 55670
 55671
 55672
 55673
 55674
 55675
 55676
 55677
 55678
 55679
 55680
 55681
 55682
 55683
 55684
 55685
 55686
 55687
 55688
 55689
 55690
 55691
 55692
 55693
 55694
 55695
 55696
 55697
 55698
 55699
 55700
 55701
 55702
 55703
 55704
 55705
 55706
 55707
 55708
 55709
 55710
 55711
 55712
 55713
 55714
 55715
 55716
 55717
 55718
 55719
 55720
 55721
 55722
 55723
 55724
 55725
 55726
 55727
 55728
 55729
 55730
 55731
 55732
 55733
 55734
 55735
 55736
 55737
 55738
 55739
 55740
 55741
 55742
 55743
 55744
 55745
 55746
 55747
 55748
 55749
 55750
 55751
 55752
 55753
 55754
 55755
 55756
 55757
 55758
 55759
 55760
 55761
 55762
 55763
 55764
 55765
 55766
 55767
 55768
 55769
 55770
 55771
 55772
 55773
 55774
 55775
 55776
 55777
 55778
 55779
 55780
 55781
 55782
 55783
 55784
 55785
 55786
 55787
 55788
 55789
 55790
 55791
 55792
 55793
 55794
 55795
 55796
 55797
 55798
 55799
 55800
 55801
 55802
 55803
 55804
 55805
 55806
 55807
 55808
 55809
 55810
 55811
 55812
 55813
 55814
 55815
 55816
 55817
 55818
 55819
 55820
 55821
 55822
 55823
 55824
 55825
 55826
 55827
 55828
 55829
 55830
 55831
 55832
 55833
 55834
 55835
 55836
 55837
 55838
 55839
 55840
 55841
 55842
 55843
 55844
 55845
 55846
 55847
 55848
 55849
 55850
 55851
 55852
 55853
 55854
 55855
 55856
 55857
 55858
 55859
 55860
 55861
 55862
 55863
 55864
 55865
 55866
 55867
 55868
 55869
 55870
 55871
 55872
 55873
 55874
 55875
 55876
 55877
 55878
 55879
 55880
 55881
 55882
 55883
 55884
 55885
 55886
 55887
 55888
 55889
 55890
 55891
 55892
 55893
 55894
 55895
 55896
 55897
 55898
 55899
 55900
 55901
 55902
 55903
 55904
 55905
 55906
 55907
 55908
 55909
 55910
 55911
 55912
 55913
 55914
 55915
 55916
 55917
 55918
 55919
 55920
 55921
 55922
 55923
 55924
 55925
 55926
 55927
 55928
 55929
 55930
 55931
 55932
 55933
 55934
 55935
 55936
 55937
 55938
 55939
 55940
 55941
 55942
 55943
 55944
 55945
 55946
 55947
 55948
 55949
 55950
 55951
 55952
 55953
 55954
 55955
 55956
 55957
 55958
 55959
 55960
 55961
 55962
 55963
 55964
 55965
 55966
 55967
 55968
 55969
 55970
 55971
 55972
 55973
 55974
 55975
 55976
 55977
 55978
 55979
 55980
 55981
 55982
 55983
 55984
 55985
 55986
 55987
 55988
 55989
 55990
 55991
 55992
 55993
 55994
 55995
 55996
 55997
 55998
 55999
 56000
 56001
 56002
 56003
 56004
 56005
 56006
 56007
 56008
 56009
 56010
 56011
 56012
 56013
 56014
 56015
 56016
 56017
 56018
 56019
 56020
 56021
 56022
 56023
 56024
 56025
 56026
 56027
 56028
 56029
 56030
 56031
 56032
 56033
 56034
 56035
 56036
 56037
 56038
 56039
 56040
 56041
 56042
 56043
 56044
 56045
 56046
 56047
 56048
 56049
 56050
 56051
 56052
 56053
 56054
 56055
 56056
 56057
 56058
 56059
 56060
 56061
 56062
 56063
 56064
 56065
 56066
 56067
 56068
 56069
 56070
 56071
 56072
 56073
 56074
 56075
 56076
 56077
 56078
 56079
 56080
 56081
 56082
 56083
 56084
 56085
 56086
 56087
 56088
 56089
 56090
 56091
 56092
 56093
 56094
 56095
 56096
 56097
 56098
 56099
 56100
 56101
 56102
 56103
 56104
 56105
 56106
 56107
 56108
 56109
 56110
 56111
 56112
 56113
 56114
 56115
 56116
 56117
 56118
 56119
 56120
 56121
 56122
 56123
 56124
 56125
 56126
 56127
 56128
 56129
 56130
 56131
 56132
 56133
 56134
 56135
 56136
 56137
 56138
 56139
 56140
 56141
 56142
 56143
 56144
 56145
 56146
 56147
 56148
 56149
 56150
 56151
 56152
 56153
 56154
 56155
 56156
 56157
 56158
 56159
 56160
 56161
 56162
 56163
 56164
 56165
 56166
 56167
 56168
 56169
 56170
 56171
 56172
 56173
 56174
 56175
 56176
 56177
 56178
 56179
 56180
 56181
 56182
 56183
 56184
 56185
 56186
 56187
 56188
 56189
 56190
 56191
 56192
 56193
 56194
 56195
 56196
 56197
 56198
 56199
 56200
 56201
 56202
 56203
 56204
 56205
 56206
 56207
 56208
 56209
 56210
 56211
 56212
 56213
 56214
 56215
 56216
 56217
 56218
 56219
 56220
 56221
 56222
 56223
 56224
 56225
 56226
 56227
 56228
 56229
 56230
 56231
 56232
 56233
 56234
 56235
 56236
 56237
 56238
 56239
 56240
 56241
 56242
 56243
 56244
 56245
 56246
 56247
 56248
 56249
 56250
 56251
 56252
 56253
 56254
 56255
 56256
 56257
 56258
 56259
 56260
 56261
 56262
 56263
 56264
 56265
 56266
 56267
 56268
 56269
 56270
 56271
 56272
 56273
 56274
 56275
 56276
 56277
 56278
 56279
 56280
 56281
 56282
 56283
 56284
 56285
 56286
 56287
 56288
 56289
 56290
 56291
 56292
 56293
 56294
 56295
 56296
 56297
 56298
 56299
 56300
 56301
 56302
 56303
 56304
 56305
 56306
 56307
 56308
 56309
 56310
 56311
 56312
 56313
 56314
 56315
 56316
 56317
 56318
 56319
 56320
 56321
 56322
 56323
 56324
 56325
 56326
 56327
 56328
 56329
 56330
 56331
 56332
 56333
 56334
 56335
 56336
 56337
 56338
 56339
 56340
 56341
 56342
 56343
 56344
 56345
 56346
 56347
 56348
 56349
 56350
 56351
 56352
 56353
 56354
 56355
 56356
 56357
 56358
 56359
 56360
 56361
 56362
 56363
 56364
 56365
 56366
 56367
 56368
 56369
 56370
 56371
 56372
 56373
 56374
 56375
 56376
 56377
 56378
 56379
 56380
 56381
 56382
 56383
 56384
 56385
 56386
 56387
 56388
 56389
 56390
 56391
 56392
 56393
 56394
 56395
 56396
 56397
 56398
 56399
 56400
 56401
 56402
 56403
 56404
 56405
 56406
 56407
 56408
 56409
 56410
 56411
 56412
 56413
 56414
 56415
 56416
 56417
 56418
 56419
 56420
 56421
 56422
 56423
 56424
 56425
 56426
 56427
 56428
 56429
 56430
 56431
 56432
 56433
 56434
 56435
 56436
 56437
 56438
 56439
 56440
 56441
 56442
 56443
 56444
 56445
 56446
 56447
 56448
 56449
 56450
 56451
 56452
 56453
 56454
 56455
 56456
 56457
 56458
 56459
 56460
 56461
 56462
 56463
 56464
 56465
 56466
 56467
 56468
 56469
 56470
 56471
 56472
 56473
 56474
 56475
 56476
 56477
 56478
 56479
 56480
 56481
 56482
 56483
 56484
 56485
 56486
 56487
 56488
 56489
 56490
 56491
 56492
 56493
 56494
 56495
 56496
 56497
 56498
 56499
 56500
 56501
 56502
 56503
 56504
 56505
 56506
 56507
 56508
 56509
 56510
 56511
 56512
 56513
 56514
 56515
 56516
 56517
 56518
 56519
 56520
 56521
 56522
 56523
 56524
 56525
 56526
 56527
 56528
 56529
 56530
 56531
 56532
 56533
 56534
 56535
 56536
 56537
 56538
 56539
 56540
 56541
 56542
 56543
 56544
 56545
 56546
 56547
 56548
 56549
 56550
 56551
 56552
 56553
 56554
 56555
 56556
 56557
 56558
 56559
 56560
 56561
 56562
 56563
 56564
 56565
 56566
 56567
 56568
 56569
 56570
 56571
 56572
 56573
 56574
 56575
 56576
 56577
 56578
 56579
 56580
 56581
 56582
 56583
 56584
 56585
 56586
 56587
 56588
 56589
 56590
 56591
 56592
 56593
 56594
 56595
 56596
 56597
 56598
 56599
 56600
 56601
 56602
 56603
 56604
 56605
 56606
 56607
 56608
 56609
 56610
 56611
 56612
 56613
 56614
 56615
 56616
 56617
 56618
 56619
 56620
 56621
 56622
 56623
 56624
 56625
 56626
 56627
 56628
 56629
 56630
 56631
 56632
 56633
 56634
 56635
 56636
 56637
 56638
 56639
 56640
 56641
 56642
 56643
 56644
 56645
 56646
 56647
 56648
 56649
 56650
 56651
 56652
 56653
 56654
 56655
 56656
 56657
 56658
 56659
 56660
 56661
 56662
 56663
 56664
 56665
 56666
 56667
 56668
 56669
 56670
 56671
 56672
 56673
 56674
 56675
 56676
 56677
 56678
 56679
 56680
 56681
 56682
 56683
 56684
 56685
 56686
 56687
 56688
 56689
 56690
 56691
 56692
 56693
 56694
 56695
 56696
 56697
 56698
 56699
 56700
 56701
 56702
 56703
 56704
 56705
 56706
 56707
 56708
 56709
 56710
 56711
 56712
 56713
 56714
 56715
 56716
 56717
 56718
 56719
 56720
 56721
 56722
 56723
 56724
 56725
 56726
 56727
 56728
 56729
 56730
 56731
 56732
 56733
 56734
 56735
 56736
 56737
 56738
 56739
 56740
 56741
 56742
 56743
 56744
 56745
 56746
 56747
 56748
 56749
 56750
 56751
 56752
 56753
 56754
 56755
 56756
 56757
 56758
 56759
 56760
 56761
 56762
 56763
 56764
 56765
 56766
 56767
 56768
 56769
 56770
 56771
 56772
 56773
 56774
 56775
 56776
 56777
 56778
 56779
 56780
 56781
 56782
 56783
 56784
 56785
 56786
 56787
 56788
 56789
 56790
 56791
 56792
 56793
 56794
 56795
 56796
 56797
 56798
 56799
 56800
 56801
 56802
 56803
 56804
 56805
 56806
 56807
 56808
 56809
 56810
 56811
 56812
 56813
 56814
 56815
 56816
 56817
 56818
 56819
 56820
 56821
 56822
 56823
 56824
 56825
 56826
 56827
 56828
 56829
 56830
 56831
 56832
 56833
 56834
 56835
 56836
 56837
 56838
 56839
 56840
 56841
 56842
 56843
 56844
 56845
 56846
 56847
 56848
 56849
 56850
 56851
 56852
 56853
 56854
 56855
 56856
 56857
 56858
 56859
 56860
 56861
 56862
 56863
 56864
 56865
 56866
 56867
 56868
 56869
 56870
 56871
 56872
 56873
 56874
 56875
 56876
 56877
 56878
 56879
 56880
 56881
 56882
 56883
 56884
 56885
 56886
 56887
 56888
 56889
 56890
 56891
 56892
 56893
 56894
 56895
 56896
 56897
 56898
 56899
 56900
 56901
 56902
 56903
 56904
 56905
 56906
 56907
 56908
 56909
 56910
 56911
 56912
 56913
 56914
 56915
 56916
 56917
 56918
 56919
 56920
 56921
 56922
 56923
 56924
 56925
 56926
 56927
 56928
 56929
 56930
 56931
 56932
 56933
 56934
 56935
 56936
 56937
 56938
 56939
 56940
 56941
 56942
 56943
 56944
 56945
 56946
 56947
 56948
 56949
 56950
 56951
 56952
 56953
 56954
 56955
 56956
 56957
 56958
 56959
 56960
 56961
 56962
 56963
 56964
 56965
 56966
 56967
 56968
 56969
 56970
 56971
 56972
 56973
 56974
 56975
 56976
 56977
 56978
 56979
 56980
 56981
 56982
 56983
 56984
 56985
 56986
 56987
 56988
 56989
 56990
 56991
 56992
 56993
 56994
 56995
 56996
 56997
 56998
 56999
 57000
 57001
 57002
 57003
 57004
 57005
 57006
 57007
 57008
 57009
 57010
 57011
 57012
 57013
 57014
 57015
 57016
 57017
 57018
 57019
 57020
 57021
 57022
 57023
 57024
 57025
 57026
 57027
 57028
 57029
 57030
 57031
 57032
 57033
 57034
 57035
 57036
 57037
 57038
 57039
 57040
 57041
 57042
 57043
 57044
 57045
 57046
 57047
 57048
 57049
 57050
 57051
 57052
 57053
 57054
 57055
 57056
 57057
 57058
 57059
 57060
 57061
 57062
 57063
 57064
 57065
 57066
 57067
 57068
 57069
 57070
 57071
 57072
 57073
 57074
 57075
 57076
 57077
 57078
 57079
 57080
 57081
 57082
 57083
 57084
 57085
 57086
 57087
 57088
 57089
 57090
 57091
 57092
 57093
 57094
 57095
 57096
 57097
 57098
 57099
 57100
 57101
 57102
 57103
 57104
 57105
 57106
 57107
 57108
 57109
 57110
 57111
 57112
 57113
 57114
 57115
 57116
 57117
 57118
 57119
 57120
 57121
 57122
 57123
 57124
 57125
 57126
 57127
 57128
 57129
 57130
 57131
 57132
 57133
 57134
 57135
 57136
 57137
 57138
 57139
 57140
 57141
 57142
 57143
 57144
 57145
 57146
 57147
 57148
 57149
 57150
 57151
 57152
 57153
 57154
 57155
 57156
 57157
 57158
 57159
 57160
 57161
 57162
 57163
 57164
 57165
 57166
 57167
 57168
 57169
 57170
 57171
 57172
 57173
 57174
 57175
 57176
 57177
 57178
 57179
 57180
 57181
 57182
 57183
 57184
 57185
 57186
 57187
 57188
 57189
 57190
 57191
 57192
 57193
 57194
 57195
 57196
 57197
 57198
 57199
 57200
 57201
 57202
 57203
 57204
 57205
 57206
 57207
 57208
 57209
 57210
 57211
 57212
 57213
 57214
 57215
 57216
 57217
 57218
 57219
 57220
 57221
 57222
 57223
 57224
 57225
 57226
 57227
 57228
 57229
 57230
 57231
 57232
 57233
 57234
 57235
 57236
 57237
 57238
 57239
 57240
 57241
 57242
 57243
 57244
 57245
 57246
 57247
 57248
 57249
 57250
 57251
 57252
 57253
 57254
 57255
 57256
 57257
 57258
 57259
 57260
 57261
 57262
 57263
 57264
 57265
 57266
 57267
 57268
 57269
 57270
 57271
 57272
 57273
 57274
 57275
 57276
 57277
 57278
 57279
 57280
 57281
 57282
 57283
 57284
 57285
 57286
 57287
 57288
 57289
 57290
 57291
 57292
 57293
 57294
 57295
 57296
 57297
 57298
 57299
 57300
 57301
 57302
 57303
 57304
 57305
 57306
 57307
 57308
 57309
 57310
 57311
 57312
 57313
 57314
 57315
 57316
 57317
 57318
 57319
 57320
 57321
 57322
 57323
 57324
 57325
 57326
 57327
 57328
 57329
 57330
 57331
 57332
 57333
 57334
 57335
 57336
 57337
 57338
 57339
 57340
 57341
 57342
 57343
 57344
 57345
 57346
 57347
 57348
 57349
 57350
 57351
 57352
 57353
 57354
 57355
 57356
 57357
 57358
 57359
 57360
 57361
 57362
 57363
 57364
 57365
 57366
 57367
 57368
 57369
 57370
 57371
 57372
 57373
 57374
 57375
 57376
 57377
 57378
 57379
 57380
 57381
 57382
 57383
 57384
 57385
 57386
 57387
 57388
 57389
 57390
 57391
 57392
 57393
 57394
 57395
 57396
 57397
 57398
 57399
 57400
 57401
 57402
 57403
 57404
 57405
 57406
 57407
 57408
 57409
 57410
 57411
 57412
 57413
 57414
 57415
 57416
 57417
 57418
 57419
 57420
 57421
 57422
 57423
 57424
 57425
 57426
 57427
 57428
 57429
 57430
 57431
 57432
 57433
 57434
 57435
 57436
 57437
 57438
 57439
 57440
 57441
 57442
 57443
 57444
 57445
 57446
 57447
 57448
 57449
 57450
 57451
 57452
 57453
 57454
 57455
 57456
 57457
 57458
 57459
 57460
 57461
 57462
 57463
 57464
 57465
 57466
 57467
 57468
 57469
 57470
 57471
 57472
 57473
 57474
 57475
 57476
 57477
 57478
 57479
 57480
 57481
 57482
 57483
 57484
 57485
 57486
 57487
 57488
 57489
 57490
 57491
 57492
 57493
 57494
 57495
 57496
 57497
 57498
 57499
 57500
 57501
 57502
 57503
 57504
 57505
 57506
 57507
 57508
 57509
 57510
 57511
 57512
 57513
 57514
 57515
 57516
 57517
 57518
 57519
 57520
 57521
 57522
 57523
 57524
 57525
 57526
 57527
 57528
 57529
 57530
 57531
 57532
 57533
 57534
 57535
 57536
 57537
 57538
 57539
 57540
 57541
 57542
 57543
 57544
 57545
 57546
 57547
 57548
 57549
 57550
 57551
 57552
 57553
 57554
 57555
 57556
 57557
 57558
 57559
 57560
 57561
 57562
 57563
 57564
 57565
 57566
 57567
 57568
 57569
 57570
 57571
 57572
 57573
 57574
 57575
 57576
 57577
 57578
 57579
 57580
 57581
 57582
 57583
 57584
 57585
 57586
 57587
 57588
 57589
 57590
 57591
 57592
 57593
 57594
 57595
 57596
 57597
 57598
 57599
 57600
 57601
 57602
 57603
 57604
 57605
 57606
 57607
 57608
 57609
 57610
 57611
 57612
 57613
 57614
 57615
 57616
 57617
 57618
 57619
 57620
 57621
 57622
 57623
 57624
 57625
 57626
 57627
 57628
 57629
 57630
 57631
 57632
 57633
 57634
 57635
 57636
 57637
 57638
 57639
 57640
 57641
 57642
 57643
 57644
 57645
 57646
 57647
 57648
 57649
 57650
 57651
 57652
 57653
 57654
 57655
 57656
 57657
 57658
 57659
 57660
 57661
 57662
 57663
 57664
 57665
 57666
 57667
 57668
 57669
 57670
 57671
 57672
 57673
 57674
 57675
 57676
 57677
 57678
 57679
 57680
 57681
 57682
 57683
 57684
 57685
 57686
 57687
 57688
 57689
 57690
 57691
 57692
 57693
 57694
 57695
 57696
 57697
 57698
 57699
 57700
 57701
 57702
 57703
 57704
 57705
 57706
 57707
 57708
 57709
 57710
 57711
 57712
 57713
 57714
 57715
 57716
 57717
 57718
 57719
 57720
 57721
 57722
 57723
 57724
 57725
 57726
 57727
 57728
 57729
 57730
 57731
 57732
 57733
 57734
 57735
 57736
 57737
 57738
 57739
 57740
 57741
 57742
 57743
 57744
 57745
 57746
 57747
 57748
 57749
 57750
 57751
 57752
 57753
 57754
 57755
 57756
 57757
 57758
 57759
 57760
 57761
 57762
 57763
 57764
 57765
 57766
 57767
 57768
 57769
 57770
 57771
 57772
 57773
 57774
 57775
 57776
 57777
 57778
 57779
 57780
 57781
 57782
 57783
 57784
 57785
 57786
 57787
 57788
 57789
 57790
 57791
 57792
 57793
 57794
 57795
 57796
 57797
 57798
 57799
 57800
 57801
 57802
 57803
 57804
 57805
 57806
 57807
 57808
 57809
 57810
 57811
 57812
 57813
 57814
 57815
 57816
 57817
 57818
 57819
 57820
 57821
 57822
 57823
 57824
 57825
 57826
 57827
 57828
 57829
 57830
 57831
 57832
 57833
 57834
 57835
 57836
 57837
 57838
 57839
 57840
 57841
 57842
 57843
 57844
 57845
 57846
 57847
 57848
 57849
 57850
 57851
 57852
 57853
 57854
 57855
 57856
 57857
 57858
 57859
 57860
 57861
 57862
 57863
 57864
 57865
 57866
 57867
 57868
 57869
 57870
 57871
 57872
 57873
 57874
 57875
 57876
 57877
 57878
 57879
 57880
 57881
 57882
 57883
 57884
 57885
 57886
 57887
 57888
 57889
 57890
 57891
 57892
 57893
 57894
 57895
 57896
 57897
 57898
 57899
 57900
 57901
 57902
 57903
 57904
 57905
 57906
 57907
 57908
 57909
 57910
 57911
 57912
 57913
 57914
 57915
 57916
 57917
 57918
 57919
 57920
 57921
 57922
 57923
 57924
 57925
 57926
 57927
 57928
 57929
 57930
 57931
 57932
 57933
 57934
 57935
 57936
 57937
 57938
 57939
 57940
 57941
 57942
 57943
 57944
 57945
 57946
 57947
 57948
 57949
 57950
 57951
 57952
 57953
 57954
 57955
 57956
 57957
 57958
 57959
 57960
 57961
 57962
 57963
 57964
 57965
 57966
 57967
 57968
 57969
 57970
 57971
 57972
 57973
 57974
 57975
 57976
 57977
 57978
 57979
 57980
 57981
 57982
 57983
 57984
 57985
 57986
 57987
 57988
 57989
 57990
 57991
 57992
 57993
 57994
 57995
 57996
 57997
 57998
 57999
 58000
 58001
 58002
 58003
 58004
 58005
 58006
 58007
 58008
 58009
 58010
 58011
 58012
 58013
 58014
 58015
 58016
 58017
 58018
 58019
 58020
 58021
 58022
 58023
 58024
 58025
 58026
 58027
 58028
 58029
 58030
 58031
 58032
 58033
 58034
 58035
 58036
 58037
 58038
 58039
 58040
 58041
 58042
 58043
 58044
 58045
 58046
 58047
 58048
 58049
 58050
 58051
 58052
 58053
 58054
 58055
 58056
 58057
 58058
 58059
 58060
 58061
 58062
 58063
 58064
 58065
 58066
 58067
 58068
 58069
 58070
 58071
 58072
 58073
 58074
 58075
 58076
 58077
 58078
 58079
 58080
 58081
 58082
 58083
 58084
 58085
 58086
 58087
 58088
 58089
 58090
 58091
 58092
 58093
 58094
 58095
 58096
 58097
 58098
 58099
 58100
 58101
 58102
 58103
 58104
 58105
 58106
 58107
 58108
 58109
 58110
 58111
 58112
 58113
 58114
 58115
 58116
 58117
 58118
 58119
 58120
 58121
 58122
 58123
 58124
 58125
 58126
 58127
 58128
 58129
 58130
 58131
 58132
 58133
 58134
 58135
 58136
 58137
 58138
 58139
 58140
 58141
 58142
 58143
 58144
 58145
 58146
 58147
 58148
 58149
 58150
 58151
 58152
 58153
 58154
 58155
 58156
 58157
 58158
 58159
 58160
 58161
 58162
 58163
 58164
 58165
 58166
 58167
 58168
 58169
 58170
 58171
 58172
 58173
 58174
 58175
 58176
 58177
 58178
 58179
 58180
 58181
 58182
 58183
 58184
 58185
 58186
 58187
 58188
 58189
 58190
 58191
 58192
 58193
 58194
 58195
 58196
 58197
 58198
 58199
 58200
 58201
 58202
 58203
 58204
 58205
 58206
 58207
 58208
 58209
 58210
 58211
 58212
 58213
 58214
 58215
 58216
 58217
 58218
 58219
 58220
 58221
 58222
 58223
 58224
 58225
 58226
 58227
 58228
 58229
 58230
 58231
 58232
 58233
 58234
 58235
 58236
 58237
 58238
 58239
 58240
 58241
 58242
 58243
 58244
 58245
 58246
 58247
 58248
 58249
 58250
 58251
 58252
 58253
 58254
 58255
 58256
 58257
 58258
 58259
 58260
 58261
 58262
 58263
 58264
 58265
 58266
 58267
 58268
 58269
 58270
 58271
 58272
 58273
 58274
 58275
 58276
 58277
 58278
 58279
 58280
 58281
 58282
 58283
 58284
 58285
 58286
 58287
 58288
 58289
 58290
 58291
 58292
 58293
 58294
 58295
 58296
 58297
 58298
 58299
 58300
 58301
 58302
 58303
 58304
 58305
 58306
 58307
 58308
 58309
 58310
 58311
 58312
 58313
 58314
 58315
 58316
 58317
 58318
 58319
 58320
 58321
 58322
 58323
 58324
 58325
 58326
 58327
 58328
 58329
 58330
 58331
 58332
 58333
 58334
 58335
 58336
 58337
 58338
 58339
 58340
 58341
 58342
 58343
 58344
 58345
 58346
 58347
 58348
 58349
 58350
 58351
 58352
 58353
 58354
 58355
 58356
 58357
 58358
 58359
 58360
 58361
 58362
 58363
 58364
 58365
 58366
 58367
 58368
 58369
 58370
 58371
 58372
 58373
 58374
 58375
 58376
 58377
 58378
 58379
 58380
 58381
 58382
 58383
 58384
 58385
 58386
 58387
 58388
 58389
 58390
 58391
 58392
 58393
 58394
 58395
 58396
 58397
 58398
 58399
 58400
 58401
 58402
 58403
 58404
 58405
 58406
 58407
 58408
 58409
 58410
 58411
 58412
 58413
 58414
 58415
 58416
 58417
 58418
 58419
 58420
 58421
 58422
 58423
 58424
 58425
 58426
 58427
 58428
 58429
 58430
 58431
 58432
 58433
 58434
 58435
 58436
 58437
 58438
 58439
 58440
 58441
 58442
 58443
 58444
 58445
 58446
 58447
 58448
 58449
 58450
 58451
 58452
 58453
 58454
 58455
 58456
 58457
 58458
 58459
 58460
 58461
 58462
 58463
 58464
 58465
 58466
 58467
 58468
 58469
 58470
 58471
 58472
 58473
 58474
 58475
 58476
 58477
 58478
 58479
 58480
 58481
 58482
 58483
 58484
 58485
 58486
 58487
 58488
 58489
 58490
 58491
 58492
 58493
 58494
 58495
 58496
 58497
 58498
 58499
 58500
 58501
 58502
 58503
 58504
 58505
 58506
 58507
 58508
 58509
 58510
 58511
 58512
 58513
 58514
 58515
 58516
 58517
 58518
 58519
 58520
 58521
 58522
 58523
 58524
 58525
 58526
 58527
 58528
 58529
 58530
 58531
 58532
 58533
 58534
 58535
 58536
 58537
 58538
 58539
 58540
 58541
 58542
 58543
 58544
 58545
 58546
 58547
 58548
 58549
 58550
 58551
 58552
 58553
 58554
 58555
 58556
 58557
 58558
 58559
 58560
 58561
 58562
 58563
 58564
 58565
 58566
 58567
 58568
 58569
 58570
 58571
 58572
 58573
 58574
 58575
 58576
 58577
 58578
 58579
 58580
 58581
 58582
 58583
 58584
 58585
 58586
 58587
 58588
 58589
 58590
 58591
 58592
 58593
 58594
 58595
 58596
 58597
 58598
 58599
 58600
 58601
 58602
 58603
 58604
 58605
 58606
 58607
 58608
 58609
 58610
 58611
 58612
 58613
 58614
 58615
 58616
 58617
 58618
 58619
 58620
 58621
 58622
 58623
 58624
 58625
 58626
 58627
 58628
 58629
 58630
 58631
 58632
 58633
 58634
 58635
 58636
 58637
 58638
 58639
 58640
 58641
 58642
 58643
 58644
 58645
 58646
 58647
 58648
 58649
 58650
 58651
 58652
 58653
 58654
 58655
 58656
 58657
 58658
 58659
 58660
 58661
 58662
 58663
 58664
 58665
 58666
 58667
 58668
 58669
 58670
 58671
 58672
 58673
 58674
 58675
 58676
 58677
 58678
 58679
 58680
 58681
 58682
 58683
 58684
 58685
 58686
 58687
 58688
 58689
 58690
 58691
 58692
 58693
 58694
 58695
 58696
 58697
 58698
 58699
 58700
 58701
 58702
 58703
 58704
 58705
 58706
 58707
 58708
 58709
 58710
 58711
 58712
 58713
 58714
 58715
 58716
 58717
 58718
 58719
 58720
 58721
 58722
 58723
 58724
 58725
 58726
 58727
 58728
 58729
 58730
 58731
 58732
 58733
 58734
 58735
 58736
 58737
 58738
 58739
 58740
 58741
 58742
 58743
 58744
 58745
 58746
 58747
 58748
 58749
 58750
 58751
 58752
 58753
 58754
 58755
 58756
 58757
 58758
 58759
 58760
 58761
 58762
 58763
 58764
 58765
 58766
 58767
 58768
 58769
 58770
 58771
 58772
 58773
 58774
 58775
 58776
 58777
 58778
 58779
 58780
 58781
 58782
 58783
 58784
 58785
 58786
 58787
 58788
 58789
 58790
 58791
 58792
 58793
 58794
 58795
 58796
 58797
 58798
 58799
 58800
 58801
 58802
 58803
 58804
 58805
 58806
 58807
 58808
 58809
 58810
 58811
 58812
 58813
 58814
 58815
 58816
 58817
 58818
 58819
 58820
 58821
 58822
 58823
 58824
 58825
 58826
 58827
 58828
 58829
 58830
 58831
 58832
 58833
 58834
 58835
 58836
 58837
 58838
 58839
 58840
 58841
 58842
 58843
 58844
 58845
 58846
 58847
 58848
 58849
 58850
 58851
 58852
 58853
 58854
 58855
 58856
 58857
 58858
 58859
 58860
 58861
 58862
 58863
 58864
 58865
 58866
 58867
 58868
 58869
 58870
 58871
 58872
 58873
 58874
 58875
 58876
 58877
 58878
 58879
 58880
 58881
 58882
 58883
 58884
 58885
 58886
 58887
 58888
 58889
 58890
 58891
 58892
 58893
 58894
 58895
 58896
 58897
 58898
 58899
 58900
 58901
 58902
 58903
 58904
 58905
 58906
 58907
 58908
 58909
 58910
 58911
 58912
 58913
 58914
 58915
 58916
 58917
 58918
 58919
 58920
 58921
 58922
 58923
 58924
 58925
 58926
 58927
 58928
 58929
 58930
 58931
 58932
 58933
 58934
 58935
 58936
 58937
 58938
 58939
 58940
 58941
 58942
 58943
 58944
 58945
 58946
 58947
 58948
 58949
 58950
 58951
 58952
 58953
 58954
 58955
 58956
 58957
 58958
 58959
 58960
 58961
 58962
 58963
 58964
 58965
 58966
 58967
 58968
 58969
 58970
 58971
 58972
 58973
 58974
 58975
 58976
 58977
 58978
 58979
 58980
 58981
 58982
 58983
 58984
 58985
 58986
 58987
 58988
 58989
 58990
 58991
 58992
 58993
 58994
 58995
 58996
 58997
 58998
 58999
 59000
 59001
 59002
 59003
 59004
 59005
 59006
 59007
 59008
 59009
 59010
 59011
 59012
 59013
 59014
 59015
 59016
 59017
 59018
 59019
 59020
 59021
 59022
 59023
 59024
 59025
 59026
 59027
 59028
 59029
 59030
 59031
 59032
 59033
 59034
 59035
 59036
 59037
 59038
 59039
 59040
 59041
 59042
 59043
 59044
 59045
 59046
 59047
 59048
 59049
 59050
 59051
 59052
 59053
 59054
 59055
 59056
 59057
 59058
 59059
 59060
 59061
 59062
 59063
 59064
 59065
 59066
 59067
 59068
 59069
 59070
 59071
 59072
 59073
 59074
 59075
 59076
 59077
 59078
 59079
 59080
 59081
 59082
 59083
 59084
 59085
 59086
 59087
 59088
 59089
 59090
 59091
 59092
 59093
 59094
 59095
 59096
 59097
 59098
 59099
 59100
 59101
 59102
 59103
 59104
 59105
 59106
 59107
 59108
 59109
 59110
 59111
 59112
 59113
 59114
 59115
 59116
 59117
 59118
 59119
 59120
 59121
 59122
 59123
 59124
 59125
 59126
 59127
 59128
 59129
 59130
 59131
 59132
 59133
 59134
 59135
 59136
 59137
 59138
 59139
 59140
 59141
 59142
 59143
 59144
 59145
 59146
 59147
 59148
 59149
 59150
 59151
 59152
 59153
 59154
 59155
 59156
 59157
 59158
 59159
 59160
 59161
 59162
 59163
 59164
 59165
 59166
 59167
 59168
 59169
 59170
 59171
 59172
 59173
 59174
 59175
 59176
 59177
 59178
 59179
 59180
 59181
 59182
 59183
 59184
 59185
 59186
 59187
 59188
 59189
 59190
 59191
 59192
 59193
 59194
 59195
 59196
 59197
 59198
 59199
 59200
 59201
 59202
 59203
 59204
 59205
 59206
 59207
 59208
 59209
 59210
 59211
 59212
 59213
 59214
 59215
 59216
 59217
 59218
 59219
 59220
 59221
 59222
 59223
 59224
 59225
 59226
 59227
 59228
 59229
 59230
 59231
 59232
 59233
 59234
 59235
 59236
 59237
 59238
 59239
 59240
 59241
 59242
 59243
 59244
 59245
 59246
 59247
 59248
 59249
 59250
 59251
 59252
 59253
 59254
 59255
 59256
 59257
 59258
 59259
 59260
 59261
 59262
 59263
 59264
 59265
 59266
 59267
 59268
 59269
 59270
 59271
 59272
 59273
 59274
 59275
 59276
 59277
 59278
 59279
 59280
 59281
 59282
 59283
 59284
 59285
 59286
 59287
 59288
 59289
 59290
 59291
 59292
 59293
 59294
 59295
 59296
 59297
 59298
 59299
 59300
 59301
 59302
 59303
 59304
 59305
 59306
 59307
 59308
 59309
 59310
 59311
 59312
 59313
 59314
 59315
 59316
 59317
 59318
 59319
 59320
 59321
 59322
 59323
 59324
 59325
 59326
 59327
 59328
 59329
 59330
 59331
 59332
 59333
 59334
 59335
 59336
 59337
 59338
 59339
 59340
 59341
 59342
 59343
 59344
 59345
 59346
 59347
 59348
 59349
 59350
 59351
 59352
 59353
 59354
 59355
 59356
 59357
 59358
 59359
 59360
 59361
 59362
 59363
 59364
 59365
 59366
 59367
 59368
 59369
 59370
 59371
 59372
 59373
 59374
 59375
 59376
 59377
 59378
 59379
 59380
 59381
 59382
 59383
 59384
 59385
 59386
 59387
 59388
 59389
 59390
 59391
 59392
 59393
 59394
 59395
 59396
 59397
 59398
 59399
 59400
 59401
 59402
 59403
 59404
 59405
 59406
 59407
 59408
 59409
 59410
 59411
 59412
 59413
 59414
 59415
 59416
 59417
 59418
 59419
 59420
 59421
 59422
 59423
 59424
 59425
 59426
 59427
 59428
 59429
 59430
 59431
 59432
 59433
 59434
 59435
 59436
 59437
 59438
 59439
 59440
 59441
 59442
 59443
 59444
 59445
 59446
 59447
 59448
 59449
 59450
 59451
 59452
 59453
 59454
 59455
 59456
 59457
 59458
 59459
 59460
 59461
 59462
 59463
 59464
 59465
 59466
 59467
 59468
 59469
 59470
 59471
 59472
 59473
 59474
 59475
 59476
 59477
 59478
 59479
 59480
 59481
 59482
 59483
 59484
 59485
 59486
 59487
 59488
 59489
 59490
 59491
 59492
 59493
 59494
 59495
 59496
 59497
 59498
 59499
 59500
 59501
 59502
 59503
 59504
 59505
 59506
 59507
 59508
 59509
 59510
 59511
 59512
 59513
 59514
 59515
 59516
 59517
 59518
 59519
 59520
 59521
 59522
 59523
 59524
 59525
 59526
 59527
 59528
 59529
 59530
 59531
 59532
 59533
 59534
 59535
 59536
 59537
 59538
 59539
 59540
 59541
 59542
 59543
 59544
 59545
 59546
 59547
 59548
 59549
 59550
 59551
 59552
 59553
 59554
 59555
 59556
 59557
 59558
 59559
 59560
 59561
 59562
 59563
 59564
 59565
 59566
 59567
 59568
 59569
 59570
 59571
 59572
 59573
 59574
 59575
 59576
 59577
 59578
 59579
 59580
 59581
 59582
 59583
 59584
 59585
 59586
 59587
 59588
 59589
 59590
 59591
 59592
 59593
 59594
 59595
 59596
 59597
 59598
 59599
 59600
 59601
 59602
 59603
 59604
 59605
 59606
 59607
 59608
 59609
 59610
 59611
 59612
 59613
 59614
 59615
 59616
 59617
 59618
 59619
 59620
 59621
 59622
 59623
 59624
 59625
 59626
 59627
 59628
 59629
 59630
 59631
 59632
 59633
 59634
 59635
 59636
 59637
 59638
 59639
 59640
 59641
 59642
 59643
 59644
 59645
 59646
 59647
 59648
 59649
 59650
 59651
 59652
 59653
 59654
 59655
 59656
 59657
 59658
 59659
 59660
 59661
 59662
 59663
 59664
 59665
 59666
 59667
 59668
 59669
 59670
 59671
 59672
 59673
 59674
 59675
 59676
 59677
 59678
 59679
 59680
 59681
 59682
 59683
 59684
 59685
 59686
 59687
 59688
 59689
 59690
 59691
 59692
 59693
 59694
 59695
 59696
 59697
 59698
 59699
 59700
 59701
 59702
 59703
 59704
 59705
 59706
 59707
 59708
 59709
 59710
 59711
 59712
 59713
 59714
 59715
 59716
 59717
 59718
 59719
 59720
 59721
 59722
 59723
 59724
 59725
 59726
 59727
 59728
 59729
 59730
 59731
 59732
 59733
 59734
 59735
 59736
 59737
 59738
 59739
 59740
 59741
 59742
 59743
 59744
 59745
 59746
 59747
 59748
 59749
 59750
 59751
 59752
 59753
 59754
 59755
 59756
 59757
 59758
 59759
 59760
 59761
 59762
 59763
 59764
 59765
 59766
 59767
 59768
 59769
 59770
 59771
 59772
 59773
 59774
 59775
 59776
 59777
 59778
 59779
 59780
 59781
 59782
 59783
 59784
 59785
 59786
 59787
 59788
 59789
 59790
 59791
 59792
 59793
 59794
 59795
 59796
 59797
 59798
 59799
 59800
 59801
 59802
 59803
 59804
 59805
 59806
 59807
 59808
 59809
 59810
 59811
 59812
 59813
 59814
 59815
 59816
 59817
 59818
 59819
 59820
 59821
 59822
 59823
 59824
 59825
 59826
 59827
 59828
 59829
 59830
 59831
 59832
 59833
 59834
 59835
 59836
 59837
 59838
 59839
 59840
 59841
 59842
 59843
 59844
 59845
 59846
 59847
 59848
 59849
 59850
 59851
 59852
 59853
 59854
 59855
 59856
 59857
 59858
 59859
 59860
 59861
 59862
 59863
 59864
 59865
 59866
 59867
 59868
 59869
 59870
 59871
 59872
 59873
 59874
 59875
 59876
 59877
 59878
 59879
 59880
 59881
 59882
 59883
 59884
 59885
 59886
 59887
 59888
 59889
 59890
 59891
 59892
 59893
 59894
 59895
 59896
 59897
 59898
 59899
 59900
 59901
 59902
 59903
 59904
 59905
 59906
 59907
 59908
 59909
 59910
 59911
 59912
 59913
 59914
 59915
 59916
 59917
 59918
 59919
 59920
 59921
 59922
 59923
 59924
 59925
 59926
 59927
 59928
 59929
 59930
 59931
 59932
 59933
 59934
 59935
 59936
 59937
 59938
 59939
 59940
 59941
 59942
 59943
 59944
 59945
 59946
 59947
 59948
 59949
 59950
 59951
 59952
 59953
 59954
 59955
 59956
 59957
 59958
 59959
 59960
 59961
 59962
 59963
 59964
 59965
 59966
 59967
 59968
 59969
 59970
 59971
 59972
 59973
 59974
 59975
 59976
 59977
 59978
 59979
 59980
 59981
 59982
 59983
 59984
 59985
 59986
 59987
 59988
 59989
 59990
 59991
 59992
 59993
 59994
 59995
 59996
 59997
 59998
 59999
 60000
 60001
 60002
 60003
 60004
 60005
 60006
 60007
 60008
 60009
 60010
 60011
 60012
 60013
 60014
 60015
 60016
 60017
 60018
 60019
 60020
 60021
 60022
 60023
 60024
 60025
 60026
 60027
 60028
 60029
 60030
 60031
 60032
 60033
 60034
 60035
 60036
 60037
 60038
 60039
 60040
 60041
 60042
 60043
 60044
 60045
 60046
 60047
 60048
 60049
 60050
 60051
 60052
 60053
 60054
 60055
 60056
 60057
 60058
 60059
 60060
 60061
 60062
 60063
 60064
 60065
 60066
 60067
 60068
 60069
 60070
 60071
 60072
 60073
 60074
 60075
 60076
 60077
 60078
 60079
 60080
 60081
 60082
 60083
 60084
 60085
 60086
 60087
 60088
 60089
 60090
 60091
 60092
 60093
 60094
 60095
 60096
 60097
 60098
 60099
 60100
 60101
 60102
 60103
 60104
 60105
 60106
 60107
 60108
 60109
 60110
 60111
 60112
 60113
 60114
 60115
 60116
 60117
 60118
 60119
 60120
 60121
 60122
 60123
 60124
 60125
 60126
 60127
 60128
 60129
 60130
 60131
 60132
 60133
 60134
 60135
 60136
 60137
 60138
 60139
 60140
 60141
 60142
 60143
 60144
 60145
 60146
 60147
 60148
 60149
 60150
 60151
 60152
 60153
 60154
 60155
 60156
 60157
 60158
 60159
 60160
 60161
 60162
 60163
 60164
 60165
 60166
 60167
 60168
 60169
 60170
 60171
 60172
 60173
 60174
 60175
 60176
 60177
 60178
 60179
 60180
 60181
 60182
 60183
 60184
 60185
 60186
 60187
 60188
 60189
 60190
 60191
 60192
 60193
 60194
 60195
 60196
 60197
 60198
 60199
 60200
 60201
 60202
 60203
 60204
 60205
 60206
 60207
 60208
 60209
 60210
 60211
 60212
 60213
 60214
 60215
 60216
 60217
 60218
 60219
 60220
 60221
 60222
 60223
 60224
 60225
 60226
 60227
 60228
 60229
 60230
 60231
 60232
 60233
 60234
 60235
 60236
 60237
 60238
 60239
 60240
 60241
 60242
 60243
 60244
 60245
 60246
 60247
 60248
 60249
 60250
 60251
 60252
 60253
 60254
 60255
 60256
 60257
 60258
 60259
 60260
 60261
 60262
 60263
 60264
 60265
 60266
 60267
 60268
 60269
 60270
 60271
 60272
 60273
 60274
 60275
 60276
 60277
 60278
 60279
 60280
 60281
 60282
 60283
 60284
 60285
 60286
 60287
 60288
 60289
 60290
 60291
 60292
 60293
 60294
 60295
 60296
 60297
 60298
 60299
 60300
 60301
 60302
 60303
 60304
 60305
 60306
 60307
 60308
 60309
 60310
 60311
 60312
 60313
 60314
 60315
 60316
 60317
 60318
 60319
 60320
 60321
 60322
 60323
 60324
 60325
 60326
 60327
 60328
 60329
 60330
 60331
 60332
 60333
 60334
 60335
 60336
 60337
 60338
 60339
 60340
 60341
 60342
 60343
 60344
 60345
 60346
 60347
 60348
 60349
 60350
 60351
 60352
 60353
 60354
 60355
 60356
 60357
 60358
 60359
 60360
 60361
 60362
 60363
 60364
 60365
 60366
 60367
 60368
 60369
 60370
 60371
 60372
 60373
 60374
 60375
 60376
 60377
 60378
 60379
 60380
 60381
 60382
 60383
 60384
 60385
 60386
 60387
 60388
 60389
 60390
 60391
 60392
 60393
 60394
 60395
 60396
 60397
 60398
 60399
 60400
 60401
 60402
 60403
 60404
 60405
 60406
 60407
 60408
 60409
 60410
 60411
 60412
 60413
 60414
 60415
 60416
 60417
 60418
 60419
 60420
 60421
 60422
 60423
 60424
 60425
 60426
 60427
 60428
 60429
 60430
 60431
 60432
 60433
 60434
 60435
 60436
 60437
 60438
 60439
 60440
 60441
 60442
 60443
 60444
 60445
 60446
 60447
 60448
 60449
 60450
 60451
 60452
 60453
 60454
 60455
 60456
 60457
 60458
 60459
 60460
 60461
 60462
 60463
 60464
 60465
 60466
 60467
 60468
 60469
 60470
 60471
 60472
 60473
 60474
 60475
 60476
 60477
 60478
 60479
 60480
 60481
 60482
 60483
 60484
 60485
 60486
 60487
 60488
 60489
 60490
 60491
 60492
 60493
 60494
 60495
 60496
 60497
 60498
 60499
 60500
 60501
 60502
 60503
 60504
 60505
 60506
 60507
 60508
 60509
 60510
 60511
 60512
 60513
 60514
 60515
 60516
 60517
 60518
 60519
 60520
 60521
 60522
 60523
 60524
 60525
 60526
 60527
 60528
 60529
 60530
 60531
 60532
 60533
 60534
 60535
 60536
 60537
 60538
 60539
 60540
 60541
 60542
 60543
 60544
 60545
 60546
 60547
 60548
 60549
 60550
 60551
 60552
 60553
 60554
 60555
 60556
 60557
 60558
 60559
 60560
 60561
 60562
 60563
 60564
 60565
 60566
 60567
 60568
 60569
 60570
 60571
 60572
 60573
 60574
 60575
 60576
 60577
 60578
 60579
 60580
 60581
 60582
 60583
 60584
 60585
 60586
 60587
 60588
 60589
 60590
 60591
 60592
 60593
 60594
 60595
 60596
 60597
 60598
 60599
 60600
 60601
 60602
 60603
 60604
 60605
 60606
 60607
 60608
 60609
 60610
 60611
 60612
 60613
 60614
 60615
 60616
 60617
 60618
 60619
 60620
 60621
 60622
 60623
 60624
 60625
 60626
 60627
 60628
 60629
 60630
 60631
 60632
 60633
 60634
 60635
 60636
 60637
 60638
 60639
 60640
 60641
 60642
 60643
 60644
 60645
 60646
 60647
 60648
 60649
 60650
 60651
 60652
 60653
 60654
 60655
 60656
 60657
 60658
 60659
 60660
 60661
 60662
 60663
 60664
 60665
 60666
 60667
 60668
 60669
 60670
 60671
 60672
 60673
 60674
 60675
 60676
 60677
 60678
 60679
 60680
 60681
 60682
 60683
 60684
 60685
 60686
 60687
 60688
 60689
 60690
 60691
 60692
 60693
 60694
 60695
 60696
 60697
 60698
 60699
 60700
 60701
 60702
 60703
 60704
 60705
 60706
 60707
 60708
 60709
 60710
 60711
 60712
 60713
 60714
 60715
 60716
 60717
 60718
 60719
 60720
 60721
 60722
 60723
 60724
 60725
 60726
 60727
 60728
 60729
 60730
 60731
 60732
 60733
 60734
 60735
 60736
 60737
 60738
 60739
 60740
 60741
 60742
 60743
 60744
 60745
 60746
 60747
 60748
 60749
 60750
 60751
 60752
 60753
 60754
 60755
 60756
 60757
 60758
 60759
 60760
 60761
 60762
 60763
 60764
 60765
 60766
 60767
 60768
 60769
 60770
 60771
 60772
 60773
 60774
 60775
 60776
 60777
 60778
 60779
 60780
 60781
 60782
 60783
 60784
 60785
 60786
 60787
 60788
 60789
 60790
 60791
 60792
 60793
 60794
 60795
 60796
 60797
 60798
 60799
 60800
 60801
 60802
 60803
 60804
 60805
 60806
 60807
 60808
 60809
 60810
 60811
 60812
 60813
 60814
 60815
 60816
 60817
 60818
 60819
 60820
 60821
 60822
 60823
 60824
 60825
 60826
 60827
 60828
 60829
 60830
 60831
 60832
 60833
 60834
 60835
 60836
 60837
 60838
 60839
 60840
 60841
 60842
 60843
 60844
 60845
 60846
 60847
 60848
 60849
 60850
 60851
 60852
 60853
 60854
 60855
 60856
 60857
 60858
 60859
 60860
 60861
 60862
 60863
 60864
 60865
 60866
 60867
 60868
 60869
 60870
 60871
 60872
 60873
 60874
 60875
 60876
 60877
 60878
 60879
 60880
 60881
 60882
 60883
 60884
 60885
 60886
 60887
 60888
 60889
 60890
 60891
 60892
 60893
 60894
 60895
 60896
 60897
 60898
 60899
 60900
 60901
 60902
 60903
 60904
 60905
 60906
 60907
 60908
 60909
 60910
 60911
 60912
 60913
 60914
 60915
 60916
 60917
 60918
 60919
 60920
 60921
 60922
 60923
 60924
 60925
 60926
 60927
 60928
 60929
 60930
 60931
 60932
 60933
 60934
 60935
 60936
 60937
 60938
 60939
 60940
 60941
 60942
 60943
 60944
 60945
 60946
 60947
 60948
 60949
 60950
 60951
 60952
 60953
 60954
 60955
 60956
 60957
 60958
 60959
 60960
 60961
 60962
 60963
 60964
 60965
 60966
 60967
 60968
 60969
 60970
 60971
 60972
 60973
 60974
 60975
 60976
 60977
 60978
 60979
 60980
 60981
 60982
 60983
 60984
 60985
 60986
 60987
 60988
 60989
 60990
 60991
 60992
 60993
 60994
 60995
 60996
 60997
 60998
 60999
 61000
 61001
 61002
 61003
 61004
 61005
 61006
 61007
 61008
 61009
 61010
 61011
 61012
 61013
 61014
 61015
 61016
 61017
 61018
 61019
 61020
 61021
 61022
 61023
 61024
 61025
 61026
 61027
 61028
 61029
 61030
 61031
 61032
 61033
 61034
 61035
 61036
 61037
 61038
 61039
 61040
 61041
 61042
 61043
 61044
 61045
 61046
 61047
 61048
 61049
 61050
 61051
 61052
 61053
 61054
 61055
 61056
 61057
 61058
 61059
 61060
 61061
 61062
 61063
 61064
 61065
 61066
 61067
 61068
 61069
 61070
 61071
 61072
 61073
 61074
 61075
 61076
 61077
 61078
 61079
 61080
 61081
 61082
 61083
 61084
 61085
 61086
 61087
 61088
 61089
 61090
 61091
 61092
 61093
 61094
 61095
 61096
 61097
 61098
 61099
 61100
 61101
 61102
 61103
 61104
 61105
 61106
 61107
 61108
 61109
 61110
 61111
 61112
 61113
 61114
 61115
 61116
 61117
 61118
 61119
 61120
 61121
 61122
 61123
 61124
 61125
 61126
 61127
 61128
 61129
 61130
 61131
 61132
 61133
 61134
 61135
 61136
 61137
 61138
 61139
 61140
 61141
 61142
 61143
 61144
 61145
 61146
 61147
 61148
 61149
 61150
 61151
 61152
 61153
 61154
 61155
 61156
 61157
 61158
 61159
 61160
 61161
 61162
 61163
 61164
 61165
 61166
 61167
 61168
 61169
 61170
 61171
 61172
 61173
 61174
 61175
 61176
 61177
 61178
 61179
 61180
 61181
 61182
 61183
 61184
 61185
 61186
 61187
 61188
 61189
 61190
 61191
 61192
 61193
 61194
 61195
 61196
 61197
 61198
 61199
 61200
 61201
 61202
 61203
 61204
 61205
 61206
 61207
 61208
 61209
 61210
 61211
 61212
 61213
 61214
 61215
 61216
 61217
 61218
 61219
 61220
 61221
 61222
 61223
 61224
 61225
 61226
 61227
 61228
 61229
 61230
 61231
 61232
 61233
 61234
 61235
 61236
 61237
 61238
 61239
 61240
 61241
 61242
 61243
 61244
 61245
 61246
 61247
 61248
 61249
 61250
 61251
 61252
 61253
 61254
 61255
 61256
 61257
 61258
 61259
 61260
 61261
 61262
 61263
 61264
 61265
 61266
 61267
 61268
 61269
 61270
 61271
 61272
 61273
 61274
 61275
 61276
 61277
 61278
 61279
 61280
 61281
 61282
 61283
 61284
 61285
 61286
 61287
 61288
 61289
 61290
 61291
 61292
 61293
 61294
 61295
 61296
 61297
 61298
 61299
 61300
 61301
 61302
 61303
 61304
 61305
 61306
 61307
 61308
 61309
 61310
 61311
 61312
 61313
 61314
 61315
 61316
 61317
 61318
 61319
 61320
 61321
 61322
 61323
 61324
 61325
 61326
 61327
 61328
 61329
 61330
 61331
 61332
 61333
 61334
 61335
 61336
 61337
 61338
 61339
 61340
 61341
 61342
 61343
 61344
 61345
 61346
 61347
 61348
 61349
 61350
 61351
 61352
 61353
 61354
 61355
 61356
 61357
 61358
 61359
 61360
 61361
 61362
 61363
 61364
 61365
 61366
 61367
 61368
 61369
 61370
 61371
 61372
 61373
 61374
 61375
 61376
 61377
 61378
 61379
 61380
 61381
 61382
 61383
 61384
 61385
 61386
 61387
 61388
 61389
 61390
 61391
 61392
 61393
 61394
 61395
 61396
 61397
 61398
 61399
 61400
 61401
 61402
 61403
 61404
 61405
 61406
 61407
 61408
 61409
 61410
 61411
 61412
 61413
 61414
 61415
 61416
 61417
 61418
 61419
 61420
 61421
 61422
 61423
 61424
 61425
 61426
 61427
 61428
 61429
 61430
 61431
 61432
 61433
 61434
 61435
 61436
 61437
 61438
 61439
 61440
 61441
 61442
 61443
 61444
 61445
 61446
 61447
 61448
 61449
 61450
 61451
 61452
 61453
 61454
 61455
 61456
 61457
 61458
 61459
 61460
 61461
 61462
 61463
 61464
 61465
 61466
 61467
 61468
 61469
 61470
 61471
 61472
 61473
 61474
 61475
 61476
 61477
 61478
 61479
 61480
 61481
 61482
 61483
 61484
 61485
 61486
 61487
 61488
 61489
 61490
 61491
 61492
 61493
 61494
 61495
 61496
 61497
 61498
 61499
 61500
 61501
 61502
 61503
 61504
 61505
 61506
 61507
 61508
 61509
 61510
 61511
 61512
 61513
 61514
 61515
 61516
 61517
 61518
 61519
 61520
 61521
 61522
 61523
 61524
 61525
 61526
 61527
 61528
 61529
 61530
 61531
 61532
 61533
 61534
 61535
 61536
 61537
 61538
 61539
 61540
 61541
 61542
 61543
 61544
 61545
 61546
 61547
 61548
 61549
 61550
 61551
 61552
 61553
 61554
 61555
 61556
 61557
 61558
 61559
 61560
 61561
 61562
 61563
 61564
 61565
 61566
 61567
 61568
 61569
 61570
 61571
 61572
 61573
 61574
 61575
 61576
 61577
 61578
 61579
 61580
 61581
 61582
 61583
 61584
 61585
 61586
 61587
 61588
 61589
 61590
 61591
 61592
 61593
 61594
 61595
 61596
 61597
 61598
 61599
 61600
 61601
 61602
 61603
 61604
 61605
 61606
 61607
 61608
 61609
 61610
 61611
 61612
 61613
 61614
 61615
 61616
 61617
 61618
 61619
 61620
 61621
 61622
 61623
 61624
 61625
 61626
 61627
 61628
 61629
 61630
 61631
 61632
 61633
 61634
 61635
 61636
 61637
 61638
 61639
 61640
 61641
 61642
 61643
 61644
 61645
 61646
 61647
 61648
 61649
 61650
 61651
 61652
 61653
 61654
 61655
 61656
 61657
 61658
 61659
 61660
 61661
 61662
 61663
 61664
 61665
 61666
 61667
 61668
 61669
 61670
 61671
 61672
 61673
 61674
 61675
 61676
 61677
 61678
 61679
 61680
 61681
 61682
 61683
 61684
 61685
 61686
 61687
 61688
 61689
 61690
 61691
 61692
 61693
 61694
 61695
 61696
 61697
 61698
 61699
 61700
 61701
 61702
 61703
 61704
 61705
 61706
 61707
 61708
 61709
 61710
 61711
 61712
 61713
 61714
 61715
 61716
 61717
 61718
 61719
 61720
 61721
 61722
 61723
 61724
 61725
 61726
 61727
 61728
 61729
 61730
 61731
 61732
 61733
 61734
 61735
 61736
 61737
 61738
 61739
 61740
 61741
 61742
 61743
 61744
 61745
 61746
 61747
 61748
 61749
 61750
 61751
 61752
 61753
 61754
 61755
 61756
 61757
 61758
 61759
 61760
 61761
 61762
 61763
 61764
 61765
 61766
 61767
 61768
 61769
 61770
 61771
 61772
 61773
 61774
 61775
 61776
 61777
 61778
 61779
 61780
 61781
 61782
 61783
 61784
 61785
 61786
 61787
 61788
 61789
 61790
 61791
 61792
 61793
 61794
 61795
 61796
 61797
 61798
 61799
 61800
 61801
 61802
 61803
 61804
 61805
 61806
 61807
 61808
 61809
 61810
 61811
 61812
 61813
 61814
 61815
 61816
 61817
 61818
 61819
 61820
 61821
 61822
 61823
 61824
 61825
 61826
 61827
 61828
 61829
 61830
 61831
 61832
 61833
 61834
 61835
 61836
 61837
 61838
 61839
 61840
 61841
 61842
 61843
 61844
 61845
 61846
 61847
 61848
 61849
 61850
 61851
 61852
 61853
 61854
 61855
 61856
 61857
 61858
 61859
 61860
 61861
 61862
 61863
 61864
 61865
 61866
 61867
 61868
 61869
 61870
 61871
 61872
 61873
 61874
 61875
 61876
 61877
 61878
 61879
 61880
 61881
 61882
 61883
 61884
 61885
 61886
 61887
 61888
 61889
 61890
 61891
 61892
 61893
 61894
 61895
 61896
 61897
 61898
 61899
 61900
 61901
 61902
 61903
 61904
 61905
 61906
 61907
 61908
 61909
 61910
 61911
 61912
 61913
 61914
 61915
 61916
 61917
 61918
 61919
 61920
 61921
 61922
 61923
 61924
 61925
 61926
 61927
 61928
 61929
 61930
 61931
 61932
 61933
 61934
 61935
 61936
 61937
 61938
 61939
 61940
 61941
 61942
 61943
 61944
 61945
 61946
 61947
 61948
 61949
 61950
 61951
 61952
 61953
 61954
 61955
 61956
 61957
 61958
 61959
 61960
 61961
 61962
 61963
 61964
 61965
 61966
 61967
 61968
 61969
 61970
 61971
 61972
 61973
 61974
 61975
 61976
 61977
 61978
 61979
 61980
 61981
 61982
 61983
 61984
 61985
 61986
 61987
 61988
 61989
 61990
 61991
 61992
 61993
 61994
 61995
 61996
 61997
 61998
 61999
 62000
 62001
 62002
 62003
 62004
 62005
 62006
 62007
 62008
 62009
 62010
 62011
 62012
 62013
 62014
 62015
 62016
 62017
 62018
 62019
 62020
 62021
 62022
 62023
 62024
 62025
 62026
 62027
 62028
 62029
 62030
 62031
 62032
 62033
 62034
 62035
 62036
 62037
 62038
 62039
 62040
 62041
 62042
 62043
 62044
 62045
 62046
 62047
 62048
 62049
 62050
 62051
 62052
 62053
 62054
 62055
 62056
 62057
 62058
 62059
 62060
 62061
 62062
 62063
 62064
 62065
 62066
 62067
 62068
 62069
 62070
 62071
 62072
 62073
 62074
 62075
 62076
 62077
 62078
 62079
 62080
 62081
 62082
 62083
 62084
 62085
 62086
 62087
 62088
 62089
 62090
 62091
 62092
 62093
 62094
 62095
 62096
 62097
 62098
 62099
 62100
 62101
 62102
 62103
 62104
 62105
 62106
 62107
 62108
 62109
 62110
 62111
 62112
 62113
 62114
 62115
 62116
 62117
 62118
 62119
 62120
 62121
 62122
 62123
 62124
 62125
 62126
 62127
 62128
 62129
 62130
 62131
 62132
 62133
 62134
 62135
 62136
 62137
 62138
 62139
 62140
 62141
 62142
 62143
 62144
 62145
 62146
 62147
 62148
 62149
 62150
 62151
 62152
 62153
 62154
 62155
 62156
 62157
 62158
 62159
 62160
 62161
 62162
 62163
 62164
 62165
 62166
 62167
 62168
 62169
 62170
 62171
 62172
 62173
 62174
 62175
 62176
 62177
 62178
 62179
 62180
 62181
 62182
 62183
 62184
 62185
 62186
 62187
 62188
 62189
 62190
 62191
 62192
 62193
 62194
 62195
 62196
 62197
 62198
 62199
 62200
 62201
 62202
 62203
 62204
 62205
 62206
 62207
 62208
 62209
 62210
 62211
 62212
 62213
 62214
 62215
 62216
 62217
 62218
 62219
 62220
 62221
 62222
 62223
 62224
 62225
 62226
 62227
 62228
 62229
 62230
 62231
 62232
 62233
 62234
 62235
 62236
 62237
 62238
 62239
 62240
 62241
 62242
 62243
 62244
 62245
 62246
 62247
 62248
 62249
 62250
 62251
 62252
 62253
 62254
 62255
 62256
 62257
 62258
 62259
 62260
 62261
 62262
 62263
 62264
 62265
 62266
 62267
 62268
 62269
 62270
 62271
 62272
 62273
 62274
 62275
 62276
 62277
 62278
 62279
 62280
 62281
 62282
 62283
 62284
 62285
 62286
 62287
 62288
 62289
 62290
 62291
 62292
 62293
 62294
 62295
 62296
 62297
 62298
 62299
 62300
 62301
 62302
 62303
 62304
 62305
 62306
 62307
 62308
 62309
 62310
 62311
 62312
 62313
 62314
 62315
 62316
 62317
 62318
 62319
 62320
 62321
 62322
 62323
 62324
 62325
 62326
 62327
 62328
 62329
 62330
 62331
 62332
 62333
 62334
 62335
 62336
 62337
 62338
 62339
 62340
 62341
 62342
 62343
 62344
 62345
 62346
 62347
 62348
 62349
 62350
 62351
 62352
 62353
 62354
 62355
 62356
 62357
 62358
 62359
 62360
 62361
 62362
 62363
 62364
 62365
 62366
 62367
 62368
 62369
 62370
 62371
 62372
 62373
 62374
 62375
 62376
 62377
 62378
 62379
 62380
 62381
 62382
 62383
 62384
 62385
 62386
 62387
 62388
 62389
 62390
 62391
 62392
 62393
 62394
 62395
 62396
 62397
 62398
 62399
 62400
 62401
 62402
 62403
 62404
 62405
 62406
 62407
 62408
 62409
 62410
 62411
 62412
 62413
 62414
 62415
 62416
 62417
 62418
 62419
 62420
 62421
 62422
 62423
 62424
 62425
 62426
 62427
 62428
 62429
 62430
 62431
 62432
 62433
 62434
 62435
 62436
 62437
 62438
 62439
 62440
 62441
 62442
 62443
 62444
 62445
 62446
 62447
 62448
 62449
 62450
 62451
 62452
 62453
 62454
 62455
 62456
 62457
 62458
 62459
 62460
 62461
 62462
 62463
 62464
 62465
 62466
 62467
 62468
 62469
 62470
 62471
 62472
 62473
 62474
 62475
 62476
 62477
 62478
 62479
 62480
 62481
 62482
 62483
 62484
 62485
 62486
 62487
 62488
 62489
 62490
 62491
 62492
 62493
 62494
 62495
 62496
 62497
 62498
 62499
 62500
 62501
 62502
 62503
 62504
 62505
 62506
 62507
 62508
 62509
 62510
 62511
 62512
 62513
 62514
 62515
 62516
 62517
 62518
 62519
 62520
 62521
 62522
 62523
 62524
 62525
 62526
 62527
 62528
 62529
 62530
 62531
 62532
 62533
 62534
 62535
 62536
 62537
 62538
 62539
 62540
 62541
 62542
 62543
 62544
 62545
 62546
 62547
 62548
 62549
 62550
 62551
 62552
 62553
 62554
 62555
 62556
 62557
 62558
 62559
 62560
 62561
 62562
 62563
 62564
 62565
 62566
 62567
 62568
 62569
 62570
 62571
 62572
 62573
 62574
 62575
 62576
 62577
 62578
 62579
 62580
 62581
 62582
 62583
 62584
 62585
 62586
 62587
 62588
 62589
 62590
 62591
 62592
 62593
 62594
 62595
 62596
 62597
 62598
 62599
 62600
 62601
 62602
 62603
 62604
 62605
 62606
 62607
 62608
 62609
 62610
 62611
 62612
 62613
 62614
 62615
 62616
 62617
 62618
 62619
 62620
 62621
 62622
 62623
 62624
 62625
 62626
 62627
 62628
 62629
 62630
 62631
 62632
 62633
 62634
 62635
 62636
 62637
 62638
 62639
 62640
 62641
 62642
 62643
 62644
 62645
 62646
 62647
 62648
 62649
 62650
 62651
 62652
 62653
 62654
 62655
 62656
 62657
 62658
 62659
 62660
 62661
 62662
 62663
 62664
 62665
 62666
 62667
 62668
 62669
 62670
 62671
 62672
 62673
 62674
 62675
 62676
 62677
 62678
 62679
 62680
 62681
 62682
 62683
 62684
 62685
 62686
 62687
 62688
 62689
 62690
 62691
 62692
 62693
 62694
 62695
 62696
 62697
 62698
 62699
 62700
 62701
 62702
 62703
 62704
 62705
 62706
 62707
 62708
 62709
 62710
 62711
 62712
 62713
 62714
 62715
 62716
 62717
 62718
 62719
 62720
 62721
 62722
 62723
 62724
 62725
 62726
 62727
 62728
 62729
 62730
 62731
 62732
 62733
 62734
 62735
 62736
 62737
 62738
 62739
 62740
 62741
 62742
 62743
 62744
 62745
 62746
 62747
 62748
 62749
 62750
 62751
 62752
 62753
 62754
 62755
 62756
 62757
 62758
 62759
 62760
 62761
 62762
 62763
 62764
 62765
 62766
 62767
 62768
 62769
 62770
 62771
 62772
 62773
 62774
 62775
 62776
 62777
 62778
 62779
 62780
 62781
 62782
 62783
 62784
 62785
 62786
 62787
 62788
 62789
 62790
 62791
 62792
 62793
 62794
 62795
 62796
 62797
 62798
 62799
 62800
 62801
 62802
 62803
 62804
 62805
 62806
 62807
 62808
 62809
 62810
 62811
 62812
 62813
 62814
 62815
 62816
 62817
 62818
 62819
 62820
 62821
 62822
 62823
 62824
 62825
 62826
 62827
 62828
 62829
 62830
 62831
 62832
 62833
 62834
 62835
 62836
 62837
 62838
 62839
 62840
 62841
 62842
 62843
 62844
 62845
 62846
 62847
 62848
 62849
 62850
 62851
 62852
 62853
 62854
 62855
 62856
 62857
 62858
 62859
 62860
 62861
 62862
 62863
 62864
 62865
 62866
 62867
 62868
 62869
 62870
 62871
 62872
 62873
 62874
 62875
 62876
 62877
 62878
 62879
 62880
 62881
 62882
 62883
 62884
 62885
 62886
 62887
 62888
 62889
 62890
 62891
 62892
 62893
 62894
 62895
 62896
 62897
 62898
 62899
 62900
 62901
 62902
 62903
 62904
 62905
 62906
 62907
 62908
 62909
 62910
 62911
 62912
 62913
 62914
 62915
 62916
 62917
 62918
 62919
 62920
 62921
 62922
 62923
 62924
 62925
 62926
 62927
 62928
 62929
 62930
 62931
 62932
 62933
 62934
 62935
 62936
 62937
 62938
 62939
 62940
 62941
 62942
 62943
 62944
 62945
 62946
 62947
 62948
 62949
 62950
 62951
 62952
 62953
 62954
 62955
 62956
 62957
 62958
 62959
 62960
 62961
 62962
 62963
 62964
 62965
 62966
 62967
 62968
 62969
 62970
 62971
 62972
 62973
 62974
 62975
 62976
 62977
 62978
 62979
 62980
 62981
 62982
 62983
 62984
 62985
 62986
 62987
 62988
 62989
 62990
 62991
 62992
 62993
 62994
 62995
 62996
 62997
 62998
 62999
 63000
 63001
 63002
 63003
 63004
 63005
 63006
 63007
 63008
 63009
 63010
 63011
 63012
 63013
 63014
 63015
 63016
 63017
 63018
 63019
 63020
 63021
 63022
 63023
 63024
 63025
 63026
 63027
 63028
 63029
 63030
 63031
 63032
 63033
 63034
 63035
 63036
 63037
 63038
 63039
 63040
 63041
 63042
 63043
 63044
 63045
 63046
 63047
 63048
 63049
 63050
 63051
 63052
 63053
 63054
 63055
 63056
 63057
 63058
 63059
 63060
 63061
 63062
 63063
 63064
 63065
 63066
 63067
 63068
 63069
 63070
 63071
 63072
 63073
 63074
 63075
 63076
 63077
 63078
 63079
 63080
 63081
 63082
 63083
 63084
 63085
 63086
 63087
 63088
 63089
 63090
 63091
 63092
 63093
 63094
 63095
 63096
 63097
 63098
 63099
 63100
 63101
 63102
 63103
 63104
 63105
 63106
 63107
 63108
 63109
 63110
 63111
 63112
 63113
 63114
 63115
 63116
 63117
 63118
 63119
 63120
 63121
 63122
 63123
 63124
 63125
 63126
 63127
 63128
 63129
 63130
 63131
 63132
 63133
 63134
 63135
 63136
 63137
 63138
 63139
 63140
 63141
 63142
 63143
 63144
 63145
 63146
 63147
 63148
 63149
 63150
 63151
 63152
 63153
 63154
 63155
 63156
 63157
 63158
 63159
 63160
 63161
 63162
 63163
 63164
 63165
 63166
 63167
 63168
 63169
 63170
 63171
 63172
 63173
 63174
 63175
 63176
 63177
 63178
 63179
 63180
 63181
 63182
 63183
 63184
 63185
 63186
 63187
 63188
 63189
 63190
 63191
 63192
 63193
 63194
 63195
 63196
 63197
 63198
 63199
 63200
 63201
 63202
 63203
 63204
 63205
 63206
 63207
 63208
 63209
 63210
 63211
 63212
 63213
 63214
 63215
 63216
 63217
 63218
 63219
 63220
 63221
 63222
 63223
 63224
 63225
 63226
 63227
 63228
 63229
 63230
 63231
 63232
 63233
 63234
 63235
 63236
 63237
 63238
 63239
 63240
 63241
 63242
 63243
 63244
 63245
 63246
 63247
 63248
 63249
 63250
 63251
 63252
 63253
 63254
 63255
 63256
 63257
 63258
 63259
 63260
 63261
 63262
 63263
 63264
 63265
 63266
 63267
 63268
 63269
 63270
 63271
 63272
 63273
 63274
 63275
 63276
 63277
 63278
 63279
 63280
 63281
 63282
 63283
 63284
 63285
 63286
 63287
 63288
 63289
 63290
 63291
 63292
 63293
 63294
 63295
 63296
 63297
 63298
 63299
 63300
 63301
 63302
 63303
 63304
 63305
 63306
 63307
 63308
 63309
 63310
 63311
 63312
 63313
 63314
 63315
 63316
 63317
 63318
 63319
 63320
 63321
 63322
 63323
 63324
 63325
 63326
 63327
 63328
 63329
 63330
 63331
 63332
 63333
 63334
 63335
 63336
 63337
 63338
 63339
 63340
 63341
 63342
 63343
 63344
 63345
 63346
 63347
 63348
 63349
 63350
 63351
 63352
 63353
 63354
 63355
 63356
 63357
 63358
 63359
 63360
 63361
 63362
 63363
 63364
 63365
 63366
 63367
 63368
 63369
 63370
 63371
 63372
 63373
 63374
 63375
 63376
 63377
 63378
 63379
 63380
 63381
 63382
 63383
 63384
 63385
 63386
 63387
 63388
 63389
 63390
 63391
 63392
 63393
 63394
 63395
 63396
 63397
 63398
 63399
 63400
 63401
 63402
 63403
 63404
 63405
 63406
 63407
 63408
 63409
 63410
 63411
 63412
 63413
 63414
 63415
 63416
 63417
 63418
 63419
 63420
 63421
 63422
 63423
 63424
 63425
 63426
 63427
 63428
 63429
 63430
 63431
 63432
 63433
 63434
 63435
 63436
 63437
 63438
 63439
 63440
 63441
 63442
 63443
 63444
 63445
 63446
 63447
 63448
 63449
 63450
 63451
 63452
 63453
 63454
 63455
 63456
 63457
 63458
 63459
 63460
 63461
 63462
 63463
 63464
 63465
 63466
 63467
 63468
 63469
 63470
 63471
 63472
 63473
 63474
 63475
 63476
 63477
 63478
 63479
 63480
 63481
 63482
 63483
 63484
 63485
 63486
 63487
 63488
 63489
 63490
 63491
 63492
 63493
 63494
 63495
 63496
 63497
 63498
 63499
 63500
 63501
 63502
 63503
 63504
 63505
 63506
 63507
 63508
 63509
 63510
 63511
 63512
 63513
 63514
 63515
 63516
 63517
 63518
 63519
 63520
 63521
 63522
 63523
 63524
 63525
 63526
 63527
 63528
 63529
 63530
 63531
 63532
 63533
 63534
 63535
 63536
 63537
 63538
 63539
 63540
 63541
 63542
 63543
 63544
 63545
 63546
 63547
 63548
 63549
 63550
 63551
 63552
 63553
 63554
 63555
 63556
 63557
 63558
 63559
 63560
 63561
 63562
 63563
 63564
 63565
 63566
 63567
 63568
 63569
 63570
 63571
 63572
 63573
 63574
 63575
 63576
 63577
 63578
 63579
 63580
 63581
 63582
 63583
 63584
 63585
 63586
 63587
 63588
 63589
 63590
 63591
 63592
 63593
 63594
 63595
 63596
 63597
 63598
 63599
 63600
 63601
 63602
 63603
 63604
 63605
 63606
 63607
 63608
 63609
 63610
 63611
 63612
 63613
 63614
 63615
 63616
 63617
 63618
 63619
 63620
 63621
 63622
 63623
 63624
 63625
 63626
 63627
 63628
 63629
 63630
 63631
 63632
 63633
 63634
 63635
 63636
 63637
 63638
 63639
 63640
 63641
 63642
 63643
 63644
 63645
 63646
 63647
 63648
 63649
 63650
 63651
 63652
 63653
 63654
 63655
 63656
 63657
 63658
 63659
 63660
 63661
 63662
 63663
 63664
 63665
 63666
 63667
 63668
 63669
 63670
 63671
 63672
 63673
 63674
 63675
 63676
 63677
 63678
 63679
 63680
 63681
 63682
 63683
 63684
 63685
 63686
 63687
 63688
 63689
 63690
 63691
 63692
 63693
 63694
 63695
 63696
 63697
 63698
 63699
 63700
 63701
 63702
 63703
 63704
 63705
 63706
 63707
 63708
 63709
 63710
 63711
 63712
 63713
 63714
 63715
 63716
 63717
 63718
 63719
 63720
 63721
 63722
 63723
 63724
 63725
 63726
 63727
 63728
 63729
 63730
 63731
 63732
 63733
 63734
 63735
 63736
 63737
 63738
 63739
 63740
 63741
 63742
 63743
 63744
 63745
 63746
 63747
 63748
 63749
 63750
 63751
 63752
 63753
 63754
 63755
 63756
 63757
 63758
 63759
 63760
 63761
 63762
 63763
 63764
 63765
 63766
 63767
 63768
 63769
 63770
 63771
 63772
 63773
 63774
 63775
 63776
 63777
 63778
 63779
 63780
 63781
 63782
 63783
 63784
 63785
 63786
 63787
 63788
 63789
 63790
 63791
 63792
 63793
 63794
 63795
 63796
 63797
 63798
 63799
 63800
 63801
 63802
 63803
 63804
 63805
 63806
 63807
 63808
 63809
 63810
 63811
 63812
 63813
 63814
 63815
 63816
 63817
 63818
 63819
 63820
 63821
 63822
 63823
 63824
 63825
 63826
 63827
 63828
 63829
 63830
 63831
 63832
 63833
 63834
 63835
 63836
 63837
 63838
 63839
 63840
 63841
 63842
 63843
 63844
 63845
 63846
 63847
 63848
 63849
 63850
 63851
 63852
 63853
 63854
 63855
 63856
 63857
 63858
 63859
 63860
 63861
 63862
 63863
 63864
 63865
 63866
 63867
 63868
 63869
 63870
 63871
 63872
 63873
 63874
 63875
 63876
 63877
 63878
 63879
 63880
 63881
 63882
 63883
 63884
 63885
 63886
 63887
 63888
 63889
 63890
 63891
 63892
 63893
 63894
 63895
 63896
 63897
 63898
 63899
 63900
 63901
 63902
 63903
 63904
 63905
 63906
 63907
 63908
 63909
 63910
 63911
 63912
 63913
 63914
 63915
 63916
 63917
 63918
 63919
 63920
 63921
 63922
 63923
 63924
 63925
 63926
 63927
 63928
 63929
 63930
 63931
 63932
 63933
 63934
 63935
 63936
 63937
 63938
 63939
 63940
 63941
 63942
 63943
 63944
 63945
 63946
 63947
 63948
 63949
 63950
 63951
 63952
 63953
 63954
 63955
 63956
 63957
 63958
 63959
 63960
 63961
 63962
 63963
 63964
 63965
 63966
 63967
 63968
 63969
 63970
 63971
 63972
 63973
 63974
 63975
 63976
 63977
 63978
 63979
 63980
 63981
 63982
 63983
 63984
 63985
 63986
 63987
 63988
 63989
 63990
 63991
 63992
 63993
 63994
 63995
 63996
 63997
 63998
 63999
 64000
 64001
 64002
 64003
 64004
 64005
 64006
 64007
 64008
 64009
 64010
 64011
 64012
 64013
 64014
 64015
 64016
 64017
 64018
 64019
 64020
 64021
 64022
 64023
 64024
 64025
 64026
 64027
 64028
 64029
 64030
 64031
 64032
 64033
 64034
 64035
 64036
 64037
 64038
 64039
 64040
 64041
 64042
 64043
 64044
 64045
 64046
 64047
 64048
 64049
 64050
 64051
 64052
 64053
 64054
 64055
 64056
 64057
 64058
 64059
 64060
 64061
 64062
 64063
 64064
 64065
 64066
 64067
 64068
 64069
 64070
 64071
 64072
 64073
 64074
 64075
 64076
 64077
 64078
 64079
 64080
 64081
 64082
 64083
 64084
 64085
 64086
 64087
 64088
 64089
 64090
 64091
 64092
 64093
 64094
 64095
 64096
 64097
 64098
 64099
 64100
 64101
 64102
 64103
 64104
 64105
 64106
 64107
 64108
 64109
 64110
 64111
 64112
 64113
 64114
 64115
 64116
 64117
 64118
 64119
 64120
 64121
 64122
 64123
 64124
 64125
 64126
 64127
 64128
 64129
 64130
 64131
 64132
 64133
 64134
 64135
 64136
 64137
 64138
 64139
 64140
 64141
 64142
 64143
 64144
 64145
 64146
 64147
 64148
 64149
 64150
 64151
 64152
 64153
 64154
 64155
 64156
 64157
 64158
 64159
 64160
 64161
 64162
 64163
 64164
 64165
 64166
 64167
 64168
 64169
 64170
 64171
 64172
 64173
 64174
 64175
 64176
 64177
 64178
 64179
 64180
 64181
 64182
 64183
 64184
 64185
 64186
 64187
 64188
 64189
 64190
 64191
 64192
 64193
 64194
 64195
 64196
 64197
 64198
 64199
 64200
 64201
 64202
 64203
 64204
 64205
 64206
 64207
 64208
 64209
 64210
 64211
 64212
 64213
 64214
 64215
 64216
 64217
 64218
 64219
 64220
 64221
 64222
 64223
 64224
 64225
 64226
 64227
 64228
 64229
 64230
 64231
 64232
 64233
 64234
 64235
 64236
 64237
 64238
 64239
 64240
 64241
 64242
 64243
 64244
 64245
 64246
 64247
 64248
 64249
 64250
 64251
 64252
 64253
 64254
 64255
 64256
 64257
 64258
 64259
 64260
 64261
 64262
 64263
 64264
 64265
 64266
 64267
 64268
 64269
 64270
 64271
 64272
 64273
 64274
 64275
 64276
 64277
 64278
 64279
 64280
 64281
 64282
 64283
 64284
 64285
 64286
 64287
 64288
 64289
 64290
 64291
 64292
 64293
 64294
 64295
 64296
 64297
 64298
 64299
 64300
 64301
 64302
 64303
 64304
 64305
 64306
 64307
 64308
 64309
 64310
 64311
 64312
 64313
 64314
 64315
 64316
 64317
 64318
 64319
 64320
 64321
 64322
 64323
 64324
 64325
 64326
 64327
 64328
 64329
 64330
 64331
 64332
 64333
 64334
 64335
 64336
 64337
 64338
 64339
 64340
 64341
 64342
 64343
 64344
 64345
 64346
 64347
 64348
 64349
 64350
 64351
 64352
 64353
 64354
 64355
 64356
 64357
 64358
 64359
 64360
 64361
 64362
 64363
 64364
 64365
 64366
 64367
 64368
 64369
 64370
 64371
 64372
 64373
 64374
 64375
 64376
 64377
 64378
 64379
 64380
 64381
 64382
 64383
 64384
 64385
 64386
 64387
 64388
 64389
 64390
 64391
 64392
 64393
 64394
 64395
 64396
 64397
 64398
 64399
 64400
 64401
 64402
 64403
 64404
 64405
 64406
 64407
 64408
 64409
 64410
 64411
 64412
 64413
 64414
 64415
 64416
 64417
 64418
 64419
 64420
 64421
 64422
 64423
 64424
 64425
 64426
 64427
 64428
 64429
 64430
 64431
 64432
 64433
 64434
 64435
 64436
 64437
 64438
 64439
 64440
 64441
 64442
 64443
 64444
 64445
 64446
 64447
 64448
 64449
 64450
 64451
 64452
 64453
 64454
 64455
 64456
 64457
 64458
 64459
 64460
 64461
 64462
 64463
 64464
 64465
 64466
 64467
 64468
 64469
 64470
 64471
 64472
 64473
 64474
 64475
 64476
 64477
 64478
 64479
 64480
 64481
 64482
 64483
 64484
 64485
 64486
 64487
 64488
 64489
 64490
 64491
 64492
 64493
 64494
 64495
 64496
 64497
 64498
 64499
 64500
 64501
 64502
 64503
 64504
 64505
 64506
 64507
 64508
 64509
 64510
 64511
 64512
 64513
 64514
 64515
 64516
 64517
 64518
 64519
 64520
 64521
 64522
 64523
 64524
 64525
 64526
 64527
 64528
 64529
 64530
 64531
 64532
 64533
 64534
 64535
 64536
 64537
 64538
 64539
 64540
 64541
 64542
 64543
 64544
 64545
 64546
 64547
 64548
 64549
 64550
 64551
 64552
 64553
 64554
 64555
 64556
 64557
 64558
 64559
 64560
 64561
 64562
 64563
 64564
 64565
 64566
 64567
 64568
 64569
 64570
 64571
 64572
 64573
 64574
 64575
 64576
 64577
 64578
 64579
 64580
 64581
 64582
 64583
 64584
 64585
 64586
 64587
 64588
 64589
 64590
 64591
 64592
 64593
 64594
 64595
 64596
 64597
 64598
 64599
 64600
 64601
 64602
 64603
 64604
 64605
 64606
 64607
 64608
 64609
 64610
 64611
 64612
 64613
 64614
 64615
 64616
 64617
 64618
 64619
 64620
 64621
 64622
 64623
 64624
 64625
 64626
 64627
 64628
 64629
 64630
 64631
 64632
 64633
 64634
 64635
 64636
 64637
 64638
 64639
 64640
 64641
 64642
 64643
 64644
 64645
 64646
 64647
 64648
 64649
 64650
 64651
 64652
 64653
 64654
 64655
 64656
 64657
 64658
 64659
 64660
 64661
 64662
 64663
 64664
 64665
 64666
 64667
 64668
 64669
 64670
 64671
 64672
 64673
 64674
 64675
 64676
 64677
 64678
 64679
 64680
 64681
 64682
 64683
 64684
 64685
 64686
 64687
 64688
 64689
 64690
 64691
 64692
 64693
 64694
 64695
 64696
 64697
 64698
 64699
 64700
 64701
 64702
 64703
 64704
 64705
 64706
 64707
 64708
 64709
 64710
 64711
 64712
 64713
 64714
 64715
 64716
 64717
 64718
 64719
 64720
 64721
 64722
 64723
 64724
 64725
 64726
 64727
 64728
 64729
 64730
 64731
 64732
 64733
 64734
 64735
 64736
 64737
 64738
 64739
 64740
 64741
 64742
 64743
 64744
 64745
 64746
 64747
 64748
 64749
 64750
 64751
 64752
 64753
 64754
 64755
 64756
 64757
 64758
 64759
 64760
 64761
 64762
 64763
 64764
 64765
 64766
 64767
 64768
 64769
 64770
 64771
 64772
 64773
 64774
 64775
 64776
 64777
 64778
 64779
 64780
 64781
 64782
 64783
 64784
 64785
 64786
 64787
 64788
 64789
 64790
 64791
 64792
 64793
 64794
 64795
 64796
 64797
 64798
 64799
 64800
 64801
 64802
 64803
 64804
 64805
 64806
 64807
 64808
 64809
 64810
 64811
 64812
 64813
 64814
 64815
 64816
 64817
 64818
 64819
 64820
 64821
 64822
 64823
 64824
 64825
 64826
 64827
 64828
 64829
 64830
 64831
 64832
 64833
 64834
 64835
 64836
 64837
 64838
 64839
 64840
 64841
 64842
 64843
 64844
 64845
 64846
 64847
 64848
 64849
 64850
 64851
 64852
 64853
 64854
 64855
 64856
 64857
 64858
 64859
 64860
 64861
 64862
 64863
 64864
 64865
 64866
 64867
 64868
 64869
 64870
 64871
 64872
 64873
 64874
 64875
 64876
 64877
 64878
 64879
 64880
 64881
 64882
 64883
 64884
 64885
 64886
 64887
 64888
 64889
 64890
 64891
 64892
 64893
 64894
 64895
 64896
 64897
 64898
 64899
 64900
 64901
 64902
 64903
 64904
 64905
 64906
 64907
 64908
 64909
 64910
 64911
 64912
 64913
 64914
 64915
 64916
 64917
 64918
 64919
 64920
 64921
 64922
 64923
 64924
 64925
 64926
 64927
 64928
 64929
 64930
 64931
 64932
 64933
 64934
 64935
 64936
 64937
 64938
 64939
 64940
 64941
 64942
 64943
 64944
 64945
 64946
 64947
 64948
 64949
 64950
 64951
 64952
 64953
 64954
 64955
 64956
 64957
 64958
 64959
 64960
 64961
 64962
 64963
 64964
 64965
 64966
 64967
 64968
 64969
 64970
 64971
 64972
 64973
 64974
 64975
 64976
 64977
 64978
 64979
 64980
 64981
 64982
 64983
 64984
 64985
 64986
 64987
 64988
 64989
 64990
 64991
 64992
 64993
 64994
 64995
 64996
 64997
 64998
 64999
 65000
 65001
 65002
 65003
 65004
 65005
 65006
 65007
 65008
 65009
 65010
 65011
 65012
 65013
 65014
 65015
 65016
 65017
 65018
 65019
 65020
 65021
 65022
 65023
 65024
 65025
 65026
 65027
 65028
 65029
 65030
 65031
 65032
 65033
 65034
 65035
 65036
 65037
 65038
 65039
 65040
 65041
 65042
 65043
 65044
 65045
 65046
 65047
 65048
 65049
 65050
 65051
 65052
 65053
 65054
 65055
 65056
 65057
 65058
 65059
 65060
 65061
 65062
 65063
 65064
 65065
 65066
 65067
 65068
 65069
 65070
 65071
 65072
 65073
 65074
 65075
 65076
 65077
 65078
 65079
 65080
 65081
 65082
 65083
 65084
 65085
 65086
 65087
 65088
 65089
 65090
 65091
 65092
 65093
 65094
 65095
 65096
 65097
 65098
 65099
 65100
 65101
 65102
 65103
 65104
 65105
 65106
 65107
 65108
 65109
 65110
 65111
 65112
 65113
 65114
 65115
 65116
 65117
 65118
 65119
 65120
 65121
 65122
 65123
 65124
 65125
 65126
 65127
 65128
 65129
 65130
 65131
 65132
 65133
 65134
 65135
 65136
 65137
 65138
 65139
 65140
 65141
 65142
 65143
 65144
 65145
 65146
 65147
 65148
 65149
 65150
 65151
 65152
 65153
 65154
 65155
 65156
 65157
 65158
 65159
 65160
 65161
 65162
 65163
 65164
 65165
 65166
 65167
 65168
 65169
 65170
 65171
 65172
 65173
 65174
 65175
 65176
 65177
 65178
 65179
 65180
 65181
 65182
 65183
 65184
 65185
 65186
 65187
 65188
 65189
 65190
 65191
 65192
 65193
 65194
 65195
 65196
 65197
 65198
 65199
 65200
 65201
 65202
 65203
 65204
 65205
 65206
 65207
 65208
 65209
 65210
 65211
 65212
 65213
 65214
 65215
 65216
 65217
 65218
 65219
 65220
 65221
 65222
 65223
 65224
 65225
 65226
 65227
 65228
 65229
 65230
 65231
 65232
 65233
 65234
 65235
 65236
 65237
 65238
 65239
 65240
 65241
 65242
 65243
 65244
 65245
 65246
 65247
 65248
 65249
 65250
 65251
 65252
 65253
 65254
 65255
 65256
 65257
 65258
 65259
 65260
 65261
 65262
 65263
 65264
 65265
 65266
 65267
 65268
 65269
 65270
 65271
 65272
 65273
 65274
 65275
 65276
 65277
 65278
 65279
 65280
 65281
 65282
 65283
 65284
 65285
 65286
 65287
 65288
 65289
 65290
 65291
 65292
 65293
 65294
 65295
 65296
 65297
 65298
 65299
 65300
 65301
 65302
 65303
 65304
 65305
 65306
 65307
 65308
 65309
 65310
 65311
 65312
 65313
 65314
 65315
 65316
 65317
 65318
 65319
 65320
 65321
 65322
 65323
 65324
 65325
 65326
 65327
 65328
 65329
 65330
 65331
 65332
 65333
 65334
 65335
 65336
 65337
 65338
 65339
 65340
 65341
 65342
 65343
 65344
 65345
 65346
 65347
 65348
 65349
 65350
 65351
 65352
 65353
 65354
 65355
 65356
 65357
 65358
 65359
 65360
 65361
 65362
 65363
 65364
 65365
 65366
 65367
 65368
 65369
 65370
 65371
 65372
 65373
 65374
 65375
 65376
 65377
 65378
 65379
 65380
 65381
 65382
 65383
 65384
 65385
 65386
 65387
 65388
 65389
 65390
 65391
 65392
 65393
 65394
 65395
 65396
 65397
 65398
 65399
 65400
 65401
 65402
 65403
 65404
 65405
 65406
 65407
 65408
 65409
 65410
 65411
 65412
 65413
 65414
 65415
 65416
 65417
 65418
 65419
 65420
 65421
 65422
 65423
 65424
 65425
 65426
 65427
 65428
 65429
 65430
 65431
 65432
 65433
 65434
 65435
 65436
 65437
 65438
 65439
 65440
 65441
 65442
 65443
 65444
 65445
 65446
 65447
 65448
 65449
 65450
 65451
 65452
 65453
 65454
 65455
 65456
 65457
 65458
 65459
 65460
 65461
 65462
 65463
 65464
 65465
 65466
 65467
 65468
 65469
 65470
 65471
 65472
 65473
 65474
 65475
 65476
 65477
 65478
 65479
 65480
 65481
 65482
 65483
 65484
 65485
 65486
 65487
 65488
 65489
 65490
 65491
 65492
 65493
 65494
 65495
 65496
 65497
 65498
 65499
 65500
 65501
 65502
 65503
 65504
 65505
 65506
 65507
 65508
 65509
 65510
 65511
 65512
 65513
 65514
 65515
 65516
 65517
 65518
 65519
 65520
 65521
 65522
 65523
 65524
 65525
 65526
 65527
 65528
 65529
 65530
 65531
 65532
 65533
 65534
 65535
 65536
 65537
 65538
 65539
 65540
 65541
 65542
 65543
 65544
 65545
 65546
 65547
 65548
 65549
 65550
 65551
 65552
 65553
 65554
 65555
 65556
 65557
 65558
 65559
 65560
 65561
 65562
 65563
 65564
 65565
 65566
 65567
 65568
 65569
 65570
 65571
 65572
 65573
 65574
 65575
 65576
 65577
 65578
 65579
 65580
 65581
 65582
 65583
 65584
 65585
 65586
 65587
 65588
 65589
 65590
 65591
 65592
 65593
 65594
 65595
 65596
 65597
 65598
 65599
 65600
 65601
 65602
 65603
 65604
 65605
 65606
 65607
 65608
 65609
 65610
 65611
 65612
 65613
 65614
 65615
 65616
 65617
 65618
 65619
 65620
 65621
 65622
 65623
 65624
 65625
 65626
 65627
 65628
 65629
 65630
 65631
 65632
 65633
 65634
 65635
 65636
 65637
 65638
 65639
 65640
 65641
 65642
 65643
 65644
 65645
 65646
 65647
 65648
 65649
 65650
 65651
 65652
 65653
 65654
 65655
 65656
 65657
 65658
 65659
 65660
 65661
 65662
 65663
 65664
 65665
 65666
 65667
 65668
 65669
 65670
 65671
 65672
 65673
 65674
 65675
 65676
 65677
 65678
 65679
 65680
 65681
 65682
 65683
 65684
 65685
 65686
 65687
 65688
 65689
 65690
 65691
 65692
 65693
 65694
 65695
 65696
 65697
 65698
 65699
 65700
 65701
 65702
 65703
 65704
 65705
 65706
 65707
 65708
 65709
 65710
 65711
 65712
 65713
 65714
 65715
 65716
 65717
 65718
 65719
 65720
 65721
 65722
 65723
 65724
 65725
 65726
 65727
 65728
 65729
 65730
 65731
 65732
 65733
 65734
 65735
 65736
 65737
 65738
 65739
 65740
 65741
 65742
 65743
 65744
 65745
 65746
 65747
 65748
 65749
 65750
 65751
 65752
 65753
 65754
 65755
 65756
 65757
 65758
 65759
 65760
 65761
 65762
 65763
 65764
 65765
 65766
 65767
 65768
 65769
 65770
 65771
 65772
 65773
 65774
 65775
 65776
 65777
 65778
 65779
 65780
 65781
 65782
 65783
 65784
 65785
 65786
 65787
 65788
 65789
 65790
 65791
 65792
 65793
 65794
 65795
 65796
 65797
 65798
 65799
 65800
 65801
 65802
 65803
 65804
 65805
 65806
 65807
 65808
 65809
 65810
 65811
 65812
 65813
 65814
 65815
 65816
 65817
 65818
 65819
 65820
 65821
 65822
 65823
 65824
 65825
 65826
 65827
 65828
 65829
 65830
 65831
 65832
 65833
 65834
 65835
 65836
 65837
 65838
 65839
 65840
 65841
 65842
 65843
 65844
 65845
 65846
 65847
 65848
 65849
 65850
 65851
 65852
 65853
 65854
 65855
 65856
 65857
 65858
 65859
 65860
 65861
 65862
 65863
 65864
 65865
 65866
 65867
 65868
 65869
 65870
 65871
 65872
 65873
 65874
 65875
 65876
 65877
 65878
 65879
 65880
 65881
 65882
 65883
 65884
 65885
 65886
 65887
 65888
 65889
 65890
 65891
 65892
 65893
 65894
 65895
 65896
 65897
 65898
 65899
 65900
 65901
 65902
 65903
 65904
 65905
 65906
 65907
 65908
 65909
 65910
 65911
 65912
 65913
 65914
 65915
 65916
 65917
 65918
 65919
 65920
 65921
 65922
 65923
 65924
 65925
 65926
 65927
 65928
 65929
 65930
 65931
 65932
 65933
 65934
 65935
 65936
 65937
 65938
 65939
 65940
 65941
 65942
 65943
 65944
 65945
 65946
 65947
 65948
 65949
 65950
 65951
 65952
 65953
 65954
 65955
 65956
 65957
 65958
 65959
 65960
 65961
 65962
 65963
 65964
 65965
 65966
 65967
 65968
 65969
 65970
 65971
 65972
 65973
 65974
 65975
 65976
 65977
 65978
 65979
 65980
 65981
 65982
 65983
 65984
 65985
 65986
 65987
 65988
 65989
 65990
 65991
 65992
 65993
 65994
 65995
 65996
 65997
 65998
 65999
 66000
 66001
 66002
 66003
 66004
 66005
 66006
 66007
 66008
 66009
 66010
 66011
 66012
 66013
 66014
 66015
 66016
 66017
 66018
 66019
 66020
 66021
 66022
 66023
 66024
 66025
 66026
 66027
 66028
 66029
 66030
 66031
 66032
 66033
 66034
 66035
 66036
 66037
 66038
 66039
 66040
 66041
 66042
 66043
 66044
 66045
 66046
 66047
 66048
 66049
 66050
 66051
 66052
 66053
 66054
 66055
 66056
 66057
 66058
 66059
 66060
 66061
 66062
 66063
 66064
 66065
 66066
 66067
 66068
 66069
 66070
 66071
 66072
 66073
 66074
 66075
 66076
 66077
 66078
 66079
 66080
 66081
 66082
 66083
 66084
 66085
 66086
 66087
 66088
 66089
 66090
 66091
 66092
 66093
 66094
 66095
 66096
 66097
 66098
 66099
 66100
 66101
 66102
 66103
 66104
 66105
 66106
 66107
 66108
 66109
 66110
 66111
 66112
 66113
 66114
 66115
 66116
 66117
 66118
 66119
 66120
 66121
 66122
 66123
 66124
 66125
 66126
 66127
 66128
 66129
 66130
 66131
 66132
 66133
 66134
 66135
 66136
 66137
 66138
 66139
 66140
 66141
 66142
 66143
 66144
 66145
 66146
 66147
 66148
 66149
 66150
 66151
 66152
 66153
 66154
 66155
 66156
 66157
 66158
 66159
 66160
 66161
 66162
 66163
 66164
 66165
 66166
 66167
 66168
 66169
 66170
 66171
 66172
 66173
 66174
 66175
 66176
 66177
 66178
 66179
 66180
 66181
 66182
 66183
 66184
 66185
 66186
 66187
 66188
 66189
 66190
 66191
 66192
 66193
 66194
 66195
 66196
 66197
 66198
 66199
 66200
 66201
 66202
 66203
 66204
 66205
 66206
 66207
 66208
 66209
 66210
 66211
 66212
 66213
 66214
 66215
 66216
 66217
 66218
 66219
 66220
 66221
 66222
 66223
 66224
 66225
 66226
 66227
 66228
 66229
 66230
 66231
 66232
 66233
 66234
 66235
 66236
 66237
 66238
 66239
 66240
 66241
 66242
 66243
 66244
 66245
 66246
 66247
 66248
 66249
 66250
 66251
 66252
 66253
 66254
 66255
 66256
 66257
 66258
 66259
 66260
 66261
 66262
 66263
 66264
 66265
 66266
 66267
 66268
 66269
 66270
 66271
 66272
 66273
 66274
 66275
 66276
 66277
 66278
 66279
 66280
 66281
 66282
 66283
 66284
 66285
 66286
 66287
 66288
 66289
 66290
 66291
 66292
 66293
 66294
 66295
 66296
 66297
 66298
 66299
 66300
 66301
 66302
 66303
 66304
 66305
 66306
 66307
 66308
 66309
 66310
 66311
 66312
 66313
 66314
 66315
 66316
 66317
 66318
 66319
 66320
 66321
 66322
 66323
 66324
 66325
 66326
 66327
 66328
 66329
 66330
 66331
 66332
 66333
 66334
 66335
 66336
 66337
 66338
 66339
 66340
 66341
 66342
 66343
 66344
 66345
 66346
 66347
 66348
 66349
 66350
 66351
 66352
 66353
 66354
 66355
 66356
 66357
 66358
 66359
 66360
 66361
 66362
 66363
 66364
 66365
 66366
 66367
 66368
 66369
 66370
 66371
 66372
 66373
 66374
 66375
 66376
 66377
 66378
 66379
 66380
 66381
 66382
 66383
 66384
 66385
 66386
 66387
 66388
 66389
 66390
 66391
 66392
 66393
 66394
 66395
 66396
 66397
 66398
 66399
 66400
 66401
 66402
 66403
 66404
 66405
 66406
 66407
 66408
 66409
 66410
 66411
 66412
 66413
 66414
 66415
 66416
 66417
 66418
 66419
 66420
 66421
 66422
 66423
 66424
 66425
 66426
 66427
 66428
 66429
 66430
 66431
 66432
 66433
 66434
 66435
 66436
 66437
 66438
 66439
 66440
 66441
 66442
 66443
 66444
 66445
 66446
 66447
 66448
 66449
 66450
 66451
 66452
 66453
 66454
 66455
 66456
 66457
 66458
 66459
 66460
 66461
 66462
 66463
 66464
 66465
 66466
 66467
 66468
 66469
 66470
 66471
 66472
 66473
 66474
 66475
 66476
 66477
 66478
 66479
 66480
 66481
 66482
 66483
 66484
 66485
 66486
 66487
 66488
 66489
 66490
 66491
 66492
 66493
 66494
 66495
 66496
 66497
 66498
 66499
 66500
 66501
 66502
 66503
 66504
 66505
 66506
 66507
 66508
 66509
 66510
 66511
 66512
 66513
 66514
 66515
 66516
 66517
 66518
 66519
 66520
 66521
 66522
 66523
 66524
 66525
 66526
 66527
 66528
 66529
 66530
 66531
 66532
 66533
 66534
 66535
 66536
 66537
 66538
 66539
 66540
 66541
 66542
 66543
 66544
 66545
 66546
 66547
 66548
 66549
 66550
 66551
 66552
 66553
 66554
 66555
 66556
 66557
 66558
 66559
 66560
 66561
 66562
 66563
 66564
 66565
 66566
 66567
 66568
 66569
 66570
 66571
 66572
 66573
 66574
 66575
 66576
 66577
 66578
 66579
 66580
 66581
 66582
 66583
 66584
 66585
 66586
 66587
 66588
 66589
 66590
 66591
 66592
 66593
 66594
 66595
 66596
 66597
 66598
 66599
 66600
 66601
 66602
 66603
 66604
 66605
 66606
 66607
 66608
 66609
 66610
 66611
 66612
 66613
 66614
 66615
 66616
 66617
 66618
 66619
 66620
 66621
 66622
 66623
 66624
 66625
 66626
 66627
 66628
 66629
 66630
 66631
 66632
 66633
 66634
 66635
 66636
 66637
 66638
 66639
 66640
 66641
 66642
 66643
 66644
 66645
 66646
 66647
 66648
 66649
 66650
 66651
 66652
 66653
 66654
 66655
 66656
 66657
 66658
 66659
 66660
 66661
 66662
 66663
 66664
 66665
 66666
 66667
 66668
 66669
 66670
 66671
 66672
 66673
 66674
 66675
 66676
 66677
 66678
 66679
 66680
 66681
 66682
 66683
 66684
 66685
 66686
 66687
 66688
 66689
 66690
 66691
 66692
 66693
 66694
 66695
 66696
 66697
 66698
 66699
 66700
 66701
 66702
 66703
 66704
 66705
 66706
 66707
 66708
 66709
 66710
 66711
 66712
 66713
 66714
 66715
 66716
 66717
 66718
 66719
 66720
 66721
 66722
 66723
 66724
 66725
 66726
 66727
 66728
 66729
 66730
 66731
 66732
 66733
 66734
 66735
 66736
 66737
 66738
 66739
 66740
 66741
 66742
 66743
 66744
 66745
 66746
 66747
 66748
 66749
 66750
 66751
 66752
 66753
 66754
 66755
 66756
 66757
 66758
 66759
 66760
 66761
 66762
 66763
 66764
 66765
 66766
 66767
 66768
 66769
 66770
 66771
 66772
 66773
 66774
 66775
 66776
 66777
 66778
 66779
 66780
 66781
 66782
 66783
 66784
 66785
 66786
 66787
 66788
 66789
 66790
 66791
 66792
 66793
 66794
 66795
 66796
 66797
 66798
 66799
 66800
 66801
 66802
 66803
 66804
 66805
 66806
 66807
 66808
 66809
 66810
 66811
 66812
 66813
 66814
 66815
 66816
 66817
 66818
 66819
 66820
 66821
 66822
 66823
 66824
 66825
 66826
 66827
 66828
 66829
 66830
 66831
 66832
 66833
 66834
 66835
 66836
 66837
 66838
 66839
 66840
 66841
 66842
 66843
 66844
 66845
 66846
 66847
 66848
 66849
 66850
 66851
 66852
 66853
 66854
 66855
 66856
 66857
 66858
 66859
 66860
 66861
 66862
 66863
 66864
 66865
 66866
 66867
 66868
 66869
 66870
 66871
 66872
 66873
 66874
 66875
 66876
 66877
 66878
 66879
 66880
 66881
 66882
 66883
 66884
 66885
 66886
 66887
 66888
 66889
 66890
 66891
 66892
 66893
 66894
 66895
 66896
 66897
 66898
 66899
 66900
 66901
 66902
 66903
 66904
 66905
 66906
 66907
 66908
 66909
 66910
 66911
 66912
 66913
 66914
 66915
 66916
 66917
 66918
 66919
 66920
 66921
 66922
 66923
 66924
 66925
 66926
 66927
 66928
 66929
 66930
 66931
 66932
 66933
 66934
 66935
 66936
 66937
 66938
 66939
 66940
 66941
 66942
 66943
 66944
 66945
 66946
 66947
 66948
 66949
 66950
 66951
 66952
 66953
 66954
 66955
 66956
 66957
 66958
 66959
 66960
 66961
 66962
 66963
 66964
 66965
 66966
 66967
 66968
 66969
 66970
 66971
 66972
 66973
 66974
 66975
 66976
 66977
 66978
 66979
 66980
 66981
 66982
 66983
 66984
 66985
 66986
 66987
 66988
 66989
 66990
 66991
 66992
 66993
 66994
 66995
 66996
 66997
 66998
 66999
 67000
 67001
 67002
 67003
 67004
 67005
 67006
 67007
 67008
 67009
 67010
 67011
 67012
 67013
 67014
 67015
 67016
 67017
 67018
 67019
 67020
 67021
 67022
 67023
 67024
 67025
 67026
 67027
 67028
 67029
 67030
 67031
 67032
 67033
 67034
 67035
 67036
 67037
 67038
 67039
 67040
 67041
 67042
 67043
 67044
 67045
 67046
 67047
 67048
 67049
 67050
 67051
 67052
 67053
 67054
 67055
 67056
 67057
 67058
 67059
 67060
 67061
 67062
 67063
 67064
 67065
 67066
 67067
 67068
 67069
 67070
 67071
 67072
 67073
 67074
 67075
 67076
 67077
 67078
 67079
 67080
 67081
 67082
 67083
 67084
 67085
 67086
 67087
 67088
 67089
 67090
 67091
 67092
 67093
 67094
 67095
 67096
 67097
 67098
 67099
 67100
 67101
 67102
 67103
 67104
 67105
 67106
 67107
 67108
 67109
 67110
 67111
 67112
 67113
 67114
 67115
 67116
 67117
 67118
 67119
 67120
 67121
 67122
 67123
 67124
 67125
 67126
 67127
 67128
 67129
 67130
 67131
 67132
 67133
 67134
 67135
 67136
 67137
 67138
 67139
 67140
 67141
 67142
 67143
 67144
 67145
 67146
 67147
 67148
 67149
 67150
 67151
 67152
 67153
 67154
 67155
 67156
 67157
 67158
 67159
 67160
 67161
 67162
 67163
 67164
 67165
 67166
 67167
 67168
 67169
 67170
 67171
 67172
 67173
 67174
 67175
 67176
 67177
 67178
 67179
 67180
 67181
 67182
 67183
 67184
 67185
 67186
 67187
 67188
 67189
 67190
 67191
 67192
 67193
 67194
 67195
 67196
 67197
 67198
 67199
 67200
 67201
 67202
 67203
 67204
 67205
 67206
 67207
 67208
 67209
 67210
 67211
 67212
 67213
 67214
 67215
 67216
 67217
 67218
 67219
 67220
 67221
 67222
 67223
 67224
 67225
 67226
 67227
 67228
 67229
 67230
 67231
 67232
 67233
 67234
 67235
 67236
 67237
 67238
 67239
 67240
 67241
 67242
 67243
 67244
 67245
 67246
 67247
 67248
 67249
 67250
 67251
 67252
 67253
 67254
 67255
 67256
 67257
 67258
 67259
 67260
 67261
 67262
 67263
 67264
 67265
 67266
 67267
 67268
 67269
 67270
 67271
 67272
 67273
 67274
 67275
 67276
 67277
 67278
 67279
 67280
 67281
 67282
 67283
 67284
 67285
 67286
 67287
 67288
 67289
 67290
 67291
 67292
 67293
 67294
 67295
 67296
 67297
 67298
 67299
 67300
 67301
 67302
 67303
 67304
 67305
 67306
 67307
 67308
 67309
 67310
 67311
 67312
 67313
 67314
 67315
 67316
 67317
 67318
 67319
 67320
 67321
 67322
 67323
 67324
 67325
 67326
 67327
 67328
 67329
 67330
 67331
 67332
 67333
 67334
 67335
 67336
 67337
 67338
 67339
 67340
 67341
 67342
 67343
 67344
 67345
 67346
 67347
 67348
 67349
 67350
 67351
 67352
 67353
 67354
 67355
 67356
 67357
 67358
 67359
 67360
 67361
 67362
 67363
 67364
 67365
 67366
 67367
 67368
 67369
 67370
 67371
 67372
 67373
 67374
 67375
 67376
 67377
 67378
 67379
 67380
 67381
 67382
 67383
 67384
 67385
 67386
 67387
 67388
 67389
 67390
 67391
 67392
 67393
 67394
 67395
 67396
 67397
 67398
 67399
 67400
 67401
 67402
 67403
 67404
 67405
 67406
 67407
 67408
 67409
 67410
 67411
 67412
 67413
 67414
 67415
 67416
 67417
 67418
 67419
 67420
 67421
 67422
 67423
 67424
 67425
 67426
 67427
 67428
 67429
 67430
 67431
 67432
 67433
 67434
 67435
 67436
 67437
 67438
 67439
 67440
 67441
 67442
 67443
 67444
 67445
 67446
 67447
 67448
 67449
 67450
 67451
 67452
 67453
 67454
 67455
 67456
 67457
 67458
 67459
 67460
 67461
 67462
 67463
 67464
 67465
 67466
 67467
 67468
 67469
 67470
 67471
 67472
 67473
 67474
 67475
 67476
 67477
 67478
 67479
 67480
 67481
 67482
 67483
 67484
 67485
 67486
 67487
 67488
 67489
 67490
 67491
 67492
 67493
 67494
 67495
 67496
 67497
 67498
 67499
 67500
 67501
 67502
 67503
 67504
 67505
 67506
 67507
 67508
 67509
 67510
 67511
 67512
 67513
 67514
 67515
 67516
 67517
 67518
 67519
 67520
 67521
 67522
 67523
 67524
 67525
 67526
 67527
 67528
 67529
 67530
 67531
 67532
 67533
 67534
 67535
 67536
 67537
 67538
 67539
 67540
 67541
 67542
 67543
 67544
 67545
 67546
 67547
 67548
 67549
 67550
 67551
 67552
 67553
 67554
 67555
 67556
 67557
 67558
 67559
 67560
 67561
 67562
 67563
 67564
 67565
 67566
 67567
 67568
 67569
 67570
 67571
 67572
 67573
 67574
 67575
 67576
 67577
 67578
 67579
 67580
 67581
 67582
 67583
 67584
 67585
 67586
 67587
 67588
 67589
 67590
 67591
 67592
 67593
 67594
 67595
 67596
 67597
 67598
 67599
 67600
 67601
 67602
 67603
 67604
 67605
 67606
 67607
 67608
 67609
 67610
 67611
 67612
 67613
 67614
 67615
 67616
 67617
 67618
 67619
 67620
 67621
 67622
 67623
 67624
 67625
 67626
 67627
 67628
 67629
 67630
 67631
 67632
 67633
 67634
 67635
 67636
 67637
 67638
 67639
 67640
 67641
 67642
 67643
 67644
 67645
 67646
 67647
 67648
 67649
 67650
 67651
 67652
 67653
 67654
 67655
 67656
 67657
 67658
 67659
 67660
 67661
 67662
 67663
 67664
 67665
 67666
 67667
 67668
 67669
 67670
 67671
 67672
 67673
 67674
 67675
 67676
 67677
 67678
 67679
 67680
 67681
 67682
 67683
 67684
 67685
 67686
 67687
 67688
 67689
 67690
 67691
 67692
 67693
 67694
 67695
 67696
 67697
 67698
 67699
 67700
 67701
 67702
 67703
 67704
 67705
 67706
 67707
 67708
 67709
 67710
 67711
 67712
 67713
 67714
 67715
 67716
 67717
 67718
 67719
 67720
 67721
 67722
 67723
 67724
 67725
 67726
 67727
 67728
 67729
 67730
 67731
 67732
 67733
 67734
 67735
 67736
 67737
 67738
 67739
 67740
 67741
 67742
 67743
 67744
 67745
 67746
 67747
 67748
 67749
 67750
 67751
 67752
 67753
 67754
 67755
 67756
 67757
 67758
 67759
 67760
 67761
 67762
 67763
 67764
 67765
 67766
 67767
 67768
 67769
 67770
 67771
 67772
 67773
 67774
 67775
 67776
 67777
 67778
 67779
 67780
 67781
 67782
 67783
 67784
 67785
 67786
 67787
 67788
 67789
 67790
 67791
 67792
 67793
 67794
 67795
 67796
 67797
 67798
 67799
 67800
 67801
 67802
 67803
 67804
 67805
 67806
 67807
 67808
 67809
 67810
 67811
 67812
 67813
 67814
 67815
 67816
 67817
 67818
 67819
 67820
 67821
 67822
 67823
 67824
 67825
 67826
 67827
 67828
 67829
 67830
 67831
 67832
 67833
 67834
 67835
 67836
 67837
 67838
 67839
 67840
 67841
 67842
 67843
 67844
 67845
 67846
 67847
 67848
 67849
 67850
 67851
 67852
 67853
 67854
 67855
 67856
 67857
 67858
 67859
 67860
 67861
 67862
 67863
 67864
 67865
 67866
 67867
 67868
 67869
 67870
 67871
 67872
 67873
 67874
 67875
 67876
 67877
 67878
 67879
 67880
 67881
 67882
 67883
 67884
 67885
 67886
 67887
 67888
 67889
 67890
 67891
 67892
 67893
 67894
 67895
 67896
 67897
 67898
 67899
 67900
 67901
 67902
 67903
 67904
 67905
 67906
 67907
 67908
 67909
 67910
 67911
 67912
 67913
 67914
 67915
 67916
 67917
 67918
 67919
 67920
 67921
 67922
 67923
 67924
 67925
 67926
 67927
 67928
 67929
 67930
 67931
 67932
 67933
 67934
 67935
 67936
 67937
 67938
 67939
 67940
 67941
 67942
 67943
 67944
 67945
 67946
 67947
 67948
 67949
 67950
 67951
 67952
 67953
 67954
 67955
 67956
 67957
 67958
 67959
 67960
 67961
 67962
 67963
 67964
 67965
 67966
 67967
 67968
 67969
 67970
 67971
 67972
 67973
 67974
 67975
 67976
 67977
 67978
 67979
 67980
 67981
 67982
 67983
 67984
 67985
 67986
 67987
 67988
 67989
 67990
 67991
 67992
 67993
 67994
 67995
 67996
 67997
 67998
 67999
 68000
 68001
 68002
 68003
 68004
 68005
 68006
 68007
 68008
 68009
 68010
 68011
 68012
 68013
 68014
 68015
 68016
 68017
 68018
 68019
 68020
 68021
 68022
 68023
 68024
 68025
 68026
 68027
 68028
 68029
 68030
 68031
 68032
 68033
 68034
 68035
 68036
 68037
 68038
 68039
 68040
 68041
 68042
 68043
 68044
 68045
 68046
 68047
 68048
 68049
 68050
 68051
 68052
 68053
 68054
 68055
 68056
 68057
 68058
 68059
 68060
 68061
 68062
 68063
 68064
 68065
 68066
 68067
 68068
 68069
 68070
 68071
 68072
 68073
 68074
 68075
 68076
 68077
 68078
 68079
 68080
 68081
 68082
 68083
 68084
 68085
 68086
 68087
 68088
 68089
 68090
 68091
 68092
 68093
 68094
 68095
 68096
 68097
 68098
 68099
 68100
 68101
 68102
 68103
 68104
 68105
 68106
 68107
 68108
 68109
 68110
 68111
 68112
 68113
 68114
 68115
 68116
 68117
 68118
 68119
 68120
 68121
 68122
 68123
 68124
 68125
 68126
 68127
 68128
 68129
 68130
 68131
 68132
 68133
 68134
 68135
 68136
 68137
 68138
 68139
 68140
 68141
 68142
 68143
 68144
 68145
 68146
 68147
 68148
 68149
 68150
 68151
 68152
 68153
 68154
 68155
 68156
 68157
 68158
 68159
 68160
 68161
 68162
 68163
 68164
 68165
 68166
 68167
 68168
 68169
 68170
 68171
 68172
 68173
 68174
 68175
 68176
 68177
 68178
 68179
 68180
 68181
 68182
 68183
 68184
 68185
 68186
 68187
 68188
 68189
 68190
 68191
 68192
 68193
 68194
 68195
 68196
 68197
 68198
 68199
 68200
 68201
 68202
 68203
 68204
 68205
 68206
 68207
 68208
 68209
 68210
 68211
 68212
 68213
 68214
 68215
 68216
 68217
 68218
 68219
 68220
 68221
 68222
 68223
 68224
 68225
 68226
 68227
 68228
 68229
 68230
 68231
 68232
 68233
 68234
 68235
 68236
 68237
 68238
 68239
 68240
 68241
 68242
 68243
 68244
 68245
 68246
 68247
 68248
 68249
 68250
 68251
 68252
 68253
 68254
 68255
 68256
 68257
 68258
 68259
 68260
 68261
 68262
 68263
 68264
 68265
 68266
 68267
 68268
 68269
 68270
 68271
 68272
 68273
 68274
 68275
 68276
 68277
 68278
 68279
 68280
 68281
 68282
 68283
 68284
 68285
 68286
 68287
 68288
 68289
 68290
 68291
 68292
 68293
 68294
 68295
 68296
 68297
 68298
 68299
 68300
 68301
 68302
 68303
 68304
 68305
 68306
 68307
 68308
 68309
 68310
 68311
 68312
 68313
 68314
 68315
 68316
 68317
 68318
 68319
 68320
 68321
 68322
 68323
 68324
 68325
 68326
 68327
 68328
 68329
 68330
 68331
 68332
 68333
 68334
 68335
 68336
 68337
 68338
 68339
 68340
 68341
 68342
 68343
 68344
 68345
 68346
 68347
 68348
 68349
 68350
 68351
 68352
 68353
 68354
 68355
 68356
 68357
 68358
 68359
 68360
 68361
 68362
 68363
 68364
 68365
 68366
 68367
 68368
 68369
 68370
 68371
 68372
 68373
 68374
 68375
 68376
 68377
 68378
 68379
 68380
 68381
 68382
 68383
 68384
 68385
 68386
 68387
 68388
 68389
 68390
 68391
 68392
 68393
 68394
 68395
 68396
 68397
 68398
 68399
 68400
 68401
 68402
 68403
 68404
 68405
 68406
 68407
 68408
 68409
 68410
 68411
 68412
 68413
 68414
 68415
 68416
 68417
 68418
 68419
 68420
 68421
 68422
 68423
 68424
 68425
 68426
 68427
 68428
 68429
 68430
 68431
 68432
 68433
 68434
 68435
 68436
 68437
 68438
 68439
 68440
 68441
 68442
 68443
 68444
 68445
 68446
 68447
 68448
 68449
 68450
 68451
 68452
 68453
 68454
 68455
 68456
 68457
 68458
 68459
 68460
 68461
 68462
 68463
 68464
 68465
 68466
 68467
 68468
 68469
 68470
 68471
 68472
 68473
 68474
 68475
 68476
 68477
 68478
 68479
 68480
 68481
 68482
 68483
 68484
 68485
 68486
 68487
 68488
 68489
 68490
 68491
 68492
 68493
 68494
 68495
 68496
 68497
 68498
 68499
 68500
 68501
 68502
 68503
 68504
 68505
 68506
 68507
 68508
 68509
 68510
 68511
 68512
 68513
 68514
 68515
 68516
 68517
 68518
 68519
 68520
 68521
 68522
 68523
 68524
 68525
 68526
 68527
 68528
 68529
 68530
 68531
 68532
 68533
 68534
 68535
 68536
 68537
 68538
 68539
 68540
 68541
 68542
 68543
 68544
 68545
 68546
 68547
 68548
 68549
 68550
 68551
 68552
 68553
 68554
 68555
 68556
 68557
 68558
 68559
 68560
 68561
 68562
 68563
 68564
 68565
 68566
 68567
 68568
 68569
 68570
 68571
 68572
 68573
 68574
 68575
 68576
 68577
 68578
 68579
 68580
 68581
 68582
 68583
 68584
 68585
 68586
 68587
 68588
 68589
 68590
 68591
 68592
 68593
 68594
 68595
 68596
 68597
 68598
 68599
 68600
 68601
 68602
 68603
 68604
 68605
 68606
 68607
 68608
 68609
 68610
 68611
 68612
 68613
 68614
 68615
 68616
 68617
 68618
 68619
 68620
 68621
 68622
 68623
 68624
 68625
 68626
 68627
 68628
 68629
 68630
 68631
 68632
 68633
 68634
 68635
 68636
 68637
 68638
 68639
 68640
 68641
 68642
 68643
 68644
 68645
 68646
 68647
 68648
 68649
 68650
 68651
 68652
 68653
 68654
 68655
 68656
 68657
 68658
 68659
 68660
 68661
 68662
 68663
 68664
 68665
 68666
 68667
 68668
 68669
 68670
 68671
 68672
 68673
 68674
 68675
 68676
 68677
 68678
 68679
 68680
 68681
 68682
 68683
 68684
 68685
 68686
 68687
 68688
 68689
 68690
 68691
 68692
 68693
 68694
 68695
 68696
 68697
 68698
 68699
 68700
 68701
 68702
 68703
 68704
 68705
 68706
 68707
 68708
 68709
 68710
 68711
 68712
 68713
 68714
 68715
 68716
 68717
 68718
 68719
 68720
 68721
 68722
 68723
 68724
 68725
 68726
 68727
 68728
 68729
 68730
 68731
 68732
 68733
 68734
 68735
 68736
 68737
 68738
 68739
 68740
 68741
 68742
 68743
 68744
 68745
 68746
 68747
 68748
 68749
 68750
 68751
 68752
 68753
 68754
 68755
 68756
 68757
 68758
 68759
 68760
 68761
 68762
 68763
 68764
 68765
 68766
 68767
 68768
 68769
 68770
 68771
 68772
 68773
 68774
 68775
 68776
 68777
 68778
 68779
 68780
 68781
 68782
 68783
 68784
 68785
 68786
 68787
 68788
 68789
 68790
 68791
 68792
 68793
 68794
 68795
 68796
 68797
 68798
 68799
 68800
 68801
 68802
 68803
 68804
 68805
 68806
 68807
 68808
 68809
 68810
 68811
 68812
 68813
 68814
 68815
 68816
 68817
 68818
 68819
 68820
 68821
 68822
 68823
 68824
 68825
 68826
 68827
 68828
 68829
 68830
 68831
 68832
 68833
 68834
 68835
 68836
 68837
 68838
 68839
 68840
 68841
 68842
 68843
 68844
 68845
 68846
 68847
 68848
 68849
 68850
 68851
 68852
 68853
 68854
 68855
 68856
 68857
 68858
 68859
 68860
 68861
 68862
 68863
 68864
 68865
 68866
 68867
 68868
 68869
 68870
 68871
 68872
 68873
 68874
 68875
 68876
 68877
 68878
 68879
 68880
 68881
 68882
 68883
 68884
 68885
 68886
 68887
 68888
 68889
 68890
 68891
 68892
 68893
 68894
 68895
 68896
 68897
 68898
 68899
 68900
 68901
 68902
 68903
 68904
 68905
 68906
 68907
 68908
 68909
 68910
 68911
 68912
 68913
 68914
 68915
 68916
 68917
 68918
 68919
 68920
 68921
 68922
 68923
 68924
 68925
 68926
 68927
 68928
 68929
 68930
 68931
 68932
 68933
 68934
 68935
 68936
 68937
 68938
 68939
 68940
 68941
 68942
 68943
 68944
 68945
 68946
 68947
 68948
 68949
 68950
 68951
 68952
 68953
 68954
 68955
 68956
 68957
 68958
 68959
 68960
 68961
 68962
 68963
 68964
 68965
 68966
 68967
 68968
 68969
 68970
 68971
 68972
 68973
 68974
 68975
 68976
 68977
 68978
 68979
 68980
 68981
 68982
 68983
 68984
 68985
 68986
 68987
 68988
 68989
 68990
 68991
 68992
 68993
 68994
 68995
 68996
 68997
 68998
 68999
 69000
 69001
 69002
 69003
 69004
 69005
 69006
 69007
 69008
 69009
 69010
 69011
 69012
 69013
 69014
 69015
 69016
 69017
 69018
 69019
 69020
 69021
 69022
 69023
 69024
 69025
 69026
 69027
 69028
 69029
 69030
 69031
 69032
 69033
 69034
 69035
 69036
 69037
 69038
 69039
 69040
 69041
 69042
 69043
 69044
 69045
 69046
 69047
 69048
 69049
 69050
 69051
 69052
 69053
 69054
 69055
 69056
 69057
 69058
 69059
 69060
 69061
 69062
 69063
 69064
 69065
 69066
 69067
 69068
 69069
 69070
 69071
 69072
 69073
 69074
 69075
 69076
 69077
 69078
 69079
 69080
 69081
 69082
 69083
 69084
 69085
 69086
 69087
 69088
 69089
 69090
 69091
 69092
 69093
 69094
 69095
 69096
 69097
 69098
 69099
 69100
 69101
 69102
 69103
 69104
 69105
 69106
 69107
 69108
 69109
 69110
 69111
 69112
 69113
 69114
 69115
 69116
 69117
 69118
 69119
 69120
 69121
 69122
 69123
 69124
 69125
 69126
 69127
 69128
 69129
 69130
 69131
 69132
 69133
 69134
 69135
 69136
 69137
 69138
 69139
 69140
 69141
 69142
 69143
 69144
 69145
 69146
 69147
 69148
 69149
 69150
 69151
 69152
 69153
 69154
 69155
 69156
 69157
 69158
 69159
 69160
 69161
 69162
 69163
 69164
 69165
 69166
 69167
 69168
 69169
 69170
 69171
 69172
 69173
 69174
 69175
 69176
 69177
 69178
 69179
 69180
 69181
 69182
 69183
 69184
 69185
 69186
 69187
 69188
 69189
 69190
 69191
 69192
 69193
 69194
 69195
 69196
 69197
 69198
 69199
 69200
 69201
 69202
 69203
 69204
 69205
 69206
 69207
 69208
 69209
 69210
 69211
 69212
 69213
 69214
 69215
 69216
 69217
 69218
 69219
 69220
 69221
 69222
 69223
 69224
 69225
 69226
 69227
 69228
 69229
 69230
 69231
 69232
 69233
 69234
 69235
 69236
 69237
 69238
 69239
 69240
 69241
 69242
 69243
 69244
 69245
 69246
 69247
 69248
 69249
 69250
 69251
 69252
 69253
 69254
 69255
 69256
 69257
 69258
 69259
 69260
 69261
 69262
 69263
 69264
 69265
 69266
 69267
 69268
 69269
 69270
 69271
 69272
 69273
 69274
 69275
 69276
 69277
 69278
 69279
 69280
 69281
 69282
 69283
 69284
 69285
 69286
 69287
 69288
 69289
 69290
 69291
 69292
 69293
 69294
 69295
 69296
 69297
 69298
 69299
 69300
 69301
 69302
 69303
 69304
 69305
 69306
 69307
 69308
 69309
 69310
 69311
 69312
 69313
 69314
 69315
 69316
 69317
 69318
 69319
 69320
 69321
 69322
 69323
 69324
 69325
 69326
 69327
 69328
 69329
 69330
 69331
 69332
 69333
 69334
 69335
 69336
 69337
 69338
 69339
 69340
 69341
 69342
 69343
 69344
 69345
 69346
 69347
 69348
 69349
 69350
 69351
 69352
 69353
 69354
 69355
 69356
 69357
 69358
 69359
 69360
 69361
 69362
 69363
 69364
 69365
 69366
 69367
 69368
 69369
 69370
 69371
 69372
 69373
 69374
 69375
 69376
 69377
 69378
 69379
 69380
 69381
 69382
 69383
 69384
 69385
 69386
 69387
 69388
 69389
 69390
 69391
 69392
 69393
 69394
 69395
 69396
 69397
 69398
 69399
 69400
 69401
 69402
 69403
 69404
 69405
 69406
 69407
 69408
 69409
 69410
 69411
 69412
 69413
 69414
 69415
 69416
 69417
 69418
 69419
 69420
 69421
 69422
 69423
 69424
 69425
 69426
 69427
 69428
 69429
 69430
 69431
 69432
 69433
 69434
 69435
 69436
 69437
 69438
 69439
 69440
 69441
 69442
 69443
 69444
 69445
 69446
 69447
 69448
 69449
 69450
 69451
 69452
 69453
 69454
 69455
 69456
 69457
 69458
 69459
 69460
 69461
 69462
 69463
 69464
 69465
 69466
 69467
 69468
 69469
 69470
 69471
 69472
 69473
 69474
 69475
 69476
 69477
 69478
 69479
 69480
 69481
 69482
 69483
 69484
 69485
 69486
 69487
 69488
 69489
 69490
 69491
 69492
 69493
 69494
 69495
 69496
 69497
 69498
 69499
 69500
 69501
 69502
 69503
 69504
 69505
 69506
 69507
 69508
 69509
 69510
 69511
 69512
 69513
 69514
 69515
 69516
 69517
 69518
 69519
 69520
 69521
 69522
 69523
 69524
 69525
 69526
 69527
 69528
 69529
 69530
 69531
 69532
 69533
 69534
 69535
 69536
 69537
 69538
 69539
 69540
 69541
 69542
 69543
 69544
 69545
 69546
 69547
 69548
 69549
 69550
 69551
 69552
 69553
 69554
 69555
 69556
 69557
 69558
 69559
 69560
 69561
 69562
 69563
 69564
 69565
 69566
 69567
 69568
 69569
 69570
 69571
 69572
 69573
 69574
 69575
 69576
 69577
 69578
 69579
 69580
 69581
 69582
 69583
 69584
 69585
 69586
 69587
 69588
 69589
 69590
 69591
 69592
 69593
 69594
 69595
 69596
 69597
 69598
 69599
 69600
 69601
 69602
 69603
 69604
 69605
 69606
 69607
 69608
 69609
 69610
 69611
 69612
 69613
 69614
 69615
 69616
 69617
 69618
 69619
 69620
 69621
 69622
 69623
 69624
 69625
 69626
 69627
 69628
 69629
 69630
 69631
 69632
 69633
 69634
 69635
 69636
 69637
 69638
 69639
 69640
 69641
 69642
 69643
 69644
 69645
 69646
 69647
 69648
 69649
 69650
 69651
 69652
 69653
 69654
 69655
 69656
 69657
 69658
 69659
 69660
 69661
 69662
 69663
 69664
 69665
 69666
 69667
 69668
 69669
 69670
 69671
 69672
 69673
 69674
 69675
 69676
 69677
 69678
 69679
 69680
 69681
 69682
 69683
 69684
 69685
 69686
 69687
 69688
 69689
 69690
 69691
 69692
 69693
 69694
 69695
 69696
 69697
 69698
 69699
 69700
 69701
 69702
 69703
 69704
 69705
 69706
 69707
 69708
 69709
 69710
 69711
 69712
 69713
 69714
 69715
 69716
 69717
 69718
 69719
 69720
 69721
 69722
 69723
 69724
 69725
 69726
 69727
 69728
 69729
 69730
 69731
 69732
 69733
 69734
 69735
 69736
 69737
 69738
 69739
 69740
 69741
 69742
 69743
 69744
 69745
 69746
 69747
 69748
 69749
 69750
 69751
 69752
 69753
 69754
 69755
 69756
 69757
 69758
 69759
 69760
 69761
 69762
 69763
 69764
 69765
 69766
 69767
 69768
 69769
 69770
 69771
 69772
 69773
 69774
 69775
 69776
 69777
 69778
 69779
 69780
 69781
 69782
 69783
 69784
 69785
 69786
 69787
 69788
 69789
 69790
 69791
 69792
 69793
 69794
 69795
 69796
 69797
 69798
 69799
 69800
 69801
 69802
 69803
 69804
 69805
 69806
 69807
 69808
 69809
 69810
 69811
 69812
 69813
 69814
 69815
 69816
 69817
 69818
 69819
 69820
 69821
 69822
 69823
 69824
 69825
 69826
 69827
 69828
 69829
 69830
 69831
 69832
 69833
 69834
 69835
 69836
 69837
 69838
 69839
 69840
 69841
 69842
 69843
 69844
 69845
 69846
 69847
 69848
 69849
 69850
 69851
 69852
 69853
 69854
 69855
 69856
 69857
 69858
 69859
 69860
 69861
 69862
 69863
 69864
 69865
 69866
 69867
 69868
 69869
 69870
 69871
 69872
 69873
 69874
 69875
 69876
 69877
 69878
 69879
 69880
 69881
 69882
 69883
 69884
 69885
 69886
 69887
 69888
 69889
 69890
 69891
 69892
 69893
 69894
 69895
 69896
 69897
 69898
 69899
 69900
 69901
 69902
 69903
 69904
 69905
 69906
 69907
 69908
 69909
 69910
 69911
 69912
 69913
 69914
 69915
 69916
 69917
 69918
 69919
 69920
 69921
 69922
 69923
 69924
 69925
 69926
 69927
 69928
 69929
 69930
 69931
 69932
 69933
 69934
 69935
 69936
 69937
 69938
 69939
 69940
 69941
 69942
 69943
 69944
 69945
 69946
 69947
 69948
 69949
 69950
 69951
 69952
 69953
 69954
 69955
 69956
 69957
 69958
 69959
 69960
 69961
 69962
 69963
 69964
 69965
 69966
 69967
 69968
 69969
 69970
 69971
 69972
 69973
 69974
 69975
 69976
 69977
 69978
 69979
 69980
 69981
 69982
 69983
 69984
 69985
 69986
 69987
 69988
 69989
 69990
 69991
 69992
 69993
 69994
 69995
 69996
 69997
 69998
 69999
 70000
 70001
 70002
 70003
 70004
 70005
 70006
 70007
 70008
 70009
 70010
 70011
 70012
 70013
 70014
 70015
 70016
 70017
 70018
 70019
 70020
 70021
 70022
 70023
 70024
 70025
 70026
 70027
 70028
 70029
 70030
 70031
 70032
 70033
 70034
 70035
 70036
 70037
 70038
 70039
 70040
 70041
 70042
 70043
 70044
 70045
 70046
 70047
 70048
 70049
 70050
 70051
 70052
 70053
 70054
 70055
 70056
 70057
 70058
 70059
 70060
 70061
 70062
 70063
 70064
 70065
 70066
 70067
 70068
 70069
 70070
 70071
 70072
 70073
 70074
 70075
 70076
 70077
 70078
 70079
 70080
 70081
 70082
 70083
 70084
 70085
 70086
 70087
 70088
 70089
 70090
 70091
 70092
 70093
 70094
 70095
 70096
 70097
 70098
 70099
 70100
 70101
 70102
 70103
 70104
 70105
 70106
 70107
 70108
 70109
 70110
 70111
 70112
 70113
 70114
 70115
 70116
 70117
 70118
 70119
 70120
 70121
 70122
 70123
 70124
 70125
 70126
 70127
 70128
 70129
 70130
 70131
 70132
 70133
 70134
 70135
 70136
 70137
 70138
 70139
 70140
 70141
 70142
 70143
 70144
 70145
 70146
 70147
 70148
 70149
 70150
 70151
 70152
 70153
 70154
 70155
 70156
 70157
 70158
 70159
 70160
 70161
 70162
 70163
 70164
 70165
 70166
 70167
 70168
 70169
 70170
 70171
 70172
 70173
 70174
 70175
 70176
 70177
 70178
 70179
 70180
 70181
 70182
 70183
 70184
 70185
 70186
 70187
 70188
 70189
 70190
 70191
 70192
 70193
 70194
 70195
 70196
 70197
 70198
 70199
 70200
 70201
 70202
 70203
 70204
 70205
 70206
 70207
 70208
 70209
 70210
 70211
 70212
 70213
 70214
 70215
 70216
 70217
 70218
 70219
 70220
 70221
 70222
 70223
 70224
 70225
 70226
 70227
 70228
 70229
 70230
 70231
 70232
 70233
 70234
 70235
 70236
 70237
 70238
 70239
 70240
 70241
 70242
 70243
 70244
 70245
 70246
 70247
 70248
 70249
 70250
 70251
 70252
 70253
 70254
 70255
 70256
 70257
 70258
 70259
 70260
 70261
 70262
 70263
 70264
 70265
 70266
 70267
 70268
 70269
 70270
 70271
 70272
 70273
 70274
 70275
 70276
 70277
 70278
 70279
 70280
 70281
 70282
 70283
 70284
 70285
 70286
 70287
 70288
 70289
 70290
 70291
 70292
 70293
 70294
 70295
 70296
 70297
 70298
 70299
 70300
 70301
 70302
 70303
 70304
 70305
 70306
 70307
 70308
 70309
 70310
 70311
 70312
 70313
 70314
 70315
 70316
 70317
 70318
 70319
 70320
 70321
 70322
 70323
 70324
 70325
 70326
 70327
 70328
 70329
 70330
 70331
 70332
 70333
 70334
 70335
 70336
 70337
 70338
 70339
 70340
 70341
 70342
 70343
 70344
 70345
 70346
 70347
 70348
 70349
 70350
 70351
 70352
 70353
 70354
 70355
 70356
 70357
 70358
 70359
 70360
 70361
 70362
 70363
 70364
 70365
 70366
 70367
 70368
 70369
 70370
 70371
 70372
 70373
 70374
 70375
 70376
 70377
 70378
 70379
 70380
 70381
 70382
 70383
 70384
 70385
 70386
 70387
 70388
 70389
 70390
 70391
 70392
 70393
 70394
 70395
 70396
 70397
 70398
 70399
 70400
 70401
 70402
 70403
 70404
 70405
 70406
 70407
 70408
 70409
 70410
 70411
 70412
 70413
 70414
 70415
 70416
 70417
 70418
 70419
 70420
 70421
 70422
 70423
 70424
 70425
 70426
 70427
 70428
 70429
 70430
 70431
 70432
 70433
 70434
 70435
 70436
 70437
 70438
 70439
 70440
 70441
 70442
 70443
 70444
 70445
 70446
 70447
 70448
 70449
 70450
 70451
 70452
 70453
 70454
 70455
 70456
 70457
 70458
 70459
 70460
 70461
 70462
 70463
 70464
 70465
 70466
 70467
 70468
 70469
 70470
 70471
 70472
 70473
 70474
 70475
 70476
 70477
 70478
 70479
 70480
 70481
 70482
 70483
 70484
 70485
 70486
 70487
 70488
 70489
 70490
 70491
 70492
 70493
 70494
 70495
 70496
 70497
 70498
 70499
 70500
 70501
 70502
 70503
 70504
 70505
 70506
 70507
 70508
 70509
 70510
 70511
 70512
 70513
 70514
 70515
 70516
 70517
 70518
 70519
 70520
 70521
 70522
 70523
 70524
 70525
 70526
 70527
 70528
 70529
 70530
 70531
 70532
 70533
 70534
 70535
 70536
 70537
 70538
 70539
 70540
 70541
 70542
 70543
 70544
 70545
 70546
 70547
 70548
 70549
 70550
 70551
 70552
 70553
 70554
 70555
 70556
 70557
 70558
 70559
 70560
 70561
 70562
 70563
 70564
 70565
 70566
 70567
 70568
 70569
 70570
 70571
 70572
 70573
 70574
 70575
 70576
 70577
 70578
 70579
 70580
 70581
 70582
 70583
 70584
 70585
 70586
 70587
 70588
 70589
 70590
 70591
 70592
 70593
 70594
 70595
 70596
 70597
 70598
 70599
 70600
 70601
 70602
 70603
 70604
 70605
 70606
 70607
 70608
 70609
 70610
 70611
 70612
 70613
 70614
 70615
 70616
 70617
 70618
 70619
 70620
 70621
 70622
 70623
 70624
 70625
 70626
 70627
 70628
 70629
 70630
 70631
 70632
 70633
 70634
 70635
 70636
 70637
 70638
 70639
 70640
 70641
 70642
 70643
 70644
 70645
 70646
 70647
 70648
 70649
 70650
 70651
 70652
 70653
 70654
 70655
 70656
 70657
 70658
 70659
 70660
 70661
 70662
 70663
 70664
 70665
 70666
 70667
 70668
 70669
 70670
 70671
 70672
 70673
 70674
 70675
 70676
 70677
 70678
 70679
 70680
 70681
 70682
 70683
 70684
 70685
 70686
 70687
 70688
 70689
 70690
 70691
 70692
 70693
 70694
 70695
 70696
 70697
 70698
 70699
 70700
 70701
 70702
 70703
 70704
 70705
 70706
 70707
 70708
 70709
 70710
 70711
 70712
 70713
 70714
 70715
 70716
 70717
 70718
 70719
 70720
 70721
 70722
 70723
 70724
 70725
 70726
 70727
 70728
 70729
 70730
 70731
 70732
 70733
 70734
 70735
 70736
 70737
 70738
 70739
 70740
 70741
 70742
 70743
 70744
 70745
 70746
 70747
 70748
 70749
 70750
 70751
 70752
 70753
 70754
 70755
 70756
 70757
 70758
 70759
 70760
 70761
 70762
 70763
 70764
 70765
 70766
 70767
 70768
 70769
 70770
 70771
 70772
 70773
 70774
 70775
 70776
 70777
 70778
 70779
 70780
 70781
 70782
 70783
 70784
 70785
 70786
 70787
 70788
 70789
 70790
 70791
 70792
 70793
 70794
 70795
 70796
 70797
 70798
 70799
 70800
 70801
 70802
 70803
 70804
 70805
 70806
 70807
 70808
 70809
 70810
 70811
 70812
 70813
 70814
 70815
 70816
 70817
 70818
 70819
 70820
 70821
 70822
 70823
 70824
 70825
 70826
 70827
 70828
 70829
 70830
 70831
 70832
 70833
 70834
 70835
 70836
 70837
 70838
 70839
 70840
 70841
 70842
 70843
 70844
 70845
 70846
 70847
 70848
 70849
 70850
 70851
 70852
 70853
 70854
 70855
 70856
 70857
 70858
 70859
 70860
 70861
 70862
 70863
 70864
 70865
 70866
 70867
 70868
 70869
 70870
 70871
 70872
 70873
 70874
 70875
 70876
 70877
 70878
 70879
 70880
 70881
 70882
 70883
 70884
 70885
 70886
 70887
 70888
 70889
 70890
 70891
 70892
 70893
 70894
 70895
 70896
 70897
 70898
 70899
 70900
 70901
 70902
 70903
 70904
 70905
 70906
 70907
 70908
 70909
 70910
 70911
 70912
 70913
 70914
 70915
 70916
 70917
 70918
 70919
 70920
 70921
 70922
 70923
 70924
 70925
 70926
 70927
 70928
 70929
 70930
 70931
 70932
 70933
 70934
 70935
 70936
 70937
 70938
 70939
 70940
 70941
 70942
 70943
 70944
 70945
 70946
 70947
 70948
 70949
 70950
 70951
 70952
 70953
 70954
 70955
 70956
 70957
 70958
 70959
 70960
 70961
 70962
 70963
 70964
 70965
 70966
 70967
 70968
 70969
 70970
 70971
 70972
 70973
 70974
 70975
 70976
 70977
 70978
 70979
 70980
 70981
 70982
 70983
 70984
 70985
 70986
 70987
 70988
 70989
 70990
 70991
 70992
 70993
 70994
 70995
 70996
 70997
 70998
 70999
 71000
 71001
 71002
 71003
 71004
 71005
 71006
 71007
 71008
 71009
 71010
 71011
 71012
 71013
 71014
 71015
 71016
 71017
 71018
 71019
 71020
 71021
 71022
 71023
 71024
 71025
 71026
 71027
 71028
 71029
 71030
 71031
 71032
 71033
 71034
 71035
 71036
 71037
 71038
 71039
 71040
 71041
 71042
 71043
 71044
 71045
 71046
 71047
 71048
 71049
 71050
 71051
 71052
 71053
 71054
 71055
 71056
 71057
 71058
 71059
 71060
 71061
 71062
 71063
 71064
 71065
 71066
 71067
 71068
 71069
 71070
 71071
 71072
 71073
 71074
 71075
 71076
 71077
 71078
 71079
 71080
 71081
 71082
 71083
 71084
 71085
 71086
 71087
 71088
 71089
 71090
 71091
 71092
 71093
 71094
 71095
 71096
 71097
 71098
 71099
 71100
 71101
 71102
 71103
 71104
 71105
 71106
 71107
 71108
 71109
 71110
 71111
 71112
 71113
 71114
 71115
 71116
 71117
 71118
 71119
 71120
 71121
 71122
 71123
 71124
 71125
 71126
 71127
 71128
 71129
 71130
 71131
 71132
 71133
 71134
 71135
 71136
 71137
 71138
 71139
 71140
 71141
 71142
 71143
 71144
 71145
 71146
 71147
 71148
 71149
 71150
 71151
 71152
 71153
 71154
 71155
 71156
 71157
 71158
 71159
 71160
 71161
 71162
 71163
 71164
 71165
 71166
 71167
 71168
 71169
 71170
 71171
 71172
 71173
 71174
 71175
 71176
 71177
 71178
 71179
 71180
 71181
 71182
 71183
 71184
 71185
 71186
 71187
 71188
 71189
 71190
 71191
 71192
 71193
 71194
 71195
 71196
 71197
 71198
 71199
 71200
 71201
 71202
 71203
 71204
 71205
 71206
 71207
 71208
 71209
 71210
 71211
 71212
 71213
 71214
 71215
 71216
 71217
 71218
 71219
 71220
 71221
 71222
 71223
 71224
 71225
 71226
 71227
 71228
 71229
 71230
 71231
 71232
 71233
 71234
 71235
 71236
 71237
 71238
 71239
 71240
 71241
 71242
 71243
 71244
 71245
 71246
 71247
 71248
 71249
 71250
 71251
 71252
 71253
 71254
 71255
 71256
 71257
 71258
 71259
 71260
 71261
 71262
 71263
 71264
 71265
 71266
 71267
 71268
 71269
 71270
 71271
 71272
 71273
 71274
 71275
 71276
 71277
 71278
 71279
 71280
 71281
 71282
 71283
 71284
 71285
 71286
 71287
 71288
 71289
 71290
 71291
 71292
 71293
 71294
 71295
 71296
 71297
 71298
 71299
 71300
 71301
 71302
 71303
 71304
 71305
 71306
 71307
 71308
 71309
 71310
 71311
 71312
 71313
 71314
 71315
 71316
 71317
 71318
 71319
 71320
 71321
 71322
 71323
 71324
 71325
 71326
 71327
 71328
 71329
 71330
 71331
 71332
 71333
 71334
 71335
 71336
 71337
 71338
 71339
 71340
 71341
 71342
 71343
 71344
 71345
 71346
 71347
 71348
 71349
 71350
 71351
 71352
 71353
 71354
 71355
 71356
 71357
 71358
 71359
 71360
 71361
 71362
 71363
 71364
 71365
 71366
 71367
 71368
 71369
 71370
 71371
 71372
 71373
 71374
 71375
 71376
 71377
 71378
 71379
 71380
 71381
 71382
 71383
 71384
 71385
 71386
 71387
 71388
 71389
 71390
 71391
 71392
 71393
 71394
 71395
 71396
 71397
 71398
 71399
 71400
 71401
 71402
 71403
 71404
 71405
 71406
 71407
 71408
 71409
 71410
 71411
 71412
 71413
 71414
 71415
 71416
 71417
 71418
 71419
 71420
 71421
 71422
 71423
 71424
 71425
 71426
 71427
 71428
 71429
 71430
 71431
 71432
 71433
 71434
 71435
 71436
 71437
 71438
 71439
 71440
 71441
 71442
 71443
 71444
 71445
 71446
 71447
 71448
 71449
 71450
 71451
 71452
 71453
 71454
 71455
 71456
 71457
 71458
 71459
 71460
 71461
 71462
 71463
 71464
 71465
 71466
 71467
 71468
 71469
 71470
 71471
 71472
 71473
 71474
 71475
 71476
 71477
 71478
 71479
 71480
 71481
 71482
 71483
 71484
 71485
 71486
 71487
 71488
 71489
 71490
 71491
 71492
 71493
 71494
 71495
 71496
 71497
 71498
 71499
 71500
 71501
 71502
 71503
 71504
 71505
 71506
 71507
 71508
 71509
 71510
 71511
 71512
 71513
 71514
 71515
 71516
 71517
 71518
 71519
 71520
 71521
 71522
 71523
 71524
 71525
 71526
 71527
 71528
 71529
 71530
 71531
 71532
 71533
 71534
 71535
 71536
 71537
 71538
 71539
 71540
 71541
 71542
 71543
 71544
 71545
 71546
 71547
 71548
 71549
 71550
 71551
 71552
 71553
 71554
 71555
 71556
 71557
 71558
 71559
 71560
 71561
 71562
 71563
 71564
 71565
 71566
 71567
 71568
 71569
 71570
 71571
 71572
 71573
 71574
 71575
 71576
 71577
 71578
 71579
 71580
 71581
 71582
 71583
 71584
 71585
 71586
 71587
 71588
 71589
 71590
 71591
 71592
 71593
 71594
 71595
 71596
 71597
 71598
 71599
 71600
 71601
 71602
 71603
 71604
 71605
 71606
 71607
 71608
 71609
 71610
 71611
 71612
 71613
 71614
 71615
 71616
 71617
 71618
 71619
 71620
 71621
 71622
 71623
 71624
 71625
 71626
 71627
 71628
 71629
 71630
 71631
 71632
 71633
 71634
 71635
 71636
 71637
 71638
 71639
 71640
 71641
 71642
 71643
 71644
 71645
 71646
 71647
 71648
 71649
 71650
 71651
 71652
 71653
 71654
 71655
 71656
 71657
 71658
 71659
 71660
 71661
 71662
 71663
 71664
 71665
 71666
 71667
 71668
 71669
 71670
 71671
 71672
 71673
 71674
 71675
 71676
 71677
 71678
 71679
 71680
 71681
 71682
 71683
 71684
 71685
 71686
 71687
 71688
 71689
 71690
 71691
 71692
 71693
 71694
 71695
 71696
 71697
 71698
 71699
 71700
 71701
 71702
 71703
 71704
 71705
 71706
 71707
 71708
 71709
 71710
 71711
 71712
 71713
 71714
 71715
 71716
 71717
 71718
 71719
 71720
 71721
 71722
 71723
 71724
 71725
 71726
 71727
 71728
 71729
 71730
 71731
 71732
 71733
 71734
 71735
 71736
 71737
 71738
 71739
 71740
 71741
 71742
 71743
 71744
 71745
 71746
 71747
 71748
 71749
 71750
 71751
 71752
 71753
 71754
 71755
 71756
 71757
 71758
 71759
 71760
 71761
 71762
 71763
 71764
 71765
 71766
 71767
 71768
 71769
 71770
 71771
 71772
 71773
 71774
 71775
 71776
 71777
 71778
 71779
 71780
 71781
 71782
 71783
 71784
 71785
 71786
 71787
 71788
 71789
 71790
 71791
 71792
 71793
 71794
 71795
 71796
 71797
 71798
 71799
 71800
 71801
 71802
 71803
 71804
 71805
 71806
 71807
 71808
 71809
 71810
 71811
 71812
 71813
 71814
 71815
 71816
 71817
 71818
 71819
 71820
 71821
 71822
 71823
 71824
 71825
 71826
 71827
 71828
 71829
 71830
 71831
 71832
 71833
 71834
 71835
 71836
 71837
 71838
 71839
 71840
 71841
 71842
 71843
 71844
 71845
 71846
 71847
 71848
 71849
 71850
 71851
 71852
 71853
 71854
 71855
 71856
 71857
 71858
 71859
 71860
 71861
 71862
 71863
 71864
 71865
 71866
 71867
 71868
 71869
 71870
 71871
 71872
 71873
 71874
 71875
 71876
 71877
 71878
 71879
 71880
 71881
 71882
 71883
 71884
 71885
 71886
 71887
 71888
 71889
 71890
 71891
 71892
 71893
 71894
 71895
 71896
 71897
 71898
 71899
 71900
 71901
 71902
 71903
 71904
 71905
 71906
 71907
 71908
 71909
 71910
 71911
 71912
 71913
 71914
 71915
 71916
 71917
 71918
 71919
 71920
 71921
 71922
 71923
 71924
 71925
 71926
 71927
 71928
 71929
 71930
 71931
 71932
 71933
 71934
 71935
 71936
 71937
 71938
 71939
 71940
 71941
 71942
 71943
 71944
 71945
 71946
 71947
 71948
 71949
 71950
 71951
 71952
 71953
 71954
 71955
 71956
 71957
 71958
 71959
 71960
 71961
 71962
 71963
 71964
 71965
 71966
 71967
 71968
 71969
 71970
 71971
 71972
 71973
 71974
 71975
 71976
 71977
 71978
 71979
 71980
 71981
 71982
 71983
 71984
 71985
 71986
 71987
 71988
 71989
 71990
 71991
 71992
 71993
 71994
 71995
 71996
 71997
 71998
 71999
 72000
 72001
 72002
 72003
 72004
 72005
 72006
 72007
 72008
 72009
 72010
 72011
 72012
 72013
 72014
 72015
 72016
 72017
 72018
 72019
 72020
 72021
 72022
 72023
 72024
 72025
 72026
 72027
 72028
 72029
 72030
 72031
 72032
 72033
 72034
 72035
 72036
 72037
 72038
 72039
 72040
 72041
 72042
 72043
 72044
 72045
 72046
 72047
 72048
 72049
 72050
 72051
 72052
 72053
 72054
 72055
 72056
 72057
 72058
 72059
 72060
 72061
 72062
 72063
 72064
 72065
 72066
 72067
 72068
 72069
 72070
 72071
 72072
 72073
 72074
 72075
 72076
 72077
 72078
 72079
 72080
 72081
 72082
 72083
 72084
 72085
 72086
 72087
 72088
 72089
 72090
 72091
 72092
 72093
 72094
 72095
 72096
 72097
 72098
 72099
 72100
 72101
 72102
 72103
 72104
 72105
 72106
 72107
 72108
 72109
 72110
 72111
 72112
 72113
 72114
 72115
 72116
 72117
 72118
 72119
 72120
 72121
 72122
 72123
 72124
 72125
 72126
 72127
 72128
 72129
 72130
 72131
 72132
 72133
 72134
 72135
 72136
 72137
 72138
 72139
 72140
 72141
 72142
 72143
 72144
 72145
 72146
 72147
 72148
 72149
 72150
 72151
 72152
 72153
 72154
 72155
 72156
 72157
 72158
 72159
 72160
 72161
 72162
 72163
 72164
 72165
 72166
 72167
 72168
 72169
 72170
 72171
 72172
 72173
 72174
 72175
 72176
 72177
 72178
 72179
 72180
 72181
 72182
 72183
 72184
 72185
 72186
 72187
 72188
 72189
 72190
 72191
 72192
 72193
 72194
 72195
 72196
 72197
 72198
 72199
 72200
 72201
 72202
 72203
 72204
 72205
 72206
 72207
 72208
 72209
 72210
 72211
 72212
 72213
 72214
 72215
 72216
 72217
 72218
 72219
 72220
 72221
 72222
 72223
 72224
 72225
 72226
 72227
 72228
 72229
 72230
 72231
 72232
 72233
 72234
 72235
 72236
 72237
 72238
 72239
 72240
 72241
 72242
 72243
 72244
 72245
 72246
 72247
 72248
 72249
 72250
 72251
 72252
 72253
 72254
 72255
 72256
 72257
 72258
 72259
 72260
 72261
 72262
 72263
 72264
 72265
 72266
 72267
 72268
 72269
 72270
 72271
 72272
 72273
 72274
 72275
 72276
 72277
 72278
 72279
 72280
 72281
 72282
 72283
 72284
 72285
 72286
 72287
 72288
 72289
 72290
 72291
 72292
 72293
 72294
 72295
 72296
 72297
 72298
 72299
 72300
 72301
 72302
 72303
 72304
 72305
 72306
 72307
 72308
 72309
 72310
 72311
 72312
 72313
 72314
 72315
 72316
 72317
 72318
 72319
 72320
 72321
 72322
 72323
 72324
 72325
 72326
 72327
 72328
 72329
 72330
 72331
 72332
 72333
 72334
 72335
 72336
 72337
 72338
 72339
 72340
 72341
 72342
 72343
 72344
 72345
 72346
 72347
 72348
 72349
 72350
 72351
 72352
 72353
 72354
 72355
 72356
 72357
 72358
 72359
 72360
 72361
 72362
 72363
 72364
 72365
 72366
 72367
 72368
 72369
 72370
 72371
 72372
 72373
 72374
 72375
 72376
 72377
 72378
 72379
 72380
 72381
 72382
 72383
 72384
 72385
 72386
 72387
 72388
 72389
 72390
 72391
 72392
 72393
 72394
 72395
 72396
 72397
 72398
 72399
 72400
 72401
 72402
 72403
 72404
 72405
 72406
 72407
 72408
 72409
 72410
 72411
 72412
 72413
 72414
 72415
 72416
 72417
 72418
 72419
 72420
 72421
 72422
 72423
 72424
 72425
 72426
 72427
 72428
 72429
 72430
 72431
 72432
 72433
 72434
 72435
 72436
 72437
 72438
 72439
 72440
 72441
 72442
 72443
 72444
 72445
 72446
 72447
 72448
 72449
 72450
 72451
 72452
 72453
 72454
 72455
 72456
 72457
 72458
 72459
 72460
 72461
 72462
 72463
 72464
 72465
 72466
 72467
 72468
 72469
 72470
 72471
 72472
 72473
 72474
 72475
 72476
 72477
 72478
 72479
 72480
 72481
 72482
 72483
 72484
 72485
 72486
 72487
 72488
 72489
 72490
 72491
 72492
 72493
 72494
 72495
 72496
 72497
 72498
 72499
 72500
 72501
 72502
 72503
 72504
 72505
 72506
 72507
 72508
 72509
 72510
 72511
 72512
 72513
 72514
 72515
 72516
 72517
 72518
 72519
 72520
 72521
 72522
 72523
 72524
 72525
 72526
 72527
 72528
 72529
 72530
 72531
 72532
 72533
 72534
 72535
 72536
 72537
 72538
 72539
 72540
 72541
 72542
 72543
 72544
 72545
 72546
 72547
 72548
 72549
 72550
 72551
 72552
 72553
 72554
 72555
 72556
 72557
 72558
 72559
 72560
 72561
 72562
 72563
 72564
 72565
 72566
 72567
 72568
 72569
 72570
 72571
 72572
 72573
 72574
 72575
 72576
 72577
 72578
 72579
 72580
 72581
 72582
 72583
 72584
 72585
 72586
 72587
 72588
 72589
 72590
 72591
 72592
 72593
 72594
 72595
 72596
 72597
 72598
 72599
 72600
 72601
 72602
 72603
 72604
 72605
 72606
 72607
 72608
 72609
 72610
 72611
 72612
 72613
 72614
 72615
 72616
 72617
 72618
 72619
 72620
 72621
 72622
 72623
 72624
 72625
 72626
 72627
 72628
 72629
 72630
 72631
 72632
 72633
 72634
 72635
 72636
 72637
 72638
 72639
 72640
 72641
 72642
 72643
 72644
 72645
 72646
 72647
 72648
 72649
 72650
 72651
 72652
 72653
 72654
 72655
 72656
 72657
 72658
 72659
 72660
 72661
 72662
 72663
 72664
 72665
 72666
 72667
 72668
 72669
 72670
 72671
 72672
 72673
 72674
 72675
 72676
 72677
 72678
 72679
 72680
 72681
 72682
 72683
 72684
 72685
 72686
 72687
 72688
 72689
 72690
 72691
 72692
 72693
 72694
 72695
 72696
 72697
 72698
 72699
 72700
 72701
 72702
 72703
 72704
 72705
 72706
 72707
 72708
 72709
 72710
 72711
 72712
 72713
 72714
 72715
 72716
 72717
 72718
 72719
 72720
 72721
 72722
 72723
 72724
 72725
 72726
 72727
 72728
 72729
 72730
 72731
 72732
 72733
 72734
 72735
 72736
 72737
 72738
 72739
 72740
 72741
 72742
 72743
 72744
 72745
 72746
 72747
 72748
 72749
 72750
 72751
 72752
 72753
 72754
 72755
 72756
 72757
 72758
 72759
 72760
 72761
 72762
 72763
 72764
 72765
 72766
 72767
 72768
 72769
 72770
 72771
 72772
 72773
 72774
 72775
 72776
 72777
 72778
 72779
 72780
 72781
 72782
 72783
 72784
 72785
 72786
 72787
 72788
 72789
 72790
 72791
 72792
 72793
 72794
 72795
 72796
 72797
 72798
 72799
 72800
 72801
 72802
 72803
 72804
 72805
 72806
 72807
 72808
 72809
 72810
 72811
 72812
 72813
 72814
 72815
 72816
 72817
 72818
 72819
 72820
 72821
 72822
 72823
 72824
 72825
 72826
 72827
 72828
 72829
 72830
 72831
 72832
 72833
 72834
 72835
 72836
 72837
 72838
 72839
 72840
 72841
 72842
 72843
 72844
 72845
 72846
 72847
 72848
 72849
 72850
 72851
 72852
 72853
 72854
 72855
 72856
 72857
 72858
 72859
 72860
 72861
 72862
 72863
 72864
 72865
 72866
 72867
 72868
 72869
 72870
 72871
 72872
 72873
 72874
 72875
 72876
 72877
 72878
 72879
 72880
 72881
 72882
 72883
 72884
 72885
 72886
 72887
 72888
 72889
 72890
 72891
 72892
 72893
 72894
 72895
 72896
 72897
 72898
 72899
 72900
 72901
 72902
 72903
 72904
 72905
 72906
 72907
 72908
 72909
 72910
 72911
 72912
 72913
 72914
 72915
 72916
 72917
 72918
 72919
 72920
 72921
 72922
 72923
 72924
 72925
 72926
 72927
 72928
 72929
 72930
 72931
 72932
 72933
 72934
 72935
 72936
 72937
 72938
 72939
 72940
 72941
 72942
 72943
 72944
 72945
 72946
 72947
 72948
 72949
 72950
 72951
 72952
 72953
 72954
 72955
 72956
 72957
 72958
 72959
 72960
 72961
 72962
 72963
 72964
 72965
 72966
 72967
 72968
 72969
 72970
 72971
 72972
 72973
 72974
 72975
 72976
 72977
 72978
 72979
 72980
 72981
 72982
 72983
 72984
 72985
 72986
 72987
 72988
 72989
 72990
 72991
 72992
 72993
 72994
 72995
 72996
 72997
 72998
 72999
 73000
 73001
 73002
 73003
 73004
 73005
 73006
 73007
 73008
 73009
 73010
 73011
 73012
 73013
 73014
 73015
 73016
 73017
 73018
 73019
 73020
 73021
 73022
 73023
 73024
 73025
 73026
 73027
 73028
 73029
 73030
 73031
 73032
 73033
 73034
 73035
 73036
 73037
 73038
 73039
 73040
 73041
 73042
 73043
 73044
 73045
 73046
 73047
 73048
 73049
 73050
 73051
 73052
 73053
 73054
 73055
 73056
 73057
 73058
 73059
 73060
 73061
 73062
 73063
 73064
 73065
 73066
 73067
 73068
 73069
 73070
 73071
 73072
 73073
 73074
 73075
 73076
 73077
 73078
 73079
 73080
 73081
 73082
 73083
 73084
 73085
 73086
 73087
 73088
 73089
 73090
 73091
 73092
 73093
 73094
 73095
 73096
 73097
 73098
 73099
 73100
 73101
 73102
 73103
 73104
 73105
 73106
 73107
 73108
 73109
 73110
 73111
 73112
 73113
 73114
 73115
 73116
 73117
 73118
 73119
 73120
 73121
 73122
 73123
 73124
 73125
 73126
 73127
 73128
 73129
 73130
 73131
 73132
 73133
 73134
 73135
 73136
 73137
 73138
 73139
 73140
 73141
 73142
 73143
 73144
 73145
 73146
 73147
 73148
 73149
 73150
 73151
 73152
 73153
 73154
 73155
 73156
 73157
 73158
 73159
 73160
 73161
 73162
 73163
 73164
 73165
 73166
 73167
 73168
 73169
 73170
 73171
 73172
 73173
 73174
 73175
 73176
 73177
 73178
 73179
 73180
 73181
 73182
 73183
 73184
 73185
 73186
 73187
 73188
 73189
 73190
 73191
 73192
 73193
 73194
 73195
 73196
 73197
 73198
 73199
 73200
 73201
 73202
 73203
 73204
 73205
 73206
 73207
 73208
 73209
 73210
 73211
 73212
 73213
 73214
 73215
 73216
 73217
 73218
 73219
 73220
 73221
 73222
 73223
 73224
 73225
 73226
 73227
 73228
 73229
 73230
 73231
 73232
 73233
 73234
 73235
 73236
 73237
 73238
 73239
 73240
 73241
 73242
 73243
 73244
 73245
 73246
 73247
 73248
 73249
 73250
 73251
 73252
 73253
 73254
 73255
 73256
 73257
 73258
 73259
 73260
 73261
 73262
 73263
 73264
 73265
 73266
 73267
 73268
 73269
 73270
 73271
 73272
 73273
 73274
 73275
 73276
 73277
 73278
 73279
 73280
 73281
 73282
 73283
 73284
 73285
 73286
 73287
 73288
 73289
 73290
 73291
 73292
 73293
 73294
 73295
 73296
 73297
 73298
 73299
 73300
 73301
 73302
 73303
 73304
 73305
 73306
 73307
 73308
 73309
 73310
 73311
 73312
 73313
 73314
 73315
 73316
 73317
 73318
 73319
 73320
 73321
 73322
 73323
 73324
 73325
 73326
 73327
 73328
 73329
 73330
 73331
 73332
 73333
 73334
 73335
 73336
 73337
 73338
 73339
 73340
 73341
 73342
 73343
 73344
 73345
 73346
 73347
 73348
 73349
 73350
 73351
 73352
 73353
 73354
 73355
 73356
 73357
 73358
 73359
 73360
 73361
 73362
 73363
 73364
 73365
 73366
 73367
 73368
 73369
 73370
 73371
 73372
 73373
 73374
 73375
 73376
 73377
 73378
 73379
 73380
 73381
 73382
 73383
 73384
 73385
 73386
 73387
 73388
 73389
 73390
 73391
 73392
 73393
 73394
 73395
 73396
 73397
 73398
 73399
 73400
 73401
 73402
 73403
 73404
 73405
 73406
 73407
 73408
 73409
 73410
 73411
 73412
 73413
 73414
 73415
 73416
 73417
 73418
 73419
 73420
 73421
 73422
 73423
 73424
 73425
 73426
 73427
 73428
 73429
 73430
 73431
 73432
 73433
 73434
 73435
 73436
 73437
 73438
 73439
 73440
 73441
 73442
 73443
 73444
 73445
 73446
 73447
 73448
 73449
 73450
 73451
 73452
 73453
 73454
 73455
 73456
 73457
 73458
 73459
 73460
 73461
 73462
 73463
 73464
 73465
 73466
 73467
 73468
 73469
 73470
 73471
 73472
 73473
 73474
 73475
 73476
 73477
 73478
 73479
 73480
 73481
 73482
 73483
 73484
 73485
 73486
 73487
 73488
 73489
 73490
 73491
 73492
 73493
 73494
 73495
 73496
 73497
 73498
 73499
 73500
 73501
 73502
 73503
 73504
 73505
 73506
 73507
 73508
 73509
 73510
 73511
 73512
 73513
 73514
 73515
 73516
 73517
 73518
 73519
 73520
 73521
 73522
 73523
 73524
 73525
 73526
 73527
 73528
 73529
 73530
 73531
 73532
 73533
 73534
 73535
 73536
 73537
 73538
 73539
 73540
 73541
 73542
 73543
 73544
 73545
 73546
 73547
 73548
 73549
 73550
 73551
 73552
 73553
 73554
 73555
 73556
 73557
 73558
 73559
 73560
 73561
 73562
 73563
 73564
 73565
 73566
 73567
 73568
 73569
 73570
 73571
 73572
 73573
 73574
 73575
 73576
 73577
 73578
 73579
 73580
 73581
 73582
 73583
 73584
 73585
 73586
 73587
 73588
 73589
 73590
 73591
 73592
 73593
 73594
 73595
 73596
 73597
 73598
 73599
 73600
 73601
 73602
 73603
 73604
 73605
 73606
 73607
 73608
 73609
 73610
 73611
 73612
 73613
 73614
 73615
 73616
 73617
 73618
 73619
 73620
 73621
 73622
 73623
 73624
 73625
 73626
 73627
 73628
 73629
 73630
 73631
 73632
 73633
 73634
 73635
 73636
 73637
 73638
 73639
 73640
 73641
 73642
 73643
 73644
 73645
 73646
 73647
 73648
 73649
 73650
 73651
 73652
 73653
 73654
 73655
 73656
 73657
 73658
 73659
 73660
 73661
 73662
 73663
 73664
 73665
 73666
 73667
 73668
 73669
 73670
 73671
 73672
 73673
 73674
 73675
 73676
 73677
 73678
 73679
 73680
 73681
 73682
 73683
 73684
 73685
 73686
 73687
 73688
 73689
 73690
 73691
 73692
 73693
 73694
 73695
 73696
 73697
 73698
 73699
 73700
 73701
 73702
 73703
 73704
 73705
 73706
 73707
 73708
 73709
 73710
 73711
 73712
 73713
 73714
 73715
 73716
 73717
 73718
 73719
 73720
 73721
 73722
 73723
 73724
 73725
 73726
 73727
 73728
 73729
 73730
 73731
 73732
 73733
 73734
 73735
 73736
 73737
 73738
 73739
 73740
 73741
 73742
 73743
 73744
 73745
 73746
 73747
 73748
 73749
 73750
 73751
 73752
 73753
 73754
 73755
 73756
 73757
 73758
 73759
 73760
 73761
 73762
 73763
 73764
 73765
 73766
 73767
 73768
 73769
 73770
 73771
 73772
 73773
 73774
 73775
 73776
 73777
 73778
 73779
 73780
 73781
 73782
 73783
 73784
 73785
 73786
 73787
 73788
 73789
 73790
 73791
 73792
 73793
 73794
 73795
 73796
 73797
 73798
 73799
 73800
 73801
 73802
 73803
 73804
 73805
 73806
 73807
 73808
 73809
 73810
 73811
 73812
 73813
 73814
 73815
 73816
 73817
 73818
 73819
 73820
 73821
 73822
 73823
 73824
 73825
 73826
 73827
 73828
 73829
 73830
 73831
 73832
 73833
 73834
 73835
 73836
 73837
 73838
 73839
 73840
 73841
 73842
 73843
 73844
 73845
 73846
 73847
 73848
 73849
 73850
 73851
 73852
 73853
 73854
 73855
 73856
 73857
 73858
 73859
 73860
 73861
 73862
 73863
 73864
 73865
 73866
 73867
 73868
 73869
 73870
 73871
 73872
 73873
 73874
 73875
 73876
 73877
 73878
 73879
 73880
 73881
 73882
 73883
 73884
 73885
 73886
 73887
 73888
 73889
 73890
 73891
 73892
 73893
 73894
 73895
 73896
 73897
 73898
 73899
 73900
 73901
 73902
 73903
 73904
 73905
 73906
 73907
 73908
 73909
 73910
 73911
 73912
 73913
 73914
 73915
 73916
 73917
 73918
 73919
 73920
 73921
 73922
 73923
 73924
 73925
 73926
 73927
 73928
 73929
 73930
 73931
 73932
 73933
 73934
 73935
 73936
 73937
 73938
 73939
 73940
 73941
 73942
 73943
 73944
 73945
 73946
 73947
 73948
 73949
 73950
 73951
 73952
 73953
 73954
 73955
 73956
 73957
 73958
 73959
 73960
 73961
 73962
 73963
 73964
 73965
 73966
 73967
 73968
 73969
 73970
 73971
 73972
 73973
 73974
 73975
 73976
 73977
 73978
 73979
 73980
 73981
 73982
 73983
 73984
 73985
 73986
 73987
 73988
 73989
 73990
 73991
 73992
 73993
 73994
 73995
 73996
 73997
 73998
 73999
 74000
 74001
 74002
 74003
 74004
 74005
 74006
 74007
 74008
 74009
 74010
 74011
 74012
 74013
 74014
 74015
 74016
 74017
 74018
 74019
 74020
 74021
 74022
 74023
 74024
 74025
 74026
 74027
 74028
 74029
 74030
 74031
 74032
 74033
 74034
 74035
 74036
 74037
 74038
 74039
 74040
 74041
 74042
 74043
 74044
 74045
 74046
 74047
 74048
 74049
 74050
 74051
 74052
 74053
 74054
 74055
 74056
 74057
 74058
 74059
 74060
 74061
 74062
 74063
 74064
 74065
 74066
 74067
 74068
 74069
 74070
 74071
 74072
 74073
 74074
 74075
 74076
 74077
 74078
 74079
 74080
 74081
 74082
 74083
 74084
 74085
 74086
 74087
 74088
 74089
 74090
 74091
 74092
 74093
 74094
 74095
 74096
 74097
 74098
 74099
 74100
 74101
 74102
 74103
 74104
 74105
 74106
 74107
 74108
 74109
 74110
 74111
 74112
 74113
 74114
 74115
 74116
 74117
 74118
 74119
 74120
 74121
 74122
 74123
 74124
 74125
 74126
 74127
 74128
 74129
 74130
 74131
 74132
 74133
 74134
 74135
 74136
 74137
 74138
 74139
 74140
 74141
 74142
 74143
 74144
 74145
 74146
 74147
 74148
 74149
 74150
 74151
 74152
 74153
 74154
 74155
 74156
 74157
 74158
 74159
 74160
 74161
 74162
 74163
 74164
 74165
 74166
 74167
 74168
 74169
 74170
 74171
 74172
 74173
 74174
 74175
 74176
 74177
 74178
 74179
 74180
 74181
 74182
 74183
 74184
 74185
 74186
 74187
 74188
 74189
 74190
 74191
 74192
 74193
 74194
 74195
 74196
 74197
 74198
 74199
 74200
 74201
 74202
 74203
 74204
 74205
 74206
 74207
 74208
 74209
 74210
 74211
 74212
 74213
 74214
 74215
 74216
 74217
 74218
 74219
 74220
 74221
 74222
 74223
 74224
 74225
 74226
 74227
 74228
 74229
 74230
 74231
 74232
 74233
 74234
 74235
 74236
 74237
 74238
 74239
 74240
 74241
 74242
 74243
 74244
 74245
 74246
 74247
 74248
 74249
 74250
 74251
 74252
 74253
 74254
 74255
 74256
 74257
 74258
 74259
 74260
 74261
 74262
 74263
 74264
 74265
 74266
 74267
 74268
 74269
 74270
 74271
 74272
 74273
 74274
 74275
 74276
 74277
 74278
 74279
 74280
 74281
 74282
 74283
 74284
 74285
 74286
 74287
 74288
 74289
 74290
 74291
 74292
 74293
 74294
 74295
 74296
 74297
 74298
 74299
 74300
 74301
 74302
 74303
 74304
 74305
 74306
 74307
 74308
 74309
 74310
 74311
 74312
 74313
 74314
 74315
 74316
 74317
 74318
 74319
 74320
 74321
 74322
 74323
 74324
 74325
 74326
 74327
 74328
 74329
 74330
 74331
 74332
 74333
 74334
 74335
 74336
 74337
 74338
 74339
 74340
 74341
 74342
 74343
 74344
 74345
 74346
 74347
 74348
 74349
 74350
 74351
 74352
 74353
 74354
 74355
 74356
 74357
 74358
 74359
 74360
 74361
 74362
 74363
 74364
 74365
 74366
 74367
 74368
 74369
 74370
 74371
 74372
 74373
 74374
 74375
 74376
 74377
 74378
 74379
 74380
 74381
 74382
 74383
 74384
 74385
 74386
 74387
 74388
 74389
 74390
 74391
 74392
 74393
 74394
 74395
 74396
 74397
 74398
 74399
 74400
 74401
 74402
 74403
 74404
 74405
 74406
 74407
 74408
 74409
 74410
 74411
 74412
 74413
 74414
 74415
 74416
 74417
 74418
 74419
 74420
 74421
 74422
 74423
 74424
 74425
 74426
 74427
 74428
 74429
 74430
 74431
 74432
 74433
 74434
 74435
 74436
 74437
 74438
 74439
 74440
 74441
 74442
 74443
 74444
 74445
 74446
 74447
 74448
 74449
 74450
 74451
 74452
 74453
 74454
 74455
 74456
 74457
 74458
 74459
 74460
 74461
 74462
 74463
 74464
 74465
 74466
 74467
 74468
 74469
 74470
 74471
 74472
 74473
 74474
 74475
 74476
 74477
 74478
 74479
 74480
 74481
 74482
 74483
 74484
 74485
 74486
 74487
 74488
 74489
 74490
 74491
 74492
 74493
 74494
 74495
 74496
 74497
 74498
 74499
 74500
 74501
 74502
 74503
 74504
 74505
 74506
 74507
 74508
 74509
 74510
 74511
 74512
 74513
 74514
 74515
 74516
 74517
 74518
 74519
 74520
 74521
 74522
 74523
 74524
 74525
 74526
 74527
 74528
 74529
 74530
 74531
 74532
 74533
 74534
 74535
 74536
 74537
 74538
 74539
 74540
 74541
 74542
 74543
 74544
 74545
 74546
 74547
 74548
 74549
 74550
 74551
 74552
 74553
 74554
 74555
 74556
 74557
 74558
 74559
 74560
 74561
 74562
 74563
 74564
 74565
 74566
 74567
 74568
 74569
 74570
 74571
 74572
 74573
 74574
 74575
 74576
 74577
 74578
 74579
 74580
 74581
 74582
 74583
 74584
 74585
 74586
 74587
 74588
 74589
 74590
 74591
 74592
 74593
 74594
 74595
 74596
 74597
 74598
 74599
 74600
 74601
 74602
 74603
 74604
 74605
 74606
 74607
 74608
 74609
 74610
 74611
 74612
 74613
 74614
 74615
 74616
 74617
 74618
 74619
 74620
 74621
 74622
 74623
 74624
 74625
 74626
 74627
 74628
 74629
 74630
 74631
 74632
 74633
 74634
 74635
 74636
 74637
 74638
 74639
 74640
 74641
 74642
 74643
 74644
 74645
 74646
 74647
 74648
 74649
 74650
 74651
 74652
 74653
 74654
 74655
 74656
 74657
 74658
 74659
 74660
 74661
 74662
 74663
 74664
 74665
 74666
 74667
 74668
 74669
 74670
 74671
 74672
 74673
 74674
 74675
 74676
 74677
 74678
 74679
 74680
 74681
 74682
 74683
 74684
 74685
 74686
 74687
 74688
 74689
 74690
 74691
 74692
 74693
 74694
 74695
 74696
 74697
 74698
 74699
 74700
 74701
 74702
 74703
 74704
 74705
 74706
 74707
 74708
 74709
 74710
 74711
 74712
 74713
 74714
 74715
 74716
 74717
 74718
 74719
 74720
 74721
 74722
 74723
 74724
 74725
 74726
 74727
 74728
 74729
 74730
 74731
 74732
 74733
 74734
 74735
 74736
 74737
 74738
 74739
 74740
 74741
 74742
 74743
 74744
 74745
 74746
 74747
 74748
 74749
 74750
 74751
 74752
 74753
 74754
 74755
 74756
 74757
 74758
 74759
 74760
 74761
 74762
 74763
 74764
 74765
 74766
 74767
 74768
 74769
 74770
 74771
 74772
 74773
 74774
 74775
 74776
 74777
 74778
 74779
 74780
 74781
 74782
 74783
 74784
 74785
 74786
 74787
 74788
 74789
 74790
 74791
 74792
 74793
 74794
 74795
 74796
 74797
 74798
 74799
 74800
 74801
 74802
 74803
 74804
 74805
 74806
 74807
 74808
 74809
 74810
 74811
 74812
 74813
 74814
 74815
 74816
 74817
 74818
 74819
 74820
 74821
 74822
 74823
 74824
 74825
 74826
 74827
 74828
 74829
 74830
 74831
 74832
 74833
 74834
 74835
 74836
 74837
 74838
 74839
 74840
 74841
 74842
 74843
 74844
 74845
 74846
 74847
 74848
 74849
 74850
 74851
 74852
 74853
 74854
 74855
 74856
 74857
 74858
 74859
 74860
 74861
 74862
 74863
 74864
 74865
 74866
 74867
 74868
 74869
 74870
 74871
 74872
 74873
 74874
 74875
 74876
 74877
 74878
 74879
 74880
 74881
 74882
 74883
 74884
 74885
 74886
 74887
 74888
 74889
 74890
 74891
 74892
 74893
 74894
 74895
 74896
 74897
 74898
 74899
 74900
 74901
 74902
 74903
 74904
 74905
 74906
 74907
 74908
 74909
 74910
 74911
 74912
 74913
 74914
 74915
 74916
 74917
 74918
 74919
 74920
 74921
 74922
 74923
 74924
 74925
 74926
 74927
 74928
 74929
 74930
 74931
 74932
 74933
 74934
 74935
 74936
 74937
 74938
 74939
 74940
 74941
 74942
 74943
 74944
 74945
 74946
 74947
 74948
 74949
 74950
 74951
 74952
 74953
 74954
 74955
 74956
 74957
 74958
 74959
 74960
 74961
 74962
 74963
 74964
 74965
 74966
 74967
 74968
 74969
 74970
 74971
 74972
 74973
 74974
 74975
 74976
 74977
 74978
 74979
 74980
 74981
 74982
 74983
 74984
 74985
 74986
 74987
 74988
 74989
 74990
 74991
 74992
 74993
 74994
 74995
 74996
 74997
 74998
 74999
 75000
 75001
 75002
 75003
 75004
 75005
 75006
 75007
 75008
 75009
 75010
 75011
 75012
 75013
 75014
 75015
 75016
 75017
 75018
 75019
 75020
 75021
 75022
 75023
 75024
 75025
 75026
 75027
 75028
 75029
 75030
 75031
 75032
 75033
 75034
 75035
 75036
 75037
 75038
 75039
 75040
 75041
 75042
 75043
 75044
 75045
 75046
 75047
 75048
 75049
 75050
 75051
 75052
 75053
 75054
 75055
 75056
 75057
 75058
 75059
 75060
 75061
 75062
 75063
 75064
 75065
 75066
 75067
 75068
 75069
 75070
 75071
 75072
 75073
 75074
 75075
 75076
 75077
 75078
 75079
 75080
 75081
 75082
 75083
 75084
 75085
 75086
 75087
 75088
 75089
 75090
 75091
 75092
 75093
 75094
 75095
 75096
 75097
 75098
 75099
 75100
 75101
 75102
 75103
 75104
 75105
 75106
 75107
 75108
 75109
 75110
 75111
 75112
 75113
 75114
 75115
 75116
 75117
 75118
 75119
 75120
 75121
 75122
 75123
 75124
 75125
 75126
 75127
 75128
 75129
 75130
 75131
 75132
 75133
 75134
 75135
 75136
 75137
 75138
 75139
 75140
 75141
 75142
 75143
 75144
 75145
 75146
 75147
 75148
 75149
 75150
 75151
 75152
 75153
 75154
 75155
 75156
 75157
 75158
 75159
 75160
 75161
 75162
 75163
 75164
 75165
 75166
 75167
 75168
 75169
 75170
 75171
 75172
 75173
 75174
 75175
 75176
 75177
 75178
 75179
 75180
 75181
 75182
 75183
 75184
 75185
 75186
 75187
 75188
 75189
 75190
 75191
 75192
 75193
 75194
 75195
 75196
 75197
 75198
 75199
 75200
 75201
 75202
 75203
 75204
 75205
 75206
 75207
 75208
 75209
 75210
 75211
 75212
 75213
 75214
 75215
 75216
 75217
 75218
 75219
 75220
 75221
 75222
 75223
 75224
 75225
 75226
 75227
 75228
 75229
 75230
 75231
 75232
 75233
 75234
 75235
 75236
 75237
 75238
 75239
 75240
 75241
 75242
 75243
 75244
 75245
 75246
 75247
 75248
 75249
 75250
 75251
 75252
 75253
 75254
 75255
 75256
 75257
 75258
 75259
 75260
 75261
 75262
 75263
 75264
 75265
 75266
 75267
 75268
 75269
 75270
 75271
 75272
 75273
 75274
 75275
 75276
 75277
 75278
 75279
 75280
 75281
 75282
 75283
 75284
 75285
 75286
 75287
 75288
 75289
 75290
 75291
 75292
 75293
 75294
 75295
 75296
 75297
 75298
 75299
 75300
 75301
 75302
 75303
 75304
 75305
 75306
 75307
 75308
 75309
 75310
 75311
 75312
 75313
 75314
 75315
 75316
 75317
 75318
 75319
 75320
 75321
 75322
 75323
 75324
 75325
 75326
 75327
 75328
 75329
 75330
 75331
 75332
 75333
 75334
 75335
 75336
 75337
 75338
 75339
 75340
 75341
 75342
 75343
 75344
 75345
 75346
 75347
 75348
 75349
 75350
 75351
 75352
 75353
 75354
 75355
 75356
 75357
 75358
 75359
 75360
 75361
 75362
 75363
 75364
 75365
 75366
 75367
 75368
 75369
 75370
 75371
 75372
 75373
 75374
 75375
 75376
 75377
 75378
 75379
 75380
 75381
 75382
 75383
 75384
 75385
 75386
 75387
 75388
 75389
 75390
 75391
 75392
 75393
 75394
 75395
 75396
 75397
 75398
 75399
 75400
 75401
 75402
 75403
 75404
 75405
 75406
 75407
 75408
 75409
 75410
 75411
 75412
 75413
 75414
 75415
 75416
 75417
 75418
 75419
 75420
 75421
 75422
 75423
 75424
 75425
 75426
 75427
 75428
 75429
 75430
 75431
 75432
 75433
 75434
 75435
 75436
 75437
 75438
 75439
 75440
 75441
 75442
 75443
 75444
 75445
 75446
 75447
 75448
 75449
 75450
 75451
 75452
 75453
 75454
 75455
 75456
 75457
 75458
 75459
 75460
 75461
 75462
 75463
 75464
 75465
 75466
 75467
 75468
 75469
 75470
 75471
 75472
 75473
 75474
 75475
 75476
 75477
 75478
 75479
 75480
 75481
 75482
 75483
 75484
 75485
 75486
 75487
 75488
 75489
 75490
 75491
 75492
 75493
 75494
 75495
 75496
 75497
 75498
 75499
 75500
 75501
 75502
 75503
 75504
 75505
 75506
 75507
 75508
 75509
 75510
 75511
 75512
 75513
 75514
 75515
 75516
 75517
 75518
 75519
 75520
 75521
 75522
 75523
 75524
 75525
 75526
 75527
 75528
 75529
 75530
 75531
 75532
 75533
 75534
 75535
 75536
 75537
 75538
 75539
 75540
 75541
 75542
 75543
 75544
 75545
 75546
 75547
 75548
 75549
 75550
 75551
 75552
 75553
 75554
 75555
 75556
 75557
 75558
 75559
 75560
 75561
 75562
 75563
 75564
 75565
 75566
 75567
 75568
 75569
 75570
 75571
 75572
 75573
 75574
 75575
 75576
 75577
 75578
 75579
 75580
 75581
 75582
 75583
 75584
 75585
 75586
 75587
 75588
 75589
 75590
 75591
 75592
 75593
 75594
 75595
 75596
 75597
 75598
 75599
 75600
 75601
 75602
 75603
 75604
 75605
 75606
 75607
 75608
 75609
 75610
 75611
 75612
 75613
 75614
 75615
 75616
 75617
 75618
 75619
 75620
 75621
 75622
 75623
 75624
 75625
 75626
 75627
 75628
 75629
 75630
 75631
 75632
 75633
 75634
 75635
 75636
 75637
 75638
 75639
 75640
 75641
 75642
 75643
 75644
 75645
 75646
 75647
 75648
 75649
 75650
 75651
 75652
 75653
 75654
 75655
 75656
 75657
 75658
 75659
 75660
 75661
 75662
 75663
 75664
 75665
 75666
 75667
 75668
 75669
 75670
 75671
 75672
 75673
 75674
 75675
 75676
 75677
 75678
 75679
 75680
 75681
 75682
 75683
 75684
 75685
 75686
 75687
 75688
 75689
 75690
 75691
 75692
 75693
 75694
 75695
 75696
 75697
 75698
 75699
 75700
 75701
 75702
 75703
 75704
 75705
 75706
 75707
 75708
 75709
 75710
 75711
 75712
 75713
 75714
 75715
 75716
 75717
 75718
 75719
 75720
 75721
 75722
 75723
 75724
 75725
 75726
 75727
 75728
 75729
 75730
 75731
 75732
 75733
 75734
 75735
 75736
 75737
 75738
 75739
 75740
 75741
 75742
 75743
 75744
 75745
 75746
 75747
 75748
 75749
 75750
 75751
 75752
 75753
 75754
 75755
 75756
 75757
 75758
 75759
 75760
 75761
 75762
 75763
 75764
 75765
 75766
 75767
 75768
 75769
 75770
 75771
 75772
 75773
 75774
 75775
 75776
 75777
 75778
 75779
 75780
 75781
 75782
 75783
 75784
 75785
 75786
 75787
 75788
 75789
 75790
 75791
 75792
 75793
 75794
 75795
 75796
 75797
 75798
 75799
 75800
 75801
 75802
 75803
 75804
 75805
 75806
 75807
 75808
 75809
 75810
 75811
 75812
 75813
 75814
 75815
 75816
 75817
 75818
 75819
 75820
 75821
 75822
 75823
 75824
 75825
 75826
 75827
 75828
 75829
 75830
 75831
 75832
 75833
 75834
 75835
 75836
 75837
 75838
 75839
 75840
 75841
 75842
 75843
 75844
 75845
 75846
 75847
 75848
 75849
 75850
 75851
 75852
 75853
 75854
 75855
 75856
 75857
 75858
 75859
 75860
 75861
 75862
 75863
 75864
 75865
 75866
 75867
 75868
 75869
 75870
 75871
 75872
 75873
 75874
 75875
 75876
 75877
 75878
 75879
 75880
 75881
 75882
 75883
 75884
 75885
 75886
 75887
 75888
 75889
 75890
 75891
 75892
 75893
 75894
 75895
 75896
 75897
 75898
 75899
 75900
 75901
 75902
 75903
 75904
 75905
 75906
 75907
 75908
 75909
 75910
 75911
 75912
 75913
 75914
 75915
 75916
 75917
 75918
 75919
 75920
 75921
 75922
 75923
 75924
 75925
 75926
 75927
 75928
 75929
 75930
 75931
 75932
 75933
 75934
 75935
 75936
 75937
 75938
 75939
 75940
 75941
 75942
 75943
 75944
 75945
 75946
 75947
 75948
 75949
 75950
 75951
 75952
 75953
 75954
 75955
 75956
 75957
 75958
 75959
 75960
 75961
 75962
 75963
 75964
 75965
 75966
 75967
 75968
 75969
 75970
 75971
 75972
 75973
 75974
 75975
 75976
 75977
 75978
 75979
 75980
 75981
 75982
 75983
 75984
 75985
 75986
 75987
 75988
 75989
 75990
 75991
 75992
 75993
 75994
 75995
 75996
 75997
 75998
 75999
 76000
 76001
 76002
 76003
 76004
 76005
 76006
 76007
 76008
 76009
 76010
 76011
 76012
 76013
 76014
 76015
 76016
 76017
 76018
 76019
 76020
 76021
 76022
 76023
 76024
 76025
 76026
 76027
 76028
 76029
 76030
 76031
 76032
 76033
 76034
 76035
 76036
 76037
 76038
 76039
 76040
 76041
 76042
 76043
 76044
 76045
 76046
 76047
 76048
 76049
 76050
 76051
 76052
 76053
 76054
 76055
 76056
 76057
 76058
 76059
 76060
 76061
 76062
 76063
 76064
 76065
 76066
 76067
 76068
 76069
 76070
 76071
 76072
 76073
 76074
 76075
 76076
 76077
 76078
 76079
 76080
 76081
 76082
 76083
 76084
 76085
 76086
 76087
 76088
 76089
 76090
 76091
 76092
 76093
 76094
 76095
 76096
 76097
 76098
 76099
 76100
 76101
 76102
 76103
 76104
 76105
 76106
 76107
 76108
 76109
 76110
 76111
 76112
 76113
 76114
 76115
 76116
 76117
 76118
 76119
 76120
 76121
 76122
 76123
 76124
 76125
 76126
 76127
 76128
 76129
 76130
 76131
 76132
 76133
 76134
 76135
 76136
 76137
 76138
 76139
 76140
 76141
 76142
 76143
 76144
 76145
 76146
 76147
 76148
 76149
 76150
 76151
 76152
 76153
 76154
 76155
 76156
 76157
 76158
 76159
 76160
 76161
 76162
 76163
 76164
 76165
 76166
 76167
 76168
 76169
 76170
 76171
 76172
 76173
 76174
 76175
 76176
 76177
 76178
 76179
 76180
 76181
 76182
 76183
 76184
 76185
 76186
 76187
 76188
 76189
 76190
 76191
 76192
 76193
 76194
 76195
 76196
 76197
 76198
 76199
 76200
 76201
 76202
 76203
 76204
 76205
 76206
 76207
 76208
 76209
 76210
 76211
 76212
 76213
 76214
 76215
 76216
 76217
 76218
 76219
 76220
 76221
 76222
 76223
 76224
 76225
 76226
 76227
 76228
 76229
 76230
 76231
 76232
 76233
 76234
 76235
 76236
 76237
 76238
 76239
 76240
 76241
 76242
 76243
 76244
 76245
 76246
 76247
 76248
 76249
 76250
 76251
 76252
 76253
 76254
 76255
 76256
 76257
 76258
 76259
 76260
 76261
 76262
 76263
 76264
 76265
 76266
 76267
 76268
 76269
 76270
 76271
 76272
 76273
 76274
 76275
 76276
 76277
 76278
 76279
 76280
 76281
 76282
 76283
 76284
 76285
 76286
 76287
 76288
 76289
 76290
 76291
 76292
 76293
 76294
 76295
 76296
 76297
 76298
 76299
 76300
 76301
 76302
 76303
 76304
 76305
 76306
 76307
 76308
 76309
 76310
 76311
 76312
 76313
 76314
 76315
 76316
 76317
 76318
 76319
 76320
 76321
 76322
 76323
 76324
 76325
 76326
 76327
 76328
 76329
 76330
 76331
 76332
 76333
 76334
 76335
 76336
 76337
 76338
 76339
 76340
 76341
 76342
 76343
 76344
 76345
 76346
 76347
 76348
 76349
 76350
 76351
 76352
 76353
 76354
 76355
 76356
 76357
 76358
 76359
 76360
 76361
 76362
 76363
 76364
 76365
 76366
 76367
 76368
 76369
 76370
 76371
 76372
 76373
 76374
 76375
 76376
 76377
 76378
 76379
 76380
 76381
 76382
 76383
 76384
 76385
 76386
 76387
 76388
 76389
 76390
 76391
 76392
 76393
 76394
 76395
 76396
 76397
 76398
 76399
 76400
 76401
 76402
 76403
 76404
 76405
 76406
 76407
 76408
 76409
 76410
 76411
 76412
 76413
 76414
 76415
 76416
 76417
 76418
 76419
 76420
 76421
 76422
 76423
 76424
 76425
 76426
 76427
 76428
 76429
 76430
 76431
 76432
 76433
 76434
 76435
 76436
 76437
 76438
 76439
 76440
 76441
 76442
 76443
 76444
 76445
 76446
 76447
 76448
 76449
 76450
 76451
 76452
 76453
 76454
 76455
 76456
 76457
 76458
 76459
 76460
 76461
 76462
 76463
 76464
 76465
 76466
 76467
 76468
 76469
 76470
 76471
 76472
 76473
 76474
 76475
 76476
 76477
 76478
 76479
 76480
 76481
 76482
 76483
 76484
 76485
 76486
 76487
 76488
 76489
 76490
 76491
 76492
 76493
 76494
 76495
 76496
 76497
 76498
 76499
 76500
 76501
 76502
 76503
 76504
 76505
 76506
 76507
 76508
 76509
 76510
 76511
 76512
 76513
 76514
 76515
 76516
 76517
 76518
 76519
 76520
 76521
 76522
 76523
 76524
 76525
 76526
 76527
 76528
 76529
 76530
 76531
 76532
 76533
 76534
 76535
 76536
 76537
 76538
 76539
 76540
 76541
 76542
 76543
 76544
 76545
 76546
 76547
 76548
 76549
 76550
 76551
 76552
 76553
 76554
 76555
 76556
 76557
 76558
 76559
 76560
 76561
 76562
 76563
 76564
 76565
 76566
 76567
 76568
 76569
 76570
 76571
 76572
 76573
 76574
 76575
 76576
 76577
 76578
 76579
 76580
 76581
 76582
 76583
 76584
 76585
 76586
 76587
 76588
 76589
 76590
 76591
 76592
 76593
 76594
 76595
 76596
 76597
 76598
 76599
 76600
 76601
 76602
 76603
 76604
 76605
 76606
 76607
 76608
 76609
 76610
 76611
 76612
 76613
 76614
 76615
 76616
 76617
 76618
 76619
 76620
 76621
 76622
 76623
 76624
 76625
 76626
 76627
 76628
 76629
 76630
 76631
 76632
 76633
 76634
 76635
 76636
 76637
 76638
 76639
 76640
 76641
 76642
 76643
 76644
 76645
 76646
 76647
 76648
 76649
 76650
 76651
 76652
 76653
 76654
 76655
 76656
 76657
 76658
 76659
 76660
 76661
 76662
 76663
 76664
 76665
 76666
 76667
 76668
 76669
 76670
 76671
 76672
 76673
 76674
 76675
 76676
 76677
 76678
 76679
 76680
 76681
 76682
 76683
 76684
 76685
 76686
 76687
 76688
 76689
 76690
 76691
 76692
 76693
 76694
 76695
 76696
 76697
 76698
 76699
 76700
 76701
 76702
 76703
 76704
 76705
 76706
 76707
 76708
 76709
 76710
 76711
 76712
 76713
 76714
 76715
 76716
 76717
 76718
 76719
 76720
 76721
 76722
 76723
 76724
 76725
 76726
 76727
 76728
 76729
 76730
 76731
 76732
 76733
 76734
 76735
 76736
 76737
 76738
 76739
 76740
 76741
 76742
 76743
 76744
 76745
 76746
 76747
 76748
 76749
 76750
 76751
 76752
 76753
 76754
 76755
 76756
 76757
 76758
 76759
 76760
 76761
 76762
 76763
 76764
 76765
 76766
 76767
 76768
 76769
 76770
 76771
 76772
 76773
 76774
 76775
 76776
 76777
 76778
 76779
 76780
 76781
 76782
 76783
 76784
 76785
 76786
 76787
 76788
 76789
 76790
 76791
 76792
 76793
 76794
 76795
 76796
 76797
 76798
 76799
 76800
 76801
 76802
 76803
 76804
 76805
 76806
 76807
 76808
 76809
 76810
 76811
 76812
 76813
 76814
 76815
 76816
 76817
 76818
 76819
 76820
 76821
 76822
 76823
 76824
 76825
 76826
 76827
 76828
 76829
 76830
 76831
 76832
 76833
 76834
 76835
 76836
 76837
 76838
 76839
 76840
 76841
 76842
 76843
 76844
 76845
 76846
 76847
 76848
 76849
 76850
 76851
 76852
 76853
 76854
 76855
 76856
 76857
 76858
 76859
 76860
 76861
 76862
 76863
 76864
 76865
 76866
 76867
 76868
 76869
 76870
 76871
 76872
 76873
 76874
 76875
 76876
 76877
 76878
 76879
 76880
 76881
 76882
 76883
 76884
 76885
 76886
 76887
 76888
 76889
 76890
 76891
 76892
 76893
 76894
 76895
 76896
 76897
 76898
 76899
 76900
 76901
 76902
 76903
 76904
 76905
 76906
 76907
 76908
 76909
 76910
 76911
 76912
 76913
 76914
 76915
 76916
 76917
 76918
 76919
 76920
 76921
 76922
 76923
 76924
 76925
 76926
 76927
 76928
 76929
 76930
 76931
 76932
 76933
 76934
 76935
 76936
 76937
 76938
 76939
 76940
 76941
 76942
 76943
 76944
 76945
 76946
 76947
 76948
 76949
 76950
 76951
 76952
 76953
 76954
 76955
 76956
 76957
 76958
 76959
 76960
 76961
 76962
 76963
 76964
 76965
 76966
 76967
 76968
 76969
 76970
 76971
 76972
 76973
 76974
 76975
 76976
 76977
 76978
 76979
 76980
 76981
 76982
 76983
 76984
 76985
 76986
 76987
 76988
 76989
 76990
 76991
 76992
 76993
 76994
 76995
 76996
 76997
 76998
 76999
 77000
 77001
 77002
 77003
 77004
 77005
 77006
 77007
 77008
 77009
 77010
 77011
 77012
 77013
 77014
 77015
 77016
 77017
 77018
 77019
 77020
 77021
 77022
 77023
 77024
 77025
 77026
 77027
 77028
 77029
 77030
 77031
 77032
 77033
 77034
 77035
 77036
 77037
 77038
 77039
 77040
 77041
 77042
 77043
 77044
 77045
 77046
 77047
 77048
 77049
 77050
 77051
 77052
 77053
 77054
 77055
 77056
 77057
 77058
 77059
 77060
 77061
 77062
 77063
 77064
 77065
 77066
 77067
 77068
 77069
 77070
 77071
 77072
 77073
 77074
 77075
 77076
 77077
 77078
 77079
 77080
 77081
 77082
 77083
 77084
 77085
 77086
 77087
 77088
 77089
 77090
 77091
 77092
 77093
 77094
 77095
 77096
 77097
 77098
 77099
 77100
 77101
 77102
 77103
 77104
 77105
 77106
 77107
 77108
 77109
 77110
 77111
 77112
 77113
 77114
 77115
 77116
 77117
 77118
 77119
 77120
 77121
 77122
 77123
 77124
 77125
 77126
 77127
 77128
 77129
 77130
 77131
 77132
 77133
 77134
 77135
 77136
 77137
 77138
 77139
 77140
 77141
 77142
 77143
 77144
 77145
 77146
 77147
 77148
 77149
 77150
 77151
 77152
 77153
 77154
 77155
 77156
 77157
 77158
 77159
 77160
 77161
 77162
 77163
 77164
 77165
 77166
 77167
 77168
 77169
 77170
 77171
 77172
 77173
 77174
 77175
 77176
 77177
 77178
 77179
 77180
 77181
 77182
 77183
 77184
 77185
 77186
 77187
 77188
 77189
 77190
 77191
 77192
 77193
 77194
 77195
 77196
 77197
 77198
 77199
 77200
 77201
 77202
 77203
 77204
 77205
 77206
 77207
 77208
 77209
 77210
 77211
 77212
 77213
 77214
 77215
 77216
 77217
 77218
 77219
 77220
 77221
 77222
 77223
 77224
 77225
 77226
 77227
 77228
 77229
 77230
 77231
 77232
 77233
 77234
 77235
 77236
 77237
 77238
 77239
 77240
 77241
 77242
 77243
 77244
 77245
 77246
 77247
 77248
 77249
 77250
 77251
 77252
 77253
 77254
 77255
 77256
 77257
 77258
 77259
 77260
 77261
 77262
 77263
 77264
 77265
 77266
 77267
 77268
 77269
 77270
 77271
 77272
 77273
 77274
 77275
 77276
 77277
 77278
 77279
 77280
 77281
 77282
 77283
 77284
 77285
 77286
 77287
 77288
 77289
 77290
 77291
 77292
 77293
 77294
 77295
 77296
 77297
 77298
 77299
 77300
 77301
 77302
 77303
 77304
 77305
 77306
 77307
 77308
 77309
 77310
 77311
 77312
 77313
 77314
 77315
 77316
 77317
 77318
 77319
 77320
 77321
 77322
 77323
 77324
 77325
 77326
 77327
 77328
 77329
 77330
 77331
 77332
 77333
 77334
 77335
 77336
 77337
 77338
 77339
 77340
 77341
 77342
 77343
 77344
 77345
 77346
 77347
 77348
 77349
 77350
 77351
 77352
 77353
 77354
 77355
 77356
 77357
 77358
 77359
 77360
 77361
 77362
 77363
 77364
 77365
 77366
 77367
 77368
 77369
 77370
 77371
 77372
 77373
 77374
 77375
 77376
 77377
 77378
 77379
 77380
 77381
 77382
 77383
 77384
 77385
 77386
 77387
 77388
 77389
 77390
 77391
 77392
 77393
 77394
 77395
 77396
 77397
 77398
 77399
 77400
 77401
 77402
 77403
 77404
 77405
 77406
 77407
 77408
 77409
 77410
 77411
 77412
 77413
 77414
 77415
 77416
 77417
 77418
 77419
 77420
 77421
 77422
 77423
 77424
 77425
 77426
 77427
 77428
 77429
 77430
 77431
 77432
 77433
 77434
 77435
 77436
 77437
 77438
 77439
 77440
 77441
 77442
 77443
 77444
 77445
 77446
 77447
 77448
 77449
 77450
 77451
 77452
 77453
 77454
 77455
 77456
 77457
 77458
 77459
 77460
 77461
 77462
 77463
 77464
 77465
 77466
 77467
 77468
 77469
 77470
 77471
 77472
 77473
 77474
 77475
 77476
 77477
 77478
 77479
 77480
 77481
 77482
 77483
 77484
 77485
 77486
 77487
 77488
 77489
 77490
 77491
 77492
 77493
 77494
 77495
 77496
 77497
 77498
 77499
 77500
 77501
 77502
 77503
 77504
 77505
 77506
 77507
 77508
 77509
 77510
 77511
 77512
 77513
 77514
 77515
 77516
 77517
 77518
 77519
 77520
 77521
 77522
 77523
 77524
 77525
 77526
 77527
 77528
 77529
 77530
 77531
 77532
 77533
 77534
 77535
 77536
 77537
 77538
 77539
 77540
 77541
 77542
 77543
 77544
 77545
 77546
 77547
 77548
 77549
 77550
 77551
 77552
 77553
 77554
 77555
 77556
 77557
 77558
 77559
 77560
 77561
 77562
 77563
 77564
 77565
 77566
 77567
 77568
 77569
 77570
 77571
 77572
 77573
 77574
 77575
 77576
 77577
 77578
 77579
 77580
 77581
 77582
 77583
 77584
 77585
 77586
 77587
 77588
 77589
 77590
 77591
 77592
 77593
 77594
 77595
 77596
 77597
 77598
 77599
 77600
 77601
 77602
 77603
 77604
 77605
 77606
 77607
 77608
 77609
 77610
 77611
 77612
 77613
 77614
 77615
 77616
 77617
 77618
 77619
 77620
 77621
 77622
 77623
 77624
 77625
 77626
 77627
 77628
 77629
 77630
 77631
 77632
 77633
 77634
 77635
 77636
 77637
 77638
 77639
 77640
 77641
 77642
 77643
 77644
 77645
 77646
 77647
 77648
 77649
 77650
 77651
 77652
 77653
 77654
 77655
 77656
 77657
 77658
 77659
 77660
 77661
 77662
 77663
 77664
 77665
 77666
 77667
 77668
 77669
 77670
 77671
 77672
 77673
 77674
 77675
 77676
 77677
 77678
 77679
 77680
 77681
 77682
 77683
 77684
 77685
 77686
 77687
 77688
 77689
 77690
 77691
 77692
 77693
 77694
 77695
 77696
 77697
 77698
 77699
 77700
 77701
 77702
 77703
 77704
 77705
 77706
 77707
 77708
 77709
 77710
 77711
 77712
 77713
 77714
 77715
 77716
 77717
 77718
 77719
 77720
 77721
 77722
 77723
 77724
 77725
 77726
 77727
 77728
 77729
 77730
 77731
 77732
 77733
 77734
 77735
 77736
 77737
 77738
 77739
 77740
 77741
 77742
 77743
 77744
 77745
 77746
 77747
 77748
 77749
 77750
 77751
 77752
 77753
 77754
 77755
 77756
 77757
 77758
 77759
 77760
 77761
 77762
 77763
 77764
 77765
 77766
 77767
 77768
 77769
 77770
 77771
 77772
 77773
 77774
 77775
 77776
 77777
 77778
 77779
 77780
 77781
 77782
 77783
 77784
 77785
 77786
 77787
 77788
 77789
 77790
 77791
 77792
 77793
 77794
 77795
 77796
 77797
 77798
 77799
 77800
 77801
 77802
 77803
 77804
 77805
 77806
 77807
 77808
 77809
 77810
 77811
 77812
 77813
 77814
 77815
 77816
 77817
 77818
 77819
 77820
 77821
 77822
 77823
 77824
 77825
 77826
 77827
 77828
 77829
 77830
 77831
 77832
 77833
 77834
 77835
 77836
 77837
 77838
 77839
 77840
 77841
 77842
 77843
 77844
 77845
 77846
 77847
 77848
 77849
 77850
 77851
 77852
 77853
 77854
 77855
 77856
 77857
 77858
 77859
 77860
 77861
 77862
 77863
 77864
 77865
 77866
 77867
 77868
 77869
 77870
 77871
 77872
 77873
 77874
 77875
 77876
 77877
 77878
 77879
 77880
 77881
 77882
 77883
 77884
 77885
 77886
 77887
 77888
 77889
 77890
 77891
 77892
 77893
 77894
 77895
 77896
 77897
 77898
 77899
 77900
 77901
 77902
 77903
 77904
 77905
 77906
 77907
 77908
 77909
 77910
 77911
 77912
 77913
 77914
 77915
 77916
 77917
 77918
 77919
 77920
 77921
 77922
 77923
 77924
 77925
 77926
 77927
 77928
 77929
 77930
 77931
 77932
 77933
 77934
 77935
 77936
 77937
 77938
 77939
 77940
 77941
 77942
 77943
 77944
 77945
 77946
 77947
 77948
 77949
 77950
 77951
 77952
 77953
 77954
 77955
 77956
 77957
 77958
 77959
 77960
 77961
 77962
 77963
 77964
 77965
 77966
 77967
 77968
 77969
 77970
 77971
 77972
 77973
 77974
 77975
 77976
 77977
 77978
 77979
 77980
 77981
 77982
 77983
 77984
 77985
 77986
 77987
 77988
 77989
 77990
 77991
 77992
 77993
 77994
 77995
 77996
 77997
 77998
 77999
 78000
 78001
 78002
 78003
 78004
 78005
 78006
 78007
 78008
 78009
 78010
 78011
 78012
 78013
 78014
 78015
 78016
 78017
 78018
 78019
 78020
 78021
 78022
 78023
 78024
 78025
 78026
 78027
 78028
 78029
 78030
 78031
 78032
 78033
 78034
 78035
 78036
 78037
 78038
 78039
 78040
 78041
 78042
 78043
 78044
 78045
 78046
 78047
 78048
 78049
 78050
 78051
 78052
 78053
 78054
 78055
 78056
 78057
 78058
 78059
 78060
 78061
 78062
 78063
 78064
 78065
 78066
 78067
 78068
 78069
 78070
 78071
 78072
 78073
 78074
 78075
 78076
 78077
 78078
 78079
 78080
 78081
 78082
 78083
 78084
 78085
 78086
 78087
 78088
 78089
 78090
 78091
 78092
 78093
 78094
 78095
 78096
 78097
 78098
 78099
 78100
 78101
 78102
 78103
 78104
 78105
 78106
 78107
 78108
 78109
 78110
 78111
 78112
 78113
 78114
 78115
 78116
 78117
 78118
 78119
 78120
 78121
 78122
 78123
 78124
 78125
 78126
 78127
 78128
 78129
 78130
 78131
 78132
 78133
 78134
 78135
 78136
 78137
 78138
 78139
 78140
 78141
 78142
 78143
 78144
 78145
 78146
 78147
 78148
 78149
 78150
 78151
 78152
 78153
 78154
 78155
 78156
 78157
 78158
 78159
 78160
 78161
 78162
 78163
 78164
 78165
 78166
 78167
 78168
 78169
 78170
 78171
 78172
 78173
 78174
 78175
 78176
 78177
 78178
 78179
 78180
 78181
 78182
 78183
 78184
 78185
 78186
 78187
 78188
 78189
 78190
 78191
 78192
 78193
 78194
 78195
 78196
 78197
 78198
 78199
 78200
 78201
 78202
 78203
 78204
 78205
 78206
 78207
 78208
 78209
 78210
 78211
 78212
 78213
 78214
 78215
 78216
 78217
 78218
 78219
 78220
 78221
 78222
 78223
 78224
 78225
 78226
 78227
 78228
 78229
 78230
 78231
 78232
 78233
 78234
 78235
 78236
 78237
 78238
 78239
 78240
 78241
 78242
 78243
 78244
 78245
 78246
 78247
 78248
 78249
 78250
 78251
 78252
 78253
 78254
 78255
 78256
 78257
 78258
 78259
 78260
 78261
 78262
 78263
 78264
 78265
 78266
 78267
 78268
 78269
 78270
 78271
 78272
 78273
 78274
 78275
 78276
 78277
 78278
 78279
 78280
 78281
 78282
 78283
 78284
 78285
 78286
 78287
 78288
 78289
 78290
 78291
 78292
 78293
 78294
 78295
 78296
 78297
 78298
 78299
 78300
 78301
 78302
 78303
 78304
 78305
 78306
 78307
 78308
 78309
 78310
 78311
 78312
 78313
 78314
 78315
 78316
 78317
 78318
 78319
 78320
 78321
 78322
 78323
 78324
 78325
 78326
 78327
 78328
 78329
 78330
 78331
 78332
 78333
 78334
 78335
 78336
 78337
 78338
 78339
 78340
 78341
 78342
 78343
 78344
 78345
 78346
 78347
 78348
 78349
 78350
 78351
 78352
 78353
 78354
 78355
 78356
 78357
 78358
 78359
 78360
 78361
 78362
 78363
 78364
 78365
 78366
 78367
 78368
 78369
 78370
 78371
 78372
 78373
 78374
 78375
 78376
 78377
 78378
 78379
 78380
 78381
 78382
 78383
 78384
 78385
 78386
 78387
 78388
 78389
 78390
 78391
 78392
 78393
 78394
 78395
 78396
 78397
 78398
 78399
 78400
 78401
 78402
 78403
 78404
 78405
 78406
 78407
 78408
 78409
 78410
 78411
 78412
 78413
 78414
 78415
 78416
 78417
 78418
 78419
 78420
 78421
 78422
 78423
 78424
 78425
 78426
 78427
 78428
 78429
 78430
 78431
 78432
 78433
 78434
 78435
 78436
 78437
 78438
 78439
 78440
 78441
 78442
 78443
 78444
 78445
 78446
 78447
 78448
 78449
 78450
 78451
 78452
 78453
 78454
 78455
 78456
 78457
 78458
 78459
 78460
 78461
 78462
 78463
 78464
 78465
 78466
 78467
 78468
 78469
 78470
 78471
 78472
 78473
 78474
 78475
 78476
 78477
 78478
 78479
 78480
 78481
 78482
 78483
 78484
 78485
 78486
 78487
 78488
 78489
 78490
 78491
 78492
 78493
 78494
 78495
 78496
 78497
 78498
 78499
 78500
 78501
 78502
 78503
 78504
 78505
 78506
 78507
 78508
 78509
 78510
 78511
 78512
 78513
 78514
 78515
 78516
 78517
 78518
 78519
 78520
 78521
 78522
 78523
 78524
 78525
 78526
 78527
 78528
 78529
 78530
 78531
 78532
 78533
 78534
 78535
 78536
 78537
 78538
 78539
 78540
 78541
 78542
 78543
 78544
 78545
 78546
 78547
 78548
 78549
 78550
 78551
 78552
 78553
 78554
 78555
 78556
 78557
 78558
 78559
 78560
 78561
 78562
 78563
 78564
 78565
 78566
 78567
 78568
 78569
 78570
 78571
 78572
 78573
 78574
 78575
 78576
 78577
 78578
 78579
 78580
 78581
 78582
 78583
 78584
 78585
 78586
 78587
 78588
 78589
 78590
 78591
 78592
 78593
 78594
 78595
 78596
 78597
 78598
 78599
 78600
 78601
 78602
 78603
 78604
 78605
 78606
 78607
 78608
 78609
 78610
 78611
 78612
 78613
 78614
 78615
 78616
 78617
 78618
 78619
 78620
 78621
 78622
 78623
 78624
 78625
 78626
 78627
 78628
 78629
 78630
 78631
 78632
 78633
 78634
 78635
 78636
 78637
 78638
 78639
 78640
 78641
 78642
 78643
 78644
 78645
 78646
 78647
 78648
 78649
 78650
 78651
 78652
 78653
 78654
 78655
 78656
 78657
 78658
 78659
 78660
 78661
 78662
 78663
 78664
 78665
 78666
 78667
 78668
 78669
 78670
 78671
 78672
 78673
 78674
 78675
 78676
 78677
 78678
 78679
 78680
 78681
 78682
 78683
 78684
 78685
 78686
 78687
 78688
 78689
 78690
 78691
 78692
 78693
 78694
 78695
 78696
 78697
 78698
 78699
 78700
 78701
 78702
 78703
 78704
 78705
 78706
 78707
 78708
 78709
 78710
 78711
 78712
 78713
 78714
 78715
 78716
 78717
 78718
 78719
 78720
 78721
 78722
 78723
 78724
 78725
 78726
 78727
 78728
 78729
 78730
 78731
 78732
 78733
 78734
 78735
 78736
 78737
 78738
 78739
 78740
 78741
 78742
 78743
 78744
 78745
 78746
 78747
 78748
 78749
 78750
 78751
 78752
 78753
 78754
 78755
 78756
 78757
 78758
 78759
 78760
 78761
 78762
 78763
 78764
 78765
 78766
 78767
 78768
 78769
 78770
 78771
 78772
 78773
 78774
 78775
 78776
 78777
 78778
 78779
 78780
 78781
 78782
 78783
 78784
 78785
 78786
 78787
 78788
 78789
 78790
 78791
 78792
 78793
 78794
 78795
 78796
 78797
 78798
 78799
 78800
 78801
 78802
 78803
 78804
 78805
 78806
 78807
 78808
 78809
 78810
 78811
 78812
 78813
 78814
 78815
 78816
 78817
 78818
 78819
 78820
 78821
 78822
 78823
 78824
 78825
 78826
 78827
 78828
 78829
 78830
 78831
 78832
 78833
 78834
 78835
 78836
 78837
 78838
 78839
 78840
 78841
 78842
 78843
 78844
 78845
 78846
 78847
 78848
 78849
 78850
 78851
 78852
 78853
 78854
 78855
 78856
 78857
 78858
 78859
 78860
 78861
 78862
 78863
 78864
 78865
 78866
 78867
 78868
 78869
 78870
 78871
 78872
 78873
 78874
 78875
 78876
 78877
 78878
 78879
 78880
 78881
 78882
 78883
 78884
 78885
 78886
 78887
 78888
 78889
 78890
 78891
 78892
 78893
 78894
 78895
 78896
 78897
 78898
 78899
 78900
 78901
 78902
 78903
 78904
 78905
 78906
 78907
 78908
 78909
 78910
 78911
 78912
 78913
 78914
 78915
 78916
 78917
 78918
 78919
 78920
 78921
 78922
 78923
 78924
 78925
 78926
 78927
 78928
 78929
 78930
 78931
 78932
 78933
 78934
 78935
 78936
 78937
 78938
 78939
 78940
 78941
 78942
 78943
 78944
 78945
 78946
 78947
 78948
 78949
 78950
 78951
 78952
 78953
 78954
 78955
 78956
 78957
 78958
 78959
 78960
 78961
 78962
 78963
 78964
 78965
 78966
 78967
 78968
 78969
 78970
 78971
 78972
 78973
 78974
 78975
 78976
 78977
 78978
 78979
 78980
 78981
 78982
 78983
 78984
 78985
 78986
 78987
 78988
 78989
 78990
 78991
 78992
 78993
 78994
 78995
 78996
 78997
 78998
 78999
 79000
 79001
 79002
 79003
 79004
 79005
 79006
 79007
 79008
 79009
 79010
 79011
 79012
 79013
 79014
 79015
 79016
 79017
 79018
 79019
 79020
 79021
 79022
 79023
 79024
 79025
 79026
 79027
 79028
 79029
 79030
 79031
 79032
 79033
 79034
 79035
 79036
 79037
 79038
 79039
 79040
 79041
 79042
 79043
 79044
 79045
 79046
 79047
 79048
 79049
 79050
 79051
 79052
 79053
 79054
 79055
 79056
 79057
 79058
 79059
 79060
 79061
 79062
 79063
 79064
 79065
 79066
 79067
 79068
 79069
 79070
 79071
 79072
 79073
 79074
 79075
 79076
 79077
 79078
 79079
 79080
 79081
 79082
 79083
 79084
 79085
 79086
 79087
 79088
 79089
 79090
 79091
 79092
 79093
 79094
 79095
 79096
 79097
 79098
 79099
 79100
 79101
 79102
 79103
 79104
 79105
 79106
 79107
 79108
 79109
 79110
 79111
 79112
 79113
 79114
 79115
 79116
 79117
 79118
 79119
 79120
 79121
 79122
 79123
 79124
 79125
 79126
 79127
 79128
 79129
 79130
 79131
 79132
 79133
 79134
 79135
 79136
 79137
 79138
 79139
 79140
 79141
 79142
 79143
 79144
 79145
 79146
 79147
 79148
 79149
 79150
 79151
 79152
 79153
 79154
 79155
 79156
 79157
 79158
 79159
 79160
 79161
 79162
 79163
 79164
 79165
 79166
 79167
 79168
 79169
 79170
 79171
 79172
 79173
 79174
 79175
 79176
 79177
 79178
 79179
 79180
 79181
 79182
 79183
 79184
 79185
 79186
 79187
 79188
 79189
 79190
 79191
 79192
 79193
 79194
 79195
 79196
 79197
 79198
 79199
 79200
 79201
 79202
 79203
 79204
 79205
 79206
 79207
 79208
 79209
 79210
 79211
 79212
 79213
 79214
 79215
 79216
 79217
 79218
 79219
 79220
 79221
 79222
 79223
 79224
 79225
 79226
 79227
 79228
 79229
 79230
 79231
 79232
 79233
 79234
 79235
 79236
 79237
 79238
 79239
 79240
 79241
 79242
 79243
 79244
 79245
 79246
 79247
 79248
 79249
 79250
 79251
 79252
 79253
 79254
 79255
 79256
 79257
 79258
 79259
 79260
 79261
 79262
 79263
 79264
 79265
 79266
 79267
 79268
 79269
 79270
 79271
 79272
 79273
 79274
 79275
 79276
 79277
 79278
 79279
 79280
 79281
 79282
 79283
 79284
 79285
 79286
 79287
 79288
 79289
 79290
 79291
 79292
 79293
 79294
 79295
 79296
 79297
 79298
 79299
 79300
 79301
 79302
 79303
 79304
 79305
 79306
 79307
 79308
 79309
 79310
 79311
 79312
 79313
 79314
 79315
 79316
 79317
 79318
 79319
 79320
 79321
 79322
 79323
 79324
 79325
 79326
 79327
 79328
 79329
 79330
 79331
 79332
 79333
 79334
 79335
 79336
 79337
 79338
 79339
 79340
 79341
 79342
 79343
 79344
 79345
 79346
 79347
 79348
 79349
 79350
 79351
 79352
 79353
 79354
 79355
 79356
 79357
 79358
 79359
 79360
 79361
 79362
 79363
 79364
 79365
 79366
 79367
 79368
 79369
 79370
 79371
 79372
 79373
 79374
 79375
 79376
 79377
 79378
 79379
 79380
 79381
 79382
 79383
 79384
 79385
 79386
 79387
 79388
 79389
 79390
 79391
 79392
 79393
 79394
 79395
 79396
 79397
 79398
 79399
 79400
 79401
 79402
 79403
 79404
 79405
 79406
 79407
 79408
 79409
 79410
 79411
 79412
 79413
 79414
 79415
 79416
 79417
 79418
 79419
 79420
 79421
 79422
 79423
 79424
 79425
 79426
 79427
 79428
 79429
 79430
 79431
 79432
 79433
 79434
 79435
 79436
 79437
 79438
 79439
 79440
 79441
 79442
 79443
 79444
 79445
 79446
 79447
 79448
 79449
 79450
 79451
 79452
 79453
 79454
 79455
 79456
 79457
 79458
 79459
 79460
 79461
 79462
 79463
 79464
 79465
 79466
 79467
 79468
 79469
 79470
 79471
 79472
 79473
 79474
 79475
 79476
 79477
 79478
 79479
 79480
 79481
 79482
 79483
 79484
 79485
 79486
 79487
 79488
 79489
 79490
 79491
 79492
 79493
 79494
 79495
 79496
 79497
 79498
 79499
 79500
 79501
 79502
 79503
 79504
 79505
 79506
 79507
 79508
 79509
 79510
 79511
 79512
 79513
 79514
 79515
 79516
 79517
 79518
 79519
 79520
 79521
 79522
 79523
 79524
 79525
 79526
 79527
 79528
 79529
 79530
 79531
 79532
 79533
 79534
 79535
 79536
 79537
 79538
 79539
 79540
 79541
 79542
 79543
 79544
 79545
 79546
 79547
 79548
 79549
 79550
 79551
 79552
 79553
 79554
 79555
 79556
 79557
 79558
 79559
 79560
 79561
 79562
 79563
 79564
 79565
 79566
 79567
 79568
 79569
 79570
 79571
 79572
 79573
 79574
 79575
 79576
 79577
 79578
 79579
 79580
 79581
 79582
 79583
 79584
 79585
 79586
 79587
 79588
 79589
 79590
 79591
 79592
 79593
 79594
 79595
 79596
 79597
 79598
 79599
 79600
 79601
 79602
 79603
 79604
 79605
 79606
 79607
 79608
 79609
 79610
 79611
 79612
 79613
 79614
 79615
 79616
 79617
 79618
 79619
 79620
 79621
 79622
 79623
 79624
 79625
 79626
 79627
 79628
 79629
 79630
 79631
 79632
 79633
 79634
 79635
 79636
 79637
 79638
 79639
 79640
 79641
 79642
 79643
 79644
 79645
 79646
 79647
 79648
 79649
 79650
 79651
 79652
 79653
 79654
 79655
 79656
 79657
 79658
 79659
 79660
 79661
 79662
 79663
 79664
 79665
 79666
 79667
 79668
 79669
 79670
 79671
 79672
 79673
 79674
 79675
 79676
 79677
 79678
 79679
 79680
 79681
 79682
 79683
 79684
 79685
 79686
 79687
 79688
 79689
 79690
 79691
 79692
 79693
 79694
 79695
 79696
 79697
 79698
 79699
 79700
 79701
 79702
 79703
 79704
 79705
 79706
 79707
 79708
 79709
 79710
 79711
 79712
 79713
 79714
 79715
 79716
 79717
 79718
 79719
 79720
 79721
 79722
 79723
 79724
 79725
 79726
 79727
 79728
 79729
 79730
 79731
 79732
 79733
 79734
 79735
 79736
 79737
 79738
 79739
 79740
 79741
 79742
 79743
 79744
 79745
 79746
 79747
 79748
 79749
 79750
 79751
 79752
 79753
 79754
 79755
 79756
 79757
 79758
 79759
 79760
 79761
 79762
 79763
 79764
 79765
 79766
 79767
 79768
 79769
 79770
 79771
 79772
 79773
 79774
 79775
 79776
 79777
 79778
 79779
 79780
 79781
 79782
 79783
 79784
 79785
 79786
 79787
 79788
 79789
 79790
 79791
 79792
 79793
 79794
 79795
 79796
 79797
 79798
 79799
 79800
 79801
 79802
 79803
 79804
 79805
 79806
 79807
 79808
 79809
 79810
 79811
 79812
 79813
 79814
 79815
 79816
 79817
 79818
 79819
 79820
 79821
 79822
 79823
 79824
 79825
 79826
 79827
 79828
 79829
 79830
 79831
 79832
 79833
 79834
 79835
 79836
 79837
 79838
 79839
 79840
 79841
 79842
 79843
 79844
 79845
 79846
 79847
 79848
 79849
 79850
 79851
 79852
 79853
 79854
 79855
 79856
 79857
 79858
 79859
 79860
 79861
 79862
 79863
 79864
 79865
 79866
 79867
 79868
 79869
 79870
 79871
 79872
 79873
 79874
 79875
 79876
 79877
 79878
 79879
 79880
 79881
 79882
 79883
 79884
 79885
 79886
 79887
 79888
 79889
 79890
 79891
 79892
 79893
 79894
 79895
 79896
 79897
 79898
 79899
 79900
 79901
 79902
 79903
 79904
 79905
 79906
 79907
 79908
 79909
 79910
 79911
 79912
 79913
 79914
 79915
 79916
 79917
 79918
 79919
 79920
 79921
 79922
 79923
 79924
 79925
 79926
 79927
 79928
 79929
 79930
 79931
 79932
 79933
 79934
 79935
 79936
 79937
 79938
 79939
 79940
 79941
 79942
 79943
 79944
 79945
 79946
 79947
 79948
 79949
 79950
 79951
 79952
 79953
 79954
 79955
 79956
 79957
 79958
 79959
 79960
 79961
 79962
 79963
 79964
 79965
 79966
 79967
 79968
 79969
 79970
 79971
 79972
 79973
 79974
 79975
 79976
 79977
 79978
 79979
 79980
 79981
 79982
 79983
 79984
 79985
 79986
 79987
 79988
 79989
 79990
 79991
 79992
 79993
 79994
 79995
 79996
 79997
 79998
 79999
 80000
 80001
 80002
 80003
 80004
 80005
 80006
 80007
 80008
 80009
 80010
 80011
 80012
 80013
 80014
 80015
 80016
 80017
 80018
 80019
 80020
 80021
 80022
 80023
 80024
 80025
 80026
 80027
 80028
 80029
 80030
 80031
 80032
 80033
 80034
 80035
 80036
 80037
 80038
 80039
 80040
 80041
 80042
 80043
 80044
 80045
 80046
 80047
 80048
 80049
 80050
 80051
 80052
 80053
 80054
 80055
 80056
 80057
 80058
 80059
 80060
 80061
 80062
 80063
 80064
 80065
 80066
 80067
 80068
 80069
 80070
 80071
 80072
 80073
 80074
 80075
 80076
 80077
 80078
 80079
 80080
 80081
 80082
 80083
 80084
 80085
 80086
 80087
 80088
 80089
 80090
 80091
 80092
 80093
 80094
 80095
 80096
 80097
 80098
 80099
 80100
 80101
 80102
 80103
 80104
 80105
 80106
 80107
 80108
 80109
 80110
 80111
 80112
 80113
 80114
 80115
 80116
 80117
 80118
 80119
 80120
 80121
 80122
 80123
 80124
 80125
 80126
 80127
 80128
 80129
 80130
 80131
 80132
 80133
 80134
 80135
 80136
 80137
 80138
 80139
 80140
 80141
 80142
 80143
 80144
 80145
 80146
 80147
 80148
 80149
 80150
 80151
 80152
 80153
 80154
 80155
 80156
 80157
 80158
 80159
 80160
 80161
 80162
 80163
 80164
 80165
 80166
 80167
 80168
 80169
 80170
 80171
 80172
 80173
 80174
 80175
 80176
 80177
 80178
 80179
 80180
 80181
 80182
 80183
 80184
 80185
 80186
 80187
 80188
 80189
 80190
 80191
 80192
 80193
 80194
 80195
 80196
 80197
 80198
 80199
 80200
 80201
 80202
 80203
 80204
 80205
 80206
 80207
 80208
 80209
 80210
 80211
 80212
 80213
 80214
 80215
 80216
 80217
 80218
 80219
 80220
 80221
 80222
 80223
 80224
 80225
 80226
 80227
 80228
 80229
 80230
 80231
 80232
 80233
 80234
 80235
 80236
 80237
 80238
 80239
 80240
 80241
 80242
 80243
 80244
 80245
 80246
 80247
 80248
 80249
 80250
 80251
 80252
 80253
 80254
 80255
 80256
 80257
 80258
 80259
 80260
 80261
 80262
 80263
 80264
 80265
 80266
 80267
 80268
 80269
 80270
 80271
 80272
 80273
 80274
 80275
 80276
 80277
 80278
 80279
 80280
 80281
 80282
 80283
 80284
 80285
 80286
 80287
 80288
 80289
 80290
 80291
 80292
 80293
 80294
 80295
 80296
 80297
 80298
 80299
 80300
 80301
 80302
 80303
 80304
 80305
 80306
 80307
 80308
 80309
 80310
 80311
 80312
 80313
 80314
 80315
 80316
 80317
 80318
 80319
 80320
 80321
 80322
 80323
 80324
 80325
 80326
 80327
 80328
 80329
 80330
 80331
 80332
 80333
 80334
 80335
 80336
 80337
 80338
 80339
 80340
 80341
 80342
 80343
 80344
 80345
 80346
 80347
 80348
 80349
 80350
 80351
 80352
 80353
 80354
 80355
 80356
 80357
 80358
 80359
 80360
 80361
 80362
 80363
 80364
 80365
 80366
 80367
 80368
 80369
 80370
 80371
 80372
 80373
 80374
 80375
 80376
 80377
 80378
 80379
 80380
 80381
 80382
 80383
 80384
 80385
 80386
 80387
 80388
 80389
 80390
 80391
 80392
 80393
 80394
 80395
 80396
 80397
 80398
 80399
 80400
 80401
 80402
 80403
 80404
 80405
 80406
 80407
 80408
 80409
 80410
 80411
 80412
 80413
 80414
 80415
 80416
 80417
 80418
 80419
 80420
 80421
 80422
 80423
 80424
 80425
 80426
 80427
 80428
 80429
 80430
 80431
 80432
 80433
 80434
 80435
 80436
 80437
 80438
 80439
 80440
 80441
 80442
 80443
 80444
 80445
 80446
 80447
 80448
 80449
 80450
 80451
 80452
 80453
 80454
 80455
 80456
 80457
 80458
 80459
 80460
 80461
 80462
 80463
 80464
 80465
 80466
 80467
 80468
 80469
 80470
 80471
 80472
 80473
 80474
 80475
 80476
 80477
 80478
 80479
 80480
 80481
 80482
 80483
 80484
 80485
 80486
 80487
 80488
 80489
 80490
 80491
 80492
 80493
 80494
 80495
 80496
 80497
 80498
 80499
 80500
 80501
 80502
 80503
 80504
 80505
 80506
 80507
 80508
 80509
 80510
 80511
 80512
 80513
 80514
 80515
 80516
 80517
 80518
 80519
 80520
 80521
 80522
 80523
 80524
 80525
 80526
 80527
 80528
 80529
 80530
 80531
 80532
 80533
 80534
 80535
 80536
 80537
 80538
 80539
 80540
 80541
 80542
 80543
 80544
 80545
 80546
 80547
 80548
 80549
 80550
 80551
 80552
 80553
 80554
 80555
 80556
 80557
 80558
 80559
 80560
 80561
 80562
 80563
 80564
 80565
 80566
 80567
 80568
 80569
 80570
 80571
 80572
 80573
 80574
 80575
 80576
 80577
 80578
 80579
 80580
 80581
 80582
 80583
 80584
 80585
 80586
 80587
 80588
 80589
 80590
 80591
 80592
 80593
 80594
 80595
 80596
 80597
 80598
 80599
 80600
 80601
 80602
 80603
 80604
 80605
 80606
 80607
 80608
 80609
 80610
 80611
 80612
 80613
 80614
 80615
 80616
 80617
 80618
 80619
 80620
 80621
 80622
 80623
 80624
 80625
 80626
 80627
 80628
 80629
 80630
 80631
 80632
 80633
 80634
 80635
 80636
 80637
 80638
 80639
 80640
 80641
 80642
 80643
 80644
 80645
 80646
 80647
 80648
 80649
 80650
 80651
 80652
 80653
 80654
 80655
 80656
 80657
 80658
 80659
 80660
 80661
 80662
 80663
 80664
 80665
 80666
 80667
 80668
 80669
 80670
 80671
 80672
 80673
 80674
 80675
 80676
 80677
 80678
 80679
 80680
 80681
 80682
 80683
 80684
 80685
 80686
 80687
 80688
 80689
 80690
 80691
 80692
 80693
 80694
 80695
 80696
 80697
 80698
 80699
 80700
 80701
 80702
 80703
 80704
 80705
 80706
 80707
 80708
 80709
 80710
 80711
 80712
 80713
 80714
 80715
 80716
 80717
 80718
 80719
 80720
 80721
 80722
 80723
 80724
 80725
 80726
 80727
 80728
 80729
 80730
 80731
 80732
 80733
 80734
 80735
 80736
 80737
 80738
 80739
 80740
 80741
 80742
 80743
 80744
 80745
 80746
 80747
 80748
 80749
 80750
 80751
 80752
 80753
 80754
 80755
 80756
 80757
 80758
 80759
 80760
 80761
 80762
 80763
 80764
 80765
 80766
 80767
 80768
 80769
 80770
 80771
 80772
 80773
 80774
 80775
 80776
 80777
 80778
 80779
 80780
 80781
 80782
 80783
 80784
 80785
 80786
 80787
 80788
 80789
 80790
 80791
 80792
 80793
 80794
 80795
 80796
 80797
 80798
 80799
 80800
 80801
 80802
 80803
 80804
 80805
 80806
 80807
 80808
 80809
 80810
 80811
 80812
 80813
 80814
 80815
 80816
 80817
 80818
 80819
 80820
 80821
 80822
 80823
 80824
 80825
 80826
 80827
 80828
 80829
 80830
 80831
 80832
 80833
 80834
 80835
 80836
 80837
 80838
 80839
 80840
 80841
 80842
 80843
 80844
 80845
 80846
 80847
 80848
 80849
 80850
 80851
 80852
 80853
 80854
 80855
 80856
 80857
 80858
 80859
 80860
 80861
 80862
 80863
 80864
 80865
 80866
 80867
 80868
 80869
 80870
 80871
 80872
 80873
 80874
 80875
 80876
 80877
 80878
 80879
 80880
 80881
 80882
 80883
 80884
 80885
 80886
 80887
 80888
 80889
 80890
 80891
 80892
 80893
 80894
 80895
 80896
 80897
 80898
 80899
 80900
 80901
 80902
 80903
 80904
 80905
 80906
 80907
 80908
 80909
 80910
 80911
 80912
 80913
 80914
 80915
 80916
 80917
 80918
 80919
 80920
 80921
 80922
 80923
 80924
 80925
 80926
 80927
 80928
 80929
 80930
 80931
 80932
 80933
 80934
 80935
 80936
 80937
 80938
 80939
 80940
 80941
 80942
 80943
 80944
 80945
 80946
 80947
 80948
 80949
 80950
 80951
 80952
 80953
 80954
 80955
 80956
 80957
 80958
 80959
 80960
 80961
 80962
 80963
 80964
 80965
 80966
 80967
 80968
 80969
 80970
 80971
 80972
 80973
 80974
 80975
 80976
 80977
 80978
 80979
 80980
 80981
 80982
 80983
 80984
 80985
 80986
 80987
 80988
 80989
 80990
 80991
 80992
 80993
 80994
 80995
 80996
 80997
 80998
 80999
 81000
 81001
 81002
 81003
 81004
 81005
 81006
 81007
 81008
 81009
 81010
 81011
 81012
 81013
 81014
 81015
 81016
 81017
 81018
 81019
 81020
 81021
 81022
 81023
 81024
 81025
 81026
 81027
 81028
 81029
 81030
 81031
 81032
 81033
 81034
 81035
 81036
 81037
 81038
 81039
 81040
 81041
 81042
 81043
 81044
 81045
 81046
 81047
 81048
 81049
 81050
 81051
 81052
 81053
 81054
 81055
 81056
 81057
 81058
 81059
 81060
 81061
 81062
 81063
 81064
 81065
 81066
 81067
 81068
 81069
 81070
 81071
 81072
 81073
 81074
 81075
 81076
 81077
 81078
 81079
 81080
 81081
 81082
 81083
 81084
 81085
 81086
 81087
 81088
 81089
 81090
 81091
 81092
 81093
 81094
 81095
 81096
 81097
 81098
 81099
 81100
 81101
 81102
 81103
 81104
 81105
 81106
 81107
 81108
 81109
 81110
 81111
 81112
 81113
 81114
 81115
 81116
 81117
 81118
 81119
 81120
 81121
 81122
 81123
 81124
 81125
 81126
 81127
 81128
 81129
 81130
 81131
 81132
 81133
 81134
 81135
 81136
 81137
 81138
 81139
 81140
 81141
 81142
 81143
 81144
 81145
 81146
 81147
 81148
 81149
 81150
 81151
 81152
 81153
 81154
 81155
 81156
 81157
 81158
 81159
 81160
 81161
 81162
 81163
 81164
 81165
 81166
 81167
 81168
 81169
 81170
 81171
 81172
 81173
 81174
 81175
 81176
 81177
 81178
 81179
 81180
 81181
 81182
 81183
 81184
 81185
 81186
 81187
 81188
 81189
 81190
 81191
 81192
 81193
 81194
 81195
 81196
 81197
 81198
 81199
 81200
 81201
 81202
 81203
 81204
 81205
 81206
 81207
 81208
 81209
 81210
 81211
 81212
 81213
 81214
 81215
 81216
 81217
 81218
 81219
 81220
 81221
 81222
 81223
 81224
 81225
 81226
 81227
 81228
 81229
 81230
 81231
 81232
 81233
 81234
 81235
 81236
 81237
 81238
 81239
 81240
 81241
 81242
 81243
 81244
 81245
 81246
 81247
 81248
 81249
 81250
 81251
 81252
 81253
 81254
 81255
 81256
 81257
 81258
 81259
 81260
 81261
 81262
 81263
 81264
 81265
 81266
 81267
 81268
 81269
 81270
 81271
 81272
 81273
 81274
 81275
 81276
 81277
 81278
 81279
 81280
 81281
 81282
 81283
 81284
 81285
 81286
 81287
 81288
 81289
 81290
 81291
 81292
 81293
 81294
 81295
 81296
 81297
 81298
 81299
 81300
 81301
 81302
 81303
 81304
 81305
 81306
 81307
 81308
 81309
 81310
 81311
 81312
 81313
 81314
 81315
 81316
 81317
 81318
 81319
 81320
 81321
 81322
 81323
 81324
 81325
 81326
 81327
 81328
 81329
 81330
 81331
 81332
 81333
 81334
 81335
 81336
 81337
 81338
 81339
 81340
 81341
 81342
 81343
 81344
 81345
 81346
 81347
 81348
 81349
 81350
 81351
 81352
 81353
 81354
 81355
 81356
 81357
 81358
 81359
 81360
 81361
 81362
 81363
 81364
 81365
 81366
 81367
 81368
 81369
 81370
 81371
 81372
 81373
 81374
 81375
 81376
 81377
 81378
 81379
 81380
 81381
 81382
 81383
 81384
 81385
 81386
 81387
 81388
 81389
 81390
 81391
 81392
 81393
 81394
 81395
 81396
 81397
 81398
 81399
 81400
 81401
 81402
 81403
 81404
 81405
 81406
 81407
 81408
 81409
 81410
 81411
 81412
 81413
 81414
 81415
 81416
 81417
 81418
 81419
 81420
 81421
 81422
 81423
 81424
 81425
 81426
 81427
 81428
 81429
 81430
 81431
 81432
 81433
 81434
 81435
 81436
 81437
 81438
 81439
 81440
 81441
 81442
 81443
 81444
 81445
 81446
 81447
 81448
 81449
 81450
 81451
 81452
 81453
 81454
 81455
 81456
 81457
 81458
 81459
 81460
 81461
 81462
 81463
 81464
 81465
 81466
 81467
 81468
 81469
 81470
 81471
 81472
 81473
 81474
 81475
 81476
 81477
 81478
 81479
 81480
 81481
 81482
 81483
 81484
 81485
 81486
 81487
 81488
 81489
 81490
 81491
 81492
 81493
 81494
 81495
 81496
 81497
 81498
 81499
 81500
 81501
 81502
 81503
 81504
 81505
 81506
 81507
 81508
 81509
 81510
 81511
 81512
 81513
 81514
 81515
 81516
 81517
 81518
 81519
 81520
 81521
 81522
 81523
 81524
 81525
 81526
 81527
 81528
 81529
 81530
 81531
 81532
 81533
 81534
 81535
 81536
 81537
 81538
 81539
 81540
 81541
 81542
 81543
 81544
 81545
 81546
 81547
 81548
 81549
 81550
 81551
 81552
 81553
 81554
 81555
 81556
 81557
 81558
 81559
 81560
 81561
 81562
 81563
 81564
 81565
 81566
 81567
 81568
 81569
 81570
 81571
 81572
 81573
 81574
 81575
 81576
 81577
 81578
 81579
 81580
 81581
 81582
 81583
 81584
 81585
 81586
 81587
 81588
 81589
 81590
 81591
 81592
 81593
 81594
 81595
 81596
 81597
 81598
 81599
 81600
 81601
 81602
 81603
 81604
 81605
 81606
 81607
 81608
 81609
 81610
 81611
 81612
 81613
 81614
 81615
 81616
 81617
 81618
 81619
 81620
 81621
 81622
 81623
 81624
 81625
 81626
 81627
 81628
 81629
 81630
 81631
 81632
 81633
 81634
 81635
 81636
 81637
 81638
 81639
 81640
 81641
 81642
 81643
 81644
 81645
 81646
 81647
 81648
 81649
 81650
 81651
 81652
 81653
 81654
 81655
 81656
 81657
 81658
 81659
 81660
 81661
 81662
 81663
 81664
 81665
 81666
 81667
 81668
 81669
 81670
 81671
 81672
 81673
 81674
 81675
 81676
 81677
 81678
 81679
 81680
 81681
 81682
 81683
 81684
 81685
 81686
 81687
 81688
 81689
 81690
 81691
 81692
 81693
 81694
 81695
 81696
 81697
 81698
 81699
 81700
 81701
 81702
 81703
 81704
 81705
 81706
 81707
 81708
 81709
 81710
 81711
 81712
 81713
 81714
 81715
 81716
 81717
 81718
 81719
 81720
 81721
 81722
 81723
 81724
 81725
 81726
 81727
 81728
 81729
 81730
 81731
 81732
 81733
 81734
 81735
 81736
 81737
 81738
 81739
 81740
 81741
 81742
 81743
 81744
 81745
 81746
 81747
 81748
 81749
 81750
 81751
 81752
 81753
 81754
 81755
 81756
 81757
 81758
 81759
 81760
 81761
 81762
 81763
 81764
 81765
 81766
 81767
 81768
 81769
 81770
 81771
 81772
 81773
 81774
 81775
 81776
 81777
 81778
 81779
 81780
 81781
 81782
 81783
 81784
 81785
 81786
 81787
 81788
 81789
 81790
 81791
 81792
 81793
 81794
 81795
 81796
 81797
 81798
 81799
 81800
 81801
 81802
 81803
 81804
 81805
 81806
 81807
 81808
 81809
 81810
 81811
 81812
 81813
 81814
 81815
 81816
 81817
 81818
 81819
 81820
 81821
 81822
 81823
 81824
 81825
 81826
 81827
 81828
 81829
 81830
 81831
 81832
 81833
 81834
 81835
 81836
 81837
 81838
 81839
 81840
 81841
 81842
 81843
 81844
 81845
 81846
 81847
 81848
 81849
 81850
 81851
 81852
 81853
 81854
 81855
 81856
 81857
 81858
 81859
 81860
 81861
 81862
 81863
 81864
 81865
 81866
 81867
 81868
 81869
 81870
 81871
 81872
 81873
 81874
 81875
 81876
 81877
 81878
 81879
 81880
 81881
 81882
 81883
 81884
 81885
 81886
 81887
 81888
 81889
 81890
 81891
 81892
 81893
 81894
 81895
 81896
 81897
 81898
 81899
 81900
 81901
 81902
 81903
 81904
 81905
 81906
 81907
 81908
 81909
 81910
 81911
 81912
 81913
 81914
 81915
 81916
 81917
 81918
 81919
 81920
 81921
 81922
 81923
 81924
 81925
 81926
 81927
 81928
 81929
 81930
 81931
 81932
 81933
 81934
 81935
 81936
 81937
 81938
 81939
 81940
 81941
 81942
 81943
 81944
 81945
 81946
 81947
 81948
 81949
 81950
 81951
 81952
 81953
 81954
 81955
 81956
 81957
 81958
 81959
 81960
 81961
 81962
 81963
 81964
 81965
 81966
 81967
 81968
 81969
 81970
 81971
 81972
 81973
 81974
 81975
 81976
 81977
 81978
 81979
 81980
 81981
 81982
 81983
 81984
 81985
 81986
 81987
 81988
 81989
 81990
 81991
 81992
 81993
 81994
 81995
 81996
 81997
 81998
 81999
 82000
 82001
 82002
 82003
 82004
 82005
 82006
 82007
 82008
 82009
 82010
 82011
 82012
 82013
 82014
 82015
 82016
 82017
 82018
 82019
 82020
 82021
 82022
 82023
 82024
 82025
 82026
 82027
 82028
 82029
 82030
 82031
 82032
 82033
 82034
 82035
 82036
 82037
 82038
 82039
 82040
 82041
 82042
 82043
 82044
 82045
 82046
 82047
 82048
 82049
 82050
 82051
 82052
 82053
 82054
 82055
 82056
 82057
 82058
 82059
 82060
 82061
 82062
 82063
 82064
 82065
 82066
 82067
 82068
 82069
 82070
 82071
 82072
 82073
 82074
 82075
 82076
 82077
 82078
 82079
 82080
 82081
 82082
 82083
 82084
 82085
 82086
 82087
 82088
 82089
 82090
 82091
 82092
 82093
 82094
 82095
 82096
 82097
 82098
 82099
 82100
 82101
 82102
 82103
 82104
 82105
 82106
 82107
 82108
 82109
 82110
 82111
 82112
 82113
 82114
 82115
 82116
 82117
 82118
 82119
 82120
 82121
 82122
 82123
 82124
 82125
 82126
 82127
 82128
 82129
 82130
 82131
 82132
 82133
 82134
 82135
 82136
 82137
 82138
 82139
 82140
 82141
 82142
 82143
 82144
 82145
 82146
 82147
 82148
 82149
 82150
 82151
 82152
 82153
 82154
 82155
 82156
 82157
 82158
 82159
 82160
 82161
 82162
 82163
 82164
 82165
 82166
 82167
 82168
 82169
 82170
 82171
 82172
 82173
 82174
 82175
 82176
 82177
 82178
 82179
 82180
 82181
 82182
 82183
 82184
 82185
 82186
 82187
 82188
 82189
 82190
 82191
 82192
 82193
 82194
 82195
 82196
 82197
 82198
 82199
 82200
 82201
 82202
 82203
 82204
 82205
 82206
 82207
 82208
 82209
 82210
 82211
 82212
 82213
 82214
 82215
 82216
 82217
 82218
 82219
 82220
 82221
 82222
 82223
 82224
 82225
 82226
 82227
 82228
 82229
 82230
 82231
 82232
 82233
 82234
 82235
 82236
 82237
 82238
 82239
 82240
 82241
 82242
 82243
 82244
 82245
 82246
 82247
 82248
 82249
 82250
 82251
 82252
 82253
 82254
 82255
 82256
 82257
 82258
 82259
 82260
 82261
 82262
 82263
 82264
 82265
 82266
 82267
 82268
 82269
 82270
 82271
 82272
 82273
 82274
 82275
 82276
 82277
 82278
 82279
 82280
 82281
 82282
 82283
 82284
 82285
 82286
 82287
 82288
 82289
 82290
 82291
 82292
 82293
 82294
 82295
 82296
 82297
 82298
 82299
 82300
 82301
 82302
 82303
 82304
 82305
 82306
 82307
 82308
 82309
 82310
 82311
 82312
 82313
 82314
 82315
 82316
 82317
 82318
 82319
 82320
 82321
 82322
 82323
 82324
 82325
 82326
 82327
 82328
 82329
 82330
 82331
 82332
 82333
 82334
 82335
 82336
 82337
 82338
 82339
 82340
 82341
 82342
 82343
 82344
 82345
 82346
 82347
 82348
 82349
 82350
 82351
 82352
 82353
 82354
 82355
 82356
 82357
 82358
 82359
 82360
 82361
 82362
 82363
 82364
 82365
 82366
 82367
 82368
 82369
 82370
 82371
 82372
 82373
 82374
 82375
 82376
 82377
 82378
 82379
 82380
 82381
 82382
 82383
 82384
 82385
 82386
 82387
 82388
 82389
 82390
 82391
 82392
 82393
 82394
 82395
 82396
 82397
 82398
 82399
 82400
 82401
 82402
 82403
 82404
 82405
 82406
 82407
 82408
 82409
 82410
 82411
 82412
 82413
 82414
 82415
 82416
 82417
 82418
 82419
 82420
 82421
 82422
 82423
 82424
 82425
 82426
 82427
 82428
 82429
 82430
 82431
 82432
 82433
 82434
 82435
 82436
 82437
 82438
 82439
 82440
 82441
 82442
 82443
 82444
 82445
 82446
 82447
 82448
 82449
 82450
 82451
 82452
 82453
 82454
 82455
 82456
 82457
 82458
 82459
 82460
 82461
 82462
 82463
 82464
 82465
 82466
 82467
 82468
 82469
 82470
 82471
 82472
 82473
 82474
 82475
 82476
 82477
 82478
 82479
 82480
 82481
 82482
 82483
 82484
 82485
 82486
 82487
 82488
 82489
 82490
 82491
 82492
 82493
 82494
 82495
 82496
 82497
 82498
 82499
 82500
 82501
 82502
 82503
 82504
 82505
 82506
 82507
 82508
 82509
 82510
 82511
 82512
 82513
 82514
 82515
 82516
 82517
 82518
 82519
 82520
 82521
 82522
 82523
 82524
 82525
 82526
 82527
 82528
 82529
 82530
 82531
 82532
 82533
 82534
 82535
 82536
 82537
 82538
 82539
 82540
 82541
 82542
 82543
 82544
 82545
 82546
 82547
 82548
 82549
 82550
 82551
 82552
 82553
 82554
 82555
 82556
 82557
 82558
 82559
 82560
 82561
 82562
 82563
 82564
 82565
 82566
 82567
 82568
 82569
 82570
 82571
 82572
 82573
 82574
 82575
 82576
 82577
 82578
 82579
 82580
 82581
 82582
 82583
 82584
 82585
 82586
 82587
 82588
 82589
 82590
 82591
 82592
 82593
 82594
 82595
 82596
 82597
 82598
 82599
 82600
 82601
 82602
 82603
 82604
 82605
 82606
 82607
 82608
 82609
 82610
 82611
 82612
 82613
 82614
 82615
 82616
 82617
 82618
 82619
 82620
 82621
 82622
 82623
 82624
 82625
 82626
 82627
 82628
 82629
 82630
 82631
 82632
 82633
 82634
 82635
 82636
 82637
 82638
 82639
 82640
 82641
 82642
 82643
 82644
 82645
 82646
 82647
 82648
 82649
 82650
 82651
 82652
 82653
 82654
 82655
 82656
 82657
 82658
 82659
 82660
 82661
 82662
 82663
 82664
 82665
 82666
 82667
 82668
 82669
 82670
 82671
 82672
 82673
 82674
 82675
 82676
 82677
 82678
 82679
 82680
 82681
 82682
 82683
 82684
 82685
 82686
 82687
 82688
 82689
 82690
 82691
 82692
 82693
 82694
 82695
 82696
 82697
 82698
 82699
 82700
 82701
 82702
 82703
 82704
 82705
 82706
 82707
 82708
 82709
 82710
 82711
 82712
 82713
 82714
 82715
 82716
 82717
 82718
 82719
 82720
 82721
 82722
 82723
 82724
 82725
 82726
 82727
 82728
 82729
 82730
 82731
 82732
 82733
 82734
 82735
 82736
 82737
 82738
 82739
 82740
 82741
 82742
 82743
 82744
 82745
 82746
 82747
 82748
 82749
 82750
 82751
 82752
 82753
 82754
 82755
 82756
 82757
 82758
 82759
 82760
 82761
 82762
 82763
 82764
 82765
 82766
 82767
 82768
 82769
 82770
 82771
 82772
 82773
 82774
 82775
 82776
 82777
 82778
 82779
 82780
 82781
 82782
 82783
 82784
 82785
 82786
 82787
 82788
 82789
 82790
 82791
 82792
 82793
 82794
 82795
 82796
 82797
 82798
 82799
 82800
 82801
 82802
 82803
 82804
 82805
 82806
 82807
 82808
 82809
 82810
 82811
 82812
 82813
 82814
 82815
 82816
 82817
 82818
 82819
 82820
 82821
 82822
 82823
 82824
 82825
 82826
 82827
 82828
 82829
 82830
 82831
 82832
 82833
 82834
 82835
 82836
 82837
 82838
 82839
 82840
 82841
 82842
 82843
 82844
 82845
 82846
 82847
 82848
 82849
 82850
 82851
 82852
 82853
 82854
 82855
 82856
 82857
 82858
 82859
 82860
 82861
 82862
 82863
 82864
 82865
 82866
 82867
 82868
 82869
 82870
 82871
 82872
 82873
 82874
 82875
 82876
 82877
 82878
 82879
 82880
 82881
 82882
 82883
 82884
 82885
 82886
 82887
 82888
 82889
 82890
 82891
 82892
 82893
 82894
 82895
 82896
 82897
 82898
 82899
 82900
 82901
 82902
 82903
 82904
 82905
 82906
 82907
 82908
 82909
 82910
 82911
 82912
 82913
 82914
 82915
 82916
 82917
 82918
 82919
 82920
 82921
 82922
 82923
 82924
 82925
 82926
 82927
 82928
 82929
 82930
 82931
 82932
 82933
 82934
 82935
 82936
 82937
 82938
 82939
 82940
 82941
 82942
 82943
 82944
 82945
 82946
 82947
 82948
 82949
 82950
 82951
 82952
 82953
 82954
 82955
 82956
 82957
 82958
 82959
 82960
 82961
 82962
 82963
 82964
 82965
 82966
 82967
 82968
 82969
 82970
 82971
 82972
 82973
 82974
 82975
 82976
 82977
 82978
 82979
 82980
 82981
 82982
 82983
 82984
 82985
 82986
 82987
 82988
 82989
 82990
 82991
 82992
 82993
 82994
 82995
 82996
 82997
 82998
 82999
 83000
 83001
 83002
 83003
 83004
 83005
 83006
 83007
 83008
 83009
 83010
 83011
 83012
 83013
 83014
 83015
 83016
 83017
 83018
 83019
 83020
 83021
 83022
 83023
 83024
 83025
 83026
 83027
 83028
 83029
 83030
 83031
 83032
 83033
 83034
 83035
 83036
 83037
 83038
 83039
 83040
 83041
 83042
 83043
 83044
 83045
 83046
 83047
 83048
 83049
 83050
 83051
 83052
 83053
 83054
 83055
 83056
 83057
 83058
 83059
 83060
 83061
 83062
 83063
 83064
 83065
 83066
 83067
 83068
 83069
 83070
 83071
 83072
 83073
 83074
 83075
 83076
 83077
 83078
 83079
 83080
 83081
 83082
 83083
 83084
 83085
 83086
 83087
 83088
 83089
 83090
 83091
 83092
 83093
 83094
 83095
 83096
 83097
 83098
 83099
 83100
 83101
 83102
 83103
 83104
 83105
 83106
 83107
 83108
 83109
 83110
 83111
 83112
 83113
 83114
 83115
 83116
 83117
 83118
 83119
 83120
 83121
 83122
 83123
 83124
 83125
 83126
 83127
 83128
 83129
 83130
 83131
 83132
 83133
 83134
 83135
 83136
 83137
 83138
 83139
 83140
 83141
 83142
 83143
 83144
 83145
 83146
 83147
 83148
 83149
 83150
 83151
 83152
 83153
 83154
 83155
 83156
 83157
 83158
 83159
 83160
 83161
 83162
 83163
 83164
 83165
 83166
 83167
 83168
 83169
 83170
 83171
 83172
 83173
 83174
 83175
 83176
 83177
 83178
 83179
 83180
 83181
 83182
 83183
 83184
 83185
 83186
 83187
 83188
 83189
 83190
 83191
 83192
 83193
 83194
 83195
 83196
 83197
 83198
 83199
 83200
 83201
 83202
 83203
 83204
 83205
 83206
 83207
 83208
 83209
 83210
 83211
 83212
 83213
 83214
 83215
 83216
 83217
 83218
 83219
 83220
 83221
 83222
 83223
 83224
 83225
 83226
 83227
 83228
 83229
 83230
 83231
 83232
 83233
 83234
 83235
 83236
 83237
 83238
 83239
 83240
 83241
 83242
 83243
 83244
 83245
 83246
 83247
 83248
 83249
 83250
 83251
 83252
 83253
 83254
 83255
 83256
 83257
 83258
 83259
 83260
 83261
 83262
 83263
 83264
 83265
 83266
 83267
 83268
 83269
 83270
 83271
 83272
 83273
 83274
 83275
 83276
 83277
 83278
 83279
 83280
 83281
 83282
 83283
 83284
 83285
 83286
 83287
 83288
 83289
 83290
 83291
 83292
 83293
 83294
 83295
 83296
 83297
 83298
 83299
 83300
 83301
 83302
 83303
 83304
 83305
 83306
 83307
 83308
 83309
 83310
 83311
 83312
 83313
 83314
 83315
 83316
 83317
 83318
 83319
 83320
 83321
 83322
 83323
 83324
 83325
 83326
 83327
 83328
 83329
 83330
 83331
 83332
 83333
 83334
 83335
 83336
 83337
 83338
 83339
 83340
 83341
 83342
 83343
 83344
 83345
 83346
 83347
 83348
 83349
 83350
 83351
 83352
 83353
 83354
 83355
 83356
 83357
 83358
 83359
 83360
 83361
 83362
 83363
 83364
 83365
 83366
 83367
 83368
 83369
 83370
 83371
 83372
 83373
 83374
 83375
 83376
 83377
 83378
 83379
 83380
 83381
 83382
 83383
 83384
 83385
 83386
 83387
 83388
 83389
 83390
 83391
 83392
 83393
 83394
 83395
 83396
 83397
 83398
 83399
 83400
 83401
 83402
 83403
 83404
 83405
 83406
 83407
 83408
 83409
 83410
 83411
 83412
 83413
 83414
 83415
 83416
 83417
 83418
 83419
 83420
 83421
 83422
 83423
 83424
 83425
 83426
 83427
 83428
 83429
 83430
 83431
 83432
 83433
 83434
 83435
 83436
 83437
 83438
 83439
 83440
 83441
 83442
 83443
 83444
 83445
 83446
 83447
 83448
 83449
 83450
 83451
 83452
 83453
 83454
 83455
 83456
 83457
 83458
 83459
 83460
 83461
 83462
 83463
 83464
 83465
 83466
 83467
 83468
 83469
 83470
 83471
 83472
 83473
 83474
 83475
 83476
 83477
 83478
 83479
 83480
 83481
 83482
 83483
 83484
 83485
 83486
 83487
 83488
 83489
 83490
 83491
 83492
 83493
 83494
 83495
 83496
 83497
 83498
 83499
 83500
 83501
 83502
 83503
 83504
 83505
 83506
 83507
 83508
 83509
 83510
 83511
 83512
 83513
 83514
 83515
 83516
 83517
 83518
 83519
 83520
 83521
 83522
 83523
 83524
 83525
 83526
 83527
 83528
 83529
 83530
 83531
 83532
 83533
 83534
 83535
 83536
 83537
 83538
 83539
 83540
 83541
 83542
 83543
 83544
 83545
 83546
 83547
 83548
 83549
 83550
 83551
 83552
 83553
 83554
 83555
 83556
 83557
 83558
 83559
 83560
 83561
 83562
 83563
 83564
 83565
 83566
 83567
 83568
 83569
 83570
 83571
 83572
 83573
 83574
 83575
 83576
 83577
 83578
 83579
 83580
 83581
 83582
 83583
 83584
 83585
 83586
 83587
 83588
 83589
 83590
 83591
 83592
 83593
 83594
 83595
 83596
 83597
 83598
 83599
 83600
 83601
 83602
 83603
 83604
 83605
 83606
 83607
 83608
 83609
 83610
 83611
 83612
 83613
 83614
 83615
 83616
 83617
 83618
 83619
 83620
 83621
 83622
 83623
 83624
 83625
 83626
 83627
 83628
 83629
 83630
 83631
 83632
 83633
 83634
 83635
 83636
 83637
 83638
 83639
 83640
 83641
 83642
 83643
 83644
 83645
 83646
 83647
 83648
 83649
 83650
 83651
 83652
 83653
 83654
 83655
 83656
 83657
 83658
 83659
 83660
 83661
 83662
 83663
 83664
 83665
 83666
 83667
 83668
 83669
 83670
 83671
 83672
 83673
 83674
 83675
 83676
 83677
 83678
 83679
 83680
 83681
 83682
 83683
 83684
 83685
 83686
 83687
 83688
 83689
 83690
 83691
 83692
 83693
 83694
 83695
 83696
 83697
 83698
 83699
 83700
 83701
 83702
 83703
 83704
 83705
 83706
 83707
 83708
 83709
 83710
 83711
 83712
 83713
 83714
 83715
 83716
 83717
 83718
 83719
 83720
 83721
 83722
 83723
 83724
 83725
 83726
 83727
 83728
 83729
 83730
 83731
 83732
 83733
 83734
 83735
 83736
 83737
 83738
 83739
 83740
 83741
 83742
 83743
 83744
 83745
 83746
 83747
 83748
 83749
 83750
 83751
 83752
 83753
 83754
 83755
 83756
 83757
 83758
 83759
 83760
 83761
 83762
 83763
 83764
 83765
 83766
 83767
 83768
 83769
 83770
 83771
 83772
 83773
 83774
 83775
 83776
 83777
 83778
 83779
 83780
 83781
 83782
 83783
 83784
 83785
 83786
 83787
 83788
 83789
 83790
 83791
 83792
 83793
 83794
 83795
 83796
 83797
 83798
 83799
 83800
 83801
 83802
 83803
 83804
 83805
 83806
 83807
 83808
 83809
 83810
 83811
 83812
 83813
 83814
 83815
 83816
 83817
 83818
 83819
 83820
 83821
 83822
 83823
 83824
 83825
 83826
 83827
 83828
 83829
 83830
 83831
 83832
 83833
 83834
 83835
 83836
 83837
 83838
 83839
 83840
 83841
 83842
 83843
 83844
 83845
 83846
 83847
 83848
 83849
 83850
 83851
 83852
 83853
 83854
 83855
 83856
 83857
 83858
 83859
 83860
 83861
 83862
 83863
 83864
 83865
 83866
 83867
 83868
 83869
 83870
 83871
 83872
 83873
 83874
 83875
 83876
 83877
 83878
 83879
 83880
 83881
 83882
 83883
 83884
 83885
 83886
 83887
 83888
 83889
 83890
 83891
 83892
 83893
 83894
 83895
 83896
 83897
 83898
 83899
 83900
 83901
 83902
 83903
 83904
 83905
 83906
 83907
 83908
 83909
 83910
 83911
 83912
 83913
 83914
 83915
 83916
 83917
 83918
 83919
 83920
 83921
 83922
 83923
 83924
 83925
 83926
 83927
 83928
 83929
 83930
 83931
 83932
 83933
 83934
 83935
 83936
 83937
 83938
 83939
 83940
 83941
 83942
 83943
 83944
 83945
 83946
 83947
 83948
 83949
 83950
 83951
 83952
 83953
 83954
 83955
 83956
 83957
 83958
 83959
 83960
 83961
 83962
 83963
 83964
 83965
 83966
 83967
 83968
 83969
 83970
 83971
 83972
 83973
 83974
 83975
 83976
 83977
 83978
 83979
 83980
 83981
 83982
 83983
 83984
 83985
 83986
 83987
 83988
 83989
 83990
 83991
 83992
 83993
 83994
 83995
 83996
 83997
 83998
 83999
 84000
 84001
 84002
 84003
 84004
 84005
 84006
 84007
 84008
 84009
 84010
 84011
 84012
 84013
 84014
 84015
 84016
 84017
 84018
 84019
 84020
 84021
 84022
 84023
 84024
 84025
 84026
 84027
 84028
 84029
 84030
 84031
 84032
 84033
 84034
 84035
 84036
 84037
 84038
 84039
 84040
 84041
 84042
 84043
 84044
 84045
 84046
 84047
 84048
 84049
 84050
 84051
 84052
 84053
 84054
 84055
 84056
 84057
 84058
 84059
 84060
 84061
 84062
 84063
 84064
 84065
 84066
 84067
 84068
 84069
 84070
 84071
 84072
 84073
 84074
 84075
 84076
 84077
 84078
 84079
 84080
 84081
 84082
 84083
 84084
 84085
 84086
 84087
 84088
 84089
 84090
 84091
 84092
 84093
 84094
 84095
 84096
 84097
 84098
 84099
 84100
 84101
 84102
 84103
 84104
 84105
 84106
 84107
 84108
 84109
 84110
 84111
 84112
 84113
 84114
 84115
 84116
 84117
 84118
 84119
 84120
 84121
 84122
 84123
 84124
 84125
 84126
 84127
 84128
 84129
 84130
 84131
 84132
 84133
 84134
 84135
 84136
 84137
 84138
 84139
 84140
 84141
 84142
 84143
 84144
 84145
 84146
 84147
 84148
 84149
 84150
 84151
 84152
 84153
 84154
 84155
 84156
 84157
 84158
 84159
 84160
 84161
 84162
 84163
 84164
 84165
 84166
 84167
 84168
 84169
 84170
 84171
 84172
 84173
 84174
 84175
 84176
 84177
 84178
 84179
 84180
 84181
 84182
 84183
 84184
 84185
 84186
 84187
 84188
 84189
 84190
 84191
 84192
 84193
 84194
 84195
 84196
 84197
 84198
 84199
 84200
 84201
 84202
 84203
 84204
 84205
 84206
 84207
 84208
 84209
 84210
 84211
 84212
 84213
 84214
 84215
 84216
 84217
 84218
 84219
 84220
 84221
 84222
 84223
 84224
 84225
 84226
 84227
 84228
 84229
 84230
 84231
 84232
 84233
 84234
 84235
 84236
 84237
 84238
 84239
 84240
 84241
 84242
 84243
 84244
 84245
 84246
 84247
 84248
 84249
 84250
 84251
 84252
 84253
 84254
 84255
 84256
 84257
 84258
 84259
 84260
 84261
 84262
 84263
 84264
 84265
 84266
 84267
 84268
 84269
 84270
 84271
 84272
 84273
 84274
 84275
 84276
 84277
 84278
 84279
 84280
 84281
 84282
 84283
 84284
 84285
 84286
 84287
 84288
 84289
 84290
 84291
 84292
 84293
 84294
 84295
 84296
 84297
 84298
 84299
 84300
 84301
 84302
 84303
 84304
 84305
 84306
 84307
 84308
 84309
 84310
 84311
 84312
 84313
 84314
 84315
 84316
 84317
 84318
 84319
 84320
 84321
 84322
 84323
 84324
 84325
 84326
 84327
 84328
 84329
 84330
 84331
 84332
 84333
 84334
 84335
 84336
 84337
 84338
 84339
 84340
 84341
 84342
 84343
 84344
 84345
 84346
 84347
 84348
 84349
 84350
 84351
 84352
 84353
 84354
 84355
 84356
 84357
 84358
 84359
 84360
 84361
 84362
 84363
 84364
 84365
 84366
 84367
 84368
 84369
 84370
 84371
 84372
 84373
 84374
 84375
 84376
 84377
 84378
 84379
 84380
 84381
 84382
 84383
 84384
 84385
 84386
 84387
 84388
 84389
 84390
 84391
 84392
 84393
 84394
 84395
 84396
 84397
 84398
 84399
 84400
 84401
 84402
 84403
 84404
 84405
 84406
 84407
 84408
 84409
 84410
 84411
 84412
 84413
 84414
 84415
 84416
 84417
 84418
 84419
 84420
 84421
 84422
 84423
 84424
 84425
 84426
 84427
 84428
 84429
 84430
 84431
 84432
 84433
 84434
 84435
 84436
 84437
 84438
 84439
 84440
 84441
 84442
 84443
 84444
 84445
 84446
 84447
 84448
 84449
 84450
 84451
 84452
 84453
 84454
 84455
 84456
 84457
 84458
 84459
 84460
 84461
 84462
 84463
 84464
 84465
 84466
 84467
 84468
 84469
 84470
 84471
 84472
 84473
 84474
 84475
 84476
 84477
 84478
 84479
 84480
 84481
 84482
 84483
 84484
 84485
 84486
 84487
 84488
 84489
 84490
 84491
 84492
 84493
 84494
 84495
 84496
 84497
 84498
 84499
 84500
 84501
 84502
 84503
 84504
 84505
 84506
 84507
 84508
 84509
 84510
 84511
 84512
 84513
 84514
 84515
 84516
 84517
 84518
 84519
 84520
 84521
 84522
 84523
 84524
 84525
 84526
 84527
 84528
 84529
 84530
 84531
 84532
 84533
 84534
 84535
 84536
 84537
 84538
 84539
 84540
 84541
 84542
 84543
 84544
 84545
 84546
 84547
 84548
 84549
 84550
 84551
 84552
 84553
 84554
 84555
 84556
 84557
 84558
 84559
 84560
 84561
 84562
 84563
 84564
 84565
 84566
 84567
 84568
 84569
 84570
 84571
 84572
 84573
 84574
 84575
 84576
 84577
 84578
 84579
 84580
 84581
 84582
 84583
 84584
 84585
 84586
 84587
 84588
 84589
 84590
 84591
 84592
 84593
 84594
 84595
 84596
 84597
 84598
 84599
 84600
 84601
 84602
 84603
 84604
 84605
 84606
 84607
 84608
 84609
 84610
 84611
 84612
 84613
 84614
 84615
 84616
 84617
 84618
 84619
 84620
 84621
 84622
 84623
 84624
 84625
 84626
 84627
 84628
 84629
 84630
 84631
 84632
 84633
 84634
 84635
 84636
 84637
 84638
 84639
 84640
 84641
 84642
 84643
 84644
 84645
 84646
 84647
 84648
 84649
 84650
 84651
 84652
 84653
 84654
 84655
 84656
 84657
 84658
 84659
 84660
 84661
 84662
 84663
 84664
 84665
 84666
 84667
 84668
 84669
 84670
 84671
 84672
 84673
 84674
 84675
 84676
 84677
 84678
 84679
 84680
 84681
 84682
 84683
 84684
 84685
 84686
 84687
 84688
 84689
 84690
 84691
 84692
 84693
 84694
 84695
 84696
 84697
 84698
 84699
 84700
 84701
 84702
 84703
 84704
 84705
 84706
 84707
 84708
 84709
 84710
 84711
 84712
 84713
 84714
 84715
 84716
 84717
 84718
 84719
 84720
 84721
 84722
 84723
 84724
 84725
 84726
 84727
 84728
 84729
 84730
 84731
 84732
 84733
 84734
 84735
 84736
 84737
 84738
 84739
 84740
 84741
 84742
 84743
 84744
 84745
 84746
 84747
 84748
 84749
 84750
 84751
 84752
 84753
 84754
 84755
 84756
 84757
 84758
 84759
 84760
 84761
 84762
 84763
 84764
 84765
 84766
 84767
 84768
 84769
 84770
 84771
 84772
 84773
 84774
 84775
 84776
 84777
 84778
 84779
 84780
 84781
 84782
 84783
 84784
 84785
 84786
 84787
 84788
 84789
 84790
 84791
 84792
 84793
 84794
 84795
 84796
 84797
 84798
 84799
 84800
 84801
 84802
 84803
 84804
 84805
 84806
 84807
 84808
 84809
 84810
 84811
 84812
 84813
 84814
 84815
 84816
 84817
 84818
 84819
 84820
 84821
 84822
 84823
 84824
 84825
 84826
 84827
 84828
 84829
 84830
 84831
 84832
 84833
 84834
 84835
 84836
 84837
 84838
 84839
 84840
 84841
 84842
 84843
 84844
 84845
 84846
 84847
 84848
 84849
 84850
 84851
 84852
 84853
 84854
 84855
 84856
 84857
 84858
 84859
 84860
 84861
 84862
 84863
 84864
 84865
 84866
 84867
 84868
 84869
 84870
 84871
 84872
 84873
 84874
 84875
 84876
 84877
 84878
 84879
 84880
 84881
 84882
 84883
 84884
 84885
 84886
 84887
 84888
 84889
 84890
 84891
 84892
 84893
 84894
 84895
 84896
 84897
 84898
 84899
 84900
 84901
 84902
 84903
 84904
 84905
 84906
 84907
 84908
 84909
 84910
 84911
 84912
 84913
 84914
 84915
 84916
 84917
 84918
 84919
 84920
 84921
 84922
 84923
 84924
 84925
 84926
 84927
 84928
 84929
 84930
 84931
 84932
 84933
 84934
 84935
 84936
 84937
 84938
 84939
 84940
 84941
 84942
 84943
 84944
 84945
 84946
 84947
 84948
 84949
 84950
 84951
 84952
 84953
 84954
 84955
 84956
 84957
 84958
 84959
 84960
 84961
 84962
 84963
 84964
 84965
 84966
 84967
 84968
 84969
 84970
 84971
 84972
 84973
 84974
 84975
 84976
 84977
 84978
 84979
 84980
 84981
 84982
 84983
 84984
 84985
 84986
 84987
 84988
 84989
 84990
 84991
 84992
 84993
 84994
 84995
 84996
 84997
 84998
 84999
 85000
 85001
 85002
 85003
 85004
 85005
 85006
 85007
 85008
 85009
 85010
 85011
 85012
 85013
 85014
 85015
 85016
 85017
 85018
 85019
 85020
 85021
 85022
 85023
 85024
 85025
 85026
 85027
 85028
 85029
 85030
 85031
 85032
 85033
 85034
 85035
 85036
 85037
 85038
 85039
 85040
 85041
 85042
 85043
 85044
 85045
 85046
 85047
 85048
 85049
 85050
 85051
 85052
 85053
 85054
 85055
 85056
 85057
 85058
 85059
 85060
 85061
 85062
 85063
 85064
 85065
 85066
 85067
 85068
 85069
 85070
 85071
 85072
 85073
 85074
 85075
 85076
 85077
 85078
 85079
 85080
 85081
 85082
 85083
 85084
 85085
 85086
 85087
 85088
 85089
 85090
 85091
 85092
 85093
 85094
 85095
 85096
 85097
 85098
 85099
 85100
 85101
 85102
 85103
 85104
 85105
 85106
 85107
 85108
 85109
 85110
 85111
 85112
 85113
 85114
 85115
 85116
 85117
 85118
 85119
 85120
 85121
 85122
 85123
 85124
 85125
 85126
 85127
 85128
 85129
 85130
 85131
 85132
 85133
 85134
 85135
 85136
 85137
 85138
 85139
 85140
 85141
 85142
 85143
 85144
 85145
 85146
 85147
 85148
 85149
 85150
 85151
 85152
 85153
 85154
 85155
 85156
 85157
 85158
 85159
 85160
 85161
 85162
 85163
 85164
 85165
 85166
 85167
 85168
 85169
 85170
 85171
 85172
 85173
 85174
 85175
 85176
 85177
 85178
 85179
 85180
 85181
 85182
 85183
 85184
 85185
 85186
 85187
 85188
 85189
 85190
 85191
 85192
 85193
 85194
 85195
 85196
 85197
 85198
 85199
 85200
 85201
 85202
 85203
 85204
 85205
 85206
 85207
 85208
 85209
 85210
 85211
 85212
 85213
 85214
 85215
 85216
 85217
 85218
 85219
 85220
 85221
 85222
 85223
 85224
 85225
 85226
 85227
 85228
 85229
 85230
 85231
 85232
 85233
 85234
 85235
 85236
 85237
 85238
 85239
 85240
 85241
 85242
 85243
 85244
 85245
 85246
 85247
 85248
 85249
 85250
 85251
 85252
 85253
 85254
 85255
 85256
 85257
 85258
 85259
 85260
 85261
 85262
 85263
 85264
 85265
 85266
 85267
 85268
 85269
 85270
 85271
 85272
 85273
 85274
 85275
 85276
 85277
 85278
 85279
 85280
 85281
 85282
 85283
 85284
 85285
 85286
 85287
 85288
 85289
 85290
 85291
 85292
 85293
 85294
 85295
 85296
 85297
 85298
 85299
 85300
 85301
 85302
 85303
 85304
 85305
 85306
 85307
 85308
 85309
 85310
 85311
 85312
 85313
 85314
 85315
 85316
 85317
 85318
 85319
 85320
 85321
 85322
 85323
 85324
 85325
 85326
 85327
 85328
 85329
 85330
 85331
 85332
 85333
 85334
 85335
 85336
 85337
 85338
 85339
 85340
 85341
 85342
 85343
 85344
 85345
 85346
 85347
 85348
 85349
 85350
 85351
 85352
 85353
 85354
 85355
 85356
 85357
 85358
 85359
 85360
 85361
 85362
 85363
 85364
 85365
 85366
 85367
 85368
 85369
 85370
 85371
 85372
 85373
 85374
 85375
 85376
 85377
 85378
 85379
 85380
 85381
 85382
 85383
 85384
 85385
 85386
 85387
 85388
 85389
 85390
 85391
 85392
 85393
 85394
 85395
 85396
 85397
 85398
 85399
 85400
 85401
 85402
 85403
 85404
 85405
 85406
 85407
 85408
 85409
 85410
 85411
 85412
 85413
 85414
 85415
 85416
 85417
 85418
 85419
 85420
 85421
 85422
 85423
 85424
 85425
 85426
 85427
 85428
 85429
 85430
 85431
 85432
 85433
 85434
 85435
 85436
 85437
 85438
 85439
 85440
 85441
 85442
 85443
 85444
 85445
 85446
 85447
 85448
 85449
 85450
 85451
 85452
 85453
 85454
 85455
 85456
 85457
 85458
 85459
 85460
 85461
 85462
 85463
 85464
 85465
 85466
 85467
 85468
 85469
 85470
 85471
 85472
 85473
 85474
 85475
 85476
 85477
 85478
 85479
 85480
 85481
 85482
 85483
 85484
 85485
 85486
 85487
 85488
 85489
 85490
 85491
 85492
 85493
 85494
 85495
 85496
 85497
 85498
 85499
 85500
 85501
 85502
 85503
 85504
 85505
 85506
 85507
 85508
 85509
 85510
 85511
 85512
 85513
 85514
 85515
 85516
 85517
 85518
 85519
 85520
 85521
 85522
 85523
 85524
 85525
 85526
 85527
 85528
 85529
 85530
 85531
 85532
 85533
 85534
 85535
 85536
 85537
 85538
 85539
 85540
 85541
 85542
 85543
 85544
 85545
 85546
 85547
 85548
 85549
 85550
 85551
 85552
 85553
 85554
 85555
 85556
 85557
 85558
 85559
 85560
 85561
 85562
 85563
 85564
 85565
 85566
 85567
 85568
 85569
 85570
 85571
 85572
 85573
 85574
 85575
 85576
 85577
 85578
 85579
 85580
 85581
 85582
 85583
 85584
 85585
 85586
 85587
 85588
 85589
 85590
 85591
 85592
 85593
 85594
 85595
 85596
 85597
 85598
 85599
 85600
 85601
 85602
 85603
 85604
 85605
 85606
 85607
 85608
 85609
 85610
 85611
 85612
 85613
 85614
 85615
 85616
 85617
 85618
 85619
 85620
 85621
 85622
 85623
 85624
 85625
 85626
 85627
 85628
 85629
 85630
 85631
 85632
 85633
 85634
 85635
 85636
 85637
 85638
 85639
 85640
 85641
 85642
 85643
 85644
 85645
 85646
 85647
 85648
 85649
 85650
 85651
 85652
 85653
 85654
 85655
 85656
 85657
 85658
 85659
 85660
 85661
 85662
 85663
 85664
 85665
 85666
 85667
 85668
 85669
 85670
 85671
 85672
 85673
 85674
 85675
 85676
 85677
 85678
 85679
 85680
 85681
 85682
 85683
 85684
 85685
 85686
 85687
 85688
 85689
 85690
 85691
 85692
 85693
 85694
 85695
 85696
 85697
 85698
 85699
 85700
 85701
 85702
 85703
 85704
 85705
 85706
 85707
 85708
 85709
 85710
 85711
 85712
 85713
 85714
 85715
 85716
 85717
 85718
 85719
 85720
 85721
 85722
 85723
 85724
 85725
 85726
 85727
 85728
 85729
 85730
 85731
 85732
 85733
 85734
 85735
 85736
 85737
 85738
 85739
 85740
 85741
 85742
 85743
 85744
 85745
 85746
 85747
 85748
 85749
 85750
 85751
 85752
 85753
 85754
 85755
 85756
 85757
 85758
 85759
 85760
 85761
 85762
 85763
 85764
 85765
 85766
 85767
 85768
 85769
 85770
 85771
 85772
 85773
 85774
 85775
 85776
 85777
 85778
 85779
 85780
 85781
 85782
 85783
 85784
 85785
 85786
 85787
 85788
 85789
 85790
 85791
 85792
 85793
 85794
 85795
 85796
 85797
 85798
 85799
 85800
 85801
 85802
 85803
 85804
 85805
 85806
 85807
 85808
 85809
 85810
 85811
 85812
 85813
 85814
 85815
 85816
 85817
 85818
 85819
 85820
 85821
 85822
 85823
 85824
 85825
 85826
 85827
 85828
 85829
 85830
 85831
 85832
 85833
 85834
 85835
 85836
 85837
 85838
 85839
 85840
 85841
 85842
 85843
 85844
 85845
 85846
 85847
 85848
 85849
 85850
 85851
 85852
 85853
 85854
 85855
 85856
 85857
 85858
 85859
 85860
 85861
 85862
 85863
 85864
 85865
 85866
 85867
 85868
 85869
 85870
 85871
 85872
 85873
 85874
 85875
 85876
 85877
 85878
 85879
 85880
 85881
 85882
 85883
 85884
 85885
 85886
 85887
 85888
 85889
 85890
 85891
 85892
 85893
 85894
 85895
 85896
 85897
 85898
 85899
 85900
 85901
 85902
 85903
 85904
 85905
 85906
 85907
 85908
 85909
 85910
 85911
 85912
 85913
 85914
 85915
 85916
 85917
 85918
 85919
 85920
 85921
 85922
 85923
 85924
 85925
 85926
 85927
 85928
 85929
 85930
 85931
 85932
 85933
 85934
 85935
 85936
 85937
 85938
 85939
 85940
 85941
 85942
 85943
 85944
 85945
 85946
 85947
 85948
 85949
 85950
 85951
 85952
 85953
 85954
 85955
 85956
 85957
 85958
 85959
 85960
 85961
 85962
 85963
 85964
 85965
 85966
 85967
 85968
 85969
 85970
 85971
 85972
 85973
 85974
 85975
 85976
 85977
 85978
 85979
 85980
 85981
 85982
 85983
 85984
 85985
 85986
 85987
 85988
 85989
 85990
 85991
 85992
 85993
 85994
 85995
 85996
 85997
 85998
 85999
 86000
 86001
 86002
 86003
 86004
 86005
 86006
 86007
 86008
 86009
 86010
 86011
 86012
 86013
 86014
 86015
 86016
 86017
 86018
 86019
 86020
 86021
 86022
 86023
 86024
 86025
 86026
 86027
 86028
 86029
 86030
 86031
 86032
 86033
 86034
 86035
 86036
 86037
 86038
 86039
 86040
 86041
 86042
 86043
 86044
 86045
 86046
 86047
 86048
 86049
 86050
 86051
 86052
 86053
 86054
 86055
 86056
 86057
 86058
 86059
 86060
 86061
 86062
 86063
 86064
 86065
 86066
 86067
 86068
 86069
 86070
 86071
 86072
 86073
 86074
 86075
 86076
 86077
 86078
 86079
 86080
 86081
 86082
 86083
 86084
 86085
 86086
 86087
 86088
 86089
 86090
 86091
 86092
 86093
 86094
 86095
 86096
 86097
 86098
 86099
 86100
 86101
 86102
 86103
 86104
 86105
 86106
 86107
 86108
 86109
 86110
 86111
 86112
 86113
 86114
 86115
 86116
 86117
 86118
 86119
 86120
 86121
 86122
 86123
 86124
 86125
 86126
 86127
 86128
 86129
 86130
 86131
 86132
 86133
 86134
 86135
 86136
 86137
 86138
 86139
 86140
 86141
 86142
 86143
 86144
 86145
 86146
 86147
 86148
 86149
 86150
 86151
 86152
 86153
 86154
 86155
 86156
 86157
 86158
 86159
 86160
 86161
 86162
 86163
 86164
 86165
 86166
 86167
 86168
 86169
 86170
 86171
 86172
 86173
 86174
 86175
 86176
 86177
 86178
 86179
 86180
 86181
 86182
 86183
 86184
 86185
 86186
 86187
 86188
 86189
 86190
 86191
 86192
 86193
 86194
 86195
 86196
 86197
 86198
 86199
 86200
 86201
 86202
 86203
 86204
 86205
 86206
 86207
 86208
 86209
 86210
 86211
 86212
 86213
 86214
 86215
 86216
 86217
 86218
 86219
 86220
 86221
 86222
 86223
 86224
 86225
 86226
 86227
 86228
 86229
 86230
 86231
 86232
 86233
 86234
 86235
 86236
 86237
 86238
 86239
 86240
 86241
 86242
 86243
 86244
 86245
 86246
 86247
 86248
 86249
 86250
 86251
 86252
 86253
 86254
 86255
 86256
 86257
 86258
 86259
 86260
 86261
 86262
 86263
 86264
 86265
 86266
 86267
 86268
 86269
 86270
 86271
 86272
 86273
 86274
 86275
 86276
 86277
 86278
 86279
 86280
 86281
 86282
 86283
 86284
 86285
 86286
 86287
 86288
 86289
 86290
 86291
 86292
 86293
 86294
 86295
 86296
 86297
 86298
 86299
 86300
 86301
 86302
 86303
 86304
 86305
 86306
 86307
 86308
 86309
 86310
 86311
 86312
 86313
 86314
 86315
 86316
 86317
 86318
 86319
 86320
 86321
 86322
 86323
 86324
 86325
 86326
 86327
 86328
 86329
 86330
 86331
 86332
 86333
 86334
 86335
 86336
 86337
 86338
 86339
 86340
 86341
 86342
 86343
 86344
 86345
 86346
 86347
 86348
 86349
 86350
 86351
 86352
 86353
 86354
 86355
 86356
 86357
 86358
 86359
 86360
 86361
 86362
 86363
 86364
 86365
 86366
 86367
 86368
 86369
 86370
 86371
 86372
 86373
 86374
 86375
 86376
 86377
 86378
 86379
 86380
 86381
 86382
 86383
 86384
 86385
 86386
 86387
 86388
 86389
 86390
 86391
 86392
 86393
 86394
 86395
 86396
 86397
 86398
 86399
 86400
 86401
 86402
 86403
 86404
 86405
 86406
 86407
 86408
 86409
 86410
 86411
 86412
 86413
 86414
 86415
 86416
 86417
 86418
 86419
 86420
 86421
 86422
 86423
 86424
 86425
 86426
 86427
 86428
 86429
 86430
 86431
 86432
 86433
 86434
 86435
 86436
 86437
 86438
 86439
 86440
 86441
 86442
 86443
 86444
 86445
 86446
 86447
 86448
 86449
 86450
 86451
 86452
 86453
 86454
 86455
 86456
 86457
 86458
 86459
 86460
 86461
 86462
 86463
 86464
 86465
 86466
 86467
 86468
 86469
 86470
 86471
 86472
 86473
 86474
 86475
 86476
 86477
 86478
 86479
 86480
 86481
 86482
 86483
 86484
 86485
 86486
 86487
 86488
 86489
 86490
 86491
 86492
 86493
 86494
 86495
 86496
 86497
 86498
 86499
 86500
 86501
 86502
 86503
 86504
 86505
 86506
 86507
 86508
 86509
 86510
 86511
 86512
 86513
 86514
 86515
 86516
 86517
 86518
 86519
 86520
 86521
 86522
 86523
 86524
 86525
 86526
 86527
 86528
 86529
 86530
 86531
 86532
 86533
 86534
 86535
 86536
 86537
 86538
 86539
 86540
 86541
 86542
 86543
 86544
 86545
 86546
 86547
 86548
 86549
 86550
 86551
 86552
 86553
 86554
 86555
 86556
 86557
 86558
 86559
 86560
 86561
 86562
 86563
 86564
 86565
 86566
 86567
 86568
 86569
 86570
 86571
 86572
 86573
 86574
 86575
 86576
 86577
 86578
 86579
 86580
 86581
 86582
 86583
 86584
 86585
 86586
 86587
 86588
 86589
 86590
 86591
 86592
 86593
 86594
 86595
 86596
 86597
 86598
 86599
 86600
 86601
 86602
 86603
 86604
 86605
 86606
 86607
 86608
 86609
 86610
 86611
 86612
 86613
 86614
 86615
 86616
 86617
 86618
 86619
 86620
 86621
 86622
 86623
 86624
 86625
 86626
 86627
 86628
 86629
 86630
 86631
 86632
 86633
 86634
 86635
 86636
 86637
 86638
 86639
 86640
 86641
 86642
 86643
 86644
 86645
 86646
 86647
 86648
 86649
 86650
 86651
 86652
 86653
 86654
 86655
 86656
 86657
 86658
 86659
 86660
 86661
 86662
 86663
 86664
 86665
 86666
 86667
 86668
 86669
 86670
 86671
 86672
 86673
 86674
 86675
 86676
 86677
 86678
 86679
 86680
 86681
 86682
 86683
 86684
 86685
 86686
 86687
 86688
 86689
 86690
 86691
 86692
 86693
 86694
 86695
 86696
 86697
 86698
 86699
 86700
 86701
 86702
 86703
 86704
 86705
 86706
 86707
 86708
 86709
 86710
 86711
 86712
 86713
 86714
 86715
 86716
 86717
 86718
 86719
 86720
 86721
 86722
 86723
 86724
 86725
 86726
 86727
 86728
 86729
 86730
 86731
 86732
 86733
 86734
 86735
 86736
 86737
 86738
 86739
 86740
 86741
 86742
 86743
 86744
 86745
 86746
 86747
 86748
 86749
 86750
 86751
 86752
 86753
 86754
 86755
 86756
 86757
 86758
 86759
 86760
 86761
 86762
 86763
 86764
 86765
 86766
 86767
 86768
 86769
 86770
 86771
 86772
 86773
 86774
 86775
 86776
 86777
 86778
 86779
 86780
 86781
 86782
 86783
 86784
 86785
 86786
 86787
 86788
 86789
 86790
 86791
 86792
 86793
 86794
 86795
 86796
 86797
 86798
 86799
 86800
 86801
 86802
 86803
 86804
 86805
 86806
 86807
 86808
 86809
 86810
 86811
 86812
 86813
 86814
 86815
 86816
 86817
 86818
 86819
 86820
 86821
 86822
 86823
 86824
 86825
 86826
 86827
 86828
 86829
 86830
 86831
 86832
 86833
 86834
 86835
 86836
 86837
 86838
 86839
 86840
 86841
 86842
 86843
 86844
 86845
 86846
 86847
 86848
 86849
 86850
 86851
 86852
 86853
 86854
 86855
 86856
 86857
 86858
 86859
 86860
 86861
 86862
 86863
 86864
 86865
 86866
 86867
 86868
 86869
 86870
 86871
 86872
 86873
 86874
 86875
 86876
 86877
 86878
 86879
 86880
 86881
 86882
 86883
 86884
 86885
 86886
 86887
 86888
 86889
 86890
 86891
 86892
 86893
 86894
 86895
 86896
 86897
 86898
 86899
 86900
 86901
 86902
 86903
 86904
 86905
 86906
 86907
 86908
 86909
 86910
 86911
 86912
 86913
 86914
 86915
 86916
 86917
 86918
 86919
 86920
 86921
 86922
 86923
 86924
 86925
 86926
 86927
 86928
 86929
 86930
 86931
 86932
 86933
 86934
 86935
 86936
 86937
 86938
 86939
 86940
 86941
 86942
 86943
 86944
 86945
 86946
 86947
 86948
 86949
 86950
 86951
 86952
 86953
 86954
 86955
 86956
 86957
 86958
 86959
 86960
 86961
 86962
 86963
 86964
 86965
 86966
 86967
 86968
 86969
 86970
 86971
 86972
 86973
 86974
 86975
 86976
 86977
 86978
 86979
 86980
 86981
 86982
 86983
 86984
 86985
 86986
 86987
 86988
 86989
 86990
 86991
 86992
 86993
 86994
 86995
 86996
 86997
 86998
 86999
 87000
 87001
 87002
 87003
 87004
 87005
 87006
 87007
 87008
 87009
 87010
 87011
 87012
 87013
 87014
 87015
 87016
 87017
 87018
 87019
 87020
 87021
 87022
 87023
 87024
 87025
 87026
 87027
 87028
 87029
 87030
 87031
 87032
 87033
 87034
 87035
 87036
 87037
 87038
 87039
 87040
 87041
 87042
 87043
 87044
 87045
 87046
 87047
 87048
 87049
 87050
 87051
 87052
 87053
 87054
 87055
 87056
 87057
 87058
 87059
 87060
 87061
 87062
 87063
 87064
 87065
 87066
 87067
 87068
 87069
 87070
 87071
 87072
 87073
 87074
 87075
 87076
 87077
 87078
 87079
 87080
 87081
 87082
 87083
 87084
 87085
 87086
 87087
 87088
 87089
 87090
 87091
 87092
 87093
 87094
 87095
 87096
 87097
 87098
 87099
 87100
 87101
 87102
 87103
 87104
 87105
 87106
 87107
 87108
 87109
 87110
 87111
 87112
 87113
 87114
 87115
 87116
 87117
 87118
 87119
 87120
 87121
 87122
 87123
 87124
 87125
 87126
 87127
 87128
 87129
 87130
 87131
 87132
 87133
 87134
 87135
 87136
 87137
 87138
 87139
 87140
 87141
 87142
 87143
 87144
 87145
 87146
 87147
 87148
 87149
 87150
 87151
 87152
 87153
 87154
 87155
 87156
 87157
 87158
 87159
 87160
 87161
 87162
 87163
 87164
 87165
 87166
 87167
 87168
 87169
 87170
 87171
 87172
 87173
 87174
 87175
 87176
 87177
 87178
 87179
 87180
 87181
 87182
 87183
 87184
 87185
 87186
 87187
 87188
 87189
 87190
 87191
 87192
 87193
 87194
 87195
 87196
 87197
 87198
 87199
 87200
 87201
 87202
 87203
 87204
 87205
 87206
 87207
 87208
 87209
 87210
 87211
 87212
 87213
 87214
 87215
 87216
 87217
 87218
 87219
 87220
 87221
 87222
 87223
 87224
 87225
 87226
 87227
 87228
 87229
 87230
 87231
 87232
 87233
 87234
 87235
 87236
 87237
 87238
 87239
 87240
 87241
 87242
 87243
 87244
 87245
 87246
 87247
 87248
 87249
 87250
 87251
 87252
 87253
 87254
 87255
 87256
 87257
 87258
 87259
 87260
 87261
 87262
 87263
 87264
 87265
 87266
 87267
 87268
 87269
 87270
 87271
 87272
 87273
 87274
 87275
 87276
 87277
 87278
 87279
 87280
 87281
 87282
 87283
 87284
 87285
 87286
 87287
 87288
 87289
 87290
 87291
 87292
 87293
 87294
 87295
 87296
 87297
 87298
 87299
 87300
 87301
 87302
 87303
 87304
 87305
 87306
 87307
 87308
 87309
 87310
 87311
 87312
 87313
 87314
 87315
 87316
 87317
 87318
 87319
 87320
 87321
 87322
 87323
 87324
 87325
 87326
 87327
 87328
 87329
 87330
 87331
 87332
 87333
 87334
 87335
 87336
 87337
 87338
 87339
 87340
 87341
 87342
 87343
 87344
 87345
 87346
 87347
 87348
 87349
 87350
 87351
 87352
 87353
 87354
 87355
 87356
 87357
 87358
 87359
 87360
 87361
 87362
 87363
 87364
 87365
 87366
 87367
 87368
 87369
 87370
 87371
 87372
 87373
 87374
 87375
 87376
 87377
 87378
 87379
 87380
 87381
 87382
 87383
 87384
 87385
 87386
 87387
 87388
 87389
 87390
 87391
 87392
 87393
 87394
 87395
 87396
 87397
 87398
 87399
 87400
 87401
 87402
 87403
 87404
 87405
 87406
 87407
 87408
 87409
 87410
 87411
 87412
 87413
 87414
 87415
 87416
 87417
 87418
 87419
 87420
 87421
 87422
 87423
 87424
 87425
 87426
 87427
 87428
 87429
 87430
 87431
 87432
 87433
 87434
 87435
 87436
 87437
 87438
 87439
 87440
 87441
 87442
 87443
 87444
 87445
 87446
 87447
 87448
 87449
 87450
 87451
 87452
 87453
 87454
 87455
 87456
 87457
 87458
 87459
 87460
 87461
 87462
 87463
 87464
 87465
 87466
 87467
 87468
 87469
 87470
 87471
 87472
 87473
 87474
 87475
 87476
 87477
 87478
 87479
 87480
 87481
 87482
 87483
 87484
 87485
 87486
 87487
 87488
 87489
 87490
 87491
 87492
 87493
 87494
 87495
 87496
 87497
 87498
 87499
 87500
 87501
 87502
 87503
 87504
 87505
 87506
 87507
 87508
 87509
 87510
 87511
 87512
 87513
 87514
 87515
 87516
 87517
 87518
 87519
 87520
 87521
 87522
 87523
 87524
 87525
 87526
 87527
 87528
 87529
 87530
 87531
 87532
 87533
 87534
 87535
 87536
 87537
 87538
 87539
 87540
 87541
 87542
 87543
 87544
 87545
 87546
 87547
 87548
 87549
 87550
 87551
 87552
 87553
 87554
 87555
 87556
 87557
 87558
 87559
 87560
 87561
 87562
 87563
 87564
 87565
 87566
 87567
 87568
 87569
 87570
 87571
 87572
 87573
 87574
 87575
 87576
 87577
 87578
 87579
 87580
 87581
 87582
 87583
 87584
 87585
 87586
 87587
 87588
 87589
 87590
 87591
 87592
 87593
 87594
 87595
 87596
 87597
 87598
 87599
 87600
 87601
 87602
 87603
 87604
 87605
 87606
 87607
 87608
 87609
 87610
 87611
 87612
 87613
 87614
 87615
 87616
 87617
 87618
 87619
 87620
 87621
 87622
 87623
 87624
 87625
 87626
 87627
 87628
 87629
 87630
 87631
 87632
 87633
 87634
 87635
 87636
 87637
 87638
 87639
 87640
 87641
 87642
 87643
 87644
 87645
 87646
 87647
 87648
 87649
 87650
 87651
 87652
 87653
 87654
 87655
 87656
 87657
 87658
 87659
 87660
 87661
 87662
 87663
 87664
 87665
 87666
 87667
 87668
 87669
 87670
 87671
 87672
 87673
 87674
 87675
 87676
 87677
 87678
 87679
 87680
 87681
 87682
 87683
 87684
 87685
 87686
 87687
 87688
 87689
 87690
 87691
 87692
 87693
 87694
 87695
 87696
 87697
 87698
 87699
 87700
 87701
 87702
 87703
 87704
 87705
 87706
 87707
 87708
 87709
 87710
 87711
 87712
 87713
 87714
 87715
 87716
 87717
 87718
 87719
 87720
 87721
 87722
 87723
 87724
 87725
 87726
 87727
 87728
 87729
 87730
 87731
 87732
 87733
 87734
 87735
 87736
 87737
 87738
 87739
 87740
 87741
 87742
 87743
 87744
 87745
 87746
 87747
 87748
 87749
 87750
 87751
 87752
 87753
 87754
 87755
 87756
 87757
 87758
 87759
 87760
 87761
 87762
 87763
 87764
 87765
 87766
 87767
 87768
 87769
 87770
 87771
 87772
 87773
 87774
 87775
 87776
 87777
 87778
 87779
 87780
 87781
 87782
 87783
 87784
 87785
 87786
 87787
 87788
 87789
 87790
 87791
 87792
 87793
 87794
 87795
 87796
 87797
 87798
 87799
 87800
 87801
 87802
 87803
 87804
 87805
 87806
 87807
 87808
 87809
 87810
 87811
 87812
 87813
 87814
 87815
 87816
 87817
 87818
 87819
 87820
 87821
 87822
 87823
 87824
 87825
 87826
 87827
 87828
 87829
 87830
 87831
 87832
 87833
 87834
 87835
 87836
 87837
 87838
 87839
 87840
 87841
 87842
 87843
 87844
 87845
 87846
 87847
 87848
 87849
 87850
 87851
 87852
 87853
 87854
 87855
 87856
 87857
 87858
 87859
 87860
 87861
 87862
 87863
 87864
 87865
 87866
 87867
 87868
 87869
 87870
 87871
 87872
 87873
 87874
 87875
 87876
 87877
 87878
 87879
 87880
 87881
 87882
 87883
 87884
 87885
 87886
 87887
 87888
 87889
 87890
 87891
 87892
 87893
 87894
 87895
 87896
 87897
 87898
 87899
 87900
 87901
 87902
 87903
 87904
 87905
 87906
 87907
 87908
 87909
 87910
 87911
 87912
 87913
 87914
 87915
 87916
 87917
 87918
 87919
 87920
 87921
 87922
 87923
 87924
 87925
 87926
 87927
 87928
 87929
 87930
 87931
 87932
 87933
 87934
 87935
 87936
 87937
 87938
 87939
 87940
 87941
 87942
 87943
 87944
 87945
 87946
 87947
 87948
 87949
 87950
 87951
 87952
 87953
 87954
 87955
 87956
 87957
 87958
 87959
 87960
 87961
 87962
 87963
 87964
 87965
 87966
 87967
 87968
 87969
 87970
 87971
 87972
 87973
 87974
 87975
 87976
 87977
 87978
 87979
 87980
 87981
 87982
 87983
 87984
 87985
 87986
 87987
 87988
 87989
 87990
 87991
 87992
 87993
 87994
 87995
 87996
 87997
 87998
 87999
 88000
 88001
 88002
 88003
 88004
 88005
 88006
 88007
 88008
 88009
 88010
 88011
 88012
 88013
 88014
 88015
 88016
 88017
 88018
 88019
 88020
 88021
 88022
 88023
 88024
 88025
 88026
 88027
 88028
 88029
 88030
 88031
 88032
 88033
 88034
 88035
 88036
 88037
 88038
 88039
 88040
 88041
 88042
 88043
 88044
 88045
 88046
 88047
 88048
 88049
 88050
 88051
 88052
 88053
 88054
 88055
 88056
 88057
 88058
 88059
 88060
 88061
 88062
 88063
 88064
 88065
 88066
 88067
 88068
 88069
 88070
 88071
 88072
 88073
 88074
 88075
 88076
 88077
 88078
 88079
 88080
 88081
 88082
 88083
 88084
 88085
 88086
 88087
 88088
 88089
 88090
 88091
 88092
 88093
 88094
 88095
 88096
 88097
 88098
 88099
 88100
 88101
 88102
 88103
 88104
 88105
 88106
 88107
 88108
 88109
 88110
 88111
 88112
 88113
 88114
 88115
 88116
 88117
 88118
 88119
 88120
 88121
 88122
 88123
 88124
 88125
 88126
 88127
 88128
 88129
 88130
 88131
 88132
 88133
 88134
 88135
 88136
 88137
 88138
 88139
 88140
 88141
 88142
 88143
 88144
 88145
 88146
 88147
 88148
 88149
 88150
 88151
 88152
 88153
 88154
 88155
 88156
 88157
 88158
 88159
 88160
 88161
 88162
 88163
 88164
 88165
 88166
 88167
 88168
 88169
 88170
 88171
 88172
 88173
 88174
 88175
 88176
 88177
 88178
 88179
 88180
 88181
 88182
 88183
 88184
 88185
 88186
 88187
 88188
 88189
 88190
 88191
 88192
 88193
 88194
 88195
 88196
 88197
 88198
 88199
 88200
 88201
 88202
 88203
 88204
 88205
 88206
 88207
 88208
 88209
 88210
 88211
 88212
 88213
 88214
 88215
 88216
 88217
 88218
 88219
 88220
 88221
 88222
 88223
 88224
 88225
 88226
 88227
 88228
 88229
 88230
 88231
 88232
 88233
 88234
 88235
 88236
 88237
 88238
 88239
 88240
 88241
 88242
 88243
 88244
 88245
 88246
 88247
 88248
 88249
 88250
 88251
 88252
 88253
 88254
 88255
 88256
 88257
 88258
 88259
 88260
 88261
 88262
 88263
 88264
 88265
 88266
 88267
 88268
 88269
 88270
 88271
 88272
 88273
 88274
 88275
 88276
 88277
 88278
 88279
 88280
 88281
 88282
 88283
 88284
 88285
 88286
 88287
 88288
 88289
 88290
 88291
 88292
 88293
 88294
 88295
 88296
 88297
 88298
 88299
 88300
 88301
 88302
 88303
 88304
 88305
 88306
 88307
 88308
 88309
 88310
 88311
 88312
 88313
 88314
 88315
 88316
 88317
 88318
 88319
 88320
 88321
 88322
 88323
 88324
 88325
 88326
 88327
 88328
 88329
 88330
 88331
 88332
 88333
 88334
 88335
 88336
 88337
 88338
 88339
 88340
 88341
 88342
 88343
 88344
 88345
 88346
 88347
 88348
 88349
 88350
 88351
 88352
 88353
 88354
 88355
 88356
 88357
 88358
 88359
 88360
 88361
 88362
 88363
 88364
 88365
 88366
 88367
 88368
 88369
 88370
 88371
 88372
 88373
 88374
 88375
 88376
 88377
 88378
 88379
 88380
 88381
 88382
 88383
 88384
 88385
 88386
 88387
 88388
 88389
 88390
 88391
 88392
 88393
 88394
 88395
 88396
 88397
 88398
 88399
 88400
 88401
 88402
 88403
 88404
 88405
 88406
 88407
 88408
 88409
 88410
 88411
 88412
 88413
 88414
 88415
 88416
 88417
 88418
 88419
 88420
 88421
 88422
 88423
 88424
 88425
 88426
 88427
 88428
 88429
 88430
 88431
 88432
 88433
 88434
 88435
 88436
 88437
 88438
 88439
 88440
 88441
 88442
 88443
 88444
 88445
 88446
 88447
 88448
 88449
 88450
 88451
 88452
 88453
 88454
 88455
 88456
 88457
 88458
 88459
 88460
 88461
 88462
 88463
 88464
 88465
 88466
 88467
 88468
 88469
 88470
 88471
 88472
 88473
 88474
 88475
 88476
 88477
 88478
 88479
 88480
 88481
 88482
 88483
 88484
 88485
 88486
 88487
 88488
 88489
 88490
 88491
 88492
 88493
 88494
 88495
 88496
 88497
 88498
 88499
 88500
 88501
 88502
 88503
 88504
 88505
 88506
 88507
 88508
 88509
 88510
 88511
 88512
 88513
 88514
 88515
 88516
 88517
 88518
 88519
 88520
 88521
 88522
 88523
 88524
 88525
 88526
 88527
 88528
 88529
 88530
 88531
 88532
 88533
 88534
 88535
 88536
 88537
 88538
 88539
 88540
 88541
 88542
 88543
 88544
 88545
 88546
 88547
 88548
 88549
 88550
 88551
 88552
 88553
 88554
 88555
 88556
 88557
 88558
 88559
 88560
 88561
 88562
 88563
 88564
 88565
 88566
 88567
 88568
 88569
 88570
 88571
 88572
 88573
 88574
 88575
 88576
 88577
 88578
 88579
 88580
 88581
 88582
 88583
 88584
 88585
 88586
 88587
 88588
 88589
 88590
 88591
 88592
 88593
 88594
 88595
 88596
 88597
 88598
 88599
 88600
 88601
 88602
 88603
 88604
 88605
 88606
 88607
 88608
 88609
 88610
 88611
 88612
 88613
 88614
 88615
 88616
 88617
 88618
 88619
 88620
 88621
 88622
 88623
 88624
 88625
 88626
 88627
 88628
 88629
 88630
 88631
 88632
 88633
 88634
 88635
 88636
 88637
 88638
 88639
 88640
 88641
 88642
 88643
 88644
 88645
 88646
 88647
 88648
 88649
 88650
 88651
 88652
 88653
 88654
 88655
 88656
 88657
 88658
 88659
 88660
 88661
 88662
 88663
 88664
 88665
 88666
 88667
 88668
 88669
 88670
 88671
 88672
 88673
 88674
 88675
 88676
 88677
 88678
 88679
 88680
 88681
 88682
 88683
 88684
 88685
 88686
 88687
 88688
 88689
 88690
 88691
 88692
 88693
 88694
 88695
 88696
 88697
 88698
 88699
 88700
 88701
 88702
 88703
 88704
 88705
 88706
 88707
 88708
 88709
 88710
 88711
 88712
 88713
 88714
 88715
 88716
 88717
 88718
 88719
 88720
 88721
 88722
 88723
 88724
 88725
 88726
 88727
 88728
 88729
 88730
 88731
 88732
 88733
 88734
 88735
 88736
 88737
 88738
 88739
 88740
 88741
 88742
 88743
 88744
 88745
 88746
 88747
 88748
 88749
 88750
 88751
 88752
 88753
 88754
 88755
 88756
 88757
 88758
 88759
 88760
 88761
 88762
 88763
 88764
 88765
 88766
 88767
 88768
 88769
 88770
 88771
 88772
 88773
 88774
 88775
 88776
 88777
 88778
 88779
 88780
 88781
 88782
 88783
 88784
 88785
 88786
 88787
 88788
 88789
 88790
 88791
 88792
 88793
 88794
 88795
 88796
 88797
 88798
 88799
 88800
 88801
 88802
 88803
 88804
 88805
 88806
 88807
 88808
 88809
 88810
 88811
 88812
 88813
 88814
 88815
 88816
 88817
 88818
 88819
 88820
 88821
 88822
 88823
 88824
 88825
 88826
 88827
 88828
 88829
 88830
 88831
 88832
 88833
 88834
 88835
 88836
 88837
 88838
 88839
 88840
 88841
 88842
 88843
 88844
 88845
 88846
 88847
 88848
 88849
 88850
 88851
 88852
 88853
 88854
 88855
 88856
 88857
 88858
 88859
 88860
 88861
 88862
 88863
 88864
 88865
 88866
 88867
 88868
 88869
 88870
 88871
 88872
 88873
 88874
 88875
 88876
 88877
 88878
 88879
 88880
 88881
 88882
 88883
 88884
 88885
 88886
 88887
 88888
 88889
 88890
 88891
 88892
 88893
 88894
 88895
 88896
 88897
 88898
 88899
 88900
 88901
 88902
 88903
 88904
 88905
 88906
 88907
 88908
 88909
 88910
 88911
 88912
 88913
 88914
 88915
 88916
 88917
 88918
 88919
 88920
 88921
 88922
 88923
 88924
 88925
 88926
 88927
 88928
 88929
 88930
 88931
 88932
 88933
 88934
 88935
 88936
 88937
 88938
 88939
 88940
 88941
 88942
 88943
 88944
 88945
 88946
 88947
 88948
 88949
 88950
 88951
 88952
 88953
 88954
 88955
 88956
 88957
 88958
 88959
 88960
 88961
 88962
 88963
 88964
 88965
 88966
 88967
 88968
 88969
 88970
 88971
 88972
 88973
 88974
 88975
 88976
 88977
 88978
 88979
 88980
 88981
 88982
 88983
 88984
 88985
 88986
 88987
 88988
 88989
 88990
 88991
 88992
 88993
 88994
 88995
 88996
 88997
 88998
 88999
 89000
 89001
 89002
 89003
 89004
 89005
 89006
 89007
 89008
 89009
 89010
 89011
 89012
 89013
 89014
 89015
 89016
 89017
 89018
 89019
 89020
 89021
 89022
 89023
 89024
 89025
 89026
 89027
 89028
 89029
 89030
 89031
 89032
 89033
 89034
 89035
 89036
 89037
 89038
 89039
 89040
 89041
 89042
 89043
 89044
 89045
 89046
 89047
 89048
 89049
 89050
 89051
 89052
 89053
 89054
 89055
 89056
 89057
 89058
 89059
 89060
 89061
 89062
 89063
 89064
 89065
 89066
 89067
 89068
 89069
 89070
 89071
 89072
 89073
 89074
 89075
 89076
 89077
 89078
 89079
 89080
 89081
 89082
 89083
 89084
 89085
 89086
 89087
 89088
 89089
 89090
 89091
 89092
 89093
 89094
 89095
 89096
 89097
 89098
 89099
 89100
 89101
 89102
 89103
 89104
 89105
 89106
 89107
 89108
 89109
 89110
 89111
 89112
 89113
 89114
 89115
 89116
 89117
 89118
 89119
 89120
 89121
 89122
 89123
 89124
 89125
 89126
 89127
 89128
 89129
 89130
 89131
 89132
 89133
 89134
 89135
 89136
 89137
 89138
 89139
 89140
 89141
 89142
 89143
 89144
 89145
 89146
 89147
 89148
 89149
 89150
 89151
 89152
 89153
 89154
 89155
 89156
 89157
 89158
 89159
 89160
 89161
 89162
 89163
 89164
 89165
 89166
 89167
 89168
 89169
 89170
 89171
 89172
 89173
 89174
 89175
 89176
 89177
 89178
 89179
 89180
 89181
 89182
 89183
 89184
 89185
 89186
 89187
 89188
 89189
 89190
 89191
 89192
 89193
 89194
 89195
 89196
 89197
 89198
 89199
 89200
 89201
 89202
 89203
 89204
 89205
 89206
 89207
 89208
 89209
 89210
 89211
 89212
 89213
 89214
 89215
 89216
 89217
 89218
 89219
 89220
 89221
 89222
 89223
 89224
 89225
 89226
 89227
 89228
 89229
 89230
 89231
 89232
 89233
 89234
 89235
 89236
 89237
 89238
 89239
 89240
 89241
 89242
 89243
 89244
 89245
 89246
 89247
 89248
 89249
 89250
 89251
 89252
 89253
 89254
 89255
 89256
 89257
 89258
 89259
 89260
 89261
 89262
 89263
 89264
 89265
 89266
 89267
 89268
 89269
 89270
 89271
 89272
 89273
 89274
 89275
 89276
 89277
 89278
 89279
 89280
 89281
 89282
 89283
 89284
 89285
 89286
 89287
 89288
 89289
 89290
 89291
 89292
 89293
 89294
 89295
 89296
 89297
 89298
 89299
 89300
 89301
 89302
 89303
 89304
 89305
 89306
 89307
 89308
 89309
 89310
 89311
 89312
 89313
 89314
 89315
 89316
 89317
 89318
 89319
 89320
 89321
 89322
 89323
 89324
 89325
 89326
 89327
 89328
 89329
 89330
 89331
 89332
 89333
 89334
 89335
 89336
 89337
 89338
 89339
 89340
 89341
 89342
 89343
 89344
 89345
 89346
 89347
 89348
 89349
 89350
 89351
 89352
 89353
 89354
 89355
 89356
 89357
 89358
 89359
 89360
 89361
 89362
 89363
 89364
 89365
 89366
 89367
 89368
 89369
 89370
 89371
 89372
 89373
 89374
 89375
 89376
 89377
 89378
 89379
 89380
 89381
 89382
 89383
 89384
 89385
 89386
 89387
 89388
 89389
 89390
 89391
 89392
 89393
 89394
 89395
 89396
 89397
 89398
 89399
 89400
 89401
 89402
 89403
 89404
 89405
 89406
 89407
 89408
 89409
 89410
 89411
 89412
 89413
 89414
 89415
 89416
 89417
 89418
 89419
 89420
 89421
 89422
 89423
 89424
 89425
 89426
 89427
 89428
 89429
 89430
 89431
 89432
 89433
 89434
 89435
 89436
 89437
 89438
 89439
 89440
 89441
 89442
 89443
 89444
 89445
 89446
 89447
 89448
 89449
 89450
 89451
 89452
 89453
 89454
 89455
 89456
 89457
 89458
 89459
 89460
 89461
 89462
 89463
 89464
 89465
 89466
 89467
 89468
 89469
 89470
 89471
 89472
 89473
 89474
 89475
 89476
 89477
 89478
 89479
 89480
 89481
 89482
 89483
 89484
 89485
 89486
 89487
 89488
 89489
 89490
 89491
 89492
 89493
 89494
 89495
 89496
 89497
 89498
 89499
 89500
 89501
 89502
 89503
 89504
 89505
 89506
 89507
 89508
 89509
 89510
 89511
 89512
 89513
 89514
 89515
 89516
 89517
 89518
 89519
 89520
 89521
 89522
 89523
 89524
 89525
 89526
 89527
 89528
 89529
 89530
 89531
 89532
 89533
 89534
 89535
 89536
 89537
 89538
 89539
 89540
 89541
 89542
 89543
 89544
 89545
 89546
 89547
 89548
 89549
 89550
 89551
 89552
 89553
 89554
 89555
 89556
 89557
 89558
 89559
 89560
 89561
 89562
 89563
 89564
 89565
 89566
 89567
 89568
 89569
 89570
 89571
 89572
 89573
 89574
 89575
 89576
 89577
 89578
 89579
 89580
 89581
 89582
 89583
 89584
 89585
 89586
 89587
 89588
 89589
 89590
 89591
 89592
 89593
 89594
 89595
 89596
 89597
 89598
 89599
 89600
 89601
 89602
 89603
 89604
 89605
 89606
 89607
 89608
 89609
 89610
 89611
 89612
 89613
 89614
 89615
 89616
 89617
 89618
 89619
 89620
 89621
 89622
 89623
 89624
 89625
 89626
 89627
 89628
 89629
 89630
 89631
 89632
 89633
 89634
 89635
 89636
 89637
 89638
 89639
 89640
 89641
 89642
 89643
 89644
 89645
 89646
 89647
 89648
 89649
 89650
 89651
 89652
 89653
 89654
 89655
 89656
 89657
 89658
 89659
 89660
 89661
 89662
 89663
 89664
 89665
 89666
 89667
 89668
 89669
 89670
 89671
 89672
 89673
 89674
 89675
 89676
 89677
 89678
 89679
 89680
 89681
 89682
 89683
 89684
 89685
 89686
 89687
 89688
 89689
 89690
 89691
 89692
 89693
 89694
 89695
 89696
 89697
 89698
 89699
 89700
 89701
 89702
 89703
 89704
 89705
 89706
 89707
 89708
 89709
 89710
 89711
 89712
 89713
 89714
 89715
 89716
 89717
 89718
 89719
 89720
 89721
 89722
 89723
 89724
 89725
 89726
 89727
 89728
 89729
 89730
 89731
 89732
 89733
 89734
 89735
 89736
 89737
 89738
 89739
 89740
 89741
 89742
 89743
 89744
 89745
 89746
 89747
 89748
 89749
 89750
 89751
 89752
 89753
 89754
 89755
 89756
 89757
 89758
 89759
 89760
 89761
 89762
 89763
 89764
 89765
 89766
 89767
 89768
 89769
 89770
 89771
 89772
 89773
 89774
 89775
 89776
 89777
 89778
 89779
 89780
 89781
 89782
 89783
 89784
 89785
 89786
 89787
 89788
 89789
 89790
 89791
 89792
 89793
 89794
 89795
 89796
 89797
 89798
 89799
 89800
 89801
 89802
 89803
 89804
 89805
 89806
 89807
 89808
 89809
 89810
 89811
 89812
 89813
 89814
 89815
 89816
 89817
 89818
 89819
 89820
 89821
 89822
 89823
 89824
 89825
 89826
 89827
 89828
 89829
 89830
 89831
 89832
 89833
 89834
 89835
 89836
 89837
 89838
 89839
 89840
 89841
 89842
 89843
 89844
 89845
 89846
 89847
 89848
 89849
 89850
 89851
 89852
 89853
 89854
 89855
 89856
 89857
 89858
 89859
 89860
 89861
 89862
 89863
 89864
 89865
 89866
 89867
 89868
 89869
 89870
 89871
 89872
 89873
 89874
 89875
 89876
 89877
 89878
 89879
 89880
 89881
 89882
 89883
 89884
 89885
 89886
 89887
 89888
 89889
 89890
 89891
 89892
 89893
 89894
 89895
 89896
 89897
 89898
 89899
 89900
 89901
 89902
 89903
 89904
 89905
 89906
 89907
 89908
 89909
 89910
 89911
 89912
 89913
 89914
 89915
 89916
 89917
 89918
 89919
 89920
 89921
 89922
 89923
 89924
 89925
 89926
 89927
 89928
 89929
 89930
 89931
 89932
 89933
 89934
 89935
 89936
 89937
 89938
 89939
 89940
 89941
 89942
 89943
 89944
 89945
 89946
 89947
 89948
 89949
 89950
 89951
 89952
 89953
 89954
 89955
 89956
 89957
 89958
 89959
 89960
 89961
 89962
 89963
 89964
 89965
 89966
 89967
 89968
 89969
 89970
 89971
 89972
 89973
 89974
 89975
 89976
 89977
 89978
 89979
 89980
 89981
 89982
 89983
 89984
 89985
 89986
 89987
 89988
 89989
 89990
 89991
 89992
 89993
 89994
 89995
 89996
 89997
 89998
 89999
 90000
 90001
 90002
 90003
 90004
 90005
 90006
 90007
 90008
 90009
 90010
 90011
 90012
 90013
 90014
 90015
 90016
 90017
 90018
 90019
 90020
 90021
 90022
 90023
 90024
 90025
 90026
 90027
 90028
 90029
 90030
 90031
 90032
 90033
 90034
 90035
 90036
 90037
 90038
 90039
 90040
 90041
 90042
 90043
 90044
 90045
 90046
 90047
 90048
 90049
 90050
 90051
 90052
 90053
 90054
 90055
 90056
 90057
 90058
 90059
 90060
 90061
 90062
 90063
 90064
 90065
 90066
 90067
 90068
 90069
 90070
 90071
 90072
 90073
 90074
 90075
 90076
 90077
 90078
 90079
 90080
 90081
 90082
 90083
 90084
 90085
 90086
 90087
 90088
 90089
 90090
 90091
 90092
 90093
 90094
 90095
 90096
 90097
 90098
 90099
 90100
 90101
 90102
 90103
 90104
 90105
 90106
 90107
 90108
 90109
 90110
 90111
 90112
 90113
 90114
 90115
 90116
 90117
 90118
 90119
 90120
 90121
 90122
 90123
 90124
 90125
 90126
 90127
 90128
 90129
 90130
 90131
 90132
 90133
 90134
 90135
 90136
 90137
 90138
 90139
 90140
 90141
 90142
 90143
 90144
 90145
 90146
 90147
 90148
 90149
 90150
 90151
 90152
 90153
 90154
 90155
 90156
 90157
 90158
 90159
 90160
 90161
 90162
 90163
 90164
 90165
 90166
 90167
 90168
 90169
 90170
 90171
 90172
 90173
 90174
 90175
 90176
 90177
 90178
 90179
 90180
 90181
 90182
 90183
 90184
 90185
 90186
 90187
 90188
 90189
 90190
 90191
 90192
 90193
 90194
 90195
 90196
 90197
 90198
 90199
 90200
 90201
 90202
 90203
 90204
 90205
 90206
 90207
 90208
 90209
 90210
 90211
 90212
 90213
 90214
 90215
 90216
 90217
 90218
 90219
 90220
 90221
 90222
 90223
 90224
 90225
 90226
 90227
 90228
 90229
 90230
 90231
 90232
 90233
 90234
 90235
 90236
 90237
 90238
 90239
 90240
 90241
 90242
 90243
 90244
 90245
 90246
 90247
 90248
 90249
 90250
 90251
 90252
 90253
 90254
 90255
 90256
 90257
 90258
 90259
 90260
 90261
 90262
 90263
 90264
 90265
 90266
 90267
 90268
 90269
 90270
 90271
 90272
 90273
 90274
 90275
 90276
 90277
 90278
 90279
 90280
 90281
 90282
 90283
 90284
 90285
 90286
 90287
 90288
 90289
 90290
 90291
 90292
 90293
 90294
 90295
 90296
 90297
 90298
 90299
 90300
 90301
 90302
 90303
 90304
 90305
 90306
 90307
 90308
 90309
 90310
 90311
 90312
 90313
 90314
 90315
 90316
 90317
 90318
 90319
 90320
 90321
 90322
 90323
 90324
 90325
 90326
 90327
 90328
 90329
 90330
 90331
 90332
 90333
 90334
 90335
 90336
 90337
 90338
 90339
 90340
 90341
 90342
 90343
 90344
 90345
 90346
 90347
 90348
 90349
 90350
 90351
 90352
 90353
 90354
 90355
 90356
 90357
 90358
 90359
 90360
 90361
 90362
 90363
 90364
 90365
 90366
 90367
 90368
 90369
 90370
 90371
 90372
 90373
 90374
 90375
 90376
 90377
 90378
 90379
 90380
 90381
 90382
 90383
 90384
 90385
 90386
 90387
 90388
 90389
 90390
 90391
 90392
 90393
 90394
 90395
 90396
 90397
 90398
 90399
 90400
 90401
 90402
 90403
 90404
 90405
 90406
 90407
 90408
 90409
 90410
 90411
 90412
 90413
 90414
 90415
 90416
 90417
 90418
 90419
 90420
 90421
 90422
 90423
 90424
 90425
 90426
 90427
 90428
 90429
 90430
 90431
 90432
 90433
 90434
 90435
 90436
 90437
 90438
 90439
 90440
 90441
 90442
 90443
 90444
 90445
 90446
 90447
 90448
 90449
 90450
 90451
 90452
 90453
 90454
 90455
 90456
 90457
 90458
 90459
 90460
 90461
 90462
 90463
 90464
 90465
 90466
 90467
 90468
 90469
 90470
 90471
 90472
 90473
 90474
 90475
 90476
 90477
 90478
 90479
 90480
 90481
 90482
 90483
 90484
 90485
 90486
 90487
 90488
 90489
 90490
 90491
 90492
 90493
 90494
 90495
 90496
 90497
 90498
 90499
 90500
 90501
 90502
 90503
 90504
 90505
 90506
 90507
 90508
 90509
 90510
 90511
 90512
 90513
 90514
 90515
 90516
 90517
 90518
 90519
 90520
 90521
 90522
 90523
 90524
 90525
 90526
 90527
 90528
 90529
 90530
 90531
 90532
 90533
 90534
 90535
 90536
 90537
 90538
 90539
 90540
 90541
 90542
 90543
 90544
 90545
 90546
 90547
 90548
 90549
 90550
 90551
 90552
 90553
 90554
 90555
 90556
 90557
 90558
 90559
 90560
 90561
 90562
 90563
 90564
 90565
 90566
 90567
 90568
 90569
 90570
 90571
 90572
 90573
 90574
 90575
 90576
 90577
 90578
 90579
 90580
 90581
 90582
 90583
 90584
 90585
 90586
 90587
 90588
 90589
 90590
 90591
 90592
 90593
 90594
 90595
 90596
 90597
 90598
 90599
 90600
 90601
 90602
 90603
 90604
 90605
 90606
 90607
 90608
 90609
 90610
 90611
 90612
 90613
 90614
 90615
 90616
 90617
 90618
 90619
 90620
 90621
 90622
 90623
 90624
 90625
 90626
 90627
 90628
 90629
 90630
 90631
 90632
 90633
 90634
 90635
 90636
 90637
 90638
 90639
 90640
 90641
 90642
 90643
 90644
 90645
 90646
 90647
 90648
 90649
 90650
 90651
 90652
 90653
 90654
 90655
 90656
 90657
 90658
 90659
 90660
 90661
 90662
 90663
 90664
 90665
 90666
 90667
 90668
 90669
 90670
 90671
 90672
 90673
 90674
 90675
 90676
 90677
 90678
 90679
 90680
 90681
 90682
 90683
 90684
 90685
 90686
 90687
 90688
 90689
 90690
 90691
 90692
 90693
 90694
 90695
 90696
 90697
 90698
 90699
 90700
 90701
 90702
 90703
 90704
 90705
 90706
 90707
 90708
 90709
 90710
 90711
 90712
 90713
 90714
 90715
 90716
 90717
 90718
 90719
 90720
 90721
 90722
 90723
 90724
 90725
 90726
 90727
 90728
 90729
 90730
 90731
 90732
 90733
 90734
 90735
 90736
 90737
 90738
 90739
 90740
 90741
 90742
 90743
 90744
 90745
 90746
 90747
 90748
 90749
 90750
 90751
 90752
 90753
 90754
 90755
 90756
 90757
 90758
 90759
 90760
 90761
 90762
 90763
 90764
 90765
 90766
 90767
 90768
 90769
 90770
 90771
 90772
 90773
 90774
 90775
 90776
 90777
 90778
 90779
 90780
 90781
 90782
 90783
 90784
 90785
 90786
 90787
 90788
 90789
 90790
 90791
 90792
 90793
 90794
 90795
 90796
 90797
 90798
 90799
 90800
 90801
 90802
 90803
 90804
 90805
 90806
 90807
 90808
 90809
 90810
 90811
 90812
 90813
 90814
 90815
 90816
 90817
 90818
 90819
 90820
 90821
 90822
 90823
 90824
 90825
 90826
 90827
 90828
 90829
 90830
 90831
 90832
 90833
 90834
 90835
 90836
 90837
 90838
 90839
 90840
 90841
 90842
 90843
 90844
 90845
 90846
 90847
 90848
 90849
 90850
 90851
 90852
 90853
 90854
 90855
 90856
 90857
 90858
 90859
 90860
 90861
 90862
 90863
 90864
 90865
 90866
 90867
 90868
 90869
 90870
 90871
 90872
 90873
 90874
 90875
 90876
 90877
 90878
 90879
 90880
 90881
 90882
 90883
 90884
 90885
 90886
 90887
 90888
 90889
 90890
 90891
 90892
 90893
 90894
 90895
 90896
 90897
 90898
 90899
 90900
 90901
 90902
 90903
 90904
 90905
 90906
 90907
 90908
 90909
 90910
 90911
 90912
 90913
 90914
 90915
 90916
 90917
 90918
 90919
 90920
 90921
 90922
 90923
 90924
 90925
 90926
 90927
 90928
 90929
 90930
 90931
 90932
 90933
 90934
 90935
 90936
 90937
 90938
 90939
 90940
 90941
 90942
 90943
 90944
 90945
 90946
 90947
 90948
 90949
 90950
 90951
 90952
 90953
 90954
 90955
 90956
 90957
 90958
 90959
 90960
 90961
 90962
 90963
 90964
 90965
 90966
 90967
 90968
 90969
 90970
 90971
 90972
 90973
 90974
 90975
 90976
 90977
 90978
 90979
 90980
 90981
 90982
 90983
 90984
 90985
 90986
 90987
 90988
 90989
 90990
 90991
 90992
 90993
 90994
 90995
 90996
 90997
 90998
 90999
 91000
 91001
 91002
 91003
 91004
 91005
 91006
 91007
 91008
 91009
 91010
 91011
 91012
 91013
 91014
 91015
 91016
 91017
 91018
 91019
 91020
 91021
 91022
 91023
 91024
 91025
 91026
 91027
 91028
 91029
 91030
 91031
 91032
 91033
 91034
 91035
 91036
 91037
 91038
 91039
 91040
 91041
 91042
 91043
 91044
 91045
 91046
 91047
 91048
 91049
 91050
 91051
 91052
 91053
 91054
 91055
 91056
 91057
 91058
 91059
 91060
 91061
 91062
 91063
 91064
 91065
 91066
 91067
 91068
 91069
 91070
 91071
 91072
 91073
 91074
 91075
 91076
 91077
 91078
 91079
 91080
 91081
 91082
 91083
 91084
 91085
 91086
 91087
 91088
 91089
 91090
 91091
 91092
 91093
 91094
 91095
 91096
 91097
 91098
 91099
 91100
 91101
 91102
 91103
 91104
 91105
 91106
 91107
 91108
 91109
 91110
 91111
 91112
 91113
 91114
 91115
 91116
 91117
 91118
 91119
 91120
 91121
 91122
 91123
 91124
 91125
 91126
 91127
 91128
 91129
 91130
 91131
 91132
 91133
 91134
 91135
 91136
 91137
 91138
 91139
 91140
 91141
 91142
 91143
 91144
 91145
 91146
 91147
 91148
 91149
 91150
 91151
 91152
 91153
 91154
 91155
 91156
 91157
 91158
 91159
 91160
 91161
 91162
 91163
 91164
 91165
 91166
 91167
 91168
 91169
 91170
 91171
 91172
 91173
 91174
 91175
 91176
 91177
 91178
 91179
 91180
 91181
 91182
 91183
 91184
 91185
 91186
 91187
 91188
 91189
 91190
 91191
 91192
 91193
 91194
 91195
 91196
 91197
 91198
 91199
 91200
 91201
 91202
 91203
 91204
 91205
 91206
 91207
 91208
 91209
 91210
 91211
 91212
 91213
 91214
 91215
 91216
 91217
 91218
 91219
 91220
 91221
 91222
 91223
 91224
 91225
 91226
 91227
 91228
 91229
 91230
 91231
 91232
 91233
 91234
 91235
 91236
 91237
 91238
 91239
 91240
 91241
 91242
 91243
 91244
 91245
 91246
 91247
 91248
 91249
 91250
 91251
 91252
 91253
 91254
 91255
 91256
 91257
 91258
 91259
 91260
 91261
 91262
 91263
 91264
 91265
 91266
 91267
 91268
 91269
 91270
 91271
 91272
 91273
 91274
 91275
 91276
 91277
 91278
 91279
 91280
 91281
 91282
 91283
 91284
 91285
 91286
 91287
 91288
 91289
 91290
 91291
 91292
 91293
 91294
 91295
 91296
 91297
 91298
 91299
 91300
 91301
 91302
 91303
 91304
 91305
 91306
 91307
 91308
 91309
 91310
 91311
 91312
 91313
 91314
 91315
 91316
 91317
 91318
 91319
 91320
 91321
 91322
 91323
 91324
 91325
 91326
 91327
 91328
 91329
 91330
 91331
 91332
 91333
 91334
 91335
 91336
 91337
 91338
 91339
 91340
 91341
 91342
 91343
 91344
 91345
 91346
 91347
 91348
 91349
 91350
 91351
 91352
 91353
 91354
 91355
 91356
 91357
 91358
 91359
 91360
 91361
 91362
 91363
 91364
 91365
 91366
 91367
 91368
 91369
 91370
 91371
 91372
 91373
 91374
 91375
 91376
 91377
 91378
 91379
 91380
 91381
 91382
 91383
 91384
 91385
 91386
 91387
 91388
 91389
 91390
 91391
 91392
 91393
 91394
 91395
 91396
 91397
 91398
 91399
 91400
 91401
 91402
 91403
 91404
 91405
 91406
 91407
 91408
 91409
 91410
 91411
 91412
 91413
 91414
 91415
 91416
 91417
 91418
 91419
 91420
 91421
 91422
 91423
 91424
 91425
 91426
 91427
 91428
 91429
 91430
 91431
 91432
 91433
 91434
 91435
 91436
 91437
 91438
 91439
 91440
 91441
 91442
 91443
 91444
 91445
 91446
 91447
 91448
 91449
 91450
 91451
 91452
 91453
 91454
 91455
 91456
 91457
 91458
 91459
 91460
 91461
 91462
 91463
 91464
 91465
 91466
 91467
 91468
 91469
 91470
 91471
 91472
 91473
 91474
 91475
 91476
 91477
 91478
 91479
 91480
 91481
 91482
 91483
 91484
 91485
 91486
 91487
 91488
 91489
 91490
 91491
 91492
 91493
 91494
 91495
 91496
 91497
 91498
 91499
 91500
 91501
 91502
 91503
 91504
 91505
 91506
 91507
 91508
 91509
 91510
 91511
 91512
 91513
 91514
 91515
 91516
 91517
 91518
 91519
 91520
 91521
 91522
 91523
 91524
 91525
 91526
 91527
 91528
 91529
 91530
 91531
 91532
 91533
 91534
 91535
 91536
 91537
 91538
 91539
 91540
 91541
 91542
 91543
 91544
 91545
 91546
 91547
 91548
 91549
 91550
 91551
 91552
 91553
 91554
 91555
 91556
 91557
 91558
 91559
 91560
 91561
 91562
 91563
 91564
 91565
 91566
 91567
 91568
 91569
 91570
 91571
 91572
 91573
 91574
 91575
 91576
 91577
 91578
 91579
 91580
 91581
 91582
 91583
 91584
 91585
 91586
 91587
 91588
 91589
 91590
 91591
 91592
 91593
 91594
 91595
 91596
 91597
 91598
 91599
 91600
 91601
 91602
 91603
 91604
 91605
 91606
 91607
 91608
 91609
 91610
 91611
 91612
 91613
 91614
 91615
 91616
 91617
 91618
 91619
 91620
 91621
 91622
 91623
 91624
 91625
 91626
 91627
 91628
 91629
 91630
 91631
 91632
 91633
 91634
 91635
 91636
 91637
 91638
 91639
 91640
 91641
 91642
 91643
 91644
 91645
 91646
 91647
 91648
 91649
 91650
 91651
 91652
 91653
 91654
 91655
 91656
 91657
 91658
 91659
 91660
 91661
 91662
 91663
 91664
 91665
 91666
 91667
 91668
 91669
 91670
 91671
 91672
 91673
 91674
 91675
 91676
 91677
 91678
 91679
 91680
 91681
 91682
 91683
 91684
 91685
 91686
 91687
 91688
 91689
 91690
 91691
 91692
 91693
 91694
 91695
 91696
 91697
 91698
 91699
 91700
 91701
 91702
 91703
 91704
 91705
 91706
 91707
 91708
 91709
 91710
 91711
 91712
 91713
 91714
 91715
 91716
 91717
 91718
 91719
 91720
 91721
 91722
 91723
 91724
 91725
 91726
 91727
 91728
 91729
 91730
 91731
 91732
 91733
 91734
 91735
 91736
 91737
 91738
 91739
 91740
 91741
 91742
 91743
 91744
 91745
 91746
 91747
 91748
 91749
 91750
 91751
 91752
 91753
 91754
 91755
 91756
 91757
 91758
 91759
 91760
 91761
 91762
 91763
 91764
 91765
 91766
 91767
 91768
 91769
 91770
 91771
 91772
 91773
 91774
 91775
 91776
 91777
 91778
 91779
 91780
 91781
 91782
 91783
 91784
 91785
 91786
 91787
 91788
 91789
 91790
 91791
 91792
 91793
 91794
 91795
 91796
 91797
 91798
 91799
 91800
 91801
 91802
 91803
 91804
 91805
 91806
 91807
 91808
 91809
 91810
 91811
 91812
 91813
 91814
 91815
 91816
 91817
 91818
 91819
 91820
 91821
 91822
 91823
 91824
 91825
 91826
 91827
 91828
 91829
 91830
 91831
 91832
 91833
 91834
 91835
 91836
 91837
 91838
 91839
 91840
 91841
 91842
 91843
 91844
 91845
 91846
 91847
 91848
 91849
 91850
 91851
 91852
 91853
 91854
 91855
 91856
 91857
 91858
 91859
 91860
 91861
 91862
 91863
 91864
 91865
 91866
 91867
 91868
 91869
 91870
 91871
 91872
 91873
 91874
 91875
 91876
 91877
 91878
 91879
 91880
 91881
 91882
 91883
 91884
 91885
 91886
 91887
 91888
 91889
 91890
 91891
 91892
 91893
 91894
 91895
 91896
 91897
 91898
 91899
 91900
 91901
 91902
 91903
 91904
 91905
 91906
 91907
 91908
 91909
 91910
 91911
 91912
 91913
 91914
 91915
 91916
 91917
 91918
 91919
 91920
 91921
 91922
 91923
 91924
 91925
 91926
 91927
 91928
 91929
 91930
 91931
 91932
 91933
 91934
 91935
 91936
 91937
 91938
 91939
 91940
 91941
 91942
 91943
 91944
 91945
 91946
 91947
 91948
 91949
 91950
 91951
 91952
 91953
 91954
 91955
 91956
 91957
 91958
 91959
 91960
 91961
 91962
 91963
 91964
 91965
 91966
 91967
 91968
 91969
 91970
 91971
 91972
 91973
 91974
 91975
 91976
 91977
 91978
 91979
 91980
 91981
 91982
 91983
 91984
 91985
 91986
 91987
 91988
 91989
 91990
 91991
 91992
 91993
 91994
 91995
 91996
 91997
 91998
 91999
 92000
 92001
 92002
 92003
 92004
 92005
 92006
 92007
 92008
 92009
 92010
 92011
 92012
 92013
 92014
 92015
 92016
 92017
 92018
 92019
 92020
 92021
 92022
 92023
 92024
 92025
 92026
 92027
 92028
 92029
 92030
 92031
 92032
 92033
 92034
 92035
 92036
 92037
 92038
 92039
 92040
 92041
 92042
 92043
 92044
 92045
 92046
 92047
 92048
 92049
 92050
 92051
 92052
 92053
 92054
 92055
 92056
 92057
 92058
 92059
 92060
 92061
 92062
 92063
 92064
 92065
 92066
 92067
 92068
 92069
 92070
 92071
 92072
 92073
 92074
 92075
 92076
 92077
 92078
 92079
 92080
 92081
 92082
 92083
 92084
 92085
 92086
 92087
 92088
 92089
 92090
 92091
 92092
 92093
 92094
 92095
 92096
 92097
 92098
 92099
 92100
 92101
 92102
 92103
 92104
 92105
 92106
 92107
 92108
 92109
 92110
 92111
 92112
 92113
 92114
 92115
 92116
 92117
 92118
 92119
 92120
 92121
 92122
 92123
 92124
 92125
 92126
 92127
 92128
 92129
 92130
 92131
 92132
 92133
 92134
 92135
 92136
 92137
 92138
 92139
 92140
 92141
 92142
 92143
 92144
 92145
 92146
 92147
 92148
 92149
 92150
 92151
 92152
 92153
 92154
 92155
 92156
 92157
 92158
 92159
 92160
 92161
 92162
 92163
 92164
 92165
 92166
 92167
 92168
 92169
 92170
 92171
 92172
 92173
 92174
 92175
 92176
 92177
 92178
 92179
 92180
 92181
 92182
 92183
 92184
 92185
 92186
 92187
 92188
 92189
 92190
 92191
 92192
 92193
 92194
 92195
 92196
 92197
 92198
 92199
 92200
 92201
 92202
 92203
 92204
 92205
 92206
 92207
 92208
 92209
 92210
 92211
 92212
 92213
 92214
 92215
 92216
 92217
 92218
 92219
 92220
 92221
 92222
 92223
 92224
 92225
 92226
 92227
 92228
 92229
 92230
 92231
 92232
 92233
 92234
 92235
 92236
 92237
 92238
 92239
 92240
 92241
 92242
 92243
 92244
 92245
 92246
 92247
 92248
 92249
 92250
 92251
 92252
 92253
 92254
 92255
 92256
 92257
 92258
 92259
 92260
 92261
 92262
 92263
 92264
 92265
 92266
 92267
 92268
 92269
 92270
 92271
 92272
 92273
 92274
 92275
 92276
 92277
 92278
 92279
 92280
 92281
 92282
 92283
 92284
 92285
 92286
 92287
 92288
 92289
 92290
 92291
 92292
 92293
 92294
 92295
 92296
 92297
 92298
 92299
 92300
 92301
 92302
 92303
 92304
 92305
 92306
 92307
 92308
 92309
 92310
 92311
 92312
 92313
 92314
 92315
 92316
 92317
 92318
 92319
 92320
 92321
 92322
 92323
 92324
 92325
 92326
 92327
 92328
 92329
 92330
 92331
 92332
 92333
 92334
 92335
 92336
 92337
 92338
 92339
 92340
 92341
 92342
 92343
 92344
 92345
 92346
 92347
 92348
 92349
 92350
 92351
 92352
 92353
 92354
 92355
 92356
 92357
 92358
 92359
 92360
 92361
 92362
 92363
 92364
 92365
 92366
 92367
 92368
 92369
 92370
 92371
 92372
 92373
 92374
 92375
 92376
 92377
 92378
 92379
 92380
 92381
 92382
 92383
 92384
 92385
 92386
 92387
 92388
 92389
 92390
 92391
 92392
 92393
 92394
 92395
 92396
 92397
 92398
 92399
 92400
 92401
 92402
 92403
 92404
 92405
 92406
 92407
 92408
 92409
 92410
 92411
 92412
 92413
 92414
 92415
 92416
 92417
 92418
 92419
 92420
 92421
 92422
 92423
 92424
 92425
 92426
 92427
 92428
 92429
 92430
 92431
 92432
 92433
 92434
 92435
 92436
 92437
 92438
 92439
 92440
 92441
 92442
 92443
 92444
 92445
 92446
 92447
 92448
 92449
 92450
 92451
 92452
 92453
 92454
 92455
 92456
 92457
 92458
 92459
 92460
 92461
 92462
 92463
 92464
 92465
 92466
 92467
 92468
 92469
 92470
 92471
 92472
 92473
 92474
 92475
 92476
 92477
 92478
 92479
 92480
 92481
 92482
 92483
 92484
 92485
 92486
 92487
 92488
 92489
 92490
 92491
 92492
 92493
 92494
 92495
 92496
 92497
 92498
 92499
 92500
 92501
 92502
 92503
 92504
 92505
 92506
 92507
 92508
 92509
 92510
 92511
 92512
 92513
 92514
 92515
 92516
 92517
 92518
 92519
 92520
 92521
 92522
 92523
 92524
 92525
 92526
 92527
 92528
 92529
 92530
 92531
 92532
 92533
 92534
 92535
 92536
 92537
 92538
 92539
 92540
 92541
 92542
 92543
 92544
 92545
 92546
 92547
 92548
 92549
 92550
 92551
 92552
 92553
 92554
 92555
 92556
 92557
 92558
 92559
 92560
 92561
 92562
 92563
 92564
 92565
 92566
 92567
 92568
 92569
 92570
 92571
 92572
 92573
 92574
 92575
 92576
 92577
 92578
 92579
 92580
 92581
 92582
 92583
 92584
 92585
 92586
 92587
 92588
 92589
 92590
 92591
 92592
 92593
 92594
 92595
 92596
 92597
 92598
 92599
 92600
 92601
 92602
 92603
 92604
 92605
 92606
 92607
 92608
 92609
 92610
 92611
 92612
 92613
 92614
 92615
 92616
 92617
 92618
 92619
 92620
 92621
 92622
 92623
 92624
 92625
 92626
 92627
 92628
 92629
 92630
 92631
 92632
 92633
 92634
 92635
 92636
 92637
 92638
 92639
 92640
 92641
 92642
 92643
 92644
 92645
 92646
 92647
 92648
 92649
 92650
 92651
 92652
 92653
 92654
 92655
 92656
 92657
 92658
 92659
 92660
 92661
 92662
 92663
 92664
 92665
 92666
 92667
 92668
 92669
 92670
 92671
 92672
 92673
 92674
 92675
 92676
 92677
 92678
 92679
 92680
 92681
 92682
 92683
 92684
 92685
 92686
 92687
 92688
 92689
 92690
 92691
 92692
 92693
 92694
 92695
 92696
 92697
 92698
 92699
 92700
 92701
 92702
 92703
 92704
 92705
 92706
 92707
 92708
 92709
 92710
 92711
 92712
 92713
 92714
 92715
 92716
 92717
 92718
 92719
 92720
 92721
 92722
 92723
 92724
 92725
 92726
 92727
 92728
 92729
 92730
 92731
 92732
 92733
 92734
 92735
 92736
 92737
 92738
 92739
 92740
 92741
 92742
 92743
 92744
 92745
 92746
 92747
 92748
 92749
 92750
 92751
 92752
 92753
 92754
 92755
 92756
 92757
 92758
 92759
 92760
 92761
 92762
 92763
 92764
 92765
 92766
 92767
 92768
 92769
 92770
 92771
 92772
 92773
 92774
 92775
 92776
 92777
 92778
 92779
 92780
 92781
 92782
 92783
 92784
 92785
 92786
 92787
 92788
 92789
 92790
 92791
 92792
 92793
 92794
 92795
 92796
 92797
 92798
 92799
 92800
 92801
 92802
 92803
 92804
 92805
 92806
 92807
 92808
 92809
 92810
 92811
 92812
 92813
 92814
 92815
 92816
 92817
 92818
 92819
 92820
 92821
 92822
 92823
 92824
 92825
 92826
 92827
 92828
 92829
 92830
 92831
 92832
 92833
 92834
 92835
 92836
 92837
 92838
 92839
 92840
 92841
 92842
 92843
 92844
 92845
 92846
 92847
 92848
 92849
 92850
 92851
 92852
 92853
 92854
 92855
 92856
 92857
 92858
 92859
 92860
 92861
 92862
 92863
 92864
 92865
 92866
 92867
 92868
 92869
 92870
 92871
 92872
 92873
 92874
 92875
 92876
 92877
 92878
 92879
 92880
 92881
 92882
 92883
 92884
 92885
 92886
 92887
 92888
 92889
 92890
 92891
 92892
 92893
 92894
 92895
 92896
 92897
 92898
 92899
 92900
 92901
 92902
 92903
 92904
 92905
 92906
 92907
 92908
 92909
 92910
 92911
 92912
 92913
 92914
 92915
 92916
 92917
 92918
 92919
 92920
 92921
 92922
 92923
 92924
 92925
 92926
 92927
 92928
 92929
 92930
 92931
 92932
 92933
 92934
 92935
 92936
 92937
 92938
 92939
 92940
 92941
 92942
 92943
 92944
 92945
 92946
 92947
 92948
 92949
 92950
 92951
 92952
 92953
 92954
 92955
 92956
 92957
 92958
 92959
 92960
 92961
 92962
 92963
 92964
 92965
 92966
 92967
 92968
 92969
 92970
 92971
 92972
 92973
 92974
 92975
 92976
 92977
 92978
 92979
 92980
 92981
 92982
 92983
 92984
 92985
 92986
 92987
 92988
 92989
 92990
 92991
 92992
 92993
 92994
 92995
 92996
 92997
 92998
 92999
 93000
 93001
 93002
 93003
 93004
 93005
 93006
 93007
 93008
 93009
 93010
 93011
 93012
 93013
 93014
 93015
 93016
 93017
 93018
 93019
 93020
 93021
 93022
 93023
 93024
 93025
 93026
 93027
 93028
 93029
 93030
 93031
 93032
 93033
 93034
 93035
 93036
 93037
 93038
 93039
 93040
 93041
 93042
 93043
 93044
 93045
 93046
 93047
 93048
 93049
 93050
 93051
 93052
 93053
 93054
 93055
 93056
 93057
 93058
 93059
 93060
 93061
 93062
 93063
 93064
 93065
 93066
 93067
 93068
 93069
 93070
 93071
 93072
 93073
 93074
 93075
 93076
 93077
 93078
 93079
 93080
 93081
 93082
 93083
 93084
 93085
 93086
 93087
 93088
 93089
 93090
 93091
 93092
 93093
 93094
 93095
 93096
 93097
 93098
 93099
 93100
 93101
 93102
 93103
 93104
 93105
 93106
 93107
 93108
 93109
 93110
 93111
 93112
 93113
 93114
 93115
 93116
 93117
 93118
 93119
 93120
 93121
 93122
 93123
 93124
 93125
 93126
 93127
 93128
 93129
 93130
 93131
 93132
 93133
 93134
 93135
 93136
 93137
 93138
 93139
 93140
 93141
 93142
 93143
 93144
 93145
 93146
 93147
 93148
 93149
 93150
 93151
 93152
 93153
 93154
 93155
 93156
 93157
 93158
 93159
 93160
 93161
 93162
 93163
 93164
 93165
 93166
 93167
 93168
 93169
 93170
 93171
 93172
 93173
 93174
 93175
 93176
 93177
 93178
 93179
 93180
 93181
 93182
 93183
 93184
 93185
 93186
 93187
 93188
 93189
 93190
 93191
 93192
 93193
 93194
 93195
 93196
 93197
 93198
 93199
 93200
 93201
 93202
 93203
 93204
 93205
 93206
 93207
 93208
 93209
 93210
 93211
 93212
 93213
 93214
 93215
 93216
 93217
 93218
 93219
 93220
 93221
 93222
 93223
 93224
 93225
 93226
 93227
 93228
 93229
 93230
 93231
 93232
 93233
 93234
 93235
 93236
 93237
 93238
 93239
 93240
 93241
 93242
 93243
 93244
 93245
 93246
 93247
 93248
 93249
 93250
 93251
 93252
 93253
 93254
 93255
 93256
 93257
 93258
 93259
 93260
 93261
 93262
 93263
 93264
 93265
 93266
 93267
 93268
 93269
 93270
 93271
 93272
 93273
 93274
 93275
 93276
 93277
 93278
 93279
 93280
 93281
 93282
 93283
 93284
 93285
 93286
 93287
 93288
 93289
 93290
 93291
 93292
 93293
 93294
 93295
 93296
 93297
 93298
 93299
 93300
 93301
 93302
 93303
 93304
 93305
 93306
 93307
 93308
 93309
 93310
 93311
 93312
 93313
 93314
 93315
 93316
 93317
 93318
 93319
 93320
 93321
 93322
 93323
 93324
 93325
 93326
 93327
 93328
 93329
 93330
 93331
 93332
 93333
 93334
 93335
 93336
 93337
 93338
 93339
 93340
 93341
 93342
 93343
 93344
 93345
 93346
 93347
 93348
 93349
 93350
 93351
 93352
 93353
 93354
 93355
 93356
 93357
 93358
 93359
 93360
 93361
 93362
 93363
 93364
 93365
 93366
 93367
 93368
 93369
 93370
 93371
 93372
 93373
 93374
 93375
 93376
 93377
 93378
 93379
 93380
 93381
 93382
 93383
 93384
 93385
 93386
 93387
 93388
 93389
 93390
 93391
 93392
 93393
 93394
 93395
 93396
 93397
 93398
 93399
 93400
 93401
 93402
 93403
 93404
 93405
 93406
 93407
 93408
 93409
 93410
 93411
 93412
 93413
 93414
 93415
 93416
 93417
 93418
 93419
 93420
 93421
 93422
 93423
 93424
 93425
 93426
 93427
 93428
 93429
 93430
 93431
 93432
 93433
 93434
 93435
 93436
 93437
 93438
 93439
 93440
 93441
 93442
 93443
 93444
 93445
 93446
 93447
 93448
 93449
 93450
 93451
 93452
 93453
 93454
 93455
 93456
 93457
 93458
 93459
 93460
 93461
 93462
 93463
 93464
 93465
 93466
 93467
 93468
 93469
 93470
 93471
 93472
 93473
 93474
 93475
 93476
 93477
 93478
 93479
 93480
 93481
 93482
 93483
 93484
 93485
 93486
 93487
 93488
 93489
 93490
 93491
 93492
 93493
 93494
 93495
 93496
 93497
 93498
 93499
 93500
 93501
 93502
 93503
 93504
 93505
 93506
 93507
 93508
 93509
 93510
 93511
 93512
 93513
 93514
 93515
 93516
 93517
 93518
 93519
 93520
 93521
 93522
 93523
 93524
 93525
 93526
 93527
 93528
 93529
 93530
 93531
 93532
 93533
 93534
 93535
 93536
 93537
 93538
 93539
 93540
 93541
 93542
 93543
 93544
 93545
 93546
 93547
 93548
 93549
 93550
 93551
 93552
 93553
 93554
 93555
 93556
 93557
 93558
 93559
 93560
 93561
 93562
 93563
 93564
 93565
 93566
 93567
 93568
 93569
 93570
 93571
 93572
 93573
 93574
 93575
 93576
 93577
 93578
 93579
 93580
 93581
 93582
 93583
 93584
 93585
 93586
 93587
 93588
 93589
 93590
 93591
 93592
 93593
 93594
 93595
 93596
 93597
 93598
 93599
 93600
 93601
 93602
 93603
 93604
 93605
 93606
 93607
 93608
 93609
 93610
 93611
 93612
 93613
 93614
 93615
 93616
 93617
 93618
 93619
 93620
 93621
 93622
 93623
 93624
 93625
 93626
 93627
 93628
 93629
 93630
 93631
 93632
 93633
 93634
 93635
 93636
 93637
 93638
 93639
 93640
 93641
 93642
 93643
 93644
 93645
 93646
 93647
 93648
 93649
 93650
 93651
 93652
 93653
 93654
 93655
 93656
 93657
 93658
 93659
 93660
 93661
 93662
 93663
 93664
 93665
 93666
 93667
 93668
 93669
 93670
 93671
 93672
 93673
 93674
 93675
 93676
 93677
 93678
 93679
 93680
 93681
 93682
 93683
 93684
 93685
 93686
 93687
 93688
 93689
 93690
 93691
 93692
 93693
 93694
 93695
 93696
 93697
 93698
 93699
 93700
 93701
 93702
 93703
 93704
 93705
 93706
 93707
 93708
 93709
 93710
 93711
 93712
 93713
 93714
 93715
 93716
 93717
 93718
 93719
 93720
 93721
 93722
 93723
 93724
 93725
 93726
 93727
 93728
 93729
 93730
 93731
 93732
 93733
 93734
 93735
 93736
 93737
 93738
 93739
 93740
 93741
 93742
 93743
 93744
 93745
 93746
 93747
 93748
 93749
 93750
 93751
 93752
 93753
 93754
 93755
 93756
 93757
 93758
 93759
 93760
 93761
 93762
 93763
 93764
 93765
 93766
 93767
 93768
 93769
 93770
 93771
 93772
 93773
 93774
 93775
 93776
 93777
 93778
 93779
 93780
 93781
 93782
 93783
 93784
 93785
 93786
 93787
 93788
 93789
 93790
 93791
 93792
 93793
 93794
 93795
 93796
 93797
 93798
 93799
 93800
 93801
 93802
 93803
 93804
 93805
 93806
 93807
 93808
 93809
 93810
 93811
 93812
 93813
 93814
 93815
 93816
 93817
 93818
 93819
 93820
 93821
 93822
 93823
 93824
 93825
 93826
 93827
 93828
 93829
 93830
 93831
 93832
 93833
 93834
 93835
 93836
 93837
 93838
 93839
 93840
 93841
 93842
 93843
 93844
 93845
 93846
 93847
 93848
 93849
 93850
 93851
 93852
 93853
 93854
 93855
 93856
 93857
 93858
 93859
 93860
 93861
 93862
 93863
 93864
 93865
 93866
 93867
 93868
 93869
 93870
 93871
 93872
 93873
 93874
 93875
 93876
 93877
 93878
 93879
 93880
 93881
 93882
 93883
 93884
 93885
 93886
 93887
 93888
 93889
 93890
 93891
 93892
 93893
 93894
 93895
 93896
 93897
 93898
 93899
 93900
 93901
 93902
 93903
 93904
 93905
 93906
 93907
 93908
 93909
 93910
 93911
 93912
 93913
 93914
 93915
 93916
 93917
 93918
 93919
 93920
 93921
 93922
 93923
 93924
 93925
 93926
 93927
 93928
 93929
 93930
 93931
 93932
 93933
 93934
 93935
 93936
 93937
 93938
 93939
 93940
 93941
 93942
 93943
 93944
 93945
 93946
 93947
 93948
 93949
 93950
 93951
 93952
 93953
 93954
 93955
 93956
 93957
 93958
 93959
 93960
 93961
 93962
 93963
 93964
 93965
 93966
 93967
 93968
 93969
 93970
 93971
 93972
 93973
 93974
 93975
 93976
 93977
 93978
 93979
 93980
 93981
 93982
 93983
 93984
 93985
 93986
 93987
 93988
 93989
 93990
 93991
 93992
 93993
 93994
 93995
 93996
 93997
 93998
 93999
 94000
 94001
 94002
 94003
 94004
 94005
 94006
 94007
 94008
 94009
 94010
 94011
 94012
 94013
 94014
 94015
 94016
 94017
 94018
 94019
 94020
 94021
 94022
 94023
 94024
 94025
 94026
 94027
 94028
 94029
 94030
 94031
 94032
 94033
 94034
 94035
 94036
 94037
 94038
 94039
 94040
 94041
 94042
 94043
 94044
 94045
 94046
 94047
 94048
 94049
 94050
 94051
 94052
 94053
 94054
 94055
 94056
 94057
 94058
 94059
 94060
 94061
 94062
 94063
 94064
 94065
 94066
 94067
 94068
 94069
 94070
 94071
 94072
 94073
 94074
 94075
 94076
 94077
 94078
 94079
 94080
 94081
 94082
 94083
 94084
 94085
 94086
 94087
 94088
 94089
 94090
 94091
 94092
 94093
 94094
 94095
 94096
 94097
 94098
 94099
 94100
 94101
 94102
 94103
 94104
 94105
 94106
 94107
 94108
 94109
 94110
 94111
 94112
 94113
 94114
 94115
 94116
 94117
 94118
 94119
 94120
 94121
 94122
 94123
 94124
 94125
 94126
 94127
 94128
 94129
 94130
 94131
 94132
 94133
 94134
 94135
 94136
 94137
 94138
 94139
 94140
 94141
 94142
 94143
 94144
 94145
 94146
 94147
 94148
 94149
 94150
 94151
 94152
 94153
 94154
 94155
 94156
 94157
 94158
 94159
 94160
 94161
 94162
 94163
 94164
 94165
 94166
 94167
 94168
 94169
 94170
 94171
 94172
 94173
 94174
 94175
 94176
 94177
 94178
 94179
 94180
 94181
 94182
 94183
 94184
 94185
 94186
 94187
 94188
 94189
 94190
 94191
 94192
 94193
 94194
 94195
 94196
 94197
 94198
 94199
 94200
 94201
 94202
 94203
 94204
 94205
 94206
 94207
 94208
 94209
 94210
 94211
 94212
 94213
 94214
 94215
 94216
 94217
 94218
 94219
 94220
 94221
 94222
 94223
 94224
 94225
 94226
 94227
 94228
 94229
 94230
 94231
 94232
 94233
 94234
 94235
 94236
 94237
 94238
 94239
 94240
 94241
 94242
 94243
 94244
 94245
 94246
 94247
 94248
 94249
 94250
 94251
 94252
 94253
 94254
 94255
 94256
 94257
 94258
 94259
 94260
 94261
 94262
 94263
 94264
 94265
 94266
 94267
 94268
 94269
 94270
 94271
 94272
 94273
 94274
 94275
 94276
 94277
 94278
 94279
 94280
 94281
 94282
 94283
 94284
 94285
 94286
 94287
 94288
 94289
 94290
 94291
 94292
 94293
 94294
 94295
 94296
 94297
 94298
 94299
 94300
 94301
 94302
 94303
 94304
 94305
 94306
 94307
 94308
 94309
 94310
 94311
 94312
 94313
 94314
 94315
 94316
 94317
 94318
 94319
 94320
 94321
 94322
 94323
 94324
 94325
 94326
 94327
 94328
 94329
 94330
 94331
 94332
 94333
 94334
 94335
 94336
 94337
 94338
 94339
 94340
 94341
 94342
 94343
 94344
 94345
 94346
 94347
 94348
 94349
 94350
 94351
 94352
 94353
 94354
 94355
 94356
 94357
 94358
 94359
 94360
 94361
 94362
 94363
 94364
 94365
 94366
 94367
 94368
 94369
 94370
 94371
 94372
 94373
 94374
 94375
 94376
 94377
 94378
 94379
 94380
 94381
 94382
 94383
 94384
 94385
 94386
 94387
 94388
 94389
 94390
 94391
 94392
 94393
 94394
 94395
 94396
 94397
 94398
 94399
 94400
 94401
 94402
 94403
 94404
 94405
 94406
 94407
 94408
 94409
 94410
 94411
 94412
 94413
 94414
 94415
 94416
 94417
 94418
 94419
 94420
 94421
 94422
 94423
 94424
 94425
 94426
 94427
 94428
 94429
 94430
 94431
 94432
 94433
 94434
 94435
 94436
 94437
 94438
 94439
 94440
 94441
 94442
 94443
 94444
 94445
 94446
 94447
 94448
 94449
 94450
 94451
 94452
 94453
 94454
 94455
 94456
 94457
 94458
 94459
 94460
 94461
 94462
 94463
 94464
 94465
 94466
 94467
 94468
 94469
 94470
 94471
 94472
 94473
 94474
 94475
 94476
 94477
 94478
 94479
 94480
 94481
 94482
 94483
 94484
 94485
 94486
 94487
 94488
 94489
 94490
 94491
 94492
 94493
 94494
 94495
 94496
 94497
 94498
 94499
 94500
 94501
 94502
 94503
 94504
 94505
 94506
 94507
 94508
 94509
 94510
 94511
 94512
 94513
 94514
 94515
 94516
 94517
 94518
 94519
 94520
 94521
 94522
 94523
 94524
 94525
 94526
 94527
 94528
 94529
 94530
 94531
 94532
 94533
 94534
 94535
 94536
 94537
 94538
 94539
 94540
 94541
 94542
 94543
 94544
 94545
 94546
 94547
 94548
 94549
 94550
 94551
 94552
 94553
 94554
 94555
 94556
 94557
 94558
 94559
 94560
 94561
 94562
 94563
 94564
 94565
 94566
 94567
 94568
 94569
 94570
 94571
 94572
 94573
 94574
 94575
 94576
 94577
 94578
 94579
 94580
 94581
 94582
 94583
 94584
 94585
 94586
 94587
 94588
 94589
 94590
 94591
 94592
 94593
 94594
 94595
 94596
 94597
 94598
 94599
 94600
 94601
 94602
 94603
 94604
 94605
 94606
 94607
 94608
 94609
 94610
 94611
 94612
 94613
 94614
 94615
 94616
 94617
 94618
 94619
 94620
 94621
 94622
 94623
 94624
 94625
 94626
 94627
 94628
 94629
 94630
 94631
 94632
 94633
 94634
 94635
 94636
 94637
 94638
 94639
 94640
 94641
 94642
 94643
 94644
 94645
 94646
 94647
 94648
 94649
 94650
 94651
 94652
 94653
 94654
 94655
 94656
 94657
 94658
 94659
 94660
 94661
 94662
 94663
 94664
 94665
 94666
 94667
 94668
 94669
 94670
 94671
 94672
 94673
 94674
 94675
 94676
 94677
 94678
 94679
 94680
 94681
 94682
 94683
 94684
 94685
 94686
 94687
 94688
 94689
 94690
 94691
 94692
 94693
 94694
 94695
 94696
 94697
 94698
 94699
 94700
 94701
 94702
 94703
 94704
 94705
 94706
 94707
 94708
 94709
 94710
 94711
 94712
 94713
 94714
 94715
 94716
 94717
 94718
 94719
 94720
 94721
 94722
 94723
 94724
 94725
 94726
 94727
 94728
 94729
 94730
 94731
 94732
 94733
 94734
 94735
 94736
 94737
 94738
 94739
 94740
 94741
 94742
 94743
 94744
 94745
 94746
 94747
 94748
 94749
 94750
 94751
 94752
 94753
 94754
 94755
 94756
 94757
 94758
 94759
 94760
 94761
 94762
 94763
 94764
 94765
 94766
 94767
 94768
 94769
 94770
 94771
 94772
 94773
 94774
 94775
 94776
 94777
 94778
 94779
 94780
 94781
 94782
 94783
 94784
 94785
 94786
 94787
 94788
 94789
 94790
 94791
 94792
 94793
 94794
 94795
 94796
 94797
 94798
 94799
 94800
 94801
 94802
 94803
 94804
 94805
 94806
 94807
 94808
 94809
 94810
 94811
 94812
 94813
 94814
 94815
 94816
 94817
 94818
 94819
 94820
 94821
 94822
 94823
 94824
 94825
 94826
 94827
 94828
 94829
 94830
 94831
 94832
 94833
 94834
 94835
 94836
 94837
 94838
 94839
 94840
 94841
 94842
 94843
 94844
 94845
 94846
 94847
 94848
 94849
 94850
 94851
 94852
 94853
 94854
 94855
 94856
 94857
 94858
 94859
 94860
 94861
 94862
 94863
 94864
 94865
 94866
 94867
 94868
 94869
 94870
 94871
 94872
 94873
 94874
 94875
 94876
 94877
 94878
 94879
 94880
 94881
 94882
 94883
 94884
 94885
 94886
 94887
 94888
 94889
 94890
 94891
 94892
 94893
 94894
 94895
 94896
 94897
 94898
 94899
 94900
 94901
 94902
 94903
 94904
 94905
 94906
 94907
 94908
 94909
 94910
 94911
 94912
 94913
 94914
 94915
 94916
 94917
 94918
 94919
 94920
 94921
 94922
 94923
 94924
 94925
 94926
 94927
 94928
 94929
 94930
 94931
 94932
 94933
 94934
 94935
 94936
 94937
 94938
 94939
 94940
 94941
 94942
 94943
 94944
 94945
 94946
 94947
 94948
 94949
 94950
 94951
 94952
 94953
 94954
 94955
 94956
 94957
 94958
 94959
 94960
 94961
 94962
 94963
 94964
 94965
 94966
 94967
 94968
 94969
 94970
 94971
 94972
 94973
 94974
 94975
 94976
 94977
 94978
 94979
 94980
 94981
 94982
 94983
 94984
 94985
 94986
 94987
 94988
 94989
 94990
 94991
 94992
 94993
 94994
 94995
 94996
 94997
 94998
 94999
 95000
 95001
 95002
 95003
 95004
 95005
 95006
 95007
 95008
 95009
 95010
 95011
 95012
 95013
 95014
 95015
 95016
 95017
 95018
 95019
 95020
 95021
 95022
 95023
 95024
 95025
 95026
 95027
 95028
 95029
 95030
 95031
 95032
 95033
 95034
 95035
 95036
 95037
 95038
 95039
 95040
 95041
 95042
 95043
 95044
 95045
 95046
 95047
 95048
 95049
 95050
 95051
 95052
 95053
 95054
 95055
 95056
 95057
 95058
 95059
 95060
 95061
 95062
 95063
 95064
 95065
 95066
 95067
 95068
 95069
 95070
 95071
 95072
 95073
 95074
 95075
 95076
 95077
 95078
 95079
 95080
 95081
 95082
 95083
 95084
 95085
 95086
 95087
 95088
 95089
 95090
 95091
 95092
 95093
 95094
 95095
 95096
 95097
 95098
 95099
 95100
 95101
 95102
 95103
 95104
 95105
 95106
 95107
 95108
 95109
 95110
 95111
 95112
 95113
 95114
 95115
 95116
 95117
 95118
 95119
 95120
 95121
 95122
 95123
 95124
 95125
 95126
 95127
 95128
 95129
 95130
 95131
 95132
 95133
 95134
 95135
 95136
 95137
 95138
 95139
 95140
 95141
 95142
 95143
 95144
 95145
 95146
 95147
 95148
 95149
 95150
 95151
 95152
 95153
 95154
 95155
 95156
 95157
 95158
 95159
 95160
 95161
 95162
 95163
 95164
 95165
 95166
 95167
 95168
 95169
 95170
 95171
 95172
 95173
 95174
 95175
 95176
 95177
 95178
 95179
 95180
 95181
 95182
 95183
 95184
 95185
 95186
 95187
 95188
 95189
 95190
 95191
 95192
 95193
 95194
 95195
 95196
 95197
 95198
 95199
 95200
 95201
 95202
 95203
 95204
 95205
 95206
 95207
 95208
 95209
 95210
 95211
 95212
 95213
 95214
 95215
 95216
 95217
 95218
 95219
 95220
 95221
 95222
 95223
 95224
 95225
 95226
 95227
 95228
 95229
 95230
 95231
 95232
 95233
 95234
 95235
 95236
 95237
 95238
 95239
 95240
 95241
 95242
 95243
 95244
 95245
 95246
 95247
 95248
 95249
 95250
 95251
 95252
 95253
 95254
 95255
 95256
 95257
 95258
 95259
 95260
 95261
 95262
 95263
 95264
 95265
 95266
 95267
 95268
 95269
 95270
 95271
 95272
 95273
 95274
 95275
 95276
 95277
 95278
 95279
 95280
 95281
 95282
 95283
 95284
 95285
 95286
 95287
 95288
 95289
 95290
 95291
 95292
 95293
 95294
 95295
 95296
 95297
 95298
 95299
 95300
 95301
 95302
 95303
 95304
 95305
 95306
 95307
 95308
 95309
 95310
 95311
 95312
 95313
 95314
 95315
 95316
 95317
 95318
 95319
 95320
 95321
 95322
 95323
 95324
 95325
 95326
 95327
 95328
 95329
 95330
 95331
 95332
 95333
 95334
 95335
 95336
 95337
 95338
 95339
 95340
 95341
 95342
 95343
 95344
 95345
 95346
 95347
 95348
 95349
 95350
 95351
 95352
 95353
 95354
 95355
 95356
 95357
 95358
 95359
 95360
 95361
 95362
 95363
 95364
 95365
 95366
 95367
 95368
 95369
 95370
 95371
 95372
 95373
 95374
 95375
 95376
 95377
 95378
 95379
 95380
 95381
 95382
 95383
 95384
 95385
 95386
 95387
 95388
 95389
 95390
 95391
 95392
 95393
 95394
 95395
 95396
 95397
 95398
 95399
 95400
 95401
 95402
 95403
 95404
 95405
 95406
 95407
 95408
 95409
 95410
 95411
 95412
 95413
 95414
 95415
 95416
 95417
 95418
 95419
 95420
 95421
 95422
 95423
 95424
 95425
 95426
 95427
 95428
 95429
 95430
 95431
 95432
 95433
 95434
 95435
 95436
 95437
 95438
 95439
 95440
 95441
 95442
 95443
 95444
 95445
 95446
 95447
 95448
 95449
 95450
 95451
 95452
 95453
 95454
 95455
 95456
 95457
 95458
 95459
 95460
 95461
 95462
 95463
 95464
 95465
 95466
 95467
 95468
 95469
 95470
 95471
 95472
 95473
 95474
 95475
 95476
 95477
 95478
 95479
 95480
 95481
 95482
 95483
 95484
 95485
 95486
 95487
 95488
 95489
 95490
 95491
 95492
 95493
 95494
 95495
 95496
 95497
 95498
 95499
 95500
 95501
 95502
 95503
 95504
 95505
 95506
 95507
 95508
 95509
 95510
 95511
 95512
 95513
 95514
 95515
 95516
 95517
 95518
 95519
 95520
 95521
 95522
 95523
 95524
 95525
 95526
 95527
 95528
 95529
 95530
 95531
 95532
 95533
 95534
 95535
 95536
 95537
 95538
 95539
 95540
 95541
 95542
 95543
 95544
 95545
 95546
 95547
 95548
 95549
 95550
 95551
 95552
 95553
 95554
 95555
 95556
 95557
 95558
 95559
 95560
 95561
 95562
 95563
 95564
 95565
 95566
 95567
 95568
 95569
 95570
 95571
 95572
 95573
 95574
 95575
 95576
 95577
 95578
 95579
 95580
 95581
 95582
 95583
 95584
 95585
 95586
 95587
 95588
 95589
 95590
 95591
 95592
 95593
 95594
 95595
 95596
 95597
 95598
 95599
 95600
 95601
 95602
 95603
 95604
 95605
 95606
 95607
 95608
 95609
 95610
 95611
 95612
 95613
 95614
 95615
 95616
 95617
 95618
 95619
 95620
 95621
 95622
 95623
 95624
 95625
 95626
 95627
 95628
 95629
 95630
 95631
 95632
 95633
 95634
 95635
 95636
 95637
 95638
 95639
 95640
 95641
 95642
 95643
 95644
 95645
 95646
 95647
 95648
 95649
 95650
 95651
 95652
 95653
 95654
 95655
 95656
 95657
 95658
 95659
 95660
 95661
 95662
 95663
 95664
 95665
 95666
 95667
 95668
 95669
 95670
 95671
 95672
 95673
 95674
 95675
 95676
 95677
 95678
 95679
 95680
 95681
 95682
 95683
 95684
 95685
 95686
 95687
 95688
 95689
 95690
 95691
 95692
 95693
 95694
 95695
 95696
 95697
 95698
 95699
 95700
 95701
 95702
 95703
 95704
 95705
 95706
 95707
 95708
 95709
 95710
 95711
 95712
 95713
 95714
 95715
 95716
 95717
 95718
 95719
 95720
 95721
 95722
 95723
 95724
 95725
 95726
 95727
 95728
 95729
 95730
 95731
 95732
 95733
 95734
 95735
 95736
 95737
 95738
 95739
 95740
 95741
 95742
 95743
 95744
 95745
 95746
 95747
 95748
 95749
 95750
 95751
 95752
 95753
 95754
 95755
 95756
 95757
 95758
 95759
 95760
 95761
 95762
 95763
 95764
 95765
 95766
 95767
 95768
 95769
 95770
 95771
 95772
 95773
 95774
 95775
 95776
 95777
 95778
 95779
 95780
 95781
 95782
 95783
 95784
 95785
 95786
 95787
 95788
 95789
 95790
 95791
 95792
 95793
 95794
 95795
 95796
 95797
 95798
 95799
 95800
 95801
 95802
 95803
 95804
 95805
 95806
 95807
 95808
 95809
 95810
 95811
 95812
 95813
 95814
 95815
 95816
 95817
 95818
 95819
 95820
 95821
 95822
 95823
 95824
 95825
 95826
 95827
 95828
 95829
 95830
 95831
 95832
 95833
 95834
 95835
 95836
 95837
 95838
 95839
 95840
 95841
 95842
 95843
 95844
 95845
 95846
 95847
 95848
 95849
 95850
 95851
 95852
 95853
 95854
 95855
 95856
 95857
 95858
 95859
 95860
 95861
 95862
 95863
 95864
 95865
 95866
 95867
 95868
 95869
 95870
 95871
 95872
 95873
 95874
 95875
 95876
 95877
 95878
 95879
 95880
 95881
 95882
 95883
 95884
 95885
 95886
 95887
 95888
 95889
 95890
 95891
 95892
 95893
 95894
 95895
 95896
 95897
 95898
 95899
 95900
 95901
 95902
 95903
 95904
 95905
 95906
 95907
 95908
 95909
 95910
 95911
 95912
 95913
 95914
 95915
 95916
 95917
 95918
 95919
 95920
 95921
 95922
 95923
 95924
 95925
 95926
 95927
 95928
 95929
 95930
 95931
 95932
 95933
 95934
 95935
 95936
 95937
 95938
 95939
 95940
 95941
 95942
 95943
 95944
 95945
 95946
 95947
 95948
 95949
 95950
 95951
 95952
 95953
 95954
 95955
 95956
 95957
 95958
 95959
 95960
 95961
 95962
 95963
 95964
 95965
 95966
 95967
 95968
 95969
 95970
 95971
 95972
 95973
 95974
 95975
 95976
 95977
 95978
 95979
 95980
 95981
 95982
 95983
 95984
 95985
 95986
 95987
 95988
 95989
 95990
 95991
 95992
 95993
 95994
 95995
 95996
 95997
 95998
 95999
 96000
 96001
 96002
 96003
 96004
 96005
 96006
 96007
 96008
 96009
 96010
 96011
 96012
 96013
 96014
 96015
 96016
 96017
 96018
 96019
 96020
 96021
 96022
 96023
 96024
 96025
 96026
 96027
 96028
 96029
 96030
 96031
 96032
 96033
 96034
 96035
 96036
 96037
 96038
 96039
 96040
 96041
 96042
 96043
 96044
 96045
 96046
 96047
 96048
 96049
 96050
 96051
 96052
 96053
 96054
 96055
 96056
 96057
 96058
 96059
 96060
 96061
 96062
 96063
 96064
 96065
 96066
 96067
 96068
 96069
 96070
 96071
 96072
 96073
 96074
 96075
 96076
 96077
 96078
 96079
 96080
 96081
 96082
 96083
 96084
 96085
 96086
 96087
 96088
 96089
 96090
 96091
 96092
 96093
 96094
 96095
 96096
 96097
 96098
 96099
 96100
 96101
 96102
 96103
 96104
 96105
 96106
 96107
 96108
 96109
 96110
 96111
 96112
 96113
 96114
 96115
 96116
 96117
 96118
 96119
 96120
 96121
 96122
 96123
 96124
 96125
 96126
 96127
 96128
 96129
 96130
 96131
 96132
 96133
 96134
 96135
 96136
 96137
 96138
 96139
 96140
 96141
 96142
 96143
 96144
 96145
 96146
 96147
 96148
 96149
 96150
 96151
 96152
 96153
 96154
 96155
 96156
 96157
 96158
 96159
 96160
 96161
 96162
 96163
 96164
 96165
 96166
 96167
 96168
 96169
 96170
 96171
 96172
 96173
 96174
 96175
 96176
 96177
 96178
 96179
 96180
 96181
 96182
 96183
 96184
 96185
 96186
 96187
 96188
 96189
 96190
 96191
 96192
 96193
 96194
 96195
 96196
 96197
 96198
 96199
 96200
 96201
 96202
 96203
 96204
 96205
 96206
 96207
 96208
 96209
 96210
 96211
 96212
 96213
 96214
 96215
 96216
 96217
 96218
 96219
 96220
 96221
 96222
 96223
 96224
 96225
 96226
 96227
 96228
 96229
 96230
 96231
 96232
 96233
 96234
 96235
 96236
 96237
 96238
 96239
 96240
 96241
 96242
 96243
 96244
 96245
 96246
 96247
 96248
 96249
 96250
 96251
 96252
 96253
 96254
 96255
 96256
 96257
 96258
 96259
 96260
 96261
 96262
 96263
 96264
 96265
 96266
 96267
 96268
 96269
 96270
 96271
 96272
 96273
 96274
 96275
 96276
 96277
 96278
 96279
 96280
 96281
 96282
 96283
 96284
 96285
 96286
 96287
 96288
 96289
 96290
 96291
 96292
 96293
 96294
 96295
 96296
 96297
 96298
 96299
 96300
 96301
 96302
 96303
 96304
 96305
 96306
 96307
 96308
 96309
 96310
 96311
 96312
 96313
 96314
 96315
 96316
 96317
 96318
 96319
 96320
 96321
 96322
 96323
 96324
 96325
 96326
 96327
 96328
 96329
 96330
 96331
 96332
 96333
 96334
 96335
 96336
 96337
 96338
 96339
 96340
 96341
 96342
 96343
 96344
 96345
 96346
 96347
 96348
 96349
 96350
 96351
 96352
 96353
 96354
 96355
 96356
 96357
 96358
 96359
 96360
 96361
 96362
 96363
 96364
 96365
 96366
 96367
 96368
 96369
 96370
 96371
 96372
 96373
 96374
 96375
 96376
 96377
 96378
 96379
 96380
 96381
 96382
 96383
 96384
 96385
 96386
 96387
 96388
 96389
 96390
 96391
 96392
 96393
 96394
 96395
 96396
 96397
 96398
 96399
 96400
 96401
 96402
 96403
 96404
 96405
 96406
 96407
 96408
 96409
 96410
 96411
 96412
 96413
 96414
 96415
 96416
 96417
 96418
 96419
 96420
 96421
 96422
 96423
 96424
 96425
 96426
 96427
 96428
 96429
 96430
 96431
 96432
 96433
 96434
 96435
 96436
 96437
 96438
 96439
 96440
 96441
 96442
 96443
 96444
 96445
 96446
 96447
 96448
 96449
 96450
 96451
 96452
 96453
 96454
 96455
 96456
 96457
 96458
 96459
 96460
 96461
 96462
 96463
 96464
 96465
 96466
 96467
 96468
 96469
 96470
 96471
 96472
 96473
 96474
 96475
 96476
 96477
 96478
 96479
 96480
 96481
 96482
 96483
 96484
 96485
 96486
 96487
 96488
 96489
 96490
 96491
 96492
 96493
 96494
 96495
 96496
 96497
 96498
 96499
 96500
 96501
 96502
 96503
 96504
 96505
 96506
 96507
 96508
 96509
 96510
 96511
 96512
 96513
 96514
 96515
 96516
 96517
 96518
 96519
 96520
 96521
 96522
 96523
 96524
 96525
 96526
 96527
 96528
 96529
 96530
 96531
 96532
 96533
 96534
 96535
 96536
 96537
 96538
 96539
 96540
 96541
 96542
 96543
 96544
 96545
 96546
 96547
 96548
 96549
 96550
 96551
 96552
 96553
 96554
 96555
 96556
 96557
 96558
 96559
 96560
 96561
 96562
 96563
 96564
 96565
 96566
 96567
 96568
 96569
 96570
 96571
 96572
 96573
 96574
 96575
 96576
 96577
 96578
 96579
 96580
 96581
 96582
 96583
 96584
 96585
 96586
 96587
 96588
 96589
 96590
 96591
 96592
 96593
 96594
 96595
 96596
 96597
 96598
 96599
 96600
 96601
 96602
 96603
 96604
 96605
 96606
 96607
 96608
 96609
 96610
 96611
 96612
 96613
 96614
 96615
 96616
 96617
 96618
 96619
 96620
 96621
 96622
 96623
 96624
 96625
 96626
 96627
 96628
 96629
 96630
 96631
 96632
 96633
 96634
 96635
 96636
 96637
 96638
 96639
 96640
 96641
 96642
 96643
 96644
 96645
 96646
 96647
 96648
 96649
 96650
 96651
 96652
 96653
 96654
 96655
 96656
 96657
 96658
 96659
 96660
 96661
 96662
 96663
 96664
 96665
 96666
 96667
 96668
 96669
 96670
 96671
 96672
 96673
 96674
 96675
 96676
 96677
 96678
 96679
 96680
 96681
 96682
 96683
 96684
 96685
 96686
 96687
 96688
 96689
 96690
 96691
 96692
 96693
 96694
 96695
 96696
 96697
 96698
 96699
 96700
 96701
 96702
 96703
 96704
 96705
 96706
 96707
 96708
 96709
 96710
 96711
 96712
 96713
 96714
 96715
 96716
 96717
 96718
 96719
 96720
 96721
 96722
 96723
 96724
 96725
 96726
 96727
 96728
 96729
 96730
 96731
 96732
 96733
 96734
 96735
 96736
 96737
 96738
 96739
 96740
 96741
 96742
 96743
 96744
 96745
 96746
 96747
 96748
 96749
 96750
 96751
 96752
 96753
 96754
 96755
 96756
 96757
 96758
 96759
 96760
 96761
 96762
 96763
 96764
 96765
 96766
 96767
 96768
 96769
 96770
 96771
 96772
 96773
 96774
 96775
 96776
 96777
 96778
 96779
 96780
 96781
 96782
 96783
 96784
 96785
 96786
 96787
 96788
 96789
 96790
 96791
 96792
 96793
 96794
 96795
 96796
 96797
 96798
 96799
 96800
 96801
 96802
 96803
 96804
 96805
 96806
 96807
 96808
 96809
 96810
 96811
 96812
 96813
 96814
 96815
 96816
 96817
 96818
 96819
 96820
 96821
 96822
 96823
 96824
 96825
 96826
 96827
 96828
 96829
 96830
 96831
 96832
 96833
 96834
 96835
 96836
 96837
 96838
 96839
 96840
 96841
 96842
 96843
 96844
 96845
 96846
 96847
 96848
 96849
 96850
 96851
 96852
 96853
 96854
 96855
 96856
 96857
 96858
 96859
 96860
 96861
 96862
 96863
 96864
 96865
 96866
 96867
 96868
 96869
 96870
 96871
 96872
 96873
 96874
 96875
 96876
 96877
 96878
 96879
 96880
 96881
 96882
 96883
 96884
 96885
 96886
 96887
 96888
 96889
 96890
 96891
 96892
 96893
 96894
 96895
 96896
 96897
 96898
 96899
 96900
 96901
 96902
 96903
 96904
 96905
 96906
 96907
 96908
 96909
 96910
 96911
 96912
 96913
 96914
 96915
 96916
 96917
 96918
 96919
 96920
 96921
 96922
 96923
 96924
 96925
 96926
 96927
 96928
 96929
 96930
 96931
 96932
 96933
 96934
 96935
 96936
 96937
 96938
 96939
 96940
 96941
 96942
 96943
 96944
 96945
 96946
 96947
 96948
 96949
 96950
 96951
 96952
 96953
 96954
 96955
 96956
 96957
 96958
 96959
 96960
 96961
 96962
 96963
 96964
 96965
 96966
 96967
 96968
 96969
 96970
 96971
 96972
 96973
 96974
 96975
 96976
 96977
 96978
 96979
 96980
 96981
 96982
 96983
 96984
 96985
 96986
 96987
 96988
 96989
 96990
 96991
 96992
 96993
 96994
 96995
 96996
 96997
 96998
 96999
 97000
 97001
 97002
 97003
 97004
 97005
 97006
 97007
 97008
 97009
 97010
 97011
 97012
 97013
 97014
 97015
 97016
 97017
 97018
 97019
 97020
 97021
 97022
 97023
 97024
 97025
 97026
 97027
 97028
 97029
 97030
 97031
 97032
 97033
 97034
 97035
 97036
 97037
 97038
 97039
 97040
 97041
 97042
 97043
 97044
 97045
 97046
 97047
 97048
 97049
 97050
 97051
 97052
 97053
 97054
 97055
 97056
 97057
 97058
 97059
 97060
 97061
 97062
 97063
 97064
 97065
 97066
 97067
 97068
 97069
 97070
 97071
 97072
 97073
 97074
 97075
 97076
 97077
 97078
 97079
 97080
 97081
 97082
 97083
 97084
 97085
 97086
 97087
 97088
 97089
 97090
 97091
 97092
 97093
 97094
 97095
 97096
 97097
 97098
 97099
 97100
 97101
 97102
 97103
 97104
 97105
 97106
 97107
 97108
 97109
 97110
 97111
 97112
 97113
 97114
 97115
 97116
 97117
 97118
 97119
 97120
 97121
 97122
 97123
 97124
 97125
 97126
 97127
 97128
 97129
 97130
 97131
 97132
 97133
 97134
 97135
 97136
 97137
 97138
 97139
 97140
 97141
 97142
 97143
 97144
 97145
 97146
 97147
 97148
 97149
 97150
 97151
 97152
 97153
 97154
 97155
 97156
 97157
 97158
 97159
 97160
 97161
 97162
 97163
 97164
 97165
 97166
 97167
 97168
 97169
 97170
 97171
 97172
 97173
 97174
 97175
 97176
 97177
 97178
 97179
 97180
 97181
 97182
 97183
 97184
 97185
 97186
 97187
 97188
 97189
 97190
 97191
 97192
 97193
 97194
 97195
 97196
 97197
 97198
 97199
 97200
 97201
 97202
 97203
 97204
 97205
 97206
 97207
 97208
 97209
 97210
 97211
 97212
 97213
 97214
 97215
 97216
 97217
 97218
 97219
 97220
 97221
 97222
 97223
 97224
 97225
 97226
 97227
 97228
 97229
 97230
 97231
 97232
 97233
 97234
 97235
 97236
 97237
 97238
 97239
 97240
 97241
 97242
 97243
 97244
 97245
 97246
 97247
 97248
 97249
 97250
 97251
 97252
 97253
 97254
 97255
 97256
 97257
 97258
 97259
 97260
 97261
 97262
 97263
 97264
 97265
 97266
 97267
 97268
 97269
 97270
 97271
 97272
 97273
 97274
 97275
 97276
 97277
 97278
 97279
 97280
 97281
 97282
 97283
 97284
 97285
 97286
 97287
 97288
 97289
 97290
 97291
 97292
 97293
 97294
 97295
 97296
 97297
 97298
 97299
 97300
 97301
 97302
 97303
 97304
 97305
 97306
 97307
 97308
 97309
 97310
 97311
 97312
 97313
 97314
 97315
 97316
 97317
 97318
 97319
 97320
 97321
 97322
 97323
 97324
 97325
 97326
 97327
 97328
 97329
 97330
 97331
 97332
 97333
 97334
 97335
 97336
 97337
 97338
 97339
 97340
 97341
 97342
 97343
 97344
 97345
 97346
 97347
 97348
 97349
 97350
 97351
 97352
 97353
 97354
 97355
 97356
 97357
 97358
 97359
 97360
 97361
 97362
 97363
 97364
 97365
 97366
 97367
 97368
 97369
 97370
 97371
 97372
 97373
 97374
 97375
 97376
 97377
 97378
 97379
 97380
 97381
 97382
 97383
 97384
 97385
 97386
 97387
 97388
 97389
 97390
 97391
 97392
 97393
 97394
 97395
 97396
 97397
 97398
 97399
 97400
 97401
 97402
 97403
 97404
 97405
 97406
 97407
 97408
 97409
 97410
 97411
 97412
 97413
 97414
 97415
 97416
 97417
 97418
 97419
 97420
 97421
 97422
 97423
 97424
 97425
 97426
 97427
 97428
 97429
 97430
 97431
 97432
 97433
 97434
 97435
 97436
 97437
 97438
 97439
 97440
 97441
 97442
 97443
 97444
 97445
 97446
 97447
 97448
 97449
 97450
 97451
 97452
 97453
 97454
 97455
 97456
 97457
 97458
 97459
 97460
 97461
 97462
 97463
 97464
 97465
 97466
 97467
 97468
 97469
 97470
 97471
 97472
 97473
 97474
 97475
 97476
 97477
 97478
 97479
 97480
 97481
 97482
 97483
 97484
 97485
 97486
 97487
 97488
 97489
 97490
 97491
 97492
 97493
 97494
 97495
 97496
 97497
 97498
 97499
 97500
 97501
 97502
 97503
 97504
 97505
 97506
 97507
 97508
 97509
 97510
 97511
 97512
 97513
 97514
 97515
 97516
 97517
 97518
 97519
 97520
 97521
 97522
 97523
 97524
 97525
 97526
 97527
 97528
 97529
 97530
 97531
 97532
 97533
 97534
 97535
 97536
 97537
 97538
 97539
 97540
 97541
 97542
 97543
 97544
 97545
 97546
 97547
 97548
 97549
 97550
 97551
 97552
 97553
 97554
 97555
 97556
 97557
 97558
 97559
 97560
 97561
 97562
 97563
 97564
 97565
 97566
 97567
 97568
 97569
 97570
 97571
 97572
 97573
 97574
 97575
 97576
 97577
 97578
 97579
 97580
 97581
 97582
 97583
 97584
 97585
 97586
 97587
 97588
 97589
 97590
 97591
 97592
 97593
 97594
 97595
 97596
 97597
 97598
 97599
 97600
 97601
 97602
 97603
 97604
 97605
 97606
 97607
 97608
 97609
 97610
 97611
 97612
 97613
 97614
 97615
 97616
 97617
 97618
 97619
 97620
 97621
 97622
 97623
 97624
 97625
 97626
 97627
 97628
 97629
 97630
 97631
 97632
 97633
 97634
 97635
 97636
 97637
 97638
 97639
 97640
 97641
 97642
 97643
 97644
 97645
 97646
 97647
 97648
 97649
 97650
 97651
 97652
 97653
 97654
 97655
 97656
 97657
 97658
 97659
 97660
 97661
 97662
 97663
 97664
 97665
 97666
 97667
 97668
 97669
 97670
 97671
 97672
 97673
 97674
 97675
 97676
 97677
 97678
 97679
 97680
 97681
 97682
 97683
 97684
 97685
 97686
 97687
 97688
 97689
 97690
 97691
 97692
 97693
 97694
 97695
 97696
 97697
 97698
 97699
 97700
 97701
 97702
 97703
 97704
 97705
 97706
 97707
 97708
 97709
 97710
 97711
 97712
 97713
 97714
 97715
 97716
 97717
 97718
 97719
 97720
 97721
 97722
 97723
 97724
 97725
 97726
 97727
 97728
 97729
 97730
 97731
 97732
 97733
 97734
 97735
 97736
 97737
 97738
 97739
 97740
 97741
 97742
 97743
 97744
 97745
 97746
 97747
 97748
 97749
 97750
 97751
 97752
 97753
 97754
 97755
 97756
 97757
 97758
 97759
 97760
 97761
 97762
 97763
 97764
 97765
 97766
 97767
 97768
 97769
 97770
 97771
 97772
 97773
 97774
 97775
 97776
 97777
 97778
 97779
 97780
 97781
 97782
 97783
 97784
 97785
 97786
 97787
 97788
 97789
 97790
 97791
 97792
 97793
 97794
 97795
 97796
 97797
 97798
 97799
 97800
 97801
 97802
 97803
 97804
 97805
 97806
 97807
 97808
 97809
 97810
 97811
 97812
 97813
 97814
 97815
 97816
 97817
 97818
 97819
 97820
 97821
 97822
 97823
 97824
 97825
 97826
 97827
 97828
 97829
 97830
 97831
 97832
 97833
 97834
 97835
 97836
 97837
 97838
 97839
 97840
 97841
 97842
 97843
 97844
 97845
 97846
 97847
 97848
 97849
 97850
 97851
 97852
 97853
 97854
 97855
 97856
 97857
 97858
 97859
 97860
 97861
 97862
 97863
 97864
 97865
 97866
 97867
 97868
 97869
 97870
 97871
 97872
 97873
 97874
 97875
 97876
 97877
 97878
 97879
 97880
 97881
 97882
 97883
 97884
 97885
 97886
 97887
 97888
 97889
 97890
 97891
 97892
 97893
 97894
 97895
 97896
 97897
 97898
 97899
 97900
 97901
 97902
 97903
 97904
 97905
 97906
 97907
 97908
 97909
 97910
 97911
 97912
 97913
 97914
 97915
 97916
 97917
 97918
 97919
 97920
 97921
 97922
 97923
 97924
 97925
 97926
 97927
 97928
 97929
 97930
 97931
 97932
 97933
 97934
 97935
 97936
 97937
 97938
 97939
 97940
 97941
 97942
 97943
 97944
 97945
 97946
 97947
 97948
 97949
 97950
 97951
 97952
 97953
 97954
 97955
 97956
 97957
 97958
 97959
 97960
 97961
 97962
 97963
 97964
 97965
 97966
 97967
 97968
 97969
 97970
 97971
 97972
 97973
 97974
 97975
 97976
 97977
 97978
 97979
 97980
 97981
 97982
 97983
 97984
 97985
 97986
 97987
 97988
 97989
 97990
 97991
 97992
 97993
 97994
 97995
 97996
 97997
 97998
 97999
 98000
 98001
 98002
 98003
 98004
 98005
 98006
 98007
 98008
 98009
 98010
 98011
 98012
 98013
 98014
 98015
 98016
 98017
 98018
 98019
 98020
 98021
 98022
 98023
 98024
 98025
 98026
 98027
 98028
 98029
 98030
 98031
 98032
 98033
 98034
 98035
 98036
 98037
 98038
 98039
 98040
 98041
 98042
 98043
 98044
 98045
 98046
 98047
 98048
 98049
 98050
 98051
 98052
 98053
 98054
 98055
 98056
 98057
 98058
 98059
 98060
 98061
 98062
 98063
 98064
 98065
 98066
 98067
 98068
 98069
 98070
 98071
 98072
 98073
 98074
 98075
 98076
 98077
 98078
 98079
 98080
 98081
 98082
 98083
 98084
 98085
 98086
 98087
 98088
 98089
 98090
 98091
 98092
 98093
 98094
 98095
 98096
 98097
 98098
 98099
 98100
 98101
 98102
 98103
 98104
 98105
 98106
 98107
 98108
 98109
 98110
 98111
 98112
 98113
 98114
 98115
 98116
 98117
 98118
 98119
 98120
 98121
 98122
 98123
 98124
 98125
 98126
 98127
 98128
 98129
 98130
 98131
 98132
 98133
 98134
 98135
 98136
 98137
 98138
 98139
 98140
 98141
 98142
 98143
 98144
 98145
 98146
 98147
 98148
 98149
 98150
 98151
 98152
 98153
 98154
 98155
 98156
 98157
 98158
 98159
 98160
 98161
 98162
 98163
 98164
 98165
 98166
 98167
 98168
 98169
 98170
 98171
 98172
 98173
 98174
 98175
 98176
 98177
 98178
 98179
 98180
 98181
 98182
 98183
 98184
 98185
 98186
 98187
 98188
 98189
 98190
 98191
 98192
 98193
 98194
 98195
 98196
 98197
 98198
 98199
 98200
 98201
 98202
 98203
 98204
 98205
 98206
 98207
 98208
 98209
 98210
 98211
 98212
 98213
 98214
 98215
 98216
 98217
 98218
 98219
 98220
 98221
 98222
 98223
 98224
 98225
 98226
 98227
 98228
 98229
 98230
 98231
 98232
 98233
 98234
 98235
 98236
 98237
 98238
 98239
 98240
 98241
 98242
 98243
 98244
 98245
 98246
 98247
 98248
 98249
 98250
 98251
 98252
 98253
 98254
 98255
 98256
 98257
 98258
 98259
 98260
 98261
 98262
 98263
 98264
 98265
 98266
 98267
 98268
 98269
 98270
 98271
 98272
 98273
 98274
 98275
 98276
 98277
 98278
 98279
 98280
 98281
 98282
 98283
 98284
 98285
 98286
 98287
 98288
 98289
 98290
 98291
 98292
 98293
 98294
 98295
 98296
 98297
 98298
 98299
 98300
 98301
 98302
 98303
 98304
 98305
 98306
 98307
 98308
 98309
 98310
 98311
 98312
 98313
 98314
 98315
 98316
 98317
 98318
 98319
 98320
 98321
 98322
 98323
 98324
 98325
 98326
 98327
 98328
 98329
 98330
 98331
 98332
 98333
 98334
 98335
 98336
 98337
 98338
 98339
 98340
 98341
 98342
 98343
 98344
 98345
 98346
 98347
 98348
 98349
 98350
 98351
 98352
 98353
 98354
 98355
 98356
 98357
 98358
 98359
 98360
 98361
 98362
 98363
 98364
 98365
 98366
 98367
 98368
 98369
 98370
 98371
 98372
 98373
 98374
 98375
 98376
 98377
 98378
 98379
 98380
 98381
 98382
 98383
 98384
 98385
 98386
 98387
 98388
 98389
 98390
 98391
 98392
 98393
 98394
 98395
 98396
 98397
 98398
 98399
 98400
 98401
 98402
 98403
 98404
 98405
 98406
 98407
 98408
 98409
 98410
 98411
 98412
 98413
 98414
 98415
 98416
 98417
 98418
 98419
 98420
 98421
 98422
 98423
 98424
 98425
 98426
 98427
 98428
 98429
 98430
 98431
 98432
 98433
 98434
 98435
 98436
 98437
 98438
 98439
 98440
 98441
 98442
 98443
 98444
 98445
 98446
 98447
 98448
 98449
 98450
 98451
 98452
 98453
 98454
 98455
 98456
 98457
 98458
 98459
 98460
 98461
 98462
 98463
 98464
 98465
 98466
 98467
 98468
 98469
 98470
 98471
 98472
 98473
 98474
 98475
 98476
 98477
 98478
 98479
 98480
 98481
 98482
 98483
 98484
 98485
 98486
 98487
 98488
 98489
 98490
 98491
 98492
 98493
 98494
 98495
 98496
 98497
 98498
 98499
 98500
 98501
 98502
 98503
 98504
 98505
 98506
 98507
 98508
 98509
 98510
 98511
 98512
 98513
 98514
 98515
 98516
 98517
 98518
 98519
 98520
 98521
 98522
 98523
 98524
 98525
 98526
 98527
 98528
 98529
 98530
 98531
 98532
 98533
 98534
 98535
 98536
 98537
 98538
 98539
 98540
 98541
 98542
 98543
 98544
 98545
 98546
 98547
 98548
 98549
 98550
 98551
 98552
 98553
 98554
 98555
 98556
 98557
 98558
 98559
 98560
 98561
 98562
 98563
 98564
 98565
 98566
 98567
 98568
 98569
 98570
 98571
 98572
 98573
 98574
 98575
 98576
 98577
 98578
 98579
 98580
 98581
 98582
 98583
 98584
 98585
 98586
 98587
 98588
 98589
 98590
 98591
 98592
 98593
 98594
 98595
 98596
 98597
 98598
 98599
 98600
 98601
 98602
 98603
 98604
 98605
 98606
 98607
 98608
 98609
 98610
 98611
 98612
 98613
 98614
 98615
 98616
 98617
 98618
 98619
 98620
 98621
 98622
 98623
 98624
 98625
 98626
 98627
 98628
 98629
 98630
 98631
 98632
 98633
 98634
 98635
 98636
 98637
 98638
 98639
 98640
 98641
 98642
 98643
 98644
 98645
 98646
 98647
 98648
 98649
 98650
 98651
 98652
 98653
 98654
 98655
 98656
 98657
 98658
 98659
 98660
 98661
 98662
 98663
 98664
 98665
 98666
 98667
 98668
 98669
 98670
 98671
 98672
 98673
 98674
 98675
 98676
 98677
 98678
 98679
 98680
 98681
 98682
 98683
 98684
 98685
 98686
 98687
 98688
 98689
 98690
 98691
 98692
 98693
 98694
 98695
 98696
 98697
 98698
 98699
 98700
 98701
 98702
 98703
 98704
 98705
 98706
 98707
 98708
 98709
 98710
 98711
 98712
 98713
 98714
 98715
 98716
 98717
 98718
 98719
 98720
 98721
 98722
 98723
 98724
 98725
 98726
 98727
 98728
 98729
 98730
 98731
 98732
 98733
 98734
 98735
 98736
 98737
 98738
 98739
 98740
 98741
 98742
 98743
 98744
 98745
 98746
 98747
 98748
 98749
 98750
 98751
 98752
 98753
 98754
 98755
 98756
 98757
 98758
 98759
 98760
 98761
 98762
 98763
 98764
 98765
 98766
 98767
 98768
 98769
 98770
 98771
 98772
 98773
 98774
 98775
 98776
 98777
 98778
 98779
 98780
 98781
 98782
 98783
 98784
 98785
 98786
 98787
 98788
 98789
 98790
 98791
 98792
 98793
 98794
 98795
 98796
 98797
 98798
 98799
 98800
 98801
 98802
 98803
 98804
 98805
 98806
 98807
 98808
 98809
 98810
 98811
 98812
 98813
 98814
 98815
 98816
 98817
 98818
 98819
 98820
 98821
 98822
 98823
 98824
 98825
 98826
 98827
 98828
 98829
 98830
 98831
 98832
 98833
 98834
 98835
 98836
 98837
 98838
 98839
 98840
 98841
 98842
 98843
 98844
 98845
 98846
 98847
 98848
 98849
 98850
 98851
 98852
 98853
 98854
 98855
 98856
 98857
 98858
 98859
 98860
 98861
 98862
 98863
 98864
 98865
 98866
 98867
 98868
 98869
 98870
 98871
 98872
 98873
 98874
 98875
 98876
 98877
 98878
 98879
 98880
 98881
 98882
 98883
 98884
 98885
 98886
 98887
 98888
 98889
 98890
 98891
 98892
 98893
 98894
 98895
 98896
 98897
 98898
 98899
 98900
 98901
 98902
 98903
 98904
 98905
 98906
 98907
 98908
 98909
 98910
 98911
 98912
 98913
 98914
 98915
 98916
 98917
 98918
 98919
 98920
 98921
 98922
 98923
 98924
 98925
 98926
 98927
 98928
 98929
 98930
 98931
 98932
 98933
 98934
 98935
 98936
 98937
 98938
 98939
 98940
 98941
 98942
 98943
 98944
 98945
 98946
 98947
 98948
 98949
 98950
 98951
 98952
 98953
 98954
 98955
 98956
 98957
 98958
 98959
 98960
 98961
 98962
 98963
 98964
 98965
 98966
 98967
 98968
 98969
 98970
 98971
 98972
 98973
 98974
 98975
 98976
 98977
 98978
 98979
 98980
 98981
 98982
 98983
 98984
 98985
 98986
 98987
 98988
 98989
 98990
 98991
 98992
 98993
 98994
 98995
 98996
 98997
 98998
 98999
 99000
 99001
 99002
 99003
 99004
 99005
 99006
 99007
 99008
 99009
 99010
 99011
 99012
 99013
 99014
 99015
 99016
 99017
 99018
 99019
 99020
 99021
 99022
 99023
 99024
 99025
 99026
 99027
 99028
 99029
 99030
 99031
 99032
 99033
 99034
 99035
 99036
 99037
 99038
 99039
 99040
 99041
 99042
 99043
 99044
 99045
 99046
 99047
 99048
 99049
 99050
 99051
 99052
 99053
 99054
 99055
 99056
 99057
 99058
 99059
 99060
 99061
 99062
 99063
 99064
 99065
 99066
 99067
 99068
 99069
 99070
 99071
 99072
 99073
 99074
 99075
 99076
 99077
 99078
 99079
 99080
 99081
 99082
 99083
 99084
 99085
 99086
 99087
 99088
 99089
 99090
 99091
 99092
 99093
 99094
 99095
 99096
 99097
 99098
 99099
 99100
 99101
 99102
 99103
 99104
 99105
 99106
 99107
 99108
 99109
 99110
 99111
 99112
 99113
 99114
 99115
 99116
 99117
 99118
 99119
 99120
 99121
 99122
 99123
 99124
 99125
 99126
 99127
 99128
 99129
 99130
 99131
 99132
 99133
 99134
 99135
 99136
 99137
 99138
 99139
 99140
 99141
 99142
 99143
 99144
 99145
 99146
 99147
 99148
 99149
 99150
 99151
 99152
 99153
 99154
 99155
 99156
 99157
 99158
 99159
 99160
 99161
 99162
 99163
 99164
 99165
 99166
 99167
 99168
 99169
 99170
 99171
 99172
 99173
 99174
 99175
 99176
 99177
 99178
 99179
 99180
 99181
 99182
 99183
 99184
 99185
 99186
 99187
 99188
 99189
 99190
 99191
 99192
 99193
 99194
 99195
 99196
 99197
 99198
 99199
 99200
 99201
 99202
 99203
 99204
 99205
 99206
 99207
 99208
 99209
 99210
 99211
 99212
 99213
 99214
 99215
 99216
 99217
 99218
 99219
 99220
 99221
 99222
 99223
 99224
 99225
 99226
 99227
 99228
 99229
 99230
 99231
 99232
 99233
 99234
 99235
 99236
 99237
 99238
 99239
 99240
 99241
 99242
 99243
 99244
 99245
 99246
 99247
 99248
 99249
 99250
 99251
 99252
 99253
 99254
 99255
 99256
 99257
 99258
 99259
 99260
 99261
 99262
 99263
 99264
 99265
 99266
 99267
 99268
 99269
 99270
 99271
 99272
 99273
 99274
 99275
 99276
 99277
 99278
 99279
 99280
 99281
 99282
 99283
 99284
 99285
 99286
 99287
 99288
 99289
 99290
 99291
 99292
 99293
 99294
 99295
 99296
 99297
 99298
 99299
 99300
 99301
 99302
 99303
 99304
 99305
 99306
 99307
 99308
 99309
 99310
 99311
 99312
 99313
 99314
 99315
 99316
 99317
 99318
 99319
 99320
 99321
 99322
 99323
 99324
 99325
 99326
 99327
 99328
 99329
 99330
 99331
 99332
 99333
 99334
 99335
 99336
 99337
 99338
 99339
 99340
 99341
 99342
 99343
 99344
 99345
 99346
 99347
 99348
 99349
 99350
 99351
 99352
 99353
 99354
 99355
 99356
 99357
 99358
 99359
 99360
 99361
 99362
 99363
 99364
 99365
 99366
 99367
 99368
 99369
 99370
 99371
 99372
 99373
 99374
 99375
 99376
 99377
 99378
 99379
 99380
 99381
 99382
 99383
 99384
 99385
 99386
 99387
 99388
 99389
 99390
 99391
 99392
 99393
 99394
 99395
 99396
 99397
 99398
 99399
 99400
 99401
 99402
 99403
 99404
 99405
 99406
 99407
 99408
 99409
 99410
 99411
 99412
 99413
 99414
 99415
 99416
 99417
 99418
 99419
 99420
 99421
 99422
 99423
 99424
 99425
 99426
 99427
 99428
 99429
 99430
 99431
 99432
 99433
 99434
 99435
 99436
 99437
 99438
 99439
 99440
 99441
 99442
 99443
 99444
 99445
 99446
 99447
 99448
 99449
 99450
 99451
 99452
 99453
 99454
 99455
 99456
 99457
 99458
 99459
 99460
 99461
 99462
 99463
 99464
 99465
 99466
 99467
 99468
 99469
 99470
 99471
 99472
 99473
 99474
 99475
 99476
 99477
 99478
 99479
 99480
 99481
 99482
 99483
 99484
 99485
 99486
 99487
 99488
 99489
 99490
 99491
 99492
 99493
 99494
 99495
 99496
 99497
 99498
 99499
 99500
 99501
 99502
 99503
 99504
 99505
 99506
 99507
 99508
 99509
 99510
 99511
 99512
 99513
 99514
 99515
 99516
 99517
 99518
 99519
 99520
 99521
 99522
 99523
 99524
 99525
 99526
 99527
 99528
 99529
 99530
 99531
 99532
 99533
 99534
 99535
 99536
 99537
 99538
 99539
 99540
 99541
 99542
 99543
 99544
 99545
 99546
 99547
 99548
 99549
 99550
 99551
 99552
 99553
 99554
 99555
 99556
 99557
 99558
 99559
 99560
 99561
 99562
 99563
 99564
 99565
 99566
 99567
 99568
 99569
 99570
 99571
 99572
 99573
 99574
 99575
 99576
 99577
 99578
 99579
 99580
 99581
 99582
 99583
 99584
 99585
 99586
 99587
 99588
 99589
 99590
 99591
 99592
 99593
 99594
 99595
 99596
 99597
 99598
 99599
 99600
 99601
 99602
 99603
 99604
 99605
 99606
 99607
 99608
 99609
 99610
 99611
 99612
 99613
 99614
 99615
 99616
 99617
 99618
 99619
 99620
 99621
 99622
 99623
 99624
 99625
 99626
 99627
 99628
 99629
 99630
 99631
 99632
 99633
 99634
 99635
 99636
 99637
 99638
 99639
 99640
 99641
 99642
 99643
 99644
 99645
 99646
 99647
 99648
 99649
 99650
 99651
 99652
 99653
 99654
 99655
 99656
 99657
 99658
 99659
 99660
 99661
 99662
 99663
 99664
 99665
 99666
 99667
 99668
 99669
 99670
 99671
 99672
 99673
 99674
 99675
 99676
 99677
 99678
 99679
 99680
 99681
 99682
 99683
 99684
 99685
 99686
 99687
 99688
 99689
 99690
 99691
 99692
 99693
 99694
 99695
 99696
 99697
 99698
 99699
 99700
 99701
 99702
 99703
 99704
 99705
 99706
 99707
 99708
 99709
 99710
 99711
 99712
 99713
 99714
 99715
 99716
 99717
 99718
 99719
 99720
 99721
 99722
 99723
 99724
 99725
 99726
 99727
 99728
 99729
 99730
 99731
 99732
 99733
 99734
 99735
 99736
 99737
 99738
 99739
 99740
 99741
 99742
 99743
 99744
 99745
 99746
 99747
 99748
 99749
 99750
 99751
 99752
 99753
 99754
 99755
 99756
 99757
 99758
 99759
 99760
 99761
 99762
 99763
 99764
 99765
 99766
 99767
 99768
 99769
 99770
 99771
 99772
 99773
 99774
 99775
 99776
 99777
 99778
 99779
 99780
 99781
 99782
 99783
 99784
 99785
 99786
 99787
 99788
 99789
 99790
 99791
 99792
 99793
 99794
 99795
 99796
 99797
 99798
 99799
 99800
 99801
 99802
 99803
 99804
 99805
 99806
 99807
 99808
 99809
 99810
 99811
 99812
 99813
 99814
 99815
 99816
 99817
 99818
 99819
 99820
 99821
 99822
 99823
 99824
 99825
 99826
 99827
 99828
 99829
 99830
 99831
 99832
 99833
 99834
 99835
 99836
 99837
 99838
 99839
 99840
 99841
 99842
 99843
 99844
 99845
 99846
 99847
 99848
 99849
 99850
 99851
 99852
 99853
 99854
 99855
 99856
 99857
 99858
 99859
 99860
 99861
 99862
 99863
 99864
 99865
 99866
 99867
 99868
 99869
 99870
 99871
 99872
 99873
 99874
 99875
 99876
 99877
 99878
 99879
 99880
 99881
 99882
 99883
 99884
 99885
 99886
 99887
 99888
 99889
 99890
 99891
 99892
 99893
 99894
 99895
 99896
 99897
 99898
 99899
 99900
 99901
 99902
 99903
 99904
 99905
 99906
 99907
 99908
 99909
 99910
 99911
 99912
 99913
 99914
 99915
 99916
 99917
 99918
 99919
 99920
 99921
 99922
 99923
 99924
 99925
 99926
 99927
 99928
 99929
 99930
 99931
 99932
 99933
 99934
 99935
 99936
 99937
 99938
 99939
 99940
 99941
 99942
 99943
 99944
 99945
 99946
 99947
 99948
 99949
 99950
 99951
 99952
 99953
 99954
 99955
 99956
 99957
 99958
 99959
 99960
 99961
 99962
 99963
 99964
 99965
 99966
 99967
 99968
 99969
 99970
 99971
 99972
 99973
 99974
 99975
 99976
 99977
 99978
 99979
 99980
 99981
 99982
 99983
 99984
 99985
 99986
 99987
 99988
 99989
 99990
 99991
 99992
 99993
 99994
 99995
 99996
 99997
 99998
 99999
100000
100001
100002
100003
100004
100005
100006
100007
100008
100009
100010
100011
100012
100013
100014
100015
100016
100017
100018
100019
100020
100021
100022
100023
100024
100025
100026
100027
100028
100029
100030
100031
100032
100033
100034
100035
100036
100037
100038
100039
100040
100041
100042
100043
100044
100045
100046
100047
100048
100049
100050
100051
100052
100053
100054
100055
100056
100057
100058
100059
100060
100061
100062
100063
100064
100065
100066
100067
100068
100069
100070
100071
100072
100073
100074
100075
100076
100077
100078
100079
100080
100081
100082
100083
100084
100085
100086
100087
100088
100089
100090
100091
100092
100093
100094
100095
100096
100097
100098
100099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
100932
100933
100934
100935
100936
100937
100938
100939
100940
100941
100942
100943
100944
100945
100946
100947
100948
100949
100950
100951
100952
100953
100954
100955
100956
100957
100958
100959
100960
100961
100962
100963
100964
100965
100966
100967
100968
100969
100970
100971
100972
100973
100974
100975
100976
100977
100978
100979
100980
100981
100982
100983
100984
100985
100986
100987
100988
100989
100990
100991
100992
100993
100994
100995
100996
100997
100998
100999
101000
101001
101002
101003
101004
101005
101006
101007
101008
101009
101010
101011
101012
101013
101014
101015
101016
101017
101018
101019
101020
101021
101022
101023
101024
101025
101026
101027
101028
101029
101030
101031
101032
101033
101034
101035
101036
101037
101038
101039
101040
101041
101042
101043
101044
101045
101046
101047
101048
101049
101050
101051
101052
101053
101054
101055
101056
101057
101058
101059
101060
101061
101062
101063
101064
101065
101066
101067
101068
101069
101070
101071
101072
101073
101074
101075
101076
101077
101078
101079
101080
101081
101082
101083
101084
101085
101086
101087
101088
101089
101090
101091
101092
101093
101094
101095
101096
101097
101098
101099
101100
101101
101102
101103
101104
101105
101106
101107
101108
101109
101110
101111
101112
101113
101114
101115
101116
101117
101118
101119
101120
101121
101122
101123
101124
101125
101126
101127
101128
101129
101130
101131
101132
101133
101134
101135
101136
101137
101138
101139
101140
101141
101142
101143
101144
101145
101146
101147
101148
101149
101150
101151
101152
101153
101154
101155
101156
101157
101158
101159
101160
101161
101162
101163
101164
101165
101166
101167
101168
101169
101170
101171
101172
101173
101174
101175
101176
101177
101178
101179
101180
101181
101182
101183
101184
101185
101186
101187
101188
101189
101190
101191
101192
101193
101194
101195
101196
101197
101198
101199
101200
101201
101202
101203
101204
101205
101206
101207
101208
101209
101210
101211
101212
101213
101214
101215
101216
101217
101218
101219
101220
101221
101222
101223
101224
101225
101226
101227
101228
101229
101230
101231
101232
101233
101234
101235
101236
101237
101238
101239
101240
101241
101242
101243
101244
101245
101246
101247
101248
101249
101250
101251
101252
101253
101254
101255
101256
101257
101258
101259
101260
101261
101262
101263
101264
101265
101266
101267
101268
101269
101270
101271
101272
101273
101274
101275
101276
101277
101278
101279
101280
101281
101282
101283
101284
101285
101286
101287
101288
101289
101290
101291
101292
101293
101294
101295
101296
101297
101298
101299
101300
101301
101302
101303
101304
101305
101306
101307
101308
101309
101310
101311
101312
101313
101314
101315
101316
101317
101318
101319
101320
101321
101322
101323
101324
101325
101326
101327
101328
101329
101330
101331
101332
101333
101334
101335
101336
101337
101338
101339
101340
101341
101342
101343
101344
101345
101346
101347
101348
101349
101350
101351
101352
101353
101354
101355
101356
101357
101358
101359
101360
101361
101362
101363
101364
101365
101366
101367
101368
101369
101370
101371
101372
101373
101374
101375
101376
101377
101378
101379
101380
101381
101382
101383
101384
101385
101386
101387
101388
101389
101390
101391
101392
101393
101394
101395
101396
101397
101398
101399
101400
101401
101402
101403
101404
101405
101406
101407
101408
101409
101410
101411
101412
101413
101414
101415
101416
101417
101418
101419
101420
101421
101422
101423
101424
101425
101426
101427
101428
101429
101430
101431
101432
101433
101434
101435
101436
101437
101438
101439
101440
101441
101442
101443
101444
101445
101446
101447
101448
101449
101450
101451
101452
101453
101454
101455
101456
101457
101458
101459
101460
101461
101462
101463
101464
101465
101466
101467
101468
101469
101470
101471
101472
101473
101474
101475
101476
101477
101478
101479
101480
101481
101482
101483
101484
101485
101486
101487
101488
101489
101490
101491
101492
101493
101494
101495
101496
101497
101498
101499
101500
101501
101502
101503
101504
101505
101506
101507
101508
101509
101510
101511
101512
101513
101514
101515
101516
101517
101518
101519
101520
101521
101522
101523
101524
101525
101526
101527
101528
101529
101530
101531
101532
101533
101534
101535
101536
101537
101538
101539
101540
101541
101542
101543
101544
101545
101546
101547
101548
101549
101550
101551
101552
101553
101554
101555
101556
101557
101558
101559
101560
101561
101562
101563
101564
101565
101566
101567
101568
101569
101570
101571
101572
101573
101574
101575
101576
101577
101578
101579
101580
101581
101582
101583
101584
101585
101586
101587
101588
101589
101590
101591
101592
101593
101594
101595
101596
101597
101598
101599
101600
101601
101602
101603
101604
101605
101606
101607
101608
101609
101610
101611
101612
101613
101614
101615
101616
101617
101618
101619
101620
101621
101622
101623
101624
101625
101626
101627
101628
101629
101630
101631
101632
101633
101634
101635
101636
101637
101638
101639
101640
101641
101642
101643
101644
101645
101646
101647
101648
101649
101650
101651
101652
101653
101654
101655
101656
101657
101658
101659
101660
101661
101662
101663
101664
101665
101666
101667
101668
101669
101670
101671
101672
101673
101674
101675
101676
101677
101678
101679
101680
101681
101682
101683
101684
101685
101686
101687
101688
101689
101690
101691
101692
101693
101694
101695
101696
101697
101698
101699
101700
101701
101702
101703
101704
101705
101706
101707
101708
101709
101710
101711
101712
101713
101714
101715
101716
101717
101718
101719
101720
101721
101722
101723
101724
101725
101726
101727
101728
101729
101730
101731
101732
101733
101734
101735
101736
101737
101738
101739
101740
101741
101742
101743
101744
101745
101746
101747
101748
101749
101750
101751
101752
101753
101754
101755
101756
101757
101758
101759
101760
101761
101762
101763
101764
101765
101766
101767
101768
101769
101770
101771
101772
101773
101774
101775
101776
101777
101778
101779
101780
101781
101782
101783
101784
101785
101786
101787
101788
101789
101790
101791
101792
101793
101794
101795
101796
101797
101798
101799
101800
101801
101802
101803
101804
101805
101806
101807
101808
101809
101810
101811
101812
101813
101814
101815
101816
101817
101818
101819
101820
101821
101822
101823
101824
101825
101826
101827
101828
101829
101830
101831
101832
101833
101834
101835
101836
101837
101838
101839
101840
101841
101842
101843
101844
101845
101846
101847
101848
101849
101850
101851
101852
101853
101854
101855
101856
101857
101858
101859
101860
101861
101862
101863
101864
101865
101866
101867
101868
101869
101870
101871
101872
101873
101874
101875
101876
101877
101878
101879
101880
101881
101882
101883
101884
101885
101886
101887
101888
101889
101890
101891
101892
101893
101894
101895
101896
101897
101898
101899
101900
101901
101902
101903
101904
101905
101906
101907
101908
101909
101910
101911
101912
101913
101914
101915
101916
101917
101918
101919
101920
101921
101922
101923
101924
101925
101926
101927
101928
101929
101930
101931
101932
101933
101934
101935
101936
101937
101938
101939
101940
101941
101942
101943
101944
101945
101946
101947
101948
101949
101950
101951
101952
101953
101954
101955
101956
101957
101958
101959
101960
101961
101962
101963
101964
101965
101966
101967
101968
101969
101970
101971
101972
101973
101974
101975
101976
101977
101978
101979
101980
101981
101982
101983
101984
101985
101986
101987
101988
101989
101990
101991
101992
101993
101994
101995
101996
101997
101998
101999
102000
102001
102002
102003
102004
102005
102006
102007
102008
102009
102010
102011
102012
102013
102014
102015
102016
102017
102018
102019
102020
102021
102022
102023
102024
102025
102026
102027
102028
102029
102030
102031
102032
102033
102034
102035
102036
102037
102038
102039
102040
102041
102042
102043
102044
102045
102046
102047
102048
102049
102050
102051
102052
102053
102054
102055
102056
102057
102058
102059
102060
102061
102062
102063
102064
102065
102066
102067
102068
102069
102070
102071
102072
102073
102074
102075
102076
102077
102078
102079
102080
102081
102082
102083
102084
102085
102086
102087
102088
102089
102090
102091
102092
102093
102094
102095
102096
102097
102098
102099
102100
102101
102102
102103
102104
102105
102106
102107
102108
102109
102110
102111
102112
102113
102114
102115
102116
102117
102118
102119
102120
102121
102122
102123
102124
102125
102126
102127
102128
102129
102130
102131
102132
102133
102134
102135
102136
102137
102138
102139
102140
102141
102142
102143
102144
102145
102146
102147
102148
102149
102150
102151
102152
102153
102154
102155
102156
102157
102158
102159
102160
102161
102162
102163
102164
102165
102166
102167
102168
102169
102170
102171
102172
102173
102174
102175
102176
102177
102178
102179
102180
102181
102182
102183
102184
102185
102186
102187
102188
102189
102190
102191
102192
102193
102194
102195
102196
102197
102198
102199
102200
102201
102202
102203
102204
102205
102206
102207
102208
102209
102210
102211
102212
102213
102214
102215
102216
102217
102218
102219
102220
102221
102222
102223
102224
102225
102226
102227
102228
102229
102230
102231
102232
102233
102234
102235
102236
102237
102238
102239
102240
102241
102242
102243
102244
102245
102246
102247
102248
102249
102250
102251
102252
102253
102254
102255
102256
102257
102258
102259
102260
102261
102262
102263
102264
102265
102266
102267
102268
102269
102270
102271
102272
102273
102274
102275
102276
102277
102278
102279
102280
102281
102282
102283
102284
102285
102286
102287
102288
102289
102290
102291
102292
102293
102294
102295
102296
102297
102298
102299
102300
102301
102302
102303
102304
102305
102306
102307
102308
102309
102310
102311
102312
102313
102314
102315
102316
102317
102318
102319
102320
102321
102322
102323
102324
102325
102326
102327
102328
102329
102330
102331
102332
102333
102334
102335
102336
102337
102338
102339
102340
102341
102342
102343
102344
102345
102346
102347
102348
102349
102350
102351
102352
102353
102354
102355
102356
102357
102358
102359
102360
102361
102362
102363
102364
102365
102366
102367
102368
102369
102370
102371
102372
102373
102374
102375
102376
102377
102378
102379
102380
102381
102382
102383
102384
102385
102386
102387
102388
102389
102390
102391
102392
102393
102394
102395
102396
102397
102398
102399
102400
102401
102402
102403
102404
102405
102406
102407
102408
102409
102410
102411
102412
102413
102414
102415
102416
102417
102418
102419
102420
102421
102422
102423
102424
102425
102426
102427
102428
102429
102430
102431
102432
102433
102434
102435
102436
102437
102438
102439
102440
102441
102442
102443
102444
102445
102446
102447
102448
102449
102450
102451
102452
102453
102454
102455
102456
102457
102458
102459
102460
102461
102462
102463
102464
102465
102466
102467
102468
102469
102470
102471
102472
102473
102474
102475
102476
102477
102478
102479
102480
102481
102482
102483
102484
102485
102486
102487
102488
102489
102490
102491
102492
102493
102494
102495
102496
102497
102498
102499
102500
102501
102502
102503
102504
102505
102506
102507
102508
102509
102510
102511
102512
102513
102514
102515
102516
102517
102518
102519
102520
102521
102522
102523
102524
102525
102526
102527
102528
102529
102530
102531
102532
102533
102534
102535
102536
102537
102538
102539
102540
102541
102542
102543
102544
102545
102546
102547
102548
102549
102550
102551
102552
102553
102554
102555
102556
102557
102558
102559
102560
102561
102562
102563
102564
102565
102566
102567
102568
102569
102570
102571
102572
102573
102574
102575
102576
102577
102578
102579
102580
102581
102582
102583
102584
102585
102586
102587
102588
102589
102590
102591
102592
102593
102594
102595
102596
102597
102598
102599
102600
102601
102602
102603
102604
102605
102606
102607
102608
102609
102610
102611
102612
102613
102614
102615
102616
102617
102618
102619
102620
102621
102622
102623
102624
102625
102626
102627
102628
102629
102630
102631
102632
102633
102634
102635
102636
102637
102638
102639
102640
102641
102642
102643
102644
102645
102646
102647
102648
102649
102650
102651
102652
102653
102654
102655
102656
102657
102658
102659
102660
102661
102662
102663
102664
102665
102666
102667
102668
102669
102670
102671
102672
102673
102674
102675
102676
102677
102678
102679
102680
102681
102682
102683
102684
102685
102686
102687
102688
102689
102690
102691
102692
102693
102694
102695
102696
102697
102698
102699
102700
102701
102702
102703
102704
102705
102706
102707
102708
102709
102710
102711
102712
102713
102714
102715
102716
102717
102718
102719
102720
102721
102722
102723
102724
102725
102726
102727
102728
102729
102730
102731
102732
102733
102734
102735
102736
102737
102738
102739
102740
102741
102742
102743
102744
102745
102746
102747
102748
102749
102750
102751
102752
102753
102754
102755
102756
102757
102758
102759
102760
102761
102762
102763
102764
102765
102766
102767
102768
102769
102770
102771
102772
102773
102774
102775
102776
102777
102778
102779
102780
102781
102782
102783
102784
102785
102786
102787
102788
102789
102790
102791
102792
102793
102794
102795
102796
102797
102798
102799
102800
102801
102802
102803
102804
102805
102806
102807
102808
102809
102810
102811
102812
102813
102814
102815
102816
102817
102818
102819
102820
102821
102822
102823
102824
102825
102826
102827
102828
102829
102830
102831
102832
102833
102834
102835
102836
102837
102838
102839
102840
102841
102842
102843
102844
102845
102846
102847
102848
102849
102850
102851
102852
102853
102854
102855
102856
102857
102858
102859
102860
102861
102862
102863
102864
102865
102866
102867
102868
102869
102870
102871
102872
102873
102874
102875
102876
102877
102878
102879
102880
102881
102882
102883
102884
102885
102886
102887
102888
102889
102890
102891
102892
102893
102894
102895
102896
102897
102898
102899
102900
102901
102902
102903
102904
102905
102906
102907
102908
102909
102910
102911
102912
102913
102914
102915
102916
102917
102918
102919
102920
102921
102922
102923
102924
102925
102926
102927
102928
102929
102930
102931
102932
102933
102934
102935
102936
102937
102938
102939
102940
102941
102942
102943
102944
102945
102946
102947
102948
102949
102950
102951
102952
102953
102954
102955
102956
102957
102958
102959
102960
102961
102962
102963
102964
102965
102966
102967
102968
102969
102970
102971
102972
102973
102974
102975
102976
102977
102978
102979
102980
102981
102982
102983
102984
102985
102986
102987
102988
102989
102990
102991
102992
102993
102994
102995
102996
102997
102998
102999
103000
103001
103002
103003
103004
103005
103006
103007
103008
103009
103010
103011
103012
103013
103014
103015
103016
103017
103018
103019
103020
103021
103022
103023
103024
103025
103026
103027
103028
103029
103030
103031
103032
103033
103034
103035
103036
103037
103038
103039
103040
103041
103042
103043
103044
103045
103046
103047
103048
103049
103050
103051
103052
103053
103054
103055
103056
103057
103058
103059
103060
103061
103062
103063
103064
103065
103066
103067
103068
103069
103070
103071
103072
103073
103074
103075
103076
103077
103078
103079
103080
103081
103082
103083
103084
103085
103086
103087
103088
103089
103090
103091
103092
103093
103094
103095
103096
103097
103098
103099
103100
103101
103102
103103
103104
103105
103106
103107
103108
103109
103110
103111
103112
103113
103114
103115
103116
103117
103118
103119
103120
103121
103122
103123
103124
103125
103126
103127
103128
103129
103130
103131
103132
103133
103134
103135
103136
103137
103138
103139
103140
103141
103142
103143
103144
103145
103146
103147
103148
103149
103150
103151
103152
103153
103154
103155
103156
103157
103158
103159
103160
103161
103162
103163
103164
103165
103166
103167
103168
103169
103170
103171
103172
103173
103174
103175
103176
103177
103178
103179
103180
103181
103182
103183
103184
103185
103186
103187
103188
103189
103190
103191
103192
103193
103194
103195
103196
103197
103198
103199
103200
103201
103202
103203
103204
103205
103206
103207
103208
103209
103210
103211
103212
103213
103214
103215
103216
103217
103218
103219
103220
103221
103222
103223
103224
103225
103226
103227
103228
103229
103230
103231
103232
103233
103234
103235
103236
103237
103238
103239
103240
103241
103242
103243
103244
103245
103246
103247
103248
103249
103250
103251
103252
103253
103254
103255
103256
103257
103258
103259
103260
103261
103262
103263
103264
103265
103266
103267
103268
103269
103270
103271
103272
103273
103274
103275
103276
103277
103278
103279
103280
103281
103282
103283
103284
103285
103286
103287
103288
103289
103290
103291
103292
103293
103294
103295
103296
103297
103298
103299
103300
103301
103302
103303
103304
103305
103306
103307
103308
103309
103310
103311
103312
103313
103314
103315
103316
103317
103318
103319
103320
103321
103322
103323
103324
103325
103326
103327
103328
103329
103330
103331
103332
103333
103334
103335
103336
103337
103338
103339
103340
103341
103342
103343
103344
103345
103346
103347
103348
103349
103350
103351
103352
103353
103354
103355
103356
103357
103358
103359
103360
103361
103362
103363
103364
103365
103366
103367
103368
103369
103370
103371
103372
103373
103374
103375
103376
103377
103378
103379
103380
103381
103382
103383
103384
103385
103386
103387
103388
103389
103390
103391
103392
103393
103394
103395
103396
103397
103398
103399
103400
103401
103402
103403
103404
103405
103406
103407
103408
103409
103410
103411
103412
103413
103414
103415
103416
103417
103418
103419
103420
103421
103422
103423
103424
103425
103426
103427
103428
103429
103430
103431
103432
103433
103434
103435
103436
103437
103438
103439
103440
103441
103442
103443
103444
103445
103446
103447
103448
103449
103450
103451
103452
103453
103454
103455
103456
103457
103458
103459
103460
103461
103462
103463
103464
103465
103466
103467
103468
103469
103470
103471
103472
103473
103474
103475
103476
103477
103478
103479
103480
103481
103482
103483
103484
103485
103486
103487
103488
103489
103490
103491
103492
103493
103494
103495
103496
103497
103498
103499
103500
103501
103502
103503
103504
103505
103506
103507
103508
103509
103510
103511
103512
103513
103514
103515
103516
103517
103518
103519
103520
103521
103522
103523
103524
103525
103526
103527
103528
103529
103530
103531
103532
103533
103534
103535
103536
103537
103538
103539
103540
103541
103542
103543
103544
103545
103546
103547
103548
103549
103550
103551
103552
103553
103554
103555
103556
103557
103558
103559
103560
103561
103562
103563
103564
103565
103566
103567
103568
103569
103570
103571
103572
103573
103574
103575
103576
103577
103578
103579
103580
103581
103582
103583
103584
103585
103586
103587
103588
103589
103590
103591
103592
103593
103594
103595
103596
103597
103598
103599
103600
103601
103602
103603
103604
103605
103606
103607
103608
103609
103610
103611
103612
103613
103614
103615
103616
103617
103618
103619
103620
103621
103622
103623
103624
103625
103626
103627
103628
103629
103630
103631
103632
103633
103634
103635
103636
103637
103638
103639
103640
103641
103642
103643
103644
103645
103646
103647
103648
103649
103650
103651
103652
103653
103654
103655
103656
103657
103658
103659
103660
103661
103662
103663
103664
103665
103666
103667
103668
103669
103670
103671
103672
103673
103674
103675
103676
103677
103678
103679
103680
103681
103682
103683
103684
103685
103686
103687
103688
103689
103690
103691
103692
103693
103694
103695
103696
103697
103698
103699
103700
103701
103702
103703
103704
103705
103706
103707
103708
103709
103710
103711
103712
103713
103714
103715
103716
103717
103718
103719
103720
103721
103722
103723
103724
103725
103726
103727
103728
103729
103730
103731
103732
103733
103734
103735
103736
103737
103738
103739
103740
103741
103742
103743
103744
103745
103746
103747
103748
103749
103750
103751
103752
103753
103754
103755
103756
103757
103758
103759
103760
103761
103762
103763
103764
103765
103766
103767
103768
103769
103770
103771
103772
103773
103774
103775
103776
103777
103778
103779
103780
103781
103782
103783
103784
103785
103786
103787
103788
103789
103790
103791
103792
103793
103794
103795
103796
103797
103798
103799
103800
103801
103802
103803
103804
103805
103806
103807
103808
103809
103810
103811
103812
103813
103814
103815
103816
103817
103818
103819
103820
103821
103822
103823
103824
103825
103826
103827
103828
103829
103830
103831
103832
103833
103834
103835
103836
103837
103838
103839
103840
103841
103842
103843
103844
103845
103846
103847
103848
103849
103850
103851
103852
103853
103854
103855
103856
103857
103858
103859
103860
103861
103862
103863
103864
103865
103866
103867
103868
103869
103870
103871
103872
103873
103874
103875
103876
103877
103878
103879
103880
103881
103882
103883
103884
103885
103886
103887
103888
103889
103890
103891
103892
103893
103894
103895
103896
103897
103898
103899
103900
103901
103902
103903
103904
103905
103906
103907
103908
103909
103910
103911
103912
103913
103914
103915
103916
103917
103918
103919
103920
103921
103922
103923
103924
103925
103926
103927
103928
103929
103930
103931
103932
103933
103934
103935
103936
103937
103938
103939
103940
103941
103942
103943
103944
103945
103946
103947
103948
103949
103950
103951
103952
103953
103954
103955
103956
103957
103958
103959
103960
103961
103962
103963
103964
103965
103966
103967
103968
103969
103970
103971
103972
103973
103974
103975
103976
103977
103978
103979
103980
103981
103982
103983
103984
103985
103986
103987
103988
103989
103990
103991
103992
103993
103994
103995
103996
103997
103998
103999
104000
104001
104002
104003
104004
104005
104006
104007
104008
104009
104010
104011
104012
104013
104014
104015
104016
104017
104018
104019
104020
104021
104022
104023
104024
104025
104026
104027
104028
104029
104030
104031
104032
104033
104034
104035
104036
104037
104038
104039
104040
104041
104042
104043
104044
104045
104046
104047
104048
104049
104050
104051
104052
104053
104054
104055
104056
104057
104058
104059
104060
104061
104062
104063
104064
104065
104066
104067
104068
104069
104070
104071
104072
104073
104074
104075
104076
104077
104078
104079
104080
104081
104082
104083
104084
104085
104086
104087
104088
104089
104090
104091
104092
104093
104094
104095
104096
104097
104098
104099
104100
104101
104102
104103
104104
104105
104106
104107
104108
104109
104110
104111
104112
104113
104114
104115
104116
104117
104118
104119
104120
104121
104122
104123
104124
104125
104126
104127
104128
104129
104130
104131
104132
104133
104134
104135
104136
104137
104138
104139
104140
104141
104142
104143
104144
104145
104146
104147
104148
104149
104150
104151
104152
104153
104154
104155
104156
104157
104158
104159
104160
104161
104162
104163
104164
104165
104166
104167
104168
104169
104170
104171
104172
104173
104174
104175
104176
104177
104178
104179
104180
104181
104182
104183
104184
104185
104186
104187
104188
104189
104190
104191
104192
104193
104194
104195
104196
104197
104198
104199
104200
104201
104202
104203
104204
104205
104206
104207
104208
104209
104210
104211
104212
104213
104214
104215
104216
104217
104218
104219
104220
104221
104222
104223
104224
104225
104226
104227
104228
104229
104230
104231
104232
104233
104234
104235
104236
104237
104238
104239
104240
104241
104242
104243
104244
104245
104246
104247
104248
104249
104250
104251
104252
104253
104254
104255
104256
104257
104258
104259
104260
104261
104262
104263
104264
104265
104266
104267
104268
104269
104270
104271
104272
104273
104274
104275
104276
104277
104278
104279
104280
104281
104282
104283
104284
104285
104286
104287
104288
104289
104290
104291
104292
104293
104294
104295
104296
104297
104298
104299
104300
104301
104302
104303
104304
104305
104306
104307
104308
104309
104310
104311
104312
104313
104314
104315
104316
104317
104318
104319
104320
104321
104322
104323
104324
104325
104326
104327
104328
104329
104330
104331
104332
104333
104334
104335
104336
104337
104338
104339
104340
104341
104342
104343
104344
104345
104346
104347
104348
104349
104350
104351
104352
104353
104354
104355
104356
104357
104358
104359
104360
104361
104362
104363
104364
104365
104366
104367
104368
104369
104370
104371
104372
104373
104374
104375
104376
104377
104378
104379
104380
104381
104382
104383
104384
104385
104386
104387
104388
104389
104390
104391
104392
104393
104394
104395
104396
104397
104398
104399
104400
104401
104402
104403
104404
104405
104406
104407
104408
104409
104410
104411
104412
104413
104414
104415
104416
104417
104418
104419
104420
104421
104422
104423
104424
104425
104426
104427
104428
104429
104430
104431
104432
104433
104434
104435
104436
104437
104438
104439
104440
104441
104442
104443
104444
104445
104446
104447
104448
104449
104450
104451
104452
104453
104454
104455
104456
104457
104458
104459
104460
104461
104462
104463
104464
104465
104466
104467
104468
104469
104470
104471
104472
104473
104474
104475
104476
104477
104478
104479
104480
104481
104482
104483
104484
104485
104486
104487
104488
104489
104490
104491
104492
104493
104494
104495
104496
104497
104498
104499
104500
104501
104502
104503
104504
104505
104506
104507
104508
104509
104510
104511
104512
104513
104514
104515
104516
104517
104518
104519
104520
104521
104522
104523
104524
104525
104526
104527
104528
104529
104530
104531
104532
104533
104534
104535
104536
104537
104538
104539
104540
104541
104542
104543
104544
104545
104546
104547
104548
104549
104550
104551
104552
104553
104554
104555
104556
104557
104558
104559
104560
104561
104562
104563
104564
104565
104566
104567
104568
104569
104570
104571
104572
104573
104574
104575
104576
104577
104578
104579
104580
104581
104582
104583
104584
104585
104586
104587
104588
104589
104590
104591
104592
104593
104594
104595
104596
104597
104598
104599
104600
104601
104602
104603
104604
104605
104606
104607
104608
104609
104610
104611
104612
104613
104614
104615
104616
104617
104618
104619
104620
104621
104622
104623
104624
104625
104626
104627
104628
104629
104630
104631
104632
104633
104634
104635
104636
104637
104638
104639
104640
104641
104642
104643
104644
104645
104646
104647
104648
104649
104650
104651
104652
104653
104654
104655
104656
104657
104658
104659
104660
104661
104662
104663
104664
104665
104666
104667
104668
104669
104670
104671
104672
104673
104674
104675
104676
104677
104678
104679
104680
104681
104682
104683
104684
104685
104686
104687
104688
104689
104690
104691
104692
104693
104694
104695
104696
104697
104698
104699
104700
104701
104702
104703
104704
104705
104706
104707
104708
104709
104710
104711
104712
104713
104714
104715
104716
104717
104718
104719
104720
104721
104722
104723
104724
104725
104726
104727
104728
104729
104730
104731
104732
104733
104734
104735
104736
104737
104738
104739
104740
104741
104742
104743
104744
104745
104746
104747
104748
104749
104750
104751
104752
104753
104754
104755
104756
104757
104758
104759
104760
104761
104762
104763
104764
104765
104766
104767
104768
104769
104770
104771
104772
104773
104774
104775
104776
104777
104778
104779
104780
104781
104782
104783
104784
104785
104786
104787
104788
104789
104790
104791
104792
104793
104794
104795
104796
104797
104798
104799
104800
104801
104802
104803
104804
104805
104806
104807
104808
104809
104810
104811
104812
104813
104814
104815
104816
104817
104818
104819
104820
104821
104822
104823
104824
104825
104826
104827
104828
104829
104830
104831
104832
104833
104834
104835
104836
104837
104838
104839
104840
104841
104842
104843
104844
104845
104846
104847
104848
104849
104850
104851
104852
104853
104854
104855
104856
104857
104858
104859
104860
104861
104862
104863
104864
104865
104866
104867
104868
104869
104870
104871
104872
104873
104874
104875
104876
104877
104878
104879
104880
104881
104882
104883
104884
104885
104886
104887
104888
104889
104890
104891
104892
104893
104894
104895
104896
104897
104898
104899
104900
104901
104902
104903
104904
104905
104906
104907
104908
104909
104910
104911
104912
104913
104914
104915
104916
104917
104918
104919
104920
104921
104922
104923
104924
104925
104926
104927
104928
104929
104930
104931
104932
104933
104934
104935
104936
104937
104938
104939
104940
104941
104942
104943
104944
104945
104946
104947
104948
104949
104950
104951
104952
104953
104954
104955
104956
104957
104958
104959
104960
104961
104962
104963
104964
104965
104966
104967
104968
104969
104970
104971
104972
104973
104974
104975
104976
104977
104978
104979
104980
104981
104982
104983
104984
104985
104986
104987
104988
104989
104990
104991
104992
104993
104994
104995
104996
104997
104998
104999
105000
105001
105002
105003
105004
105005
105006
105007
105008
105009
105010
105011
105012
105013
105014
105015
105016
105017
105018
105019
105020
105021
105022
105023
105024
105025
105026
105027
105028
105029
105030
105031
105032
105033
105034
105035
105036
105037
105038
105039
105040
105041
105042
105043
105044
105045
105046
105047
105048
105049
105050
105051
105052
105053
105054
105055
105056
105057
105058
105059
105060
105061
105062
105063
105064
105065
105066
105067
105068
105069
105070
105071
105072
105073
105074
105075
105076
105077
105078
105079
105080
105081
105082
105083
105084
105085
105086
105087
105088
105089
105090
105091
105092
105093
105094
105095
105096
105097
105098
105099
105100
105101
105102
105103
105104
105105
105106
105107
105108
105109
105110
105111
105112
105113
105114
105115
105116
105117
105118
105119
105120
105121
105122
105123
105124
105125
105126
105127
105128
105129
105130
105131
105132
105133
105134
105135
105136
105137
105138
105139
105140
105141
105142
105143
105144
105145
105146
105147
105148
105149
105150
105151
105152
105153
105154
105155
105156
105157
105158
105159
105160
105161
105162
105163
105164
105165
105166
105167
105168
105169
105170
105171
105172
105173
105174
105175
105176
105177
105178
105179
105180
105181
105182
105183
105184
105185
105186
105187
105188
105189
105190
105191
105192
105193
105194
105195
105196
105197
105198
105199
105200
105201
105202
105203
105204
105205
105206
105207
105208
105209
105210
105211
105212
105213
105214
105215
105216
105217
105218
105219
105220
105221
105222
105223
105224
105225
105226
105227
105228
105229
105230
105231
105232
105233
105234
105235
105236
105237
105238
105239
105240
105241
105242
105243
105244
105245
105246
105247
105248
105249
105250
105251
105252
105253
105254
105255
105256
105257
105258
105259
105260
105261
105262
105263
105264
105265
105266
105267
105268
105269
105270
105271
105272
105273
105274
105275
105276
105277
105278
105279
105280
105281
105282
105283
105284
105285
105286
105287
105288
105289
105290
105291
105292
105293
105294
105295
105296
105297
105298
105299
105300
105301
105302
105303
105304
105305
105306
105307
105308
105309
105310
105311
105312
105313
105314
105315
105316
105317
105318
105319
105320
105321
105322
105323
105324
105325
105326
105327
105328
105329
105330
105331
105332
105333
105334
105335
105336
105337
105338
105339
105340
105341
105342
105343
105344
105345
105346
105347
105348
105349
105350
105351
105352
105353
105354
105355
105356
105357
105358
105359
105360
105361
105362
105363
105364
105365
105366
105367
105368
105369
105370
105371
105372
105373
105374
105375
105376
105377
105378
105379
105380
105381
105382
105383
105384
105385
105386
105387
105388
105389
105390
105391
105392
105393
105394
105395
105396
105397
105398
105399
105400
105401
105402
105403
105404
105405
105406
105407
105408
105409
105410
105411
105412
105413
105414
105415
105416
105417
105418
105419
105420
105421
105422
105423
105424
105425
105426
105427
105428
105429
105430
105431
105432
105433
105434
105435
105436
105437
105438
105439
105440
105441
105442
105443
105444
105445
105446
105447
105448
105449
105450
105451
105452
105453
105454
105455
105456
105457
105458
105459
105460
105461
105462
105463
105464
105465
105466
105467
105468
105469
105470
105471
105472
105473
105474
105475
105476
105477
105478
105479
105480
105481
105482
105483
105484
105485
105486
105487
105488
105489
105490
105491
105492
105493
105494
105495
105496
105497
105498
105499
105500
105501
105502
105503
105504
105505
105506
105507
105508
105509
105510
105511
105512
105513
105514
105515
105516
105517
105518
105519
105520
105521
105522
105523
105524
105525
105526
105527
105528
105529
105530
105531
105532
105533
105534
105535
105536
105537
105538
105539
105540
105541
105542
105543
105544
105545
105546
105547
105548
105549
105550
105551
105552
105553
105554
105555
105556
105557
105558
105559
105560
105561
105562
105563
105564
105565
105566
105567
105568
105569
105570
105571
105572
105573
105574
105575
105576
105577
105578
105579
105580
105581
105582
105583
105584
105585
105586
105587
105588
105589
105590
105591
105592
105593
105594
105595
105596
105597
105598
105599
105600
105601
105602
105603
105604
105605
105606
105607
105608
105609
105610
105611
105612
105613
105614
105615
105616
105617
105618
105619
105620
105621
105622
105623
105624
105625
105626
105627
105628
105629
105630
105631
105632
105633
105634
105635
105636
105637
105638
105639
105640
105641
105642
105643
105644
105645
105646
105647
105648
105649
105650
105651
105652
105653
105654
105655
105656
105657
105658
105659
105660
105661
105662
105663
105664
105665
105666
105667
105668
105669
105670
105671
105672
105673
105674
105675
105676
105677
105678
105679
105680
105681
105682
105683
105684
105685
105686
105687
105688
105689
105690
105691
105692
105693
105694
105695
105696
105697
105698
105699
105700
105701
105702
105703
105704
105705
105706
105707
105708
105709
105710
105711
105712
105713
105714
105715
105716
105717
105718
105719
105720
105721
105722
105723
105724
105725
105726
105727
105728
105729
105730
105731
105732
105733
105734
105735
105736
105737
105738
105739
105740
105741
105742
105743
105744
105745
105746
105747
105748
105749
105750
105751
105752
105753
105754
105755
105756
105757
105758
105759
105760
105761
105762
105763
105764
105765
105766
105767
105768
105769
105770
105771
105772
105773
105774
105775
105776
105777
105778
105779
105780
105781
105782
105783
105784
105785
105786
105787
105788
105789
105790
105791
105792
105793
105794
105795
105796
105797
105798
105799
105800
105801
105802
105803
105804
105805
105806
105807
105808
105809
105810
105811
105812
105813
105814
105815
105816
105817
105818
105819
105820
105821
105822
105823
105824
105825
105826
105827
105828
105829
105830
105831
105832
105833
105834
105835
105836
105837
105838
105839
105840
105841
105842
105843
105844
105845
105846
105847
105848
105849
105850
105851
105852
105853
105854
105855
105856
105857
105858
105859
105860
105861
105862
105863
105864
105865
105866
105867
105868
105869
105870
105871
105872
105873
105874
105875
105876
105877
105878
105879
105880
105881
105882
105883
105884
105885
105886
105887
105888
105889
105890
105891
105892
105893
105894
105895
105896
105897
105898
105899
105900
105901
105902
105903
105904
105905
105906
105907
105908
105909
105910
105911
105912
105913
105914
105915
105916
105917
105918
105919
105920
105921
105922
105923
105924
105925
105926
105927
105928
105929
105930
105931
105932
105933
105934
105935
105936
105937
105938
105939
105940
105941
105942
105943
105944
105945
105946
105947
105948
105949
105950
105951
105952
105953
105954
105955
105956
105957
105958
105959
105960
105961
105962
105963
105964
105965
105966
105967
105968
105969
105970
105971
105972
105973
105974
105975
105976
105977
105978
105979
105980
105981
105982
105983
105984
105985
105986
105987
105988
105989
105990
105991
105992
105993
105994
105995
105996
105997
105998
105999
106000
106001
106002
106003
106004
106005
106006
106007
106008
106009
106010
106011
106012
106013
106014
106015
106016
106017
106018
106019
106020
106021
106022
106023
106024
106025
106026
106027
106028
106029
106030
106031
106032
106033
106034
106035
106036
106037
106038
106039
106040
106041
106042
106043
106044
106045
106046
106047
106048
106049
106050
106051
106052
106053
106054
106055
106056
106057
106058
106059
106060
106061
106062
106063
106064
106065
106066
106067
106068
106069
106070
106071
106072
106073
106074
106075
106076
106077
106078
106079
106080
106081
106082
106083
106084
106085
106086
106087
106088
106089
106090
106091
106092
106093
106094
106095
106096
106097
106098
106099
106100
106101
106102
106103
106104
106105
106106
106107
106108
106109
106110
106111
106112
106113
106114
106115
106116
106117
106118
106119
106120
106121
106122
106123
106124
106125
106126
106127
106128
106129
106130
106131
106132
106133
106134
106135
106136
106137
106138
106139
106140
106141
106142
106143
106144
106145
106146
106147
106148
106149
106150
106151
106152
106153
106154
106155
106156
106157
106158
106159
106160
106161
106162
106163
106164
106165
106166
106167
106168
106169
106170
106171
106172
106173
106174
106175
106176
106177
106178
106179
106180
106181
106182
106183
106184
106185
106186
106187
106188
106189
106190
106191
106192
106193
106194
106195
106196
106197
106198
106199
106200
106201
106202
106203
106204
106205
106206
106207
106208
106209
106210
106211
106212
106213
106214
106215
106216
106217
106218
106219
106220
106221
106222
106223
106224
106225
106226
106227
106228
106229
106230
106231
106232
106233
106234
106235
106236
106237
106238
106239
106240
106241
106242
106243
106244
106245
106246
106247
106248
106249
106250
106251
106252
106253
106254
106255
106256
106257
106258
106259
106260
106261
106262
106263
106264
106265
106266
106267
106268
106269
106270
106271
106272
106273
106274
106275
106276
106277
106278
106279
106280
106281
106282
106283
106284
106285
106286
106287
106288
106289
106290
106291
106292
106293
106294
106295
106296
106297
106298
106299
106300
106301
106302
106303
106304
106305
106306
106307
106308
106309
106310
106311
106312
106313
106314
106315
106316
106317
106318
106319
106320
106321
106322
106323
106324
106325
106326
106327
106328
106329
106330
106331
106332
106333
106334
106335
106336
106337
106338
106339
106340
106341
106342
106343
106344
106345
106346
106347
106348
106349
106350
106351
106352
106353
106354
106355
106356
106357
106358
106359
106360
106361
106362
106363
106364
106365
106366
106367
106368
106369
106370
106371
106372
106373
106374
106375
106376
106377
106378
106379
106380
106381
106382
106383
106384
106385
106386
106387
106388
106389
106390
106391
106392
106393
106394
106395
106396
106397
106398
106399
106400
106401
106402
106403
106404
106405
106406
106407
106408
106409
106410
106411
106412
106413
106414
106415
106416
106417
106418
106419
106420
106421
106422
106423
106424
106425
106426
106427
106428
106429
106430
106431
106432
106433
106434
106435
106436
106437
106438
106439
106440
106441
106442
106443
106444
106445
106446
106447
106448
106449
106450
106451
106452
106453
106454
106455
106456
106457
106458
106459
106460
106461
106462
106463
106464
106465
106466
106467
106468
106469
106470
106471
106472
106473
106474
106475
106476
106477
106478
106479
106480
106481
106482
106483
106484
106485
106486
106487
106488
106489
106490
106491
106492
106493
106494
106495
106496
106497
106498
106499
106500
106501
106502
106503
106504
106505
106506
106507
106508
106509
106510
106511
106512
106513
106514
106515
106516
106517
106518
106519
106520
106521
106522
106523
106524
106525
106526
106527
106528
106529
106530
106531
106532
106533
106534
106535
106536
106537
106538
106539
106540
106541
106542
106543
106544
106545
106546
106547
106548
106549
106550
106551
106552
106553
106554
106555
106556
106557
106558
106559
106560
106561
106562
106563
106564
106565
106566
106567
106568
106569
106570
106571
106572
106573
106574
106575
106576
106577
106578
106579
106580
106581
106582
106583
106584
106585
106586
106587
106588
106589
106590
106591
106592
106593
106594
106595
106596
106597
106598
106599
106600
106601
106602
106603
106604
106605
106606
106607
106608
106609
106610
106611
106612
106613
106614
106615
106616
106617
106618
106619
106620
106621
106622
106623
106624
106625
106626
106627
106628
106629
106630
106631
106632
106633
106634
106635
106636
106637
106638
106639
106640
106641
106642
106643
106644
106645
106646
106647
106648
106649
106650
106651
106652
106653
106654
106655
106656
106657
106658
106659
106660
106661
106662
106663
106664
106665
106666
106667
106668
106669
106670
106671
106672
106673
106674
106675
106676
106677
106678
106679
106680
106681
106682
106683
106684
106685
106686
106687
106688
106689
106690
106691
106692
106693
106694
106695
106696
106697
106698
106699
106700
106701
106702
106703
106704
106705
106706
106707
106708
106709
106710
106711
106712
106713
106714
106715
106716
106717
106718
106719
106720
106721
106722
106723
106724
106725
106726
106727
106728
106729
106730
106731
106732
106733
106734
106735
106736
106737
106738
106739
106740
106741
106742
106743
106744
106745
106746
106747
106748
106749
106750
106751
106752
106753
106754
106755
106756
106757
106758
106759
106760
106761
106762
106763
106764
106765
106766
106767
106768
106769
106770
106771
106772
106773
106774
106775
106776
106777
106778
106779
106780
106781
106782
106783
106784
106785
106786
106787
106788
106789
106790
106791
106792
106793
106794
106795
106796
106797
106798
106799
106800
106801
106802
106803
106804
106805
106806
106807
106808
106809
106810
106811
106812
106813
106814
106815
106816
106817
106818
106819
106820
106821
106822
106823
106824
106825
106826
106827
106828
106829
106830
106831
106832
106833
106834
106835
106836
106837
106838
106839
106840
106841
106842
106843
106844
106845
106846
106847
106848
106849
106850
106851
106852
106853
106854
106855
106856
106857
106858
106859
106860
106861
106862
106863
106864
106865
106866
106867
106868
106869
106870
106871
106872
106873
106874
106875
106876
106877
106878
106879
106880
106881
106882
106883
106884
106885
106886
106887
106888
106889
106890
106891
106892
106893
106894
106895
106896
106897
106898
106899
106900
106901
106902
106903
106904
106905
106906
106907
106908
106909
106910
106911
106912
106913
106914
106915
106916
106917
106918
106919
106920
106921
106922
106923
106924
106925
106926
106927
106928
106929
106930
106931
106932
106933
106934
106935
106936
106937
106938
106939
106940
106941
106942
106943
106944
106945
106946
106947
106948
106949
106950
106951
106952
106953
106954
106955
106956
106957
106958
106959
106960
106961
106962
106963
106964
106965
106966
106967
106968
106969
106970
106971
106972
106973
106974
106975
106976
106977
106978
106979
106980
106981
106982
106983
106984
106985
106986
106987
106988
106989
106990
106991
106992
106993
106994
106995
106996
106997
106998
106999
107000
107001
107002
107003
107004
107005
107006
107007
107008
107009
107010
107011
107012
107013
107014
107015
107016
107017
107018
107019
107020
107021
107022
107023
107024
107025
107026
107027
107028
107029
107030
107031
107032
107033
107034
107035
107036
107037
107038
107039
107040
107041
107042
107043
107044
107045
107046
107047
107048
107049
107050
107051
107052
107053
107054
107055
107056
107057
107058
107059
107060
107061
107062
107063
107064
107065
107066
107067
107068
107069
107070
107071
107072
107073
107074
107075
107076
107077
107078
107079
107080
107081
107082
107083
107084
107085
107086
107087
107088
107089
107090
107091
107092
107093
107094
107095
107096
107097
107098
107099
107100
107101
107102
107103
107104
107105
107106
107107
107108
107109
107110
107111
107112
107113
107114
107115
107116
107117
107118
107119
107120
107121
107122
107123
107124
107125
107126
107127
107128
107129
107130
107131
107132
107133
107134
107135
107136
107137
107138
107139
107140
107141
107142
107143
107144
107145
107146
107147
107148
107149
107150
107151
107152
107153
107154
107155
107156
107157
107158
107159
107160
107161
107162
107163
107164
107165
107166
107167
107168
107169
107170
107171
107172
107173
107174
107175
107176
107177
107178
107179
107180
107181
107182
107183
107184
107185
107186
107187
107188
107189
107190
107191
107192
107193
107194
107195
107196
107197
107198
107199
107200
107201
107202
107203
107204
107205
107206
107207
107208
107209
107210
107211
107212
107213
107214
107215
107216
107217
107218
107219
107220
107221
107222
107223
107224
107225
107226
107227
107228
107229
107230
107231
107232
107233
107234
107235
107236
107237
107238
107239
107240
107241
107242
107243
107244
107245
107246
107247
107248
107249
107250
107251
107252
107253
107254
107255
107256
107257
107258
107259
107260
107261
107262
107263
107264
107265
107266
107267
107268
107269
107270
107271
107272
107273
107274
107275
107276
107277
107278
107279
107280
107281
107282
107283
107284
107285
107286
107287
107288
107289
107290
107291
107292
107293
107294
107295
107296
107297
107298
107299
107300
107301
107302
107303
107304
107305
107306
107307
107308
107309
107310
107311
107312
107313
107314
107315
107316
107317
107318
107319
107320
107321
107322
107323
107324
107325
107326
107327
107328
107329
107330
107331
107332
107333
107334
107335
107336
107337
107338
107339
107340
107341
107342
107343
107344
107345
107346
107347
107348
107349
107350
107351
107352
107353
107354
107355
107356
107357
107358
107359
107360
107361
107362
107363
107364
107365
107366
107367
107368
107369
107370
107371
107372
107373
107374
107375
107376
107377
107378
107379
107380
107381
107382
107383
107384
107385
107386
107387
107388
107389
107390
107391
107392
107393
107394
107395
107396
107397
107398
107399
107400
107401
107402
107403
107404
107405
107406
107407
107408
107409
107410
107411
107412
107413
107414
107415
107416
107417
107418
107419
107420
107421
107422
107423
107424
107425
107426
107427
107428
107429
107430
107431
107432
107433
107434
107435
107436
107437
107438
107439
107440
107441
107442
107443
107444
107445
107446
107447
107448
107449
107450
107451
107452
107453
107454
107455
107456
107457
107458
107459
107460
107461
107462
107463
107464
107465
107466
107467
107468
107469
107470
107471
107472
107473
107474
107475
107476
107477
107478
107479
107480
107481
107482
107483
107484
107485
107486
107487
107488
107489
107490
107491
107492
107493
107494
107495
107496
107497
107498
107499
107500
107501
107502
107503
107504
107505
107506
107507
107508
107509
107510
107511
107512
107513
107514
107515
107516
107517
107518
107519
107520
107521
107522
107523
107524
107525
107526
107527
107528
107529
107530
107531
107532
107533
107534
107535
107536
107537
107538
107539
107540
107541
107542
107543
107544
107545
107546
107547
107548
107549
107550
107551
107552
107553
107554
107555
107556
107557
107558
107559
107560
107561
107562
107563
107564
107565
107566
107567
107568
107569
107570
107571
107572
107573
107574
107575
107576
107577
107578
107579
107580
107581
107582
107583
107584
107585
107586
107587
107588
107589
107590
107591
107592
107593
107594
107595
107596
107597
107598
107599
107600
107601
107602
107603
107604
107605
107606
107607
107608
107609
107610
107611
107612
107613
107614
107615
107616
107617
107618
107619
107620
107621
107622
107623
107624
107625
107626
107627
107628
107629
107630
107631
107632
107633
107634
107635
107636
107637
107638
107639
107640
107641
107642
107643
107644
107645
107646
107647
107648
107649
107650
107651
107652
107653
107654
107655
107656
107657
107658
107659
107660
107661
107662
107663
107664
107665
107666
107667
107668
107669
107670
107671
107672
107673
107674
107675
107676
107677
107678
107679
107680
107681
107682
107683
107684
107685
107686
107687
107688
107689
107690
107691
107692
107693
107694
107695
107696
107697
107698
107699
107700
107701
107702
107703
107704
107705
107706
107707
107708
107709
107710
107711
107712
107713
107714
107715
107716
107717
107718
107719
107720
107721
107722
107723
107724
107725
107726
107727
107728
107729
107730
107731
107732
107733
107734
107735
107736
107737
107738
107739
107740
107741
107742
107743
107744
107745
107746
107747
107748
107749
107750
107751
107752
107753
107754
107755
107756
107757
107758
107759
107760
107761
107762
107763
107764
107765
107766
107767
107768
107769
107770
107771
107772
107773
107774
107775
107776
107777
107778
107779
107780
107781
107782
107783
107784
107785
107786
107787
107788
107789
107790
107791
107792
107793
107794
107795
107796
107797
107798
107799
107800
107801
107802
107803
107804
107805
107806
107807
107808
107809
107810
107811
107812
107813
107814
107815
107816
107817
107818
107819
107820
107821
107822
107823
107824
107825
107826
107827
107828
107829
107830
107831
107832
107833
107834
107835
107836
107837
107838
107839
107840
107841
107842
107843
107844
107845
107846
107847
107848
107849
107850
107851
107852
107853
107854
107855
107856
107857
107858
107859
107860
107861
107862
107863
107864
107865
107866
107867
107868
107869
107870
107871
107872
107873
107874
107875
107876
107877
107878
107879
107880
107881
107882
107883
107884
107885
107886
107887
107888
107889
107890
107891
107892
107893
107894
107895
107896
107897
107898
107899
107900
107901
107902
107903
107904
107905
107906
107907
107908
107909
107910
107911
107912
107913
107914
107915
107916
107917
107918
107919
107920
107921
107922
107923
107924
107925
107926
107927
107928
107929
107930
107931
107932
107933
107934
107935
107936
107937
107938
107939
107940
107941
107942
107943
107944
107945
107946
107947
107948
107949
107950
107951
107952
107953
107954
107955
107956
107957
107958
107959
107960
107961
107962
107963
107964
107965
107966
107967
107968
107969
107970
107971
107972
107973
107974
107975
107976
107977
107978
107979
107980
107981
107982
107983
107984
107985
107986
107987
107988
107989
107990
107991
107992
107993
107994
107995
107996
107997
107998
107999
108000
108001
108002
108003
108004
108005
108006
108007
108008
108009
108010
108011
108012
108013
108014
108015
108016
108017
108018
108019
108020
108021
108022
108023
108024
108025
108026
108027
108028
108029
108030
108031
108032
108033
108034
108035
108036
108037
108038
108039
108040
108041
108042
108043
108044
108045
108046
108047
108048
108049
108050
108051
108052
108053
108054
108055
108056
108057
108058
108059
108060
108061
108062
108063
108064
108065
108066
108067
108068
108069
108070
108071
108072
108073
108074
108075
108076
108077
108078
108079
108080
108081
108082
108083
108084
108085
108086
108087
108088
108089
108090
108091
108092
108093
108094
108095
108096
108097
108098
108099
108100
108101
108102
108103
108104
108105
108106
108107
108108
108109
108110
108111
108112
108113
108114
108115
108116
108117
108118
108119
108120
108121
108122
108123
108124
108125
108126
108127
108128
108129
108130
108131
108132
108133
108134
108135
108136
108137
108138
108139
108140
108141
108142
108143
108144
108145
108146
108147
108148
108149
108150
108151
108152
108153
108154
108155
108156
108157
108158
108159
108160
108161
108162
108163
108164
108165
108166
108167
108168
108169
108170
108171
108172
108173
108174
108175
108176
108177
108178
108179
108180
108181
108182
108183
108184
108185
108186
108187
108188
108189
108190
108191
108192
108193
108194
108195
108196
108197
108198
108199
108200
108201
108202
108203
108204
108205
108206
108207
108208
108209
108210
108211
108212
108213
108214
108215
108216
108217
108218
108219
108220
108221
108222
108223
108224
108225
108226
108227
108228
108229
108230
108231
108232
108233
108234
108235
108236
108237
108238
108239
108240
108241
108242
108243
108244
108245
108246
108247
108248
108249
108250
108251
108252
108253
108254
108255
108256
108257
108258
108259
108260
108261
108262
108263
108264
108265
108266
108267
108268
108269
108270
108271
108272
108273
108274
108275
108276
108277
108278
108279
108280
108281
108282
108283
108284
108285
108286
108287
108288
108289
108290
108291
108292
108293
108294
108295
108296
108297
108298
108299
108300
108301
108302
108303
108304
108305
108306
108307
108308
108309
108310
108311
108312
108313
108314
108315
108316
108317
108318
108319
108320
108321
108322
108323
108324
108325
108326
108327
108328
108329
108330
108331
108332
108333
108334
108335
108336
108337
108338
108339
108340
108341
108342
108343
108344
108345
108346
108347
108348
108349
108350
108351
108352
108353
108354
108355
108356
108357
108358
108359
108360
108361
108362
108363
108364
108365
108366
108367
108368
108369
108370
108371
108372
108373
108374
108375
108376
108377
108378
108379
108380
108381
108382
108383
108384
108385
108386
108387
108388
108389
108390
108391
108392
108393
108394
108395
108396
108397
108398
108399
108400
108401
108402
108403
108404
108405
108406
108407
108408
108409
108410
108411
108412
108413
108414
108415
108416
108417
108418
108419
108420
108421
108422
108423
108424
108425
108426
108427
108428
108429
108430
108431
108432
108433
108434
108435
108436
108437
108438
108439
108440
108441
108442
108443
108444
108445
108446
108447
108448
108449
108450
108451
108452
108453
108454
108455
108456
108457
108458
108459
108460
108461
108462
108463
108464
108465
108466
108467
108468
108469
108470
108471
108472
108473
108474
108475
108476
108477
108478
108479
108480
108481
108482
108483
108484
108485
108486
108487
108488
108489
108490
108491
108492
108493
108494
108495
108496
108497
108498
108499
108500
108501
108502
108503
108504
108505
108506
108507
108508
108509
108510
108511
108512
108513
108514
108515
108516
108517
108518
108519
108520
108521
108522
108523
108524
108525
108526
108527
108528
108529
108530
108531
108532
108533
108534
108535
108536
108537
108538
108539
108540
108541
108542
108543
108544
108545
108546
108547
108548
108549
108550
108551
108552
108553
108554
108555
108556
108557
108558
108559
108560
108561
108562
108563
108564
108565
108566
108567
108568
108569
108570
108571
108572
108573
108574
108575
108576
108577
108578
108579
108580
108581
108582
108583
108584
108585
108586
108587
108588
108589
108590
108591
108592
108593
108594
108595
108596
108597
108598
108599
108600
108601
108602
108603
108604
108605
108606
108607
108608
108609
108610
108611
108612
108613
108614
108615
108616
108617
108618
108619
108620
108621
108622
108623
108624
108625
108626
108627
108628
108629
108630
108631
108632
108633
108634
108635
108636
108637
108638
108639
108640
108641
108642
108643
108644
108645
108646
108647
108648
108649
108650
108651
108652
108653
108654
108655
108656
108657
108658
108659
108660
108661
108662
108663
108664
108665
108666
108667
108668
108669
108670
108671
108672
108673
108674
108675
108676
108677
108678
108679
108680
108681
108682
108683
108684
108685
108686
108687
108688
108689
108690
108691
108692
108693
108694
108695
108696
108697
108698
108699
108700
108701
108702
108703
108704
108705
108706
108707
108708
108709
108710
108711
108712
108713
108714
108715
108716
108717
108718
108719
108720
108721
108722
108723
108724
108725
108726
108727
108728
108729
108730
108731
108732
108733
108734
108735
108736
108737
108738
108739
108740
108741
108742
108743
108744
108745
108746
108747
108748
108749
108750
108751
108752
108753
108754
108755
108756
108757
108758
108759
108760
108761
108762
108763
108764
108765
108766
108767
108768
108769
108770
108771
108772
108773
108774
108775
108776
108777
108778
108779
108780
108781
108782
108783
108784
108785
108786
108787
108788
108789
108790
108791
108792
108793
108794
108795
108796
108797
108798
108799
108800
108801
108802
108803
108804
108805
108806
108807
108808
108809
108810
108811
108812
108813
108814
108815
108816
108817
108818
108819
108820
108821
108822
108823
108824
108825
108826
108827
108828
108829
108830
108831
108832
108833
108834
108835
108836
108837
108838
108839
108840
108841
108842
108843
108844
108845
108846
108847
108848
108849
108850
108851
108852
108853
108854
108855
108856
108857
108858
108859
108860
108861
108862
108863
108864
108865
108866
108867
108868
108869
108870
108871
108872
108873
108874
108875
108876
108877
108878
108879
108880
108881
108882
108883
108884
108885
108886
108887
108888
108889
108890
108891
108892
108893
108894
108895
108896
108897
108898
108899
108900
108901
108902
108903
108904
108905
108906
108907
108908
108909
108910
108911
108912
108913
108914
108915
108916
108917
108918
108919
108920
108921
108922
108923
108924
108925
108926
108927
108928
108929
108930
108931
108932
108933
108934
108935
108936
108937
108938
108939
108940
108941
108942
108943
108944
108945
108946
108947
108948
108949
108950
108951
108952
108953
108954
108955
108956
108957
108958
108959
108960
108961
108962
108963
108964
108965
108966
108967
108968
108969
108970
108971
108972
108973
108974
108975
108976
108977
108978
108979
108980
108981
108982
108983
108984
108985
108986
108987
108988
108989
108990
108991
108992
108993
108994
108995
108996
108997
108998
108999
109000
109001
109002
109003
109004
109005
109006
109007
109008
109009
109010
109011
109012
109013
109014
109015
109016
109017
109018
109019
109020
109021
109022
109023
109024
109025
109026
109027
109028
109029
109030
109031
109032
109033
109034
109035
109036
109037
109038
109039
109040
109041
109042
109043
109044
109045
109046
109047
109048
109049
109050
109051
109052
109053
109054
109055
109056
109057
109058
109059
109060
109061
109062
109063
109064
109065
109066
109067
109068
109069
109070
109071
109072
109073
109074
109075
109076
109077
109078
109079
109080
109081
109082
109083
109084
109085
109086
109087
109088
109089
109090
109091
109092
109093
109094
109095
109096
109097
109098
109099
109100
109101
109102
109103
109104
109105
109106
109107
109108
109109
109110
109111
109112
109113
109114
109115
109116
109117
109118
109119
109120
109121
109122
109123
109124
109125
109126
109127
109128
109129
109130
109131
109132
109133
109134
109135
109136
109137
109138
109139
109140
109141
109142
109143
109144
109145
109146
109147
109148
109149
109150
109151
109152
109153
109154
109155
109156
109157
109158
109159
109160
109161
109162
109163
109164
109165
109166
109167
109168
109169
109170
109171
109172
109173
109174
109175
109176
109177
109178
109179
109180
109181
109182
109183
109184
109185
109186
109187
109188
109189
109190
109191
109192
109193
109194
109195
109196
109197
109198
109199
109200
109201
109202
109203
109204
109205
109206
109207
109208
109209
109210
109211
109212
109213
109214
109215
109216
109217
109218
109219
109220
109221
109222
109223
109224
109225
109226
109227
109228
109229
109230
109231
109232
109233
109234
109235
109236
109237
109238
109239
109240
109241
109242
109243
109244
109245
109246
109247
109248
109249
109250
109251
109252
109253
109254
109255
109256
109257
109258
109259
109260
109261
109262
109263
109264
109265
109266
109267
109268
109269
109270
109271
109272
109273
109274
109275
109276
109277
109278
109279
109280
109281
109282
109283
109284
109285
109286
109287
109288
109289
109290
109291
109292
109293
109294
109295
109296
109297
109298
109299
109300
109301
109302
109303
109304
109305
109306
109307
109308
109309
109310
109311
109312
109313
109314
109315
109316
109317
109318
109319
109320
109321
109322
109323
109324
109325
109326
109327
109328
109329
109330
109331
109332
109333
109334
109335
109336
109337
109338
109339
109340
109341
109342
109343
109344
109345
109346
109347
109348
109349
109350
109351
109352
109353
109354
109355
109356
109357
109358
109359
109360
109361
109362
109363
109364
109365
109366
109367
109368
109369
109370
109371
109372
109373
109374
109375
109376
109377
109378
109379
109380
109381
109382
109383
109384
109385
109386
109387
109388
109389
109390
109391
109392
109393
109394
109395
109396
109397
109398
109399
109400
109401
109402
109403
109404
109405
109406
109407
109408
109409
109410
109411
109412
109413
109414
109415
109416
109417
109418
109419
109420
109421
109422
109423
109424
109425
109426
109427
109428
109429
109430
109431
109432
109433
109434
109435
109436
109437
109438
109439
109440
109441
109442
109443
109444
109445
109446
109447
109448
109449
109450
109451
109452
109453
109454
109455
109456
109457
109458
109459
109460
109461
109462
109463
109464
109465
109466
109467
109468
109469
109470
109471
109472
109473
109474
109475
109476
109477
109478
109479
109480
109481
109482
109483
109484
109485
109486
109487
109488
109489
109490
109491
109492
109493
109494
109495
109496
109497
109498
109499
109500
109501
109502
109503
109504
109505
109506
109507
109508
109509
109510
109511
109512
109513
109514
109515
109516
109517
109518
109519
109520
109521
109522
109523
109524
109525
109526
109527
109528
109529
109530
109531
109532
109533
109534
109535
109536
109537
109538
109539
109540
109541
109542
109543
109544
109545
109546
109547
109548
109549
109550
109551
109552
109553
109554
109555
109556
109557
109558
109559
109560
109561
109562
109563
109564
109565
109566
109567
109568
109569
109570
109571
109572
109573
109574
109575
109576
109577
109578
109579
109580
109581
109582
109583
109584
109585
109586
109587
109588
109589
109590
109591
109592
109593
109594
109595
109596
109597
109598
109599
109600
109601
109602
109603
109604
109605
109606
109607
109608
109609
109610
109611
109612
109613
109614
109615
109616
109617
109618
109619
109620
109621
109622
109623
109624
109625
109626
109627
109628
109629
109630
109631
109632
109633
109634
109635
109636
109637
109638
109639
109640
109641
109642
109643
109644
109645
109646
109647
109648
109649
109650
109651
109652
109653
109654
109655
109656
109657
109658
109659
109660
109661
109662
109663
109664
109665
109666
109667
109668
109669
109670
109671
109672
109673
109674
109675
109676
109677
109678
109679
109680
109681
109682
109683
109684
109685
109686
109687
109688
109689
109690
109691
109692
109693
109694
109695
109696
109697
109698
109699
109700
109701
109702
109703
109704
109705
109706
109707
109708
109709
109710
109711
109712
109713
109714
109715
109716
109717
109718
109719
109720
109721
109722
109723
109724
109725
109726
109727
109728
109729
109730
109731
109732
109733
109734
109735
109736
109737
109738
109739
109740
109741
109742
109743
109744
109745
109746
109747
109748
109749
109750
109751
109752
109753
109754
109755
109756
109757
109758
109759
109760
109761
109762
109763
109764
109765
109766
109767
109768
109769
109770
109771
109772
109773
109774
109775
109776
109777
109778
109779
109780
109781
109782
109783
109784
109785
109786
109787
109788
109789
109790
109791
109792
109793
109794
109795
109796
109797
109798
109799
109800
109801
109802
109803
109804
109805
109806
109807
109808
109809
109810
109811
109812
109813
109814
109815
109816
109817
109818
109819
109820
109821
109822
109823
109824
109825
109826
109827
109828
109829
109830
109831
109832
109833
109834
109835
109836
109837
109838
109839
109840
109841
109842
109843
109844
109845
109846
109847
109848
109849
109850
109851
109852
109853
109854
109855
109856
109857
109858
109859
109860
109861
109862
109863
109864
109865
109866
109867
109868
109869
109870
109871
109872
109873
109874
109875
109876
109877
109878
109879
109880
109881
109882
109883
109884
109885
109886
109887
109888
109889
109890
109891
109892
109893
109894
109895
109896
109897
109898
109899
109900
109901
109902
109903
109904
109905
109906
109907
109908
109909
109910
109911
109912
109913
109914
109915
109916
109917
109918
109919
109920
109921
109922
109923
109924
109925
109926
109927
109928
109929
109930
109931
109932
109933
109934
109935
109936
109937
109938
109939
109940
109941
109942
109943
109944
109945
109946
109947
109948
109949
109950
109951
109952
109953
109954
109955
109956
109957
109958
109959
109960
109961
109962
109963
109964
109965
109966
109967
109968
109969
109970
109971
109972
109973
109974
109975
109976
109977
109978
109979
109980
109981
109982
109983
109984
109985
109986
109987
109988
109989
109990
109991
109992
109993
109994
109995
109996
109997
109998
109999
110000
110001
110002
110003
110004
110005
110006
110007
110008
110009
110010
110011
110012
110013
110014
110015
110016
110017
110018
110019
110020
110021
110022
110023
110024
110025
110026
110027
110028
110029
110030
110031
110032
110033
110034
110035
110036
110037
110038
110039
110040
110041
110042
110043
110044
110045
110046
110047
110048
110049
110050
110051
110052
110053
110054
110055
110056
110057
110058
110059
110060
110061
110062
110063
110064
110065
110066
110067
110068
110069
110070
110071
110072
110073
110074
110075
110076
110077
110078
110079
110080
110081
110082
110083
110084
110085
110086
110087
110088
110089
110090
110091
110092
110093
110094
110095
110096
110097
110098
110099
110100
110101
110102
110103
110104
110105
110106
110107
110108
110109
110110
110111
110112
110113
110114
110115
110116
110117
110118
110119
110120
110121
110122
110123
110124
110125
110126
110127
110128
110129
110130
110131
110132
110133
110134
110135
110136
110137
110138
110139
110140
110141
110142
110143
110144
110145
110146
110147
110148
110149
110150
110151
110152
110153
110154
110155
110156
110157
110158
110159
110160
110161
110162
110163
110164
110165
110166
110167
110168
110169
110170
110171
110172
110173
110174
110175
110176
110177
110178
110179
110180
110181
110182
110183
110184
110185
110186
110187
110188
110189
110190
110191
110192
110193
110194
110195
110196
110197
110198
110199
110200
110201
110202
110203
110204
110205
110206
110207
110208
110209
110210
110211
110212
110213
110214
110215
110216
110217
110218
110219
110220
110221
110222
110223
110224
110225
110226
110227
110228
110229
110230
110231
110232
110233
110234
110235
110236
110237
110238
110239
110240
110241
110242
110243
110244
110245
110246
110247
110248
110249
110250
110251
110252
110253
110254
110255
110256
110257
110258
110259
110260
110261
110262
110263
110264
110265
110266
110267
110268
110269
110270
110271
110272
110273
110274
110275
110276
110277
110278
110279
110280
110281
110282
110283
110284
110285
110286
110287
110288
110289
110290
110291
110292
110293
110294
110295
110296
110297
110298
110299
110300
110301
110302
110303
110304
110305
110306
110307
110308
110309
110310
110311
110312
110313
110314
110315
110316
110317
110318
110319
110320
110321
110322
110323
110324
110325
110326
110327
110328
110329
110330
110331
110332
110333
110334
110335
110336
110337
110338
110339
110340
110341
110342
110343
110344
110345
110346
110347
110348
110349
110350
110351
110352
110353
110354
110355
110356
110357
110358
110359
110360
110361
110362
110363
110364
110365
110366
110367
110368
110369
110370
110371
110372
110373
110374
110375
110376
110377
110378
110379
110380
110381
110382
110383
110384
110385
110386
110387
110388
110389
110390
110391
110392
110393
110394
110395
110396
110397
110398
110399
110400
110401
110402
110403
110404
110405
110406
110407
110408
110409
110410
110411
110412
110413
110414
110415
110416
110417
110418
110419
110420
110421
110422
110423
110424
110425
110426
110427
110428
110429
110430
110431
110432
110433
110434
110435
110436
110437
110438
110439
110440
110441
110442
110443
110444
110445
110446
110447
110448
110449
110450
110451
110452
110453
110454
110455
110456
110457
110458
110459
110460
110461
110462
110463
110464
110465
110466
110467
110468
110469
110470
110471
110472
110473
110474
110475
110476
110477
110478
110479
110480
110481
110482
110483
110484
110485
110486
110487
110488
110489
110490
110491
110492
110493
110494
110495
110496
110497
110498
110499
110500
110501
110502
110503
110504
110505
110506
110507
110508
110509
110510
110511
110512
110513
110514
110515
110516
110517
110518
110519
110520
110521
110522
110523
110524
110525
110526
110527
110528
110529
110530
110531
110532
110533
110534
110535
110536
110537
110538
110539
110540
110541
110542
110543
110544
110545
110546
110547
110548
110549
110550
110551
110552
110553
110554
110555
110556
110557
110558
110559
110560
110561
110562
110563
110564
110565
110566
110567
110568
110569
110570
110571
110572
110573
110574
110575
110576
110577
110578
110579
110580
110581
110582
110583
110584
110585
110586
110587
110588
110589
110590
110591
110592
110593
110594
110595
110596
110597
110598
110599
110600
110601
110602
110603
110604
110605
110606
110607
110608
110609
110610
110611
110612
110613
110614
110615
110616
110617
110618
110619
110620
110621
110622
110623
110624
110625
110626
110627
110628
110629
110630
110631
110632
110633
110634
110635
110636
110637
110638
110639
110640
110641
110642
110643
110644
110645
110646
110647
110648
110649
110650
110651
110652
110653
110654
110655
110656
110657
110658
110659
110660
110661
110662
110663
110664
110665
110666
110667
110668
110669
110670
110671
110672
110673
110674
110675
110676
110677
110678
110679
110680
110681
110682
110683
110684
110685
110686
110687
110688
110689
110690
110691
110692
110693
110694
110695
110696
110697
110698
110699
110700
110701
110702
110703
110704
110705
110706
110707
110708
110709
110710
110711
110712
110713
110714
110715
110716
110717
110718
110719
110720
110721
110722
110723
110724
110725
110726
110727
110728
110729
110730
110731
110732
110733
110734
110735
110736
110737
110738
110739
110740
110741
110742
110743
110744
110745
110746
110747
110748
110749
110750
110751
110752
110753
110754
110755
110756
110757
110758
110759
110760
110761
110762
110763
110764
110765
110766
110767
110768
110769
110770
110771
110772
110773
110774
110775
110776
110777
110778
110779
110780
110781
110782
110783
110784
110785
110786
110787
110788
110789
110790
110791
110792
110793
110794
110795
110796
110797
110798
110799
110800
110801
110802
110803
110804
110805
110806
110807
110808
110809
110810
110811
110812
110813
110814
110815
110816
110817
110818
110819
110820
110821
110822
110823
110824
110825
110826
110827
110828
110829
110830
110831
110832
110833
110834
110835
110836
110837
110838
110839
110840
110841
110842
110843
110844
110845
110846
110847
110848
110849
110850
110851
110852
110853
110854
110855
110856
110857
110858
110859
110860
110861
110862
110863
110864
110865
110866
110867
110868
110869
110870
110871
110872
110873
110874
110875
110876
110877
110878
110879
110880
110881
110882
110883
110884
110885
110886
110887
110888
110889
110890
110891
110892
110893
110894
110895
110896
110897
110898
110899
110900
110901
110902
110903
110904
110905
110906
110907
110908
110909
110910
110911
110912
110913
110914
110915
110916
110917
110918
110919
110920
110921
110922
110923
110924
110925
110926
110927
110928
110929
110930
110931
110932
110933
110934
110935
110936
110937
110938
110939
110940
110941
110942
110943
110944
110945
110946
110947
110948
110949
110950
110951
110952
110953
110954
110955
110956
110957
110958
110959
110960
110961
110962
110963
110964
110965
110966
110967
110968
110969
110970
110971
110972
110973
110974
110975
110976
110977
110978
110979
110980
110981
110982
110983
110984
110985
110986
110987
110988
110989
110990
110991
110992
110993
110994
110995
110996
110997
110998
110999
111000
111001
111002
111003
111004
111005
111006
111007
111008
111009
111010
111011
111012
111013
111014
111015
111016
111017
111018
111019
111020
111021
111022
111023
111024
111025
111026
111027
111028
111029
111030
111031
111032
111033
111034
111035
111036
111037
111038
111039
111040
111041
111042
111043
111044
111045
111046
111047
111048
111049
111050
111051
111052
111053
111054
111055
111056
111057
111058
111059
111060
111061
111062
111063
111064
111065
111066
111067
111068
111069
111070
111071
111072
111073
111074
111075
111076
111077
111078
111079
111080
111081
111082
111083
111084
111085
111086
111087
111088
111089
111090
111091
111092
111093
111094
111095
111096
111097
111098
111099
111100
111101
111102
111103
111104
111105
111106
111107
111108
111109
111110
111111
111112
111113
111114
111115
111116
111117
111118
111119
111120
111121
111122
111123
111124
111125
111126
111127
111128
111129
111130
111131
111132
111133
111134
111135
111136
111137
111138
111139
111140
111141
111142
111143
111144
111145
111146
111147
111148
111149
111150
111151
111152
111153
111154
111155
111156
111157
111158
111159
111160
111161
111162
111163
111164
111165
111166
111167
111168
111169
111170
111171
111172
111173
111174
111175
111176
111177
111178
111179
111180
111181
111182
111183
111184
111185
111186
111187
111188
111189
111190
111191
111192
111193
111194
111195
111196
111197
111198
111199
111200
111201
111202
111203
111204
111205
111206
111207
111208
111209
111210
111211
111212
111213
111214
111215
111216
111217
111218
111219
111220
111221
111222
111223
111224
111225
111226
111227
111228
111229
111230
111231
111232
111233
111234
111235
111236
111237
111238
111239
111240
111241
111242
111243
111244
111245
111246
111247
111248
111249
111250
111251
111252
111253
111254
111255
111256
111257
111258
111259
111260
111261
111262
111263
111264
111265
111266
111267
111268
111269
111270
111271
111272
111273
111274
111275
111276
111277
111278
111279
111280
111281
111282
111283
111284
111285
111286
111287
111288
111289
111290
111291
111292
111293
111294
111295
111296
111297
111298
111299
111300
111301
111302
111303
111304
111305
111306
111307
111308
111309
111310
111311
111312
111313
111314
111315
111316
111317
111318
111319
111320
111321
111322
111323
111324
111325
111326
111327
111328
111329
111330
111331
111332
111333
111334
111335
111336
111337
111338
111339
111340
111341
111342
111343
111344
111345
111346
111347
111348
111349
111350
111351
111352
111353
111354
111355
111356
111357
111358
111359
111360
111361
111362
111363
111364
111365
111366
111367
111368
111369
111370
111371
111372
111373
111374
111375
111376
111377
111378
111379
111380
111381
111382
111383
111384
111385
111386
111387
111388
111389
111390
111391
111392
111393
111394
111395
111396
111397
111398
111399
111400
111401
111402
111403
111404
111405
111406
111407
111408
111409
111410
111411
111412
111413
111414
111415
111416
111417
111418
111419
111420
111421
111422
111423
111424
111425
111426
111427
111428
111429
111430
111431
111432
111433
111434
111435
111436
111437
111438
111439
111440
111441
111442
111443
111444
111445
111446
111447
111448
111449
111450
111451
111452
111453
111454
111455
111456
111457
111458
111459
111460
111461
111462
111463
111464
111465
111466
111467
111468
111469
111470
111471
111472
111473
111474
111475
111476
111477
111478
111479
111480
111481
111482
111483
111484
111485
111486
111487
111488
111489
111490
111491
111492
111493
111494
111495
111496
111497
111498
111499
111500
111501
111502
111503
111504
111505
111506
111507
111508
111509
111510
111511
111512
111513
111514
111515
111516
111517
111518
111519
111520
111521
111522
111523
111524
111525
111526
111527
111528
111529
111530
111531
111532
111533
111534
111535
111536
111537
111538
111539
111540
111541
111542
111543
111544
111545
111546
111547
111548
111549
111550
111551
111552
111553
111554
111555
111556
111557
111558
111559
111560
111561
111562
111563
111564
111565
111566
111567
111568
111569
111570
111571
111572
111573
111574
111575
111576
111577
111578
111579
111580
111581
111582
111583
111584
111585
111586
111587
111588
111589
111590
111591
111592
111593
111594
111595
111596
111597
111598
111599
111600
111601
111602
111603
111604
111605
111606
111607
111608
111609
111610
111611
111612
111613
111614
111615
111616
111617
111618
111619
111620
111621
111622
111623
111624
111625
111626
111627
111628
111629
111630
111631
111632
111633
111634
111635
111636
111637
111638
111639
111640
111641
111642
111643
111644
111645
111646
111647
111648
111649
111650
111651
111652
111653
111654
111655
111656
111657
111658
111659
111660
111661
111662
111663
111664
111665
111666
111667
111668
111669
111670
111671
111672
111673
111674
111675
111676
111677
111678
111679
111680
111681
111682
111683
111684
111685
111686
111687
111688
111689
111690
111691
111692
111693
111694
111695
111696
111697
111698
111699
111700
111701
111702
111703
111704
111705
111706
111707
111708
111709
111710
111711
111712
111713
111714
111715
111716
111717
111718
111719
111720
111721
111722
111723
111724
111725
111726
111727
111728
111729
111730
111731
111732
111733
111734
111735
111736
111737
111738
111739
111740
111741
111742
111743
111744
111745
111746
111747
111748
111749
111750
111751
111752
111753
111754
111755
111756
111757
111758
111759
111760
111761
111762
111763
111764
111765
111766
111767
111768
111769
111770
111771
111772
111773
111774
111775
111776
111777
111778
111779
111780
111781
111782
111783
111784
111785
111786
111787
111788
111789
111790
111791
111792
111793
111794
111795
111796
111797
111798
111799
111800
111801
111802
111803
111804
111805
111806
111807
111808
111809
111810
111811
111812
111813
111814
111815
111816
111817
111818
111819
111820
111821
111822
111823
111824
111825
111826
111827
111828
111829
111830
111831
111832
111833
111834
111835
111836
111837
111838
111839
111840
111841
111842
111843
111844
111845
111846
111847
111848
111849
111850
111851
111852
111853
111854
111855
111856
111857
111858
111859
111860
111861
111862
111863
111864
111865
111866
111867
111868
111869
111870
111871
111872
111873
111874
111875
111876
111877
111878
111879
111880
111881
111882
111883
111884
111885
111886
111887
111888
111889
111890
111891
111892
111893
111894
111895
111896
111897
111898
111899
111900
111901
111902
111903
111904
111905
111906
111907
111908
111909
111910
111911
111912
111913
111914
111915
111916
111917
111918
111919
111920
111921
111922
111923
111924
111925
111926
111927
111928
111929
111930
111931
111932
111933
111934
111935
111936
111937
111938
111939
111940
111941
111942
111943
111944
111945
111946
111947
111948
111949
111950
111951
111952
111953
111954
111955
111956
111957
111958
111959
111960
111961
111962
111963
111964
111965
111966
111967
111968
111969
111970
111971
111972
111973
111974
111975
111976
111977
111978
111979
111980
111981
111982
111983
111984
111985
111986
111987
111988
111989
111990
111991
111992
111993
111994
111995
111996
111997
111998
111999
112000
112001
112002
112003
; Documentation for the ACL2 Theorem Prover
; WARNING: GENERATED FILE, DO NOT HAND EDIT!
; The contents of this file are derived from ACL2 Community Book
; books/system/doc/acl2-doc.lisp.

; ACL2 Version 7.2 -- A Computational Logic for Applicative Common Lisp
; Copyright (C) 2016, Regents of the University of Texas

; This version of ACL2 is a descendent of ACL2 Version 1.9, Copyright
; (C) 1997 Computational Logic, Inc.  See the documentation topic NOTE-2-0.

; This program is free software; you can redistribute it and/or modify
; it under the terms of the LICENSE file distributed with ACL2.

; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
; LICENSE for more details.

; Here are the original authors of books/system/doc/acl2-doc.lisp.
; Additional contributions may have been made to that file by members
; of the ACL2 community.

; Written by:  Matt Kaufmann               and J Strother Moore
; email:       Kaufmann@cs.utexas.edu      and Moore@cs.utexas.edu
; Department of Computer Science
; University of Texas at Austin
; Austin, TX 78701 U.S.A.

; WARNING: This file is generated from ACL2 Community Book
; books/system/doc/acl2-doc.lisp.  To edit ACL2 documentation modify
; that file, not this one!  Instructions are just above the in-package
; form in that book.

(in-package "ACL2")

(defconst *acl2-system-documentation* '
((&ALLOW-OTHER-KEYS (POINTERS)
                    "See [macro-args].")
 (&BODY (POINTERS) "See [macro-args].")
 (&KEY (POINTERS) "See [macro-args].")
 (&OPTIONAL (POINTERS)
            "See [macro-args].")
 (&REST (POINTERS) "See [macro-args].")
 (&WHOLE (POINTERS) "See [macro-args].")
 (*
  (NUMBERS ACL2-BUILT-INS)
  "Multiplication macro

  * is really a macro that expands to calls of the function [binary-*].
  So for example

    (* x y 4 z)

  represents the same term as

    (binary-* x (binary-* y (binary-* 4 z))).

  See [binary-*].

  * is a Common Lisp function. See any Common Lisp documentation for
  more information.


Subtopics

  [Binary-*]
      Multiplication function")
 (*ACL2-EXPORTS*
  (PACKAGES ACL2-BUILT-INS)
  "Symbols that are often imported into new [packages] to provide easy
  access to ACL2 functionality.

  When you define a new package for your own work with [defpkg], you
  will usually want to import many symbols from the \"ACL2\" package;
  for instance you will usually want to be able to use symbols like
  [defthm], [in-theory], [xargs], [state], etc., without an acl2::
  prefix.

  The constant *acl2-exports* lists 1368 symbols, including most
  documented ACL2 system constants, functions, and macros. You will
  typically also want to import many symbols from Common Lisp; see
  [*common-lisp-symbols-from-main-lisp-package*].

    (& &allow-other-keys &aux &body &key
       &optional &rest &whole * *acl2-exports*
       *common-lisp-specials-and-constants*
       *common-lisp-symbols-from-main-lisp-package*
       *main-lisp-package-name*
       *standard-chars* *standard-ci*
       *standard-co* *standard-oi*
       + - / /= 1+ 1- 32-bit-integer-listp
       32-bit-integer-listp-forward-to-integer-listp
       32-bit-integer-stack
       32-bit-integer-stack-length
       32-bit-integer-stack-length1
       32-bit-integerp
       32-bit-integerp-forward-to-integerp
       < <-on-others <= = > >= ?-fn @ a! abort!
       abs access accumulated-persistence
       accumulated-persistence-oops
       acl2-count acl2-input-channel-package
       acl2-number-listp acl2-numberp
       acl2-oracle acl2-output-channel-package
       acl2-package acons active-runep
       add-binop add-custom-keyword-hint
       add-default-hints
       add-default-hints! add-include-book-dir
       add-include-book-dir!
       add-invisible-fns add-ld-keyword-alias
       add-ld-keyword-alias!
       add-macro-alias add-macro-fn
       add-match-free-override add-nth-alias
       add-override-hints add-override-hints!
       add-pair add-pair-preserves-all-boundp
       add-raw-arity
       add-timers add-to-set add-to-set-eq
       add-to-set-eql add-to-set-equal
       alistp alistp-forward-to-true-listp
       all-boundp all-boundp-preserves-assoc
       all-vars all-vars1 all-vars1-lst
       allocate-fixnum-range alpha-char-p
       alpha-char-p-forward-to-characterp
       alphorder and and-macro
       append aref-32-bit-integer-stack
       aref-t-stack aref1 aref2 args
       arities-okp arity array1p array1p-cons
       array1p-forward array1p-linear
       array2p array2p-cons array2p-forward
       array2p-linear aset-32-bit-integer-stack
       aset-t-stack aset1 aset2 ash assert$
       assert* assert-event assign assoc
       assoc-add-pair assoc-eq assoc-eq-equal
       assoc-eq-equal-alistp assoc-equal
       assoc-keyword assoc-string-equal assoc2
       associativity-of-* associativity-of-+
       assume atom atom-listp
       atom-listp-forward-to-true-listp
       backchain-limit
       big-clock-entry big-clock-negative-p
       binary-* binary-+ binary-append
       bind-free bit boole$ boolean-listp
       boolean-listp-cons boolean-listp-forward
       boolean-listp-forward-to-symbol-listp
       booleanp booleanp-characterp
       booleanp-compound-recognizer
       bounded-integer-alistp
       bounded-integer-alistp-forward-to-eqlable-alistp
       bounded-integer-alistp2 boundp-global
       boundp-global1 break$ break-on-error
       brr brr@ build-state1 butlast
       caaaar caaadr caaar caadar caaddr
       caadr caar cadaar cadadr cadar caddar
       cadddr caddr cadr canonical-pathname
       car car-cdr-elim car-cons case
       case-list case-list-check case-match
       case-split case-split-limitations
       case-test cbd cdaaar cdaadr
       cdaar cdadar cdaddr cdadr cdar cddaar
       cddadr cddar cdddar cddddr cdddr cddr
       cdr cdr-cons cdrn ceiling certify-book
       certify-book! change char char-code
       char-code-code-char-is-identity
       char-code-linear char-downcase
       char-equal char-upcase char< char<=
       char> char>= character character-alistp
       character-listp character-listp-append
       character-listp-coerce
       character-listp-forward-to-eqlable-listp
       character-listp-remove-duplicates-eql
       character-listp-revappend
       character-listp-string-downcase-1
       character-listp-string-upcase1-1
       characterp characterp-char-downcase
       characterp-char-upcase
       characterp-nth characterp-page
       characterp-rubout characterp-tab
       check-invariant-risk check-vars-not-free
       checkpoint-forced-goals
       clause clear-memoize-statistics
       clear-memoize-table clear-memoize-tables
       close-input-channel close-output-channel
       close-trace-file closure code-char
       code-char-char-code-is-identity
       code-char-type coerce coerce-inverse-1
       coerce-inverse-2 coerce-object-to-state
       coerce-state-to-object
       community-books commutativity-of-*
       commutativity-of-+ comp completion-of-*
       completion-of-+ completion-of-<
       completion-of-car completion-of-cdr
       completion-of-char-code
       completion-of-code-char
       completion-of-coerce
       completion-of-complex
       completion-of-denominator
       completion-of-imagpart
       completion-of-intern-in-package-of-symbol
       completion-of-numerator
       completion-of-realpart
       completion-of-symbol-name
       completion-of-symbol-package-name
       completion-of-unary-/
       completion-of-unary-minus
       complex complex-0
       complex-definition complex-equal
       complex-implies1 complex-rationalp
       complex/complex-rationalp
       compress1 compress11
       compress2 compress21 compress211
       concatenate cond cond-clausesp
       cond-macro conjugate cons cons-equal
       cons-subtrees consp consp-assoc-equal
       corollary cpu-core-count ctx
       current-package current-theory cw cw!
       cw-gstack declare decrement-big-clock
       defabbrev defabsstobj
       defabsstobj-missing-events defattach
       default default-*-1 default-*-2
       default-+-1 default-+-2 default-<-1
       default-<-2 default-backchain-limit
       default-car default-cdr
       default-char-code default-coerce-1
       default-coerce-2 default-coerce-3
       default-compile-fns default-complex-1
       default-complex-2 default-defun-mode
       default-defun-mode-from-state
       default-denominator
       default-hints default-imagpart
       default-measure-function
       default-numerator default-print-prompt
       default-realpart default-ruler-extenders
       default-symbol-name
       default-symbol-package-name
       default-total-parallelism-work-limit
       default-unary-/ default-unary-minus
       default-verify-guards-eagerness
       default-well-founded-relation
       defaxiom defchoose defcong
       defconst defequiv defevaluator defexec
       define-pc-atomic-macro define-pc-help
       define-pc-macro define-pc-meta
       define-trusted-clause-processor
       deflabel deflock
       defmacro defmacro-last defn defnd defpkg
       defproxy defrec defrefinement defstobj
       defstub deftheory deftheory-static
       defthm defthm-std defthmd defttag
       defun defun-inline defun-notinline
       defun-nx defun-sk defun-std
       defund defund-inline defund-notinline
       defund-nx defuns defuns-std delete-assoc
       delete-assoc-eq delete-assoc-equal
       delete-include-book-dir
       delete-include-book-dir!
       denominator digit-char-p digit-to-char
       dimensions disable disable-forcing
       disable-immediate-force-modep disabledp
       disassemble$ distributivity dmr-start
       dmr-stop doc doc! docs double-rewrite
       duplicates e/d e0-ord-< e0-ordinalp
       ec-call eighth eliminate-destructors
       eliminate-irrelevance
       enable enable-forcing
       enable-immediate-force-modep
       encapsulate endp eq eql eqlable-alistp
       eqlable-alistp-forward-to-alistp
       eqlable-listp
       eqlable-listp-forward-to-atom-listp
       eqlablep eqlablep-recog
       equal equal-char-code er er-progn
       er-progn-fn er-progn-fn@par er-progn@par
       evenp evens event evisc-tuple
       executable-counterpart-theory
       exists exit explode-atom
       explode-nonnegative-integer expt
       expt-type-prescription-non-zero-base
       extend-32-bit-integer-stack
       extend-pe-table extend-t-stack
       extend-world extra-info f-get-global
       f-put-global fast-alist-clean
       fast-alist-clean! fast-alist-fork
       fast-alist-fork! fast-alist-free
       fast-alist-free-on-exit fast-alist-len
       fast-alist-summary fc-report fertilize
       fgetprop fifth file-clock file-clock-p
       file-clock-p-forward-to-integerp
       finalize-event-user first first-n-ac fix
       fix-true-list flet floor flush-compress
       flush-hons-get-hash-table-link
       fms fms! fms!-to-string
       fms-to-string fmt fmt! fmt!-to-string
       fmt-to-comment-window fmt-to-string fmt1
       fmt1! fmt1!-to-string fmt1-to-string
       fncall-term forall force formula
       fourth function-symbolp function-theory
       gag-mode gc$ gc-strategy gc-verbose
       gcs generalize get-check-invariant-risk
       get-command-sequence get-event-data
       get-global get-output-stream-string$
       get-slow-alist-action get-timer
       get-wormhole-status getenv$ getprop
       getprop-default getpropc getprops
       getprops1 global-table global-table-cars
       global-table-cars1 global-val
       good-atom-listp good-bye granularity
       ground-zero gthm guard guard-obligation
       guard-theorem hard-error
       has-propsp has-propsp1 header help
       hide hist hons hons-acons hons-acons!
       hons-assoc-equal hons-clear hons-clear!
       hons-copy hons-copy-persistent
       hons-equal hons-equal-lite
       hons-get hons-resize hons-resize-fn
       hons-shrink-alist hons-shrink-alist!
       hons-summary hons-wash
       hons-wash! i-am-here i-close i-large
       i-limited i-small id idates identity
       if if* iff iff-implies-equal-implies-1
       iff-implies-equal-implies-2
       iff-implies-equal-not
       iff-is-an-equivalence
       ifix ignore illegal imagpart
       imagpart-complex immediate-force-modep
       implies improper-consp
       in-arithmetic-theory in-package
       in-tau-intervalp in-theory include-book
       incompatible increment-timer
       induct initialize-event-user
       int= integer integer-0 integer-1
       integer-abs integer-implies-rational
       integer-length integer-listp
       integer-listp-forward-to-rational-listp
       integer-range-p
       integer-step integerp intern
       intern$ intern-in-package-of-symbol
       intern-in-package-of-symbol-symbol-name
       intersection$ intersection-eq
       intersection-equal intersection-theories
       intersectp intersectp-eq
       intersectp-equal inverse-of-*
       inverse-of-+ invisible-fns-table
       keyword-package keyword-value-listp
       keyword-value-listp-assoc-keyword
       keyword-value-listp-forward-to-true-listp
       keywordp keywordp-forward-to-symbolp
       known-package-alist known-package-alistp
       known-package-alistp-forward-to-true-list-listp-and-alistp
       kwote
       kwote-lst lambda last last-prover-steps
       ld ld-error-action ld-error-triples
       ld-evisc-tuple ld-keyword-aliases
       ld-missing-input-ok ld-post-eval-print
       ld-pre-eval-filter ld-pre-eval-print
       ld-prompt ld-query-control-alist
       ld-redefinition-action ld-skip-proofsp
       ld-verbose legal-case-clausesp len
       len-update-nth length let* lexorder list
       list* list*-macro list-all-package-names
       list-all-package-names-lst
       list-macro listp local logand
       logandc1 logandc2 logbitp logcount
       logeqv logic logior lognand lognor
       lognot logorc1 logorc2 logtest logxor
       lower-case-p lower-case-p-char-downcase
       lower-case-p-forward-to-alpha-char-p
       lowest-terms lp macro-aliases macro-args
       main-timer main-timer-type-prescription
       make make-character-list
       make-character-list-make-character-list
       make-event
       make-fast-alist make-fmt-bindings
       make-input-channel make-list
       make-list-ac make-mv-nths make-ord
       make-output-channel make-tau-interval
       make-var-lst make-var-lst1
       make-wormhole-status makunbound-global
       max maximum-length may-need-slashes
       mbe mbt mbt* member member-eq
       member-equal member-symbol-name
       memoize memoize-summary
       memsum meta-extract-contextual-fact
       meta-extract-formula
       meta-extract-global-fact
       meta-extract-global-fact+
       meta-extract-rw+-term
       mfc min minimal-theory minusp
       mod mod-expt monitor monitored-runes
       more more! more-doc msg must-be-equal
       mutual-recursion mutual-recursion-guardp
       mv mv-let mv-list mv-nth
       mv? mv?-let nat-listp natp needs-slashes
       never-memoize newline nfix nil
       nil-is-not-circular ninth no-duplicatesp
       no-duplicatesp-eq no-duplicatesp-equal
       non-exec nonnegative-integer-quotient
       nonnegative-product nonzero-imagpart
       not nqthm-to-acl2 nth nth-0-cons
       nth-0-read-run-time-type-prescription
       nth-add1 nth-aliases nth-update-nth
       nthcdr null number-subtrees numerator
       o-finp o-first-coeff o-first-expt o-infp
       o-p o-rst o< o<= o> o>= observation
       observation-cw oddp odds ok-if
       oops open-channel-listp open-channel1
       open-channel1-forward-to-true-listp-and-consp
       open-channels-p open-channels-p-forward
       open-input-channel
       open-input-channel-any-p
       open-input-channel-any-p1
       open-input-channel-p
       open-input-channel-p1
       open-input-channels
       open-output-channel open-output-channel!
       open-output-channel-any-p
       open-output-channel-any-p1
       open-output-channel-p
       open-output-channel-p1
       open-output-channels open-trace-file or
       or-macro oracle-apply oracle-apply-raw
       oracle-funcall ordered-symbol-alistp
       ordered-symbol-alistp-add-pair
       ordered-symbol-alistp-add-pair-forward
       ordered-symbol-alistp-delete-assoc-eq
       ordered-symbol-alistp-forward-to-symbol-alistp
       ordered-symbol-alistp-getprops
       otherwise our-digit-char-p
       override-hints p! pairlis$
       pairlis2 pand pargs pbt pc pcb pcb!
       pcs pe pe! peek-char$ pf pkg-imports
       pkg-witness pl pl2 plet plist-worldp
       plist-worldp-forward-to-assoc-eq-equal-alistp
       plusp pointers pop-timer por position
       position-ac position-eq position-eq-ac
       position-equal position-equal-ac
       positive posp power-eval pprogn pr
       pr! preprocess prin1$ prin1-with-slashes
       prin1-with-slashes1 princ$ print-base-p
       print-gv print-object$ print-object$-ser
       print-rational-as-decimal
       print-timer profile
       prog2$ progn progn! progn$ program
       proof-tree proofs-co proper-consp
       props prove pseudo-term-listp
       pseudo-term-listp-forward-to-true-listp
       pseudo-termp
       pso pso! psof psog pspv pstack
       puff puff* push-timer push-untouchable
       put-assoc put-assoc-eq put-assoc-eql
       put-assoc-equal put-global putprop
       quick-and-dirty-subsumption-replacement-step
       quit quote
       quotep r-eqlable-alistp r-symbol-alistp
       random$ rassoc rassoc-eq rassoc-equal
       ratio rational rational-implies1
       rational-implies2 rational-listp
       rational-listp-forward-to-true-listp
       rationalp rationalp-* rationalp-+
       rationalp-expt-type-prescription
       rationalp-implies-acl2-numberp
       rationalp-unary--
       rationalp-unary-/ read-acl2-oracle
       read-acl2-oracle-preserves-state-p1
       read-byte$ read-char$
       read-file-into-string read-file-listp
       read-file-listp-forward-to-true-list-listp
       read-file-listp1
       read-file-listp1-forward-to-true-listp-and-consp
       read-files read-files-p
       read-files-p-forward-to-read-file-listp
       read-idate read-object read-run-time
       read-run-time-preserves-state-p1
       readable-file
       readable-file-forward-to-true-listp-and-consp
       readable-files readable-files-listp
       readable-files-listp-forward-to-true-list-listp-and-alistp
       readable-files-p
       readable-files-p-forward-to-readable-files-listp
       real-listp real/rationalp
       realfix realpart realpart-complex
       realpart-imagpart-elim rebuild
       redef redef! redef+ redef- redo-flat
       regenerate-tau-database rem remove
       remove-binop remove-custom-keyword-hint
       remove-default-hints
       remove-default-hints!
       remove-duplicates remove-duplicates-eq
       remove-duplicates-eql
       remove-duplicates-equal remove-eq
       remove-equal remove-invisible-fns
       remove-macro-alias remove-macro-fn
       remove-nth-alias remove-override-hints
       remove-override-hints!
       remove-raw-arity remove-untouchable
       remove1 remove1-eq remove1-equal
       reset-fc-reporting reset-kill-ring
       reset-ld-specials reset-prehistory
       reset-print-control resize-list
       rest restore-memoization-settings
       retract-world
       retrieve return-last return-last-table
       revappend reverse rewrite-stack-limit
       rfix round rw-cache satisfies
       save-and-clear-memoization-settings
       save-exec search second serialize-read
       serialize-write set-absstobj-debug
       set-accumulated-persistence
       set-backchain-limit
       set-body set-bogus-defun-hints-ok
       set-bogus-mutual-recursion-ok
       set-case-split-limitations
       set-cbd set-check-invariant-risk
       set-checkpoint-summary-limit
       set-compile-fns
       set-compiler-enabled set-debugger-enable
       set-default-backchain-limit
       set-default-hints set-default-hints!
       set-deferred-ttag-notes set-difference$
       set-difference-eq set-difference-equal
       set-difference-theories
       set-duplicate-keys-action
       set-duplicate-keys-action!
       set-enforce-redundancy
       set-equalp-equal set-evisc-tuple
       set-fc-criteria set-fc-report-on-the-fly
       set-fmt-hard-right-margin
       set-fmt-soft-right-margin
       set-gag-mode set-gc-strategy
       set-guard-checking set-guard-msg
       set-ignore-ok set-inhibit-output-lst
       set-inhibit-warnings
       set-inhibit-warnings!
       set-inhibited-summary-types
       set-invisible-fns-table
       set-iprint set-irrelevant-formals-ok
       set-ld-keyword-aliases
       set-ld-keyword-aliases!
       set-ld-redefinition-action
       set-ld-skip-proofs
       set-ld-skip-proofsp set-let*-abstraction
       set-let*-abstractionp
       set-match-free-default
       set-match-free-error
       set-measure-function
       set-non-linear set-non-linearp
       set-override-hints set-override-hints!
       set-parallel-execution
       set-print-base set-print-base-radix
       set-print-case set-print-circle
       set-print-clause-ids set-print-escape
       set-print-gv-defaults set-print-length
       set-print-level set-print-lines
       set-print-radix set-print-readably
       set-print-right-margin
       set-prover-step-limit set-raw-mode
       set-raw-mode-on! set-raw-proof-format
       set-raw-warning-format
       set-rewrite-stack-limit
       set-ruler-extenders
       set-rw-cache-state set-rw-cache-state!
       set-saved-output set-serialize-character
       set-skip-meta-termp-checks
       set-skip-meta-termp-checks!
       set-slow-alist-action
       set-splitter-output
       set-state-ok set-tau-auto-mode set-timer
       set-total-parallelism-work-limit
       set-total-parallelism-work-limit-error
       set-trace-evisc-tuple
       set-verify-guards-eagerness
       set-w set-waterfall-parallelism
       set-waterfall-parallelism-hacks-enabled
       set-waterfall-parallelism-hacks-enabled!
       set-waterfall-printing
       set-well-founded-relation
       set-wormhole-data
       set-wormhole-entry-code
       set-write-acl2x setenv$ seventh
       sgetprop show-accumulated-persistence
       show-bdd show-bodies
       show-custom-keyword-hint-expansion
       show-fc-criteria
       shrink-32-bit-integer-stack
       shrink-t-stack signed-byte
       signed-byte-p signum simplify
       sixth skip-proofs sleep some-slashable
       spec-mv-let splitter-output
       stable-under-simplificationp
       standard-char standard-char-listp
       standard-char-listp-append
       standard-char-listp-forward-to-character-listp
       standard-char-p standard-char-p-nth
       standard-co standard-oi
       standard-part standard-string-alistp
       standard-string-alistp-forward-to-alistp
       standardp
       start-proof-tree state state-global-let*
       state-global-let*-cleanup
       state-global-let*-get-globals
       state-global-let*-put-globals state-p
       state-p-implies-and-forward-to-state-p1
       state-p1 state-p1-forward
       state-p1-update-main-timer
       state-p1-update-nth-2-world
       step-limit stobj-let stop-proof-tree
       string string-append string-append-lst
       string-downcase string-downcase1
       string-equal string-equal1
       string-is-not-circular string-listp
       string-upcase string-upcase1
       string< string<-irreflexive
       string<-l string<-l-asymmetric
       string<-l-irreflexive
       string<-l-transitive
       string<-l-trichotomy
       string<= string> string>= stringp
       stringp-symbol-package-name strip-cars
       strip-cdrs sublis subseq subseq-list
       subsetp subsetp-eq subsetp-equal
       subst substitute substitute-ac summary
       symbol symbol-< symbol-<-asymmetric
       symbol-<-irreflexive symbol-<-transitive
       symbol-<-trichotomy symbol-alistp
       symbol-alistp-forward-to-eqlable-alistp
       symbol-doublet-listp
       symbol-equality symbol-listp
       symbol-listp-forward-to-true-listp
       symbol-name
       symbol-name-intern-in-package-of-symbol
       symbol-package-name symbolp
       symbolp-intern-in-package-of-symbol
       synp syntaxp sys-call sys-call+
       sys-call-status t t-stack t-stack-length
       t-stack-length1 table table-alist take
       tau-data tau-database tau-interval-dom
       tau-interval-hi tau-interval-hi-rel
       tau-interval-lo tau-interval-lo-rel
       tau-intervalp tau-status tau-system
       tenth term-list-listp term-listp
       term-order termination-theorem
       termp the the-check the-fixnum
       the-fixnum! theory theory-invariant
       third thm time$ time-tracker
       time-tracker-tau timer-alistp
       timer-alistp-forward-to-true-list-listp-and-symbol-alistp
       toggle-pc-macro
       top-level trace! trace$ trace* trans
       trans! trans1 trichotomy true-list-listp
       true-list-listp-forward-to-true-listp
       true-list-listp-forward-to-true-listp-assoc-equal
       true-listp
       true-listp-cadr-assoc-eq-for-open-channels-p
       true-listp-update-nth truncate
       ttag ttags-seen tthm type typed-io-listp
       typed-io-listp-forward-to-true-listp
       typespec-check u ubt ubt! ubt-prehistory
       ubt? ubu ubu! ubu? unary--
       unary-/ unary-function-symbol-listp
       unicity-of-0 unicity-of-1 union$
       union-eq union-equal union-theories
       universal-theory unmemoize
       unmonitor unquote unsave unsigned-byte
       unsigned-byte-p untrace$ untrans-table
       untranslate update-32-bit-integer-stack
       update-acl2-oracle
       update-acl2-oracle-preserves-state-p1
       update-big-clock-entry update-file-clock
       update-global-table update-idates
       update-list-all-package-names-lst
       update-nth update-nth-array
       update-open-input-channels
       update-open-output-channels
       update-read-files
       update-t-stack update-user-stobj-alist
       update-user-stobj-alist1
       update-written-files
       upper-case-p upper-case-p-char-upcase
       upper-case-p-forward-to-alpha-char-p
       user-stobj-alist
       user-stobj-alist1 value value-triple
       verbose-pstack verify verify-guards
       verify-guards+ verify-guards-formula
       verify-termination w walkabout warning!
       waterfall-parallelism waterfall-printing
       wet with-fast-alist with-guard-checking
       with-guard-checking-error-triple
       with-live-state with-local-state
       with-local-stobj with-output
       with-output-lock with-prover-step-limit
       with-prover-step-limit!
       with-prover-time-limit
       with-serialize-character
       with-stolen-alist without-evisc
       wof world wormhole wormhole-data
       wormhole-entry-code wormhole-eval
       wormhole-p wormhole-statusp
       wormhole1 writable-file-listp
       writable-file-listp-forward-to-true-list-listp
       writable-file-listp1
       writable-file-listp1-forward-to-true-listp-and-consp
       write-byte$
       writeable-files writeable-files-p
       writeable-files-p-forward-to-writable-file-listp
       written-file
       written-file-forward-to-true-listp-and-consp
       written-file-listp
       written-file-listp-forward-to-true-list-listp-and-alistp
       written-files written-files-p
       written-files-p-forward-to-written-file-listp
       xargs xor xxxjoin zero zerop zip zp zpf)")
 (*COMMON-LISP-SYMBOLS-FROM-MAIN-LISP-PACKAGE*
  (PACKAGES ACL2-BUILT-INS)
  "Symbols that are often imported into new packages to provide easy
  access to Common Lisp functionality.

  When you define a new package for your own work with [defpkg], you
  will usually want to import many symbols from the \"COMMON-LISP\"
  package so that you can access them without a common-lisp:: or
  acl2:: prefix.

  The constant *common-lisp-symbols-from-main-lisp-package* lists the
  978 symbols of the COMMON-LISP package found in {dpAns |
  http://dx.doi.org/10.1145/147135.147249}. You will typically also
  want to import many symbols from ACL2; see [*ACL2-exports*].

    (&allow-other-keys *print-miser-width*
                       &aux *print-pprint-dispatch*
                       &body *print-pretty*
                       &environment *print-radix*
                       &key *print-readably* &optional
                       *print-right-margin* &rest *query-io*
                       &whole *random-state* * *read-base*
                       ** *read-default-float-format*
                       *** *read-eval* *break-on-signals*
                       *read-suppress* *compile-file-pathname*
                       *readtable* *compile-file-truename*
                       *standard-input* *compile-print*
                       *standard-output* *compile-verbose*
                       *terminal-io* *debug-io*
                       *trace-output* *debugger-hook*
                       + *default-pathname-defaults*
                       ++ *error-output* +++ *features*
                       - *gensym-counter* / *load-pathname*
                       // *load-print* /// *load-truename*
                       /= *load-verbose* 1+ *macroexpand-hook*
                       1- *modules* < *package*
                       <= *print-array* = *print-base*
                       > *print-case* >= *print-circle*
                       abort *print-escape* abs *print-gensym*
                       acons *print-length* acos *print-level*
                       acosh *print-lines* add-method adjoin
                       atom boundp adjust-array base-char
                       break adjustable-array-p base-string
                       broadcast-stream allocate-instance
                       bignum broadcast-stream-streams
                       alpha-char-p bit built-in-class
                       alphanumericp bit-and butlast
                       and bit-andc1 byte append bit-andc2
                       byte-position apply bit-eqv byte-size
                       apropos bit-ior caaaar apropos-list
                       bit-nand caaadr aref bit-nor
                       caaar arithmetic-error bit-not caadar
                       arithmetic-error-operands bit-orc1
                       caaddr arithmetic-error-operation
                       bit-orc2 caadr array bit-vector
                       caar array-dimension bit-vector-p
                       cadaar array-dimension-limit
                       bit-xor cadadr array-dimensions
                       block cadar array-displacement
                       boole caddar array-element-type
                       boole-1 cadddr array-has-fill-pointer-p
                       boole-2 caddr array-in-bounds-p
                       boole-and cadr array-rank
                       boole-andc1 call-arguments-limit
                       array-rank-limit boole-andc2 call-method
                       array-row-major-index boole-c1
                       call-next-method array-total-size
                       boole-c2 car array-total-size-limit
                       boole-clr case arrayp
                       boole-eqv catch ash boole-ior ccase
                       asin boole-nand cdaaar asinh boole-nor
                       cdaadr assert boole-orc1 cdaar assoc
                       boole-orc2 cdadar assoc-if boole-set
                       cdaddr assoc-if-not boole-xor cdadr
                       atan boolean cdar atanh both-case-p
                       cddaar cddadr clear-input copy-tree
                       cddar clear-output cos cdddar close cosh
                       cddddr clrhash count cdddr code-char
                       count-if cddr coerce count-if-not
                       cdr compilation-speed ctypecase
                       ceiling compile debug cell-error
                       compile-file decf cell-error-name
                       compile-file-pathname declaim
                       cerror compiled-function declaration
                       change-class compiled-function-p
                       declare char compiler-macro decode-float
                       char-code compiler-macro-function
                       decode-universal-time
                       char-code-limit complement defclass
                       char-downcase complex defconstant
                       char-equal complexp defgeneric
                       char-greaterp compute-applicable-methods
                       define-compiler-macro
                       char-int compute-restarts
                       define-condition char-lessp
                       concatenate define-method-combination
                       char-name concatenated-stream
                       define-modify-macro char-not-equal
                       concatenated-stream-streams
                       define-setf-expander char-not-greaterp
                       cond define-symbol-macro char-not-lessp
                       condition defmacro char-upcase conjugate
                       defmethod char/= cons defpackage
                       char< consp defparameter char<=
                       constantly defsetf char= constantp
                       defstruct char> continue deftype
                       char>= control-error defun character
                       copy-alist defvar characterp copy-list
                       delete check-type copy-pprint-dispatch
                       delete-duplicates cis copy-readtable
                       delete-file class copy-seq delete-if
                       class-name copy-structure delete-if-not
                       class-of copy-symbol delete-package
                       denominator eq deposit-field
                       eql describe equal describe-object
                       equalp destructuring-bind
                       error digit-char etypecase
                       digit-char-p eval directory eval-when
                       directory-namestring evenp disassemble
                       every division-by-zero exp do export
                       do* expt do-all-symbols extended-char
                       do-external-symbols fboundp do-symbols
                       fceiling documentation fdefinition
                       dolist ffloor dotimes fifth double-float
                       file-author double-float-epsilon
                       file-error double-float-negative-epsilon
                       file-error-pathname dpb file-length
                       dribble file-namestring dynamic-extent
                       file-position ecase file-stream
                       echo-stream file-string-length
                       echo-stream-input-stream file-write-date
                       echo-stream-output-stream
                       fill ed fill-pointer
                       eighth find elt find-all-symbols
                       encode-universal-time find-class
                       end-of-file find-if endp find-if-not
                       enough-namestring find-method
                       ensure-directories-exist find-package
                       ensure-generic-function find-restart
                       find-symbol get-internal-run-time
                       finish-output get-macro-character
                       first get-output-stream-string fixnum
                       get-properties flet get-setf-expansion
                       float get-universal-time float-digits
                       getf float-precision gethash
                       float-radix go float-sign graphic-char-p
                       floating-point-inexact handler-bind
                       floating-point-invalid-operation
                       handler-case floating-point-overflow
                       hash-table floating-point-underflow
                       hash-table-count floatp hash-table-p
                       floor hash-table-rehash-size fmakunbound
                       hash-table-rehash-threshold force-output
                       hash-table-size format hash-table-test
                       formatter host-namestring
                       fourth identity fresh-line
                       if fround ignorable ftruncate ignore
                       ftype ignore-errors funcall imagpart
                       function import function-keywords
                       in-package function-lambda-expression
                       incf functionp initialize-instance
                       gcd inline generic-function
                       input-stream-p gensym inspect
                       gentemp integer get integer-decode-float
                       get-decoded-time integer-length
                       get-dispatch-macro-character
                       integerp get-internal-real-time
                       interactive-stream-p
                       intern lisp-implementation-type
                       internal-time-units-per-second
                       lisp-implementation-version
                       intersection list invalid-method-error
                       list* invoke-debugger
                       list-all-packages invoke-restart
                       list-length invoke-restart-interactively
                       listen isqrt listp keyword load keywordp
                       load-logical-pathname-translations
                       labels load-time-value
                       lambda locally lambda-list-keywords
                       log lambda-parameters-limit
                       logand last logandc1 lcm
                       logandc2 ldb logbitp ldb-test logcount
                       ldiff logeqv least-negative-double-float
                       logical-pathname
                       least-negative-long-float
                       logical-pathname-translations
                       least-negative-normalized-double-float
                       logior
                       least-negative-normalized-long-float
                       lognand
                       least-negative-normalized-short-float
                       lognor
                       least-negative-normalized-single-float
                       lognot least-negative-short-float
                       logorc1 least-negative-single-float
                       logorc2 least-positive-double-float
                       logtest least-positive-long-float logxor
                       least-positive-normalized-double-float
                       long-float
                       least-positive-normalized-long-float
                       long-float-epsilon
                       least-positive-normalized-short-float
                       long-float-negative-epsilon
                       least-positive-normalized-single-float
                       long-site-name
                       least-positive-short-float loop
                       least-positive-single-float loop-finish
                       length lower-case-p let machine-instance
                       let* machine-type machine-version
                       mask-field macro-function
                       max macroexpand member macroexpand-1
                       member-if macrolet member-if-not
                       make-array merge make-broadcast-stream
                       merge-pathnames make-concatenated-stream
                       method make-condition method-combination
                       make-dispatch-macro-character
                       method-combination-error
                       make-echo-stream method-qualifiers
                       make-hash-table min make-instance
                       minusp make-instances-obsolete
                       mismatch make-list mod make-load-form
                       most-negative-double-float
                       make-load-form-saving-slots
                       most-negative-fixnum
                       make-method most-negative-long-float
                       make-package most-negative-short-float
                       make-pathname most-negative-single-float
                       make-random-state
                       most-positive-double-float
                       make-sequence most-positive-fixnum
                       make-string most-positive-long-float
                       make-string-input-stream
                       most-positive-short-float
                       make-string-output-stream
                       most-positive-single-float
                       make-symbol muffle-warning
                       make-synonym-stream multiple-value-bind
                       make-two-way-stream multiple-value-call
                       makunbound multiple-value-list
                       map multiple-value-prog1
                       map-into multiple-value-setq mapc
                       multiple-values-limit mapcan name-char
                       mapcar namestring mapcon nbutlast
                       maphash nconc mapl next-method-p
                       maplist nil nintersection package-error
                       ninth package-error-package
                       no-applicable-method package-name
                       no-next-method package-nicknames
                       not package-shadowing-symbols
                       notany package-use-list notevery
                       package-used-by-list notinline packagep
                       nreconc pairlis nreverse parse-error
                       nset-difference parse-integer
                       nset-exclusive-or parse-namestring
                       nstring-capitalize pathname
                       nstring-downcase pathname-device
                       nstring-upcase pathname-directory
                       nsublis pathname-host nsubst
                       pathname-match-p nsubst-if pathname-name
                       nsubst-if-not pathname-type nsubstitute
                       pathname-version nsubstitute-if
                       pathnamep nsubstitute-if-not
                       peek-char nth phase nth-value pi nthcdr
                       plusp null pop number position numberp
                       position-if numerator position-if-not
                       nunion pprint oddp pprint-dispatch
                       open pprint-exit-if-list-exhausted
                       open-stream-p pprint-fill
                       optimize pprint-indent or pprint-linear
                       otherwise pprint-logical-block
                       output-stream-p pprint-newline
                       package pprint-pop pprint-tab read-char
                       pprint-tabular read-char-no-hang
                       prin1 read-delimited-list
                       prin1-to-string read-from-string
                       princ read-line princ-to-string
                       read-preserving-whitespace
                       print read-sequence print-not-readable
                       reader-error print-not-readable-object
                       readtable print-object
                       readtable-case print-unreadable-object
                       readtablep probe-file
                       real proclaim realp prog realpart
                       prog* reduce prog1 reinitialize-instance
                       prog2 rem progn remf program-error
                       remhash progv remove provide
                       remove-duplicates psetf remove-if
                       psetq remove-if-not push remove-method
                       pushnew remprop quote rename-file
                       random rename-package random-state
                       replace random-state-p require rassoc
                       rest rassoc-if restart rassoc-if-not
                       restart-bind ratio restart-case
                       rational restart-name rationalize return
                       rationalp return-from read revappend
                       read-byte reverse room simple-bit-vector
                       rotatef simple-bit-vector-p
                       round simple-condition row-major-aref
                       simple-condition-format-arguments
                       rplaca simple-condition-format-control
                       rplacd simple-error
                       safety simple-string satisfies
                       simple-string-p sbit simple-type-error
                       scale-float simple-vector schar
                       simple-vector-p search simple-warning
                       second sin sequence single-float
                       serious-condition single-float-epsilon
                       set single-float-negative-epsilon
                       set-difference
                       sinh set-dispatch-macro-character
                       sixth set-exclusive-or
                       sleep set-macro-character slot-boundp
                       set-pprint-dispatch slot-exists-p
                       set-syntax-from-char slot-makunbound
                       setf slot-missing setq slot-unbound
                       seventh slot-value shadow software-type
                       shadowing-import software-version
                       shared-initialize some shiftf sort
                       short-float space short-float-epsilon
                       special short-float-negative-epsilon
                       special-operator-p short-site-name
                       speed signal sqrt signed-byte
                       stable-sort signum standard simple-array
                       standard-char simple-base-string
                       standard-char-p standard-class
                       sublis standard-generic-function subseq
                       standard-method subsetp standard-object
                       subst step subst-if storage-condition
                       subst-if-not store-value substitute
                       stream substitute-if stream-element-type
                       substitute-if-not stream-error
                       subtypep stream-error-stream
                       svref stream-external-format
                       sxhash streamp symbol
                       string symbol-function string-capitalize
                       symbol-macrolet string-downcase
                       symbol-name string-equal symbol-package
                       string-greaterp symbol-plist
                       string-left-trim symbol-value
                       string-lessp symbolp string-not-equal
                       synonym-stream string-not-greaterp
                       synonym-stream-symbol string-not-lessp t
                       string-right-trim tagbody string-stream
                       tailp string-trim tan string-upcase
                       tanh string/= tenth string< terpri
                       string<= the string= third string>
                       throw string>= time stringp trace
                       structure translate-logical-pathname
                       structure-class
                       translate-pathname structure-object
                       tree-equal style-warning truename
                       truncate values-list two-way-stream
                       variable two-way-stream-input-stream
                       vector two-way-stream-output-stream
                       vector-pop type vector-push type-error
                       vector-push-extend type-error-datum
                       vectorp type-error-expected-type
                       warn type-of warning typecase
                       when typep wild-pathname-p unbound-slot
                       with-accessors unbound-slot-instance
                       with-compilation-unit
                       unbound-variable with-condition-restarts
                       undefined-function
                       with-hash-table-iterator
                       unexport with-input-from-string unintern
                       with-open-file union with-open-stream
                       unless with-output-to-string unread-char
                       with-package-iterator unsigned-byte
                       with-simple-restart untrace with-slots
                       unuse-package with-standard-io-syntax
                       unwind-protect write
                       update-instance-for-different-class
                       write-byte
                       update-instance-for-redefined-class
                       write-char upgraded-array-element-type
                       write-line upgraded-complex-part-type
                       write-sequence upper-case-p
                       write-string use-package write-to-string
                       use-value y-or-n-p user-homedir-pathname
                       yes-or-no-p values zerop)")
 (*STANDARD-CI*
  (IO ACL2-BUILT-INS)
  "An ACL2 character-based analogue of CLTL's *standard-input*

  The value of the ACL2 constant *standard-ci* is an open character
  input channel that is synonymous to Common Lisp's *standard-input*.

  ACL2 character input from *standard-ci* is actually obtained by
  reading [characters] from the stream named by Common Lisp's
  *standard-input*. That is, by changing the setting of
  *standard-input* in raw Common Lisp you can change the source from
  which ACL2 reads on the channel *standard-ci*. See [*standard-co*].")
 (*STANDARD-CO*
  (IO ACL2-BUILT-INS)
  "The ACL2 analogue of CLTL's *standard-output*

  The value of the ACL2 constant *standard-co* is an open character
  output channel that is synonymous to Common Lisp's
  *standard-output*.

  ACL2 character output to *standard-co* will go to the stream named by
  Common Lisp's *standard-output*. That is, by changing the setting
  of *standard-output* in raw Common Lisp you can change the actual
  destination of ACL2 output on the channel named by *standard-co*.
  Observe that this happens without changing the logical value of
  *standard-co* (which is some channel symbol). Changing the setting
  of *standard-output* in raw Common Lisp essentially just changes
  the map that relates ACL2 to the physical world of terminals,
  files, etc.

  To see the value of this observation, consider the following. Suppose
  you write an ACL2 function which does character output to the
  constant channel *standard-co*. During testing you see that the
  output actually goes to your terminal. Can you use the function to
  output to a file? Yes, if you are willing to do a little work in
  raw Common Lisp: open a stream to the file in question, set
  *standard-output* to that stream, call your ACL2 function, and then
  close the stream and restore *standard-output* to its nominal
  value. Similar observations can be made about the two ACL2 input
  channels, [*standard-oi*] and [*standard-ci*], which are analogues
  of *standard-input*.

  Another reason you might have for wanting to change the actual
  streams associated with [*standard-oi*] and *standard-co* is to
  drive the ACL2 top-level loop, [ld], on alternative input and
  output streams. This end can be accomplished easily within ACL2 by
  either calling [ld] on the desired channels or file names or by
  resetting the ACL2 [state] global variables '[standard-oi] and
  '[standard-co] which are used by [ld]. See [standard-oi] and see
  [standard-co].")
 (*STANDARD-OI*
  (IO ACL2-BUILT-INS)
  "An ACL2 object-based analogue of CLTL's *standard-input*

  The value of the ACL2 constant *standard-oi* is an open object input
  channel that is synonymous to Common Lisp's *standard-input*.

  ACL2 object input from *standard-oi* is actually obtained by reading
  from the stream named by Common Lisp's *standard-input*. That is,
  by changing the setting of *standard-input* in raw Common Lisp you
  can change the source from which ACL2 reads on the channel
  *standard-oi*. See [*standard-co*].")
 (+
  (NUMBERS ACL2-BUILT-INS)
  "Addition macro

  + is really a macro that expands to calls of the function [binary-+].
  So for example

    (+ x y 4 z)

  represents the same term as

    (binary-+ x (binary-+ y (binary-+ 4 z))).

  See [binary-+].

  Macro: <+>

    (defmacro + (&rest rst)
              (if rst
                  (if (cdr rst)
                      (xxxjoin 'binary-+ rst)
                      (cons 'binary-+
                            (cons 0 (cons (car rst) nil))))
                  0))


Subtopics

  [Binary-+]
      Addition function")
 (-
  (NUMBERS ACL2-BUILT-INS)
  "Macro for subtraction and negation

  See [binary-+] for addition and see [unary--] for negation.

  Note that - represents subtraction as follows:

    (- x y)

  represents the same term as

    (+ x (- y))

  which is really

    (binary-+ x (unary-- y)).

  Also note that - represents arithmetic negation as follows:

    (- x)

  expands to

    (unary-- x).

  Macro: <->

    (defmacro
         - (x &optional (y 'nil binary-casep))
         (if binary-casep
             (let ((y (if (and (consp y)
                               (eq (car y) 'quote)
                               (consp (cdr y))
                               (acl2-numberp (car (cdr y)))
                               (eq (cdr (cdr y)) nil))
                          (car (cdr y))
                          y)))
                  (if (acl2-numberp y)
                      (cons 'binary-+
                            (cons (unary-- y) (cons x nil)))
                      (cons 'binary-+
                            (cons x
                                  (cons (cons 'unary-- (cons y nil))
                                        nil)))))
             (let ((x (if (and (consp x)
                               (eq (car x) 'quote)
                               (consp (cdr x))
                               (acl2-numberp (car (cdr x)))
                               (eq (cdr (cdr x)) nil))
                          (car (cdr x))
                          x)))
                  (if (acl2-numberp x)
                      (unary-- x)
                      (cons 'unary-- (cons x nil))))))")
 (/
  (NUMBERS ACL2-BUILT-INS)
  "Macro for division and reciprocal

  See [binary-*] for multiplication and see [unary-/] for reciprocal.

  Note that / represents division as follows:

    (/ x y)

  represents the same term as

    (* x (/ y))

  which is really

    (binary-* x (unary-/ y)).

  Also note that / represents reciprocal as follows:

    (/ x)

  expands to

    (unary-/ x).

  / is a Common Lisp macro. See any Common Lisp documentation for more
  information.

  Macro: </>

    (defmacro / (x &optional (y 'nil binary-casep))
              (cond (binary-casep (list 'binary-* x (list 'unary-/ y)))
                    (t (list 'unary-/ x))))")
 (/=
  (NUMBERS ACL2-BUILT-INS)
  "Test inequality of two numbers

  (/= x y) is logically equivalent to (not (equal x y)).

  Unlike [equal], /= has a [guard] requiring both of its arguments to
  be numbers. Generally, /= is executed more efficiently than a
  combination of [not] and [equal].

  For a discussion of the various ways to test against 0, See
  [zero-test-idioms].

  /= is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Function: </=>

    (defun /= (x y)
           (declare (xargs :guard (and (acl2-numberp x)
                                       (acl2-numberp y))))
           (not (equal x y)))")
 (1+
  (NUMBERS ACL2-BUILT-INS)
  "Increment by 1

  (1+ x) is the same as (+ 1 x). See [+].

  1+ is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Macro: <1+>

    (defmacro 1+ (x) (list '+ 1 x))")
 (1-
  (NUMBERS ACL2-BUILT-INS)
  "Decrement by 1

  (1- x) is the same as (- x 1). See [-].

  1- is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Macro: <1->

    (defmacro 1- (x) (list '- x 1))")
 (<
  (NUMBERS ACL2-BUILT-INS)
  "Less-than

  Completion Axiom (completion-of-<):

    (equal (< x y)
           (if (and (rationalp x)
                    (rationalp y))
               (< x y)
             (let ((x1 (if (acl2-numberp x) x 0))
                   (y1 (if (acl2-numberp y) y 0)))
               (or (< (realpart x1) (realpart y1))
                   (and (equal (realpart x1) (realpart y1))
                        (< (imagpart x1) (imagpart y1)))))))

  [Guard] for (< x y):

    (and (rationalp x) (rationalp y))

  Notice that like all arithmetic functions, < treats non-numeric
  inputs as 0.

  This function has the usual meaning on the rational numbers, but is
  extended to the complex rational numbers using the lexicographic
  order: first the real parts are compared, and if they are equal,
  then the imaginary parts are compared.")
 (<=
  (NUMBERS ACL2-BUILT-INS)
  "Less-than-or-equal test

  <= is a macro, and (<= x y) expands to the same thing as (not (< y
  x)). See [<].

  <= is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Macro: <<=>

    (defmacro <= (x y)
              (list 'not (list '< y x)))")
 (=
  (NUMBERS EQUAL EQUALITY-VARIANTS ACL2-BUILT-INS)
  "Test equality of two numbers

  (= x y) is logically equivalent to (equal x y).

  Unlike [equal], = has a [guard] requiring both of its arguments to be
  numbers. Generally, = is executed more efficiently than [equal].

  For a discussion of the various ways to test against 0, See
  [zero-test-idioms].

  = is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Function: <=>

    (defun = (x y)
           (declare (xargs :guard (and (acl2-numberp x)
                                       (acl2-numberp y))))
           (equal x y))")
 (>
  (NUMBERS ACL2-BUILT-INS)
  "Greater-than test

  > is a macro, and (> x y) expands to the same thing as (< y x). See
  [<].

  > is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Macro: <>>

    (defmacro > (x y) (list '< y x))")
 (>=
  (NUMBERS ACL2-BUILT-INS)
  "Greater-than-or-equal test

  >= is a macro, and (>= x y) expands to the same thing as (not (< x
  y)). See [<].

  >= is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Macro: <>=>

    (defmacro >= (x y)
              (list 'not (list '< x y)))")
 (@
  (PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "Get the value of a global variable in [state]

    Examples:
    (+ (@ y) 1)
    (assign a (aset1 'ascii-map-array (@ a) 66 'Upper-case-B))

    General Form:
    (@ symbol)

  where symbol is any symbol to which you have [assign]ed a global
  value. This macro expands into (f-get-global 'symbol state), which
  retrieves the stored value of the symbol.

  The macro f-get-global is closely related to [@]: (@ var)
  macroexpands to (f-get-global 'var state).

  The macro [assign] makes it convenient to set the value of a symbol.
  The :[ubt] operation has no effect on the global-table of [state].
  Thus, you may use these globals to hang onto useful data structures
  even though you may undo back past where you computed and saved
  them.")
 (A!
  (LD)
  "To return to the top-level of ACL2's command loop

  When (a!) is evaluated inside of ACL2's command loop, the current
  computation is aborted and control returns to the top of the
  command loop, exactly as though the user had interrupted and
  aborted the current computation. (Note: Versions of ACL2 up to
  Version_3.4 provided `#.' for this purpose, but no longer; see
  [sharp-dot-reader].)

  If you are at an ACL2 prompt (as opposed to a raw Lisp break), then
  you may type :a! in place of (a!); see [keyword-commands].

  For a related feature that only pops up one level, see [p!].

  Logically speaking, (a!) = nil. But imagine that it is defined in
  such a way that it causes a stack overflow or other resource
  exhaustion when called.")
 (ABORT!
  (LD)
  "To return to the top-level of ACL2's command loop

  This is an alias for a!; see [a!]. For a related feature that only
  pops up one level, see [p!].")
 (ABOUT-ACL2
  (ACL2)
  "General information About ACL2

  This is ACL2 Version 7.2, [copyright] (C) 2016, Regents of the
  University of Texas, authored by Matt Kaufmann and J Strother
  Moore.

  See the {ACL2 home page | http://www.cs.utexas.edu/users/moore/acl2/}
  for additional information including tutorials, installation
  instructions, mailing lists, related publications, ACL2 workshops
  and seminars, acknowledgements, and other ACL2 releases.

  See [documentation] for how to access the ACL2 User's Manual.

  For statistics on ACL2 code size, see file doc/acl2-code-size.txt.


Subtopics

  [Acknowledgments]
      Some contributors to the well-being of ACL2

  [ACL2-help]
      The acl2-help mailing list

  [Bibliography]
      Reports about ACL2

  [Building-ACL2]
      How to build an ACL2 executable

  [Common-lisp]
      Relation to Common Lisp, including deviations from the spec

  [Copyright]
      ACL2 copyright, license, sponsorship

  [Git-quick-start]
      Git quick start guide

  [Release-notes]
      Pointers to what has changed

  [Version]
      ACL2 Version Number")
 (ABOUT_MODELS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "About Models

  [{IMAGE}]

  ACL2 is used to construct mathematical models of computer hardware
  and software (i.e., ``digital systems'').

  {IMAGE}

  A mathematical model is a set of mathematical formulas used to
  predict the behavior of some artifact.

  The use of mathematical models allows faster and cheaper delivery of
  better systems.

  Models need not be complete or perfectly accurate to be useful to the
  trained engineer.

  Click [here] for more discussion of these assertions in an
  engineering context.

  [{IMAGE}]")
 (ABOUT_THE_ACL2_HOME_PAGE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "About the ACL2 Home Page

  [{IMAGE}]

  The ACL2 Home Page is integrated into the ACL2 online documentation.
  Over 4 megabytes of hypertext is available here.

  The vast majority of the text is user-level documentation. For
  example, to find out about [rewrite] [{ICON}] rules you could click
  on the link. (If you do that, remember to use your browser's Back
  Button to come back here.)

  The tiny warning signs [{ICON}] mark links that lead out of the
  introductory-level material and into the user documentation. We
  advise against following such links upon your first reading of the
  documentation.

  At the end of the tours you will have a chance to revisit them
  quickly to explore alternative paths more fully.

  Finally, every page contains two icons at the bottom. The ACL2 icon
  leads you back to the ACL2 Home Page. The Index icon allows you to
  browse an alphabetical listing of all the topics in ACL2's online
  documentation. But both icons take you off the main route of the
  tour.

  [{IMAGE}]")
 (ABOUT_THE_ADMISSION_OF_RECURSIVE_DEFINITIONS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "About the Admission of Recursive Definitions

  You can't just add any formula as an axiom or definition and expect
  the logic to stay sound! For example, if we were permitted to
  define (APP X Y) so that it was equal to (NOT (APP X Y)) then we
  could prove anything. The purported ``definition'' of APP must have
  several properties to be admitted to the logic as a new axiom.

  The key property a recursive definition must have is that the
  recursion terminate. This, along with some syntactic criteria,
  ensures us that there exists a function satisfying the definition.

  Termination must be proved before the definition is admitted. This is
  done in general by finding a measure of the arguments of the
  function and a well-founded relation such that the arguments ``get
  smaller'' every time a recursive branch is taken.

  For app the measure is the ``size'' of the first argument, x, as
  determined by the primitive function [ACL2-count] [{ICON}]. The
  well-founded relation used in this example is [o-p] [{ICON}], which
  is the standard ordering on the ordinals less than ``epsilon
  naught.'' These particular choices for app were made
  ``automatically'' by ACL2. But they are in fact determined by
  various ``default'' settings. The user of ACL2 can change the
  defaults or specify a ``hint'' to the [defun] [{ICON}] command to
  specify the measure and relation.

  You should now return to [the Walking Tour].")
 (ABOUT_THE_PROMPT
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "About the Prompt

  The string ``ACL2 !>'' is the ACL2 prompt.

  The prompt tells the user that an ACL2 [command] [{ICON}]is expected.
  In addition, the prompt tells us a little about the current state
  of the ACL2 command interpreter. We explain the prompt briefly
  below. But first we talk about the command interpreter.

  An ACL2 command is generally a Lisp expression to be evaluated. There
  are some unusual commands (such as :[q] [{ICON}] for quitting ACL2)
  which cause other behavior. But most commands are read, evaluated,
  and then have their results printed. Thus, we call the command
  interpreter a ``read-eval-print loop.'' The ACL2 command
  interpreter is named [ld] [{ICON}] (after Lisp's ``load'').

  When a command is read, all the symbols in it are converted to
  uppercase. Thus, typing (defun app ...) is the same as typing
  (DEFUN APP ...) or (defun App ...). There are ways to force
  lowercase case characters into symbols but we won't discuss them
  here. A consequence of Common Lisp's default uppercasing is that
  you'll see a general lack of concern over the case used when
  symbols are displayed in this documentation.

  In addition, symbols ``belong'' to ``packages'' which give the user a
  way to control namespaces. The prompt tells us which package is the
  default one, namely \"ACL2\". That means when we call car, for
  example, we are invoking the standard definition of that symbol. If
  the packager were \"JONES\" then car would refer to the definition of
  that symbol in that package (which may or may not be different
  depending on what symbols were imported into that package.

  A command like (defun app (x y) ...) causes ACL2 to evaluate the
  [defun] [{ICON}] function on app, (x y) and .... When that command
  is evaluated it prints some information to the terminal explaining
  the processing of the proposed definition. It returns the symbol
  APP as its value, which is printed by the command interpreter.
  (Actually, defun is not a function but a [macro] [{ICON}] which
  expands to a form that involves [state] [{ICON}], a necessary
  precondition to printing output to the terminal and to ``changing''
  the set of axioms. But we do not discuss this further here.)

  The defun command is an example of a special kind of command called
  an ``event.'' [Events] [{ICON}] are those commands that change the
  ``logical world'' by adding such things as axioms or theorems to
  ACL2's database. See [world] [{ICON}]. But not every command is an
  event command.

  A command like (app '(1 2 3) '(4 5 6 7)) is an example of a
  non-event. It is processed the same general way: the function app
  is applied to the indicated arguments and the result is printed.
  The function app does not print anything and does not change the
  ``world.''

  A third kind of command is one that display information about the
  current logical world or that ``roll back'' to previous versions of
  the world. Such commands are called ``[history]'' [{ICON}]
  commands.

  What does the ACL2 prompt tell us about the read-eval-print loop? The
  prompt ``ACL2 !>'' tells us that the command will be read with
  [current-package] [{ICON}] set to \"ACL2\", that guard checking (see
  [set-guard-checking] [{ICON}]) is on (``!''), and that we are at
  the top-level (there is only one ``>''). For more about the prompt,
  see [default-print-prompt] [{ICON}].

  You should now return to [the Walking Tour].")
 (ABOUT_TYPES
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "About Types

  The universe of ACL2 objects includes objects of many different
  types. For example, t is a ``symbol'' and 3 is an ``integer.''
  Roughly speaking the objects of ACL2 can be partitioned into the
  following types:

     [Numbers] 3, -22/7, #c(3
    5/2) [Characters] #\\A, #\\a,
    #\\Space [Strings] \"This is a
    string.\" [Symbols] 'abc,
    'smith::abc [Conses (or
    Ordered Pairs)] '((a . 1) (b . 2))

  When proving theorems it is important to know the types of object
  returned by a term. ACL2 uses a complicated heuristic algorithm,
  called [type-set] [{ICON}], to determine what types of objects a
  term may produce. The user can more or less program the type-set
  algorithm by proving [type-prescription] [{ICON}] rules.

  ACL2 is an ``untyped'' logic in the sense that the syntax is not
  typed: It is legal to apply a function symbol of n arguments to any
  n terms, regardless of the types of the argument terms. Thus, it is
  permitted to write such odd expressions as (+ t 3) which sums the
  symbol t and the integer 3. Common Lisp does not prohibit such
  expressions. We like untyped languages because they are simple to
  describe, though proving theorems about them can be awkward
  because, unless one is careful in the way one defines or states
  things, unusual cases (like (+ t 3)) can arise.

  To make theorem proving easier in ACL2, the axioms actually define a
  value for such terms. The value of (+ t 3) is 3; under the ACL2
  axioms, non-numeric arguments to + are treated as though they were
  0.

  You might immediately wonder about our claim that ACL2 is Common
  Lisp, since (+ t 3) is ``an error'' (and will sometimes even
  ``signal an error'') in Common Lisp. It is to handle this problem
  that ACL2 has guards. We will discuss guards later in the Walking
  Tour. However, many new users simply ignore the issue of guards
  entirely and that is what we recommend for now.

  You should now return to [the Walking Tour].")
 (ABS
  (NUMBERS ACL2-BUILT-INS)
  "The absolute value of a real number

  (Abs x) is -x if x is negative and is x otherwise.

  The [guard] for abs requires its argument to be a rational ([real],
  in ACL2(r)) number.

  Abs is a Common Lisp function. See any Common Lisp documentation for
  more information.

  From ``Common Lisp the Language'' page 205, we must not allow complex
  x as an argument to abs in ACL2, because if we did we would have to
  return a number that might be a floating point number and hence not
  an ACL2 object.

  Function: <abs>

    (defun abs (x)
           (declare (xargs :guard (real/rationalp x)))
           (if (minusp x) (- x) x))")
 (ACCESS
  (DEFREC ACL2-BUILT-INS)
  "Accessor macro for [defrec] structures.

  The access macro is built into ACL2, and allows you to access
  particular fields from structures that have been introduced with
  [defrec]. For instance:

    (access employee x :name)

  would return the name field from the employee x. See [defrec] for
  more information.")
 (ACCUMULATED-PERSISTENCE
  (DEBUGGING)
  "To get statistics on which [rune]s are being tried

    Useful Forms:
    (accumulated-persistence t)              ; Activate statistics gathering.
    (accumulated-persistence :all)           ; As above, ``enhanced'' (see below)

    (show-accumulated-persistence :frames)   ; Display statistics ordered by
    (show-accumulated-persistence :tries)    ; frames built, times tried,
    (show-accumulated-persistence :ratio)    ; or their ratio.
    (show-accumulated-persistence)           ; Same as supplying :frames argument.

    (accumulated-persistence nil)            ; Deactivate.

    (accumulated-persistence-oops)           ; Undo the clearing effect of
                                             ; (accumulated-persistence nil).

    Advanced forms:
    (show-accumulated-persistence :frames-s) ; The `s', `f', and `a' suffixes
    (show-accumulated-persistence :frames-f) ; stand for `success' (`useful'),
    (show-accumulated-persistence :frames-a) ; `failure' (`useless'), and `all',
    (show-accumulated-persistence :tries-s)  ; respectively.  The only effect of
    (show-accumulated-persistence :tries-f)  ; the `s' and `f' versions is to
    (show-accumulated-persistence :tries-a)  ; sort first by useful or useless
                                             ; applications, respectively (see
                                             ; below).  The `a' versions avoid
                                             ; showing the useful/useless
                                             ; breakdown.

    (show-accumulated-persistence :runes)    ; Just show runes alphabetically.
    (show-accumulated-persistence :useless)  ; Just show useless runes.
    (show-accumulated-persistence :useless :list)
                                             ; Just show useless runes as a list.

  In summary, (accumulated-persistence t) turns on fresh statistics
  gathering for rules, (accumulated-persistence nil) turns it off,
  (show-accumulated-persistence) displays the statistics that were
  gathered, and (accumulated-persistence-oops) restores the
  statistics, if any, that were cleared by (accumulated-persistence
  t) or (accumulated-persistence :all).

  In general, if the optional second argument of
  show-accumulated-persistence is supplied as :list, then instead of
  the result being displayed a ``pretty'' human-readable format, the
  result will be displayed as a correspondingg list of entries of the
  form (frames tries xrune).

  Note: set-accumulated-persistence is equivalent to
  accumulated-persistence.

  See the end of this item for a discussion of ``enhanced statistics
  gathering,'' which can be useful for more fine-grained proof
  debugging.

  Generally speaking, the more ACL2 knows, the slower it runs. That is
  because the search space grows with the number of alternative
  rules. Often, the system tries to apply rules that you have
  forgotten were even there, if you knew about them in the first
  place! ``Accumulated-persistence'' is a statistic (originally
  developed for Nqthm) that helps you identify the rules that are
  causing ACL2's search space to explode.

  For other proof debugging utilities, see [break-rewrite] and see
  [dmr].

  Accumulated persistence tracking can be turned on or off. It is
  generally off. When on, proofs may take perhaps 50% more time than
  otherwise! But some useful numbers are collected. When it is turned
  on, by

    ACL2 !>(accumulated-persistence t)

  an accumulation site is initialized and henceforth data about which
  rules are being tried is accumulated into that site. That
  accumulated data can be displayed with
  show-accumulated-persistence, as described in detail below. When
  accumulated persistence is turned off, with
  (accumulated-persistence nil), the accumulation site is wiped out
  and the data in it is lost.

  The ``accumulated persistence'' of a [rune] is the number of [rune]s
  the system has attempted to apply (since accumulated persistence
  was last activated) while the given [rune] was being tried.

  Consider a :[rewrite] rule named [rune]. For simplicity, let us
  imagine that [rune] is tried only once in the period during which
  accumulated persistence is being monitored. Recall that to apply a
  rewrite rule we must match the left-hand side of the conclusion to
  some term we are trying to rewrite, establish the hypotheses of
  [rune] by rewriting, and, if successful, then rewrite the
  right-hand side of the conclusion. We say [rune] is ``being tried''
  from the time we have matched its left-hand side to the time we
  have either abandoned the attempt or finished rewriting its
  right-hand side. (By ``match'' we mean to include any loop-stopper
  requirement; see [loop-stopper].) During that period of time other
  rules might be tried, e.g., to establish the hypotheses. The rules
  tried while [rune] is being tried are ``billed'' to [rune] in the
  sense that they are being considered here only because of the
  demands of [rune]. Thus, if no other rules are tried during that
  period, the accumulated persistence of [rune] is 1 --- we ``bill''
  [rune] once for its own application attempt. If, on the other hand,
  we tried 10 rules on behalf of that application of [rune], then
  [rune]'s accumulated persistence would be 11.

  One way to envision accumulated persistence is to imagine that every
  time a [rune] is tried it is pushed onto a stack. The rules tried
  on behalf of a given application of a [rune] are thus pushed and
  popped on the stack above that [rune]. A lot of work might be done
  on its behalf --- the stack above the [rune] grows and shrinks
  repeatedly as the search continues for a way to use the [rune]. All
  the while, the [rune] itself ``persists'' in the stack, until we
  finish with the attempt to apply it, at which time we pop it off.
  The accumulated persistence of a [rune] application is thus the
  number of stack frames built while that [rune] was on the stack.

  Note that accumulated persistence is tallied whether or not the
  attempt to apply a [rune] is successful. Each of the rules tried on
  its behalf might have failed and the attempt to apply the [rune]
  might have also failed. The ACL2 proof script would make no mention
  of the [rune] or the rules tried on its behalf because they did not
  contribute to the proof. But time was spent pursuing the possible
  application of the [rune] and accumulated persistence is a measure
  of that time.

  A high accumulated persistence might come about in two extreme ways.
  One is that the rule causes a great deal of work every time it is
  tried. The other is that the rule is ``cheap'' but is tried very
  often. We therefore keep track of the number of times each rule is
  tried as well as its persistence. The ratio between the two is the
  average amount of work done on behalf of the rule each time it is
  tried.

  When the accumulated persistence totals are displayed by the function
  show-accumulated-persistence we sort them so that the most
  expensive [rune]s are shown first. We can sort according to one of
  three basic keys:

    :frames - the number of frames built on behalf of the rune
    :tries  - the number of times the rune was tried
    :ratio  - frames built per try

  The key simply determines the order in which the information is
  presented. If no argument is supplied to
  show-accumulated-persistence, :frames is used.

  The display breaks each total into ``useful'' and ``useless''
  subtotals. A ``useful'' rule try is one that is viewed as
  contributing to the progress of the proof, and the rest are
  ``useless'' rule applications. For example, if a :[rewrite] rule is
  tried but its hypotheses are not successfully relieved, then that
  rule application and all work done on behalf of those hypotheses is
  ``useless'' work. In general, an attempt to apply a [rune] is
  viewed as ``useful'' unless the attempt fails or the attempt is on
  the stack (as described above) for a [rune] application that
  ultimately fails. A large number of ``useless'' :frames or :tries
  along with correspondingly small ``useful'' counts may suggest
  [rune]s to consider disabling (see [disable] and see [in-theory]).
  Thus, here is a more complete list of the arguments that may be
  supplied to show-accumulated-persistence. Suffixes ``s'', ``f'',
  and ``a'' are intended to suggest ``success'' (``useful''),
  ``failure'' (``useless''), and ``all''.

    :frames     - sort by the number of frames built on behalf of the rune
       :frames-s -   as above, but sort by useful applications
       :frames-f -   as above, but sort by useless applications
       :frames-a -   as above, but inhibit display of ``useful'' and
                     ``useless'' subtotals
    :tries      - sort by the number of times the rune was tried
       :tries-s  -   as above, but sort by useful applications
       :tries-f  -   as above, but sort by useless applications
       :tries-a  -   as above, but inhibit display of ``useful'' and
                     ``useless'' subtotals
    :ratio      - sort by frames built per try
    :useless    - show only the runes tried whose tries were all ``useless''

  For a given line of the report, every frame credited to a ``useful''
  (respectively, ``useless'') rule application is considered
  ``useful'' (respectively, ``useless''). We illustrate with the
  following example.

    (progn
      (defstub hyp (x) t)
      (defstub concl (x) t)
      (defstub bad (x) t)
      (defstub good (x) t)
      (defaxiom good-ax
        (implies (good x) (hyp x)))
      (defaxiom bad-ax
        (implies (bad x) (hyp x)))
      (defaxiom hyp-implies-concl
        (implies (hyp x) (concl x)))
      )
    (accumulated-persistence t)
    (thm (implies (good x) (concl x)))
    (show-accumulated-persistence)

  To prove the [thm] form, ACL2 attempts to rewrite (concl x) to true
  by applying rule hyp-implies-concl. It then attempts to establish
  (hyp x) first by trying rule bad-ax, which fails, and second by
  trying rule good-ax, which succeeds. As expected, the report labels
  as ``useless'' the failure of the attempt to establish the
  hypothesis, (bad x).

    --------------------------------
          1        1 (    1.00) (:REWRITE BAD-AX)
          0        0    [useful]
          1        1    [useless]
    --------------------------------

  Now consider the top-level application of rule hyp-implies-concl.
  Even though the above report shows the application of bad-ax as
  ``useless'', note that this rule was applied on behalf of the
  successful (``useful'') application of hyp-implies-concl, and hence
  is incorporated into the ``useful'' line for hyp-implies-concl, as
  follows.

    --------------------------------
          3        1 (    3.00) (:REWRITE HYP-IMPLIES-CONCL)
          3        1    [useful]
          0        0    [useless]
    --------------------------------

  In summary: categorization of :frames as ``useful'' or ``useless'' is
  based on whether they support ``useful'' or ``useless'' :tries.

  Note that a [rune] with high accumulated persistence may not actually
  be the ``culprit.'' For example, suppose rune1 is reported to have
  a :ratio of 101, meaning that on the average a hundred and one
  frames were built each time rune1 was tried. Suppose rune2 has a
  :ratio of 100. It could be that the attempt to apply rune1 resulted
  in the attempted application of rune2 and no other [rune]. Thus, in
  some sense, rune1 is ``cheap'' and rune2 is the ``culprit'' even
  though it is reported as costing less than rune1.

  If a proof is aborted, then in general,
  [show-accumulated-persistence] will only display totals for runes
  whose attempted application is complete: that is, if the rewriter
  was in the process of relieving hypotheses for a rule, then
  information for that rule will not be included in the tally. We say
  ``in general'' because, as indicated near the top of the output
  from [show-accumulated-persistence] when such incomplete
  information is omitted, you can get this information by using
  argument :frames-a or :tries-a.

  There are other subtleties in how rune applications are tallied,
  documented elsewhere: see [accumulated-persistence-subtleties].

  We conclude with a discussion of ``enhanced'' statistics gathering,
  which is enabled by supplying accumulated-persistence the argument
  :ALL:

    (accumulated-persistence :all)

  At some additional performance expense (but probably well under a
  factor of 2 altogether), ACL2 then gathers additional statistics
  for individual hypotheses of rules as well as their conclusions. To
  understand how this works, suppose rn is a [rune]. Then we prepend
  the keyword :CONC to rn to form what we call its ``conclusion
  xrune'', and for its I-th hypothesis we prepend :HYP I to rn to
  form its I-th ``hypothesis xrune.'' Here, ``xrune'' is pronounced
  ``ex rune'', and is mnemonic for ``extended rune.'' For example, if
  (REWRITE FOO) is a [rune] then (:CONC REWRITE FOO) is its
  conclusion xrune, and (:HYP 2 REWRITE FOO) is a hypothesis xrune
  corresponding to the second hypothesis of the corresponding rewrite
  rule.

  With (accumulated-persistence :all), we instruct ACL2 to track not
  only runes but also xrunes. Then, (show-accumulated-persistence)
  will display information for all xrunes in a format that we
  consider to be ``raw'', in the sense that data for xrunes are
  displayed just as for runes. But a ``merged'' format is also
  available. Here is a summary of display commands, followed below by
  further discussion.

    (show-accumulated-persistence :frames t) ; t is optional, i.e., the default
       ; Display enhanced statistics sorted by frames, in a ``raw'' format.
    (show-accumulated-persistence :frames :merge)
       ; Display enhanced statistics sorted by frames, in a ``merged'' format.
    (show-accumulated-persistence :frames nil)
       ; Display regular statistics sorted by frames
       ; (runes only, that is, without the enhancements).
    (show-accumulated-persistence :frames :merge)
       ; Display a list of entries (frames tries xrune), sorted by frames

    ; More generally, the descriptions just above apply for any legal first
    ; argument:

    (show-accumulated-persistence KEY t)
    (show-accumulated-persistence KEY :merge)
    (show-accumulated-persistence KEY nil)
    (show-accumulated-persistence KEY :list)

    ; Note also these alternate forms, equivalent to the first of the two forms
    ; just above, i.e., the form with second argument of t:
    (show-accumulated-persistence KEY :raw)
    (show-accumulated-persistence KEY)

  There is a significant difference between how runes are tracked and
  how ACL2 tracks hypothesis and conclusion xrunes: unlike regular
  runes, these xrunes do not contribute to the accumulated :frames
  counts. Rather, they serve as accumulation sites without
  contributing their :tries to any accumulation. Consider for example
  the snippet below, taken from a report created with the :merge
  option (to be discussed further below), i.e., by evaluating the
  form (show-accumulated-persistence :frames :merge).

    :frames   :tries    :ratio  rune
    --------------------------------
        462      211 (    2.18) (:REWRITE PERM-MEM)
         13        6    [useful]
        449      205    [useless]
       .............................
        251       47 (    5.34) (:HYP 2 :REWRITE PERM-MEM)
          6        6    [useful]
        245       41    [useless]
       .............................
          0      211 (    0.00) (:HYP 1 :REWRITE PERM-MEM)
          0        6    [useful]
          0      205    [useless]
       .............................
          0        7 (    0.00) (:CONC :REWRITE PERM-MEM)
          0        6    [useful]
          0        1    [useless]
    --------------------------------

  Notice that while :tries are recorded for the xrune (:HYP 1 :REWRITE
  PERM-MEM), no :frames are recorded. This is because no stack frames
  were built for runes while this xrune was on the stack --- only for
  the xrune itself, which as we explained above is not accumulated
  into the total :frames counts. As it turns out, this lack of stack
  frames is explained by the fact that the rewrite rule PERM-MEM has
  a free variable in the first hypothesis.

    ACL2 !>:pe perm-mem
             18  (DEFTHM PERM-MEM
                         (IMPLIES (AND (PERM X Y) (MEM A X))
                                  (MEM A Y))
                         :RULE-CLASSES ((:REWRITE :MATCH-FREE :ONCE)))
    ACL2 !>

  The second hypothesis, however, does cause additional rewriting in
  order to rewrite it to true, resulting in 251 stack frames for
  runes. We see that the conclusion does not lead to creation of any
  rune stack frames, which might seem to suggest that only 251 stack
  frames for runes were created on behalf of this rule application
  --- yet, we see that 462 frames were actually created. The
  difference is the 211 frames created for the rewrite rule itself.
  Even if the total had been a bit more than 462, one need not be
  surprised, as there could be some work recorded during application
  of the rewrite rule, such as type-prescription reasoning, that is
  not done during rewriting of a hypothesis or the conclusion.

  Now suppose we have executed (accumulated-persistence :all) and
  attempted some proofs, and now we are ready to see statistics. The
  form (show-accumulated-persistence) displays statistics exactly as
  described above, treating these extra xrunes just as though they
  are runes; similarly for the form (show-accumulated-persistence
  KEY), for any legal KEY. A second optional argument may however be
  supplied to show-accumulated-persistence. The default for that
  second argument is t, and a second argument of :raw is treated the
  same as t; thus, these arguments provide the behavior just
  described, where data for xrunes are displayed just as for runes.
  You may restrict output to runes, ignoring hypothesis and
  conclusion xrunes, by giving a second argument of nil. (This gives
  the same behavior as if we had started with the command
  (accumulated-persistence t) instead of the command
  (accumulated-persistence :all).) You may give a second argument of
  :merge, in which case output will be sorted and displayed as though
  only runes were tracked (not the extra xrunes), but each data item
  for a non-rune xrune will be merged so that it is displayed in
  suitable order just below its corresponding rune, as in the
  PERM-MEM example displayed above. Finally, you may give a second
  argument of :list, which is equivalent to the default second
  argument of t, except that the results are printe as a list of
  entries (frames tries xrune).

  We close by mentioning two aspects of enhanced statistics display for
  :CONC xrunes that have potential to be confusing. First consider
  the following example.

      :frames   :tries    :ratio  rune
    --------------------------------
         14        4 (    3.50) (:REWRITE DEFAULT-+-2)
          0        0    [useful]
         14        4    [useless]
       .............................
         10        4 (    2.50) (:HYP 1 :REWRITE DEFAULT-+-2)
          0        0    [useful]
         10        4    [useless]
    --------------------------------

  It may be surprising that no data is displayed for the corresponding
  :CONC xrune. The explanation, however, is simple: the hypothesis
  never rewrote to true, so the conclusion was never rewritten. This
  is consistent with the marking as ``useless'' of all :frames and
  :tries for the rune and the hypothesis xrune. Note by the way, once
  again, that the hypothesis xrune does not contribute to any :frames
  count.

  Another reason not to see data displayed for a :CONC xrune is that if
  a rule has no hypotheses, then no such data is collected. This
  decision was made because in the case of no hypotheses, we expect
  it to be very rare that information for the :CONC xrune will add
  any useful insight.

  On a final note: (show-accumulated-persistence :runes) may be used
  simply to see a list of all [rune]s (or xrunes) displayed
  alphabetically.

  Users are encouraged to think about other meters we could install in
  ACL2 to help diagnose performance problems.


Subtopics

  [Accumulated-persistence-subtleties]
      Some subtle aspects of the counting done by
      [accumulated-persistence]

  [Dmr]
      Dynamically monitor rewrites and other prover activity")
 (ACCUMULATED-PERSISTENCE-OOPS (POINTERS)
                               "See [accumulated-persistence].")
 (ACCUMULATED-PERSISTENCE-SUBTLETIES
  (ACCUMULATED-PERSISTENCE)
  "Some subtle aspects of the counting done by [accumulated-persistence]

  In this topic we cover the overcounting of ``useful'' and of
  recursive [rune] application attempts, and we describe how
  ``useless'' [rune] application attempts can actually be critical
  for a proof's success.

  Overcounting of ``useful'' and of recursive rune application
  attempts. Not every [rune] application may be necessary for a
  proof's success. Consider for example:

    (thm (equal (car (cons a (cdr (cons b x))))
                a))

  Then show-accumulated-persistence will tell us that :[rewrite] rules
  car-cons and cdr-cons each had one useful application. However, the
  rule cdr-cons is used to simplify (cdr (cons b x)) to x, and this
  simplification is unecessary for the proof. Indeed, the proof
  succeeds even when preceded by the event: (in-theory (disable
  cdr-cons)). We thus see that a [rune] application labeled as
  ``useful'' may be simplifying a term that is not relevant to the
  proof.

  As of this writing, we consider every :[forward-chaining] rule
  application to be ``useful'', for simplicity of the implementation.
  Moreover, our counting of these rules is such that a single rule
  may be counted more than once.

  Next we show how recursive rule applications are overcounted.
  Consider the following example.

    (defun mem (a x)
      (if (atom x)
          nil
        (or (equal a (car x)) (mem a (cdr x)))))

  Now suppose we consider the sequence of theorems (mem a (list a)),
  (mem a (list 1 a)), (mem a (list 1 2 a)), (mem a (list 1 2 3 a)),
  and so on. We will see that the :frames reported for each increases
  quadratically, even though the :tries increases linearly; so in
  this case the :tries statistics are more appropriate. Each time the
  definition of mem is applied, a new stack frame is pushed (see
  [accumulated-persistence]), and all subsequent applications of that
  definition are accumulated into the :frames count for that stack
  frame. The final :frames count will be the sum of the counts for
  those individual frames, which form a linear sequence whose sum is
  therefore quadratic in the number of applications of the definition
  of mem.

  How ``useless'' attempts can be critical for a proof's success. The
  command (accumulated-persistence :useless)] will list rules that
  did not contribute directly to the proof (see
  [accumulated-persistence], in particular the discussion of
  ``useless'' there). However, a ``useless'' rule can on rare
  occasions be critical to the success of a proof. In the following
  example, we have a ``bad'' rule that can take the proof in the
  wrong direction, but a ``useless'' rule does a rewrite that
  prevents the succesful relieving of a hypothesis of the ``bad''
  rule. In summary:

    ; Assume p0.  We want to prove p1.

    ; Key rule:
    p0 -> p1 = t

    ; Bad rule that could ruin the proof:
    p3 -> p1 = p2

    ; But unfortunately, we know p3:
    p0 -> p3

    ; Important ``useless'' rule, preventing ``bad rule'' above from firing:
    p3 = p4

  The following event captures the rules described above.

    (encapsulate
     ((p0 (x) t)
      (p1 (x) t)
      (p2 (x) t)
      (p3 (x) t)
      (p4 (x) t))
     (local (defun p0 (x) x))
     (local (defun p1 (x) x))
     (local (defun p2 (x) x))
     (local (defun p3 (x) x))
     (local (defun p4 (x) x))

    ; Key rule:
     (defthm p0-implies-p1
       (implies (p0 x)
                (p1 x)))

    ; Bad rule that could ruin the proof:
     (defthm p3-implies-p1-is-p2
       (implies (p3 x)
                (equal (p1 x) (p2 x))))

    ; But unfortunately, we know p3:
     (defthm p0-implies-p3
       (implies (p0 x)
                (p3 x)))

    ; Important ``useless'' rule, preventing p3-implies-p1-is-p2 from firing:
     (defthm p3-is-p4
       (equal (p3 x) (p4 x))))

  Now we can see that p3-is-p4 is labeled as ``useless'', by evaluating
  these commands.

    (accumulated-persistence t)
    (thm (implies (p0 x) (p1 x)))
    (show-accumulated-persistence)

  If instead we first evaluate (in-theory (disable p3-is-p4)) before
  the thm above, then the proof fails, even though p3-is-p4 was
  labeled as ``useless''!

  Nevertheless, in general it is probably safe to disable rules
  reported as ``useless'' by (show-accumulated-persistence :useless),
  and doing so may speed up a proof considerably.

  Remark. The example above suggests a surprising fact: on rare
  occasions, a proof may fail when you give an :[in-theory] hint
  consisting of exactly the [rune]s reported in a proof that
  succeeds. For, imagine a rule R that is needed in part of the proof
  but is ``bad'' in a second part, and that some other, ``useless''
  rule prevents the application of R in that second part. The example
  above suggests that disabling this ``useless'' rule can allow the
  second application of R, thus preventing the proof.")
 (ACKNOWLEDGMENTS
  (ABOUT-ACL2)
  "Some contributors to the well-being of ACL2

  The development of ACL2 was initially made possible by funding from
  the U. S. Department of Defense, including ARPA and ONR. We thank
  all the organizations that have contributed support, including the
  following (in alphabetical order).

    * AMD, for providing significant time over several years for Matt
      Kaufmann to carry out ACL2 research, support, and development
    * Computational Logic, Inc. and its president, Don Good, where the
      first eight years of ACL2 development occurred
    * Centaur Technology
    * DARPA
    * Digital Equipment Corporation
    * EDS, which provided some time for Matt Kaufmann's ACL2 work 1998-1999
    * ForrestHunt and, more generally, Warren A. Hunt, Jr. (see below)
    * IBM
    * NSF
    * ONR
    * Rockwell Collins
    * SRC
    * Sun Microsystems
    * University of Texas at Austin (in particular support to J Moore
      through the Admiral B. R. Inman Chair of Computing Theory)

  We are especially grateful to Warren A. Hunt, Jr. for his unrivaled
  efforts in securing support for the entire ACL2 research group at
  both Computational Logic, Inc., and the University of Texas at
  Austin. Without his efforts, we would have spent less time working
  on the system and fewer students would have been funded to apply
  it.

  ACL2 was started in August, 1989 by Boyer and Moore working together.
  They co-authored the first versions of axioms.lisp and basis.lisp,
  with Boyer taking the lead in the formalization of ``[state]'' and
  the most primitive [io] functions. Boyer also had a significant
  hand in the development of the early versions of the files
  interface-raw.lisp and translate.lisp. For several years, Moore
  alone was responsible for developing the ACL2 system code, though
  he consulted often with both Boyer and Kaufmann. In August, 1993,
  Kaufmann became jointly responsible with Moore for developing the
  system. Boyer has continued to provide valuable consulting on an
  informal basis.

  Bishop Brock was the heaviest early user of ACL2, and provided many
  suggestions for improvements. In particular, the :cases and
  :restrict [hints] were his idea; he developed an early version of
  congruence-based reasoning for Nqthm; and he helped in the
  development of some early [books] about arithmetic. In a
  demonstration of his courage and faith in us, he pushed for
  Computational Logic, Inc., to agree to the Motorola CAP contract --
  which required formalizing a commercial DSP in the untested ACL2 --
  and moved to Scottsdale, AZ, to do the work with the Motorola
  design team. His demonstration of ACL2's utility was an
  inspiration, even to those of us designing ACL2.

  John Cowles also helped in the development of some early [books]
  about arithmetic, and also provided valuable feedback and bug
  reports.

  Other early users of ACL2 at Computational Logic, Inc. helped
  influence its development. In particular, Warren Hunt helped with
  the port to Macintosh Common Lisp, and Art Flatau and Mike Smith
  provided useful general feedback.

  Mike Smith helped develop the Emacs portion of the implementation of
  proof trees.

  Bill Schelter made some enhancements to akcl (now gcl) that helped to
  enhance ACL2 performance in that Common Lisp implementation, and
  more generally, responded helpfully to our bug reports. Camm
  Maguire has since provided wonderful gcl support, and has created a
  Debian package for ACL2 built on GCL. We are also grateful to
  developers of other Common Lisp implementations.

  Kent Pitman helped in our interaction with the ANSI Common Lisp
  standardization committee, X3J13.

  John Cowles helped with the port to Windows (98) by answering
  questions and running tests.

  Ruben Gamboa created a modification of ACL2 to allow reasoning about
  the real numbers using non-standard analysis. His work has been
  incorporated into the ACL2 distribution; see [real].

  Rob Sumners has made numerous useful suggestions. In particular, he
  has designed and implemented improvements for [stobj]s and been key
  in our development of locally-bound stobjs; see [note-2-6].

  Robert Krug has designed and implemented many changes in the vicinity
  of the linear arithmetic package and its connection to type-set and
  rewrite. He was also instrumental in the development of
  [extended-metafunctions].

  Pete Manolios has made numerous useful suggestions. In particular,
  Pete helped us to organize the first workshop and was a wonderful
  equal partner with the two of us (Kaufmann and Moore) in producing
  the books that arose from that workshop. Pete and his student,
  Daron Vroon, provided the current implementation of [ordinals].

  Jared Davis, Sol Swords, and David Rager have our gratitude for
  starting the {ACL2+Books repository |
  https://github.com/acl2/acl2/}.

  We thank David L. Rager for contributing an initial version of the
  support for [parallelism] in an experimental extension of ACL2.

  Bob Boyer and Warren A. Hunt, Jr. developed a canonical
  representation for ACL2 data objects, applicative hash tables, and
  a function memoization mechanism to facilitate reuse of previously
  computed results. Subsequently, Jared Davis and Sol Swords made
  further contributions. We thank them all for this work, most of
  which has been incorporated into ACL2; see [hons-and-memoization].

  We also thank the contributors to the ACL2 workshops for some
  suggested improvements and for the extensive collection of publicly
  distributed benchmark problems. And we thank participants at the
  ACL2 seminar at the University of Texas for useful feedback. More
  generally, we thank the ACL2 community for feedback, contributed
  [books] (see [community-books]), and their interest in the ACL2
  project.

  Regarding the documentation:

      Bill Young wrote significant portions of the original acl2-tutorial
      section of the ACL2 documentation, including what is now called
      [alternative-introduction]. This was an especially important
      task in the early years when there was no guide for how to use
      ACL2 and we are very grateful. He, Bishop Brock, Rich Cohen,
      and Noah Friedman read over considerable amounts of the
      documentation, and made many useful comments. Others,
      particularly Bill Bevier and John Cowles, have also made useful
      comments on the [documentation].

      Art Flatau helped develop the ACL2 markup language in which ACL2
      [documentation] was originally developed, along with
      translators from that language to Texinfo and HTML. Michael
      ``Bogo'' Bogomolny created a search engine, beginning with
      Version 2.6, and for that purpose modified the HTML translator
      to create one file per topic (a good idea in any case).

      Laura Lawless provided many hours of help in marking up appropriate
      parts of the [documentation] in typewriter font.

      Noah Friedman developed an Emacs tool that helped us insert
      ``invisible links'' into the [documentation], which improve the
      usability of that documentation under HTML readers such as
      Mosaic.

      Richard Stallman contributed a texinfo patch, to be found in the file
      doc/texinfo.tex.

      Jared Davis created the [xdoc] system that is now the basis not only
      for the ACL2 system [documentation] (file
      books/system/doc/acl2-doc.lisp), but also for the
      [community-books] documentation.

  We thank Blake Grugett for designing the current version of the ACL2
  logo (which for example appears on the ACL2 home page), based on an
  original design created in the 1990s by Computational Logic, Inc.")
 (ACL2
  NIL
  "ACL2 documentation (system only, not including the community books)

  This is the ACL2 documentation. For the ACL2+Books Manual, which that
  includes both the ACL2 documentation and the ACL2
  [community-books], see the {ACL2+Books Manual |
  http://www.cs.utexas.edu/users/moore/acl2/v7-2/combined-manual/index.html}.


Subtopics

  [About-ACL2]
      General information About ACL2

  [ACL2-tutorial]
      Tutorial introduction to ACL2

  [Bdd]
      Ordered binary decision diagrams with rewriting

  [Books]
      Books are files of ACL2 [events]---they are the main way to split up
      large ACL2 developments into separate modules.

  [Debugging]
      Tools for debugging failed or slow proofs, or misbehaving functions.

  [Documentation]
      Information about options for downloading and viewing the ACL2
      documentation, contributing documentation, and the available
      tools for documenting your own books.

  [Events]
      Functions that extend the logic

  [History]
      Functions that display or change history

  [Hons-and-memoization]
      Hash cons, function memoization, and applicative hash tables

  [Interfacing-tools]
      Libraries and tools for doing basic [file i/o], using raw [Common
      Lisp libraries], working with the [operating system], and
      interfacing with [other programs].

  [Macros]
      Macros allow you to extend the syntax of ACL2.

  [Miscellaneous]
      A miscellany of documented functions and concepts (often cited in
      more accessible [documentation])

  [Parallelism]
      Experimental extension for parallel execution and proofs

  [Programming]
      Programming in ACL2

  [Proof-checker]
      An interactive tool for controlling ACL2's proof processes.

  [Prover-output]
      Methods for controlling the output produced by ACL2 during proofs
      and in other situations.

  [Real]
      ACL2(r) support for real numbers

  [Rule-classes]
      Adding rules to the database

  [Theories]
      Sets of [rune]s to [enable]/[disable] in concert")
 (ACL2-AS-STANDALONE-PROGRAM
  (ACL2-TUTORIAL)
  "Calling ACL2 from another program

  ACL2 is intended for interactive use. It is generally unrealistic to
  expect it to prove theorems fully automatically; see [the-method],
  and see [introduction-to-the-theorem-prover] for a more detailed
  tutorial.

  Nevertheless, here we describe an approach for how to call the ACL2
  theorem prover noninteractively. These steps can of course be
  modified according to your needs. Here, we illustrate how to call
  ACL2 from another Lisp program (or an arbitrary program) to attempt
  to prove an arithmetic theorem.

  See also [interfacing-tools]. In particular, if you want to make a
  command-line tool to ACL2 with options, you may be interested in
  [oslib::argv], [getopt], and especially [getopt-demo::demo2].
  Alternately, if you want to develop a server application on top of
  ACL2, you might consider [bridge].


Step 1

  Build a suitable ACL2 image by starting ACL2 and then executing the
  following forms. In particular, these define a macro, try-thm, that
  causes ACL2 to exit with with an exit status indicating success or
  failure of a proof attempt.

    (include-book \"arithmetic-5/top\" :dir :system)
    (defmacro try-thm (&rest args)
      `(mv-let (erp val state)
               (with-prover-time-limit 3 (thm ,@args))
               (declare (ignore val))
               (prog2$ (if erp (exit 1) (exit 0)) state))))
    (reset-prehistory) ; optional
    :q
    (save-exec \"arith-acl2\" \"Included arithmetic-4/top\")

  If you prefer, above you can replace 3 by some other number of
  seconds as a time limit for the prover. Also, you can replace

    (with-prover-time-limit 3 (thm ,@args))

  by

    (with-output :off :all (with-prover-time-limit 3 (thm ,@args)))

  if you want to turn off output. It may be best to leave the output
  on, instead eliminating it in the calling program (see Step 3
  below).


Step 2

  Try a little test. In that same directory try this:

    echo '(try-thm (equal x x))' | ./arith-acl2
    echo $?

  The exit status should be 0, indicating success. Now try this:

    echo '(try-thm (not (equal x x)))' | ./arith-acl2
    echo $?

  The exit status should be 1, indicating failure.


Step 3

  Create a shell script that automates Step 2, for example:

    #!/bin/sh
    (echo \"(try-thm $1)\" | ./arith-acl2) >& /dev/null
    exit $?


Step 4

  Try your script from a Lisp program, if you like. Here is how you can
  do it in SBCL, for example. (Different Lisps have different ways to
  do this, as summarized in function system-call in ACL2 source file
  acl2-init.lisp.)

    (defun provable? (x)
      (let ((status
             (process-exit-code
              (sb-ext:run-program \"./try-thm.sh\" (list (format nil \"~s\" x))
                                  :output t :search t))))
        (eql status 0)))

  Then here is a log:

    * (provable? '(equal x y))

    NIL
    * (provable? '(equal x x))

    T
    *

  Certainly refinements are possible -- for example the above doesn't
  distinguish between unprovable and ill-formed input. But it's a
  start.")
 (ACL2-BUILT-INS
  (PROGRAMMING)
  "''Catch-all'' topic for built-in ACL2 functions

  This [documentation] topic is a parent topic under which we include
  documentation for built-in functions, macros, and special forms
  that are typically used in [programming]. For others, including
  those typically used as top-level commands or those that create
  [events] ([defun], [defmacro], [defthm], and so on), documentation
  may be found as a subtopic of some other parent topic. We do not
  document some of the more obscure functions provided by ACL2 that
  do not correspond to functions of Common Lisp.

  See any documentation for Common Lisp for more details on many of
  these functions.


Subtopics

  [*]
      Multiplication macro

  [*ACL2-exports*]
      Symbols that are often imported into new [packages] to provide easy
      access to ACL2 functionality.

  [*common-lisp-symbols-from-main-lisp-package*]
      Symbols that are often imported into new packages to provide easy
      access to Common Lisp functionality.

  [*standard-ci*]
      An ACL2 character-based analogue of CLTL's *standard-input*

  [*standard-co*]
      The ACL2 analogue of CLTL's *standard-output*

  [*standard-oi*]
      An ACL2 object-based analogue of CLTL's *standard-input*

  [+]
      Addition macro

  [-]
      Macro for subtraction and negation

  [/]
      Macro for division and reciprocal

  [/=]
      Test inequality of two numbers

  [1+]
      Increment by 1

  [1-]
      Decrement by 1

  [<]
      Less-than

  [<=]
      Less-than-or-equal test

  [=]
      Test equality of two numbers

  [>]
      Greater-than test

  [>=]
      Greater-than-or-equal test

  [@]
      Get the value of a global variable in [state]

  [Abs]
      The absolute value of a real number

  [Access]
      Accessor macro for [defrec] structures.

  [ACL2-count]
      A commonly used measure for justifying recursion

  [ACL2-number-listp]
      Recognizer for a true list of numbers

  [ACL2-numberp]
      Recognizer for numbers

  [Acons]
      Constructor for association lists

  [Add-to-set]
      Add a symbol to a list

  [Alistp]
      Recognizer for association lists

  [Allocate-fixnum-range]
      Set aside fixnums in GCL

  [Alpha-char-p]
      Recognizer for alphabetic characters

  [Alphorder]
      Total order on atoms

  [And]
      Conjunction

  [Append]
      [concatenate] zero or more lists

  [Aref1]
      Access the elements of a 1-dimensional array

  [Aref2]
      Access the elements of a 2-dimensional array

  [Arities-okp]
      check the arities of given function symbols

  [Arity]
      number of arguments of a function symbol

  [Array1p]
      Recognize a 1-dimensional array

  [Array2p]
      Recognize a 2-dimensional array

  [Aset1]
      Set the elements of a 1-dimensional array

  [Aset2]
      Set the elements of a 2-dimensional array

  [Ash]
      Arithmetic shift operation

  [Assert$]
      Cause a hard error if the given test is false

  [Assert*]
      Create a [guard] proof obligation that given test holds

  [Assign]
      Assign to a global variable in [state]

  [Assoc]
      Look up key in association list

  [Assoc-keyword]
      Look up key in a [keyword-value-listp]

  [Assoc-string-equal]
      Look up key, a string, in association list

  [Atom]
      Recognizer for atoms

  [Atom-listp]
      Recognizer for a true list of [atom]s

  [Binary-*]
      Multiplication function

  [Binary-+]
      Addition function

  [Binary-append]
      [concatenate] two lists

  [Boole$]
      Perform a bit-wise logical operation on 2 two's complement integers

  [Boolean-listp]
      Recognizer for a true list of booleans

  [Booleanp]
      Recognizer for booleans

  [Break$]
      Cause an immediate Lisp break

  [Break-on-error]
      Break when encountering a hard or soft error caused by ACL2

  [Butlast]
      All but a final segment of a list

  [Caaaar]
      [car] of the [caaar]

  [Caaadr]
      [car] of the [caadr]

  [Caaar]
      [car] of the [caar]

  [Caadar]
      [car] of the [cadar]

  [Caaddr]
      [car] of the [caddr]

  [Caadr]
      [car] of the [cadr]

  [Caar]
      [car] of the [car]

  [Cadaar]
      [car] of the [cdaar]

  [Cadadr]
      [car] of the [cdadr]

  [Cadar]
      [car] of the [cdar]

  [Caddar]
      [car] of the [cddar]

  [Cadddr]
      [car] of the [cdddr]

  [Caddr]
      [car] of the [cddr]

  [Cadr]
      [car] of the [cdr]

  [Canonical-pathname]
      The true absolute filename, with soft links resolved

  [Car]
      Returns the first element of a non-empty list, else nil

  [Case]
      Conditional based on if-then-else using [eql]

  [Case-match]
      Pattern matching or destructuring

  [Cbd]
      Connected book directory string

  [Cdaaar]
      [cdr] of the [caaar]

  [Cdaadr]
      [cdr] of the [caadr]

  [Cdaar]
      [cdr] of the [caar]

  [Cdadar]
      [cdr] of the [cadar]

  [Cdaddr]
      [cdr] of the [caddr]

  [Cdadr]
      [cdr] of the [cadr]

  [Cdar]
      [cdr] of the [car]

  [Cddaar]
      [cdr] of the [cdaar]

  [Cddadr]
      [cdr] of the [cdadr]

  [Cddar]
      [cdr] of the [cdar]

  [Cdddar]
      [cdr] of the [cddar]

  [Cddddr]
      [cdr] of the [cdddr]

  [Cdddr]
      [cdr] of the [cddr]

  [Cddr]
      [cdr] of the [cdr]

  [Cdr]
      Returns the second element of a [cons] pair, else nil

  [Ceiling]
      Division returning an integer by truncating toward positive infinity

  [Change]
      Mutator macro for [defrec] structures.

  [Char]
      The [nth] element (zero-based) of a string

  [Char-code]
      The numeric code for a given character

  [Char-downcase]
      Turn upper-case [characters] into lower-case [characters]

  [Char-equal]
      Character equality without regard to case

  [Char-upcase]
      Turn lower-case [characters] into upper-case [characters]

  [Char<]
      Less-than test for [characters]

  [Char<=]
      Less-than-or-equal test for [characters]

  [Char>]
      Greater-than test for [characters]

  [Char>=]
      Greater-than-or-equal test for [characters]

  [Character-alistp]
      Recognizer for association lists with characters as keys

  [Character-listp]
      Recognizer for a true list of characters

  [Characterp]
      Recognizer for [characters]

  [Code-char]
      The character corresponding to a given numeric code

  [Coerce]
      Coerce a character list to a string and a string to a list

  [Comp]
      Compile some ACL2 functions

  [Comp-gcl]
      Compile some ACL2 functions leaving .c and .h files

  [Complex]
      Create an ACL2 number

  [Complex-rationalp]
      Recognizes complex rational numbers

  [Complex/complex-rationalp]
      Recognizer for complex numbers

  [Compress1]
      Remove irrelevant pairs from a 1-dimensional array

  [Compress2]
      Remove irrelevant pairs from a 2-dimensional array

  [Concatenate]
      Concatenate lists or strings together

  [Cond]
      Conditional based on if-then-else

  [Conjugate]
      Complex number conjugate

  [Cons]
      Pair and list constructor

  [Cons-subtrees]
      Build a fast alist whose keys are the subtrees of X

  [Consp]
      Recognizer for [cons] pairs

  [Count]
      Count the number of occurrences of an item in a string or true-list

  [Cpu-core-count]
      The number of cpu cores

  [Cw]
      Print to the comment window

  [Cw!]
      Print to the comment window

  [Declare]
      Extra declarations that can occur in function definitions, [let]
      bindings, and so forth.

  [Default]
      Return the :default from the [header] of a 1- or 2-dimensional array

  [Delete-assoc]
      Remove the first pair from an association list for a given key

  [Denominator]
      Divisor of a ratio in lowest terms

  [Digit-char-p]
      The number, if any, corresponding to a given character

  [Digit-to-char]
      Map a digit to a character

  [Dimensions]
      Return the :dimensions from the [header] of a 1- or 2-dimensional
      array

  [Ec-call]
      Execute a call in the ACL2 logic instead of raw Lisp

  [Eighth]
      Eighth member of the list

  [Endp]
      Recognizer for empty lists

  [Eq]
      Equality of symbols

  [Eql]
      Test equality (of two numbers, symbols, or [characters])

  [Eqlable-alistp]
      Recognizer for a true list of pairs whose [car]s are suitable for
      [eql]

  [Eqlable-listp]
      Recognizer for a true list of objects each suitable for [eql]

  [Eqlablep]
      The [guard] for the function [eql]

  [Equal]
      True equality

  [Er]
      Print an error message and ``cause an error''

  [Er-progn]
      Perform a sequence of state-changing ``error triples''

  [Error1]
      Print an error message and cause a ``soft error''

  [Evenp]
      Test whether an integer is even

  [Explode-atom]
      Convert any [atom] into a [character-listp] that contains its
      printed representation, rendering numbers in your choice of
      print base.

  [Explode-nonnegative-integer]
      The list of [characters] in the radix-r form of a number

  [Expt]
      Exponential function

  [F-get-global]
      Get the value of a global variable in [state]

  [F-put-global]
      Assign to a global variable in [state]

  [Fast-alist-clean]
      ([fast-alist-clean] alist) can be used to eliminate \"shadowed pairs\"
      from a fast alist.

  [Fast-alist-clean!]
      ([fast-alist-clean!] alist) is an alternative to [fast-alist-clean]
      that produces a [normed] result.

  [Fast-alist-fork]
      ([fast-alist-fork] alist ans) can be used to eliminate \"shadowed
      pairs\" from an alist or to copy [fast-alists].

  [Fast-alist-fork!]
      ([fast-alist-fork!] alist ans) is an alternative to
      [fast-alist-fork] that produces a [normed] result.

  [Fast-alist-free]
      ([fast-alist-free] alist) throws away the hash table associated with
      a fast alist.

  [Fast-alist-free-on-exit]
      Free a fast alist after the completion of some form.

  [Fast-alist-len]
      ([fast-alist-len] alist) counts the number of unique keys in a fast
      alist.

  [Fast-alist-summary]
      ([fast-alist-summary]) prints some basic statistics about any
      current fast alists.

  [Fifth]
      Fifth member of the list

  [First]
      First member of the list

  [Fix]
      Coerce to a number

  [Fix-true-list]
      Coerce to a true list

  [Flet]
      Local binding of function symbols

  [Floor]
      Division returning an integer by truncating toward negative infinity

  [Flush-compress]
      Flush the under-the-hood array for the given name

  [Flush-hons-get-hash-table-link]
      Deprecated feature

  [Fms]
      ([fms] str alist co-channel state evisc) => state

  [Fms!]
      ([fms!] str alist co-channel state evisc) => state

  [Fmt]
      Formatted printing

  [Fmt!]
      ([fmt!] str alist co-channel state evisc) => state

  [Fmt-to-comment-window]
      Print to the comment window

  [Fmt1]
      ([fmt1] str alist col co-channel state evisc) => ([mv] col state)

  [Fmt1!]
      ([fmt1!] str alist col channel state evisc) => ([mv] col state)

  [Formula]
      The formula of a name or [rune]

  [Fourth]
      Fourth member of the list

  [Gc$]
      Invoke the garbage collector

  [Gc-strategy]
      The garbage collection strategy

  [Get-internal-time]
      Runtime vs. realtime in ACL2 timings

  [Getenv$]
      Read an environment variable

  [Getprop]
      Access fast property lists

  [Getpropc]
      Access fast property lists

  [Good-atom-listp]
      Recognizer for a true list of ``good'' [atom]s

  [Good-bye]
      Quit entirely out of Lisp

  [Hard-error]
      Print an error message and stop execution

  [Header]
      Return the header of a 1- or 2-dimensional array

  [Hons]
      ([hons] x y) returns a [normed] object equal to ([cons] x y).

  [Hons-acons]
      ([hons-acons] key val alist) is the main way to create or extend
      [fast-alists].

  [Hons-acons!]
      ([hons-acons!] key val alist) is an alternative to [hons-acons] that
      produces [normed], fast alists.

  [Hons-assoc-equal]
      ([hons-assoc-equal] key alist) is not fast; it serves as the logical
      definition for [hons-get].

  [Hons-clear]
      ([hons-clear] gc) is a drastic garbage collection mechanism that
      clears out the underlying Hons Space.

  [Hons-clear!]
      A version of [hons-clear] for [parallel] execution

  [Hons-copy]
      ([hons-copy] x) returns a [normed] object that is equal to X.

  [Hons-copy-persistent]
      ([hons-copy-persistent] x) returns a [normed] object that is equal
      to X and which will be re-normed after any calls to
      [hons-clear].

  [Hons-equal]
      ([hons-equal] x y) is a recursive equality check that optimizes when
      parts of its arguments are [normed].

  [Hons-get]
      ([hons-get] key alist) is the efficient lookup operation for
      [fast-alists].

  [Hons-resize]
      ([hons-resize] ...) can be used to manually adjust the sizes of the
      hash tables that govern which ACL2 Objects are considered
      [normed].

  [Hons-shrink-alist]
      Deprecated feature

  [Hons-shrink-alist!]
      Deprecated feature

  [Hons-summary]
      ([hons-summary]) prints basic information about the sizes of the
      tables in the current Hons Space.

  [Hons-wash]
      ([hons-wash]) is like [gc$] but can also garbage collect [normed]
      objects (CCL and GCL Only).

  [Hons-wash!]
      A version of [hons-wash] for [parallel] execution

  [Identity]
      The identity function

  [If]
      If-then-else function

  [Iff]
      Logical ``if and only if''

  [Ifix]
      Coerce to an integer

  [Illegal]
      Print an error message and stop execution

  [Imagpart]
      Imaginary part of a complex number

  [Implies]
      Logical implication

  [Improper-consp]
      Recognizer for improper (non-null-terminated) non-empty lists

  [In-package]
      Select current package

  [In-tau-intervalp]
      Boolean membership in a tau interval

  [Int=]
      Test equality of two integers

  [Integer-length]
      Number of bits in two's complement integer representation

  [Integer-listp]
      Recognizer for a true list of integers

  [Integer-range-p]
      Recognizer for integers between two bounds.

  [Integerp]
      Recognizer for whole numbers

  [Intern]
      Create a new symbol in a given package

  [Intern$]
      Create a new symbol in a given package

  [Intern-in-package-of-symbol]
      Create a symbol with a given name

  [Intersection$]
      Elements of one list that are not elements of another

  [Intersectp]
      Test whether two lists intersect

  [Keyword-value-listp]
      Recognizer for true lists whose even-position elements are keywords

  [Keywordp]
      Recognizer for keywords

  [Kwote]
      Quote an arbitrary object

  [Kwote-lst]
      Quote an arbitrary true list of objects

  [Last]
      The last [cons] (not element) of a list

  [Last-prover-steps]
      The number of prover steps most recently taken

  [Len]
      Length of a list

  [Length]
      Length of a string or proper list

  [Let]
      Binding of lexically scoped (local) variables

  [Let*]
      Binding of lexically scoped (local) variables

  [Lexorder]
      Total order on ACL2 objects

  [List]
      Build a list

  [List*]
      Build a list

  [Listp]
      Recognizer for (not necessarily proper) lists

  [Logand]
      Bitwise logical `and' of zero or more integers

  [Logandc1]
      Bitwise logical `and' of two ints, complementing the first

  [Logandc2]
      Bitwise logical `and' of two ints, complementing the second

  [Logbitp]
      The ith bit of an integer

  [Logcount]
      Number of ``on'' bits in a two's complement number

  [Logeqv]
      Bitwise logical equivalence of zero or more integers

  [Logior]
      Bitwise logical inclusive or of zero or more integers

  [Lognand]
      Bitwise logical `nand' of two integers

  [Lognor]
      Bitwise logical `nor' of two integers

  [Lognot]
      Bitwise not of a two's complement number

  [Logorc1]
      Bitwise logical inclusive or of two ints, complementing the first

  [Logorc2]
      Bitwise logical inclusive or of two ints, complementing the second

  [Logtest]
      Test if two integers share a `1' bit

  [Logxor]
      Bitwise logical exclusive or of zero or more integers

  [Lower-case-p]
      Recognizer for lower case characters

  [Make]
      Constructor macro for [defrec] structures.

  [Make-character-list]
      [coerce] to a list of characters

  [Make-fast-alist]
      ([make-fast-alist] alist) creates a fast-alist from the input alist,
      returning alist itself or, in some cases, a new object equal to
      it.

  [Make-list]
      Make a list of a given size

  [Make-ord]
      A constructor for ordinals.

  [Make-tau-interval]
      Make a tau interval

  [Max]
      The larger of two numbers

  [Maximum-length]
      Return the :maximum-length from the [header] of an array

  [Mbe]
      Attach code for execution

  [Mbe1]
      Attach code for execution

  [Mbt]
      Introduce a test into the logic that, however, evaluates to t

  [Mbt*]
      Introduce a guard proof obligation

  [Member]
      Membership predicate

  [Min]
      The smaller of two numbers

  [Minusp]
      Test whether a number is negative

  [Mod]
      Remainder using [floor]

  [Mod-expt]
      Exponential function

  [Msg]
      Construct a ``message'' suitable for the ~@ directive of [fmt]

  [Must-be-equal]
      Attach code for execution

  [Mv]
      Returning a multiple value

  [Mv-let]
      Calling multi-valued ACL2 functions

  [Mv-list]
      Converting multiple-valued result to a single-valued list

  [Mv-nth]
      The mv-nth element (zero-based) of a list

  [Mv?]
      Return one or more values

  [Mv?-let]
      Calling possibly multi-valued ACL2 functions

  [Nat-listp]
      Recognizer for a true list of natural numbers

  [Natp]
      A recognizer for the natural numbers

  [Nfix]
      Coerce to a natural number

  [Ninth]
      Ninth member of the list

  [No-duplicatesp]
      Check for duplicates in a list

  [Non-exec]
      Mark code as non-executable

  [Nonnegative-integer-quotient]
      Natural number division function

  [Not]
      Logical negation

  [Nth]
      The nth element (zero-based) of a list

  [Nthcdr]
      Final segment of a list

  [Null]
      Recognizer for the empty list

  [Number-subtrees]
      ([number-subtrees] x) returns the number of distinct subtrees of X,
      in the sense of [equal]

  [Numerator]
      Dividend of a ratio in lowest terms

  [O-finp]
      Recognizes if an ordinal is finite

  [O-first-coeff]
      Returns the first coefficient of an ordinal

  [O-first-expt]
      The first exponent of an ordinal

  [O-infp]
      Recognizes if an ordinal is infinite

  [O-p]
      A recognizer for the ordinals up to epsilon-0

  [O-rst]
      Returns the rest of an infinite ordinal

  [O<]
      The well-founded less-than relation on ordinals up to epsilon-0

  [O<=]
      The less-than-or-equal relation for the ordinals

  [O>]
      The greater-than relation for the ordinals

  [O>=]
      The greater-than-or-equal relation for the ordinals

  [Observation]
      Print an observation

  [Oddp]
      Test whether an integer is odd

  [Open-output-channel!]
      When trust tags are needed to open output channels

  [Or]
      Disjunction

  [Oracle-apply]
      Call a function argument on the given list of arguments

  [Oracle-apply-raw]
      Call a function argument on the given list of arguments, no
      restrictions

  [Oracle-funcall]
      Call a function argument on the remaining arguments

  [Pairlis$]
      Zipper together two lists

  [Pand]
      Parallel, Boolean version of [and]

  [Pargs]
      Parallel evaluation of arguments in a function call

  [Pkg-witness]
      Return a specific symbol in the indicated package

  [Plet]
      Parallel version of [let]

  [Plusp]
      Test whether a number is positive

  [Por]
      Parallel, Boolean version of [or]

  [Position]
      Position of an item in a string or a list

  [Posp]
      A recognizer for the positive integers

  [Pprogn]
      Evaluate a sequence of forms that return [state]

  [Primitive]
      Primitive functions built into ACL2 without definitions

  [Princ$]
      Print an atom

  [Print-base-p]
      Recognizer for print bases that are understood by functions such as
      [explode-nonnegative-integer] and [explode-atom].

  [Prog2$]
      Execute two forms and return the value of the second one

  [Progn$]
      Execute a sequence of forms and return the value of the last one

  [Proofs-co]
      The proofs character output channel

  [Proper-consp]
      Recognizer for proper (null-terminated) non-empty lists

  [Pseudo-termp]
      A predicate for recognizing term-like s-expressions

  [Put-assoc]
      Modify an association list by associating a value with a key

  [Putprop]
      Update fast property lists

  [Quote]
      Create a constant

  [R-eqlable-alistp]
      Recognizer for a true list of pairs whose [cdr]s are suitable for
      [eql]

  [R-symbol-alistp]
      Recognizer for association lists with symbols as values

  [Random$]
      Obtain a random value

  [Rassoc]
      Look up value in association list

  [Rational-listp]
      Recognizer for a true list of rational numbers

  [Rationalp]
      Recognizer for rational numbers (ratios and integers)

  [Read-ACL2-oracle]
      Pop the oracle field of the state

  [Read-run-time]
      Read elapsed runtime

  [Real-listp]
      ACL2(r) recognizer for a true list of real numbers

  [Real/rationalp]
      Recognizer for rational numbers (including real number in ACL2(r))

  [Realfix]
      Coerce to a real number

  [Realpart]
      Real part of a complex number

  [Rem]
      Remainder using [truncate]

  [Remove]
      Remove all occurrences

  [Remove-duplicates]
      Remove duplicates from a string or a list

  [Remove1]
      Remove first occurrences, testing using [eql]

  [Resize-list]
      List resizer in support of stobjs

  [Rest]
      Rest ([cdr]) of the list

  [Return-last]
      Return the last argument, perhaps with side effects

  [Revappend]
      Concatentate the [reverse] of one list to another

  [Reverse]
      Reverse a list or string

  [Rfix]
      Coerce to a rational number

  [Round]
      Division returning an integer by rounding off

  [Search]
      Search for a string or list in another string or list

  [Second]
      Second member of the list

  [Serialize-read]
      Read a serialized ACL2 object from a file

  [Serialize-write]
      Write an ACL2 object into a file

  [Set-difference$]
      Elements of one list that are not elements of another

  [Set-fmt-hard-right-margin]
      Set the right margin for formatted output

  [Set-fmt-soft-right-margin]
      Set the soft right margin for formatted output

  [Set-gc-strategy]
      Set the garbage collection strategy (CCL only)

  [Set-print-base]
      Control radix in which numbers are printed

  [Set-print-base-radix]
      Control radix in which numbers are printed and printing of the radix

  [Set-print-case]
      Control whether symbols are printed in upper case or in lower case

  [Set-print-radix]
      Control printing of the radix for numbers

  [Setenv$]
      Set an environment variable

  [Seventh]
      Seventh member of the list

  [Signed-byte-p]
      Recognizer for signed integers that fit in a specified bit width

  [Signum]
      Indicator for positive, negative, or zero

  [Sixth]
      Sixth member of the list

  [Spec-mv-let]
      Modification of [mv-let] supporting speculative and parallel
      execution

  [Standard-char-listp]
      Recognizer for a true list of standard characters

  [Standard-char-p]
      Recognizer for standard characters

  [Standard-co]
      The character output channel to which [ld] prints

  [Standard-oi]
      The standard object input ``channel''

  [Standard-string-alistp]
      Recognizer for association lists with standard strings as keys

  [State-global-let*]
      Bind [state] global variables

  [String]
      [coerce] to a string

  [String-append]
      [concatenate] two strings

  [String-downcase]
      In a given string, turn upper-case [characters] into lower-case

  [String-equal]
      String equality without regard to case

  [String-listp]
      Recognizer for a true list of strings

  [String-upcase]
      In a given string, turn lower-case [characters] into upper-case

  [String<]
      Less-than test for strings

  [String<=]
      Less-than-or-equal test for strings

  [String>]
      Greater-than test for strings

  [String>=]
      Less-than-or-equal test for strings

  [Stringp]
      Recognizer for strings

  [Strip-cars]
      Collect up all first components of pairs in a list

  [Strip-cdrs]
      Collect up all second components of pairs in a list

  [Sublis]
      Substitute an alist into a tree

  [Subseq]
      Subsequence of a string or list

  [Subsetp]
      Test if every [member] of one list is a [member] of the other

  [Subst]
      A single substitution into a tree

  [Substitute]
      Substitute into a string or a list, using [eql] as test

  [Symbol-<]
      Less-than test for symbols

  [Symbol-alistp]
      Recognizer for association lists with symbols as keys

  [Symbol-listp]
      Recognizer for a true list of symbols

  [Symbol-name]
      The name of a symbol (a string)

  [Symbol-package-name]
      The name of the package of a symbol (a string)

  [Symbolp]
      Recognizer for symbols

  [Sys-call]
      Make a system call to the host operating system

  [Sys-call+]
      Make a system call to the host OS, returning status and output

  [Sys-call-status]
      Exit status from the preceding system call

  [Take]
      Initial segment (first n elements) of a list

  [Tenth]
      Tenth member of the list

  [Term-list-listp]
      recognizer for a list of clauses

  [Term-listp]
      recognizer for a list of quotations of terms and of clauses

  [Term-order]
      The ordering relation on terms used by ACL2

  [Termp]
      recognizer for the quotation of a term

  [The]
      The is a special form that can be used to optimize the execution
      efficiency of [guard]-verified ACL2 definitions, or (less
      frequently) to carry out a low-level run-time type checks.
      (Advanced)

  [Third]
      Third member of the list

  [Time$]
      Time an evaluation

  [Time-tracker]
      Display time spent during specified evaluation

  [True-list-listp]
      Recognizer for true (proper) lists of true lists

  [True-listp]
      Recognizer for proper (null-terminated) lists

  [Truncate]
      Division returning an integer by truncating toward 0

  [Unary--]
      Arithmetic negation function

  [Unary-/]
      Reciprocal function

  [Union$]
      Elements of one list that are not elements of another

  [Unquote]
      Obtain the object being quoted

  [Unsigned-byte-p]
      Recognizer for natural numbers that fit in a specified bit width

  [Update-nth]
      Modify a list by putting the given value at the given position

  [Update-nth-array]
      Update a stobj array

  [Upper-case-p]
      Recognizer for upper case characters

  [Value-triple]
      Compute a value, optionally checking that it is not nil

  [With-fast-alist]
      ([with-fast-alist] name form) causes name to be a fast alist for the
      execution of form.

  [With-guard-checking]
      Suppressing or enable guard-checking for a form

  [With-guard-checking-error-triple]
      Suppressing or enable guard-checking for a form

  [With-live-state]
      Allow a reference to state in raw Lisp

  [With-local-state]
      Locally bind state

  [With-local-stobj]
      Locally bind a single-threaded object

  [With-output-lock]
      Provides a mutual-exclusion mechanism for performing output in
      parallel

  [With-serialize-character]
      Control output mode for print-object$

  [With-stolen-alist]
      ([with-stolen-alist] name form) ensures that name is a fast alist at
      the start of the execution of form. At the end of execution, it
      ensures that name is a fast alist if and only if it was
      originally. That is, if name was not a fast alist originally,
      its hash table link is freed, and if it was a fast alist
      originally but its table was modified during the execution of
      form, that table is restored. Note that any extended table
      created from the original fast alist during form must be
      manually freed.

  [Without-evisc]
      Print output in full

  [Xor]
      Logical ``exclusive or''

  [Zerop]
      Test an acl2-number against 0

  [Zip]
      Testing an ``integer'' against 0

  [Zp]
      Testing a ``natural'' against 0

  [Zpf]
      Testing a nonnegative fixnum against 0")
 (ACL2-COUNT
  (BASICS ACL2-BUILT-INS)
  "A commonly used measure for justifying recursion

  (Acl2-count x) returns a nonnegative integer that indicates the
  ``size'' of its argument x.

  All [characters] and symbols have acl2-count 0. The acl2-count of a
  string is the number of [characters] in it, i.e., its length. The
  acl2-count of a [cons] is one greater than the sum of the
  acl2-counts of the [car] and [cdr]. The acl2-count of an integer is
  its absolute value. The acl2-count of a rational is the sum of the
  acl2-counts of the numerator and denominator. The acl2-count of a
  complex rational is one greater than the sum of the acl2-counts of
  the real and imaginary parts.

  Function: <acl2-count>

    (defun acl2-count (x)
           (declare (xargs :guard t))
           (if (consp x)
               (+ 1 (acl2-count (car x))
                  (acl2-count (cdr x)))
               (if (rationalp x)
                   (if (integerp x)
                       (integer-abs x)
                       (+ (integer-abs (numerator x))
                          (denominator x)))
                   (if (complex/complex-rationalp x)
                       (+ 1 (acl2-count (realpart x))
                          (acl2-count (imagpart x)))
                       (if (stringp x) (length x) 0)))))")
 (ACL2-CUSTOMIZATION
  (MISCELLANEOUS)
  "File of initial commands for ACL2 to run at [startup]

  ACL2 provides a mechanism to load automatically a so-called ``ACL2
  customization file,'' via [ld], the first time [lp] is called in an
  ACL2 session. ACL2 looks for this file as follows.

   1. If the host Lisp reads a non-empty value for the system's environment
      variable ACL2_CUSTOMIZATION, then that string value is used for
      the customization file name. In this case, if the file does not
      exist or if the string is \"NONE\" then there is no customization
      file. Notes:
        * If the customization file name is a relative pathname (see
          [pathname]), then the pathname is considered relative to
          the connected book directory (see [cbd]).
        * If this variable is not already defined, then its value is set to
          NONE when books are certified using [build::cert.pl] or
          other, legacy Make-based certification tools.

   2. Otherwise (empty environment variable value), file
      \"acl2-customization.lsp\" or \"acl2-customization.lisp\" on the
      connected book directory (see [cbd]), generally the current
      directory, is the customization file (in that order) if either
      exists.
   3. Otherwise file \"acl2-customization.lsp\" or \"acl2-customization.lisp\"
      on your home directory is the customization file (in that
      order), if either exists (except, this case is skipped on
      Windows operating systems.

  Except for the fact that this [ld] command is not typed explicitly by
  you, it is a standard [ld] command, with one exception: any
  settings of [ld] specials are remembered once this call of [ld] has
  completed. For example, suppose that you start your customization
  file with (set-ld-skip-proofsp t state), so that proofs are skipped
  as it is loaded with [ld]. Then the [ld] special [ld-skip-proofsp]
  will remain t after the [ld] has completed, causing proofs to be
  skipped in your ACL2 session, unless your customization file sets
  this variable back to nil, say with (set-ld-skip-proofsp nil
  state).

  If the customization file exists, it is loaded with [ld] using the
  usual default values for the [ld] specials (see [ld]). Thus, if an
  error is encountered, no subsequent forms in the file will be
  evaluated.

  To create a customization file it is recommended that you first give
  it a name other than \"acl2-customization.lsp\" or
  \"acl2-customization.lisp\" so that ACL2 does not try to include it
  prematurely when you next enter [lp]. Then, while in the
  uncustomized [lp], explicitly invoke [ld] on your evolving (but
  renamed) customization file until all forms are successfully
  evaluated. The same procedure is recommended if for some reason
  ACL2 cannot successfully evaluate all forms in your customization
  file: temporarily rename your customization file so that ACL2 does
  not try to [ld] it automatically and then debug the new file by
  explicit calls to [ld].

  WARNING! If you certify a book after the (automatic) loading of a
  customization file, the forms in that file will be part of the
  [portcullis] of the [books] you certify! That is, the forms in your
  customization file at certification time will be loaded whenever
  anybody uses the [books] you are certifying. Since customization
  files generally contain idiosyncratic [command]s, you may not want
  yours to be part of the [books] you create for others. Thus, if you
  have a customization file then you may want to invoke :[ubt] 1
  before certifying any [books]; alternatively, see [certify-book!]
  for automatic invocation of [ubt].

  On the other hand, if you wish to prevent undoing commands from the
  customization file, see [reset-prehistory].

  Finally, we note that except on Windows-based systems, if there is a
  file acl2-init.lsp in your home directory, then it will be loaded
  into raw Lisp when ACL2 is invoked.")
 (ACL2-DEFAULTS-TABLE
  (TABLE)
  "A [table] specifying certain defaults, e.g., the default [defun-mode]

    Example Forms:
    (table acl2-defaults-table :defun-mode) ; current default defun-mode
    (table acl2-defaults-table :defun-mode :program)
               ; set default defun-mode to :program

  See [table] for a discussion of tables in general. The legal keys for
  this [table] are shown below. They may be accessed and changed via
  the general mechanisms provided by [table]s. However, there are
  often more convenient ways to access and/or change the defaults.
  (See also the note below.)

    :defun-mode

  the default [defun-mode], which must be :[program] or :[logic]. See
  [defun-mode] for a general discussion of [defun-mode]s. The
  :[defun-mode] key may be conveniently set by keyword commands
  naming the new [defun-mode], :[program] and :[logic]. See [program]
  and see [logic].

    :enforce-redundancy

  if t, cause ACL2 to insist that most events are redundant (see
  [redundant-events]); if :warn, cause a warning instead of an error
  for such non-redundant events; else, nil. See
  [set-enforce-redundancy].

    :verify-guards-eagerness

  an integer between 0 and 2 indicating how eager the system is to
  verify the [guard]s of a [defun] event. See
  [set-verify-guards-eagerness].

    :compile-fns

  When this key's value is t, functions are compiled when they are
  [defun]'d; otherwise, the value is nil. (Except, this key's value
  is ignored when explicit compilation is suppressed; see
  [compilation].) To set the flag, see [set-compile-fns].

    :measure-function

  the default measure function used by [defun] when no :measure is
  supplied in [xargs]. The default measure function must be a
  function symbol of one argument. Let mfn be the default measure
  function and suppose no :measure is supplied with some recursive
  function definition. Then [defun] finds the first formal, var, that
  is tested along every branch and changed in each recursive call.
  The system then ``guesses'' that (mfn var) is the :measure for that
  [defun].

    :well-founded-relation

  the default well-founded relation used by [defun] when no
  :[well-founded-relation] is supplied in [xargs]. The default
  well-founded relation must be a function symbol, rel, of two
  arguments about which a :[well-founded-relation] rule has been
  proved. See [well-founded-relation].

    :bogus-defun-hints-ok

  When this key's value is t, ACL2 allows :hints for nonrecursive
  function definitions. Otherwise, the value is the nil (the default)
  or :warn (which makes the check but merely warns when the check
  fails). See [set-bogus-defun-hints-ok].

    :bogus-mutual-recursion-ok

  When this key's value is t, ACL2 skips the check that every function
  in a [mutual-recursion] (or [defuns]) ``clique'' calls at least one
  other function in that ``clique.'' Otherwise, the value is nil (the
  default) or :warn (which makes the check but merely warns when the
  check fails). See [set-bogus-mutual-recursion-ok].

    :irrelevant-formals-ok

  When this key's value is t, the check for irrelevant formals is
  bypassed; otherwise, the value is the keyword nil (the default) or
  :warn (which makes the check but merely warns when the check
  fails). See [irrelevant-formals] and see
  [set-irrelevant-formals-ok].

    :ignore-ok

  When this key's value is t, the check for ignored variables is
  bypassed; otherwise, the value is the keyword nil (the default) or
  :warn (which makes the check but merely warns when the check
  fails). See [set-ignore-ok].

    :bdd-constructors

  This key's value is a list of function symbols used to define the
  notion of ``BDD normal form.'' See [bdd-algorithm] and see [hints].

    :ttag

  This key's value, when non-nil, allows certain operations that extend
  the trusted code base beyond what is provided by ACL2. See
  [defttag]. See [defttag].

    :state-ok

  This key's value is either t or nil and indicates whether the user is
  aware of the syntactic restrictions on the variable symbol STATE.
  See [set-state-ok].

    :backchain-limit

  This key's value is a list of two ``numbers.'' Either ``number'' may
  optionally be nil, which is treated like positive infinity. The
  numbers control backchaining through hypotheses during type-set
  reasoning and rewriting. See [backchain-limit].

    :default-backchain-limit

  This key's value is a list of two ``numbers.'' Either ``number'' may
  optionally be nil, which is treated like positive infinity. The
  numbers are used respectively to set the backchain limit of a rule
  if one has not been specified. See [backchain-limit].

    :step-limit

  This key's value is either nil or a natural number not exceeding the
  value of *default-step-limit*. If the value is nil or the value of
  *default-step-limit*, there is no limit on the number of ``steps''
  that ACL2 counts during a proof: currently, the number of top-level
  rewriting calls. Otherwise, the value is the maximum number of such
  calls allowed during evaluation of any event. See
  [set-prover-step-limit].

    :rewrite-stack-limit

  This key's value is a nonnegative integer less than (expt 2 28). It
  is used to limit the depth of calls of ACL2 rewriter functions. See
  [rewrite-stack-limit].

    :let*-abstractionp

  This key affects how the system displays subgoals. The value is
  either t or nil. When t, let* expressions are introduced before
  printing to eliminate common subexpressions. The actual goal being
  worked on is unchanged.

    :case-split-limitations

  This key's value is a list of two ``numbers.'' Either ``number'' may
  optionally be nil, which is treated like positive infinity. The
  numbers control how the system handles case splits in the
  simplifier. See [set-case-split-limitations].

    :include-book-dir-alist

  This key's value is used by [include-book]'s :DIR argument to
  associate a directory with a keyword. An exception is the keyword
  :SYSTEM for the books/ directory; see [include-book], in particular
  the section on ``Books Directory.'' Also see [add-include-book-dir]
  and [add-include-book-dir!].

    :match-free-default

  This key's value is either :all, :once, or nil. See
  [set-match-free-default].

    :match-free-override

  This key's value is a list of runes. See [add-match-free-override].

    :match-free-override-nume

  This key's value is an integer used in the implementation of
  [add-match-free-override], so that only existing runes are affected
  by that event.

    :non-linearp

  This key's value is either t or nil and indicates whether the user
  wishes ACL2 to extend the linear arithmetic decision procedure to
  include non-linear reasoning. See [non-linear-arithmetic].

    :tau-auto-modep

  This key's value is either t or nil and indicates whether the user
  wishes ACL2 to look for opportunities to create :[tau-system] rules
  from all suitable defuns and from all suitable defthms (with
  non-nil :[rule-classes]). See [set-tau-auto-mode].

    :ruler-extenders

  This key's value may be a list of symbols, indicating those function
  symbols that are not to block the collection of rulers; see
  [defun]. Otherwise the value is :all to indicate all function
  symbols, i.e., so that no function symbol blocks the collection of
  rulers. If a list is specified (rather than :all), then it may
  contain the keyword :lambdas, which has the special role of
  specifying all lambda applications. No other keyword is permitted
  in the list. See [ruler-extenders].

    :memoize-ideal-okp

  This key's value must be either t, nil, or :warn. If the value is nil
  or not present, then it is illegal by default to [memoize] a
  :[logic] mode function that has not been [guard]-verified (see
  [verify-guards]), sometimes called an ``ideal-mode'' function. This
  illegality is the default because such calls of such functions in
  the ACL2 loop are generally evaluated in the logic (using so-called
  ``executable counterpart'' definitions), rather than directly by
  executing calls of the corresponding (memoized) raw Lisp function.
  However, such a raw Lisp call can be made when the function is
  called by a :[program] mode function, so we allow you to override
  the default behavior by associating the value t or :warn with the
  key :memoize-ideal-okp, where with :warn you get a suitable
  warning. Note that you can also allow memoization of ideal-mode
  functions by supplying argument :ideal-okp to your memoization
  event (see [memoize]), in which case the value of
  :memoize-ideal-okp in the acl2-defaults-table is irrelevant.

    :check-invariant-risk

  For an explanation of this key, see [set-check-invariant-risk].

  Note: Unlike all other [table]s, acl2-defaults-table can affect the
  soundness of the system. The [table] mechanism therefore enforces
  on it a restriction not imposed on other [table]s: when [table] is
  used to update the acl2-defaults-table, the key and value must be
  variable-free forms. Thus, while

    (table acl2-defaults-table :defun-mode :program),

    (table acl2-defaults-table :defun-mode ':program), and

    (table acl2-defaults-table :defun-mode (compute-mode *my-data*))

  are all examples of legal [events] (assuming compute-mode is a
  function of one non-[state] argument that produces a [defun-mode]
  as its single value),

    (table acl2-defaults-table :defun-mode (compute-mode (w state)))

  is not legal because the value form is [state]-sensitive.

  Consider for example the following three [events] which one might
  make into the text of a book.

    (in-package \"ACL2\")

    (table acl2-defaults-table
      :defun-mode
      (if (ld-skip-proofsp state) :logic :program))

    (defun crash-and-burn (x) (car x))

  The second event is illegal because its value form is
  [state]-sensitive. If it were not illegal, then it would set the
  :[defun-mode] to :[program] when the book was being certified but
  would set the [defun-mode] to :[logic] when the book was being
  loaded by [include-book]. That is because during certification,
  [ld-skip-proofsp] is nil (proof obligations are generated and
  proved), but during book inclusion [ld-skip-proofsp] is non-nil
  (those obligations are assumed to have been satisfied.) Thus, the
  above book, when loaded, would create a function in :[logic] mode
  that does not actually meet the conditions for such status.

  For similar reasons, [table] [events] affecting acl2-defaults-table
  are illegal within the scope of [local] forms. That is, the text

    (in-package \"ACL2\")

    (local (table acl2-defaults-table :defun-mode :program))

    (defun crash-and-burn (x) (car x))

  is illegal because acl2-defaults-table is changed locally. If this
  text were acceptable as a book, then when the book was certified,
  crash-and-burn would be processed in :[program] mode, but when the
  certified book was included later, crash-and-burn would have
  :[logic] mode because the [local] event would be skipped.

  The text

    (in-package \"ACL2\")

    (program) ;which is (table acl2-defaults-table :defun-mode :program)

    (defun crash-and-burn (x) (car x))

  is acceptable and defines crash-and-burn in :[program] mode, both
  during certification and subsequent inclusion.

  We conclude with an important observation about the relation between
  acl2-defaults-table and [include-book], [certify-book], and
  [encapsulate]. Including or certifying a book never has an effect
  on the acl2-defaults-table, nor does executing an [encapsulate]
  event; we always restore the value of this [table] as a final act.
  (Also see [include-book], see [encapsulate], and see
  [certify-book].) That is, no matter how a book fiddles with the
  acl2-defaults-table, its value immediately after including that
  book is the same as immediately before including that book. If you
  want to set the acl2-defaults-table in a way that persists, you
  need to do so using [command]s that are not inside [books]. It may
  be useful to set your favorite defaults in your
  [ACL2-customization] file; see [ACL2-customization].")
 (ACL2-DOC
  (DOCUMENTATION)
  "A custom Emacs browser for reading ACL2 [documentation]

  As discussed elsewhere (see [documentation]), the web-based
  {ACL2+Books Manual |
  http://www.cs.utexas.edu/users/moore/acl2/v7-2/combined-manual/index.html}
  provides a way to browse the combined documentation for the ACL2
  system and community books. This documentation can also be read at
  the terminal using the :[doc] command, though documentation for
  [books] will only be included for those books that have been
  included in the session. In this topic we describe how to browse
  the documentation using ACL2-Doc, a browser for reading ACL2 and
  books documentation inside Emacs.

  While ACL2-Doc is much like Emacs Info, it is a separate system that
  provides some additional functionality. In order to use ACL2-Doc,
  load the distributed file emacs/acl2-doc.el into Emacs. This will
  happen automatically if you load emacs/emacs-acl2.el, which will
  happen automatically if you put the following form in your ~/.emacs
  file, replacing DIR by a path to your ACL2 installation.

    (load \"DIR/emacs/emacs-acl2.el\")

  Then to start the browser at the top-level topic, either execute the
  Emacs command

    meta-x acl2-doc

  or else type:

    Control-t g

  By default you will browse the ACL2+Books Manual, though if you are
  using a git version between ACL2 releases then you may be queried;
  more on that below. You can enter the ACL2-Doc browser at a
  specific documentation topic as follows (in analogy to Emacs
  command Meta-.):

    Control-t .

  In each of the cases above, you will now be in a buffer called
  \"acl2-doc\", which will be displaying the top-level ACL2 topic in a
  special mode, the ACL2-Doc major mode. That mode provides the
  following key bindings; you can also see these by typing Control-h
  m while in that buffer.

    <Return>      acl2-doc-go!
    g             acl2-doc-go
    h             acl2-doc-help
    i             acl2-doc-index
    ,             acl2-doc-index-next
    <             acl2-doc-index-previous
    l             acl2-doc-last
    n             acl2-doc-search-next
    p             acl2-doc-search-previous
    q             acl2-doc-quit
    r             acl2-doc-return
    s             acl2-doc-search
    S             acl2-doc-re-search
    t             acl2-doc-top
    u             acl2-doc-up
    w             acl2-doc-where
    SPC           scroll-up
    TAB           acl2-doc-tab
    Control-TAB   acl2-doc-tab-back
    D             acl2-doc-rendered-combined-download
    H             acl2-doc-history
    I             acl2-doc-initialize

  You can see the documentation for each of these in the usual way,
  using Control-h k {key} or Control-h f {command}. Here is what you
  will find in each case if you do that.

    <Return>      acl2-doc-go!
       Go to the topic occurring at the cursor position.

    g             acl2-doc-go
       Go to the specified topic; performs completion.

    h             acl2-doc-help
       Go to the ACL2-DOC topic to read about how to use the ACL2-Doc browser.

    i             acl2-doc-index
       Go to the specified topic or else one containing it as a substring;
       performs completion.  If the empty string is supplied, then go to the
       index buffer.  Otherwise, with prefix argument, consider only descendents
       of the topic supplied in response to a prompt.  Note that the index buffer
       is in ACL2-Doc mode; thus, in particular, you can type <RETURN> while
       standing on a topic in order to go directly to that topic.

    ,             acl2-doc-index-next
       Find the next topic containing, as a substring, the topic of the most
       recent i command.  Note: if this is the first \",\" or \"<\" after an
       exact match from \"i\", then start the topic search alphabetically from
       the beginning, but avoid a second hit on the original topic.

    <             acl2-doc-index-previous
       Find the previous topic containing, as a substring, the topic of the
       most recent i command.  Note: if this is the first \",\" or \"<\" after an
       exact match from \"i\", then start the topic search alphabetically
       (backwards) from that exact match.

    l             acl2-doc-last
       Go to the last topic visited.

    n             acl2-doc-search-next
       Find the next occurrence for the most recent search or regular expression
       search.

    p             acl2-doc-search-previous
       Find the previous occurrence for the most recent search or regular
       expression search.  Note: as for \"n\", the cursor will end up at the end
       of the match.

    q             acl2-doc-quit
       Quit the ACL2-Doc browser.

    r             acl2-doc-return
       Return to the last topic visited, popping the stack of such topics.

    s             acl2-doc-search
       Search forward from the top of the manual for the input string.  If the
       search succeeds, then go to that topic with the cursor put immediately
       after the found text, with the topic name displayed in the minibuffer.
       With prefix argument, consider (also for subsequent \"n\" and \"p\"
       commands) only descendents of the topic supplied in response to a prompt.

    S             acl2-doc-re-search
       Perform a regular expression search, forward from the top of the manual,
       for the input string.  If the search succeeds, then go to that topic with
       the cursor put immediately after the found text, with the topic name
       displayed in the minibuffer.  With prefix argument, consider (also for
       subsequent \"n\" and \"p\" commands) only descendents of the topic
       supplied in response to a prompt.

    t             acl2-doc-top
       Go to the top topic.

    u             acl2-doc-up
       Go to the parent of the current topic.

    w             acl2-doc-where
       Display the topic name in the minibuffer, together with the manual name
       (ACL2+Books Manual or ACL2 User's Manual)

    SPC           scroll-up
       Scroll up (same as Control-v)

    TAB           acl2-doc-tab
       Visit the next link after the cursor on the current page, searching from
       the top if no link is below the cursor.

    Control-TAB   acl2-doc-tab-back
       Visit the previous link before the cursor on the current page, searching
       from the bottom if no link is below the cursor.

    D
       Download the ``bleeding edge'' ACL2+Books Manual from the web; then
       restart the ACL2-Doc browser to view that manual.

    H             acl2-doc-history
       Visit a buffer that displays the names of all visited topics in order,
       newest at the bottom.  That buffer is in acl2-doc mode; thus the usual
       acl2-doc commands may be used.  In particular, you can visit a displayed
       topic name by putting your cursor on it and typing <RETURN>.

    I             acl2-doc-initialize
       Restart the ACL2-Doc browser, clearing its state.  With prefix argument,
       toggle between the ACL2 User's Manual (the default) and the ACL2+Books
       Manual.  For the latter, it will be necessary first to create file
       books/system/doc/rendered-doc-combined.lsp; see :DOC acl2-doc.

  Color

  By default, links in square brackets will be shown in blue. You can
  customize this behavior by setting (e.g., in your .emacs file) the
  Emacs variable *acl2-doc-link-color* to the desired link color, or
  to nil if you don't want the links to be in color. For example:

    (setq *acl2-doc-link-color* \"#FF0000\") ; red
    (setq *acl2-doc-link-color* \"Green\")   ; green
    (setq *acl2-doc-link-color* nil)         ; no special color for links

  The Two Manuals

  ACL2-Doc can display the ACL2 User's Manual, which includes
  documentation for the ACL2 system but not for the
  [community-books]. But by default, ACL2-Doc will display the
  ACL2+Books Manual, which includes documentation for those books as
  well. To change which of these two manuals you display, just give a
  prefix argument to the \"I\" command, as indicated above.

  If you are using a git version of ACL2 and the books, between
  releases, then you may need to download an extra file in order to
  browse the ACL2+Books Manual. Most likely you will just answer y
  when queried about downloading the file when first using ACL2-Doc.
  If you want more details, see the last of the Notes below.

  Notes

    * You might find that when you attempt to follow [some-broken-link],
      you find yourself at the [broken-link] topic. If you are using
      the ACL2 User's Manual rather than the ACL2+Books Manual, the
      reason might be that some-broken-link is documented in a book,
      not in the ACL2 system. In that case, the broken-link page will
      show you where to find that book; but if you want to read the
      documentation for some-broken-link in the ACL2-Doc browser, you
      can do so by switching to the ACL2+Books Manual. See the I
      command, documented above.

    * Files with names ending in .acl2-doc will come up in ACL2-Doc mode.
      Thus, you may wish to save a file with that extension, for
      example bookmarks.acl2-doc, that contains your favorite
      bookmarks. You may wish to use the history command (H) to
      obtain a list of names of visited topics, in order to create an
      initial such file.

    * Many commands offer defaults, and many offer completion. The default
      is determined by cursor position: if the cursor is sitting on a
      letter of a documentation topic name, or on a space character
      immediately after it, then that name will be offered as the
      default.

    * Square brackets indicate documentation topic names, for example:
      [acl2-doc]. The square brackets are really there, for example
      when you are searching using \"s\", \"S\", or \"n\". However, for
      purposes of determining the default name (see above), the only
      effect of the enclosing square brackets is to extend the region
      in which the default is offered. For example, consider the
      string \"[acl2-doc]\": the default name of \"acl2-doc\" is offered
      if the cursor is on either square bracket. But links have some
      idiosyncrasies.

       1. Topic names, including links `[..]' to topic names, are printed
          relative to the ACL2 package. Especially in the case of the
          ACL2+Books Manual, you may therefore see links that include
          package prefixes. Here, for example, is a sentence from the
          documentation for [gl] in the ACL2+Books Manual.

              We call these structures [gl::symbolic-objects].

          The \"gl\" package prefix allows commands to pick up
          \"gl::symbolic-objects\" as the name to use as a default, so
          that for example, hitting <Return> will take you to that
          topic. But when reading the sentence, for best results you
          should ignore package prefixes. So for example, you would
          read the sentence above as follows.

              We call these structures symbolic-objects.

       2. Topic names that originally contained spaces now have underscores in
          place of the spaces. So for example, the topic
          [build::cert.pl] in the ACL2+Books Manual contains a link
          to the topic originally named as follows.

              1. Certifying Simple Books

          This link shows up in the ACL2-Doc browser (and in output from the
          :[doc] command at the terminal) as:
          [1._Certifying_Simple_Books]. When you see a potential link
          that does include whitespace, then it will not work,
          probably because the original markup specified English text
          that differs from the topic name. For example, consider the
          following passage from the documentation for [gl].

              GL requires ACL2(h) because it makes extensive use of
              [hons-and-memoization]. Some optional parts of GL also require
              [trust tags].

          The first link will take you to the topic, [hons-and-memoization].
          But the second link was actually written to be a link to
          the documentation for [defttag]. The <Return> command will
          not work on that second link; unfortunately, the
          alternative is to use the g command and specify defttag in
          the minibuffer.

      Of course, the web-based browser avoids these idiosyncrasies (see
      [xdoc::save]), hence may be more appropriate for those who have
      no particular preference for using Emacs to browse the
      documentation.

    * Searching using the \"s\" or \"S\" command is carried out by searching
      top-to-bottom in a hidden Emacs buffer that contains all of the
      documentation. The topics are listed in the following order
      according to topic name:

       1. All topics whose names reside in the \"ACL2\" package;
       2. All topics whose names reside in the \"ACL2-PC\" package; and, for the
          ACL2+Books Manual,
       3. All other topics, sorted by [symbol-name] and then by
          [symbol-package-name].

    * You may be queried, regarding whether you want to browse the
      ACL2+Books Manual, which is preferred, or the ACL2 User's
      Manual, which omits documentation for the books. Both of these
      manuals are based on files that you will have if you are using
      a released version of ACL2 (after Version 6.3). But if you are
      using a {git version | https://github.com/acl2/acl2/}, then to
      use the ACL2+Books Manual you will need an extra file. You can
      build this file yourself, as described below but you may prefer
      to download it: for example, when you start ACL2-Doc, you may
      be given the option of downloading {a tarball for the latest
      ``bleeding edge'' copy |
      http://www.cs.utexas.edu/users/moore/acl2/manuals/current/rendered-doc-combined.lsp.gz}
      and extracting into directory system/doc/ of your community
      books directory. Indeed, the system will do all this for you if
      you answer y to that query. Alternatively, you can insist on a
      download of a ``bleeding edge'' version by using the `D'
      command. However, if you prefer to browse the ACL2 User's
      Manual (without the books), you can put the following form into
      your ~/.emacs file, above the form that loads the code for
      ACL2-Doc (see above).

          (defvar *acl2-doc-top-default* 'TOP)

      If you prefer to build rendered-doc-combined.lsp yourself, you can
      do so as follows.

       1. Build ACL2:

              make large

       2. Build the manual, optionally supplying your \"make\" command with a
          \"-j\" argument. If \"acl2\" invokes the ACL2 executable that
          you just built, then you may omit \"ACL2=acl2\" below;
          otherwise replace \"acl2\" by a suitable executable.

              cd books
              make all USE_QUICKLISP=1 ACL2_BOOK_CERTS=doc/top.cert ACL2=acl2

       3. Build the file books/system/doc/rendered-doc-combined.lsp as follows,
          still standing in the books directory, perhaps modifying
          \"ACL2=acl2\" as discussed above.

              cd books
              make doc/top.cert USE_QUICKLISP=1 ACL2=acl2")
 (ACL2-HELP
  (ABOUT-ACL2)
  "The acl2-help mailing list

  You can email questions about ACL2 usage to the acl2-help mailing
  list: acl2-help@utlists.utexas.edu. If you have more general
  questions about ACL2, for example, about projects completed using
  ACL2, you may prefer the acl2 mailing list,
  acl2@utlists.utexas.edu, which tends to have wider distribution.")
 (ACL2-NUMBER-LISTP
  (NUMBERS LISTS ACL2-BUILT-INS)
  "Recognizer for a true list of numbers

  The predicate acl2-number-listp tests whether its argument is a true
  list of numbers.

  Function: <acl2-number-listp>

    (defun acl2-number-listp (l)
           (declare (xargs :guard t))
           (cond ((atom l) (eq l nil))
                 (t (and (acl2-numberp (car l))
                         (acl2-number-listp (cdr l))))))")
 (ACL2-NUMBERP
  (NUMBERS ACL2-BUILT-INS)
  "Recognizer for numbers

  (acl2-numberp x) is true if and only if x is a number, i.e., a
  rational or complex rational number.")
 (ACL2-SEDAN
  (ACL2-TUTORIAL)
  "ACL2 Sedan interface

  Many successful ACL2 users run in an shell under Emacs; see [emacs].
  However, those not familiar with Emacs may prefer to start with an
  Eclipse-based interface initiallly developed by Peter Dillinger and
  Pete Manolios called the {ACL2 Sedan |
  http://acl2s.ccs.neu.edu/acl2s/doc/} or ``ACL2s''.

  ACL2 sessions in the ACL2 Sedan can utilize non-standard extensions
  and enhancements, especially geared toward new users, termination
  reasoning, and attaching rich user interfaces. These extensions are
  {generally available |
  http://acl2s.ccs.neu.edu/acl2s/src/acl2-extensions} as certifiable
  ACL2 books. (Some code originating from this project has been
  migrated to the ACL2 community books, but only after it was quite
  stable.) Thanks to Peter Dillinger, Pete Manolios, Daron Vroon, and
  Harsh Raju Chamarthi for their work on the ACL2 Sedan and for
  making their books available to ACL2 users.")
 (ACL2-TUTORIAL
  (ACL2)
  "Tutorial introduction to ACL2

  To learn about ACL2, read at least the following two links.

    * [Industrial Applications of ACL2] (10 minutes) to help you understand
      what sophisticated users can do;
    * [A Flying Tour] (10 minutes) to get an overview of the system and
      what skills the user must have.

  If you want to learn how to use ACL2, we recommend that you read a
  selection of the materials referenced below, depending on your
  learning style, and do suggested exercises.

    * [A Walking Tour] (1 hour) provides an overview of the theorem prover.
    * The {Try ACL2 | http://tryacl2.org} web site provides interactive
      lessons to get you started using ACL2.
    * See [introduction-to-the-theorem-prover] (10-40 hours) for
      instruction on how to interact with the system. Unlike the
      three documents above, this document expects you to think! It
      cites the necessary background pages on programming in ACL2 and
      on the logic and then instructs you in [the-method], which is
      how expert users use ACL2. It concludes with some challenge
      problems for the ACL2 beginner (including solutions) and an
      FAQ. Most users will spend several hours a day for several days
      working through this material.
    * The book {Computer-Aided Reasoning: An Approach |
      http://www.cs.utexas.edu/users/moore/publications/acl2-books/car/index.html}
      is worth a careful read, as you work exercises and learn
      [the-method].
    * [Annotated ACL2 Scripts and Demos] contains relatively elementary
      proof scripts that have been annotated to help train the
      newcomer.
    * Many files (``books'') in the ACL2 community books (see
      [community-books]) are extensively annotated.
    * An [Alternative Introduction] document, while largely subsumed by the
      [Introduction to the Theorem Prover] mentioned above, still
      might be useful because it covers much of the tutorial material
      in a different way.

  At this point you are probably ready to use ACL2 on your own small
  projects. A common mistake for beginners is to browse the
  documentation and then try to do something that is too big! Think
  of a very small project and then simplify it!

  Note that ACL2 has a very supportive user network. See the link to
  ``Mailing Lists'' on the {ACL2 home page |
  http://www.cs.utexas.edu/users/moore/acl2}.

  The topics listed below are a hodge podge, developed over time.
  Although some of these are not mentioned above, you might find some
  to be useful as well.


Subtopics

  [ACL2-as-standalone-program]
      Calling ACL2 from another program

  [ACL2-sedan]
      ACL2 Sedan interface

  [Advanced-features]
      Some advanced features of ACL2

  [Alternative-introduction]
      Introduction to ACL2

  [Annotated-ACL2-scripts]
      Examples of ACL2 scripts

  [Emacs]
      Emacs support for ACL2

  [Interesting-applications]
      Some industrial examples of ACL2 use

  [Introduction-to-the-theorem-prover]
      How the theorem prover works -- level 0

  [Nqthm-to-ACL2]
      ACL2 analogues of Nqthm functions and commands

  [Pages_Written_Especially_for_the_Tours]
      Pages Written Especially for the Tours

  [Startup]
      How to start using ACL2; the ACL2 [command] loop

  [The-method]
      How to find proofs

  [Tidbits]
      Some basic hints for using ACL2

  [Tips]
      Some hints for using the ACL2 prover")
 (ACL2-USER
  (PACKAGES)
  "A package the ACL2 user may prefer

  This package imports the standard Common Lisp symbols that ACL2
  supports and also a few symbols from package \"ACL2\" that are
  commonly used when interacting with ACL2. You may prefer to select
  this as your current package so as to avoid colliding with ACL2
  system names.

  This package imports the symbols listed in
  *common-lisp-symbols-from-main-lisp-package*, which contains
  hundreds of CLTL function and macro names including those supported
  by ACL2 such as [cons], [car], and [cdr]. It also imports the
  symbols in *acl2-exports*, which contains a few symbols that are
  frequently used while interacting with the ACL2 system, such as
  [implies], [defthm], and [rewrite]. It imports nothing else.

  Thus, names such as [alistp], [member-equal], and [type-set], which
  are defined in the \"ACL2\" package are not present here. If you find
  yourself frequently colliding with names that are defined in \"ACL2\"
  you might consider selecting \"ACL2-USER\" as your current package
  (see [in-package]). If you select \"ACL2-USER\" as the current
  package, you may then simply type [member-equal] to refer to
  acl2-user::member-equal, which you may define as you see fit. Of
  course, should you desire to refer to the \"ACL2\" version of
  [member-equal], you will have to use the \"ACL2::\" prefix, e.g.,
  acl2::member-equal.

  If, while using \"ACL2-USER\" as the current package, you find that
  there are symbols from \"ACL2\" that you wish we had imported into it
  (because they are frequently used in interaction), please bring
  those symbols to our attention. For example, should
  [union-theories] and [universal-theory] be imported? Except for
  stabilizing on the ``frequently used'' names from \"ACL2\", we intend
  never to define a symbol whose [symbol-package-name] is
  \"ACL2-USER\".")
 (ACL2P-KEY-CHECKPOINTS
  (PARALLEL-PROOF)
  "Key checkpoints in ACL2(p)

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].

  For printing output, the parallel version of the waterfall follows
  the precedent of [gag-mode]. The idea behind gag mode is to print
  only the subgoals most relevant to debugging a failed proof
  attempt. These subgoals are called 'key checkpoints' (see
  [set-gag-mode] for the definition of ``key'' and ``checkpoint''),
  and we restrict the default output mode for the parallel version of
  the waterfall to printing checkpoints similar to these key
  checkpoints.

  As of this writing, we are aware of exactly one discrepancy between
  gag mode's key checkpoints and the parallel version of the
  waterfall's checkpoints. This discrepancy occurs when using ``by''
  hints (see [hints]). As an example, take the following form, which
  attempts to prove a non-theorem:

    (thm (equal (append x y z) (append z (append y x)))
         :hints ((\"Subgoal *1/2'''\" :by nil)))

  With waterfall parallelism enabled, Subgoal *1/2'' will be printed as
  a key checkpoint. This is different from using [gag-mode] while
  running the serial version of the waterfall, which skips printing
  the subgoal as a checkpoint.

  For those familiar with the ACL2 waterfall, we note that that the
  parallel version of the waterfall prints key checkpoints that are
  unproved in the following sense: a subgoal is a key checkpoint if
  it leads, in the current call of the waterfall, to a goal that is
  pushed for induction.")
 (ACL2S (POINTERS) "See [ACL2-sedan].")
 (ACL2_AS_AN_INTERACTIVE_THEOREM_PROVER
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "ACL2 as an Interactive Theorem Prover

  The ACL2 theorem prover finds proofs in the ACL2 logic. It can be
  automatic. But most often the user must help it.

  {IMAGE}

  The user usually guides ACL2 by suggesting that it first prove key
  lemmas. Lemmas are just theorems used in the proofs of other
  theorems.")
 (ACL2_AS_AN_INTERACTIVE_THEOREM_PROVER_{CONT}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "ACL2 as an Interactive Theorem Prover (cont)

  [{IMAGE}]

  When ACL2 proves a lemma, it is converted into one or more rules and
  stored in a database. The theorem prover is rule-driven. By proving
  lemmas you can configure ACL2 to behave in certain ways when it is
  trying to prove formulas in a certain problem domain. The expert
  user can make ACL2 do amazingly ``smart'' looking things.

  But it would be wrong to think that ACL2 knows the mathematical
  content of a formula just because it has proved it. What ACL2 knows
  --- all ACL2 knows --- is what is encoded in its rules. There are
  many types of rules (see [rule-classes] [{ICON}]).

  Many formulas can be effectively coded as rules. But by the same
  token, it is possible to encode a formula as a rule that is so
  ineffective it cannot even prove itself!

  The way a formula is stored as a rule is entirely up to the user.
  That is, you determine how ACL2 should use each formula that it
  proves.

  The most common kind of rule is the rewrite rule. It is so common
  that if you don't tell ACL2 how to store a formula, it stores it as
  a rewrite rule.

  [{IMAGE}]")
 (ACL2_CHARACTERS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "ACL2 Characters

  ACL2 accepts 256 distinct characters, which are the characters
  obtained by applying the function [code-char] [{ICON}] to each
  integer from 0 to 255. Among these, Common Lisp designates certain
  ones as *standard-characters*, namely those of the form (code-char
  n) where n is from 33 to 126, together with #\\Newline and #\\Space.
  The actual standard characters may be viewed by evaluating the
  constant expression *standard-chars*.

  The standard character constants are written by writing a hash mark
  followed by a backslash (#\\) followed by the character.

  The function [characterp] [{ICON}] recognizes characters. For more
  details, See [characters] [{ICON}].")
 (ACL2_CONSES_OR_ORDERED_PAIRS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "ACL2 Conses or Ordered Pairs

  The function [cons] [{ICON}] creates an ordered pair. [Car] [{ICON}]
  and [cdr] [{ICON}] return the first and second components,
  respectively, of an ordered pair. The function [consp] [{ICON}]
  recognizes ordered pairs.

  Ordered pairs are used to represent lists and trees. See any Common
  Lisp documentation for a discussion of how list constants are
  written and for the many list processing functions available. Also,
  see [programming] [{ICON}] where we list all the ACL2 primitive
  functions.

  Here are some examples of list constants to suggest their syntax.

    '(a . b)                ; a pair whose car is 'a and cdr is 'b
    '(a . nil)              ; a pair whose car is 'a and cdr is nil
    '(a)                    ; another way to write the same thing
    '(a b)                  ; a pair whose car is 'a and cdr is '(b)
    '(a b c)                ; a pair whose car is 'a and cdr is '(b c)
                            ;  i.e., a list of three symbols, a, b, and c.
    '((a . 1) (b . 2))      ; a list of two pairs

  It is useful to distinguish ``proper'' conses from ``improper'' ones,
  the former being those cons trees whose right-most branch
  terminates with nil. A ``true list'' (see [true-listp] [{ICON}]) is
  either nil or a proper cons. (A b c . 7) is an improper cons and
  hence not a true list.")
 (ACL2_IS_AN_UNTYPED_LANGUAGE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "ACL2 is an Untyped Language

  The example

    ACL2 !>(app '(a b c) 27)
    (A B C . 27)

  illustrates the fact that ACL2's logic is untyped (click [here] for a
  brief discussion of the typed versus untyped nature of the logic).

  The definition of app makes no restriction of the arguments to lists.
  The definition says that if the first argument satisfies [endp]
  [{ICON}] then return the second argument. In this example, when app
  has recursed three times down the cdr of its first argument, '(a b
  c), it reaches the final nil, which satisfies endp, and so 27 is
  returned. It is naturally consed into the emerging list as the
  function returns from successive recursive calls (since cons does
  not require its arguments to be lists, either). The result is an
  ``improper'' list, (a b c . 27).

  You can think of (app x y) as building a binary tree by replacing the
  right-most tip of the tree x with the tree y.")
 (ACL2_STRINGS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "ACL2 Strings

  Strings of ACL2 [characters] are written as sequences of characters
  delimited by ``double quotation marks'' (\"). To put a double
  quotation mark in a string (or, any other character such as
  backslash or newline that seems to cause problems), escape it by
  preceding it with a backslash (\\).

  The function [stringp] [{ICON}] recognizes strings and [char]
  [{ICON}] will fetch the nth character of a string. There are many
  other primitives for handling strings, such as [string<] [{ICON}]
  for comparing two strings lexicographically. We suggest you See
  [programming] [{ICON}] where we list all of the primitive ACL2
  functions. Alternatively, see any Common Lisp language
  documentation.")
 (ACL2_SYMBOLS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "ACL2 Symbols

  Common Lisp's symbols are a data type representing words. They are
  frequently regarded as atomic objects in the sense that they are
  not frequently broken down into their constituents. Often the only
  important properties of symbols is that they are not numbers,
  characters, strings, or lists and that two symbols are not equal if
  they look different (!). Examples of symbols include PLUS and
  SMITH::ABC. All function and variable names in ACL2 are symbols.
  When symbols are used as constants they must be quoted, as in
  'PLUS.

  The symbol T is commonly used as the Boolean ``true.'' The symbol NIL
  is commonly used both as the Boolean ``false'' and as the ``empty
  list.'' Despite sometimes being called the ``empty list'' NIL is a
  symbol not an ``empty cons.'' Unlike other symbols, T and NIL may
  be used as constants without quoting them.

  Usually, symbols are written as sequences of alphanumeric characters
  other than those denoting numbers. Thus, A12, +1A and 1+ are
  symbols but +12 is a number. Roughly speaking, when symbols are
  read lower case characters are converted to upper case, so we
  frequently do not distinguish ABC from Abc or abc. Click [here] for
  information about case conversion when symbols are read. However,
  any character can be used in a symbol, but some characters must be
  ``escaped'' to allow the Lisp reader to parse the sequence as a
  symbol. For example, |Abc| is a symbol whose first character is
  capitalized and whose remaining characters are in lower case. |An
  odd duck| is a symbol containing two #\\Space characters. See any
  Common Lisp documentation for the syntactic rules for symbols.

  Technically, a symbol is a special kind of pair consisting of a
  package name (which is a string) and a symbol name (which is also a
  string). (See [symbol-package-name] [{ICON}] and see [symbol-name]
  [{ICON}].) The symbol SMITH::ABC is said to be in package \"SMITH\"
  and to have the symbol name \"ABC\". The symbol ABC in package
  \"SMITH\" is generally not equal to the symbol ABC in package
  \"JONES\". However, it is possible to ``import'' symbols from one
  package into another one, but in ACL2 this can only be done when
  the package is created. (See [defpkg] [{ICON}].) If the
  [current-package] [{ICON}] is \"SMITH\" then SMITH::ABC may be more
  briefly written as just ABC. [Intern] [{ICON}] ``creates'' a symbol
  of a given name in a given package.")
 (ACL2_SYSTEM_ARCHITECTURE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "ACL2 System Architecture

  [{IMAGE}]

  {IMAGE}

  The user interacts with the theorem prover by giving it definitions,
  theorems and advice. Most often the advice is about how to store
  each proved theorem as a rule. Sometimes the advice is about how to
  prove a specific theorem.

  The database consists of all the rules ACL2 ``knows.'' It is possible
  to include in the database all of the rules in some certified file
  of other events. Such certified files are called [books] [{ICON}].

  Interesting proofs are usually built on top of many books, some of
  which are written especially for that problem domain and others of
  which are about oft-used domains, like arithmetic or list
  processing. ACL2's distribution includes many books written by
  users. See the ``books'' link under the Lemma Libraries and
  Utilities [{ICON}] link of the ACL2 home page.

  [{IMAGE}]")
 (ACONS
  (ALISTS ACL2-BUILT-INS)
  "Constructor for association lists

  (Acons key datum alist) equals the result of consing the pair (cons
  key datum) to the front of the association list alist.

  (Acons key datum alist) has a [guard] of (alistp alist). Acons is a
  Common Lisp function. See any Common Lisp documentation for more
  information.

  Function: <acons>

    (defun acons (key datum alist)
           (declare (xargs :guard (alistp alist)))
           (cons (cons key datum) alist))")
 (ACTIVE-RUNEP
  (THEORIES)
  "Check that a [rune] exists and is [enable]d

    Example:
    (active-runep '(:rewrite left-to-right))

    General Form:
    (active-runep rune)

  where rune has the shape of a [rune]. This macro expands to an
  expression using the variables ens and state, and returns non-nil
  when the given rune exists and is [enable]d (according to the given
  ``enabled structure,'' ens, and the current logical [world] of the
  given [state]). See [theory-invariant] for how this macro can be of
  use.")
 (ADD-BINOP
  (MACROS)
  "Associate a function name with a macro name

  The form (add-binop macro macro-fn) is an abbreviation for the form
  (add-macro-fn macro macro-fn t). See [add-macro-fn].")
 (ADD-CUSTOM-KEYWORD-HINT
  (EVENTS)
  "Add a new custom keyword hint

    Examples:
    (add-custom-keyword-hint :my-hint (my-hint-fn val ...))

    (add-custom-keyword-hint :my-hint
                             (my-hint-fn val ...)
                             :checker (my-hint-checker-fn val ...))

    General Form:
    (add-custom-keyword-hint :key term1 :checker term2)

  where :key is a [keywordp] not among the primitive keyword hints
  listed in *hint-keywords*, the :checker argument is optional, and
  term1 and (if supplied) term2 are terms with certain free-variable
  and signature restrictions described below. Henceforth, :key is
  treated as a custom keyword hint, e.g., the user can employ :key in
  hints to [defthm], such as:

    (defthm name ...
      :hints ((\"Subgoal *1/1'\" ... :key val ...))).

  Custom keyword hints are complicated. To use them you must understand
  [state], multiple values (e.g., [mv] and [mv-let]), ACL2's notion
  of error triples (see [programming-with-state]), how to generate
  ``soft'' errors with [er], how to use [fmt]-strings to control
  output, how to use computed hints (see [computed-hints]) and some
  aspects of ACL2's internal event processing. Furthermore, it is
  possible to implement a custom keyword hint that can make an event
  non-reproducible! So we recommend that these hints be developed by
  ACL2 experts. Basically the custom keyword feature allows the
  implementors and other experts to extend the hint facility without
  modifying the ACL2 sources.

  Term1 is called the ``generator'' term and term2 is called the
  ``checker'' term of the custom keyword hint :key. Together they
  specify the semantics of the new custom keyword hint :key. Roughly
  speaking, when a custom keyword hint is supplied by the user, as in

    (defthm name ...
      :hints ((\"Subgoal *1/1'\" ... :my-hint val ...))).

  the checker term is evaluated on val to check that val is of the
  expected shape. Provided val passes the check, the generator term
  is used to compute a standard hint. Like computed hints, the
  generator of a custom keyword hint is allowed to inspect the actual
  clause on which it is being fired. Indeed, it is allowed to inspect
  the entire list of hints (standard and custom) supplied for that
  clause. Thus, in the most general case, a custom keyword hint is
  just a very special kind of computed hint.

  The generator, term1, must have no free variables other than:

    (val keyword-alist
     id clause world stable-under-simplificationp
     hist pspv ctx state).

  Moreover, either term1 must evaluate to a single non-[stobj] value,
  or else it must be single-threaded in state and have the standard
  [error-triple] output signature, (mv * * state).

  The restrictions on the checker, term2, are that it be
  single-threaded in state, have the standard [error-triple] output
  signature, (mv * * state), and have no free variables other than:

    (val world ctx state).

  For examples, see the community books directory books/hints/, in
  particular basic-tests.lisp.

  To delete a previously added custom keyword hint, see
  [remove-custom-keyword-hint].

  The community book hints/merge-hint.lisp can be useful in writing
  custom keyword hints. See the examples near the of the file.

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.")
 (ADD-DEFAULT-HINTS
  (DEFAULT-HINTS)
  "Add to the default hints

    Examples:
    (add-default-hints '((computed-hint-1 clause)
                         (computed-hint-2 clause
                                          stable-under-simplificationp)))
    (add-default-hints '((computed-hint-3 id clause world))
                       :at-end t)

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  It is [local] to the book or [encapsulate] form in which it occurs
  (see [add-default-hints!] for a corresponding non-[local] event).

    General Forms:
    (add-default-hints lst)
    (add-default-hints lst :at-end flg)

  where lst is a list. Generally speaking, the elements of lst should
  be suitable for use as [computed-hints].

  This event is completely analogous to [set-default-hints], the
  difference being that add-default-hints appends the indicated hints
  to the front of the list of default hints, so that they are tried
  first --- or, if flg is supplied and evaluates to other than nil,
  at the end of the list, so that they are tried last --- rather than
  replacing the default hints with the indicated hints. Each new hint
  is thus considered after each existing hints when both are applied
  to the same goal. Also See [set-default-hints], see
  [remove-default-hints], and see [default-hints].

  Finally, note that the effects of set-default-hints,
  [add-default-hints], and [remove-default-hints] are [local] to the
  book in which they appear. Thus, users who include a book with such
  forms will not have their default hints affected by such forms. In
  order to export the effect of setting the default hints, use
  [set-default-hints!], [add-default-hints!], or
  [remove-default-hints!].

  For a related feature, which however is only for advanced system
  builders, see [override-hints].")
 (ADD-DEFAULT-HINTS!
  (DEFAULT-HINTS)
  "Add to the default hints non-[local]ly

  Please see [add-default-hints], which is the same as
  add-default-hints! except that the latter is not [local] to the
  [encapsulate] or the book in which it occurs. Probably
  [add-default-hints] is to be preferred unless you have a good
  reason for wanting to export the effect of this event outside the
  enclosing [encapsulate] or book.")
 (ADD-DIVE-INTO-MACRO
  (DIVE-INTO-MACROS-TABLE)
  "Associate [proof-checker] diving function with macro name

    Examples:
    (add-dive-into-macro cat expand-address-cat)

  This feature is used so that the [proof-checker]'s DV command and
  numeric diving commands (e.g., 3) will dive properly into subterms.
  Please see [dive-into-macros-table].")
 (ADD-INCLUDE-BOOK-DIR
  (BOOKS-REFERENCE)
  "Link keyword for :dir argument of [ld] and [include-book]

    Example Forms:

    ; For (include-book \"foo\" :dir :smith), prepend \"/u/smith/\" to \"foo\".
    (add-include-book-dir :smith \"/u/smith/\")

    ; For (include-book \"bar\" :dir :util), prepend absolute directory pathname
    ; corresponding to the relative pathname, \"utilities/\".
    (add-include-book-dir :util \"utilities\")

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  It is [local] to the book or [encapsulate] form in which it occurs.
  See [add-include-book-dir!] for a corresponding non-[local] event.

    General Form:
    (add-include-book-dir kwd dir)

  where kwd is a [keywordp] and dir is a relative or absolute
  [pathname] for a directory, optionally using the syntax (:system .
  filename) described in [full-book-name]. If the final '/' is
  missing for the resulting directory, ACL2 will add it for you. The
  effect of this event is to modify the meaning of the :dir keyword
  argument of [include-book] or [ld] as indicated by the examples
  above, that is, by associating the indicated directory with the
  indicated keyword for purposes of the :dir argument. By the
  ``indicated directory'' we mean, in the case that the pathname is a
  relative pathname, the directory relative to the current connected
  book directory; see [cbd]. See [delete-include-book-dir] for how to
  undo this effect.

  For a keyword already associated with a directory string by a
  previous invocation of add-include-book-dir or
  [add-include-book-dir!], it is illegal to associate a different
  directory string until removing the existing association; see
  [delete-include-book-dir] (and see [delete-include-book-dir!] if
  the existing association was made by [add-include-book-dir!]. If
  however the new directory string is identical with the existing
  one, which was already assigned by add-include-book-dir, then the
  new call of add-include-book-dir will be redundant (see
  [redundant-events]).

  The keyword :system can never be redefined. It will always point to
  the absolute pathname of the system books directory, which by
  default is immediately under the directory where the ACL2
  executable was originally built (see [include-book], in particular
  the discussion there of ``books directory'').

  This macro generates a [table] event that updates the table
  include-book-dir!-table, which associates keywords with absolute
  pathnames. However, as with [add-include-book-dir], direct table
  updates are disallowed; you must use add-include-book-dir! to add
  to the table and [delete-include-book-dir!] to remove from the
  table.

  It is illegal to call add-include-book-dir! in a [local] context. (If
  you are tempted to do that, consider using [add-include-book-dir]
  instead.) To understand this restriction, imagine a book that
  contains the following sequence of [events].

    (add-include-book-dir! :my-dir \"path/to/BAD/dir\")
    (local (delete-include-book-dir! :my-dir))
    (local (add-include-book-dir! :my-dir \"path/to/GOOD/dir\"))
    (include-book \"foo\" :dir :my-dir)
    (defthm f-def
      (equal (f x) x))

  During the first (proof) pass of [certify-book], the book
  path/to/GOOD/dir/foo.lisp will be included. But on the second pass,
  the book path/to/BAD/dir/foo.lisp will be included. Now imagine
  that the ``good'' version contains the event (defun f (x) x) but
  the ``bad'' version instead contains the event (defun f (x) (not
  x)). Then we can easily prove nil from the theorem f-def! Although
  it is likely that checksums will catch this error at [include-book]
  time, we prefer not to rely on checksums for soundness.")
 (ADD-INCLUDE-BOOK-DIR!
  (BOOKS-REFERENCE)
  "Non-[local]ly link keyword for :dir argument of [ld] and
  [include-book]

  Please see [add-include-book-dir], which has completely analogous
  syntax and semantics, except that add-include-book-dir! is not
  [local] to the [encapsulate] or the book in which it occurs.
  Probably [add-include-book-dir] is to be preferred unless you have
  a good reason for wanting to export the effect of this event
  outside the enclosing [encapsulate] or book.

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.

  This macro is essentially a [table] event that updates the table
  include-book-dir!-table, which associates keywords with absolute
  pathnames. However, as with [add-include-book-dir], direct table
  updates are disallowed; you must use add-include-book-dir! to add
  to the table and [delete-include-book-dir!] to remove from the
  table.

  It is illegal to call add-include-book-dir! in a [local] context. (If
  you are tempted to do that, consider using [add-include-book-dir]
  instead.) To understand this restriction, imagine a book that
  contains the following sequence of [events].

    (add-include-book-dir! :my-dir \"path/to/BAD/dir\")
    (local (delete-include-book-dir! :my-dir))
    (local (add-include-book-dir! :my-dir \"path/to/GOOD/dir\"))
    (include-book \"foo\" :dir :my-dir)
    (defthm f-def
      (equal (f x) x))

  During the first (proof) pass of [certify-book], the book
  path/to/GOOD/dir/foo.lisp will be included. But on the second pass,
  the book path/to/BAD/dir/foo.lisp will be included. Now imagine
  that the ``good'' version contains the event (defun f (x) x) but
  the ``bad'' version instead contains the event (defun f (x) (not
  x)). Then we can easily prove nil from the theorem f-def! Although
  it is likely that checksums will catch this error at [include-book]
  time, we prefer not to rely on checksums for soundness.")
 (ADD-INVISIBLE-FNS
  (LOOP-STOPPER)
  "Make some unary functions invisible to the [loop-stopper] algorithm

    Examples:
    (add-invisible-fns binary-+ unary-- foo)
    (add-invisible-fns + unary-- foo)

  Each of the [events] above makes unary functions [unary--] and foo
  ``invisible'' for the purposes of applying permutative :[rewrite]
  rules to [binary-+] trees. Thus, arg and (unary-- arg) will be
  given the same weight and will be permuted so as to be adjacent.

    General Form:
    (add-invisible-fns top-fn unary-fn1 ... unary-fnk)

  where top-fn is a function symbol and the unary-fni are unary
  function symbols, or more generally, these are all macro aliases
  for function symbols (see [macro-aliases-table]).

  For more information see [invisible-fns-table]. Also see
  [set-invisible-fns-table], which explains how to set the entire
  table in a single event, and see [remove-invisible-fns].")
 (ADD-LD-KEYWORD-ALIAS (POINTERS)
                       "See [ld-keyword-aliases].")
 (ADD-LD-KEYWORD-ALIAS! (POINTERS)
                        "See [ld-keyword-aliases].")
 (ADD-MACRO-ALIAS
  (MACROS)
  "Associate a function name with a macro name

    Example:
    (add-macro-alias append binary-append)

  This example associates the function symbol [binary-append] with the
  macro name [append]. As a result, the name [append] may be used as
  a runic designator (see [theories]) by the various theory
  functions. See [macro-aliases-table] for more details. Also see
  [add-macro-fn] for an extension of this utility that also affects
  printing.

    General Form:
    (add-macro-alias macro-name function-name)

  This is a convenient way to add an entry to [macro-aliases-table].
  See [macro-aliases-table] and also see [remove-macro-alias].")
 (ADD-MACRO-FN
  (MACROS)
  "Associate a function name with a macro name

    Examples:
    (add-macro-fn append binary-append)
    (add-macro-fn append binary-append t)

  These examples each associate the function symbol [binary-append]
  with the macro name [append]. As a result, theory functions will
  understand that append refers to binary-append --- see
  [add-macro-alias] --- and moreover, proof output will be printed
  using append rather than binary-append. In the first case, (append
  x (append y z)) is printed rather than (append x y z). In the
  second case, right-associated arguments are printed flat: (append x
  y z). Such right-association is considered only for binary function
  symbols; otherwise the optional third argument is ignored.

    General Forms:
    (add-macro-fn macro-name function-name)
    (add-macro-fn macro-name function-name nil) ; same as above
    (add-macro-fn macro-name function-name t)

  This is a convenient way to add an entry to [macro-aliases-table] and
  at the same time extend the [untrans-table]. As suggested by the
  example above, calls of a function in this table will be printed as
  corresponding calls of macros, with right-associated arguments
  printed flat in the case of a binary function symbol if the
  optional third argument is t. In that case, for a binary function
  symbol fn associated with macro name mac, then a call (fn arg1 (fn
  arg2 (... (fn argk arg)))) will be displayed to the user as though
  the ``term'' were (mac arg1 arg2 ... argk arg). For a call (f a1
  ... ak) of a function symbol that is not binary, or the optional
  argument is not supplied as t, then the effect is simply to replace
  f by the corresponding macro symbol. See [add-macro-alias], which
  is invoked on the first two arguments. Also see
  [remove-macro-alias], see [untrans-table], and see
  [remove-macro-fn].")
 (ADD-MATCH-FREE-OVERRIDE
  (FREE-VARIABLES)
  "Set :match-free value to :once or :all in existing rules

    Example Forms:
    (add-match-free-override :once t)
        ; Try only the first binding of free variables when relieving hypotheses
        ; of any rule of class :rewrite, :linear, or :forward-chaining.
    (add-match-free-override :all (:rewrite foo) (:rewrite bar))
        ; For rewrite rules foo and bar, try all bindings of free variables when
        ; relieving hypotheses.
    (add-match-free-override :clear)
        ; Restore :match-free to what was originally stored for each rule (either
        ; :all or :once).

  As described elsewhere (see [free-variables]), a [rewrite], [linear],
  or [forward-chaining] rule may have free variables in its
  hypotheses, and ACL2 can be directed either to try all bindings
  (``:all'') or just the first (``:once'') when relieving a
  hypothesis, as a basis for relieving subsequent hypotheses. This
  direction is generally provided by specifying either :match-free
  :once or :match-free :all in the :[rule-classes] of the rule, or by
  using the most recent [set-match-free-default] event. Also see
  [rule-classes].

  However, if a proof is going slowly, you may want to modify the
  behavior of some such rules so that they use only the first match
  for free variables in a hypothesis when relieving subsequent
  hypotheses, rather than backtracking and trying additional matches
  as necessary. (But note: add-match-free-override is not relevant
  for [type-prescription] rules.) The event (add-match-free-override
  :once t) has that effect. Or at the other extreme, perhaps you want
  to specify all rules as :all rules except for a some specific
  exceptions. Then you can execute (add-match-free-override :all t)
  followed by, say, (add-match-free-override :once (:rewrite foo)
  (:linear bar)).

    General Forms:
    (add-match-free-override :clear)
    (add-match-free-override flg t)
    (add-match-free-override flg rune1 rune2 ... runek)

  where flg is :once or :all and the runei are [rune]s. If :clear is
  specified then all rules will have the :all/:once behavior from
  when they were first stored. The second general form causes all
  [rewrite] [linear], and [forward-chaining] rules to have the
  behavior specified by flg (:all or :once). Finally, the last of
  these, where runes are specified, is additive in the sense that
  only the indicated rules are affected; all others keep the behavior
  they had just before this event was executed (possible because of
  earlier add-match-free-override events).

  At the conclusion of this event, ACL2 prints out the list of all
  :[linear], :[rewrite], and :[forward-chaining] runes whose rules
  contain free variables in hypotheses that are to be bound :once,
  except that if there are no overrides (value :clear was used), then
  :clear is printed.

  This event only affects rules that exist at the time it is executed.
  Future rules are not affected by the override.

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  It uses the [ACL2-defaults-table], and hence its effect is [local]
  to the book or [encapsulate] form in which it occurs.

  Remarks

  Lists of the :[rewrite], :[linear], and :[forward-chaining] [rune]s
  whose behavior was originally :once or :all are returned by the
  following forms, respectively.

    (free-var-runes :once (w state))
    (free-var-runes :all  (w state))

  The form

    (match-free-override (w state))

  evaluates to a pair, whose [car] is a number used by ACL2 to
  determine whether a [rune] is sufficiently old to be affected by
  the override, and whose [cdr] is the list of [rune]s whose behavior
  is specified as :once by add-match-free-override; except, if no
  runes have been overridden, then the keyword :clear is returned.")
 (ADD-NTH-ALIAS
  (NTH-ALIASES-TABLE)
  "Associate one symbol with another for printing of [nth]/[update-nth]
  terms

    Example:
    (add-nth-alias st0 st)

  This example associates the symbol st0 with the symbol st for
  purposes of printing certain terms of the form (nth n st0) and
  (update-nth n val st0).

    General Form:
    (add-nth-alias alias-name name)

  This is a convenient way to add an entry to [nth-aliases-table]. See
  [nth-aliases-table] and also see [remove-nth-alias].")
 (ADD-OVERRIDE-HINTS
  (OVERRIDE-HINTS)
  "Add to the [override-hints]

  See [override-hints] for a discussion of override-hints. Here we
  describe how to extend the list of override-hints. Note that the
  effects of add-override-hints [events] are [local] to the [books]
  or encapsulate [events] in which they reside; see
  [add-override-hints!] to avoid that restriction. Also see
  [set-override-hints] to set a new list of override-hints to it,
  ignoring the present list rather than adding to it.

    General Forms:
    (add-override-hints form)
    (add-override-hints form :at-end t)
    (add-override-hints form :at-end nil) ; default for :at-end

  where form evaluates to a list of computed hint forms. The effect of
  this event is to extend the current list of [override-hints] by
  appending the result of that evaluation. The default is to append
  the evaluation result to the front of the current list of
  override-hints, but if :at-end t is specified, then the evaluation
  result is appended to the end of the current list.")
 (ADD-OVERRIDE-HINTS!
  (OVERRIDE-HINTS)
  "Add non-[local]ly to the [override-hints]

  Add-override-hints! is the same as [add-override-hints], except that
  the former is not [local] to [books] or [encapsulate] [events] in
  which it occurs. See [add-override-hints]; also see
  [set-override-hints].")
 (ADD-RAW-ARITY
  (SET-RAW-MODE)
  "Add arity information for raw mode

  Technical note: This macro is a no-op, and is not necessary, when
  ACL2 is built with #-acl2-mv-as-values.

  Users of raw mode (see [set-raw-mode]) can use arbitrary raw Lisp
  functions that are not known inside the usual ACL2 loop. In such
  cases, ACL2 may not know how to display a multiple value returned
  by ACL2's [mv] macro. The following example should make this clear.

    ACL2 P>(defun foo (x y) (mv y x))
    FOO
    ACL2 P>(foo 3 4)

    Note: Unable to compute number of values returned by this evaluation
    because function FOO is not known in the ACL2 logical world.  Presumably
    it was defined in raw Lisp or in raw mode.  Returning the first (perhaps
    only) value for calls of FOO.
    4
    ACL2 P>(add-raw-arity foo 2)
     RAW-ARITY-ALIST
    ACL2 P>(foo 3 4)
    (4 3)
    ACL2 P>

  The first argument of add-raw-arity should be a symbol, representing
  the name of a function, macro, or special form, and the second
  argument should either be a non-negative integer (denoting the
  number of values returned by ACL2) or else the symbol :LAST,
  meaning that the number of values returned by the call is the
  number of values returned by the last argument.

  The current arity assignments can be seen by evaluating (@
  raw-arity-alist). See [remove-raw-arity] for how to undo a call of
  add-raw-arity.")
 (ADD-TO-SET
  (LISTS SYMBOLS ACL2-BUILT-INS)
  "Add a symbol to a list

    General Forms:
    (add-to-set x lst)
    (add-to-set x lst :test 'eql)   ; same as above (eql as equality test)
    (add-to-set x lst :test 'eq)    ; same, but eq is equality test
    (add-to-set x lst :test 'equal) ; same, but equal is equality test

  For a symbol x and an object lst, (add-to-set-eq x lst) is the result
  of [cons]ing x on to the front of lst, unless x is already a
  [member] of lst, in which case the result is lst. The optional
  keyword, :TEST, has no effect logically, but provides the test
  (default [eql]) used for comparing x with successive elements of
  lst.

  The [guard] for a call of add-to-set depends on the test. In all
  cases, the second argument must satisfy [true-listp]. If the test
  is [eql], then either the first argument must be suitable for [eql]
  (see [eqlablep]) or the second argument must satisfy
  [eqlable-listp]. If the test is [eq], then either the first
  argument must be a symbol or the second argument must satisfy
  [symbol-listp].

  See [equality-variants] for a discussion of the relation between
  add-to-set and its variants:

      (add-to-set-eq x lst) is equivalent to (add-to-set x lst :test 'eq);

      (add-to-set-equal x lst) is equivalent to (add-to-set x lst :test
      'equal).

  In particular, reasoning about any of these primitives reduces to
  reasoning about the function add-to-set-equal.")
 (ADD-TO-SET-EQ (POINTERS)
                "See [add-to-set].")
 (ADD-TO-SET-EQL (POINTERS)
                 "See [add-to-set].")
 (ADD-TO-SET-EQUAL (POINTERS)
                   "See [add-to-set].")
 (ADVANCED-FEATURES
  (ACL2-TUTORIAL)
  "Some advanced features of ACL2

  Maybe you've been using ACL2 for awhile, and you wonder if there are
  lesser-known features that you might find useful. Then this topic
  is for you. We present below a ``laundry list'' of some such
  features, with brief descriptions and links to [documentation]
  topics.

  Although the list below is long, it is not intended to be complete,
  and indeed some topics have been deliberately excluded. Some have
  fallen out of use, perhaps for good reason, such as [obdd]. Others
  are already likely to be discovered when needed, such as [getenv$]
  and perhaps [double-rewrite]. Some topics are referenced by
  documentation for others in the list, such as [mbt], which is
  referenced by [mbe]. Some utilities such as [pstack] and
  [verbose-pstack] seem too low-level to be worthy of inclusion
  below.

  For an extensive introduction to using the prover, which may include
  some aspects new to you, see [introduction-to-the-theorem-prover].
  A shorter topic contains highlights for efficient prover usage: see
  [tips]. Also see [ACL2-sedan] for an extension of ACL2 (written by
  others), ACL2s, that includes an Eclipse-based interface, more
  powerful and automatic termination reasoning, and other features.

  We now move on to the list.


Top-level commands and utilities:

    * See [a!] and see [p!] to abort or pop.
    * See [ACL2-customization] for initial commands to run at startup.
    * See [keyword-commands] for how keyword commands are processed.
    * See [ld] for many ways to control the top-level loop.
    * See [compilation] for a discussion of set-compiler-enabled and other
      compiler-related utilities.
    * For useful reader macros `#!', `#.', and `#u', see
      [sharp-bang-reader], see [sharp-dot-reader], and see
      [sharp-u-reader].
    * To save and use an ACL2 executable, see [ACL2-as-standalone-program]
      and see [save-exec].
    * For utilities related to timing, see [time$], see
      [with-prover-time-limit], see [with-prover-step-limit], and see
      [set-prover-step-limit].
    * To query and manage the database, see [history] (which discusses many
      useful utilities, such as :[pbt] and :[pl]), and see
      [dead-events].
    * See [add-include-book-dir] for linking keyword for :dir argument of
      [ld] and [include-book].
    * See [rebuild] for a fast way to load a file without waiting for
      proofs.
    * For parallel certification, see [books-certification] for use of the
      -j option of `make'; also see [provisional-certification].


Some relatively less common events

    * See [reset-prehistory] to reset the prehistory.
    * See [assert-event] to assert that a given form returns a non-nil
      value.
    * See [defattach] to execute constrained functions using corresponding
      attached functions.
    * See [defun-sk] to define a function whose body has an outermost
      quantifier.
    * See [defchoose] to define a Skolem (witnessing) function.
    * For efficiency consider using defconst-fast; see [defconst].
    * See [set-verify-guards-eagerness] to specify when [guard]
      verification is tried by default.


Output and its control (see [io] for additional information)

    * See [with-output] to suppress or turn on specified output for an
      event.
    * See [evisc-table] for support for abbreviated output.
    * See [nth-aliases-table] for a table used to associate names for
      [nth]/[update-nth] printing.
    * See [output-to-file] to redirect output to a file.
    * See [print-control] to control ACL2 printing.
    * See [set-evisc-tuple] to control suppression of details when
      printing.
    * See [set-inhibit-output-lst] to control output by type.
    * See [set-iprint] to allow abbreviated output to be read back in.
    * See [set-print-base-radix] (also [set-print-base] and
      [set-print-radix]) to control the radix in which numbers are
      printed.
    * See [set-print-case] to control whether symbols are printed in upper
      case or in lower case.


On proving termination for definitions:

    * See [ordinals] for a discussion of ordinals in ACL2.
    * See [ruler-extenders] for a control on ACL2's termination and
      induction analyses.
    * See [set-well-founded-relation] to set the default well-founded
      relation for termination analysis.
    * See [ACL2-sedan] for a related tool that provides extra automation
      for termination proofs.


Proof debugging and output control:

    * See [accumulated-persistence] to get statistics on which runes are
      being tried.
    * See [add-macro-fn] and see [add-macro-alias] to associate a function
      name with a macro name.
    * See [break-rewrite] for how to monitor rewrite rules.
    * See [dmr] for dynamic monitoring of rewriting and other prover
      activity.
    * See [forward-chaining-reports] to see reports about the forward
      chaining process.
    * See [guard-debug] and [measure-debug] to generate markers to indicate
      sources of [guard] and termination proof obligations.
    * See [proof-checker] for support for low-level interaction.
    * See [redo-flat] for redo on failure of a [progn], [encapsulate], or
      [certify-book].
    * See [set-gag-mode] and see [pso] to abbreviate or restore proof
      output.
    * See [set-inhibit-output-lst], see [set-inhibit-warnings], and see
      [set-inhibited-summary-types] to inhibit various types of
      output.
    * See [set-raw-proof-format] to make proof output display lists of
      [rune]s.
    * See [set-raw-warning-format] to make some warnings display in a
      ``raw'' s-expression format.
    * See [skip-proofs] to skip proofs for a given form.


Program debugging:

    * See [break$] to cause an immediate Lisp break.
    * See [break-on-error] to break when encountering a hard or soft error
      caused by ACL2.
    * See [disassemble$] to disassemble a function.
    * See [print-gv] to print a form whose evaluation caused a guard
      violation.
    * See [profile] to turn on profiling for one function.
    * See [trace$] and see [open-trace-file] to [trace] function
      evaluations, possibly sending trace output to a file.
    * See [wet] to evaluate a form and print a subsequent error trace.


Programming and evaluation idioms, support, utilities

  (also see [programming] for more utilities, e.g., [random$]).

    * See [arrays] and See [defstobj] for introductions to ACL2 arrays and
      single-threaded objects (stobjs), respectively, each of which
      provides efficient destructive operations in an applicative
      setting. Also see [with-local-stobj] for a way to create local
      stobjs.
    * See [assert$] to cause a hard error if the given test is false.
    * See [canonical-pathname] to obtain the true absolute filename, with
      soft links resolved.
    * See [case-match] for a utility providing pattern matching and
      destructuring.
    * See [defpun] to define a tail-recursive function symbol.
    * See [ec-call] to execute a call in the ACL2 logic instead of raw
      Lisp.
    * See [er] to print an error message and ``cause an error''.
    * See [flet] to provide local binding of function symbols.
    * See [gc$] to invoke the garbage collector.
    * See [mbe] to attach code for execution.
    * See [mv-list] to convert a multiple-valued result to a single-valued
      list.
    * See [mv?] to return one or more values.
    * For non-executable code, see [defun-nx] and see [non-exec].
    * See [prog2$] and see [progn$] to execute two or more forms and return
      the value of the last one.
    * See [programming-with-state] for how to program using the von
      Neumannesque ACL2 [state] object.
    * See [top-level] to evaluate a top-level form as a function body.
    * See [with-guard-checking] to suppress or enable guard-checking for a
      form.
    * For ways to fake access to the state see [wormhole], see
      [with-local-state], see [cw], see [cw!], see
      [printing-to-strings], see [observation-cw], and (dangerous!)
      see [with-live-state].


Connecting with the underlying host Lisp, and doing other evil:

    * See [defttag] to introduce a trust tag (ttag).
    * See [defmacro-last] to define a macro that returns its last argument,
      but with side effects.
    * See [progn!] to evaluate forms that are not necessarily [events].
    * See [return-last] to return the last argument, perhaps with side
      effects.
    * See [set-raw-mode] to enter or exit ``raw mode,'' a raw Lisp
      environment.
    * See [sys-call] and [sys-call+] to make a system call to the host
      operating system.


Macros and related utilities:

    * See [defabbrev] for a convenient form of macro definition for simple
      expansions.
    * See [macro-args] for the formals list of a macro definition (see
      [defmacro]).
    * See [make-event] for a sort of extension of [defmacro] that allows
      access to the [state], by evaluating (expanding) a given form
      and then evaluate the result of that expansion.
    * See [trans], see [trans!], and see [trans1] to print the
      macroexpansion of a form.


Additional capabilities:

    * See [hons-and-memoization] for a discussion of the [hons-enabled]
      features providing hash cons, function memoization, and
      applicative hash tables. In particular, see [memoize] for
      efficient function memoization and see [profile] for profiling.
    * See [real] for ACL2(r), which supports the real numbers.
    * See [parallelism] for ACL2(p), which supports parallel evaluation and
      proof.


Database control and query:

    * See [disabledp] to determine whether a given name or rune is
      disabled.
    * For redefinition support see [redef], see [redef!], see [redef+], see
      [redef-], and see [redefined-names].
    * See [table] for user-managed tables.
    * See [verify-guards-formula] to view a guard proof obligation without
      doing the proof.


Prover control

    * For congruence-based reasoning see [defcong], see [congruence], see
      [equivalence], see [defequiv], and see [defrefinement].
    * For meta rules and clause processors see [meta], see [defevaluator],
      see [clause-processor], see [define-trusted-clause-processor]
      (for connecting with external tools, such as SAT solvers), and
      See [extended-metafunctions] (for [state] and context-sensitive
      metafunctions).
    * For theory control, see [theories] for detailed information, but in
      particular see [deftheory], see [theory-functions], see
      [in-arithmetic-theory] (and see [non-linear-arithmetic]), and
      see [theory-invariant].
    * See [hints] for a complete list of prover hints, including some of
      the more obscure ones such as :restrict, :[clause-processor],
      :nonlinearp, :backchain-limit-rw, :reorder, and :backtrack.
      Also see [hints-and-the-waterfall] for an explanation of how
      hints interact with the ACL2 proof process. For other topics
      related to hints, see [override-hints], see
      [add-custom-keyword-hint], see [default-hints], and see
      [computed-hints] and [using-computed-hints].
    * See [bind-free] to bind [free-variables] of a [rewrite] or [linear]
      rule.
    * See [case-split] for a utility like [force] that immediately splits
      the top-level goal on the indicated hypothesis.
    * See [case-split-limitations] for a way to the number of cases
      produced at once
    * See [default-backchain-limit] to specify the backchain limit for a
      rule.
    * See [force] for an identity function used to force a hypothesis.
    * See [otf-flg] for a way to push more than one initial subgoal for
      induction.
    * See [rule-classes] to add various kinds of rules to the database,
      including more unusual sorts such as :[built-in-clause] rules
      and :[induction] rules.
    * See [set-backchain-limit] to set the backchain-limit used by the
      type-set and rewriting mechanisms.
    * See [set-body] to set an alternate definition body for :expand
      [hints].
    * See [set-rewrite-stack-limit] to set the [rewrite] stack depth used
      by the rewriter.
    * See [syntaxp] to attach a heuristic filter on a :[rewrite], :[meta],
      or :[linear] rule.


Subtopics

  [Program-wrapper]
      Avoiding expensive guard checks using [program]-mode functions

  [Set-check-invariant-risk]
      Potential slowdown for [program]-mode updates to [stobj]s or
      [arrays]

  [Set-duplicate-keys-action]
      Control action for macro calls with duplicate keyword arguments")
 (ALISTP
  (ALISTS ACL2-BUILT-INS)
  "Recognizer for association lists

  (alistp x) is true if and only if x is a list of [cons] pairs.

  (alistp x) has a [guard] of t.

  Function: <alistp>

    (defun alistp (l)
           (declare (xargs :guard t))
           (cond ((atom l) (eq l nil))
                 (t (and (consp (car l))
                         (alistp (cdr l))))))")
 (ALISTS
  (PROGRAMMING)
  "Operations on association lists, which bind keys to values.


Subtopics

  [Acons]
      Constructor for association lists

  [Alistp]
      Recognizer for association lists

  [Assoc]
      Look up key in association list

  [Assoc-string-equal]
      Look up key, a string, in association list

  [Character-alistp]
      Recognizer for association lists with characters as keys

  [Delete-assoc]
      Remove the first pair from an association list for a given key

  [Eqlable-alistp]
      Recognizer for a true list of pairs whose [car]s are suitable for
      [eql]

  [Fast-alists]
      Alists with hidden hash tables for faster execution

  [Pairlis]
      See [pairlis$]

  [Pairlis$]
      Zipper together two lists

  [Put-assoc]
      Modify an association list by associating a value with a key

  [R-eqlable-alistp]
      Recognizer for a true list of pairs whose [cdr]s are suitable for
      [eql]

  [R-symbol-alistp]
      Recognizer for association lists with symbols as values

  [Rassoc]
      Look up value in association list

  [Standard-string-alistp]
      Recognizer for association lists with standard strings as keys

  [Strip-cars]
      Collect up all first components of pairs in a list

  [Strip-cdrs]
      Collect up all second components of pairs in a list

  [Sublis]
      Substitute an alist into a tree

  [Symbol-alistp]
      Recognizer for association lists with symbols as keys")
 (ALLOCATE-FIXNUM-RANGE
  (NUMBERS ACL2-BUILT-INS)
  "Set aside fixnums in GCL

  (Allocate-fixnum-range fixnum-lo fixnum-hi) causes Gnu Common Lisp
  (GCL) to create a persistent table for the integers between
  fixnum-lo and fixnum-hi (both bounds inclusive). This table is
  referenced first when any integer is boxed and the existing box in
  the table is used if the integer is in bounds. This can speed up
  GCL considerably by avoiding wasteful fixnum boxing. Here,
  fixnum-lo and fixnum-hi should be fixnums. On 32-bit machines it
  would be good for them to be of type (signed-byte 30), with
  fixnum-lo <= fixnum-hi.

  When this function is executed in a Lisp implementation other than
  GCL, it has no side effect. This function always returns nil.")
 (ALPHA-CHAR-P
  (CHARACTERS ACL2-BUILT-INS)
  "Recognizer for alphabetic characters

  (Alpha-char-p x) is true for a standard character x if and only if x
  is alphabetic, i.e., one of the [characters] #\\a, #\\b, ..., #\\z,
  #\\A, #\\B, ..., #\\Z.

  The [guard] for alpha-char-p requires its argument to be a standard
  character (see [standard-char-p]).

  Alpha-char-p is a Common Lisp function. See any Common Lisp
  documentation for more information.

  Function: <alpha-char-p>

    (defun alpha-char-p (x)
           (declare (xargs :guard (and (characterp x)
                                       (standard-char-p x))))
           (and (member x
                        '(#\\a #\\b #\\c
                              #\\d #\\e #\\f #\\g #\\h #\\i #\\j #\\k #\\l #\\m
                              #\\n #\\o #\\p #\\q #\\r #\\s #\\t #\\u #\\v #\\w
                              #\\x #\\y #\\z #\\A #\\B #\\C #\\D #\\E #\\F #\\G
                              #\\H #\\I #\\J #\\K #\\L #\\M #\\N #\\O #\\P #\\Q
                              #\\R #\\S #\\T #\\U #\\V #\\W #\\X #\\Y #\\Z))
                t))")
 (ALPHORDER
  (<< ACL2-BUILT-INS)
  "Total order on atoms

  Alphorder is a non-strict total order, a ``less than or equal,'' on
  atoms. By ``non-strict total order'' we mean a function that always
  returns t or nil and satisfies the following properties.

    * Antisymmetry: XrY & YrX -> X=Y
    * Transitivity: XrY & YrZ -> XrZ
    * Trichotomy: XrY v YrX

  Also see [lexorder], which extends alphorder to all objects.

  (Alphorder x y) has a guard of (and (atom x) (atom y)).

  Within a single type: rationals are compared arithmetically, complex
  rationals are compared lexicographically, characters are compared
  via their char-codes, and strings and symbols are compared with
  alphabetic ordering. Across types, rationals come before complexes,
  complexes come before characters, characters before strings, and
  strings before symbols. We also allow for ``bad atoms,'' i.e.,
  atoms that are not legal Lisp objects but make sense in the ACL2
  logic; these come at the end, after symbols.

  Function: <alphorder>

    (defun alphorder (x y)
           (declare (xargs :guard (and (atom x) (atom y))))
           (cond ((real/rationalp x)
                  (cond ((real/rationalp y) (<= x y))
                        (t t)))
                 ((real/rationalp y) nil)
                 ((complex/complex-rationalp x)
                  (cond ((complex/complex-rationalp y)
                         (or (< (realpart x) (realpart y))
                             (and (= (realpart x) (realpart y))
                                  (<= (imagpart x) (imagpart y)))))
                        (t t)))
                 ((complex/complex-rationalp y) nil)
                 ((characterp x)
                  (cond ((characterp y)
                         (<= (char-code x) (char-code y)))
                        (t t)))
                 ((characterp y) nil)
                 ((stringp x)
                  (cond ((stringp y) (and (string<= x y) t))
                        (t t)))
                 ((stringp y) nil)
                 (t (cond ((symbolp x)
                           (cond ((symbolp y) (not (symbol-< y x)))
                                 (t t)))
                          ((symbolp y) nil)
                          (t (bad-atom<= x y))))))")
 (ALTERNATIVE-INTRODUCTION
  (ACL2-TUTORIAL)
  "Introduction to ACL2

  This section contains introductory material on ACL2 including what
  ACL2 is, how to get started using the system, how to read the
  output, and other introductory topics. It was written almost
  entirely by Bill Young of Computational Logic, Inc.

  You might also find CLI Technical Report 101 helpful, especially if
  you are familiar with Nqthm. If you would like more familiarity
  with Nqthm, we suggest CLI Technical Report 100.

  OVERVIEW

  ACL2 is an automated reasoning system developed (for the first 9
  years) at Computational Logic, Inc. and (from January, 1997) at the
  University of Texas at Austin. It is the successor to the Nqthm (or
  Boyer-Moore) logic and proof system and its Pc-Nqthm interactive
  enhancement. The acronym ACL2 actually stands for ``A Computational
  Logic for Applicative Common Lisp''. This title suggests several
  distinct but related aspects of ACL2.

  We assume that readers of the ACL2 [documentation] have at least a
  very slight familiarity with some Lisp-like language. We will
  address the issue of prerequisites further, in ``ABOUT THIS
  TUTORIAL'' below.

  As a logic, ACL2 is a formal system with rigorously defined syntax
  and semantics. In mathematical parlance, the ACL2 logic is a
  first-order logic of total recursive functions providing
  mathematical induction on the ordinals up to epsilon-0 and two
  extension principles: one for recursive definition and one for
  constrained introduction of new function symbols, here called
  encapsulation. The syntax of ACL2 is that of Common Lisp; ACL2
  specifications are ``also'' Common Lisp programs in a way that we
  will make clear later. In less formal language, the ACL2 logic is
  an integrated collection of rules for defining (or axiomatizing)
  recursive functions, stating properties of those functions, and
  rigorously establishing those properties. Each of these activities
  is mechanically supported.

  As a specification language, ACL2 supports modeling of systems of
  various kinds. An ACL2 function can equally be used to express
  purely formal relationships among mathematical entities, to
  describe algorithms, or to capture the intended behavior of digital
  systems. For digital systems, an ACL2 specification is a
  mathematical model that is intended to formalize relevant aspects
  of system behavior. Just as physics allows us to model the behavior
  of continuous physical systems, ACL2 allows us to model digital
  systems, including many with physical realizations such as computer
  hardware. As early as the 1930's Church, Kleene, Turing and others
  established that recursive functions provide an expressive
  formalism for modeling digital computation. Digital computation
  should be understood in a broad sense, covering a wide variety of
  activities including almost any systematic or algorithmic activity,
  or activity that can be reasonably approximated in that way. This
  ranges from the behavior of a digital circuit to the behavior of a
  programming language compiler to the behavior of a controller for a
  physical system (as long as the system can be adequately modeled
  discretely). All of these have been modeled using ACL2 or its
  predecessor Nqthm.

  ACL2 is a computational logic in at least three distinct senses.
  First, the theory of recursive functions is often considered the
  mathematics of computation. Church conjectured that any ``effective
  computation'' can be modeled as a recursive function. Thus, ACL2
  provides an expressive language for modeling digital systems.
  Second, many ACL2 specifications are executable. In fact, recursive
  functions written in ACL2 are Common Lisp functions that can be
  submitted to any compliant Common Lisp compiler and executed (in an
  environment where suitable ACL2-specific macros and functions are
  defined). Third, ACL2 is computational in the sense that
  calculation is heavily integrated into the reasoning process. Thus,
  an expression with explicit constant values but no free variables
  can be simplified by calculation rather than by complex logical
  manipulations.

  ACL2 is a powerful, automated theorem prover or proof checker. This
  means that a competent user can utilize the ACL2 system to discover
  proofs of theorems stated in the ACL2 logic or to check previously
  discovered proofs. The basic deductive steps in an ACL2-checked
  proof are often quite large, due to the sophisticated combination
  of decision procedures, conditional rewriting, mathematical and
  structural induction, propositional simplification, and complex
  heuristics to orchestrate the interactions of these capabilities.
  Unlike some automated proof systems, ACL2 does not produce a formal
  proof. However, we believe that if ACL2 certifies the
  ``theoremhood'' of a given conjecture, then such a formal proof
  exists and, therefore, the theorem is valid. The ultimate result of
  an ACL2 proof session is a collection of ``[events],'' possibly
  grouped into ``[books],'' that can be replayed in ACL2. Therefore,
  a proof can be independently validated by any ACL2 user.

  ACL2 may be used in purely automated mode in the shallow sense that
  conjectures are submitted to the prover and the user does not
  interact with the proof attempt (except possibly to stop it) until
  the proof succeeds or fails. However, any non-trivial proof attempt
  is actually interactive, since successful proof ``[events]''
  influence the subsequent behavior of the prover. For example,
  proving a lemma may introduce a rule that subsequently is used
  automatically by the prover. Thus, any realistic proof attempt,
  even in ``automatic'' mode, is really an interactive dialogue with
  the prover to craft a sequence of [events] building an appropriate
  theory and proof rules leading up to the proof of the desired
  result. Also, ACL2 supports annotating a theorem with ``[hints]''
  designed to guide the proof attempt. By supplying appropriate
  [hints], the user can suggest proof strategies that the prover
  would not discover automatically. There is a ``[proof-tree]''
  facility (see [proof-tree]) that allows the user to [monitor] the
  progress and structure of a proof attempt in real-time. Exploring
  failed proof attempts is actually where heavy-duty ACL2 users spend
  most of their time.

  ACL2 can also be used in a more explicitly interactive mode. The
  ``[proof-checker]'' subsystem of ACL2 allows exploration of a proof
  on a fairly low level including expanding calls of selected
  function symbols, invoking specific [rewrite] rules, and
  selectively navigating around the proof. This facility can be used
  to gain sufficient insight into the proof to construct an automatic
  version, or to generate a detailed interactive-style proof that can
  be replayed in batch mode.

  Because ACL2 is all of these things --- computational logic,
  specification language, [programming] system, and theorem prover
  --- it is more than the sum of its parts. The careful integration
  of these diverse aspects has produced a versatile automated
  reasoning system suitable for building highly reliable digital
  systems. In the remainder of this tutorial, we will illustrate some
  simple uses of this automated reasoning system.

  ABOUT THIS TUTORIAL

  ACL2 is a complex system with a vast array of features, bells and
  whistles. However, it is possible to perform productive work with
  the system using only a small portion of the available
  functionality. The goals of this tutorial are to:

      familiarize the new user with the most basic features of and modes of
      interaction with ACL2;

      familiarize her with the form of output of the system; and

      work through a graduated series of examples.

  The more knowledge the user brings to this system, the easier it will
  be to become proficient. On one extreme: the ideal user of ACL2 is
  an expert Common Lisp programmer, has deep understanding of
  automated reasoning, and is intimately familiar with the earlier
  Nqthm system. Such ideal users are unlikely to need this tutorial.
  However, without some background knowledge, the beginning user is
  likely to become extremely confused and frustrated by this system.
  We suggest that a new user of ACL2 should:

      (a) have a little familiarity with Lisp, including basic Lisp
      programming and prefix notation (a Lisp reference manual such
      as Guy Steele's ``Common Lisp: The Language'' is also helpful);

      (b) be convinced of the utility of formal modeling; and

      (c) be willing to gain familiarity with basic automated theorem
      proving topics such as rewriting and algebraic simplification.

  We will not assume any deep familiarity with Nqthm (the so-called
  ``Boyer-Moore Theorem Prover''), though the book ``A Computational
  Logic Handbook'' by Boyer and Moore (Academic Press, 1988) is an
  extremely useful reference for many of the topics required to
  become a competent ACL2 user. We'll refer to it as ACLH below.

  As we said in the introduction, ACL2 has various facets. For example,
  it can be used as a Common Lisp [programming] system to construct
  application programs. In fact, the ACL2 system itself is a large
  Common Lisp program constructed almost entirely within ACL2.
  Another use of ACL2 is as a specification and modeling tool. That
  is the aspect we will concentrate on in the remainder of this
  tutorial.

  GETTING STARTED

  This section is an abridged version of what's available elsewhere;
  feel free to see [startup] for more details.

  How you start ACL2 will be system dependent, but you'll probably type
  something like ``acl2'' at your operating system prompt. Consult
  your system administrator for details.

  When you start up ACL2, you'll probably find yourself inside the ACL2
  [command] loop, as indicated by the following [prompt].

    ACL2 !>

  If not, you should type (LP). See [lp], which has a lot more
  information about the ACL2 [command] loop.

  There are two ``modes'' for using ACL2, :[logic] and :[program]. When
  you begin ACL2, you will ordinarily be in the :[logic] mode. This
  means that any new function defined is not only executable but also
  is axiomatically defined in the ACL2 logic. (See [defun-mode] and
  see [default-defun-mode].) Roughly speaking, :[program] mode is
  available for using ACL2 as a [programming] language without some
  of the logical burdens necessary for formal reasoning. In this
  tutorial we will assume that we always remain in :[logic] mode and
  that our purpose is to write formal models of digital systems and
  to reason about them.

  Now, within the ACL2 [command] loop you can carry out various kinds
  of activities, including the folllowing. (We'll see examples later
  of many of these.)

      define new functions (see [defun]);

      execute functions on concrete data;

      pose and attempt to prove conjectures about previously defined
      functions (see [defthm]);

      query the ACL2 ``[world]'' or database (e.g., see [pe]); and

      numerous other things.

  In addition, there is extensive on-line [documentation], of which
  this tutorial introduction is a part.

  INTERACTING WITH ACL2

  The standard means of interacting with ACL2 is to submit a sequence
  of forms for processing by the ACL2 system. These forms are checked
  for syntactic and semantic acceptability and appropriately
  processed by the system. These forms can be typed directly at the
  ACL2 [prompt]. However, most successful ACL2 users prefer to do
  their work using the Emacs text editor, maintaining an Emacs
  ``working'' buffer in which forms are edited. Those forms are then
  copied to the ACL2 interaction buffer, which is often the \"*shell*\"
  buffer.

  In some cases, processing succeeds and makes some change to the ACL2
  ``logical [world],'' which affects the processing of subsequent
  forms. How can this processing fail? For example, a proposed
  theorem will be rejected unless all function symbols mentioned have
  been previously defined. Also the ability of ACL2 to discover the
  proof of a theorem may depend on the user previously having proved
  other theorems. Thus, the order in which forms are submitted to
  ACL2 is quite important. Maintaining forms in an appropriate order
  in your working buffer will be helpful for re-playing the proof
  later.

  One of the most common [events] in constructing a model is
  introducing new functions. New functions are usually introduced
  using the [defun] form; we'll encounter some exceptions later.
  Proposed function definitions are checked to make sure that they
  are syntactically and semantically acceptable (e.g., that all
  mentioned functions have been previously defined) and, for
  recursive functions, that their recursive calls terminate. A
  recursive function definition is guaranteed to terminate if there
  is some some ``measure'' of the arguments and a ``well-founded''
  ordering such that the arguments to the function get smaller in
  each recursive call. See [well-founded-relation].

  For example, suppose that we need a function that will append two
  lists together. (We already have one in the ACL2 [append] function;
  but suppose perversely that we decide to define our own.) Suppose
  we submit the following definition (you should do so as well and
  study the system output):

    (defun my-app (x y)
      (if (atom x)
          y
        (cons (car x) (my-app x y))))

  The system responds with the following message:

    ACL2 Error in ( DEFUN MY-APP ...):  No :MEASURE was supplied with
    the definition of MY-APP.  Our heuristics for guessing one have not
    made any suggestions.  No argument of the function is tested along
    every branch and occurs as a proper subterm at the same argument
    position in every recursive call.  You must specify a :MEASURE.  See
    :DOC defun.

  This means that the system could not find an expression involving the
  formal parameters x and y that decreases under some well-founded
  order in every recursive call (there is only one such call). It
  should be clear that there is no such measure in this case because
  the only recursive call doesn't change the arguments at all. The
  definition is obviously flawed; if it were accepted and executed it
  would loop forever. Notice that a definition that is rejected is
  not stored in the system database; there is no need to take any
  action to have it ``thrown away.'' Let's try again with the correct
  definition. The interaction now looks like (we're also putting in
  the ACL2 [prompt]; you don't type that):

    ACL2 !>(defun my-app (x y)
             (if (atom x)
                 y
               (cons (car x) (my-app (cdr x) y))))

    The admission of MY-APP is trivial, using the relation O<
    (which is known to be well-founded on the domain recognized by
    O-P) and the measure (ACL2-COUNT X).  We observe that the
    type of MY-APP is described by the theorem
    (OR (CONSP (MY-APP X Y)) (EQUAL (MY-APP X Y) Y)).
    We used primitive type reasoning.

    Summary
    Form:  ( DEFUN MY-APP ...)
    Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))
    Warnings:  None
    Time:  0.07 seconds (prove: 0.00, print: 0.00, other: 0.07)
    MY-APP

  Notice that this time the function definition was accepted. We didn't
  have to supply a measure explicitly; the system inferred one from
  the form of the definition. On complex functions it may be
  necessary to supply a measure explicitly. (See [xargs].)

  The system output provides several pieces of information.

      The revised definition is acceptable. The system realized that there
      is a particular measure (namely, (acl2-count x)) and a
      well-founded relation (o<) under which the arguments of my-app
      get smaller in recursion. Actually, the theorem prover proved
      several theorems to admit my-app. The main one was that when
      (atom x) is false the acl2-count of (cdr x) is less than (in
      the o< sense) the acl2-count of x. [Acl2-count] is the most
      commonly used measure of the ``size`` of an ACL2 object. [o<]
      is the ordering relation on ordinals less than epsilon-0. On
      the natural numbers it is just ordinary ``<''.

      The observation printed about ``the type of MY-APP'' means that calls
      of the function my-app will always return a value that is
      either a [cons] pair or is equal to the second parameter.

      The summary provides information about which previously introduced
      definitions and lemmas were used in this proof, about some
      notable things to watch out for (the Warnings), and about how
      long this event took to process.

  Usually, it's not important to read this information. However, it is
  a good habit to scan it briefly to see if the type information is
  surprising to you or if there are Warnings. We'll see an example of
  them later.

  After a function is accepted, it is stored in the database and
  available for use in other function definitions or lemmas. To see
  the definition of any function use the :[pe] command (see [pe]).
  For example,

    ACL2 !>:pe my-app
     L       73:x(DEFUN MY-APP (X Y)
                        (IF (ATOM X)
                            Y (CONS (CAR X) (MY-APP (CDR X) Y))))

  This displays the definition along with some other relevant
  information. In this case, we know that this definition was
  processed in :[logic] mode (the ``L'') and was the 73rd [command]
  processed in the current session.

  We can also try out our newly defined function on some sample data.
  To do that, just submit a form to be evaluated to ACL2. For
  example,

    ACL2 !>(my-app '(0 1 2) '(3 4 5))
    (0 1 2 3 4 5)
    ACL2 !>(my-app nil nil)
    NIL
    ACL2 !>

  Now suppose we want to prove something about the function just
  introduced. We conjecture, for example, that the length of the
  [append] of two lists is the sum of their lengths. We can formulate
  this conjecture in the form of the following ACL2 [defthm] form.

    (defthm my-app-length
      (equal (len (my-app x y))
             (+ (len x) (len y))))

  First of all, how did we know about the functions len and [+], etc.?
  The answer to that is somewhat unsatisfying --- we know them from
  our past experience in using Common Lisp and ACL2. It's hard to
  know that a function such as len exists without first knowing some
  Common Lisp. If we'd guessed that the appropriate function was
  called [length] (say, from our knowledge of Lisp) and tried :pe
  length, we would have seen that [length] is defined in terms of
  len, and we could have explored from there. Luckily, you can write
  a lot of ACL2 functions without knowing too many of the primitive
  functions.

  Secondly, why don't we need some ``type'' hypotheses? Does it make
  sense to append things that are not lists? Well, yes. ACL2 and Lisp
  are both quite weakly typed. For example, inspection of the
  definition of my-app shows that if x is not a [cons] pair, then
  (my-app x y) always returns y, no matter what y is.

  Thirdly, would it matter if we rewrote the lemma with the equality
  reversed, as follows?

    (defthm my-app-length2
      (equal (+ (len x) (len y))
             (len (my-app x y)))).

  The two are logically equivalent, but...yes, it would make a big
  difference. Recall our remark that a lemma is not only a ``fact''
  to be proved; it also is used by the system to prove other later
  lemmas. The current lemma would be stored as a [rewrite] rule. (See
  [rule-classes].) For a [rewrite] rule, a conclusion of the form
  (EQUAL LHS RHS) means to replace instances of the LHS by the
  appropriate instance of the RHS. Presumably, it's better to
  [rewrite] (len (my-app x y)) to (+ (len x) (len y)) than the other
  way around. The reason is that the system ``knows'' more about [+]
  than it does about the new function symbol my-app.

  So let's see if we can prove this lemma. Submitting our preferred
  [defthm] to ACL2 (do it!), we get the following interaction:

              --------------------------------------------------
    ACL2 !>(defthm my-app-length
      (equal (len (my-app x y))
             (+ (len x) (len y))))

    Name the formula above *1.

    Perhaps we can prove *1 by induction.  Three induction schemes are
    suggested by this conjecture.  These merge into two derived
    induction schemes.  However, one of these is flawed and so we are
    left with one viable candidate.

    We will induct according to a scheme suggested by (LEN X), but
    modified to accommodate (MY-APP X Y).  If we let (:P X Y) denote *1
    above then the induction scheme we'll use is
    (AND (IMPLIES (NOT (CONSP X)) (:P X Y))
         (IMPLIES (AND (CONSP X) (:P (CDR X) Y))
                  (:P X Y))).
    This induction is justified by the same argument used to admit LEN,
    namely, the measure (ACL2-COUNT X) is decreasing according to the
    relation O< (which is known to be well-founded on the domain
    recognized by O-P).  When applied to the goal at hand the
    above induction scheme produces the following two nontautological
    subgoals.

    Subgoal *1/2
    (IMPLIES (NOT (CONSP X))
             (EQUAL (LEN (MY-APP X Y))
                    (+ (LEN X) (LEN Y)))).

    But simplification reduces this to T, using the :definitions of FIX,
    LEN and MY-APP, the :type-prescription rule LEN, the :rewrite rule
    UNICITY-OF-0 and primitive type reasoning.

    Subgoal *1/1
    (IMPLIES (AND (CONSP X)
                  (EQUAL (LEN (MY-APP (CDR X) Y))
                         (+ (LEN (CDR X)) (LEN Y))))
             (EQUAL (LEN (MY-APP X Y))
                    (+ (LEN X) (LEN Y)))).

    This simplifies, using the :definitions of LEN and MY-APP, primitive
    type reasoning and the :rewrite rules COMMUTATIVITY-OF-+ and
    CDR-CONS, to

    Subgoal *1/1'
    (IMPLIES (AND (CONSP X)
                  (EQUAL (LEN (MY-APP (CDR X) Y))
                         (+ (LEN Y) (LEN (CDR X)))))
             (EQUAL (+ 1 (LEN (MY-APP (CDR X) Y)))
                    (+ (LEN Y) 1 (LEN (CDR X))))).

    But simplification reduces this to T, using linear arithmetic,
    primitive type reasoning and the :type-prescription rule LEN.

    That completes the proof of *1.

    Q.E.D.

    Summary
    Form:  ( DEFTHM MY-APP-LENGTH ...)
    Rules: ((:REWRITE UNICITY-OF-0)
            (:DEFINITION FIX)
            (:REWRITE COMMUTATIVITY-OF-+)
            (:DEFINITION LEN)
            (:REWRITE CDR-CONS)
            (:DEFINITION MY-APP)
            (:TYPE-PRESCRIPTION LEN)
            (:FAKE-RUNE-FOR-TYPE-SET NIL)
            (:FAKE-RUNE-FOR-LINEAR NIL))
    Warnings:  None
    Time:  0.30 seconds (prove: 0.13, print: 0.05, other: 0.12)
     MY-APP-LENGTH
              --------------------------------------------------

  Wow, it worked! In brief, the system first tried to [rewrite] and
  simplify as much as possible. Nothing changed; we know that because
  it said ``Name the formula above *1.'' Whenever the system decides
  to name a formula in this way, we know that it has run out of
  techniques to use other than proof by induction.

  The induction performed by ACL2 is structural or ``Noetherian''
  induction. You don't need to know much about that except that it is
  induction based on the structure of some object. The heuristics
  infer the structure of the object from the way the object is
  recursively decomposed by the functions used in the conjecture. The
  heuristics of ACL2 are reasonably good at selecting an induction
  scheme in simple cases. It is possible to override the heuristic
  choice by providing an :induction hint (see [hints]). In the case
  of the theorem above, the system inducts on the structure of x as
  suggested by the decomposition of x in both (my-app x y) and (len
  x). In the base case, we assume that x is not a [consp]. In the
  inductive case, we assume that it is a [consp] and assume that the
  conjecture holds for (cdr x).

  There is a close connection between the analysis that goes on when a
  function like my-app is accepted and when we try to prove something
  inductively about it. That connection is spelled out well in Boyer
  and Moore's book ``A Computational Logic,'' if you'd like to look
  it up. But it's pretty intuitive. We accepted my-app because the
  ``size'' of the first argument x decreases in the recursive call.
  That tells us that when we need to prove something inductively
  about my-app, it's a good idea to try an induction on the size of
  the first argument. Of course, when you have a theorem involving
  several functions, it may be necessary to concoct a more
  complicated [induction] schema, taking several of them into
  account. That's what's meant by ``merging'' the induction schemas.

  The proof involves two cases: the base case, and the inductive case.
  You'll notice that the subgoal numbers go down rather than up, so
  you always know how many subgoals are left to process. The base
  case (Subgoal *1/2) is handled by opening up the function
  definitions, simplifying, doing a little rewriting, and performing
  some reasoning based on the types of the arguments. You'll often
  encounter references to system defined lemmas (like unicity-of-0).
  You can always look at those with :[pe]; but, in general, assume
  that there's a lot of simplification power under the hood that's
  not too important to understand fully.

  The inductive case (Subgoal *1/1) is also dispatched pretty easily.
  Here we assume the conjecture true for the [cdr] of the list and
  try to prove it for the entire list. Notice that the prover does
  some simplification and then prints out an updated version of the
  goal (Subgoal *1/1'). Examining these gives you a pretty good idea
  of what's going on in the proof.

  Sometimes one goal is split into a number of subgoals, as happened
  with the induction above. Sometimes after some initial processing
  the prover decides it needs to prove a subgoal by induction; this
  subgoal is given a name and pushed onto a stack of goals. Some
  steps, like generalization (see ACLH), are not necessarily validity
  preserving; that is, the system may adopt a false subgoal while
  trying to prove a true one. (Note that this is ok in the sense that
  it is not ``unsound.'' The system will fail in its attempt to
  establish the false subgoal and the main proof attempt will fail.)
  As you gain facility with using the prover, you'll get pretty good
  at recognizing what to look for when reading a proof script. The
  prover's [proof-tree] utility helps with monitoring an ongoing
  proof and jumping to designated locations in the proof (see
  [proof-tree]). See [tips] for a number of useful pointers on using
  the theorem prover effectively.

  When the prover has successfully proved all subgoals, the proof is
  finished. As with a [defun], a summary of the proof is printed.
  This was an extremely simple proof, needing no additional guidance.
  More realistic examples typically require the user to look
  carefully at the failed proof log to find ways to influence the
  prover to do better on its next attempt. This means either: proving
  some rules that will then be available to the prover, changing the
  global state in ways that will affect the proof, or providing some
  [hints] locally that will influence the prover's behavior. Proving
  this lemma (my-app-length) is an example of the first. Since this
  is a [rewrite] rule, whenever in a later proof an instance of the
  form (LEN (MY-APP X Y)) is encountered, it will be rewritten to the
  corresponding instance of (+ (LEN X) (LEN Y)). Disabling the rule
  by executing the [command]

    (in-theory (disable my-app-length)),

  is an example of a global change to the behavior of the prover since
  this [rewrite] will not be performed subsequently (unless the rule
  is again [enable]d). Finally, we can add a (local) [disable]
  ``hint'' to a [defthm], meaning to [disable] the lemma only in the
  proof of one or more subgoals. For example:

    (defthm my-app-length-commutativity
      (equal (len (my-app x y))
             (len (my-app y x)))
      :hints ((\"Goal\" :in-theory (disable my-app-length))))

  In this case, the hint supplied is a bad idea since the proof is much
  harder with the hint than without it. Try it both ways.

  By the way, to undo the previous event use :u (see [u]). To undo back
  to some earlier event use :ubt (see [ubt]). To view the current
  event use :pe :here. To list several [events] use :pbt (see [pbt]).

  Notice the form of the hint in the previous example (see [hints]). It
  specifies a goal to which the hint applies. \"Goal\" refers to the
  top-level goal of the theorem. Subgoals are given unique names as
  they are generated. It may be useful to suggest that a function
  symbol be [disable]d only for Subgoal 1.3.9, say, and a different
  function [enable]d only on Subgoal 5.2.8. Overuse of such [hints]
  often suggests a poor global proof strategy.

  We now recommend that you visit [documentation] on additional
  examples. See [annotated-ACL2-scripts].")
 (ANALYZING_COMMON_LISP_MODELS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Analyzing Common Lisp Models

  To analyze a model you must be able to reason about the operations
  and relations involved. Perhaps, for example, some aspect of the
  model depends upon the fact that the concatenation operation is
  associative.

  In any Common Lisp you can confirm that

    (app '(A B) (app '(C D) '(E F)))

  and

    (app (app '(A B) '(C D)) '(E F)))

  both evaluate to the same thing, (A B C D E F).

  But what distinguishes ACL2 (the logic) from applicative Common Lisp
  (the language) is that in ACL2 you can prove that the concatenation
  function app is associative when its arguments are true-lists,
  whereas in Common Lisp all you can do is test that proposition.

  That is, in ACL2 it makes sense to say that the following formula is
  a ``theorem.''

    Theorem Associativity of App
    (implies (and (true-listp a)
                  (true-listp b))
             (equal (app (app a b) c)
                    (app a (app b c))))

  Theorems about the properties of models are proved by symbolically
  manipulating the operations and relations involved. If the
  concatenation of sequences is involved in your model, then you may
  well need the theorem above in order to that your model has some
  particular property.")
 (AND
  (BASICS ACL2-BUILT-INS)
  "Conjunction

  And is the macro for conjunctions. And takes any number of arguments.
  And returns nil if one of the arguments is nil, but otherwise
  returns the last argument. If there are no arguments, and returns
  t.

  And is a Common Lisp macro. See any Common Lisp documentation for
  more information.

  Macro: <and>

    (defmacro and (&rest args)
              (and-macro args))

  Function: <and-macro>

    (defun and-macro (lst)
           (declare (xargs :guard t))
           (if (consp lst)
               (if (consp (cdr lst))
                   (list 'if
                         (car lst)
                         (and-macro (cdr lst))
                         nil)
                   (car lst))
               t))")
 (ANNOTATED-ACL2-SCRIPTS
  (ACL2-TUTORIAL)
  "Examples of ACL2 scripts

  Beginning users may find these annotated scripts useful. We suggest
  that you read these in the following order:

    [Tutorial1-Towers-of-Hanoi]
    [Tutorial2-Eights-Problem]
    [Tutorial3-Phonebook-Example]
    [Tutorial4-Defun-Sk-Example]
    [Tutorial5-Miscellaneous-Examples]

  You can also find useful demos in the [community-books] directory,
  books/demos/, and its subdirectories.

  The web page {Brief ACL2 Tutorial |
  http://www.cs.utexas.edu/users/moore/publications/tutorial/rev3.html}
  contains a script that illustrates how it feels to use The Method
  to prove an unusual list reverse function correct. The screen shots
  of ACL2's proof output are outdated -- in the version shown, ACL2
  does not print Key Checkpoints, but the concept of key checkpoint
  is clear in the discussion and the behavior of the user.

  See {Polishing Proofs Tutorial |
  http://www.cs.utexas.edu/users/moore/acl2/contrib/POLISHING-PROOFS-TUTORIAL.html}
  for a tutorial on becoming successful at approaching a
  formalization and proof problem in ACL2. That tutorial, written by
  Shilpi Goel and Sandip Ray, has two parts: it illustrates how to
  guide the theorem prover to a successful proof, and it shows how to
  clean up the proof in order to facilitate maintenance and extension
  of the resulting book (see [books]).

  The {ACL2 Demo Given at TPHOLs 2008 |
  http://www.cs.utexas.edu/users/moore/publications/tutorial/kaufmann-TPHOLs08/index.html}
  by Matt Kaufmann includes scripts and a gzipped tar file containing
  the entire contents of the demos.

  The {sort equivalence demo |
  http://www.cs.utexas.edu/users/moore/publications/tutorial/sort-equivalence}
  is a collection of scripts illustrating both high-level strategy
  and lower-level tactics dealing with the functional equivalence of
  various list sorting algorithms. Start with the README on that
  directory. There is also a {gzipped tar file |
  http://www.cs.utexas.edu/users/moore/publications/tutorial/sort-equivalence.tgz}
  with all of these scripts.

  When you feel you have read enough examples, you might want to try
  the following very simple example on your own. (See
  [solution-to-simple-example] for a solution, after you work on this
  example.) First define the notion of the ``fringe'' of a tree,
  where we identify trees simply as [cons] structures, with [atom]s
  at the leaves. For example:

    ACL2 !>(fringe '((a . b) c . d))
    (A B C D)

  Next, define the notion of a ``leaf'' of a tree, i.e., a predicate
  leaf-p that is true of an atom if and only if that atom appears at
  the tip of the tree. Define this notion without referencing the
  function fringe. Finally, prove the following theorem, whose proof
  may well be automatic (i.e., not require any lemmas).

    (defthm leaf-p-iff-member-fringe
      (iff (leaf-p atm x)
           (member-equal atm (fringe x))))


Subtopics

  [Solution-to-simple-example]
      Solution to a simple example

  [Tutorial1-towers-of-hanoi]
      The Towers of Hanoi Example

  [Tutorial2-eights-problem]
      The Eights Problem Example

  [Tutorial3-phonebook-example]
      A Phonebook Specification

  [Tutorial4-defun-sk-example]
      Example of quantified notions

  [Tutorial5-miscellaneous-examples]
      Miscellaneous ACL2 examples")
 (AN_EXAMPLE_COMMON_LISP_FUNCTION_DEFINITION
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "An Example Common Lisp Function Definition

  [{IMAGE}]

  Consider the binary trees x and y below.

  {IMAGE}

  In Lisp, x is written as the list '(A B) or, equivalently, as '(A B .
  NIL). Similarly, y may be written '(C D E). Suppose we wish to
  replace the right-most tip of x by the entire tree y. This is
  denoted (app x y), where app stands for ``append''.

  {IMAGE}

  We can define app with:

    (defun app (x y)                           ; Concatenate x and y.
      (declare (type (satisfies true-listp) x)); We expect x to end in NIL.
      (cond ((endp x) y)                       ; If x is empty, return y.
            (t (cons (car x)                   ; Else, copy first node
                     (app (cdr x) y)))))       ;  and recur into next.

  If you defined this function in some Common Lisp, then to run app on
  the x and y above you could then type

    (app '(A B) '(C D E))

  and Common Lisp will print the result (A B C D E).

  [{IMAGE}]")
 (AN_EXAMPLE_OF_ACL2_IN_USE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "An Example of ACL2 in Use

  [{IMAGE}]

  To introduce you to ACL2 we will consider the app function discussed
  in the [Common Lisp] page, except we will omit for the moment the
  declare form, which in ACL2 is called a guard.

  Guards are arbitrary ACL2 terms that express the ``intended domain''
  of functions. In that sense, guards are akin to type signatures.
  However, Common Lisp and ACL2 are untyped programming languages:
  while the language supports several different data types and the
  types of objects can be determined by predicates at runtime, any
  type of object may be passed to any function. Thus, guards are
  ``extra-logical.'' Recognizing both the practical and intellectual
  value of knowing that your functions are applied to the kinds of
  objects you intend, ACL2 imposes guards on Common Lisp and provides
  a means of proving that functions are used as intended. But the
  story is necessarily complicated and we do not recommend it to the
  new user. Get used to the fact that any ACL2 function may be
  applied to any objects and program accordingly. Read about guards
  later.

  Here is the definition again

    (defun app (x y)
      (cond ((endp x) y)
            (t (cons (car x)
                     (app (cdr x) y)))))

  The next few stops along the Walking Tour will show you

     * how to use the ACL2 documentation, * what happens when the above
    definition is submitted to ACL2, * what happens when you evaluate calls of
    app, * what one simple theorem about app looks like, * how ACL2
    proves the theorem, and * how that theorem can be used in another proof.

  Along the way we will talk about the definitional principle, types,
  the ACL2 read-eval-print loop, and how the theorem prover works.

  When we complete this part of the tour we will return briefly to the
  notion of guards and revisit several of the topics above in that
  context.

  [{IMAGE}]")
 (APPEND
  (LISTS ACL2-BUILT-INS)
  "[concatenate] zero or more lists

  Append, which takes zero or more arguments, expects all the arguments
  except perhaps the last to be true (null-terminated) lists. It
  returns the result of concatenating all the elements of all the
  given lists into a single list. Actually, in ACL2 append is a macro
  that expands into calls of the binary function [binary-append] if
  there are at least two arguments; if there is just one argument
  then the expansion is that argument; and finally, (append) expands
  to nil.

  Append is a Common Lisp function. See any Common Lisp documentation
  for more information. See [append-without-guard] for a version of
  append that has a guard of t.

  Macro: <append>

    (defmacro append (&rest rst)
              (cond ((null rst) nil)
                    ((null (cdr rst)) (car rst))
                    (t (xxxjoin 'binary-append rst))))

  Function: <binary-append>

    (defun binary-append (x y)
           (declare (xargs :guard (true-listp x)))
           (cond ((endp x) y)
                 (t (cons (car x)
                          (binary-append (cdr x) y)))))


Subtopics

  [Binary-append]
      [concatenate] two lists")
 (APROPOS (POINTERS)
          "See [finding-documentation].")
 (ARCHITECTURE-OF-THE-PROVER
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "A simple overview of how the prover works

  Six built-in proof techniques are used by ACL2 to decompose the goal
  formula into subgoals.

    * simplification --- decision procedures and rewriting with previously
      proved rules, but actually including a host of other techniques
      under your control. Simplification is the only proof technique
      that can reduce a formula to 0 subgoals (i.e., prove it) rather
      than just transform it to other formulas. The predominant
      activity in most proofs is simplification. There are many ways
      you can affect what the simplifier does to your formulas. Good
      users spend most of their time thinking about how to control
      the simplifier.
    * destructor elimination --- getting rid of ``destructor terms'' like
      (CAR X) and (CDR X) by replacing a variable, e.g., X, by a
      ``constructor'' term, e.g., (CONS A B). But you can tell ACL2
      about new destructor/constructor combinations.
    * fertilization --- using an equivalence hypothesis by substituting one
      side for the other in the goal. When under induction, ACL2 may
      decide to restrict the substitution as follows, using its
      so-called cross-fertilization heuristic: substitute only into
      one side of the conclusion, thus using an inductive hypothesis
      in preparation for possible generalization in advance of
      another induction. Note that cross-fertilization is used only
      when generalization is enabled: with the hint :do-not
      '(generalize), only full fertilization is applied.
    * generalization --- replacing a term by a new variable and restricting
      the new variable to have some of the properties of the term.
      You can control the restrictions imposed on the new variable.
      This is a heuristic that prepares the goal for another
      induction.
    * elimination of irrelevance --- throwing away unnecessary hypotheses.
      This is a heuristic that prepares the goal for another
      induction.
    * induction --- selecting an induction scheme to prove a formula.
      Inductions are ``suggested'' by the recursive functions
      appearing in the formula. But you can control what inductions
      are suggested by terms.

  But you can add additional techniques, called clause processors.

  The various techniques are tried in turn, with simplification first
  and induction last. Each technique reports one of three outcomes:
  it found nothing to change (i.e., the technique doesn't apply to
  that subgoal), it decided to abort the proof attempt (typically
  because there is reason to believe the proof is failing), or it
  decomposed the goal into k subgoals.

  The last outcome has a special case: if k is 0 then the technique
  proved the goal. Whenever k is non-0, the process starts over again
  with simplification on each of the k subgoals. However, it saves up
  all the subgoals for which induction is the only proof technique
  left to try. That way you see how it performs on every base case
  and induction step of one induction before it launches into another
  induction.

  It runs until you or one of the proof techniques aborts the proof
  attempt or until all subgoals have been proved.

  Note that if simplification produces a subgoal, that subgoal is
  re-simplified. This process continues until the subgoal cannot be
  simplified further. Only then is the next proof technique is tried.
  Such suboals are said to be stable under simplification.

  While this is happening, the prover prints an English narrative
  describing the process. Basically, after each goal is printed, the
  system prints an English paragraph that names the next applicable
  proof technique, gives a brief description of what that technique
  does to the subgoal, and says how many new subgoals are produced.
  Then each subgoal is dealt with in turn.

  If the proof is successful, you could read this log as a proof of the
  conjecture. But output from successful proofs is generally never
  read because it is not important to The Method described in
  [introduction-to-the-theorem-prover].

  The output of an unsuccessful proof attempt concludes with some key
  checkpoints which usually bear looking at.

  For more information about how ACL2 orchestrates its proof
  techniques, see [hints-and-the-waterfall].")
 (AREF1
  (ARRAYS ACL2-BUILT-INS)
  "Access the elements of a 1-dimensional array

    Example Form:
    (aref1 'delta1 a (+ i k))

    General Form:
    (aref1 name alist index)

  where name is a symbol, alist is a 1-dimensional array and index is a
  legal index into alist. This function returns the value associated
  with index in alist, or else the default value of the array. See
  [arrays] for details.

  This function executes in virtually constant time if alist is in fact
  the ``semantic value'' associated with name (see [arrays]). When it
  is not, aref1 must do a linear search through alist. In that case
  the correct answer is returned but a slow array comment is printed
  to the comment window. See [slow-array-warning].

  Function: <aref1>

    (defun
         aref1 (name l n)
         (declare (xargs :guard (and (array1p name l)
                                     (integerp n)
                                     (>= n 0)
                                     (< n (car (dimensions name l))))))
         (let ((x (and (not (eq n :header)) (assoc n l))))
              (cond ((null x) (default name l))
                    (t (cdr x)))))")
 (AREF2
  (ARRAYS ACL2-BUILT-INS)
  "Access the elements of a 2-dimensional array

    Example Form:
    (aref2 'delta1 a i j)

    General Form:
    (aref2 name alist i j)

  where name is a symbol, alist is a 2-dimensional array and i and j
  are legal indices into alist. This function returns the value
  associated with (i . j) in alist, or else the default value of the
  array. See [arrays] for details.

  This function executes in virtually constant time if alist is in fact
  the ``semantic value'' associated with name (see [arrays]). When it
  is not, aref2 must do a linear search through alist. In that case
  the correct answer is returned but a slow array comment is printed
  to the comment window. See [slow-array-warning].

  Function: <aref2>

    (defun
         aref2 (name l i j)
         (declare (xargs :guard (and (array2p name l)
                                     (integerp i)
                                     (>= i 0)
                                     (< i (car (dimensions name l)))
                                     (integerp j)
                                     (>= j 0)
                                     (< j (cadr (dimensions name l))))))
         (let ((x (assoc2 i j l)))
              (cond ((null x) (default name l))
                    (t (cdr x)))))")
 (ARGS
  (DOCUMENTATION)
  "args, [guard], type, [constraint], etc., of a function symbol

    Example:
    :args assoc-eq

  Args takes one argument, a symbol which must be the name of a
  function or macro, and prints out the formal parameters, the
  [guard] expression, the output [signature], the deduced type, the
  [constraint] (if any), and whether [documentation] about the symbol
  is available via :[doc].")
 (ARITIES-OKP
  (ACL2-BUILT-INS)
  "check the arities of given function symbols

    Example:
    (arities-ok '((IF . 3) (CAR . 1) (CONS . 2)) (w state))

    General Form:
    (arities-okp alist w)

  where alist is a [symbol-alistp] and w is an ACL2 logical [world].
  The alist is presumed to pair function symbols with arities. The
  result is t or nil according to whether each symbol in the alist
  has the associated arity as its [arity] in w. See
  [well-formedness-guarantee].

  Function: <arities-okp>

    (defun arities-okp (user-table w)
           (declare (xargs :guard (and (symbol-alistp user-table)
                                       (plist-worldp-with-formals w))))
           (cond ((endp user-table) t)
                 (t (and (equal (arity (car (car user-table)) w)
                                (cdr (car user-table)))
                         (arities-okp (cdr user-table) w)))))")
 (ARITY
  (ACL2-BUILT-INS)
  "number of arguments of a function symbol

    Examples:
    (arity 'IF (w state))
    (arity '(LAMBDA (X) (CONS X X)) (w state))

    General Form:
    (arity fn w)

  where fn is a function symbol or a lambda expression and w is an ACL2
  logical [world]. The result is the number of arguments the function
  or lambda expression takes, or nil if the function symbol is not
  defined in w.")
 (ARRAY1P
  (ARRAYS ACL2-BUILT-INS)
  "Recognize a 1-dimensional array

    Example Form:
    (array1p 'delta1 a)

    General Form:
    (array1p name alist)

  where name and alist are arbitrary objects. This function returns t
  if alist is a 1-dimensional ACL2 array. Otherwise it returns nil.
  The function operates in constant time if alist is the semantic
  value of name. See [arrays].

  Function: <array1p>

    (defun
     array1p (name l)
     (declare (xargs :guard t))
     (and
      (symbolp name)
      (alistp l)
      (let
       ((header-keyword-list (cdr (assoc-eq :header l))))
       (and
        (keyword-value-listp header-keyword-list)
        (let
         ((dimensions
               (cadr (assoc-keyword :dimensions header-keyword-list)))
          (maximum-length
            (cadr (assoc-keyword :maximum-length header-keyword-list))))
         (and (true-listp dimensions)
              (equal (length dimensions) 1)
              (integerp (car dimensions))
              (integerp maximum-length)
              (< 0 (car dimensions))
              (< (car dimensions) maximum-length)
              (<= maximum-length
                  *maximum-positive-32-bit-integer*)
              (bounded-integer-alistp l (car dimensions))))))))")
 (ARRAY2P
  (ARRAYS ACL2-BUILT-INS)
  "Recognize a 2-dimensional array

    Example Form:
    (array2p 'delta1 a)

    General Form:
    (array2p name alist)

  where name and alist are arbitrary objects. This function returns t
  if alist is a 2-dimensional ACL2 array. Otherwise it returns nil.
  The function operates in constant time if alist is the semantic
  value of name. See [arrays].

  Function: <array2p>

    (defun
     array2p (name l)
     (declare (xargs :guard t))
     (and
      (symbolp name)
      (alistp l)
      (let
       ((header-keyword-list (cdr (assoc-eq :header l))))
       (and
        (keyword-value-listp header-keyword-list)
        (let
         ((dimensions
               (cadr (assoc-keyword :dimensions header-keyword-list)))
          (maximum-length
            (cadr (assoc-keyword :maximum-length header-keyword-list))))
         (and (true-listp dimensions)
              (equal (length dimensions) 2)
              (let ((d1 (car dimensions))
                    (d2 (cadr dimensions)))
                   (and (integerp d1)
                        (integerp d2)
                        (integerp maximum-length)
                        (< 0 d1)
                        (< 0 d2)
                        (< (* d1 d2) maximum-length)
                        (<= maximum-length
                            *maximum-positive-32-bit-integer*)
                        (bounded-integer-alistp2 l d1 d2)))))))))")
 (ARRAYS
  (PROGRAMMING)
  "ACL2 arrays and operations on them

  Below we begin a detailed presentation of ACL2 arrays. ACL2's
  single-threaded objects (see [stobj]) provide a similar
  functionality that is generally more efficient when there are
  updates (writes), but is also more restrictive.

  See [arrays-example] for a brief introduction illustrating the use of
  ACL2 arrays.

  ACL2 provides relatively efficient 1- and 2-dimensional arrays.
  Arrays are awkward to provide efficiently in an applicative
  language because the programmer rightly expects to be able to
  ``modify'' an array object with the effect of changing the behavior
  of the element accessing function on that object. This, of course,
  does not make any sense in an applicative setting. The element
  accessing function is, after all, a function, and its behavior on a
  given object is immutable. To ``modify'' an array object in an
  applicative setting we must actually produce a new array object.
  Arranging for this to be done efficiently is a challenge to the
  implementors of the language. In addition, the programmer
  accustomed to the von Neumann view of arrays must learn how to use
  immutable applicative arrays efficiently.

  In this note we explain 1-dimensional arrays. In particular, we
  explain briefly how to create, access, and ``modify'' them, how
  they are implemented, and how to program with them. 2-dimensional
  arrays are dealt with by analogy.

  The Logical Description of ACL2 Arrays

  An ACL2 1-dimensional array is an object that associates arbitrary
  objects with certain integers, called ``indices.'' Every array has
  a dimension, dim, which is a positive integer. The indices of an
  array are the consecutive integers from 0 through dim-1. To obtain
  the object associated with the index i in an array a, one uses
  (aref1 name a i). Name is a symbol that is irrelevant to the
  semantics of [aref1] but affects the speed with which it computes.
  We will talk more about array ``names'' later. To produce a new
  array object that is like a but which associates val with index i,
  one uses (aset1 name a i val).

  An ACL2 1-dimensional array is actually an alist. There is no special
  ACL2 function for creating arrays; they are generally built with
  the standard list processing functions [list] and [cons]. However,
  there is a special ACL2 function, called [compress1], for speeding
  up access to the elements of such an alist. We discuss [compress1]
  later.

  One element of the alist must be the ``header'' of the array. The
  [header] of a 1-dimensional array with dimension dim is of the
  form:

    (:HEADER :DIMENSIONS (dim)
             :MAXIMUM-LENGTH max
             :DEFAULT obj ; optional
             :NAME name   ; optional
             :ORDER order ; optional values are < (the default), >, or :none/nil
             ).

  Obj may be any object and is called the ``default value'' of the
  array. [Max] must be an integer greater than dim. Name must be a
  symbol. The :[default] and :name entries are optional; if
  :[default] is omitted, the default value is nil. The function
  [header], when given a name and a 1- or 2-dimensional array,
  returns the [header] of the array. The functions [dimensions],
  [maximum-length], and [default] are similar and return the
  corresponding fields of the [header] of the array. The role of the
  :[dimensions] field is obvious: it specifies the legal indices into
  the array. The roles played by the :[maximum-length] and :[default]
  fields are described below.

  Aside from the [header], the other elements of the alist must each be
  of the form (i . val), where i is an integer and 0 <= i < dim, and
  val is an arbitrary object.

  The :order field of the header is ignored for 2-dimensional arrays.
  For 1-dimensional arrays, it specifies the order of keys (i, above)
  when the array is compressed as with [compress1], as described
  below. An :order of :none or nil specifies no reordering of the
  alist by [compress1], and an order of > specifies reordering by
  [compress1] so that keys are in descending order. Otherwise, the
  alist is reordered by [compress1] so that keys are in ascending
  order.

  (Aref1 name a i) is [guard]ed so that name must be a symbol, a must
  be an array and i must be an index into a. The value of (aref1 name
  a i) is either (cdr (assoc i a)) or else is the default value of a,
  depending on whether there is a pair in a whose [car] is i. Note
  that name is irrelevant to the value of an [aref1] expression. You
  might :pe aref1 to see how simple the definition is.

  (Aset1 name a i val) is [guard]ed analogously to the [aref1]
  expression. The value of the [aset1] expression is essentially
  (cons (cons i val) a). Again, name is irrelevant. Note (aset1 name
  a i val) is an array, a', with the property that (aref1 name a' i)
  is val and, except for index i, all other indices into a' produce
  the same value as in a. Note also that if a is viewed as an alist
  (which it is) the pair ``binding'' i to its old value is in a' but
  ``covered up'' by the new pair. Thus, the length of an array grows
  by one when [aset1] is done.

  Because [aset1] covers old values with new ones, an array produced by
  a sequence of [aset1] calls may have many irrelevant pairs in it.
  The function [compress1] can remove these irrelevant pairs. Thus,
  (compress1 name a) returns an array that is equivalent (vis-a-vis
  [aref1]) to a but which may be shorter. For technical reasons, the
  alist returned by [compress1] may also list the pairs in a
  different order than listed in a.

  To prevent arrays from growing excessively long due to repeated
  [aset1] operations, [aset1] actually calls [compress1] on the new
  alist whenever the length of the new alist exceeds the
  :[maximum-length] entry, [max], in the [header] of the array. See
  the definition of [aset1] (for example by using :[pe]). This is
  primarily just a mechanism for freeing up [cons] space consumed
  while doing [aset1] operations. Note however that this [compress1]
  call is replaced by a hard error if the header specifies an :order
  of :none or nil.

  This completes the logical description of 1-dimensional arrays.
  2-dimensional arrays are analogous. The :[dimensions] entry of the
  [header] of a 2-dimensional array should be (dim1 dim2). A pair of
  indices, i and j, is legal iff 0 <= i < dim1 and 0 <= j < dim2. The
  :[maximum-length] must be greater than dim1*dim2. [Aref2], [aset2],
  and [compress2] are like their counterparts but take an additional
  index argument. Finally, the pairs in a 2-dimensional array are of
  the form ((i . j) . val).

  The Implementation of ACL2 Arrays

  Very informally speaking, the function [compress1] ``creates'' an
  ACL2 array that provides fast access, while the function [aref1]
  ``maintains'' fast access. We now describe this informal idea more
  carefully.

  [Aref1] is essentially [assoc]. If [aref1] were implemented naively
  the time taken to access an array element would be linear in the
  dimension of the array and the number of ``assignments'' to it (the
  number of [aset1] calls done to create the array from the initial
  alist). This is intolerable; arrays are ``supposed'' to provide
  constant-time access and change.

  The apparently irrelevant names associated with ACL2 arrays allow us
  to provide constant-time access and change when arrays are used in
  ``conventional'' ways. The implementation of arrays makes it clear
  what we mean by ``conventional.''

  Recall that array names are symbols. Behind the scenes, ACL2
  associates two objects with each ACL2 array name. The first object
  is called the ``semantic value'' of the name and is an alist. The
  second object is called the ``raw lisp array'' and is a Common Lisp
  array.

  When (compress1 name alist) builds a new alist, a', it sets the
  semantic value of name to that new alist. Furthermore, it creates a
  Common Lisp array and writes into it all of the index/value pairs
  of a', initializing unassigned indices with the default value. This
  array becomes the raw lisp array of name. [Compress1] then returns
  a', the semantic value, as its result, as required by the
  definition of [compress1].

  When (aref1 name a i) is invoked, [aref1] first determines whether
  the semantic value of name is a (i.e., is [eq] to the alist a). If
  so, [aref1] can determine the ith element of a by invoking Common
  Lisp's aref function on the raw lisp array associated with name.
  Note that no linear search of the alist a is required; the
  operation is done in constant time and involves retrieval of two
  global variables, an [eq] test and jump, and a raw lisp array
  access. In fact, an ACL2 array access of this sort is about 5 times
  slower than a C array access. On the other hand, if name has no
  semantic value or if it is different from a, then [aref1]
  determines the answer by linear search of a as suggested by the
  assoc-like definition of [aref1]. Thus, [aref1] always returns the
  axiomatically specified result. It returns in constant time if the
  array being accessed is the current semantic value of the name
  used. The ramifications of this are discussed after we deal with
  [aset1].

  When (aset1 name a i val) is invoked, [aset1] does two [cons]es to
  create the new array. Call that array a'. It will be returned as
  the answer. (In this discussion we ignore the case in which [aset1]
  does a [compress1].) However, before returning, [aset1] determines
  if name's semantic value is a. If so, it makes the new semantic
  value of name be a' and it smashes the raw lisp array of name with
  val at index i, before returning a' as the result. Thus, after
  doing an [aset1] and obtaining a new semantic value a', all
  [aref1]s on that new array will be fast. Any [aref1]s on the old
  semantic value, a, will be slow.

  To understand the performance implications of this design, consider
  the chronological sequence in which ACL2 (Common Lisp) evaluates
  expressions: basically inner-most first, left-to-right,
  call-by-value. An array use, such as (aref1 name a i), is ``fast''
  (constant-time) if the alist supplied, a, is the value returned by
  the most recently executed [compress1] or [aset1] on the name
  supplied. In the functional expression of ``conventional'' array
  processing, all uses of an array are fast.

  The :name field of the [header] of an array is completely irrelevant.
  Our convention is to store in that field the symbol we mean to use
  as the name of the raw lisp array. But no ACL2 function inspects
  :name and its primary value is that it allows the user, by
  inspecting the semantic value of the array --- the alist --- to
  recall the name of the raw array that probably holds that value. We
  say ``probably'' since there is no enforcement that the alist was
  compressed under the name in the [header] or that all asets used
  that name. Such enforcement would be inefficient.

  Some Programming Examples

  In the following examples we will use ACL2 ``global variables'' to
  hold several arrays. See [@], and see [assign].

  Let the [state] global variable a be the 1-dimensional compressed
  array of dimension 5 constructed below.

    ACL2 !>(assign a (compress1 'demo
                                '((:header :dimensions (5)
                                           :maximum-length 15
                                           :default uninitialized
                                           :name demo)
                                  (0 . zero))))

  Then (aref1 'demo (@ a) 0) is zero and (aref1 'demo (@ a) 1) is
  uninitialized.

  Now execute

    ACL2 !>(assign b (aset1 'demo (@ a) 1 'one))

  Then (aref1 'demo (@ b) 0) is zero and (aref1 'demo (@ b) 1) is one.

  All of the [aref1]s done so far have been ``fast.''

  Note that we now have two array objects, one in the global variable a
  and one in the global variable b. B was obtained by assigning to a.
  That assignment does not affect the alist a because this is an
  applicative language. Thus, (aref1 'demo (@ a) 1) must still be
  uninitialized. And if you execute that expression in ACL2 you will
  see that indeed it is. However, a rather ugly comment is printed,
  namely that this array access is ``slow.'' The reason it is slow is
  that the raw lisp array associated with the name demo is the array
  we are calling b. To access the elements of a, [aref1] must now do
  a linear search. Any reference to a as an array is now
  ``unconventional;'' in a conventional language like Ada or Common
  Lisp it would simply be impossible to refer to the value of the
  array before the assignment that produced our b.

  Now let us define a function that counts how many times a given
  object, x, occurs in an array. For simplicity, we will pass in the
  name and highest index of the array:

    ACL2 !>(defun cnt (name a i x)
             (declare (xargs :guard
                             (and (array1p name a)
                                  (integerp i)
                                  (>= i -1)
                                  (< i (car (dimensions name a))))
                             :mode :logic
                             :measure (nfix (+ 1 i))))
             (cond ((zp (1+ i)) 0) ; return 0 if i is at most -1
                   ((equal x (aref1 name a i))
                    (1+ (cnt name a (1- i) x)))
                   (t (cnt name a (1- i) x))))

  To determine how many times zero appears in (@ b) we can execute:

    ACL2 !>(cnt 'demo (@ b) 4 'zero)

  The answer is 1. How many times does uninitialized appear in (@ b)?

    ACL2 !>(cnt 'demo (@ b) 4 'uninitialized)

  The answer is 3, because positions 2, 3 and 4 of the array contain
  that default value.

  Now imagine that we want to assign 'two to index 2 and then count how
  many times the 2nd element of the array occurs in the array. This
  specification is actually ambiguous. In assigning to b we produce a
  new array, which we might call c. Do we mean to count the
  occurrences in c of the 2nd element of b or the 2nd element of c?
  That is, do we count the occurrences of uninitialized or the
  occurrences of two? If we mean the former the correct answer is 2
  (positions 3 and 4 are uninitialized in c); if we mean the latter,
  the correct answer is 1 (there is only one occurrence of two in c).

  Below are ACL2 renderings of the two meanings, which we call [former]
  and [latter]. (Warning: Our description of these examples, and of
  an example [fast former] that follows, assumes that only one of
  these three examples is actually executed; for example, they are
  not executed in sequence. See ``A Word of Warning'' below for more
  about this issue.)

    (cnt 'demo (aset1 'demo (@ b) 2 'two) 4 (aref1 'demo (@ b) 2))  ; [former]

    (let ((c (aset1 'demo (@ b) 2 'two)))                           ; [latter]
      (cnt 'demo c 4 (aref1 'demo c 2)))

  Note that in [former] we create c in the second argument of the call
  to cnt (although we do not give it a name) and then refer to b in
  the fourth argument. This is unconventional because the second
  reference to b in [former] is no longer the semantic value of demo.
  While ACL2 computes the correct answer, namely 2, the execution of
  the [aref1] expression in [former] is done slowly.

  A conventional rendering with the same meaning is

    (let ((x (aref1 'demo (@ b) 2)))                           ; [fast former]
      (cnt 'demo (aset1 'demo (@ b) 2 'two) 4 x))

  which fetches the 2nd element of b before creating c by assignment.
  It is important to understand that [former] and [fast former] mean
  exactly the same thing: both count the number of occurrences of
  uninitialized in c. Both are legal ACL2 and both compute the same
  answer, 2. Indeed, we can symbolically transform [fast former] into
  [former] merely by substituting the binding of x for x in the body
  of the [let]. But [fast former] can be evaluated faster than
  [former] because all of the references to demo use the then-current
  semantic value of demo, which is b in the first line and c
  throughout the execution of the cnt in the second line. [Fast
  former] is the preferred form, both because of its execution speed
  and its clarity. If you were writing in a conventional language you
  would have to write something like [fast former] because there is
  no way to refer to the 2nd element of the old value of b after
  smashing b unless it had been saved first.

  We turn now to [latter]. It is both clear and efficient. It creates c
  by assignment to b and then it fetches the 2nd element of c, two,
  and proceeds to count the number of occurrences in c. The answer is
  1. [Latter] is a good example of typical ACL2 array manipulation:
  after the assignment to b that creates c, c is used throughout.

  It takes a while to get used to this because most of us have grown
  accustomed to the peculiar semantics of arrays in conventional
  languages. For example, in raw lisp we might have written something
  like the following, treating b as a ``global variable'':

    (cnt 'demo (aset 'demo b 2 'two) 4 (aref 'demo b 2))

  which sort of resembles [former] but actually has the semantics of
  [latter] because the b from which aref fetches the 2nd element is
  not the same b used in the aset! The array b is destroyed by the
  aset and b henceforth refers to the array produced by the aset, as
  written more clearly in [latter].

  A Word of Warning: Users must exercise care when experimenting with
  [former], [latter] and [fast former]. Suppose you have just created
  b with the assignment shown above,

    ACL2 !>(assign b (aset1 'demo (@ a) 1 'one))

  If you then evaluate [former] in ACL2 it will complain that the
  [aref1] is slow and compute the answer, as discussed. Then suppose
  you evaluate [latter] in ACL2. From our discussion you might expect
  it to execute fast --- i.e., issue no complaint. But in fact you
  will find that it complains repeatedly. The problem is that the
  evaluation of [former] changed the semantic value of demo so that
  it is no longer b. To try the experiment correctly you must make b
  be the semantic value of demo again before the next example is
  evaluated. One way to do that is to execute

    ACL2 !>(assign b (compress1 'demo (@ b)))

  before each expression. Because of issues like this it is often hard
  to experiment with ACL2 arrays at the top-level. We find it easier
  to write functions that use arrays correctly and efficiently than
  to so use them interactively.

  This last assignment also illustrates a very common use of
  [compress1]. While it was introduced as a means of removing
  irrelevant pairs from an array built up by repeated assignments, it
  is actually most useful as a way of insuring fast access to the
  elements of an array.

  Many array processing tasks can be divided into two parts. During the
  first part the array is built. During the second part the array is
  used extensively but not modified. If your [programming] task can
  be so divided, it might be appropriate to construct the array
  entirely with list processing, thereby saving the cost of
  maintaining the semantic value of the name while few references are
  being made. Once the alist has stabilized, it might be worthwhile
  to treat it as an array by calling [compress1], thereby gaining
  constant time access to it.

  ACL2's theorem prover uses this technique in connection with its
  implementation of the notion of whether a [rune] is [disable]d or
  not. Associated with every [rune] is a unique integer index, called
  its ``nume.'' When each rule is stored, the corresponding nume is
  stored as a component of the rule. [Theories] are lists of [rune]s
  and membership in the ``current theory'' indicates that the
  corresponding rule is [enable]d. But these lists are very long and
  membership is a linear-time operation. So just before a proof
  begins we map the list of [rune]s in the current theory into an
  alist that pairs the corresponding numes with t. Then we compress
  this alist into an array. Thus, given a rule we can obtain its nume
  (because it is a component) and then determine in constant time
  whether it is [enable]d. The array is never modified during the
  proof, i.e., [aset1] is never used in this example. From the
  logical perspective this code looks quite odd: we have replaced a
  linear-time membership test with an apparently linear-time [assoc]
  after going to the trouble of mapping from a list of [rune]s to an
  alist of numes. But because the alist of numes is an array, the
  ``apparently linear-time [assoc]'' is more apparent than real; the
  operation is constant-time.


Subtopics

  [Aref1]
      Access the elements of a 1-dimensional array

  [Aref2]
      Access the elements of a 2-dimensional array

  [Array1p]
      Recognize a 1-dimensional array

  [Array2p]
      Recognize a 2-dimensional array

  [Arrays-example]
      An example illustrating ACL2 arrays

  [Aset1]
      Set the elements of a 1-dimensional array

  [Aset2]
      Set the elements of a 2-dimensional array

  [Compress1]
      Remove irrelevant pairs from a 1-dimensional array

  [Compress2]
      Remove irrelevant pairs from a 2-dimensional array

  [Default]
      Return the :default from the [header] of a 1- or 2-dimensional array

  [Dimensions]
      Return the :dimensions from the [header] of a 1- or 2-dimensional
      array

  [Flush-compress]
      Flush the under-the-hood array for the given name

  [Header]
      Return the header of a 1- or 2-dimensional array

  [Maximum-length]
      Return the :maximum-length from the [header] of an array

  [Slow-array-warning]
      A warning or error issued when [arrays] are used inefficiently")
 (ARRAYS-EXAMPLE
  (ARRAYS)
  "An example illustrating ACL2 arrays

  The example below illustrates the use of ACL2 arrays. It is not, of
  course, a substitute for the detailed explanations provided
  elsewhere (see [arrays], including subtopics).

    ACL2 !>(defun defarray (name size initial-element)
             (compress1 name
                        (cons (list :HEADER
                                    :DIMENSIONS (list size)
                                    :MAXIMUM-LENGTH (1+ size)
                                    :DEFAULT initial-element
                                    :NAME name)
                              nil)))

    Since DEFARRAY is non-recursive, its admission is trivial.  We observe
    that the type of DEFARRAY is described by the theorem
    (AND (CONSP (DEFARRAY NAME SIZE INITIAL-ELEMENT))
         (TRUE-LISTP (DEFARRAY NAME SIZE INITIAL-ELEMENT))).
    We used the :type-prescription rule COMPRESS1.

    Summary
    Form:  ( DEFUN DEFARRAY ...)
    Rules: ((:TYPE-PRESCRIPTION COMPRESS1))
    Warnings:  None
    Time:  0.02 seconds (prove: 0.00, print: 0.02, other: 0.00)
     DEFARRAY
    ACL2 !>(assign my-ar (defarray 'a1 5 17))
     ((:HEADER :DIMENSIONS (5)
               :MAXIMUM-LENGTH 6 :DEFAULT 17 :NAME A1))
    ACL2 !>(aref1 'a1 (@ my-ar) 3)
    17
    ACL2 !>(aref1 'a1 (@ my-ar) 8)

    ACL2 Error in TOP-LEVEL:  The guard for the function symbol AREF1,
    which is
    (AND (ARRAY1P NAME L) (INTEGERP N) (>= N 0) (< N (CAR (DIMENSIONS NAME L)))),
    is violated by the arguments in the call (AREF1 'A1 '(#) 8).

    ACL2 !>(assign my-ar (aset1 'a1 (@ my-ar) 3 'xxx))
     ((3 . XXX)
      (:HEADER :DIMENSIONS (5)
               :MAXIMUM-LENGTH 6 :DEFAULT 17 :NAME A1))
    ACL2 !>(aref1 'a1 (@ my-ar) 3)
    XXX
    ACL2 !>(aset1 'a1 (@ my-ar) 3 'yyy) ; BAD: (@ my-ar) now points to
                                        ;      an old copy of the array!
    ((3 . YYY)
     (3 . XXX)
     (:HEADER :DIMENSIONS (5)
              :MAXIMUM-LENGTH 6 :DEFAULT 17 :NAME A1))
    ACL2 !>(aref1 'a1 (@ my-ar) 3) ; Because of \"BAD\" above, the array
                                   ; access is done using assoc rather
                                   ; than Lisp aref, hence is slower;
                                   ; but the answer is still correct,
                                   ; reflecting the value in (@ my-ar),
                                   ; which was not changed above.

    **********************************************************
    Slow Array Access!  A call of AREF1 on an array named
    A1 is being executed slowly.  See :DOC slow-array-warning
    **********************************************************

    XXX
    ACL2 !>")
 (ASET1
  (ARRAYS ACL2-BUILT-INS)
  "Set the elements of a 1-dimensional array

    Example Form:
    (aset1 'delta1 a (+ i k) 27)

    General Form:
    (aset1 name alist index val)

  where name is a symbol, alist is a 1-dimensional array named name,
  index is a legal index into alist, and val is an arbitrary object.
  See [arrays] for details. Roughly speaking this function
  ``modifies'' alist so that the value associated with index is val.
  More precisely, it returns a new array, alist', of the same name
  and dimension as alist that, under [aref1], is everywhere equal to
  alist except at index where the result is val. That is, (aref1 name
  alist' i) is (aref1 name alist i) for all legal indices i except
  index, where (aref1 name alist' i) is val.

  In order to ``modify'' alist, aset1 [cons]es a new pair onto the
  front. If the length of the resulting alist exceeds the
  :[maximum-length] entry in the array [header], aset1 compresses the
  array as with [compress1].

  It is generally expected that the ``semantic value'' of name will be
  alist (see [arrays]). This function operates in virtually constant
  time whether this condition is true or not (unless the [compress1]
  operation is required). But the value returned by this function
  cannot be used efficiently by subsequent aset1 operations unless
  alist is the semantic value of name when aset1 is executed. Thus,
  if the condition is not true, aset1 prints a slow array warning to
  the comment window. See [slow-array-warning].

  Function: <aset1>

    (defun
         aset1 (name l n val)
         (declare (xargs :guard (and (array1p name l)
                                     (integerp n)
                                     (>= n 0)
                                     (< n (car (dimensions name l))))))
         (let ((l (cons (cons n val) l)))
              (cond ((> (length l) (maximum-length name l))
                     (compress1 name l))
                    (t l))))")
 (ASET2
  (ARRAYS ACL2-BUILT-INS)
  "Set the elements of a 2-dimensional array

    Example Form:
    (aset2 'delta1 a i j 27)

    General Form:
    (aset2 name alist i j val)

  where name is a symbol, alist is a 2-dimensional array named name, i
  and j are legal indices into alist, and val is an arbitrary object.
  See [arrays] for details. Roughly speaking this function
  ``modifies'' alist so that the value associated with (i . j) is
  val. More precisely, it returns a new array, alist', of the same
  name and dimension as alist that, under [aref2], is everywhere
  equal to alist except at (i . j) where the result is val. That is,
  (aref2 name alist' x y) is (aref2 name alist x y) for all legal
  indices x y except i and j where (aref2 name alist' i j) is val.

  In order to ``modify'' alist, aset2 [cons]es a new pair onto the
  front. If the length of the resulting alist exceeds the
  :[maximum-length] entry in the array [header], aset2 compresses the
  array as with [compress2].

  It is generally expected that the ``semantic value'' of name will be
  alist (see [arrays]). This function operates in virtually constant
  time whether this condition is true or not (unless the [compress2]
  operation is required). But the value returned by this function
  cannot be used efficiently by subsequent aset2 operations unless
  alist is the semantic value of name when aset2 is executed. Thus,
  if the condition is not true, aset2 prints a slow array warning to
  the comment window. See [slow-array-warning].

  Function: <aset2>

    (defun
         aset2 (name l i j val)
         (declare (xargs :guard (and (array2p name l)
                                     (integerp i)
                                     (>= i 0)
                                     (< i (car (dimensions name l)))
                                     (integerp j)
                                     (>= j 0)
                                     (< j (cadr (dimensions name l))))))
         (let ((l (cons (cons (cons i j) val) l)))
              (cond ((> (length l) (maximum-length name l))
                     (compress2 name l))
                    (t l))))")
 (ASH
  (NUMBERS ACL2-BUILT-INS)
  "Arithmetic shift operation

  (ash i c) is the result of taking the two's complement representation
  of the integer i and shifting it by c bits: shifting left and
  padding with c 0 bits if c is positive, shifting right and dropping
  (abs c) bits if c is negative, and simply returning i if c is 0.

  The [guard] for ash requires that its arguments are integers.

  Ash is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Function: <ash>

    (defun ash (i c)
           (declare (xargs :guard (and (integerp i) (integerp c))))
           (floor (* (ifix i) (expt 2 c)) 1))")
 (ASSERT$
  (ERRORS ACL2-BUILT-INS)
  "Cause a hard error if the given test is false

    General Form:
    (assert$ test form)

  where test returns a single value and form is arbitrary.
  Semantically, this call of assert$ is equivalent to form. However,
  it causes a hard error if the value of test is nil. That hard error
  invokes the function [illegal], which has a [guard] that is equal
  to nil; so if you use assert$ in code for which you verify guards,
  then a proof obligation will be that the occurrence of test is
  never nil.

  For a related utility, see [assert*]. Both assert$ and assert* create
  a [guard] proof obligation (when used in a definition made in
  [logic]-mode). However, assert$ checks the assertion at runtime,
  while assert* does not.")
 (ASSERT*
  (ERRORS ACL2-BUILT-INS)
  "Create a [guard] proof obligation that given test holds

    General Form:
    (assert* test form)

  where test returns a single value and form is arbitrary.
  Semantically, this call of assert* is equivalent to form. However,
  a [guard] proof obligation is created that test holds, when used in
  a definition made in [logic]-mode).

  For a related utility, see [assert$]. Both assert$ and assert* create
  a [guard] proof obligation (when used in a definition made in
  [logic]-mode). However, assert$ checks the assertion at runtime,
  while assert* does not.

  Macro: <assert*>

    (defmacro assert* (test form)
              (cons 'and
                    (cons (cons 'mbt* (cons test 'nil))
                          (cons form 'nil))))")
 (ASSERT-EVENT
  (EVENTS)
  "Assert that a given form returns a non-nil value

    Examples:
    (assert-event (equal (+ 3 4) 7))
    (assert-event (equal (+ 3 4) 7) :msg (msg \"Error: ~x0\" 'equal-check))
    (assert-event (equal (+ 3 4) 7) :on-skip-proofs t)

    General Forms:
    (assert-event form)
    (assert-event form :on-skip-proofs t)

  Assert-event takes a ground form, i.e., one with no free variables;
  [stobj]s are allowed but only a single non-[stobj] value can be
  returned. The form is then evaluated and if the result is nil, then
  a so-called hard error (see [er]) results. This evaluation is
  however not done if proofs are being skipped, as during
  [include-book] (also see [skip-proofs] and see [ld-skip-proofsp]),
  unless :on-skip-proofs t is supplied.

  Normally, if an assert-event call fails then a generic failure
  message is printed, showing the offending form. However, if keyword
  argument :msg is supplied, then the failure message is printed as
  with [fmt] argument ~@0; see [fmt]. In particular, :msg is
  typically a string or a call (msg str arg-0 arg-1 ... arg-k), where
  str is a string and each arg-i is the value to be associated with
  #\\i upon formatted printing (as with [fmt]) of the string str.

  This form may be put into a book to be certified (see [books]),
  because assert-event is a macro whose calls expand to calls of
  value-triple (see [embedded-event-form]). When certifying a book,
  guard-checking is off, as though (set-guard-checking nil) has been
  evaluated; see [set-guard-checking]. That, together with a ``safe
  mode,'' guarantees that assert-event forms are evaluated in the
  logic without guard violations while certifying a book.")
 (ASSIGN
  (PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "Assign to a global variable in [state]

    Examples:
    (assign x (expt 2 10))
    (assign a (aset1 'ascii-map-array (@ a) 66 'Upper-case-B))

    General Form:
    (assign symbol term)

  where symbol is any symbol (with certain enforced exclusions to avoid
  overwriting ACL2 system ``globals'') and term is any ACL2 term that
  could be evaluated at the top-level. Assign evaluates the term,
  stores the result as the value of the given symbol in the
  global-table of [state], and returns the result. (Note: the actual
  implementation of the storage of this value is much more efficient
  than this discussion of the logic might suggest.) Assign is a macro
  that effectively expands to the more complicated but
  understandable:

    (pprogn (f-put-global 'symbol term state)
            (mv nil (f-get-global 'symbol state) state)).

  The macro f-put-global is closely related to [assign]: (assign var
  val) macroexpands to (f-put-global 'var val state).

  The macro [@] gives convenient access to the value of such globals.
  The :[ubt] operation has no effect on the global-table of [state].
  Thus, you may use these globals to hang onto useful data structures
  even though you may undo back past where you computed and saved
  them.")
 (ASSOC
  (ALISTS ACL2-BUILT-INS)
  "Look up key in association list

    General Forms:
    (assoc x alist)
    (assoc x alist :test 'eql)   ; same as above (eql as equality test)
    (assoc x alist :test 'eq)    ; same, but eq is equality test
    (assoc x alist :test 'equal) ; same, but equal is equality test

  (Assoc x alist) is the first member of alist whose [car] is x, or nil
  if no such member exists. The optional keyword, :TEST, has no
  effect logically, but provides the test (default [eql]) used for
  comparing x with the [car]s of successive elements of alist.

  The [guard] for a call of assoc depends on the test. In all cases,
  the second argument must satisfy [alistp]. If the test is [eql],
  then either the first argument must be suitable for [eql] (see
  [eqlablep]) or the second argument must satisfy [eqlable-alistp].
  If the test is [eq], then either the first argument must be a
  symbol or the second argument must satisfy [symbol-alistp].

  See [equality-variants] for a discussion of the relation between
  assoc and its variants:

      (assoc-eq x alist) is equivalent to (assoc x alist :test 'eq);

      (assoc-equal x alist) is equivalent to (assoc x alist :test 'equal).

  In particular, reasoning about any of these primitives reduces to
  reasoning about the function assoc-equal.

  Assoc is defined by Common Lisp. See any Common Lisp documentation
  for more information.

  Function: <assoc-equal>

    (defun assoc-equal (x alist)
           (declare (xargs :guard (alistp alist)))
           (cond ((endp alist) nil)
                 ((equal x (car (car alist)))
                  (car alist))
                 (t (assoc-equal x (cdr alist)))))")
 (ASSOC-EQ (POINTERS) "See [assoc].")
 (ASSOC-EQUAL (POINTERS) "See [assoc].")
 (ASSOC-KEYWORD
  (KEYWORD-VALUE-LISTP ACL2-BUILT-INS)
  "Look up key in a [keyword-value-listp]

  If l is a list of even length of the form (k1 a1 k2 a2 ... kn an),
  where each ki is a keyword, then (assoc-keyword key l) is the first
  tail of l starting with key if key is some ki, and is nil
  otherwise.

  The [guard] for (assoc-keyword key l) is (keyword-value-listp l).

  Function: <assoc-keyword>

    (defun assoc-keyword (key l)
           (declare (xargs :guard (keyword-value-listp l)))
           (cond ((endp l) nil)
                 ((eq key (car l)) l)
                 (t (assoc-keyword key (cddr l)))))")
 (ASSOC-STRING-EQUAL
  (ALISTS ACL2-BUILT-INS)
  "Look up key, a string, in association list

  (Assoc-string-equal x alist) is similar to [assoc-equal]. However,
  for string x and alist alist, the comparison of x with successive
  keys in alist is done using [string-equal] rather than [equal].

  The [guard] for assoc-string-equal requires that x is a string and
  alist is an alist.

  Function: <assoc-string-equal>

    (defun
        assoc-string-equal (str alist)
        (declare
             (xargs :guard (and (stringp str)
                                (standard-char-listp (coerce str 'list))
                                (standard-string-alistp alist))))
        (cond ((endp alist) nil)
              ((string-equal str (car (car alist)))
               (car alist))
              (t (assoc-string-equal str (cdr alist)))))")
 (ATOM
  (CONSES ACL2-BUILT-INS)
  "Recognizer for atoms

  (atom x) is true if and only if x is an atom, i.e., not a [cons]
  pair.

  Atom has a [guard] of t, and is a Common Lisp function. See any
  Common Lisp documentation for more information.

  Function: <atom>

    (defun atom (x)
           (declare (xargs :guard t))
           (not (consp x)))


Subtopics

  [Atom-listp]
      Recognizer for a true list of [atom]s

  [Good-atom-listp]
      Recognizer for a true list of ``good'' [atom]s")
 (ATOM-LISTP
  (ATOM LISTS ACL2-BUILT-INS)
  "Recognizer for a true list of [atom]s

  The predicate atom-listp tests whether its argument is a [true-listp]
  of [atom]s, i.e., of non-conses.

  Also see [good-atom-listp].

  Function: <atom-listp>

    (defun atom-listp (lst)
           (declare (xargs :guard t))
           (cond ((atom lst) (eq lst nil))
                 (t (and (atom (car lst))
                         (atom-listp (cdr lst))))))")
 (A_FLYING_TOUR_OF_ACL2
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "A Flying Tour of ACL2

  [{IMAGE}]

  On this tour you will learn a little about what ACL2 is for rather
  than how ACL2 works. At the top and bottom bottom of the ``page''
  there are ``flying tour'' icons. Click on either icon to go to the
  next page of the tour.

  The tour visits the following topics sequentially. But on your first
  reading, don't navigate through the tour by clicking on these
  links; they are shown as live links only so that later you can
  determine what you've visited. Instead, just use the flying tour
  icons.

    The Flight Plan
    * [This Documentation]
    * [What is ACL2?]
    * [Mathematical Logic]
    * [Mechanical Theorem Proving]
    * [Mathematical Models in General]
    * [Mathematical Models of Computing Machines]
         [Formalizing Models]
         [Running Models]
         [Symbolic Execution of Models]
         [Proving Theorems about Models]
    * Requirements of ACL2
         [The User's Skills]
         [Training]
         [Host System]

  On your first reading, don't explore other links you see in the tour.
  Some of them lead to the Walking Tour, which you can take
  coherently when you finish this tour. Others lead into the
  extensive hyptertext documentation and you are liable to get lost
  there unless you're trying to answer a specific question. We intend
  the tour to take about 10 minutes of your time.

  [{IMAGE}]")
 (A_SKETCH_OF_HOW_THE_REWRITER_WORKS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "A Sketch of How the Rewriter Works

  Below we show the first target term, extracted from the current
  conjecture. Below it we show the associativity rule.

  {IMAGE}

  The variables of the rewrite rule are instantiated so that the
  left-hand side of the rule matches the target:

    variable          term from target
      a                     x1
      b                     x2
      c                     (app x3 x4)

  Then the target is replaced by the instantiated right-hand side of
  the rule.

  Sometimes rules have hypotheses. To make a long story short, if the
  rule has hypotheses, then after matching the left-hand side, the
  rewriter instantiates the hypotheses and rewrites them recursively.
  This is called backchaining. If they all rewrite to true, then the
  target is replaced as above.

  We discuss the rewriter in more detail in the extended introduction
  to how to use the theorem prover, see
  [introduction-to-the-theorem-prover], which we will recommend you
  work through after you have finished the two tours.")
 (A_TINY_WARNING_SIGN
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "A Tiny Warning Sign

  {IMAGE}

  This warning sign, which usually appears as ``{ICON}'', indicates
  that the link it marks takes you into ACL2's online documentation.

  The documentation is a vast graph of documented topics intended to
  help the user of ACL2 rather than the potential user. If you are
  exploring ACL2's home page to learn about the system, perhaps you
  should go back rather than follow the link marked with this sign.
  But you are welcome to explore the online documentation as well.
  Good luck.")
 (A_TRIVIAL_PROOF (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
                  "A Trivial Proof

  {IMAGE}")
 (A_TYPICAL_STATE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "A Typical State

  [{IMAGE}]

  {IMAGE}

  Observe that the states in typical models talk about

    booleans    integers   vectors     records   caches
    bits        symbols    arrays      stacks    files
    characters  strings    sequences   tables    directories

  These objects are discrete rather than continuous; furthermore they
  are built incrementally or inductively by repeatedly using
  primitive operations to put together smaller pieces.

  The functions we need to manipulate these objects do things like
  concatenate, reverse, sort, search, count, etc.

  [{IMAGE}]")
 (A_WALKING_TOUR_OF_ACL2
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "A Walking Tour of ACL2

  [{IMAGE}]

  On this tour you will learn a little more about the ACL2 logic, the
  theorem prover, and the user interface.

  This time we will stick with really simple things, such as the
  associativity of list concatenation.

  We assume you have taken the Flying Tour but that you did not
  necessarily follow all the ``off-tour'' links because we encouraged
  you not to. With the Walking Tour we encourage you to visit
  off-tour links --- provided they are not marked with the tiny
  warning sign ([{ICON}]). But they are ``branches'' in the tour that
  lead to ``dead ends.'' When you reach a dead end, remember to use
  your browser's Back Button to return to the Walking Tour to
  continue.

  When you get to the end of the tour we'll give you a chance to repeat
  quickly both the Flying and the Walking Tours to visit any off-tour
  links still of interest.

  [{IMAGE}]")
 (BACKCHAIN-LIMIT
  (REWRITE META LINEAR TYPE-PRESCRIPTION)
  "Limiting the effort expended on relieving hypotheses

  Before ACL2 can apply a rule with hypotheses, it must establish that
  the hypotheses are true. (We ignore the relaxing of this
  requirement afforded by [case-split]s and [force]d hypotheses.)
  ACL2 typically establishes each hypothesis by backchaining ---
  instantiating the hypothesis and then rewriting it recursively.
  Here we describe how ACL2 allows the user to limit backchaining. At
  the end, below, we describe the function [backchain-limit].

  Each hypothesis of a [rewrite], [meta], [linear], or
  [type-prescription] rule is assigned a backchain-limit when the
  rule is stored. By default, this limit is nil, denoting infinity
  (no limit). However, the value used for the default may be set to a
  non-negative integer (or to nil) by the user; see
  [set-default-backchain-limit]. The default is overridden when a
  :backchain-limit-lst is supplied explicitly with the rule; see
  [rule-classes]. The number of recursive applications of
  backchaining starting with the hypothesis of a rule is limited to
  the backchain-limit associated with that hypothesis.

  Moreover, the user may set global backchain-limits that limit the
  total backchaining depth. See [set-backchain-limit]. One limit is
  for the use of [rewrite], [meta], and [linear] rules, while the
  other limit is for so-called ``[type-set] reasoning'', which uses
  rules of class [type-prescription] rules. The two limits operate
  independently. Below, we discuss the first kind of backchain
  limits, i.e., for other than [type-prescription] rules, except as
  otherwise indicated; but the mechanism for those rules is similar.

  Below we lay out the precise sense in which a global backchain-limit
  interacts with the backchain-limits of individual rules in order to
  limit backchaining. But first we note that when further
  backchaining is disallowed, ACL2 can still prove a hypothesis in a
  given context by using that contextual information. In fact,
  [type-set] reasoning may be used (except that a weaker version of
  it is used in the second case above, i.e., where we are already
  doing type-set reasoning). Thus, the relieving of hypotheses may be
  limited to the use of contextual information (without backchaining,
  i.e., without recursively rewriting hypotheses) by executing
  :set-backchain-limit 0.

  Recall that there are two sorts of backchain limits: those applied to
  hypotheses of individual rules, as assigned by their
  :[rule-classes] or else taken from the default (see
  [set-default-backchain-limit]); and the global limit, initially nil
  (no limit) but settable with :[set-backchain-limit]. Here is how
  these two types of limits interact to limit backchaining, i.e.,
  recursive rewriting of hypotheses. ACL2 maintains a current
  backchain limit, which is the limit on the depth of recursive calls
  to the rewriter, as well as a current backchain depth, which is
  initially 0 and is incremented each time ACL2 backchains (and is
  decremented when a backchain completes). When ACL2 begins to
  rewrite a literal (crudely, one of the ``top-level'' terms of the
  goal currently being worked on), it sets the current
  backchain-limit to the global value, which is initially nil but can
  be set using :[set-backchain-limit]. When ACL2 is preparing to
  relieve a hypothesis by backchaining (hence, after it has already
  tried type-set reasoning), it first makes sure that the current
  backchain limit is greater than the current backchain depth. If
  not, then it refuses to relieve that hypothesis. Otherwise, it
  increments the current backchain depth and calculates a new current
  backchain-limit by taking the minimum of two values: the existing
  current backchain-limit, and the sum of the current backchain depth
  and the backchain-limit associated with the hypothesis. Thus, ACL2
  only modifies the current backchain-limit if it is necessary to
  decrease that limit in order to respect the backchain limit
  associated with the hypothesis.

  We illustrate with the following examples.

    ; We stub out some functions so that we can reason about them.

    (defstub p0 (x) t)
    (defstub p1 (x) t)
    (defstub p2 (x) t)
    (defstub p3 (x) t)

    ; Initially, the default-backchain-limit is nil, or infinite.

    (defaxiom p2-implies-p1-limitless
      (implies (p2 x)
               (p1 x)))

    ; The following rule will have a backchain-limit of 0.

    (defaxiom p1-implies-p0-limit-0
      (implies (p1 x)
               (p0 x))
      :rule-classes ((:rewrite :backchain-limit-lst 0)))

    ; We have (p2 x) ==> (p1 x) ==> (p0 x).  We wish to establish that
    ; (p2 x) ==> (p0 x).  Normally, this would be no problem, but here
    ; we fail because ACL2 cannot establish (p0 x) by type-set reasoning
    ; alone.

    (thm
      (implies (p2 x)
               (p0 x)))

    ; We set the default-backchain-limit (for rewriting) to 1.

    :set-default-backchain-limit 1

    ; The following is more powerful than p1-implies-p0-limit-0
    ; because it can use rewrite rules to establish (p1 x).

    (defaxiom p1-implies-p0-limit-1
      (implies (p1 x)
               (p0 x)))

    ; This theorem will succeed:

    (thm
      (implies (p2 x)
               (p0 x)))

    ; We return the default-backchain-limit to its initial value.

    :set-default-backchain-limit nil

    ; Here is our last axiom.

    (defaxiom p3-implies-p2-limitless
      (implies (p3 x)
               (p2 x)))

    ; We now have (p3 x) ==> (p2 x) ==> (p1 x) ==> (p0 x).  However the
    ; rule p1-implies-p0-limit-1 has a backchain-limit of 1; hence we
    ; are not allowed to backchain far enough back to use
    ; p3-implies-p2-limitless.  We therefore lose.

    (defthm will-fail
      (implies (p3 x)
               (p0 x)))

  Finally, we remark that to see the current global backchain-limits,
  issue the following commands.

    (backchain-limit wrld :ts) ; backchain limit for type-set reasoning
    (backchain-limit wrld :rewrite) ; backchain limit for rewriting


Subtopics

  [Set-backchain-limit]
      Sets the backchain-limit used by the type-set and rewriting
      mechanisms

  [Set-default-backchain-limit]
      Sets the default backchain-limit used when admitting a rule")
 (BACKCHAIN-LIMIT-RW (POINTERS)
                     "See [hints] for keyword :backchain-limit-rw.")
 (BACKCHAINING
  (RULE-CLASSES)
  "Attempting to relieve the hypotheses of a rule

  When the theorem prover attempts to apply a rule (e.g., a [rewrite]
  rule), it must relieve (prove) the hypotheses of that rule. In the
  ACL2 community, this process of relieving hypotheses is called
  backchaining.

  There is no such thing as a backchaining or backward-chaining rule
  class (see [rule-classes]) in ACL2.")
 (BACKTRACK (POINTERS)
            "See [hints] for keyword :backtrack.")
 (BASICS
  (PROGRAMMING)
  "Basic control structures for [programming] like [if] and [cond],
  binding operators like [let] and [flet], multiple-value constructs
  like [mv], and so forth.


Subtopics

  [ACL2-count]
      A commonly used measure for justifying recursion

  [And]
      Conjunction

  [Booleanp]
      Recognizer for booleans

  [Case]
      Conditional based on if-then-else using [eql]

  [Case-match]
      Pattern matching or destructuring

  [Cond]
      Conditional based on if-then-else

  [Equal]
      True equality

  [Flet]
      Local binding of function symbols

  [Good-bye]
      Quit entirely out of Lisp

  [Identity]
      The identity function

  [If]
      If-then-else function

  [Iff]
      Logical ``if and only if''

  [Implies]
      Logical implication

  [Let]
      Binding of lexically scoped (local) variables

  [Let*]
      Binding of lexically scoped (local) variables

  [Mv]
      Returning a multiple value

  [Not]
      Logical negation

  [Null]
      Recognizer for the empty list

  [Or]
      Disjunction

  [Progn$]
      Execute a sequence of forms and return the value of the last one

  [Quote]
      Create a constant

  [Return-last]
      Return the last argument, perhaps with side effects

  [Xor]
      Logical ``exclusive or''")
 (BDD
  (ACL2)
  "Ordered binary decision diagrams with rewriting

  Ordered binary decision diagrams (OBDDs, often simply called BDDs)
  are a technique, originally published by Randy Bryant, for the
  efficient simplification of Boolean expressions. In ACL2 we combine
  this technique with rewriting to handle arbitrary ACL2 terms that
  can represent not only Boolean values, but non-Boolean values as
  well. In particular, we provide a setting for deciding equality of
  bit vectors (lists of Boolean values).

  An introduction to BDDs for the automated reasoning community may be
  found in ``Introduction to the OBDD Algorithm for the ATP
  Community'' by J Moore, Journal of Automated Reasoning (1994), pp.
  33-45. (This paper also appears as Technical Report #84 from
  Computational Logic, Inc.)

  Further information about BDDs in ACL2 can be found in the subtopics
  of this [documentation] section. In particular, see
  [bdd-introduction] for a good starting place that provides a number
  of examples.

  See [hints] for a description of :bdd hints. For quick reference,
  here is an example; but only the :vars part of the hint is
  required, as explained in the documentation for [hints]. The values
  shown are the defaults.

    (:vars nil :bdd-constructors (cons) :prove t :literal :all)

  We suggest that you next visit the documentation topic
  [bdd-introduction].


Subtopics

  [Bdd-algorithm]
      Summary of the BDD algorithm in ACL2

  [Bdd-introduction]
      Examples illustrating the use of BDDs in ACL2

  [If*]
      For conditional rewriting with BDDs

  [Obdd]
      Ordered binary decision diagrams with rewriting

  [Show-bdd]
      Inspect failed BDD proof attempts")
 (BDD-ALGORITHM
  (BDD)
  "Summary of the BDD algorithm in ACL2

  The BDD algorithm in ACL2 uses a combination of manipulation of IF
  terms and unconditional rewriting. In this discussion we begin with
  some relevant mathematical theory. This is followed by a
  description of how ACL2 does BDDs, including concluding discussions
  of soundness, completeness, and efficiency.

  We recommend that you read the other documentation about BDDs in ACL2
  before reading the rather technical material that follows. See
  [bdd].

  Here is an outline of our presentation. Readers who want a user
  perspective, without undue mathematical theory, may wish to skip to
  Part (B), referring to Part (A) only on occasion if necessary.

  (A) Mathematical Considerations

      (A1) BDD term order

      (A2) BDD-constructors and BDD terms, and their connection with
      aborting the BDD algorithm

      (A3) Canonical BDD terms

      (A4) A theorem stating the equivalence of provable and syntactic
      equality for canonical BDD terms

  (B) Algorithmic Considerations

      (B1) BDD rules (rules used by the rewriting portion of the ACL2 BDD
      algorithm)

      (B2) Terms ``known to be Boolean''

      (B3) An ``IF-lifting'' operation used by the algorithm, as well as an
      iterative version of that operation

      (B4) The ACL2 BDD algorithm

      (B5) Soundness and Completeness of the ACL2 BDD algorithm

      (B6) Efficiency considerations

  (A) Mathematical Considerations

  (A1) BDD term order

  Our BDD algorithm creates a total ``BDD term order'' on ACL2 terms,
  on the fly. We use this order in our discussions below of
  IF-lifting and of canonical BDD terms, and in the algorithm's use
  of commutativity. The particular order is unimportant, except that
  we guarantee (for purposes of commutative functions) that constants
  are smaller in this order than non-constants.

  (A2) BDD-constructors (assumed to be '(cons)) and BDD terms

  We take as given a list of function symbols that we call the
  ``BDD-constructors.'' By default, the only BDD-constructor is
  [cons], although it is legal to specify any list of function
  symbols as the BDD-constructors, either by using the
  [ACL2-defaults-table] (see [ACL2-defaults-table]) or by supplying a
  :BDD-CONSTRUCTORS hint (see [hints]). Warning: this capability is
  largely untested and may produce undesirable results. Henceforth,
  except when explicitly stated to the contrary, we assume that
  BDD-constructors is '(cons).

  Roughly speaking, a [bdd] term is the sort of [term] produced by our
  BDD algorithm, namely a tree with all [cons] nodes lying above all
  non-CONS nodes. More formally, a [term] is said to be a [bdd] term
  if it contains no subterm of either of the following forms, where f
  is not CONS.

    (f ... (CONS ...) ...)

    (f ... 'x ...)  ; where (consp x) = t

  We will see that whenever the BDD algorithm attempts to create a
  [term] that is not a [bdd] term, it aborts instead. Thus, whenever
  the algorithm completes without aborting, it creates a [bdd] term.

  (A3) Canonical BDD terms

  We can strengthen the notion of ``BDD term'' to a notion of
  ``canonical BDD term'' by imposing the following additional
  requirements, for every subterm of the form (IF x y z):

      (a) x is a variable, and it precedes (in the BDD term order) every
      variable occurring in y or z;

      (b) y and z are syntactically distinct; and,

      (c) it is not the case that y is t and z is nil.

  We claim that it follows easily from our description of the BDD
  algorithm that every term it creates is a canonical BDD term,
  assuming that the variables occurring in all such terms are treated
  by the algorithm as being Boolean (see (B2) below) and that the
  terms contain no function symbols other than IF and CONS. Thus,
  under those assumptions the following theorem shows that the BDD
  algorithm never creates distinct terms that are provably equal, a
  property that is useful for completeness and efficiency (as we
  explain in (B5) and (B6) below).

  (A4) Provably equal canonical BDD terms are identical

  We believe that the following theorem and proof are routine
  extensions of a standard result and proof to terms that allow calls
  of CONS.

  Theorem. Suppose that t1 and t2 are canonical BDD terms that contain
  no function symbols other than IF and CONS. Also suppose that
  (EQUAL t1 t2) is a theorem. Then t1 and t2 are syntactically
  identical.

  Proof of theorem: By induction on the total number of symbols
  occurring in these two terms. First suppose that at least one term
  is a variable; without loss of generality let it be t1. We must
  prove that t2 is syntactically the same as t1. Now it is clearly
  consistent that (EQUAL t1 t2) is false if t2 is a call of CONS (to
  see this, simply let t1 be an value that is not a CONSP).
  Similarly, t2 cannot be a constant or a variable other than t1. The
  remaining possibility to rule out is that t2 is of the form (IF t3
  t4 t5), since by assumption its function symbol must be IF or CONS
  and we have already handled the latter case. Since t2 is canonical,
  we know that t3 is a variable. Since (EQUAL t1 t2) is provable,
  i.e.,

    (EQUAL t1 (if t3 t4 t5))

  is provable, it follows that we may substitute either t or nil for t3
  into this equality to obtain two new provable equalities. First,
  suppose that t1 and t3 are distinct variables. Then these
  substitutions show that t1 is provably equal to both t4 and t5
  (since t3 does not occur in t4 or t5 by property (a) above, as t2
  is canonical), and hence t4 and t5 are provably equal to each
  other, which implies by the inductive hypothesis that they are the
  same term --- and this contradicts the assumption that t2 is
  canonical (property (b)). Therefore t1 and t3 are the same
  variable, i.e., the equality displayed above is actually (EQUAL t1
  (if t1 t4 t5)). Substituting t and then nil for t1 into this
  provable equality lets us prove (EQUAL t t4) and (EQUAL nil t5),
  which by the inductive hypothesis implies that t4 is
  (syntactically) the term t and t5 is nil. That is, t2 is (IF t1 t
  nil), which contradicts the assumption that t2 is canonical
  (property (c)).

  Next, suppose that at least one term is a call of IF. Our first
  observation is that the other term is also a call of IF. For if the
  other is a call of CONS, then they cannot be provably equal,
  because the former has no function symbols other than IF and hence
  is Boolean when all its variables are assigned Boolean values.
  Also, if the other is a constant, then both branches of the IF term
  are provably equal to that constant and hence these branches are
  syntactically identical by the inductive hypothesis, contradicting
  property (b). Hence, we may assume for this case that both terms
  are calls of IF; let us write them as follows.

    t0:  (IF t1 t2 t3)
    u0:  (IF u1 u2 u3)

  Note that t1 and u1 are variables, by property (a) of canonical BDD
  terms. First we claim that t1 does not strictly precede u1 in the
  BDD term order. For suppose t1 does strictly precede u1. Then
  property (a) of canonical BDD terms guarantees that t1 does not
  occur in u0. Hence, an argument much like one used above shows that
  u0 is provably equal to both t2 (substituting t for t1) and t3
  (substituting nil for t1), and hence t2 and t3 are provably equal.
  That implies that they are identical terms, by the inductive
  hypothesis, which then contradicts property (b) for t0. Similarly,
  u1 does not strictly precede t1 in the BDD term order. Therefore,
  t1 and u1 are the same variable. By substituting t for this
  variable we see that t2 and u2 are provably equal, and hence they
  are equal by the inductive hypothesis. Similarly, by substituting
  nil for t1 (and u1) we see that t3 and u3 are provably, hence
  syntactically, equal.

  We have covered all cases in which at least one term is a variable or
  at least one term is a call of IF. If both terms are constants,
  then provable and syntactic equality are clearly equivalent.
  Finally, then, we may assume that one term is a call of CONS and
  the other is a constant or a call of CONS. The constant case is
  similar to the CONS case if the constant is a CONSP, so we omit it;
  while if the constant is not a CONSP then it is not provably equal
  to a call of CONS; in fact it is provably not equal!

  So, we are left with a final case, in which canonical BDD terms (CONS
  t1 t2) and (CONS u1 u2) are provably equal, and we want to show
  that t1 and u1 are syntactically equal as are t2 and u2. These
  conclusions are easy consequences of the inductive hypothesis,
  since the ACL2 axiom CONS-EQUAL (which you can inspect using :[pe])
  shows that equality of the given terms is equivalent to the
  conjunction of (EQUAL t1 t2) and (EQUAL u1 u2). Q.E.D.

  (B) Algorithmic Considerations

  (B1) BDD rules

  A rule of class :[rewrite] (see [rule-classes]) is said to be a
  ``[bdd] rewrite rule'' if and only if it satisfies the following
  criteria. (1) The rule is [enable]d. (2) Its [equivalence] relation
  is [equal]. (3) It has no hypotheses. (4) Its :[loop-stopper] field
  is nil, i.e., it is not a permutative rule. (5) All variables
  occurring in the rule occur in its left-hand side (i.e., there are
  no ``free variables''; see [rewrite]). A rule of class
  :[definition] (see [rule-classes]) is said to be a ``[bdd]
  definition rule'' if it satisfies all the criteria above (except
  (4), which does not apply), and moreover the top function symbol of
  the left-hand side was not recursively (or mutually recursively)
  defined. Technical point: Note that this additional criterion is
  independent of whether or not the indicated function symbol
  actually occurs in the right-hand side of the rule.

  Both BDD rewrite rules and BDD definition rules are said to be ``BDD
  rules.''

  (B2) Terms ''known to be Boolean''

  We apply the BDD algorithm in the context of a top-level goal to
  prove, namely, the goal at which the :BDD hint is attached. As we
  run the BDD algorithm, we allow ourselves to say that a set of
  [term]s is ``known to be Boolean'' if we can verify that the goal
  is provable from the assumption that at least one of the terms is
  not Boolean. Equivalently, we allow ourselves to say that a set of
  terms is ``known to be Boolean'' if we can verify that the original
  goal is provably equivalent to the assertion that if all terms in
  the set are Boolean, then the goal holds. The notion ``known to be
  Boolean'' is conservative in the sense that there are generally
  sets of terms for which the above equivalent criteria hold and yet
  the sets of terms are not noted as as being ``known to be
  Boolean.'' However, ACL2 uses a number of tricks, including
  [type-set] reasoning and analysis of the structure of the top-level
  goal, to attempt to establish that a sufficiently inclusive set of
  terms is known to be Boolean.

  From a practical standpoint, the algorithm determines a set of terms
  known to be Boolean; we allow ourselves to say that each term in
  this set is ``known to be Boolean.'' The algorithm assumes that
  these terms are indeed Boolean, and can make use of that
  assumption. For example, if t1 is known to be Boolean then the
  algorithm simplifies (IF t1 t nil) to t1; see (iv) in the
  discussion immediately below.

  (B3) IF-lifting and the IF-lifting-for-IF loop

  Suppose that one has a [term] of the form (f ... (IF test x y) ...),
  where f is a function symbol other than CONS. Then we say that
  ``IF-lifting'' test ``from'' this term produces the following term,
  which is provably equal to the given term.

    (if test
        (f ... x ...)  ; resulting true branch
        (f ... y ...)) ; resulting false branch

  Here, we replace each argument of f of the form (IF test .. ..), for
  the same test, in the same way. In this case we say that
  ``IF-lifting applies to'' the given term, ``yielding the test''
  test and with the ``resulting two branches'' displayed above.
  Whenever we apply IF-lifting, we do so for the available test that
  is least in the BDD term order (see (A1) above).

  We consider arguments v of f that are ``known to be Boolean'' (see
  above) to be replaced by (IF v t nil) for the purposes of
  IF-lifting, i.e., before IF-lifting is applied.

  There is one special case, however, for IF-lifting. Suppose that the
  given term is of the form (IF v y z) where v is a variable and is
  the test to be lifted out (i.e., it is least in the BDD term order
  among the potential tests). Moroever, suppose that neither y nor z
  is of the form (IF v W1 W2) for that same v. Then IF-lifting does
  not apply to the given term.

  We may now describe the IF-lifting-for-IF loop, which applies to
  terms of the form (IF test tbr fbr) where the algorithm has already
  produced test, tbr, and fbr. First, if test is nil then we return
  fbr, while if test is a non-nil constant or a call of CONS then we
  return tbr. Otherwise, we see if IF-lifting applies. If IF-lifting
  does not apply, then we return (IF test tbr fbr). Otherwise, we
  apply IF-lifting to obtain a term of the form (IF x y z), by
  lifting out the appropriate test. Now we recursively apply the
  IF-lifting-for-IF loop to the term (IF x y z), unless any of the
  following special cases apply.

      (i) If y and z are the same term, then return y.

      (ii) Otherwise, if x and z are the same term, then replace z by nil
      before recursively applying IF-lifting-for-IF.

      (iii) Otherwise, if x and y are the same term and y is known to be
      Boolean, then replace y by t before recursively applying
      IF-lifting-for-IF.

      (iv) If z is nil and either x and y are the same term or x is ``known
      to be Boolean'' and y is t, then return x.

  NOTE: When a variable x is known to be Boolean, it is easy to see
  that the form (IF x t nil) is always reduced to x by this
  algorithm.

  (B4) The ACL2 BDD algorithm

  We are now ready to present the BDD algorithm for ACL2. It is given
  an ACL2 [term], x, as well as an association list va that maps
  variables to terms, including all variables occurring in x. We
  maintain the invariant that whenever a variable is mapped by va to
  a term, that term has already been constructed by the algorithm,
  except: initially va maps every variable occurring in the top-level
  term to itself. The algorithm proceeds as follows. We implicitly
  ordain that whenever the BDD algorithm attempts to create a [term]
  that is not a [bdd] term (as defined above in (A2)), it aborts
  instead. Thus, whenever the algorithm completes without aborting,
  it creates a [bdd] term.

      If x is a variable, return the result of looking it up in va.

      If x is a constant, return x.

      If x is of the form (IF test tbr fbr), then first run the algorithm
      on test with the given va to obtain test'. If test' is nil,
      then return the result fbr' of running the algorithm on fbr
      with the given va. If test' is a constant other than nil, or is
      a call of CONS, then return the result tbr' of running the
      algorithm on tbr with the given va. If tbr is identical to fbr,
      return tbr. Otherwise, return the result of applying the
      IF-lifting-for-IF loop (described above) to the term (IF test'
      tbr' fbr').

      If x is of the form (IF* test tbr fbr), then compute the result
      exactly as though [if] were used rather than [if*], except that
      if test' is not a constant or a call of CONS (see paragraph
      above), then abort the BDD computation. Informally, the tests
      of [if*] terms are expected to ``resolve.'' NOTE: This
      description shows how [if*] can be used to implement
      conditional rewriting in the BDD algorithm.

      If x is a LAMBDA expression ((LAMBDA vars body) . args) (which often
      corresponds to a [let] term; see [let]), then first form an
      alist va' by binding each v in vars to the result of running
      the algorithm on the corresponding member of args, with the
      current alist va. Then, return the result of the algorithm on
      body in the alist va'.

      Otherwise, x is of the form (f x1 x2 ... xn), where f is a function
      symbol other than [if] or [if*]. In that case, let xi' be the
      result of running the algorithm on xi, for i from 1 to n, using
      the given alist va. First there are a few special cases. If f
      is [equal] then we return t if x1' is syntactically identical
      to x2' (where this test is very fast; see (B6) below); we
      return x1' if it is known to be Boolean and x2' is t; and
      similarly, we return x2' if it is known to be Boolean and x1'
      is t. Next, if each xi' is a constant and the
      :[executable-counterpart] of f is enabled, then the result is
      obtained by computation. Next, if f is [booleanp] and x1' is
      known to be Boolean, t is returned. Otherwise, we proceed as
      follows, first possibly swapping the arguments if they are out
      of (the BDD term) order and if f is known to be commutative
      (see below). If a BDD rewrite rule (as defined above) matches
      the term (f x1'... xn'), then the most recently stored such
      rule is applied. If there is no such match and f is a
      BDD-constructor, then we return (f x1'... xn'). Otherwise, if a
      BDD definition rule matches this term, then the most recently
      stored such rule (which will usually be the original definition
      for most users) is applied. If none of the above applies and
      neither does IF-lifting, then we return (f x1'... xn').
      Otherwise we apply IF-lifting to (f x1'... xn') to obtain a
      term (IF test tbr fbr); but we aren't done yet. Rather, we run
      the BDD algorithm (using the same alist) on tbr and fbr to
      obtain terms tbr' and fbr', and we return (IF test tbr' fbr')
      unless tbr' is syntactically identical to fbr', in which case
      we return tbr'.

  When is it the case that, as said above, ``f is known to be
  commutative''? This happens when an enabled rewrite rule is of the
  form (EQUAL (f X Y) (f Y X)). Regarding swapping the arguments in
  that case: recall that we may assume very little about the BDD term
  order, essentially only that we swap the two arguments when the
  second is a constant and the first is not, for example, in (+ x 1).
  Other than that situation, one cannot expect to predict accurately
  when the arguments of commutative operators will be swapped.

  (B5) Soundness and Completeness of the ACL2 BDD algorithm

  Roughly speaking, ``soundness'' means that the BDD algorithm should
  give correct answers, and ``completeness'' means that it should be
  powerful enough to prove all true facts. Let us make the soundness
  claim a little more precise, and then we'll address completeness
  under suitable hypotheses.

  Claim (Soundness). If the ACL2 BDD algorithm runs to completion on an
  input term t0, then it produces a result that is provably equal to
  t0.

  We leave the proof of this claim to the reader. The basic idea is
  simply to check that each step of the algorithm preserves the
  meaning of the term under the bindings in the given alist.

  Let us start our discussion of completeness by recalling the theorem
  proved above in (A4).

  Theorem. Suppose that t1 and t2 are canonical BDD terms that contain
  no function symbols other than IF and CONS. Also suppose that
  (EQUAL t1 t2) is a theorem. Then t1 and t2 are syntactically
  identical.

  Below we show how this theorem implies the following completeness
  property of the ACL2 BDD algorithm. We continue to assume that CONS
  is the only BDD-constructor.

  Claim (Completeness). Suppose that t1 and t2 are provably equal
  terms, under the assumption that all their variables are known to
  be Boolean. Assume further that under this same assumption,
  top-level runs of the ACL2 BDD algorithm on these terms return
  terms that contain only the function symbols IF and CONS. Then the
  algorithm returns the same term for both t1 and t2, and the
  algorithm reduces (EQUAL t1 t2) to t.

  Why is this claim true? First, notice that the second part of the
  conclusion follows immediately from the first, by definition of the
  algorithm. Next, notice that the terms u1 and u2 obtained by
  running the algorithm on t1 and t2, respectively, are provably
  equal to t1 and t2, respectively, by the Soundness Claim. It
  follows that u1 and u2 are provably equal to each other. Since
  these terms contain no function symbols other than IF or CONS, by
  hypothesis, the Claim now follows from the Theorem above together
  with the following lemma.

  Lemma. Suppose that the result of running the ACL2 BDD algorithm on a
  top-level term t0 is a term u0 that contains only the function
  symbols IF and CONS, where all variables of t0 are known to be
  Boolean. Then u0 is a canonical BDD term.

  Proof: left to the reader. Simply follow the definition of the
  algorithm, with a separate argument for the IF-lifting-for-IF loop.

  Finally, let us remark on the assumptions of the Completeness Claim
  above. The assumption that all variables are known to be Boolean is
  often true; in fact, the system uses the forward-chaining rule
  boolean-listp-forward (you can see it using :[pe]) to try to
  establish this assumption, if your theorem has a form such as the
  following.

    (let ((x (list x0 x1 ...))
          (y (list y0 y1 ...)))
      (implies (and (boolean-listp x)
                    (boolean-listp y))
               ...))

  Moreover, the :BDD hint can be used to force the prover to abort if
  it cannot check that the indicated variables are known to be
  Boolean; see [hints].

  Finally, consider the effect in practice of the assumption that the
  terms resulting from application of the algorithm contain calls of
  IF and CONS only. Typical use of BDDs in ACL2 takes place in a
  theory (see [theories]) in which all relevant non-recursive
  function symbols are enabled and all recursive function symbols
  possess enabled BDD rewrite rules that tell them how open up. For
  example, such a rule may say how to expand on a given function
  call's argument that has the form (CONS a x), while another may say
  how to expand when that argument is nil). (See for example the
  rules append-cons and append-nil in the documentation for [if*].)
  We leave it to future work to formulate a theorem that guarantees
  that the BDD algorithm produces terms containing calls only of IF
  and CONS assuming a suitably ``complete'' collection of rewrite
  rules.

  (B6) Efficiency considerations

  Following Bryant's algorithm, we use a graph representation of
  [term]s created by the BDD algorithm's computation. This
  representation enjoys some important properties.

      (Time efficiency) The test for syntactic equality of BDD terms is
      very fast.

      (Space efficiency) Equal BDD data structures are stored identically
      in memory.

  Implementation note. The representation actually uses a sort of hash
  table for BDD terms that is implemented as an ACL2 1-dimensional
  array. See [arrays]. In addition, we use a second such hash table
  to avoid recomputing the result of applying a function symbol to
  the result of running the algorithm on its arguments. We believe
  that these uses of hash tables are standard. They are also
  discussed in Moore's paper on BDDs; see [bdd] for the reference.")
 (BDD-INTRODUCTION
  (BDD)
  "Examples illustrating the use of BDDs in ACL2

  See [bdd] for a brief introduction to BDDs in ACL2 and for pointers
  to other documentation on BDDs in ACL2. Here, we illustrate the use
  of BDDs in ACL2 by way of some examples. For a further example, see
  [if*].

  Let us begin with a really simple example. (We will explain the :bdd
  hint (:vars nil) below.)

    ACL2 !>(thm (equal (if a b c) (if (not a) c b))
                :hints ((\"Goal\" :bdd (:vars nil)))) ; Prove with BDDs

    [Note:  A hint was supplied for our processing of the goal above.
    Thanks!]

    But simplification with BDDs (7 nodes) reduces this to T, using the
    :definitions EQUAL and NOT.

    Q.E.D.

    Summary
    Form:  ( THM ...)
    Rules: ((:DEFINITION EQUAL) (:DEFINITION NOT))
    Warnings:  None
    Time:  0.18 seconds (prove: 0.05, print: 0.02, other: 0.12)

    Proof succeeded.
    ACL2 !>

  The :bdd hint (:vars nil) indicates that BDDs are to be used on the
  indicated goal, and that any so-called ``variable ordering'' may be
  used: ACL2 may use a convenient order that is far from optimal. It
  is beyond the scope of the present documentation to address the
  issue of how the user may choose good variable orderings. Someday
  our implementation of BDDs may be improved to include
  heuristically-chosen variable orderings rather than rather random
  ones.

  Here is a more interesting example.

    (defun v-not (x)
    ; Complement every element of a list of Booleans.
      (if (consp x)
          (cons (not (car x)) (v-not (cdr x)))
        nil))

    ; Now we prove a rewrite rule that explains how to open up v-not on
    ; a consp.
    (defthm v-not-cons
      (equal (v-not (cons x y))
             (cons (not x) (v-not y))))

    ; Finally, we prove for 7-bit lists that v-not is self-inverting.
    (thm
     (let ((x (list x0 x1 x2 x3 x4 x5 x6)))
       (implies (boolean-listp x)
                (equal (v-not (v-not x)) x)))
     :hints ((\"Goal\" :bdd
                     ;; Note that this time we specify a variable order.
                     (:vars (x0 x1 x2 x3 x4 x5 x6)))))

  It turns out that the variable order doesn't seem to matter in this
  example; using several orders we found that 30 nodes were created,
  and the proof time was about 1/10 of a second on a (somewhat
  enhanced) Sparc 2. The same proof took about a minute and a half
  without any :bdd hint! This observation is a bit misleading
  perhaps, since the theorem for arbitrary x,

    (thm
     (implies (boolean-listp x)
              (equal (v-not (v-not x)) x)))

  only takes about 1.5 times as long as the :bdd proof for 7 bits,
  above! Nevertheless, BDDs can be very useful in reducing proof
  time, especially when there is no regular structure to facilitate
  proof by induction, or when the induction scheme is so complicated
  to construct that significant user effort is required to get the
  proof by induction to go through.

  Finally, consider the preceding example, with a :bdd hint of (say)
  (:vars nil), but with the rewrite rule v-not-cons above disabled.
  In that case, the proof fails, as we see below. That is because the
  BDD algorithm in ACL2 uses hypothesis-free :[rewrite] rules,
  :[executable-counterpart]s, and nonrecursive definitions, but it
  does not use recursive definitions.

  Notice that when we issue the (show-bdd) command, the system's
  response clearly shows that we need a rewrite rule for simplifying
  terms of the form (v-not (cons ...)).

    ACL2 !>(thm
            (let ((x (list x0 x1 x2 x3 x4 x5 x6)))
              (implies (boolean-listp x)
                       (equal (v-not (v-not x)) x)))
            :hints ((\"Goal\" :bdd (:vars nil)
                     :in-theory (disable v-not-cons))))

    [Note:  A hint was supplied for our processing of the goal above.
    Thanks!]

    ACL2 Error in ( THM ...):  Attempted to create V-NOT node during BDD
    processing with an argument that is a call of a bdd-constructor,
    which would produce a non-BDD term (as defined in :DOC
    bdd-algorithm).  See :DOC show-bdd.

    Summary
    Form:  ( THM ...)
    Rules: NIL
    Warnings:  None
    Time:  0.58 seconds (prove: 0.13, print: 0.00, other: 0.45)

    ******** FAILED ********  See :DOC failure  ******** FAILED ********
    ACL2 !>(show-bdd)

    BDD computation on Goal yielded 17 nodes.
    ------------------------------

    BDD computation was aborted on Goal, and hence there is no
    falsifying assignment that can be constructed.  Here is a backtrace
    of calls, starting with the top-level call and ending with the one
    that led to the abort.  See :DOC show-bdd.

    (LET ((X (LIST X0 X1 X2 X3 X4 X5 ...)))
         (IMPLIES (BOOLEAN-LISTP X)
                  (EQUAL (V-NOT (V-NOT X)) X)))
      alist: ((X6 X6) (X5 X5) (X4 X4) (X3 X3) (X2 X2) (X1 X1) (X0 X0))

    (EQUAL (V-NOT (V-NOT X)) X)
      alist: ((X (LIST X0 X1 X2 X3 X4 X5 ...)))

    (V-NOT (V-NOT X))
      alist: ((X (LIST X0 X1 X2 X3 X4 X5 ...)))

    (V-NOT X)
      alist: ((X (LIST X0 X1 X2 X3 X4 X5 ...)))
    ACL2 !>

  The term that has caused the BDD algorithm to abort is thus (V-NOT
  X), where X has the value (LIST X0 X1 X2 X3 X4 X5 ...), i.e., (CONS
  X0 (LIST X1 X2 X3 X4 X5 ...)). Thus, we see the utility of
  introducing a rewrite rule to simplify terms of the form (V-NOT
  (CONS ...)). The moral of this story is that if you get an error of
  the sort shown above, you may find it useful to execute the command
  (show-bdd) and use the result as advice that suggests the left hand
  side of a rewrite rule.

  Here is another sort of failed proof. In this version we have omitted
  the hypothesis that the input is a bit vector. Below we use
  show-bdd to see what went wrong, and use the resulting information
  to construct a counterexample. This failed proof corresponds to a
  slightly modified input theorem, in which x is bound to the
  4-element list (list x0 x1 x2 x3).

    ACL2 !>(thm
            (let ((x (list x0 x1 x2 x3)))
              (equal (v-not (v-not x)) x))
            :hints ((\"Goal\" :bdd
                     ;; This time we do not specify a variable order.
                     (:vars nil))))

    [Note:  A hint was supplied for our processing of the goal above.
    Thanks!]

    ACL2 Error in ( THM ...):  The :BDD hint for the current goal has
    successfully simplified this goal, but has failed to prove it.
    Consider using (SHOW-BDD) to suggest a counterexample; see :DOC
    show-bdd.

    Summary
    Form:  ( THM ...)
    Rules: NIL
    Warnings:  None
    Time:  0.18 seconds (prove: 0.07, print: 0.00, other: 0.12)

    ******** FAILED ********  See :DOC failure  ******** FAILED ********
    ACL2 !>(show-bdd)

    BDD computation on Goal yielded 73 nodes.
    ------------------------------

    Falsifying constraints:
    ((X0 \"Some non-nil value\")
     (X1 \"Some non-nil value\")
     (X2 \"Some non-nil value\")
     (X3 \"Some non-nil value\")
     ((EQUAL 'T X0) T)
     ((EQUAL 'T X1) T)
     ((EQUAL 'T X2) T)
     ((EQUAL 'T X3) NIL))

    ------------------------------

    Term obtained from BDD computation on Goal:

    (IF X0
        (IF X1
            (IF X2 (IF X3 (IF # # #) (IF X3 # #))
                (IF X2 'NIL (IF X3 # #)))
            (IF X1 'NIL
                (IF X2 (IF X3 # #) (IF X2 # #))))
        (IF X0 'NIL
            (IF X1 (IF X2 (IF X3 # #) (IF X2 # #))
                (IF X1 'NIL (IF X2 # #)))))

    ACL2 Query (:SHOW-BDD):  Print the term in full?  (N, Y, W or ?):
    n ; I've seen enough.  The assignment shown above suggests
      ; (though not conclusively) that if we bind x3 to a non-nil
      ; value other than T, and bind x0, x1, and x2 to t, then we
      ; this may give us a counterexample.
    ACL2 !>(let ((x0 t) (x1 t) (x2 t) (x3 7))
             (let ((x (list x0 x1 x2 x3)))
               ;; Let's use LIST instead of EQUAL to see how the two
               ;; lists differ.
               (list (v-not (v-not x)) x)))
    ((T T T T) (T T T 7))
    ACL2 !>

  See [if*] for another example.")
 (BIBLIOGRAPHY
  (ABOUT-ACL2)
  "Reports about ACL2

  The ACL2 home page includes a {list of notes and reports about ACL2 |
  http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html}.")
 (BINARY-*
  (* ACL2-BUILT-INS)
  "Multiplication function

  Completion Axiom (completion-of-*):

    (equal (binary-* x y)
           (if (acl2-numberp x)
               (if (acl2-numberp y)
                   (binary-* x y)
                 0)
             0))

  [Guard] for (binary-* x y):

    (and (acl2-numberp x) (acl2-numberp y))

  Notice that like all arithmetic functions, binary-* treats
  non-numeric inputs as 0.

  Calls of the macro [*] expand to calls of binary-*; see [*].")
 (BINARY-+
  (+ ACL2-BUILT-INS)
  "Addition function

  Completion Axiom (completion-of-+):

    (equal (binary-+ x y)
           (if (acl2-numberp x)
               (if (acl2-numberp y)
                   (binary-+ x y)
                 x)
             (if (acl2-numberp y)
                 y
               0)))

  [Guard] for (binary-+ x y):

    (and (acl2-numberp x) (acl2-numberp y))

  Notice that like all arithmetic functions, binary-+ treats
  non-numeric inputs as 0.

  Calls of the macro [+] expand to calls of binary-+; see [+].")
 (BINARY-APPEND
  (APPEND ACL2-BUILT-INS)
  "[concatenate] two lists

  This binary function implements [append], which is a macro in ACL2.
  See [append]

  The [guard] for binary-append requires the first argument to be a
  [true-listp].

  Function: <binary-append>

    (defun binary-append (x y)
           (declare (xargs :guard (true-listp x)))
           (cond ((endp x) y)
                 (t (cons (car x)
                          (binary-append (cdr x) y)))))")
 (BIND-FREE
  (REWRITE LINEAR DEFINITION)
  "To bind free variables of a rewrite, definition, or linear rule

    Examples:
    (IMPLIES (AND (RATIONALP LHS)
                  (RATIONALP RHS)
                  (BIND-FREE (FIND-MATCH-IN-PLUS-NESTS LHS RHS) (X)))
             (EQUAL (EQUAL LHS RHS)
                    (EQUAL (+ (- X) LHS) (+ (- X) RHS))))

    (IMPLIES (AND (BIND-FREE
                    (FIND-RATIONAL-MATCH-IN-TIMES-NESTS LHS RHS MFC STATE)
                    (X))
                  (RATIONALP X)
                  (CASE-SPLIT (NOT (EQUAL X 0))))
             (EQUAL (< LHS RHS)
                    (IF (< 0 X)
                        (< (* (/ X) LHS) (* (/ X) RHS))
                       (< (* (/ X) RHS) (* (/ X) LHS)))))

  General Forms:

    (BIND-FREE term var-list)
    (BIND-FREE term t)
    (BIND-FREE term)

  A rule which uses a bind-free hypothesis has similarities to both a
  rule which uses a [syntaxp] hypothesis and to a :[meta] rule.
  Bind-free is like [syntaxp], in that it logically always returns t
  but may affect the application of a :[rewrite], :[definition], or
  :[linear] rule when it is called at the top-level of a hypothesis.
  It is like a :[meta] rule, in that it allows the user to perform
  transformations of terms under progammatic control.

  Note that a bind-free hypothesis does not, in general, deal with the
  meaning or semantics or values of the terms, but rather with their
  syntactic forms. Before attempting to write a rule which uses
  bind-free, the user should be familiar with [syntaxp] and the
  internal form that ACL2 uses for terms. This internal form is
  similar to what the user sees, but there are subtle and important
  differences. [Trans] can be used to view this internal form.

  Just as for a [syntaxp] hypothesis, there are two basic types of
  bind-free hypotheses. The simpler type of bind-free hypothesis may
  be used as the nth hypothesis in a :[rewrite], :[definition], or
  :[linear] rule whose :[corollary] is (implies (and hyp1 ... hypn
  ... hypk) (equiv lhs rhs)) provided term is a term, term contains
  at least one variable, and every variable occuring freely in term
  occurs freely in lhs or in some hypi, i<n. In addition, term must
  not use any stobjs. Later below we will describe the second type,
  an extended bind-free hypothesis, which may use [state]. Whether
  simple or extended, a bind-free hypothesis may return an alist that
  binds free variables, as explained below, or it may return a list
  of such alists. We focus on the first of these cases: return of a
  single binding alist. We conclude our discussion with a section
  that covers the other case: return of a list of alists.

  We begin our description of bind-free by examining the first example
  above in some detail.

  We wish to write a rule which will cancel ``like'' addends from both
  sides of an equality. Clearly, one could write a series of rules
  such as

    (DEFTHM THE-HARD-WAY-2-1
       (EQUAL (EQUAL (+ A X B)
                     (+ X C))
              (EQUAL (+ A B)
                     (FIX C))))

  with one rule for each combination of positions the matching addends
  might be found in (if one knew before-hand the maximum number of
  addends that would appear in a sum). But there is a better way. (In
  what follows, we assume the presence of an appropriate set of rules
  for simplifying sums.)

  Consider the following definitions and theorem:

    (DEFUN INTERSECTION-EQUAL (X Y)
      (COND ((ENDP X)
             NIL)
            ((MEMBER-EQUAL (CAR X) Y)
             (CONS (CAR X) (INTERSECTION-EQUAL (CDR X) Y)))
            (T
             (INTERSECTION-EQUAL (CDR X) Y))))

    (DEFUN PLUS-LEAVES (TERM)
      (IF (EQ (FN-SYMB TERM) 'BINARY-+)
          (CONS (FARGN TERM 1)
                (PLUS-LEAVES (FARGN TERM 2)))
        (LIST TERM)))

    (DEFUN FIND-MATCH-IN-PLUS-NESTS (LHS RHS)
      (IF (AND (EQ (FN-SYMB LHS) 'BINARY-+)
               (EQ (FN-SYMB RHS) 'BINARY-+))
          (LET ((COMMON-ADDENDS (INTERSECTION-EQUAL (PLUS-LEAVES LHS)
                                                    (PLUS-LEAVES RHS))))
            (IF COMMON-ADDENDS
                (LIST (CONS 'X (CAR COMMON-ADDENDS)))
              NIL))
        NIL))

    (DEFTHM CANCEL-MATCHING-ADDENDS-EQUAL
      (IMPLIES (AND (RATIONALP LHS)
                    (RATIONALP RHS)
                    (BIND-FREE (FIND-MATCH-IN-PLUS-NESTS LHS RHS) (X)))
               (EQUAL (EQUAL LHS RHS)
                      (EQUAL (+ (- X) LHS) (+ (- X) RHS)))))

  How is this rule applied to the following term?

    (equal (+ 3 (expt a n) (foo a c))
           (+ (bar b) (expt a n)))

  As mentioned above, the internal form of an ACL2 term is not always
  what one sees printed out by ACL2. In this case, by using :[trans]
  one can see that the term is stored internally as

    (equal (binary-+ '3
                     (binary-+ (expt a n) (foo a c)))
           (binary-+ (bar b) (expt a n))).

  When ACL2 attempts to apply cancel-matching-addends-equal to the term
  under discussion, it first forms a substitution that instantiates
  the left-hand side of the conclusion so that it is identical to the
  target term. This substitution is kept track of by the substitution
  alist:

    ((LHS . (binary-+ '3
                       (binary-+ (expt a n) (foo a c))))
     (RHS . (binary-+ (bar b) (expt a n)))).

  ACL2 then attempts to relieve the hypotheses in the order they were
  given. Ordinarily this means that we instantiate each hypothesis
  with our substitution and then attempt to rewrite the resulting
  instance to true. Thus, in order to relieve the first hypothesis,
  we rewrite:

    (RATIONALP (binary-+ '3
                          (binary-+ (expt a n) (foo a c)))).

  Let us assume that the first two hypotheses rewrite to t. How do we
  relieve the bind-free hypothesis? Just as for a [syntaxp]
  hypothesis, ACL2 evaluates (find-match-in-plus-nests lhs rhs) in an
  environment where lhs and rhs are instantiated as determined by the
  substitution. In this case we evaluate

    (FIND-MATCH-IN-PLUS-NESTS '(binary-+ '3
                                          (binary-+ (expt a n) (foo a c)))
                              '(binary-+ (bar b) (expt a n))).

  Observe that, just as in the case of a [syntaxp] hypothesis, we
  substitute the quotation of the variables bindings into the term to
  be evaluated. See [syntaxp] for the reasons for this. The result of
  this evaluation, ((X . (EXPT A N))), is then used to extend the
  substitution alist:

    ((X . (EXPT A N))
     (LHS . (binary-+ '3
                       (binary-+ (expt a n) (foo a c))))
     (RHS . (binary-+ (bar b) (expt a n)))),

  and this extended substitution determines
  cancel-matching-addends-equal's result:

    (EQUAL (+ (- X) LHS) (+ (- X) RHS))
    ==>
    (EQUAL (+ (- (EXPT A N)) 3 (EXPT A N) (FOO A C))
           (+ (- (EXPT A N)) (BAR B) (EXPT A N))).

  Question: What is the internal form of this result?
  Hint: Use :[trans].

  When this rule fires, it adds the negation of a common term to both
  sides of the equality by selecting a binding for the otherwise-free
  variable x, under programmatic control. Note that other mechanisms
  such as the binding of [free-variables] may also extend the
  substitution alist.

  Just as for a [syntaxp] test, a bind-free form signals failure by
  returning nil. However, while a [syntaxp] test signals success by
  returning true, a bind-free form signals success by returning an
  alist which is used to extend the current substitution alist.
  Because of this use of the alist, there are several restrictions on
  it --- in particular the alist must only bind variables, these
  variables must not be already bound by the substitution alist, and
  the variables must be bound to ACL2 terms. If term returns an alist
  and the alist meets these restrictions, we append the alist to the
  substitution alist and use the result as the new current
  substitution alist. This new current substitution alist is then
  used when we attempt to relieve the next hypothesis or, if there
  are no more, instantiate the right hand side of the rule.

  There is also a second, optional, var-list argument to a bind-free
  hypothesis. If provided, it must be either t or a list of
  variables. If it is not provided, it defaults to t. If it is a list
  of variables, this second argument is used to place a further
  restriction on the possible values of the alist to be returned by
  term: any variables bound in the alist must be present in the list
  of variables. We strongly recommend the use of this list of
  variables, as it allows some consistency checks to be performed at
  the time of the rule's admittance which are not possible otherwise.

  An extended bind-free hypothesis is similar to the simple type
  described above, but it uses two additional variables, mfc and
  state, which must not be bound by the left hand side or an earlier
  hypothesis of the rule. They must be the last two variables
  mentioned by term: first mfc, then state. These two variables give
  access to the functions mfc-xxx; see [extended-metafunctions]. As
  described there, mfc is bound to the so-called metafunction-context
  and state to ACL2's [state]. See [bind-free-examples] for examples
  of the use of these extended bind-free hypotheses.

  SECTION: Returning a list of alists.

  As promised above, we conclude with a discussion of the case that
  evaluation of the bind-free term produces a list of alists, x,
  rather than a single alist. In this case each member b of x is
  considered in turn, starting with the first and proceeding through
  the list. Each such b is handled exactly as discussed above, as
  though it were the result of evaluating the bind-free term. Thus,
  each b extends the current variable binding alist, and all
  remaining hypotheses are then relieved, as though b had been the
  value obtained by evaluating the bind-free term. As soon as one
  such b leads to successful relieving of all remaining hypotheses,
  the process of relieving hypotheses concludes, so no further
  members of x are considered.

  We illustrate with a simple pedagogical example. First introduce
  functions p1 and p2 such that a rewrite rule specifies that p2
  implies p1, but with a free variable.

    (defstub p1 (x) t)
    (defstub p2 (x y) t)

    (defaxiom p2-implies-p1
      (implies (p2 x y)
               (p1 x)))

  If we add the following axiom, then (p1 x) follows logically for all
  x.

    (defaxiom p2-instance
      (p2 v (cons v 4)))

  Unfortunately, evaluation of (thm (p1 a)) fails, because ACL2 fails
  to bind the free variable y in order to apply the rule p2-instance.

  Let's define a function that produces a list of alists, each binding
  the variable y. Of course, we know that only the middle one below
  is necessary in this simple example. In more complex examples, one
  might use heuristics to construct such a list of alists.

    (defun my-alists (x)
      (list (list (cons 'y (fcons-term* 'cons x ''3)))
            (list (cons 'y (fcons-term* 'cons x ''4)))
            (list (cons 'y (fcons-term* 'cons x ''5)))))

  The following rewrite rule uses bind-free to return a list of
  candidate alists binding y.

    (defthm p2-implies-p1-better
      (implies (and (bind-free (my-alists x)
                               (y)) ; the second argument, (y), is optional
                    (p2 x y))
               (p1 x)))

  Now the proof succeeds for (thm (p1 a)). Why? When ACL2 applies the
  rewrite rule p2-implies-p1-better, it evaluates my-alists, as we
  can see from the following [trace], to bind y in three different
  alists.

    ACL2 !>(thm (p1 a))
    1> (ACL2_*1*_ACL2::MY-ALISTS A)
    <1 (ACL2_*1*_ACL2::MY-ALISTS (((Y CONS A '3))
                                  ((Y CONS A '4))
                                  ((Y CONS A '5))))

    Q.E.D.

  The first alist, binding y to (cons a '3), fails to allow the
  hypothesis (p2 x y) to be proved. But the next binding of y, to
  (cons a '4), succeeds: then the current binding alist is ((x . a)
  (y . (cons a '4))), for which the hypothesis (p2 x y) rewrites to
  true using the rewrite rule p2-instance.


Subtopics

  [Bind-free-examples]
      Examples pertaining to [bind-free] hypotheses")
 (BIND-FREE-EXAMPLES
  (BIND-FREE)
  "Examples pertaining to [bind-free] hypotheses

  See [bind-free] for a basic discussion of the use of bind-free to
  control rewriting.

  Note that the examples below all illustrate the common case in which
  a bind-free hypothesis generates a binding alist. See [bind-free],
  in particular the final section, for a discussion of the case that
  instead a list of binding alists is generated.

  We give examples of the use of [bind-free] hypotheses from the
  perspective of a user interested in reasoning about arithmetic, but
  it should be clear that [bind-free] can be used for many other
  purposes also.

  EXAMPLE 1: Cancel a common factor.

    (defun bind-divisor (a b)

    ; If a and b are polynomials with a common factor c, we return a
    ; binding for x.  We could imagine writing get-factor to compute the
    ; gcd, or simply to return a single non-invertible factor.

      (let ((c (get-factor a b)))
        (and c (list (cons 'x c)))))

    (defthm cancel-factor
      ;; We use case-split here to ensure that, once we have selected
      ;; a binding for x, the rest of the hypotheses will be relieved.
      (implies (and (acl2-numberp a)
                    (acl2-numberp b)
                    (bind-free (bind-divisor a b) (x))
                    (case-split (not (equal x 0)))
                    (case-split (acl2-numberp x)))
               (iff (equal a b)
                    (equal (/ a x) (/ b x)))))

  EXAMPLE 2: Pull integer summand out of floor. Note: This example has
  an extended [bind-free] hypothesis, which uses the term
  (find-int-in-sum sum mfc state).

    (defun fl (x)
      ;; This function is defined, and used, in the IHS books.
      (floor x 1))

    (defun int-binding (term mfc state)
      ;; The call to mfc-ts returns the encoded type of term. ;
      ;; Thus, we are asking if term is known by type reasoning to ;
      ;; be an integer. ;
      (declare (xargs :stobjs (state) :mode :program))
      (if (ts-subsetp (mfc-ts term mfc state)
                      *ts-integer*)
          (list (cons 'int term))
        nil))

    (defun find-int-in-sum (sum mfc state)
      (declare (xargs :stobjs (state) :mode :program))
      (if (and (nvariablep sum)
               (not (fquotep sum))
               (eq (ffn-symb sum) 'binary-+))
          (or (int-binding (fargn sum 1) mfc state)
              (find-int-in-sum (fargn sum 2) mfc state))
        (int-binding sum mfc state)))

    ; Some additional work is required to prove the following.  So for
    ; purposes of illustration, we wrap skip-proofs around the defthm.

    (skip-proofs
     (defthm cancel-fl-int
      ;; The use of case-split is probably not needed, since we should
      ;; know that int is an integer by the way we selected it.  But this
      ;; is safer.
       (implies (and (acl2-numberp sum)
                     (bind-free (find-int-in-sum sum mfc state) (int))
                     (case-split (integerp int)))
                (equal (fl sum)
                       (+ int (fl (- sum int)))))
       :rule-classes ((:rewrite :match-free :all)))
    )

    ; Arithmetic libraries will have this sort of lemma.
    (defthm hack (equal (+ (- x) x y) (fix y)))

    (in-theory (disable fl))

    (thm (implies (and (integerp x) (acl2-numberp y))
                  (equal (fl (+ x y)) (+ x (fl y)))))

  EXAMPLE 3: Simplify terms such as (equal (+ a (* a b)) 0)

    (defun factors (product)
      ;; We return a list of all the factors of product.  We do not
      ;; require that product actually be a product.
      (if (eq (fn-symb product) 'BINARY-*)
          (cons (fargn product 1)
                (factors (fargn product 2)))
        (list product)))

    (defun make-product (factors)
      ;; Factors is assumed to be a list of ACL2 terms.  We return an
      ;; ACL2 term which is the product of all the ellements of the
      ;; list factors.
      (cond ((atom factors)
             ''1)
            ((null (cdr factors))
             (car factors))
            ((null (cddr factors))
             (list 'BINARY-* (car factors) (cadr factors)))
            (t
             (list 'BINARY-* (car factors) (make-product (cdr factors))))))

    (defun quotient (common-factors sum)
      ;; Common-factors is a list of ACL2 terms.   Sum is an ACL2 term each
      ;; of whose addends have common-factors as factors.  We return
      ;; (/ sum (make-product common-factors)).
      (if (eq (fn-symb sum) 'BINARY-+)
          (let ((first (make-product (set-difference-equal (factors (fargn sum 1))
                                                           common-factors))))
            (list 'BINARY-+ first (quotient common-factors (fargn sum 2))))
        (make-product (set-difference-equal (factors sum)
                                            common-factors))))

    (defun intersection-equal (x y)
      (cond ((endp x)
             nil)
            ((member-equal (car x) y)
             (cons (car x) (intersection-equal (cdr x) y)))
            (t
             (intersection-equal (cdr x) y))))

    (defun common-factors (factors sum)
      ;; Factors is a list of the factors common to all of the addends
      ;; examined so far.  On entry, factors is a list of the factors in
      ;; the first addend of the original sum, and sum is the rest of the
      ;; addends.  We sweep through sum, trying to find a set of factors
      ;; common to all the addends of sum.
      (declare (xargs :measure (acl2-count sum)))
      (cond ((null factors)
             nil)
            ((eq (fn-symb sum) 'BINARY-+)
             (common-factors (intersection-equal factors (factors (fargn sum 1)))
                             (fargn sum 2)))
            (t
             (intersection-equal factors (factors sum)))))

    (defun simplify-terms-such-as-a+ab-rel-0-fn (sum)
      ;; If we can find a set of factors common to all the addends of sum,
      ;; we return an alist binding common to the product of these common
      ;; factors and binding quotient to (/ sum common).
      (if (eq (fn-symb sum) 'BINARY-+)
          (let ((common-factors (common-factors (factors (fargn sum 1))
                                                (fargn sum 2))))
            (if common-factors
                (let ((common (make-product common-factors))
                      (quotient (quotient common-factors sum)))
                  (list (cons 'common common)
                        (cons 'quotient quotient)))
              nil))
        nil))

    (defthm simplify-terms-such-as-a+ab-=-0
      (implies (and (bind-free
                     (simplify-terms-such-as-a+ab-rel-0-fn sum)
                     (common quotient))
                    (case-split (acl2-numberp common))
                    (case-split (acl2-numberp quotient))
                    (case-split (equal sum
                                       (* common quotient))))
               (equal (equal sum 0)
                      (or (equal common 0)
                          (equal quotient 0)))))

    (thm (equal (equal (+ u (* u v)) 0)
          (or (equal u 0) (equal v -1))))")
 (BOOK-COMPILED-FILE
  (BOOKS-REFERENCE)
  "Creating and loading of compiled and expansion files for [books]

  An effect of [compilation] is to speed up the execution of the
  functions defined in a book. Compilation can also remove tail
  recursion, thus avoiding stack overflows. The presence of compiled
  code for the functions in the book should not otherwise affect the
  performance of ACL2. See [guard] for a discussion; also See
  [compilation].

  By default, the [certify-book] command compiles the book that it
  certifies. see [certify-book] for how to control this behavior.

  By default, the [include-book] command loads the compiled file for
  the book. The details of how this loading works are subtle, and do
  not need to be understood by most users. The ACL2 source code
  contains an ``Essay on Hash Table Support for Compilation'' that
  explains such details for those interested. All that users should
  generally need to know about this is that the compiled file is
  always the result of compiling a so-called ``expansion file'',
  which contains certain additional code besides the book itself. The
  relevance to users of the expansion file is that it can be loaded
  if the compiled file is missing (except when :load-compiled-file t
  is specified by the [include-book] form), and its existence is
  required in order for [include-book] to create a book's compiled
  file, as described below.

  Most users can skip the remainder of this documentation topic, which
  addresses the uncommon activity of using [include-book] to compile
  books.

  Include-book can be made to compile a book by supplying its keyword
  argument :load-compiled-file the value :comp. However, a compiled
  file can only be produced if there is already an expansion file
  that is at least as recent as the book's [certificate]. Such a
  file, whose name happens to be the result of concatenating the
  string \"@expansion.lsp\" to the book name (without the \".lisp\"
  suffix), is created by [certify-book] when state global variable
  'save-expansion-file has a non-nil value. That will be the case if
  ACL2 started up when environment variable ACL2_SAVE_EXPANSION was t
  (or any value that is not the empty string and whose
  [string-upcase] is not \"NIL\"), until the time (if any) that
  'save-expansion-file is assigned a different value by the user. In
  most respects, the :comp setting is treated exactly the same as
  :warn; but after all events in the book are processed, the
  expansion file is compiled if a compiled file was not loaded, after
  which the resulting compiled file is loaded.

  One can thus, for example, compile books for several different host
  Lisps --- useful when installing ACL2 executables at the same site
  that are built on different host Lisps. A convenient way to do this
  in an environment that provides Gnu `make' is to certify the
  community books using the shell command ``make regression'' in the
  acl2-sources/ directory, after setting environment variable
  ACL2_SAVE_EXPANSION to t, and then moving to the books directory
  and executing the appropriate `make' commands to compile the books
  (targets fasl, o, and so on, according to the compiled file
  extension for the host Lisp).

  We conclude by saying more about the :load-compiled-file argument of
  [include-book]. We assume that [state] global 'compiler-enabled has
  a non-nil value; otherwise :load-compiled-file is always treated as
  nil.

  We do not consider raw mode below (see [set-raw-mode]), which
  presents a special case: ACL2 will attempt to load the book itself
  whenever it would otherwise load the expansion or compiled file,
  but cannot (either because the :load-compiled-file argument is nil,
  or for each of the expansion and compiled files, either it does not
  exist or it is out of date with respect to the .cert file).

  The :load-compiled-file argument is not recursive: calls of
  include-book that are inside the book supplied to include-book use
  their own :load-compiled-file arguments. However, those subsidiary
  include-book calls can nevertheless be sensitive to the
  :load-compiled-file arguments of enclosing include-book calls, as
  follows. If :load-compiled-file has value t, then every subsidiary
  include-book is required to load a compiled file. Moreover, if a
  book's compiled file or expansion file is loaded in raw Lisp, then
  an attempt will be made to load the compiled file or expansion file
  for any [include-book] form encountered during that load. If that
  attempt fails, then that load immediately aborts, as does its
  parent load, and so on up the chain. If, when going up the chain,
  an [include-book] is aborted for which keyword argument
  :load-compiled-file has value t, then an error occurs.

  When loading a book's compiled file or expansion file, FILE, it is
  possible to encounter an [include-book] form for a book that has no
  suitable compiled file or expansion file. In that case, the load of
  FILE is aborted at that point. Similarly, the load of FILE is
  aborted in the case that this include-book form has a suitable
  compiled file or expansion file whose load is itself aborted. Thus,
  whenever any include-book aborts, so do all of its parent
  include-books, up the chain. Such an abort causes an error when the
  include-book form specifies a :load-compiled-file value of t.")
 (BOOK-CONTENTS
  (BOOKS-TOUR)
  "Restrictions on the forms inside [books]

    Example Book:

    ; This book defines my app function and the theorem that it is
    ; associative.  One irrelevant help lemma is proved first but
    ; it is local and so not seen by include-book.  I depend on the
    ; inferior book \"weird-list-primitives\" from which I get
    ; definitions of hd and tl.

    (in-package \"MY-PKG\")

    (include-book \"weird-list-primitives\")

    (defun app (x y) (if (consp x) (cons (hd x) (app (tl x) y)) y))

    (local
     (defthm help-lemma
       (implies (true-listp x) (equal (app x nil) x))))

    (defthm app-is-associative
      (equal (app (app a b) c) (app a (app b c))))

  The first form in a book must be (in-package \"pkg\") where \"pkg\" is
  some package name known to ACL2 whenever the book is certified. The
  rest of the forms in a book are embedded event forms, i.e.,
  [defun]s, [defthm]s, etc., some of which may be marked [local]. See
  [embedded-event-form]. The usual Common Lisp commenting conventions
  are provided. Note that since a book consists of embedded event
  forms, we can talk about the ``[local]'' and ``non-local'' [events]
  of a book.

  Because [in-package] is not an embedded event form, the only
  [in-package] in a book is the initial one. Because [defpkg] is not
  an embedded event form, a book can never contain a [defpkg] form.
  Because [include-book] is an embedded event form, [books] may
  contain references to other [books]. This makes [books] structured
  objects.

  When the forms in a book are read from the file, they are read with
  [current-package] set to the package named in the [in-package] form
  at the top of the file. The effect of this is that all symbols are
  [intern]ed in that package, except those whose packages are given
  explicitly with the ``::'' notation. For example, if a book begins
  with (in-package \"ACL2-X\") and then contains the form

    (defun fn (x)
      (acl2::list 'car x))

  then [defun], fn, x, and [car] are all [intern]ed in the \"ACL2-X\"
  package. I.e., it is as though the following form were read
  instead:

    (acl2-x::defun acl2-x::fn (acl2-x::x)
        (acl2::list 'acl2-x::car acl2-x::x)).

  Of course, acl2-x::defun would be the same symbol as acl2::defun if
  the \"ACL2-X\" package imported acl2::defun.

  If each book has its own unique package name and all the names
  defined within the book are in that package, then name clashes
  between [books] are completely avoided. This permits the
  construction of useful logical [world]s by the successive inclusion
  of many [books]. Although it is often too much trouble to manage
  several packages, their judicious use is a way to minimize name
  clashes. Often, a better way is to use local; see [local].

  How does [include-book] know the definitions of the packages used in
  a book, since [defpkg]s cannot be among the forms? More generally,
  how do we know that the forms in a book will be admissible in the
  host logical [world] of an [include-book]? See [certificate] for
  answers to these questions.")
 (BOOK-EXAMPLE
  (BOOKS-TOUR)
  "How to create, certify, and use a simple book

  Suppose you have developed a sequence of admissible [events] which
  you want to turn into a book. We call this ``publishing'' the book.
  This note explains how to do that.

  A key idea of [books] is that they are ``incremental'' in the sense
  that when you include a book in a host logical [world], the [world]
  is incrementally extended by the results established in that book.
  This is allowed only if every name defined by the incoming book is
  either new or is already identically defined. See
  [redundant-events]. This is exactly the same problem faced by a
  programmer who wishes to provide a utility to other people: how can
  he make sure he doesn't create name conflicts? The solution, in
  Common Lisp, is also the same: use packages. While [books] and
  packages have a very tenuous formal connection (every book must
  start with an [in-package]), the creation of a book is intimately
  concerned with the package issue. Having motivated what would
  otherwise appear as an unnecessary fascination with packages below,
  we now proceed with a description of how to publish a book.

  Just to be concrete, let's suppose you have already gotten ACL2 to
  accept the following sequence of [command]s, starting in the ACL2
  initial [state].

    (defpkg \"ACL2-MY-BOOK\"
            (union-eq *common-lisp-symbols-from-main-lisp-package*
                      *acl2-exports*))
    (in-package \"ACL2-MY-BOOK\")
    (defun app (x y)
      (if (consp x) (cons (car x) (app (cdr x) y)) y))
    (defun rev (x)
      (if (consp x) (app (rev (cdr x)) (list (car x))) nil))
    (defthm rev-app-hack
      (equal (rev (app a (list x))) (cons x (rev a))))
    (defthm rev-rev
      (implies (acl2::true-listp x) (equal (rev (rev x)) x)))

  Observe that the first form above defines a package (which imports
  the symbols defined in CLTL such as [if] and [cons] and the symbols
  used to [command] ACL2 such as [defun] and [defthm]). The second
  form selects that package as the current one. All subsequent forms
  are read into that package. The remaining forms are just event
  forms: [defun]s and [defthm]s in this case.

  Typically you would have created a file with Emacs containing these
  forms and you will have submitted each of them interactively to
  ACL2 to confirm that they are all admissible. That interactive
  verification should start in ACL2's initial [world] --- although
  you might, of course, start your sequence of [events] with some
  [include-book]s to build a more elaborate [world].

  The first step towards publishing a book containing the results above
  is to create a file that starts with the [in-package] and then
  contains the rest of the forms. Let's call that file
  \"my-book.lisp\". The name is unimportant, except it must end with
  \".lisp\". If there are [events] that you do not wish to be available
  to the user of the book --- e.g., lemmas you proved on your way
  toward proving the main ones --- you may so mark them by enclosing
  them in [local] forms. See [local]. Let us suppose you wish to hide
  rev-app-hack above. You may also add standard Lisp comments to the
  file. The final content of \"my-book.lisp\" might be:

    ; This book contains my app and rev functions and the theorem
    ; that rev is its own inverse.

      (in-package \"ACL2-MY-BOOK\")
      (defun app (x y)
        (if (consp x) (cons (car x) (app (cdr x) y)) y))
      (defun rev (x)
        (if (consp x) (app (rev (cdr x)) (list (car x))) nil))

    ; The following hack is not exported.
      (local (defthm rev-app-hack
        (equal (rev (app a (list x))) (cons x (rev a)))))

      (defthm rev-rev
        (implies (acl2::true-listp x) (equal (rev (rev x)) x)))

  The file shown above is the book. By the time this note is done you
  will have seen how to certify that the book is correct, how to
  compile it, and how to use it in other host [world]s. Observe that
  the [defpkg] is not in the book. It cannot be: Common Lisp
  compilers disagree on how to treat new package definitions
  appearing in files to be compiled.

  Since a book is just a source file typed by the user, ACL2 provides a
  mechanism for checking that the [events] are all admissible and
  then marking the file as checked. This is called certification. To
  certify \"my-book.lisp\" you should first get into ACL2 with an
  initial [world]. Then, define the package needed by the book, by
  typing the following [defpkg] to the ACL2 [prompt]:

    ACL2 !>(defpkg \"ACL2-MY-BOOK\"
                   (union-eq *common-lisp-symbols-from-main-lisp-package*
                             *acl2-exports*))

  Then execute the [command]:

    ACL2 !>(certify-book \"my-book\" 1 t) ; the `t' is in fact the default

  Observe that you do not type the \".lisp\" part of the file name. For
  purposes of [books], the book's name is \"my-book\" and by the time
  all is said and done, there will be several extensions in addition
  to the \".lisp\" extension associated with it.

  The 1 tells [certify-book] that you acknowledge that there is one
  command in this ``certification [world]'' (namely the [defpkg]). To
  use the book, any prospective host [world] must be extended by the
  addition of whatever [command]s occurred before certification. It
  would be a pity to certify a book in a [world] containing junk
  because that junk will become the ``[portcullis]'' guarding
  entrance to the book. The t above tells [certify-book] that you
  wish to compile \"my-book.lisp\" also (but see [compilation] for an
  exception). [Certify-book] makes many checks but by far the most
  important and time-consuming one is that it ``proves'' every event
  in the file.

  When [certify-book] is done it will have created two new files. The
  first will be called \"my-book.cert\" and contains the
  ``[certificate]'' attesting to the admissibility of the [events] in
  \"my-book.lisp\". The [certificate] contains the [defpkg] and any
  other forms necessary to construct the certification [world]. It
  also contains various check sums used to help you keep track of
  which version of \"my-book.lisp\" was certified.

  The second file that may be created by [certify-book] is the compiled
  version of \"my-book.lisp\" and will have a name that is assigned by
  the host compiler (e.g., \"my-book.o\" in GCL, \"my-book.fasl\" in
  SBCL). [Certify-book] will also load this object file. When
  [certify-book] is done, you may throw away the logical [world] it
  created, for example by executing the [command] :u.

  To use the book later in any ACL2 session, just execute the event
  (include-book \"my-book\"). This will do the necessary [defpkg], load
  the non-[local] [events] in \"my-book.lisp\" and then may load the
  compiled code for the non-local functions defined in that file.
  Checks are made to ensure that the [certificate] file exists and
  describes the version of \"my-book.lisp\" that is read. The compiled
  code is loaded if and only if it exists and has a later write date
  than the source file (but see [compilation] for an exception).

  Since [include-book] is itself an event, you may put such forms into
  other [books]. Thus it is possible for the inclusion of a single
  book to lead to the inclusion of many others. The check sum
  information maintained in [certificate]s helps deal with the
  version control problem of the referenced [books]. I.e., if this
  version of \"my-book\" is used during the certification of
  \"your-book\", then the [certificate] for \"your-book\" includes the
  check sum of this version of \"my-book\". If a later (include-book
  \"your-book\") finds a version of \"my-book\" with a different check
  sum, an error is signalled. But check sums are not perfect and the
  insecurity of the host file system prevents ACL2 from guaranteeing
  the logical soundness of an [include-book] event, even for a book
  that appears to have a valid [certificate] (they can be forged,
  after all). (See [certificate] for further discussion.)

  This concludes the example of how to create, certify and use a book.
  If you wish, you could now review the [documentation] for
  book-related topics (see [books]) and browse through them. They'll
  probably make sense in this context. Alternatively, you could
  continue the ``guided tour'' through the rest of the
  [documentation] of [books]. See [book-name], following the pointer
  given at the conclusion.")
 (BOOK-MAKEFILES (POINTERS)
                 "See [books-certification].")
 (BOOK-NAME
  (BOOKS-TOUR)
  "Conventions associated with book names

    Examples:
    \"list-processing\"
    \"/usr/home/smith/my-arith\"

  Book names are string constants that can be elaborated into file
  names. We elaborate book names by concatenating the ``connected
  book directory'' (see [cbd]) string on the left and some
  ``extension,'' such as \".lisp\", on the right. However, the
  connected book directory is not added if the book name itself
  already represents an absolute file name. Furthermore,
  [include-book] and [certify-book] temporarily reset the connected
  book directory to be the directory of the book being processed.
  This allows [include-book] forms to use file names without explicit
  mention of the enclosing book's directory. This in turn allows
  [books] (together with those that they include, using
  [include-book]) to be moved between directories while maintaining
  their certification and utility.

  You may wish to read elsewhere for details of ACL2 file name
  conventions (see [pathname]), for a discussion of the filename that
  is the result of the elaboration described here (see
  [full-book-name]), and for details of the concept of the connected
  book directory (see [cbd]). For details of how [include-book] (see
  [include-book]) and [certify-book] (see [certify-book]) use these
  concepts, see below.

  Often a book name is simply the familiar name of the file. (See
  [full-book-name] for discussion of the notions of ``directory
  string,'' ``familiar name,'' and ``extension''. These concepts are
  not on the guided tour through [books] and you should read them
  separately.) However, it is permitted for book names to include a
  directory or part of a directory name. Book names never include the
  extension, since ACL2 must routinely tack several different
  extensions onto the name during [include-book]. For example,
  [include-book] uses the \".lisp\", \".cert\" and possibly the \".o\" or
  \".lbin\" extensions of the book name.

  Book names are elaborated into full file names by [include-book] and
  [certify-book]. This elaboration is sensitive to the ``connected
  book directory.'' The connected book directory is an absolute
  filename string (see [pathname]) that is part of the ACL2 [state].
  (You may wish to see [cbd] and to see [set-cbd] --- note that these
  are not on the guided tour). If a book name is an absolute filename
  string, ACL2 elaborates it simply by appending the desired
  extension to the right. If a book name is a relative filename
  string, ACL2 appends the connected book directory on the left and
  the desired extension on the right.

  Note that it is possible that the book name includes some partial
  specification of the directory. For example, if the connected book
  directory is \"/usr/home/smith/\" then the book name
  \"project/task-1/arith\" is a book name that will be elaborated to

    \"/usr/home/smith/project/task-1/arith.lisp\".

  Observe that while the [events] in this \"arith\" book are being
  processed the connected book directory will temporarily be set to

    \"/usr/home/smith/project/task-1/\".

  Thus, if the book requires other [books], e.g.,

    (include-book \"naturals\")

  then it is not necessary to specify the directory on which they
  reside provided that directory is the same as the superior book.

  This inheritance of the connected book directory and its use to
  elaborate the names of inferior [books] makes it possible to move
  [books] and their inferiors to new directories, provided they
  maintain the same relative relationship. It is even possible to
  move with ease whole collections of [books] to different
  filesystems that use a different operating system than the one
  under which the original certification was performed.

  The \".cert\" extension of a book, if it exists, is presumed to contain
  the most recent [certificate] for the book. See [certificate] (or,
  if you are on the guided tour, wait until the tour gets there).

  See [book-contents] to continue the guided tour.")
 (BOOKDATA
  (BOOKS)
  "An optional tool for writing out small files with meta-data about the
  books that are being certified.

  ACL2 provides a primitive capability for writing out a file of data
  associated with a book. This information might be useful, for
  example, in building a database that allows you to search for name
  conflicts. See [community-books] directory
  books/tools/book-conflicts/ for an application of this capability
  by Dave Greve. If you use this capability and have ideas for
  enhancing it, please feel free to send them to the ACL2 developers.

  If the book has the name BK, then the output file is named
  BK__bookdata.out. That file is generated in the same directory as
  BK, by certifying BK when [state] global 'write-bookdata has a
  non-nil value, for example as follows.

    (assign write-bookdata t)
    (certify-book \"BK\" ...)

  The resulting file will contain a single form of the following shape,
  although not necessarily in the following order, according to the
  description that follows below.

    (\"...BK.lisp\"
     :PKGS          pkgs-val
     :BOOKS         book-val
     :PORT-BOOKS    port-book-val
     :CONSTS        consts-val
     :PORT-CONSTS   port-consts-val
     :FNS           fns-val
     :PORT-FNS      port-fns-val
     :LABELS        labels-val
     :PORT-LABELS   port-labels-val
     :MACROS        macros-val
     :PORT-MACROS   port-macros-val
     :STOBJS        stobjs-val
     :PORT-STOBJS   port-stobjs-val
     :THEORIES      theories-val
     :PORT-THEORIES port-theories-val
     :THMS          thms-val
     :PORT-THMS     port-thms-val

)
  The first entry in the form will always be the full book name (see
  [full-book-name]) of the certified book, BK.

  Subsequent values in the form are based on [events] introduced by
  including BK. For various values of xxx as described below,
  port-xxx-val is a list of values corresponding to [events]
  introduced in the certification [world] for BK (see [portcullis]),
  and xxx-val is a list of values corresponding to [events]
  introduced non-[local]ly by BK. These lists include only
  ``top-level'' events, not those that are introduced by a book
  included either in BK or its certification world.

  pkgs-val is a list of names of packages introduced in the
  certification world (at the top level, not in an included book).
  Note that no packages are introduced in a book itself, so no
  distinction is made between pkgs-val and port-pkgs-val. Both
  port-book-val and book-val are lists of full book names (see
  [full-book-name]) of included books. The values associated with the
  other keywords are, themselves, association lists (see [alistp])
  such that each key is a package name, which is associated with a
  list of [symbol-name]s for symbols in that package that are
  introduced for that keyword. For example, fns-val may be the alist

    ((\"ACL2\" \"F1\" \"F2\")
     (\"MY-PKG\" \"G1\" \"G2\"))

  if the function symbols introduced in the book are F1 and F2 in the
  \"ACL2\" package, as well as G1 and G2 in the \"MY-PKG\" package.

  We next explain what kinds of symbols are introduced for each keyword
  :xxx. Each such symbol would be associated with either the keyword
  :port-xxx or the keyword :xxx depending respectively on whether the
  symbol is introduced at the top level of the certification world
  for BK or BK itself.

    :CONSTS
      constant symbol introduced by defconst
    :FNS
      function symbol: introduced by defun, defuns, or defchoose; or
      constrained (by an [encapsulate] event)
    :LABELS
      symbol introduced by deflabel
    :MACROS
      macro name introduced by defmacro
    :STOBJS
      stobj name introduced by defstobj or defabsstobj
    :THEORIES
      theory name introduced by deftheory
    :THMS
      theorem name, which may be introduced by defthm or a macro call
      expanding to a call of defthm, such as see [defequiv] or
      defaxiom; but may be introduced by [defpkg], for example, with
      name \"MYPKG-PACKAGE\" if the package name is \"MYPKG\"

  Our hope is that people in the ACL2 community will generate and use
  this data to improve the ACL2 [community-books]. Here is an example
  illustrating how to generate bookdata files for those books as a
  byproduct of a regression run. Below, we write {DIR} as an
  abbreviation for the ACL2 sources directory, and assume that this
  command is run from that directory. Of course, you may wish to use
  make options like -j 8 and make variable settings like
  ACL2={DIR}/my-saved_acl2; see [books-certification] for details.

    make regression-fresh \\
    ACL2_CUSTOMIZATION={DIR}/acl2-customization-files/bookdata.lisp")
 (BOOKS
  (ACL2 NOTE1)
  "Books are files of ACL2 [events]---they are the main way to split up
  large ACL2 developments into separate modules.

  This [documentation] topic is about ACL2 {source code |
  https://en.wikipedia.org/wiki/Source_code} files. However, there
  are also {traditional, paper books |
  http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html#Books}
  published about ACL2 and its applications.

  You will almost surely want to organize your own ACL2 work into
  books. They facilitate reuse, allow you to reload proofs more
  quickly, allow you to rebuild parts of your proof in parallel, and
  so forth. You will also want to be aware of the many community
  books, which provide useful tools and lemmas to build upon. See
  [community-books] for more information, including how to
  contribute.


Introduction

  A book is a file of ACL2 forms. Books are prepared entirely by the
  user of the system, i.e., they are source files not object files.
  Some of the forms in a book are marked [local] and the others are
  considered ``non-local.''

  [Include-book] lets you load a book into any ACL2 [world]. A
  successful include-book extends the logic of the host [world] by
  adding just the non-local [events] in the book. Ordinarily, you
  might include a variety of books to load all of their definitions
  and rules.

  Successful book inclusion is consistency preserving, provided that
  the book itself is consistent, as discussed later. However,
  [include-book] assumes the [events] in a book are valid, so if you
  include a book that contains an inconsistency (e.g., an
  inadmissible definition) then the resulting theory is inconsistent!

  [Certify-book] lets you certify a book to guarantee that its
  successful inclusion is consistency preserving. During
  certification, both the [local] and non-local forms are processed.
  This lets you mark as [local] any [events] you need for
  certification, but that you want to hide from users of the
  book---e.g., the hacks, crocks, and kludges on the way to a good
  set of [rewrite] rules.

  Certification can also [compile] a book to speed up the execution of
  the functions defined within it. The desire to compile books is
  largely responsible for the restrictions we put on the forms
  allowed in books.

  Extensive [documentation] is available on the various aspects of
  books. We recommend that you read it all before using books. It has
  been written so as to make sense when read in a certain linear
  sequence, called the ``guided tour'', though in general you may
  browse through it randomly. If you are on the guided tour, you
  should next read [book-example].


Subtopics

  [Bookdata]
      An optional tool for writing out small files with meta-data about
      the books that are being certified.

  [Books-reference]
      Reference guide for ACL2 functionality related to books, e.g.,
      [include-book], [certify-book], [cbd], etc.

  [Books-tour]
      The guided tour of concepts related to ACL2 [books].

  [Community-books]
      Libraries of ACL2 [books] developed by the ACL2 community.

  [Uncertified-books]
      Invalid [certificate]s and uncertified [books]")
 (BOOKS-CERTIFICATION
  (COMMUNITY-BOOKS)
  "Instructions for certifying the ACL2 [community-books].

  Starting in ACL2 6.4 we recommend using the new Community Books make
  system to certify the books. If you encounter problems using the
  new system (described below) or need some feature that is no longer
  available, please see [books-certification-alt] for alternate
  instructions. We have not changed how make regression works from
  the acl2-sources directory.


Prerequisites

  We assume that you have already downloaded and installed ACL2 as per
  the {ACL2 installation instructions |
  http://www.cs.utexas.edu/users/moore/acl2/v7-2/HTML/installation/installation.html}
  on the ACL2 home page.

  We assume you know the path to your ACL2 executable. Typically this
  is a script named saved_acl2 in your acl2-sources directory.

  We assume the ACL2 [community-books] are installed in the books/
  subdirectory of your ACL2 distribution, as is the case when you
  have followed the ACL2 installation instructions above.

  The instructions below are suitable for ACL2 and all of its
  experimental extensions, e.g., ACL2(p) and ACL2(r).


A Basic Build

  In previous versions of ACL2, building the Community Books could take
  several hours. Starting in ACL2 6.4, the default build has been
  made much faster by excluding many books by default.

  The new default make target, called basic, now certifies only the
  following, widely used books:

    * arithmetic
    * arithmetic-3
    * arithmetic-5
    * [ihs]
    * misc
    * tools
    * [std]
    * [xdoc]
    * data-structures

  To certify these books, you should be able to run make as follows.
  The -j 2 part of this command is suitable for a computer with two
  cores. If you have, e.g., a quad-core computer, you should probably
  use -j 4 instead, and so on.

    $ cd /path/to/acl2-sources/books
    $ make ACL2=/path/to/acl2-sources/saved_acl2 -j 2 basic

  If you configure your PATH so that you can launch ACL2 by typing
  acl2, then you may omit the ACL2=... part.


Certifying Additional Books

  We expect that most ACL2 users will want to certify at least the
  basic books described above. But what if you also need other books?
  One option is to do a full build (see below). But it is usually
  much faster to simply tell make to build the books you actually
  want to use.

  There are make targets corresponding to most directory names. For
  instance, to build the books under coi and rtl and cgen, you can
  run:

    $ cd /path/to/acl2-sources/books
    $ make ACL2=/path/to/acl2-sources/saved_acl2 coi rtl cgen -j 2

  For finer grained control, you can name individual books. This works
  particularly well for libraries that have top books. For instance,
  if you want the rtl/rel9 library, you could run:

    $ cd /path/to/acl2-sources/books
    $ make ACL2=/path/to/acl2-sources/saved_acl2 rtl/rel9/lib/top.cert -j 2


Books that Require ACL2 Extensions

  Some books require experimental extensions to ACL2, such as ACL2(p)
  (see [parallelism]) or ACL2(r) (see [real]) or their classic
  variants, ACL2(cp) or ACL2(cr). Other books require certain
  additional software.

  The build system will automatically determine which kind of ACL2 you
  are running (e.g., ACL2(c), ACL2(p), ACL2(r)) and, based on this,
  may prevent incompatible books from being certified. The output of
  make should explain which books are being excluded and why.

  These kinds of book requirements are controlled by special
  [build::cert_param] comments.


Books that Require Quicklisp

  Some books, especially [interfacing-tools] like [oslib] and the ACL2
  [bridge], require certain Common Lisp libraries.

  These libraries are now bundled with ACL2 via [quicklisp], so you
  should not need to download anything extra to use them. However,
  since these libraries are not portable across all Lisps that can
  run ACL2, you must explicitly enable Quicklisp by setting
  USE_QUICKLISP=1 in your make command if you want to use them. For
  instance:

    make ACL2=... USE_QUICKLISP=1 doc/top.cert -j 4

  Using Quicklisp should definitely work for CCL and SBCL. We have not
  tested it with other Lisps, but there is some chance it will work
  with Lisps such as Allegro, Lispworks, and CMUCL. It will almost
  certainly not work for GCL.


Books that Require Additional Software

  Some other books based on [satlink] and [gl] require a SAT solver,
  typically Glucose, to be installed; see
  [satlink::sat-solver-options] for installation options. The build
  system should automatically determine if Glucose is installed on
  your system, and will avoid trying to certify these books unless
  Glucose is present.


Building the manual

  If you just want to get a copy of the ACL2+Books manual for local
  viewing, you probably don't need to build it yourself because you
  can just {download | download/} a copy. If for some reason you do
  want to build the manual yourself, you should be able to run, e.g.,

    $ cd /path/to/acl2-sources/books
    $ make manual USE_QUICKLISP=1 -j 4

  Building the manual should work on at least CCL and SBCL on Linux and
  Mac OS X. It may not work for some other OS/Lisp combinations. In
  particular, building the manual requires some features from [oslib]
  and [quicklisp] that may not be available on some other Lisps.

  The resulting web-based manual may be found in:

    acl2-sources/books/doc/manual/index.html

  See also [ACL2-doc] for details about how to build your own
  Emacs-based manual, and [xdoc::save] for general information about
  how to build and distribute custom XDOC manuals, e.g., manuals that
  additionally include your own unreleased books.


A Full Build

  Building all of the books can take hours and is usually unnecessary.
  That said, it is easy to do: just run make all, e.g.,

    $ cd /path/to/acl2-sources/books
    $ make ACL2=/path/to/acl2-sources/saved_acl2 -j 2 all

  This actually still skips a few books that are very slow. If you
  really need to certify absolutely everything, you can run make
  everything, but this will likely add hours to your build!


Cleaning Up

  If you want to delete generated files, you can run make clean to
  remove certificates, compiled files, and build logs.

  If you just want to remove the files in a particular subdirectory
  (and its subdirectories), you can go into that directory and then
  run the build/clean.pl script. This will delete, starting from your
  current directory, recursively, all certificates, logs, compiled
  files, etc.

  Note that make clean doesn't remove some files, e.g., [xdoc] manuals.
  To remove everything, try make moreclean.


Debugging Failed Certifications

  If a book fails to certify, you may want to try certifying it in an
  interactive session. The most reliable way to do this is to
  replicate the environment and commands that the build system used.
  This information can be found at the top of the [bookname].cert.out
  file. For instance:

    ;; foo.cert.out
    -*- Mode: auto-revert -*-
    ...
    Environment variables:
    ACL2_CUSTOMIZATION=NONE                 ;; <-- first configure your
    ACL2_SYSTEM_BOOKS=/path/to/acl2/books   ;;     environment to match
    ACL2=/path/to/saved_acl2                ;;     these settings
    ...
    Temp lisp file:
    (acl2::value :q)                 ;; <--- then submit these commands to
    (acl2::in-package \"ACL2\")      ;;      $ACL2 to debug the failure
    ...                              ;;      interactively
    --- End temp lisp file ---

  Some other notes/tips:

    * Make sure the ACL2 image you run is the same as the one listed as
      ACL2 in those environment variables!
    * You may wish to set the environment variables for only the duration
      of your ACL2 session by using the \"env\" command.
    * You may wish to edit some of the commands for better debugging
      purposes; e.g. you may modify the [set-inhibit-output-lst]
      command, or insert a [set-debugger-enable] command, etc.
    * If you don't want your session to exit after a successful
      certification, replace the last form (er-progn (time$
      (certify-book ... with just the (time$ (certify-book ...))
      part.


Further Resources

  The build system is largely based on [build::cert.pl]. There is
  considerable documentation about cert.pl, and we highly recommend
  using it to manage your own ACL2 projects.

  The main build script is books/GNUmakefile. There are many comments
  at the start of this file, and you can also inspect it to see what
  targets are available.

  Please feel absolutely free to contact the [ACL2-help] mailing list
  with any questions about building the community books.


Subtopics

  [Books-certification-alt]
      Alternate instructions for certifying the [community-books], from
      the perspective of the acl2-sources directory.

  [Books-certification-classic]
      Classic ACL2 `make'-based certification of [books]

  [Provisional-certification]
      Certify a book in stages for improved book-level parallelism")
 (BOOKS-CERTIFICATION-ALT
  (BOOKS-CERTIFICATION)
  "Alternate instructions for certifying the [community-books], from the
  perspective of the acl2-sources directory.

  WARNING: Parts of this documentation are probably obsolete, but parts
  are still relevant. See [books-certification] as the primary source
  of information on how to certify the [community-books].

  For background on the ACL2 community books, see [community-books].
  Here we explain how to certify those books, or some of those books,
  with ACL2. We thank Bishop Brock, Jared Davis, and Sol Swords for
  their substantial contributions to this methodology. See
  books/GNUmakefile, in the community books, for more about ``Credits
  and History'', and for additional technical details not covered in
  this topic.

  For more information about installing ACL2, see the {ACL2
  installation instructions |
  http://www.cs.utexas.edu/users/moore/acl2/v7-2/HTML/installation/installation.html}.
  For information about so-called ``classic ACL2 `make'-based
  certification'', which provides support for certifying directories
  of books but may disappear in a future ACL2 release, see
  [books-certification-classic].

  The Basics

  We make the following assumptions.

    * Gnu `make' is available on your system via the `make' command (rather
      than some other flavor of `make'). (Execute `make --version to
      verify this.)
    * You have built or obtained an ACL2 executable.
    * The ACL2 [community-books] are installed in the books/ subdirectory
      of your ACL2 distribution, as is the case when you have
      followed the standard installation instructions.

  Note: All commands shown below are issued in the top-level (ACL2
  sources) directory of your ACL2 distribution.

  By default the ACL2 executable is file saved_acl2 in your ACL2
  sources directory, and you can issue the following command to the
  shell in order to do a ``regression run'' that certifies all of the
  community books using that executable.

    make regression

  Better yet, save a log file in case there are problems, for example
  as follows.

    (make regression) >& make-regression.log

  or perhaps better yet:

    (time nice make regression) >& make-regression.log

  For the sake of brevity, below we'll skip mentioning any of `time',
  `nice', or `>& make-regression.log'. But saving a log file, in
  particular, is useful in case you encounter problems to report.

  If you fetched the community books using git, then you will have a
  directory books/workshops/ that is not necessary for certifying the
  other books. If you want to skip certification of the books under
  books/workshops/, use target `certify-books' instead of target
  `regression', for example as follows.

    (time nice make certify-books) >& make-certify-books.log

  Whether you use target `regression' or target `certify-books', then
  for each book foo.lisp whose certification is attempted, a file
  foo.cert.out in the same directory will contain the output from the
  book's certification attempt.

  A regression run may take a few hours, but if you have a
  multiprocessing computer, you can speed it up by certifying some
  books in parallel, by providing a value for `make' option -j. For
  example, if you have 8 hardware threads then you might want to
  issue the following command.

    make regression -j 8

  Specifying the ACL2 Executable

  If your ACL2 executable is not file saved_acl2 in the ACL2 sources
  directory, then you will need to specify that executable. You can
  do that by setting variable ACL2, either as an environment variable
  or, as displayed below, as a `make' variable. Either way, you will
  need to avoid relative pathnames. For example, the first two forms
  below are legal, but the third is not, assuming that my-acl2 is on
  your PATH in a Unix-like environment (e.g., linux or MacOS) and
  that my-saved_acl2 is just a pathname relative to your ACL2 sources
  directory, which is not on your path.

    make regression -j 8 ACL2=my-acl2
    make regression -j 8 ACL2=/u/smith/bin/acl2
    # The following only works if my-saved_acl2 is on your path (see above).
    make regression -j 8 ACL2=my-saved_acl2

  Cleaning

  You can delete files generated by book certification (including .cert
  files, .out files, compiled files, and more) by issuing the
  following command (again, in your ACL2 sources directory).

    make clean-books

  If you want to cause such deletion and then do a regression, simply
  replace the `regression' or `certify-books' target by
  `regression-fresh' or `certify-books-fresh', respectively, for
  example as follows. follows.

    make -j 4 regression-fresh
    make -j 4 certify-books-fresh

  If however you only want to clean up generated files residing under a
  given directory (or its subdirectories, and recursively), you can
  issue the following command while standing in that directory, where
  DIR is a pathname of your books directory.

    DIR/clean.pl

  For example, to clean up generated files under books/arithmetic, you
  could do the following.

    cd books/arithmetic
    ../clean.pl
    cd - # to return to the ACL2 sources directory, if you wish to do so

  Restricting to Specific Directories and Books

  You can specify which books you want certified by using any or all of
  the variables EXCLUDED_PREFIXES, ACL2_BOOK_CERTS, or
  ACL2_BOOK_DIRS. First, the set of desired .cert files is restricted
  to those that do not start with any string that is one of the words
  in the value of EXCLUDED_PREFIXES. Then ACL2_BOOK_CERTS and
  ACL2_BOOK_DIRS, if supplied, specify which books should be
  certified, as illustrated by the following example.

    make -j 8 regression-fresh \\
     ACL2_BOOK_DIRS=\"symbolic paco\" \\
     ACL2_BOOK_CERTS=\" \\
      workshops/2006/cowles-gamboa-euclid/Euclid/ed6a.cert \\
      workshops/2006/cowles-gamboa-euclid/Euclid/ed4bb.cert \\
      \"

  Then all book in directories symbolic and paco will be certified, as
  will the books workshops/2006/cowles-gamboa-euclid/Euclid/ed6a.lisp
  and workshops/2006/cowles-gamboa-euclid/Euclid/ed4bb.lisp. Note
  that all pathnames should be relative to your community books
  directory; in particular, they should not be absolute pathnames.
  Also notice the .cert extension used in files supplied for
  ACL2_BOOK_CERTS.

  Alternatively, you may wish to invoke books/cert.pl while standing in
  a directory under which you want to certify books. This will
  certify not only those books, but all supporting books --- even
  those not under the current directory --- that do not have
  up-to-date .cert files. The following is a simple command to invoke
  that will certify all books in the current directory, where if the
  books/ directory is not on your path, you will need to provide a
  suitable filename, e.g. ../../cert.pl or ~/acl2/books/cert.pl.

    cert.pl -j 4 *.lisp

  Here is a more complex command, which illustrates a way to certify
  books in subdirectories (as well as the current directory), the use
  of provisional certification (see [provisional-certification]), and
  `make'-level parallelism (in this case specifying four parallel
  processes).

    ACL2_PCERT=t cert.pl -j 4 `find . -name '*.lisp'`

  Note that with this approach, unlike classic ACL2 `make'-based
  certification (see [books-certification-classic], out-of-date .cert
  files that are not under the current directory will also be built.
  For documentation of cert.pl invoke:

    cert.pl -h

  See the top of cert.pl for authorship and copyright information.

  Finally, we give a brief summary of how to use so-called ``classic
  ACL2 `make'-based certification'' for community books; see
  [books-certification-classic] for details. Note that support for
  this approach might be eliminated in a future ACL2 release. We
  welcome comments from the ACL2 community about whether or not that
  would be a good thing to do. See the discussion above about
  ACL2_BOOK_DIRS for the ``modern'' way to accomplish the same thing.

  Many community book directories have a Makefile. If you modify books
  only in such a directory, you can recertify by standing in that
  directory and issuing a `make' command. This command can optionally
  specify an ACL2 executable as well as parallelism, for example as
  follows, where the first line (make clean) is optional.

    make clean
    (time nice make -j 8 ACL2=my-acl2)

  ACL2 Customization Files

  By default, your acl2-customization file (see [ACL2-customization])
  is ignored by all flavors of ``make regression''. However, you can
  specify the use of an acl2-customization file by setting the value
  of environment variable ACL2_CUSTOMIZATION to the empty string,
  indicating a default such file, or to the desired absolute
  pathname. For example:

    make regression ACL2_CUSTOMIZATION=''
    make regression ACL2_CUSTOMIZATION='~/acl2-customization.lisp'

  Regressions for Variants of ACL2

  The discussion above also pertains to using ACL2(p) (see [parallel])
  or ACL2(r) (see [real]), in which case the default is saved_acl2p
  or saved_acl2r respectively, rather than saved_acl2. However, we
  recommend that you use ACL2, not ACL2(p), for your regression. Then
  you can use ACL2(p) for your own proof developments. However, if
  you want to use ACL2(p) or for your regression, see
  [waterfall-parallelism-for-book-certification].

  Provisional Certification

  To use provisional certification (see [provisional-certification]),
  supply ACL2_PCERT=t with your `make' command. Here is an example.

    time nice make regression -j 4 ACL2_BOOK_DIRS=deduction ACL2_PCERT=t

  Miscellany

  Other control of the certification process may be found by perusing
  community books file books/make_cert. In particular, the INHIBIT
  variable may be set to a call of [set-inhibit-output-lst], for
  example as follows to obtain the output one would get by default in
  an (interactive) ACL2 session.

    time nice make regression -j 4 ACL2_BOOK_DIRS=arithmetic \\
      INHIBIT='(set-inhibit-output-lst proof-tree)'

  Troubleshooting

  If you run into problems, you can get help by joining the acl2-help
  email list (follow the link from the ACL2 home page) and sending a
  message to that list. Also consider trying another version of GNU
  `make'; for example, we have found that versions 3.81 and 3.82
  sometimes cause errors on Linux where version 3.80 does not. Note
  however that Version 3.80 does not print certain informational
  messages that are printed by later versions.")
 (BOOKS-CERTIFICATION-CLASSIC
  (BOOKS-CERTIFICATION)
  "Classic ACL2 `make'-based certification of [books]

  This [documentation] topic explains an approach to certifying
  directories of books, which we call ``classic ACL2 `make'-based
  certification''.

  Warning: The capability described in this section might be replaced
  at any time by a capability based on corresponding support for
  community books (see [books-certification]). If you think that
  would be a hardship, please contact the ACL2 implementors.

  This topic discusses a way to certify a directory of books other than
  the ACL2 community books. See [books-certification] for how to
  certify the set of ACL2 community [books]. There is also a section
  in that [documentation] topic, ``Restricting to Specific
  Directories and Books'', that provides an alternative to classic
  ACL2 `make'-based certification (as discussed in the present topic)
  for certifying specified sets of books.

  We assume here a familiarity with Unix/Linux `make'. We also assume
  that you are using GNU `make' rather than some other flavor of
  `make'. And finally, we assume, as is typically the case by
  following the standard installation instructions, that you install
  the ACL2 community books in the books/ subdirectory of your ACL2
  distribution. We will refer below to that directory as BOOKS.

  In summary: to use `make' to certify [books] under a given directory,
  you may create a simple Makefile in that directory (as explained
  below) so that when you stand in that directory, you can submit the
  command, `make', to certify those books. If you have a
  multi-processor machine or the like, then you can use the `-j flag
  `make'-level parallelism by specifying the number of concurrent
  processes. For example:

    make -j 4

  For each book foo.lisp, a file foo.out in the same directory as
  foo.lisp will contain the output from the corresponding
  certification attempt. If you have previously executed such a
  command, then you might first want to delete [certificate] files
  and other generated files by executing the following command.

    make clean

  Note that when you run `make', then by default, the first error will
  cause the process to stop. You can use make -i to force `make' to
  ignore errors, thus continuing past them. Or, use make -k to keep
  going, but skipping certification for any book that includes
  another whose certification has failed.

  By default, your acl2-customization file (see [ACL2-customization])
  is ignored by such `make' commands. However, you can specify the
  use of an acl2-customization file by setting the value of
  environment variable ACL2_CUSTOMIZATION to the empty string,
  indicating a default such file, or to the desired absolute
  pathname. For example:

    make ACL2_CUSTOMIZATION=''
    make ACL2_CUSTOMIZATION='~/acl2-customization.lisp'

  We now discuss how to create makefiles to support `make' commands as
  discussed above.

  First we give five steps for creating a Makefile to support
  certification of a directory of books, without subdirectories. For
  examples of such Makefiles you can look in community book
  directories (which, however, might disappear in future versions of
  ACL2).

      1. Include the file Makefile-generic from the books/ subdirectory of
      your ACL2 sources directory, but first perhaps define the
      variable `ACL2'. Consider the following example.

        ACL2 ?= /Users/john_doe/acl2/acl2-sources/saved_acl2
        include /Users/john_doe/acl2/acl2-sources/books/Makefile-generic

      In this example, you can omit the first line, because the default
      ACL2 executable is file saved_acl2 in the directory immediately
      above the directory of the specified Makefile-generic file.
      Indeed, that is the common case. Note the use of ?= instead of
      = or :=, so that ACL2 can instead be defined by the environment
      or provided on the command line as part of the `make' command.

      2. (Optional; usually skipped.) Set the INHIBIT variable if you want
      to see more than the summary output. For example, if you want
      to see the same output as you would normally see at the
      terminal, put this line in your Makefile after the `include'
      lines.

        INHIBIT = (assign inhibit-output-lst (list (quote proof-tree)))

      For other values to use for INHIBIT, see [set-inhibit-output-lst] and
      see the original setting of INHIBIT in books/Makefile-generic.

      3. Specify the books to be certified. Normally, every file with
      extension .lisp will be a book that you want to certify, in
      which case you can skip this step. Otherwise, put a line in
      your Makefile after the ones above that specifies the books to
      be certified. The following example, from an old version of
      community books file books/finite-set-theory/osets/Makefile,
      should make this clear.

        BOOKS = computed-hints fast instance map membership outer primitives \\
                quantify set-order sets sort

      But better yet, use the extension .lsp for any Lisp or ACL2 files
      that are not to be certified, so that the definition of BOOKS
      can be omitted.

      4. Create .acl2 files for books that are to be certified in other
      than the initial ACL2 world (see [portcullis]). For example, if
      you look in community books file
      books/arithmetic/equalities.acl2 you will see [defpkg] forms
      followed by a [certify-book] command, because it was determined
      that [defpkg] forms were necessary in the certification world
      in order to certify the equalities book. In general, for each
      <book-name>.lisp whose certification requires a non-initial
      certification world, you will need a corresponding
      <book-name>.acl2 file that ends with the appropriate
      [certify-book] command.

      You also have the option of creating a file cert.acl2 that has a
      special role. When file <book-name>.lisp is certified, if there
      is no file <book-name>.acl2 but there is a file cert.acl2, then
      cert.acl2 will be used as <book-name>.acl2 would have been
      used, as described in the preceding paragraph, except that the
      appropriate [certify-book] command will be generated
      automatically. Thus, no certify-book command should occur in
      cert.acl2.

      It is actually allowed to put raw lisp forms in a .acl2 file
      (presumably preceded by :q or (value :q) and followed by (lp)).
      But this is not recommended; we make no guarantees about
      certification performed any time after raw Lisp has been
      entered in the ACL2 session.

      5. Generally, the next step is to include the following line after
      the `include' of Makefile-generic (see the first step above).

        -include Makefile-deps

      This will cause `make' to create and then include a file
      Makefile-deps that contains ``dependency'' lines needed by
      `make'. If those dependencies are somehow flawed, it may be
      because you have [include-book] forms that are not truly
      including books, for example in multi-line comments (#|..|#).
      These will be ignored if preceded by a semicolon (;), or if you
      add a line break after ``include-book.'' But instead of adding
      the `-include' line above, you can create dependency lines
      yourself by running the command

        make dependencies

      and pasting the result into the end of your Makefile, and editing as
      you see fit.

  This concludes the basic instructions for creating a Makefile in a
  directory including books. Here are some other capabilities offered
  by community books file books/Makefile-subdirs. Not included below
  is a discussion of how to increase parallelism by avoiding the need
  to certify included books before certifying a given book; see
  [provisional-certification].

  Subdirectory Support

  There is support for using `make' to certify books in subdirectories.
  Consider the following example.

    DIRS = pass1 bind-free floor-mod
    include ../Makefile-subdirs

  This indicates that we are to run `make' in subdirectories pass1/,
  bind-free/, and floor-mod/ of the current directory.

  You can combine this subdirectory support with the support already
  discussed for certifying books in the top-level directory. Here is
  an example, which as of this writing is in community books file
  books/arithmetic-3/Makefile contains the following lines.

    arith-top: top all
    all: top

    DIRS = pass1 bind-free floor-mod
    include ../Makefile-subdirs
    include ../Makefile-generic

    -include Makefile-deps

  The `top' target is defined in ../Makefile-subdirs to call `make' in
  each subdirectory specified in DIRS. We have set the default target
  in the example above to a new name, arith-top, that makes that top
  target before making the `all' target which, in turn, is the
  default target in any Makefile-generic, and is responsible for
  certifying books in the current directory as discussed in the five
  steps displayed above.

  Use Makefile-psubdirs instead of Makefile-subdirs if certification of
  a book in a subdirectory never depends on certification of a book
  in a different subdirectory, because then the -j option of `make'
  can allow subdirectories to be processed in parallel.

  Cleaning Up

  We note that there is a clean target. Thus,

    make clean

  will remove generated files including .cert, .out files, and compiled
  files.

  System Books

  An environment variable ACL2_SYSTEM_BOOKS is generally set
  automatically, so you can probably skip reading the following
  paragraph unless your attempt to certify books fails to locate
  those books properly.

  The environment variable ACL2_SYSTEM_BOOKS can be set to the
  top-level directory of the ACL2 community books. A Unix-style
  pathname, typically ending in books/ or books, is permissible. In
  most cases, your ACL2 executable is a small script in which you can
  set this environment variable just above the line on which the
  actual ACL2 image is invoked, for example:

    export ACL2_SYSTEM_BOOKS
    ACL2_SYSTEM_BOOKS=/home/acl2/v3-2/acl2-sources/books

  However, you can also set ACL2_SYSTEM_BOOKS as a `make' variable, by
  setting it in your Makefile before the first target definition,
  e.g.:

    ACL2_SYSTEM_BOOKS ?= /home/acl2/v3-2/acl2-sources/books

  Compilation Support

  The file books/Makefile-generic provides support for compiling books
  that are already certified (but see [compilation] for an
  exception). For example, suppose that you have certified books
  using GCL as the host Lisp, resulting in compiled files with the .o
  extension. Now suppose you would like to compile the books for
  Allegro Common Lisp, whose compiled files have the .fasl extension.
  The following command will work if you have included
  books/Makefile-generic in your Makefile.

    make fasl

  In general, the compiled file extension for a Lisp supported by ACL2
  will be a target name for building compiled files for all your
  books (after certifying the books, if not already up-to-date on
  certification).

  If you run into problems, you can get help by joining the acl2-help
  email list (follow the link from the ACL2 home page) and sending a
  message to that list. Also consider trying another version of GNU
  `make'; for example, we have found that versions 3.81 and 3.82
  sometimes cause errors on Linux where version 3.80 does not.")
 (BOOKS-REFERENCE
  (BOOKS)
  "Reference guide for ACL2 functionality related to books, e.g.,
  [include-book], [certify-book], [cbd], etc.


Subtopics

  [Add-include-book-dir]
      Link keyword for :dir argument of [ld] and [include-book]

  [Add-include-book-dir!]
      Non-[local]ly link keyword for :dir argument of [ld] and
      [include-book]

  [Book-compiled-file]
      Creating and loading of compiled and expansion files for [books]

  [Cbd]
      Connected book directory string

  [Certify-book]
      How to produce a [certificate] for a book

  [Delete-include-book-dir]
      Unlink keyword for :dir argument of [ld] and [include-book]

  [Delete-include-book-dir!]
      Non-[local]ly unlink keyword for :dir argument of [ld] and
      [include-book]

  [Full-book-name]
      Book naming conventions assumed by ACL2

  [Include-book]
      Load the [events] in a file

  [Pathname]
      Introduction to filename conventions in ACL2

  [Set-cbd]
      To set the connected book directory

  [Set-write-ACL2x]
      Cause [certify-book] to write out a .acl2x file")
 (BOOKS-TOUR
  (BOOKS)
  "The guided tour of concepts related to ACL2 [books].

  The tour begins with [book-example].


Subtopics

  [Book-contents]
      Restrictions on the forms inside [books]

  [Book-example]
      How to create, certify, and use a simple book

  [Book-name]
      Conventions associated with book names

  [Certificate]
      How a book is known to be admissible and where its [defpkg]s reside

  [Certify-book]
      How to produce a [certificate] for a book

  [Include-book]
      Load the [events] in a file

  [Keep]
      How we know if [include-book] read the correct files

  [Portcullis]
      The gate guarding the entrance to a certified book")
 (BOOLE$
  (NUMBERS ACL2-BUILT-INS)
  "Perform a bit-wise logical operation on 2 two's complement integers

  When integers x and y are viewed in their two's complement
  representation, (boole$ op x y) returns the result of applying the
  bit-wise logical operation specified by op. The following table is
  adapted from documentation for the analogous Common Lisp function
  {boole |
  http://www.lispworks.com/documentation/HyperSpec/Body/f_boole.htm}
  in the {Common Lisp Hyperspec |
  http://www.lispworks.com/documentation/HyperSpec/}. Note that the
  values of op for boole$ are ACL2 constants, rather than
  corresponding values of op for the Common Lisp function boole.

    op               result
    -----------      ---------
    *boole-1*        x
    *boole-2*        y
    *boole-andc1*    and complement of x with y
    *boole-andc2*    and x with complement of y
    *boole-and*      and
    *boole-c1*       complement of x
    *boole-c2*       complement of y
    *boole-clr*      the constant 0 (all zero bits)
    *boole-eqv*      equivalence (exclusive nor)
    *boole-ior*      inclusive or
    *boole-nand*     not-and
    *boole-nor*      not-or
    *boole-orc1*     or complement of x with y
    *boole-orc2*     or x with complement of y
    *boole-set*      the constant -1 (all one bits)
    *boole-xor*      exclusive or

  The guard of boole$ specifies that op is the value of one of the
  constants above and that x and y are integers.

  See any Common Lisp documentation for analogous information about
  Common Lisp function boole.

  Function: <boole$>

    (defun boole$ (op i1 i2)
           (declare (type (integer 0 15) op)
                    (type integer i1 i2))
           (cond ((eql op *boole-1*) i1)
                 ((eql op *boole-2*) i2)
                 ((eql op *boole-and*) (logand i1 i2))
                 ((eql op *boole-andc1*)
                  (logandc1 i1 i2))
                 ((eql op *boole-andc2*)
                  (logandc2 i1 i2))
                 ((eql op *boole-c1*) (lognot i1))
                 ((eql op *boole-c2*) (lognot i2))
                 ((eql op *boole-clr*) 0)
                 ((eql op *boole-eqv*) (logeqv i1 i2))
                 ((eql op *boole-ior*) (logior i1 i2))
                 ((eql op *boole-nand*) (lognand i1 i2))
                 ((eql op *boole-nor*) (lognor i1 i2))
                 ((eql op *boole-orc1*) (logorc1 i1 i2))
                 ((eql op *boole-orc2*) (logorc2 i1 i2))
                 ((eql op *boole-set*) 1)
                 ((eql op *boole-xor*) (logxor i1 i2))
                 (t 0)))")
 (BOOLEAN-LISTP
  (BOOLEANP LISTS ACL2-BUILT-INS)
  "Recognizer for a true list of booleans

  The predicate boolean-listp tests whether its argument is a
  [true-listp] of objects each or which satisfyies [booleanp], i.e.,
  is t or nil.

  Function: <boolean-listp>

    (defun boolean-listp (lst)
           (declare (xargs :guard t))
           (cond ((atom lst) (eq lst nil))
                 (t (and (or (eq (car lst) t) (eq (car lst) nil))
                         (boolean-listp (cdr lst))))))")
 (BOOLEANP
  (BASICS ACL2-BUILT-INS)
  "Recognizer for booleans

  (Booleanp x) is t if x is t or nil, and is nil otherwise.

  See [generalized-booleans] for a discussion of a potential soundness
  problem for ACL2 related to the question: Which Common Lisp
  functions are known to return Boolean values?

  Function: <booleanp>

    (defun booleanp (x)
           (declare (xargs :guard t))
           (if (eq x t) t (eq x nil)))


Subtopics

  [Boolean-listp]
      Recognizer for a true list of booleans")
 (BOUNDERS
  (TAU-SYSTEM)
  "Intervals, bounder functions, and bounder correctness

    Bounder Forms 1 and 2:
    (implies (and (tau-intervalp i1)
                  ...
                  (or (equal (tau-interval-dom i1) 'dom1-1)
                      ...)
                  ...
                  (in-tau-intervalp x1 i1)
                  ...)
             (and (tau-intervalp (bounder-fn i1 ...))
                  (in-tau-intervalp target
                                    (bounder-fn i1 ...))))

  where target is either (fn x1 ... y1 ...) or (mv-nth 'n (fn x1 ... y1
  ...)), depending on whether we are in the Form 1 or Form 2 case,
  respectively. However, the shape above is meant just as a reminder.
  Details are given below.

  This topic first explains the basic shape of Bounder Form 1. Then it
  illustrates Bounder Form 2. Finally, it deals briefly with proving
  bounder correctness theorems. The community book
  tau-bounders/elementary-bounders contains bounders for various
  elementary functions including [+], [*], [/], [floor], [mod],
  [logand], [lognot], [logior], [logorc1], [logeqv], [logxor], and
  [ash]. You might look at or include this book to see more example
  theorems, to see how proofs of such theorems are managed, and to
  experiment with their effects on proving theorems involving
  arithmetic over finite or half-finite intervals.

  A bounder correctness theorem establishes that bounder-fn is a
  ``bounder'' for the function fn. That means that when trying to
  compute a tau for a call of fn (or, in the case of Form 2, for the
  nth component of the multiple-value vector returned by a call of
  fn) the tau system can call bounder-fn on the intervals containing
  certain arguments of fn.

  Let us start with an example. Let fn be the addition function, +
  (actually, [binary-+]). Consider the target term (+ x y) and
  contemplate the question: if you know intervals containing x and y,
  say intx and inty respectively, what is an interval containing
  their sum? The answer is pretty easy to state in English: the
  domain of the answer interval is the less restrictive of the
  domains of intx and inty. The lower bound of the answer interval is
  the sum of the lower bounds of intx and inty, and the lower
  relation is the stronger of the lower relations of intx and inty.
  Analogous comments define the upper bound and relation of the
  answer interval. So for example, if x is an INTEGERP such that 0 <=
  x <= 10 and y is a RATIONALP such that 0 < y <= 20, then (+ x y) is
  a RATIONALP such that 0 < (+ x y) <= 30.

  Defining this precisely is more tedious than describing it in English
  because one must make precise the notions of ``less restrictive''
  domains, ``weaker'' relations, and the possibility that either or
  both of the bounds could be ``infinite.'' But we can easily imagine
  defining the function bounder-for-+ that returns the answer
  interval described, given intx and inty.

  Then the following Bounder Form 1 formula establishes the correctness
  of bounder-for-+ and allows the tau system to use it to produce
  bounds in the tau computed for +-expressions:

    (implies (and (tau-intervalp intx)
                  (tau-intervalp inty)
                  (in-tau-intervalp x intx)
                  (in-tau-intervalp y inty))
             (and (tau-intervalp (bounder-for-+ intx inty))
                  (in-tau-intervalp (+ x y)
                                    (bounder-for-+ intx inty))))

  For example, suppose we have a formula with the following hypotheses

    (and (integerp a)
         (<= 0 a)
         (<= a 10)
         (rationalp b)
         (< 0 b)
         (<= b 20))

  and suppose the tau system encounters the term (+ a b). When the term
  is enountered, the tau for a would include an INTEGERP interval
  such that 0 <= a <= 10 and the tau for b would include a RATIONALP
  interval such that 0 < b <= 20. In its most primitive
  configuration, the tau system would only know that the tau for (+ a
  b) includes the recognizer RATIONALP (and all that it is known to
  imply). But after the bounder theorem above is proved and available
  as a :tau-system rule the tau system would infer that (+ a b) was
  in the RATIONALP interval such that 0 < (+ a b) <= 30.

  Thus, by defining bounder functions and proving them correct the user
  can give the tau system the ability to compute the bounds on
  function calls as a function of the known bounds on their actuals.

  It is sometimes useful to restrict the domains of the intervals to be
  considered. For example, in bounding *-expressions it is
  simplifying to restrict one's attention to intervals over the
  integers or rationals (and thus exclude the complex rationals so
  one need not think about the getting negative bounds by multiplying
  two ``positive'' complex rationals or how to ``round up'' from
  complex bounds to the rationals required by our intervals).

  If we were to define bounder-for-* so that it works correctly to
  bound *-expressions, but only for integer or rational arguments,
  its correctness theorem would be:

    (implies (and (tau-intervalp intx)                             ; (a)
                  (tau-intervalp inty)
                  (or (equal (tau-interval-dom intx) 'INTEGERP)    ; (b)
                      (equal (tau-interval-dom intx) 'RATIONALP))
                  (or (equal (tau-interval-dom inty) 'INTEGERP)
                      (equal (tau-interval-dom inty) 'RATIONALP))
                  (in-tau-intervalp x intx)                        ; (c)
                  (in-tau-intervalp y inty))
             (and (tau-intervalp (bounder-for-* intx inty))       ; (d)
                  (in-tau-intervalp (* x y)                        ; (e)
                                    (bounder-for-* intx inty))))

  In this case, bounder-for-* would be applied to the intervals for x
  and y only if those intervals were over the integers or the
  rationals.

  The above theorem for bounder-for-* begins to suggest the general
  form of a bounder theorem and we will use it to explain the general
  form.

  The hypotheses of a bounder theorem must be a conjunction and the
  conjuncts must be partitionable into three parts, (a), (b), and
  (c). The conclusion, must be a conjunction, must contain at least
  two conjuncts, (d) and (e), and is allowed to contain others that
  are simply ignored for purposes of bounders. (See the note below
  about why we allow but ignore additional conjuncts in the
  conclusion.)

  Part (a) introduces some distinct ``interval variables,'' here called
  ``ivars,'' that are known to denote intervals; for the example
  above, the ivars are intx and inty. Each hypothesis in part (a) is
  of the form (TAU-INTERVALP ivar).

  Part (b) allows us to restrict the domains of some of the intervals.
  Each hypothesis in part (b) must be a disjunction and each of the
  disjuncts must be of the form (EQUAL (TAU-INTERVAL-DOM ivar) 'dom),
  where ivar is one of the interval variables and dom is one of
  INTEGERP, RATIONALP, ACL2-NUMBERP, or NIL. It is not necessary to
  restrict every interval variable. Indeed, part (b) may be empty, as
  in the theorem for bounder-for-+ above.

  Part (c) consists of a set of (IN-TAU-INTERVALP avar ivar) hypotheses
  where each avar is a variable and no two hypotheses in part (c) use
  the same avar or ivar. We call the set of all such avar the
  ``actual variables'' or ``avars.'' The avars and ivars must be
  distinct. Part (c) sets up a correspondence between the avars and
  the ivars, each avar is in an interval denoted by one ivar.

  Part (d) introduces the name of the bounder function, here
  bounder-for-*, and the order of its ivar arguments. We see that
  bounder-for-* takes two arguments and they correspond, in order, to
  the intervals containing x and y. Part (d) also establishes that
  the bounder function always returns an interval under hypotheses
  (a), (b), and (c). Note that it is sometimes useful to return the
  ``universal interval'' (one that contains everything) if you don't
  want to compute a better interval for some case; see
  [tau-intervalp] or [in-tau-intervalp].

  Part (e) introduces the name of the function being bounded, here *,
  and the order of its arguments. It establishes that the function
  being bounded really is bounded by the interval computed by the
  bounder function. In general, the function being bounded may take
  additional arguments. It is possible that the function being
  bounded takes some arguments that do not affect the bounds of its
  output.

  Thus, parts (c) and (e) together establish a mapping between the
  actuals of a call of the function being bounded and the intervals
  to be supplied to the bounder.

  The parts identified above may be presented in any order and the
  literals constituting those parts may be mingled. Thus, for
  example, here is another version of the theorem above that
  generates the same bounding information for the tau system. In this
  version, the hypotheses and conclusions are rearranged,
  bounder-for-* takes its arguments in the opposite order, and the
  theorem includes an additional conclusion.

    (implies (and (tau-intervalp intx)                             ; (a)
                  (or (equal (tau-interval-dom intx) 'INTEGERP)    ; (b)
                      (equal (tau-interval-dom intx) 'RATIONALP))
                  (in-tau-intervalp x intx)                        ; (c)

                  (tau-intervalp inty)                             ; (a)
                  (or (equal (tau-interval-dom inty) 'INTEGERP)    ; (b)
                      (equal (tau-interval-dom inty) 'RATIONALP))
                  (in-tau-intervalp y inty))
             (and (in-tau-intervalp (* x y)                        ; (e)
                                    (bounder-for-* inty intx))
                  (tau-intervalp (bounder-for-* inty intx))        ; (d)))

                  (or (equal (tau-interval-dom (bounder-for-* inty intx))
                             'INTEGERP)
                      (equal (tau-interval-dom (bounder-for-* inty intx))
                             'RATIONALP))

  Note on why bounder forms allow additional conjuncts in the
  conclusion: It is often the case that one creates bounders by
  composing other bounders. To prove compositional bounds correct one
  must often prove more than the mere correctness of the components.
  For example, one might need to prove that the domain of the new
  bounding interval is INTEGERP or otherwise restricted. We allow
  such ``unnecessary'' conclusions simply to save the user the burden
  of stating multiple theorems.

  An Illustration of Bounder Form 2: Suppose (quad i) is defined so
  that truncates the integer i to the largest multiple of 4 weakly
  below i and, additionally, returns the remainder. For example,
  (quad 26) returns (mv 24 2). Then here are bounders for each of its
  return values:

    (defun quad-bounds-0 (i)
      (cond ((and (tau-interval-lo i)
                  (<= 0 (tau-interval-lo i)))
             (make-tau-interval 'integerp nil 0 nil (tau-interval-hi i)))
            (t (make-tau-interval nil nil nil nil nil))))

    (defun quad-bounds-1 (i)
      (cond ((and (tau-interval-lo i)
                  (<= 0 (tau-interval-lo i)))
             (make-tau-interval 'integerp nil 0 nil 3))
            (t (make-tau-interval nil nil nil nil nil))))

  Note that the bounders assume i is an INTEGERP and return the
  universal interval when i is not a natural.

  As noted in the discussion below about how to prove bounder
  correctness theorems, proving these bounders correct will require
  an arithmetic book, e.g.,

    (include-book \"arithmetic-5/top\" :dir :system)

  Here then are two bounder correctness theorems of Form 2:

    (defthm quad-bounds-0-correct
      (implies (and (tau-intervalp i)
                    (equal (tau-interval-dom i) 'INTEGERP)
                    (in-tau-intervalp x i))
               (and (tau-intervalp (quad-bounds-0 i))
                    (in-tau-intervalp (mv-nth 0 (quad x))
                                      (quad-bounds-0 i))))
      :rule-classes :tau-system)

    (defthm quad-bounds-1-correct
      (implies (and (tau-intervalp i)
                    (equal (tau-interval-dom i) 'INTEGERP)
                    (in-tau-intervalp x i))
               (and (tau-intervalp (quad-bounds-1 i))
                    (in-tau-intervalp (mv-nth 1 (quad x)) (quad-bounds-1 i))))
      :rule-classes :tau-system)

  As noted above, if these bounders are to be used in constructing
  other bounders, we might include (in the first theorem) an
  additional concluding conjunct, such as

    (equal (tau-interval-dom (quad-bounds-0 i)) 'INTEGERP)

  so that we can keep quad-bounds-0 disabled to allow us to use
  quad-bounds-0-correct as a :rewrite or other rule and still relieve
  hypotheses about the domain of the interval it produces. These
  hypotheses would arise if some other verified bounder was called on
  the produced interval. In addition, as noted below, we might
  replace the :rule-classes above with

    :rule-classes
     ((:rewrite)
      (:forward-chaining :trigger-terms ((quad-bounds-0 i))))

  Since the theorem is being stored as some kind of rule and since it
  satisfies the Bounder Form 2 shape, it will additionally be stored
  as a :tau-system rule.

  Note on proving bounder theorems: Proving bounder theorems is just
  like proving any other arithmetic theorem and you will need
  whatever libraries are appropriate for the problem domain you are
  working in. Do not expect the tau system to be of much use in
  proving bounder theorems. A typical bounder theorem might require
  you to prove a subgoal like (< (fn x y) (g (tau-interval-hi int1)
  int2)). But tau deals with inequalities relating terms to
  constants, e.g., (< ... 16). A bounder theorem is a sort of
  ``metatheorem'' about how to construct bounded intervals from other
  bounded intervals. So when you undertake to define a bounder and
  prove it correct, go into the project with your eyes open!

  But bounder functions can be broadly divided into two classes, those
  defined in terms of arithmetic on the interval bounds and those
  defined in terms of other bounders. For example, given that

    (LOGXOR x y) = (LOGNOT (LOGEQV x y))

  an interval for bounding LOGXOR can be constructed by composing the
  constructions of intervals for LOGEQV and LOGNOT. So some bounder
  correctness proofs will involve direct manipulation of arithmetic
  inequalities and others might involve appeal to the correctness of
  other bounders, depending on how the new bounder is defined.

  Regardless of which style of bounder we are dealing with, we have
  found it useful to prove the basic theorems relating the tau
  interval accessors to [make-tau-interval], e.g.,

    (equal (tau-interval-dom (make-tau-interval dom lo-rel lo hi-rel hi)) dom)

  and then disable those functions to avoid seeing excessive cars and
  cdrs.

  When dealing with bounders defined in the direct, arithmetic style,
  we tend to keep [tau-intervalp] and [in-tau-intervalp] enabled so
  they unfold and expose the algebra.

  When dealing with bounders defined compositionally in terms of other
  verified bounders, we tend to keep [tau-intervalp] and
  [in-tau-intervalp] disabled so we can rely on the previously proved
  bounder theorems as rewrite and forward chaining rules.

  Note that this last remark means that when you prove bounder
  correctness theorems you should include corollaries that are useful
  :rewrite and possibly :forward-chaining rules if you anticipate
  using that bounder in more complex ones. We tend to trigger the
  forward chaining with the bounder expression itself, rather than
  one of the hypotheses. For example in the rule above for
  bounder-for-* we would include (:forward-chaining :trigger-terms
  ((tau-bounder-expt2 int2))) and let the in-tau-intervalp hypotheses
  select the free variables x and y.")
 (BREAK$
  (ERRORS ACL2-BUILT-INS)
  "Cause an immediate Lisp break

  ACL2 users are generally advised to avoid breaking into raw Lisp.
  Advanced users may, on occasion, see the need to do so. Evaluating
  (break$) will have that effect. (Exception: break$ is disabled
  after evaluation of (set-debugger-enable :never); see
  [set-debugger-enable].) Break$ returns nil.

  Function: <break$>

    (defun break$ nil (declare (xargs :guard t))
           nil)")
 (BREAK-LEMMA
  (BREAK-REWRITE)
  "A quick introduction to breaking rewrite rules in ACL2

    Example:
    :brr t                          ; if you haven't done that yet
    :monitor (:rewrite lemma12) t   ; to install a break point on the
                                    ; rule named (:rewrite lemma12)

  ACL2 does not support Nqthm's break-lemma but supports a very similar
  and more powerful break facility. Suppose some proof is failing;
  apparently some particular rule is not being used and you wish to
  learn why. Then you need the ACL2 [break-rewrite] facility. See
  [break-rewrite] and all of its associated :[doc] topics for
  details. The following basic steps are required.

  (1) To enable the ``break rewrite'' feature, you must first execute

    ACL2 !>:brr t

  at the top-level of ACL2. Equivalently, evaluate (brr t).
  [Break-rewrite] stays enabled until you disable it with (brr nil).
  When [break-rewrite] is enabled the ACL2 rewriter will run slower
  than normal but you will be able to [monitor] the attempts to apply
  specified rules.

  (2) Decide what [rune]s (see [rune]) you wish to [monitor]. For
  example, you might want to know why (:rewrite lemma12 . 2) is not
  being used in the attempted proof. That, by the way, is the name of
  the second rewrite rule generated from the event named lemma12.

  The command

    ACL2 !>:monitor (:rewrite lemma12 . 2) t

  will install an ``unconditional'' break point on that rule. The ``t''
  at the end of the command means it is unconditional, i.e., a break
  will occur every time the rule is tried. ACL2 supports conditional
  breaks also, in which case the t is replaced by an expression that
  evaluates to non-nil when you wish for a break to occur. See
  [monitor]. The above keyword command is, of course, equivalent to

    ACL2 !>(monitor '(:rewrite lemma12 . 2) t)

  which you may also type. You may install breaks on as many rules as
  you wish. You must use [monitor] on each rule. You may also change
  the break condition on a rule with [monitor]. Use [unmonitor] (see
  [unmonitor]) to remove a rule from the list of [monitor]ed rules.

  (3) Then try the proof again. When a [monitor]ed rule is tried by the
  rewriter you will enter an interactive break, called
  [break-rewrite]. See [break-rewrite] for a detailed description.
  Very simply, [break-rewrite] lets you inspect the context of the
  attempted application both before and after the attempt. When
  [break-rewrite] is entered it will print out the ``target'' term
  being rewritten. If you type :go [break-rewrite] will try the rule
  and then exit, telling you (a) whether the rule was applied, (b) if
  so, how the target was rewritten, and (c) if not, why the rule
  failed. There are many other commands. See [brr-commands].

  (4) When you have finished using the [break-rewrite] feature you
  should disable it to speed up the rewriter. You can disable it with

    ACL2 !>:brr nil

  The list of [monitor]ed rules and their break conditions persists but
  is ignored. If you enable [break-rewrite] later, the list of
  [monitor]ed rules will be displayed and will be used again by
  rewrite.

  You should disable the [break-rewrite] feature whenever you are not
  intending to use it, even if the list of [monitor]ed rules is
  empty, because the rewriter is slowed down as long as
  [break-rewrite] is enabled.

  If you get a stack overflow, see [cw-gstack].")
 (BREAK-ON-ERROR
  (TRACE ACL2-BUILT-INS)
  "Break when encountering a hard or soft error caused by ACL2

    General forms:
    (break-on-error t)    ; installs a trace causing a continuable error (break)
                          ;   when an error is invoked by ACL2.
    (break-on-error)      ; same as above
    (break-on-error :all) ; same as above, but even when inside the prover
    (break-on-error nil)  ; uninstall any above trace

  (Break-on-error) generates a suitable trace of error functions.
  Evaluate (trace$) after (break-on-error) if you want to see the
  specific trace forms (which you can modify and then submit directly
  to trace$, if you wish). This [trace] should cause entry to the
  Lisp debugger whenever ACL2 calls its error routines, except for
  certain errors when inside the theorem prover, and also at those
  times if option :all is supplied.

  NOTE: For technical reasons, you may see some error messages more
  than once.

  Finally, note that you are welcome to define your own version of
  break-on-error by modifying a copy of the source definition (search
  for ``(defmacro break-on-error'' in ACL2 source file
  other-events.lisp). Please feel free to send your version of
  break-on-error to the ACL2 implementors, for possible inclusion
  into ACL2.

  Break-on-error is implmented using ACL2 [trace$]. See [trace!] if you
  want an explanation of the ``TTAG NOTE'' that is printed.

  The argument, if supplied, is evaluated and must evaluate to t, nil,
  or :all.

  Also see [set-debugger-enable] for how to get raw-Lisp backtrace
  information when an error occurs as a result of break-on-error, or
  even of a raw Lisp error, by calling set-debugger-enable with
  argument :bt, :bt-break, or :break-bt. Note that for ACL2 errors
  (as opposed to raw Lisp errors), i.e. errors affected by
  break-on-error, all three of those keyword values are treated
  equivalently (and, all are ignored for non-ANSI GCL; see
  [set-debugger-enable]).")
 (BREAK-REWRITE
  (DEBUGGING)
  "The read-eval-print loop entered to [monitor] rules

  ACL2 allows the user to [monitor] the application of [rewrite],
  [definition], and [linear] rules. When [monitor]ed rules are about
  to be tried by the rewriter, an interactive break occurs and the
  user is allowed to watch and, in a limited sense, control the
  attempt to apply the rule. This interactive loop, which is
  technically just a call of the standard top-level ACL2
  read-eval-print loop, [ld], on a ``[wormhole] [state]'' (see
  [wormhole]), is called ``break-rewrite.'' While in break-rewrite,
  certain keyword commands are available for accessing information
  about the context in which the lemma is being tried. These keywords
  are called break-rewrite ``commands''; see [brr-commands].

  For a related utility, see [dmr] (Dynamically Monitor Rewrites),
  which allows you to watch progress of the rewriter in real time.

  To abort from inside break-rewrite at any time, execute :[a!].

  For further information, see the related :[doc] topics listed below.

  It is possible to cause the ACL2 rewriter to [monitor] the attempted
  application of selected rules. When such a rule is about to be
  tried, the rewriter evaluates its break condition and if the result
  is non-nil, break-rewrite is entered.

  Break-rewrite permits the user to inspect the current [state] by
  evaluating break-rewrite commands. Type :help in break-rewrite to
  see what the break-rewrite commands are. However, break-rewrite is
  actually just a call of the general ACL2 read-eval-print loop,
  [ld], on a certain [state] and the break-rewrite commands are
  simply aliases provided by ld-keyword-aliases [table] (see
  [ld-keyword-aliases]). See [ld] for details about this
  read-eval-print loop. Thus, with a few exceptions, anything you can
  do at the ACL2 top-level can be done within break-rewrite. For
  example, you can evaluate arbitrary expressions, use the keyword
  command hack, access [documentation], print [events], and even
  define functions and prove theorems. However, the ``certain
  [state]'' upon which [ld] was called is a ``[wormhole] [state]''
  (see [wormhole]) because break-rewrite is not allowed to have any
  effect upon the behavior of rewrite. What this means, very roughly
  but understandably, is that break-rewrite operates on a copy of the
  [state] being used by rewrite and when break-rewrite exits the
  [wormhole] closes and the [state] ``produced'' by break-rewrite
  disappears. Thus, break-rewrite lets you query the state of the
  rewriter and even do experiments involving proofs, etc., but these
  experiments have no effect on the ongoing proof attempt. In
  particular:

  Note that the output from break-rewrite is sometimes abbreviated by
  default, such as for the term causing the break. This can be
  controlled by setting the :term evisc-tuple; see [set-evisc-tuple].
  (Another option: use iprinting. See [set-iprint].) But as noted
  above, if you use set-evisc-tuple from inside the break-rewrite
  [wormhole], its effect will disappear when you exit the break. So
  you might want to issue a set-evisc-tuple command from the top
  level, outside break-rewrite.

  When you first enter break-rewrite a simple herald is printed such
  as:

    (3 Breaking (:rewrite lemma12) on (delta a (+ 1 j)):

  The integer after the open parenthesis indicates the depth of nested
  break-rewrite calls. In this discussion we use 3 consistently for
  this integer. Unless you abort or somehow enter unbalanced
  parentheses into the script, the entire session at a given depth
  will be enclosed in balanced parentheses, making it easy to skip
  over them in Emacs.

  You then will see the break-rewrite [prompt]:

    3 ACL2 !>

  The leading integer is, again, the depth. Because breaks often occur
  recursively it is convenient always to know the level with which
  you are interacting.

  You may type arbitrary commands as in the top-level ACL2 loop. For
  example, you might type:

    3 ACL2 !>:help

  or

    3 ACL2 !>:pe lemma12

  More likely than typing a history or [disabledp] command, upon
  entering break-rewrite you will determine the context of the
  attempted application. Here are some useful commands:

    3 ACL2 >:target           ; the term being rewritten
    3 ACL2 >:unify-subst      ; the unifying substitution
    3 ACL2 >:path             ; the stack of goals pursued by the rewriter
                              ; starting at the top-level clause being simplified
                              ; and ending with the current application

  At this point in the interaction the system has not yet tried to
  apply the [monitor]ed rule. That is, it has not tried to establish
  the hypotheses, considered the heuristic cost of backchaining,
  rewritten the right-hand side of the conclusion, etc. When you are
  ready for it to try the rule you can type one of several different
  ``proceed'' commands. The basic proceed commands are :ok, :go, and
  :eval.

    :ok

  exits break-rewrite without further interaction. When break-rewrite
  exits it prints ``3)'', closing the parenthesis that opened the
  level 3 interaction.

    :go

  exits break-rewrite without further interaction, but prints out the
  result of the application attempt, i.e., whether the application
  succeeded, if so, what the :target term was rewritten to, and if
  not why the rule was not applicable.

    :eval

  causes break-rewrite to attempt to apply the rule but interaction at
  this level of break-rewrite resumes when the attempt is complete.
  When control returns to this level of break-rewrite a message
  indicating the result of the application attempt (just as in :go)
  is printed, followed by the [prompt] for additional user input.

  Generally speaking, :ok and :go are used when the break in question
  is routine or uninteresting and :eval is used when the break is one
  that the user anticipates is causing trouble. For example, if you
  are trying to determine why a lemma isn't being applied to a given
  term and the :target of the current break-rewrite is the term in
  question, you would usually :eval the rule and if break-rewrite
  reports that the rule failed then you are in a position to
  determine why, for example by carefully inspecting the
  :[type-alist] of governing assumptions or why some hypothesis of
  the rule could not be established.

  It is often the case that when you are in break-rewrite you wish to
  change the set of [monitor]ed [rune]s. This can be done by using
  :[monitor] and :[unmonitor] as noted above. For example, you might
  want to [monitor] a certain rule, say hyp-reliever, just when it is
  being used while attempting to apply another rule, say main-lemma.
  Typically then you would [monitor] main-lemma at the ACL2
  top-level, start the proof-attempt, and then in the break-rewrite
  in which main-lemma is about to be tried, you would install a
  [monitor] on hyp-reliever. If during the ensuing :eval hyp-reliever
  is broken you will know it is being used under the attempt to apply
  main-lemma.

  However, once hyp-reliever is being [monitor]ed it will be
  [monitor]ed even after main-lemma has been tried. That is, if you
  let the proof attempt proceed then you may see many other breaks on
  hyp-reliever, breaks that are not ``under'' the attempt to apply
  main-lemma. One way to prevent this is to :eval the application of
  main-lemma and then :[unmonitor] hyp-reliever before exiting. But
  this case arises so often that ACL2 supports several additional
  ``flavors'' of proceed commands.

  :Ok!, :go!, and :eval! are just like their counterparts (:ok, :go,
  and :eval, respectively), except that while processing the rule
  that is currently broken no [rune]s are [monitor]ed. When
  consideration of the current rule is complete, the set of
  [monitor]ed [rune]s is restored to its original setting.

  :Ok$, :go$, and :eval$ are similar but take an additional argument
  which must be a list of [rune]s. An example usage of :eval$ is

    3 ACL2 !>:eval$ ((:rewrite hyp-reliever))

  These three commands temporarily install unconditional breaks on the
  [rune]s listed, proceed with the consideration of the currently
  broken rule, and then restore the set of [monitor]ed rules to its
  original setting.

  Thus, there are nine ways to proceed from the initial entry into
  break-rewrite although we often speak as though there are two, :ok
  and :eval, and leave the others implicit. We group :go with :ok
  because in all their flavors they exit break-rewrite without
  further interaction (at the current level). All the flavors of
  :eval require further interaction after the rule has been tried.

  To abort a proof attempt and return to the top-level of ACL2 you may
  at any time type (a!) followed by a carriage return. If you are not
  in a raw Lisp break, you may type :a! instead. The utility p! is
  completely analogous to a! except that it pops up only one [ld]
  level. If you have just entered the break-rewrite loop, this will
  pop you out of that loop, back to the proof. See [a!] and see [p!].

  We now address ourselves to the post-:eval interaction with
  break-rewrite. As noted, that interaction begins with
  break-rewrite's report on the results of applying the rule: whether
  it worked and either what it produced or why it failed. This
  information is also printed by certain keyword commands available
  after :eval, namely :wonp, :rewritten-rhs or (for [linear] rules)
  :poly-list, and :failure-reason. In addition, by using [brr@] you
  can obtain this information in the form of ACL2 data objects. This
  allows the development of more sophisticated ``break conditions'';
  see [monitor] for examples. In this connection we point out the
  macro form (ok-if term). See [ok-if]. This command exits
  break-rewrite if term evaluates to non-nil and otherwise does not
  exit. Thus it is possible to define macros that provide other kinds
  of exits from break-rewrite. The only way to exit break-rewrite
  after :eval is :ok (or, equivalently, the use of [ok-if]).

  Note that when inside break-rewrite, all [history] commands, such as
  :[pe], show the [enable]d status of rules with respect to the the
  current point in the proof attempt. For example, if you break while
  the prover is working on Subgoal 3, and the [hints] supplied for
  the proof specify (\"Subgoal 3\" :in-theory (disable foo)) for some
  rule foo, then :[pe] will indicate that foo is [disable]d: even
  though foo may be enabled globally, it is shown as disabled because
  it is disabled during Subgoal 3. See subtopics of [history] for a
  list of all such history commands. In addition to those commands,
  the function [disabledp] is also evaluated inside break-rewrite
  with respect to the current enabled state of the prover.

  ACL2 users who wish to know more about break-rewrite so that they can
  develop more convenient ways to [monitor] rules are encouraged to
  speak to J Moore.

  The rest of this [documentation] discusses a few implementation
  details of break-rewrite and may not be interesting to the typical
  user.

  There is no ACL2 function named break-rewrite. It is an illusion
  created by appropriate calls to two functions named brkpt1 and
  brkpt2. As previously noted, break-rewrite is [ld] operating on a
  [wormhole] [state]. One might therefore wonder how break-rewrite
  can apply a rule and then communicate the results back to the
  rewriter running in the external [state]. The answer is that it
  cannot. Nothing can be communicated through a [wormhole]. In fact,
  brkpt1 and brkpt2 are each calls of [ld] running on [wormhole]
  [state]s. Brkpt1 implements the pre-:eval break-rewrite and brkpt2
  implements the post-:eval break-rewrite. The rewriter actually
  calls brkpt1 before attempting to apply a rule and calls brkpt2
  afterwards. In both cases, the rewriter passes into the [wormhole]
  the relevant information about the current context. Logically
  brkpt1 and brkpt2 are no-ops and [rewrite] ignores the nil they
  return. But while control is in them, the execution of [rewrite] is
  suspended and cannot proceed until the break-rewrite interactions
  complete.

  This design causes a certain anomoly that might be troubling. Suppose
  that inside break-rewrite before :evaling a rule (i.e., in the
  brkpt1 [wormhole] [state]) you define some function, foo. Suppose
  then you :eval the rule and eventually control returns to
  break-rewrite (i.e., to brkpt2 on a [wormhole] [state] with the
  results of the application in it). You will discover that foo is no
  longer defined! That is because the [wormhole] [state] created
  during your pre-:eval interaction is lost when we exit the
  [wormhole] to resume the proof attempt. The post-:eval [wormhole]
  [state] is in fact identical to the initial pre-:eval [state]
  (except for the results of the application) because [rewrite] did
  not change the external [state] and both [wormhole] [state]s are
  copies of it. A similar issue occurs with the use of [trace]
  utilities: all effects of calling [trace$] and [untrace$] are
  erased when you proceed from a break in the break-rewrite loop.

  There is a lot more to know about break-rewrite, most of which is
  fairly easy to learn from looking at the code, since it is all
  expressed in ACL2. Feel free to ask questions of J Moore.


Subtopics

  [Break-lemma]
      A quick introduction to breaking rewrite rules in ACL2

  [Brr]
      To enable or disable the breaking of rewrite rules

  [Brr-commands]
      [Break-Rewrite] Commands

  [Brr@]
      To access context sensitive information within [break-rewrite]

  [Cw-gstack]
      Debug a rewriting loop or stack overflow

  [Dmr]
      Dynamically monitor rewrites and other prover activity

  [Monitor]
      To monitor the attempted application of a rule name

  [Monitored-runes]
      Print the [monitor]ed [rune]s and their break conditions

  [Ok-if]
      Conditional exit from break-rewrite

  [Unmonitor]
      To stop monitoring a rule name

  [Why-brr]
      An explanation of why ACL2 has an explicit [brr] mode

  [With-brr-ens]
      Inside [break-rewrite], evaluate with respect to the theory
      currently installed in the prover")
 (BREAKS
  (ERRORS)
  "Common Lisp breaks

    Example:
    Broken at PROVE.  Type :H for Help.
    >>:Q

    ACL2 !>

  You may interrupt the system by typing various control character
  sequences. The precise sequences are determined by the host Lisp
  and operating system environment. For example, in GCL and Allegro
  Common Lisp, a console interrupt is caused by typing ``ctrl-c''.
  If, however, the GCL or Allegro is running in an Emacs shell
  buffer, one must type ``ctrl-c ctrl-c''.

  If a break occurs, for example because of a bug in ACL2 or a user
  interrupt, the break will run a Common Lisp read-eval-print loop,
  not an ACL2 read-eval-print loop. This may not be obvious if the
  [prompt]s in the two loops are similar. Because you are typing to a
  Common Lisp evaluator, you must be careful. It is possible to
  damage your ACL2 state in irreparable ways by executing non-ACL2
  Common Lisp. It is even possible to disrupt and render inaccurate
  the interrupted evaluation of a simple ACL2 expression.

  For ACL2 built on most host Common Lisps, you will see the string
  [RAW LISP] in the [prompt] at a break, to emphasize that one is
  inside a break and hence should quit from the break. For some host
  Common Lisps, the top-level prompt also contains the string [RAW
  LISP]. See [prompt] for how to control printing of that string.

  The most reliable way to return to the ACL2 top level is by executing
  the following command: ([abort!]). Appropriate cleanup will then be
  done, which should leave you in an appropriate state.

  However, you may be able to quit from the break in the normal Lisp
  manner (as with :q in GCL or CCL, :reset in Allegro CL, and q in
  CMU CL). If this attempt to quit is successful, it will return you
  to the innermost ACL2 read-eval-print loop, with appropriate
  cleanup performed first. Note that if you are within a [brr]
  environment when the break occurs, quitting from the break will
  only return you to that environment, not to the top of ACL2's
  read-eval-print loop.")
 (BROKEN-LINK
  (DOCUMENTATION)
  "Placeholder for link to documentation that resides in the community
  books

  You may have attempted to access information about the ACL2
  [community-books] while looking at the ACL2 User's Manual, which
  contains [documentation] only about the ACL2 system, and does not
  include documentation from the [community-books]. Please point your
  browser at the {ACL2+Books Manual |
  http://www.cs.utexas.edu/users/moore/acl2/v7-2/combined-manual/index.html}
  (or if browsing in [ACL2-Doc], switch to that manual with meta-0 I)
  to access the desired topic.

  If you want information about the book where your missing topic is
  defined, see [broken-link-table].


Subtopics

  [Broken-link-table]
      Map [documentation] topics to the community books that define them")
 (BROKEN-LINK-TABLE
  (BROKEN-LINK)
  "Map [documentation] topics to the community books that define them

  The table below maps topics to book locations that reside only in the
  ACL2+Books combined manual, not the ACL2 User's Manual. For
  example, the entry

    (note-7-2-books \"[books]/doc/relnotes.lisp\")

  signifies that the topic NOTE-7-2-BOOKS is documented in the
  community book doc/relnotes.lisp.

      ((<< \"[books]/misc/total-order.lisp\")
       (append-without-guard \"[books]/std/lists/flatten.lisp\")
       (oslib::argv \"[books]/oslib/argv-logic.lisp\")
       (arith-equivs \"[books]/centaur/misc/arith-equiv-defs.lisp\")
       (arithmetic \"[books]/doc/more-topics.lisp\")
       (arithmetic-1 \"[books]/arithmetic/top.lisp\")
       (arithmetic/natp-posp \"[books]/arithmetic/natp-posp.lisp\")
       (b* \"[books]/std/util/bstar.lisp\")
       (bridge \"[books]/centaur/bridge/top.lisp\")
       (build::cert.pl \"[books]/build/doc.lisp\")
       (build::cert_param \"[books]/build/doc.lisp\")
       (std::defaggregate \"[books]/std/util/defaggregate.lisp\")
       (defconsts \"[books]/std/util/defconsts.lisp\")
       (defdata \"[books]/acl2s/defdata/top.lisp\")
       (define \"[books]/std/util/define.lisp\")
       (fty::defprod \"[books]/centaur/fty/top.lisp\")
       (getopt-demo::demo2 \"[books]/centaur/getopt/demo2.lisp\")
       (do-not-hint \"[books]/tools/do-not.lisp\")
       (fty \"[books]/centaur/fty/top.lisp\")
       (getopt \"[books]/centaur/getopt/top.lisp\")
       (gl \"[books]/centaur/gl/doc.lisp\")
       (hacker \"[books]/hacking/hacking-xdoc.lisp\")
       (ihs \"[books]/ihs/ihs-doc-topic.lisp\")
       (include-raw \"[books]/tools/include-raw.lisp\")
       (make-flag \"[books]/tools/flag.lisp\")
       (str::natstr \"[books]/std/strings/decimal.lisp\")
       (non-parallel-book \"[books]/std/system/non-parallel-book.lisp\")
       (note-6-4-books \"[books]/doc/relnotes.lisp\")
       (note-6-5-books \"[books]/doc/relnotes.lisp\")
       (note-7-0-books \"[books]/doc/relnotes.lisp\")
       (note-7-1-books \"[books]/doc/relnotes.lisp\")
       (note-7-2-books \"[books]/doc/relnotes.lisp\")
       (str::numbers \"[books]/std/strings/top.lisp\")
       (oracle-timelimit \"[books]/tools/oracle-timelimit.lisp\")
       (oslib \"[books]/oslib/top-logic.lisp\")
       (patbind-the \"[books]/std/util/bstar.lisp\")
       (build::pre-certify-book-commands \"[books]/build/doc.lisp\")
       (str::pretty \"[books]/std/strings/pretty.lisp\")
       (str::pretty-printing \"[books]/std/strings/pretty.lisp\")
       (quicklisp \"[books]/centaur/quicklisp/top.lisp\")
       (removable-runes \"[books]/tools/removable-runes.lisp\")
       (satlink::sat-solver-options \"[books]/centaur/satlink/top.lisp\")
       (satlink \"[books]/centaur/satlink/top.lisp\")
       (xdoc::save \"[books]/xdoc/topics.lisp\")
       (set-max-mem \"[books]/centaur/misc/memory-mgmt-logic.lisp\")
       (spacewalk \"[books]/centaur/misc/spacewalk.lisp\")
       (std \"[books]/std/top.lisp\")
       (std/io \"[books]/std/io/top.lisp\")
       (std/strings \"[books]/std/strings/top.lisp\")
       (std/util \"[books]/std/util/top.lisp\")
       (std::strict-list-recognizers \"[books]/std/util/deflist-base.lisp\")
       (subseq-list \"[books]/std/lists/subseq.lisp\")
       (unsound-read \"[books]/std/io/unsound-read.lisp\")
       (untranslate-patterns \"[books]/misc/untranslate-patterns.lisp\")
       (build::using-extended-acl2-images \"[books]/build/doc.lisp\")
       (with-raw-mode \"[books]/hacking/hacking-xdoc.lisp\")
       (with-redef-allowed \"[books]/hacking/hacking-xdoc.lisp\")
       (with-timeout \"[books]/acl2s/cgen/with-timeout.lisp\")
       (working-with-packages \"[books]/doc/practices.lisp\")
       (xdoc \"[books]/xdoc/topics.lisp\"))")
 (BRR
  (BREAK-REWRITE)
  "To enable or disable the breaking of rewrite rules

    Example:
    :brr t       ; enable
    :brr nil     ; disable

    General Form:
    (brr flg)

  where flg evaluates to t or nil. This function modifies [state] so
  that the attempted application of certain rewrite rules are
  ``broken.'' ``Brr'' stands for ``break-rewrite'' and can be thought
  of as a mode with two settings. The normal mode is ``disabled.''

  For a more thorough introduction to the break rewrite system see
  [break-rewrite].

  When brr mode is ``enabled'' the ACL2 rewriter monitors the attempts
  to apply certain rules and advises the user of those attempts by
  entering an interactive wormhole break. From within this break the
  user can watch selected application attempts. The user can also
  interact with the system during brr breaks via [brr-commands].

  The rules monitored are selected by using the [monitor] and
  [unmonitor] commands. It is possible to break a rune
  ``conditionally'' in the sense that an interactive break will occur
  only if a specified predicate is true of the environment at the
  time of the attempted application. See [monitor] and see
  [unmonitor].

  Even if a non-empty set of rules has been selected, no breaks will
  occur unless brr mode is enabled. Thus, the first time in a session
  that you wish to monitor a rewrite rule, use :brr t to enable brr
  mode. Thereafter you may select runes to be monitored with
  [monitor] and [unmonitor] with the effect that whenever monitored
  rules are tried (and their break conditions are met) an interactive
  break will occur. Be advised that when brr mode is enabled the
  rewriter is somewhat slower than normal. Furthermore, that
  sluggishness persists even if no runes are monitored. You may
  regain normal performance --- regardless of what runes are
  monitored --- by disabling brr mode with :brr nil.

  Why isn't brr mode disabled automatically when no runes are
  monitored? More generally, why does ACL2 have brr mode at all? Why
  not just test whether there are monitored runes? If you care about
  the answers, see [why-brr].

  BRR Mode and Console Interrupts: If the system is operating in brr
  mode and you break into raw Lisp (as by causing a console interrupt
  or happening upon a signalled Lisp error; see [breaks]), you can
  return to the ACL2 top-level, outside any brr environment, by
  executing ([abort!]). Otherwise, the normal way to quit from such a
  break (for example :q in GCL, :reset in Allegro CL, and q in CMU
  CL) will return to the innermost ACL2 read-eval-print loop, which
  may or may not be the top-level of your ACL2 session! In
  particular, if the break happens to occur while ACL2 is within the
  brr environment (in which it is preparing to read [brr-commands]),
  the abort will merely return to that brr environment. Upon exiting
  that environment, normal theorem proving is continued (and the brr
  environment may be entered again in response to subsequent
  monitored rule applications). Before returning to the brr
  environment, ACL2 ``cleans up'' from the interrupted brr
  processing. However, it is not possible (given the current
  implementation) to clean up perfectly. This may have two
  side-effects. First, the system may occasionally print the
  self-explanatory ``Cryptic BRR Message 1'' (or 2), informing you
  that the system has attempted to recover from an aborted brr
  environment. Second, it is possible that subsequent brr behavior in
  that proof will be erroneous because the cleanup was done
  incorrectly. The moral is that you should not trust what you learn
  from brr if you have interrupted and aborted brr processing during
  the proof. These issues do not affect the behavior or soundness of
  the theorem prover.")
 (BRR-COMMANDS
  (BREAK-REWRITE)
  "[Break-Rewrite] Commands

    :a!             abort to ACL2 top-level
    :p!             pop one level (exits a top-level break-rewrite loop)
    :target         term being rewritten
    :unify-subst    substitution making :lhs equal :target
    :hyps           hypotheses of the rule
    :hyp i          ith hypothesis of the rule
    :lhs            left-hand side of rule's conclusion
    :rhs            right-hand side of rule's conclusion
    :type-alist     type assumptions governing :target
    :initial-ttree  ttree before :eval (see [ttree])
    :ancestors      negations of backchaining hypotheses being pursued
    :wonp           indicates whether application succeeded (after :eval)
    :rewritten-rhs  rewritten :rhs (after :eval) of a rewrite rule
    :poly-list      list of polynomials (after :eval) of a linear rule,
                      where the leading term of each is enclosed in an extra set
                      of parentheses
    :final-ttree    ttree after :eval (see [ttree])
    :failure-reason reason rule failed (after :eval)
    :path           rewriter's path from top clause to :target
    :frame i        ith frame in :path
    :top            top-most frame in :path
    :btm            bottom-most frame in :path
    :ok             exit break
    :go             exit break, printing result
    :eval           try rule and re-enter break afterwards
    :ok!            :ok but no recursive breaks
    :go!            :go but no recursive breaks
    :eval!          :eval but no recursive breaks
    :ok$ runes      :ok with runes monitored during recursion
    :go$ runes      :go with runes monitored during recursion
    :eval$ runes    :eval with runes monitored during recursion
    :help           this message
    :standard-help  :help message from ACL2 top-level

  [Break-rewrite] is just a call of the standard ACL2 read-eval-print
  loop, [ld], on a ``[wormhole]'' [state]. Thus, you may execute most
  commands you might normally execute at the top-level of ACL2.
  However, all [state] changes you cause from within [break-rewrite]
  are lost when you exit or :eval the rule. You cannot modify
  [stobj]s from within the break. See [break-rewrite] for more
  details and see [ld] for general information about the standard
  ACL2 read-eval-print loop. Also see [brr@] for a utility that can
  return a value for many of the keywords above, instead of merely
  printing to the screen.

  Note that if you are breaking on a [monitor]ed [linear] rule, several
  of the commands listed above do not apply: :lhs, :rhs,
  :initial-ttree, and :final-ttree. Moreover, :rewritten-rhs also
  does not apply, but instead, :poly-list shows the result of
  applying the linear lemma as a list of polynomials, implicitly
  conjoined. The leading term of each polynomial is enclosed in an
  extra set of parentheses.


Subtopics

  [With-brr-ens]
      Inside [break-rewrite], evaluate with respect to the theory
      currently installed in the prover")
 (BRR@
  (BREAK-REWRITE)
  "To access context sensitive information within [break-rewrite]

    Example:
    (brr@ :target)      ; the term being rewritten
    (brr@ :unify-subst) ; the unifying substitution

    General Form:
    (brr@ :symbol)

  where :symbol is one of the keywords displayed below. This utility
  may be most useful for system hackers; see [brr-commands] for
  queries that are more at a user level. In particular, keywords
  marked below with * probably require an implementor's knowledge of
  the system to use effectively. They are supported but not well
  documented. More is said on this topic following the table.

    :symbol             (brr@ :symbol)
    -------             ---------------------

    :target             the term to be rewritten.  This term is an
                        instantiation of the left-hand side of the
                        conclusion of the rewrite-rule being broken.
                        This term is in translated form!  Thus, if
                        you are expecting (equal x nil) -- and your
                        expectation is almost right -- you will see
                        (equal x 'nil); similarly, instead of (cadr a)
                        you will see (car (cdr a)).  In translated
                        forms, all constants are quoted (even nil, t,
                        strings and numbers) and all macros are
                        expanded.

    :unify-subst        the substitution that, when applied to :target,
                        produces the left-hand side of the rule being
                        broken.  This substitution is an alist pairing
                        variable symbols to translated (!) terms.

    :wonp               t or nil indicating whether the rune was
                        successfully applied.  (brr@ :wonp) returns
                        nil if evaluated before :EVALing the rule.

    :rewritten-rhs      the result of successfully applying the rewrite
                        rule or else nil if (brr@ :wonp) is nil.  The
                        result of successfully applying the rule is
                        always a translated (!) term and is never nil.

    :poly-list          the result of successfully applying the linear
                        rule or else nil if (brr@ :wonp) is nil.  This
                        result represents the list of polynomials
                        produced by the rule application.  The leading
                        term of each polynomial is enclosed in an extra
                        set of parentheses.

    :failure-reason     some non-nil lisp object indicating why the rule
                        was not applied or else nil.  Before the rule is
                        :EVALed, (brr@ :failure-reason) is nil.  After
                        :EVALing the rule, (brr@ :failure-reason) is nil
                        if (brr@ :wonp) is t.  Rather than document the
                        various non-nil objects returned as the failure
                        reason, we encourage you simply to evaluate
                        (brr@ :failure-reason) in the contexts of interest.
                        Alternatively, study the ACL2 function tilde-@-
                        failure-reason-phrase.

    :lemma           *  the rewrite rule being broken.  For example,
                        (access rewrite-rule (brr@ :lemma) :lhs) will
                        return the left-hand side of the conclusion
                        of the rule.

    :type-alist      *  a display of the type-alist governing :target.
                        Elements on the displayed list are of the form
                        (term type), where term is a term and type
                        describes information about term assumed to hold in
                        the current context.  (See also the documentation for
                        type-alist.)  The type-alist may be used to determine
                        the current assumptions, e.g., whether A is a CONSP.

    :ancestors       *  a stack of frames indicating the backchain history
                        of the current context.  The theorem prover is in
                        the process of trying to establish each hypothesis
                        in this stack.  Thus, the negation of each hypothesis
                        can be assumed false.  Each frame also records the
                        rules on behalf of which this backchaining is being
                        done and the weight (function symbol count) of the
                        hypothesis.  All three items are involved in the
                        heuristic for preventing infinite backchaining.
                        Exception:  Some frames are ``binding hypotheses''
                        (equal var term) or (equiv var (double-rewrite term))
                        that bind variable var to the result of rewriting
                        term.  The ACL2 source code has a definition
                        (defrec ancestor ...) that may provide some relevant
                        insight.

    :initial-ttree   *  the initial and (after :EVAL) final tag trees,
    :final-ttree        respectively.  (Tag trees are low-level data structures
                        that store lemmas used and other information, as
                        documented in topic TTREE.)

    :gstack          *  the current goal stack.  The gstack is maintained
                        by rewrite and is the data structure printed as the
                        current ``path.''  Thus, any information derivable
                        from the :path brr command is derivable from gstack.
                        For example, from gstack one might determine that
                        the current term is the second hypothesis of a
                        certain rewrite rule.

  In general brr@-expressions are used in break conditions, the
  expressions that determine whether interactive breaks occur when
  [monitor]ed [rune]s are applied. See [monitor]. For example, you
  might want to break only those attempts in which one particular
  term is being rewritten or only those attempts in which the binding
  for the variable a is known to be a [consp]. Such conditions can be
  expressed using ACL2 system functions and the information provided
  by brr@. Unfortunately, digging some of this information out of the
  internal data structures may be awkward or may, at least, require
  intimate knowledge of the system functions. But since conditional
  expressions may employ arbitrary functions and macros, we
  anticipate that a set of convenient primitives will gradually
  evolve within the ACL2 community. It is to encourage this evolution
  that brr@ provides access to the *'d data.")
 (BUILDING-ACL2
  (ABOUT-ACL2)
  "How to build an ACL2 executable

  To build an ACL2 executable, submit the following command while
  standing in the main ACL2 directory, where <my-lisp> invokes your
  Lisp executable (default: ccl).

    make LISP=<my-lisp>

  You should find \"Initialization SUCCEEDED.\" near the end the of the
  log. Note: There may be ACL2 warnings, for example: \"ACL2 Warning
  [Skip-proofs] in....\". These may be safely ignored.

  Note that you will want to certify [books] in order to take full
  advantage of ACL2. See [books-certification].")
 (BUILT-IN-CLAUSE
  (RULE-CLASSES)
  "To build a clause into the simplifier

  See [rule-classes] for a general discussion of rule classes,
  including how they are used to build rules from formulas and a
  discussion of the various keywords in a rule class description.

    Example:
    (defthm acl2-count-abl
      (and (implies (and (true-listp x)
                         (not (equal x nil)))
                    (< (acl2-count (abl x))
                       (acl2-count x)))
           (implies (and (true-listp x)
                         (not (equal nil x)))
                    (< (acl2-count (abl x))
                       (acl2-count x))))
      :rule-classes :built-in-clause)

  A :built-in-clause rule can be built from any formula other than
  propositional tautologies. Roughly speaking, the system uses the
  list of built-in clauses as the first method of proof when
  attacking a new goal. Any goal that is subsumed by a built in
  clause is proved ``silently.''

  ACL2 maintains a set of ``built-in'' clauses that are used to
  short-circuit certain theorem proving tasks. We discuss this at
  length below. When a theorem is given the rule class
  :built-in-clause ACL2 flattens the [implies] and [and] structure of
  the :[corollary] formula so as to obtain a set of formulas whose
  conjunction is equivalent to the given corollary. It then converts
  each of these to clausal form and adds each clause to the set of
  built-in clauses.

  The example above (regardless of the definition of abl) will build in
  two clauses,

    {(not (true-listp x))
     (equal x nil)
     (< (acl2-count (abl x)) (acl2-count x))}

  and

    {(not (true-listp x))
     (equal nil x)
     (< (acl2-count (abl x)) (acl2-count x))}.

  We now give more background.

  Recall that a clause is a set of terms, implicitly representing the
  disjunction of the terms. Clause c1 is ``subsumed'' by clause c2 if
  some instance of c2 is a subset c1.

  For example, let c1 be

    {(not (consp l))
     (equal a (car l))
     (< (acl2-count (cdr l)) (acl2-count l))}.

  Then c1 is subsumed by c2, shown below,

    {(not (consp x))
     ; second term omitted here
     (< (acl2-count (cdr x)) (acl2-count x))}

  because we can instantiate x in c2 with l to obtain a subset of c1.

  Observe that c1 is the clausal form of

    (implies (and (consp l)
                  (not (equal a (car l))))
             (< (acl2-count (cdr l)) (acl2-count l))),

  c2 is the clausal form of

    (implies (consp l)
             (< (acl2-count (cdr l)) (acl2-count l)))

  and the subsumption property just means that c1 follows trivially
  from c2 by instantiation.

  The set of built-in clauses is just a set of known theorems in
  clausal form. Any formula that is subsumed by a built-in clause is
  thus a theorem. If the set of built-in theorems is reasonably
  small, this little theorem prover is fast. ACL2 uses the ``built-in
  clause check'' in four places: (1) at the top of the iteration in
  the prover -- thus if a built-in clause is generated as a subgoal
  it will be recognized when that goal is considered, (2) within the
  simplifier so that no built-in clause is ever generated by
  simplification, (3) as a filter on the clauses generated to prove
  the termination of recursively [defun]'d functions and (4) as a
  filter on the clauses generated to verify the guards of a function.

  The latter two uses are the ones that most often motivate an
  extension to the set of built-in clauses. Frequently a given
  formalization problem requires the definition of many functions
  which require virtually identical termination and/or guard proofs.
  These proofs can be short-circuited by extending the set of
  built-in clauses to contain the most general forms of the clauses
  generated by the definitional schemes in use.

  The attentive user might have noticed that there are some recursive
  schemes, e.g., recursion by [cdr] after testing [consp], that ACL2
  just seems to ``know'' are ok, while for others it generates
  measure clauses to prove. Actually, it always generates measure
  clauses but then filters out any that pass the built-in clause
  check. When ACL2 is initialized, the clause justifying [cdr]
  recursion after a [consp] test is added to the set of built-in
  clauses. (That clause is c2 above.)

  Note that only a subsumption check is made; no rewriting or
  simplification is done. Thus, if we want the system to ``know''
  that [cdr] recursion is ok after a negative [atom] test (which, by
  the definition of [atom], is the same as a [consp] test), we have
  to build in a second clause. The subsumption algorithm does not
  ``know'' about commutative functions. Thus, for predictability, we
  have built in commuted versions of each clause involving
  commutative functions. For example, we build in both

    {(not (integerp x))
     (< 0 x)
     (= x 0)
     (< (acl2-count (+ -1 x)) (acl2-count x))}

  and the commuted version

    {(not (integerp x))
     (< 0 x)
     (= 0 x)
     (< (acl2-count (+ -1 x)) (acl2-count x))}

  so that the user need not worry whether to write (= x 0) or (= 0 x)
  in definitions.

  :built-in-clause rules added by the user can be enabled and disabled.")
 (BUTLAST
  (LISTS ACL2-BUILT-INS)
  "All but a final segment of a list

  (Butlast l n) is the list obtained by removing the last n elements
  from the true list l. The following is a theorem (though it takes
  some effort, including lemmas, to get ACL2 to prove it).

    (implies (and (integerp n)
                  (<= 0 n)
                  (true-listp l))
             (equal (length (butlast l n))
                    (if (< n (length l))
                        (- (length l) n)
                      0)))

  For related functions, see [take] and see [nthcdr].

  The [guard] for (butlast l n) requires that n is a nonnegative
  integer and lst is a true list.

  Butlast is a Common Lisp function. See any Common Lisp documentation
  for more information. Note: In Common Lisp the second argument of
  butlast is optional, but in ACL2 it is required.

  Function: <butlast>

    (defun butlast (lst n)
           (declare (xargs :guard (and (true-listp lst)
                                       (integerp n)
                                       (<= 0 n))))
           (let ((lng (len lst)) (n (nfix n)))
                (if (<= lng n)
                    nil (take (- lng n) lst))))")
 (BY (POINTERS)
     "See [hints] for keyword :by.")
 (CAAAAR
    (CONSES ACL2-BUILT-INS)
    "[car] of the [caaar]

  See any Common Lisp documentation for details.")
 (CAAADR
    (CONSES ACL2-BUILT-INS)
    "[car] of the [caadr]

  See any Common Lisp documentation for details.")
 (CAAAR
     (CONSES ACL2-BUILT-INS)
     "[car] of the [caar]

  See any Common Lisp documentation for details.")
 (CAADAR
    (CONSES ACL2-BUILT-INS)
    "[car] of the [cadar]

  See any Common Lisp documentation for details.")
 (CAADDR
    (CONSES ACL2-BUILT-INS)
    "[car] of the [caddr]

  See any Common Lisp documentation for details.")
 (CAADR
     (CONSES ACL2-BUILT-INS)
     "[car] of the [cadr]

  See any Common Lisp documentation for details.")
 (CAAR
      (CONSES ACL2-BUILT-INS)
      "[car] of the [car]

  See any Common Lisp documentation for details.")
 (CADAAR
    (CONSES ACL2-BUILT-INS)
    "[car] of the [cdaar]

  See any Common Lisp documentation for details.")
 (CADADR
    (CONSES ACL2-BUILT-INS)
    "[car] of the [cdadr]

  See any Common Lisp documentation for details.")
 (CADAR
     (CONSES ACL2-BUILT-INS)
     "[car] of the [cdar]

  See any Common Lisp documentation for details.")
 (CADDAR
    (CONSES ACL2-BUILT-INS)
    "[car] of the [cddar]

  See any Common Lisp documentation for details.")
 (CADDDR
    (CONSES ACL2-BUILT-INS)
    "[car] of the [cdddr]

  See any Common Lisp documentation for details.")
 (CADDR
     (CONSES ACL2-BUILT-INS)
     "[car] of the [cddr]

  See any Common Lisp documentation for details.")
 (CADR
      (CONSES ACL2-BUILT-INS)
      "[car] of the [cdr]

  See any Common Lisp documentation for details.")
 (CALLING-LD-IN-BAD-CONTEXTS
  (LD)
  "Errors caused by calling [ld] in inappropriate contexts

  The macro [ld] was designed to be called directly in the top-level
  ACL2 loop, although there may be a few occasions for calling it
  from functions. ACL2 cannot cope with invocations of [ld] during
  the process of loading a compiled file for a book, so this is an
  error.

  To see how that can happen, consider the following book, where file
  const.lsp contains the single form (defconst *foo* '(a b)).

    (in-package \"ACL2\")
    (defttag t)
    (progn! (ld \"const.lsp\"))

  An attempt to certify this book will cause an error, but that
  particular error can be avoided, as discussed below. If the book is
  certified, however, with production of a corresponding compiled
  file (which is the default behavior for [certify-book]), then any
  subsequent call of [include-book] that loads this compiled file
  will cause an error. Again, this error is necessary because of how
  ACL2 is designed; specifically, this [ld] call would interfere with
  tracking of constant definitions when loading the compiled file for
  the book.

  Because including such a book (with a compiled file) causes an error,
  then as a courtesy to the user, ACL2 arranges that the
  certification will fail (thus avoiding a surprise later when trying
  to include the book). The error in that case will look as follows.

    ACL2 Error in LD:  It is illegal to call LD in this context.  See DOC
    calling-ld-in-bad-contexts.

  If you really think it is OK to avoid this error, you can get around
  it by setting [state] global variable ld-okp to t: (assign ld-okp
  t). You can then certify the book in the example above, but you
  will still not be able to include it with a compiled file.")
 (CANONICAL-PATHNAME
  (PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "The true absolute filename, with soft links resolved

  For the name fname of a file, the form (Canonical-pathname fname nil
  state) evaluates to a Unix-style absolute filename representing the
  same file as fname, but generally without any use of soft links in
  the name. (Below, we explain the qualifier ``generally''.) If
  however the file indicated by fname does not exist,
  (canonical-pathname fname nil state) is nil. Thus,
  canonical-pathname can be used as one would use the raw Lisp
  function probe-file.

  The specification of (Canonical-pathname fname dir-p state) when
  dir-p is not nil is simlar, except that if the specified file
  exists but is not a directory, then the result is nil.

  The function canonical-pathname has a guard of t, though the second
  argument must be the ACL2 [state]. This function is introduced with
  the following properties.

    (defthm canonical-pathname-is-idempotent
      (equal (canonical-pathname (canonical-pathname x dir-p state) dir-p state)
             (canonical-pathname x dir-p state)))
    (defthm canonical-pathname-type
      (or (equal (canonical-pathname x dir-p state) nil)
          (stringp (canonical-pathname x dir-p state)))
      :rule-classes :type-prescription)

  We use the qualifier ``generally'', above, because there is no
  guarantee that the filename will be canonical without soft links,
  though we expect this to be true in practice. ACL2 attempts to
  compute the desired result and then checks that the input and
  result have the same Common Lisp ``truename''. This check is
  expected to succeed, but if it fails then the input string is
  returned unchanged, and to be conservative, the value returned is
  nil in this case if dir-p is true.")
 (CAR
  (CONSES ACL2-BUILT-INS)
  "Returns the first element of a non-empty list, else nil

  Completion Axiom (completion-of-car):

    (equal (car x)
           (cond
            ((consp x)
             (car x))
            (t nil)))

  [Guard]:

    (or (consp x) (equal x nil))

  Notice that in the ACL2 logic, car returns nil for every [atom].")
 (CASE
  (BASICS ACL2-BUILT-INS)
  "Conditional based on if-then-else using [eql]

    Example Form:
    (case typ
      ((:character foo)
       (open file-name :direction :output))
      (bar (open-for-bar file-name))
      (otherwise
       (my-error \"Illegal.\")))

  is the same as

    (cond ((member typ '(:character foo))
           (open file-name :direction :output))
          ((eql typ 'bar)
           (open-for-bar file-name))
          (t (my-error \"Illegal.\")))

  which in turn is the same as

    (if (member typ '(:character foo))
        (open file-name :direction :output)
        (if (eql typ 'bar)
            (open-for-bar file-name)
            (my-error \"Illegal.\")))

  Notice the quotations that appear in the example above: '(:character
  foo) and 'bar. Indeed, a case expression expands to a [cond]
  expression in which each tested form is quoted, and [eql] is used
  as the test.

    General Forms:
    (case expr
      (x1 val-1)
      ...
      (xk val-k)
      (otherwise val-k+1))

    (case expr
      (x1 val-1)
      ...
      (xk val-k)
      (t val-k+1))

    (case expr
      (x1 val-1)
      ...
      (xk val-k))

  where each xi is either [eqlablep] or a true list of [eqlablep]
  objects. The final otherwise or t case is optional.

  Case is defined in Common Lisp. See any Common Lisp documentation for
  more information.")
 (CASE-MATCH
  (BASICS ACL2-BUILT-INS)
  "Pattern matching or destructuring

    General Form:
    (case-match x
      (pat1 dcl1 body1)
      ...
      (patk dclk bodyk))

  where x is a variable symbol, the pati are structural patterns as
  described below, the dcli are optional [declare] forms and the
  bodyi are terms. Return the value(s) of the bodyi corresponding to
  the first pati matching x, or nil if none matches.

  Pattern Language:
  With the few special exceptions described below, matching requires
  that the [cons] structure of x be isomorphic to that of the
  pattern, down to the [atom]s in the pattern. Non-symbol [atom]s in
  the pattern match only themselves. Symbols in the pattern denote
  variables which match anything and which are bound by a successful
  match to the corresponding substructure of x. Variables that occur
  more than once must match the same ([equal]) structure in every
  occurrence.

    Exceptions:
    &               Matches anything and is not bound.  Repeated
                      occurrences of & in a pattern may match different
                      structures.
    nil, t, *sym*   These symbols cannot be bound and match only their
                      global values.
    !sym            where sym is a symbol that is already bound in the
                      context of the case-match, matches only the
                      current binding of sym.
    'obj            Matches only itself.

  Some examples are shown below.

  Below we show some sample patterns and examples of things they match
  and do not match.

    pattern       matches         non-matches
    (x y y)       (ABC 3 3)       (ABC 3 4)    ; 3 is not 4
    (fn x . rst)  (P (A I) B C)   (ABC)        ; NIL is not (x . rst)
                  (J (A I))                    ; rst matches nil
    ('fn (g x) 3) (FN (H 4) 3)    (GN (G X) 3) ; 'fn matches only itself
    (& t & !x)    ((A) T (B) (C))              ; provided x is '(C)

  Consider the two binary trees that contain three leaves. They might
  be described as (x . (y . z)) and ((x . y) . z), where x, y, and z
  are atomic. Suppose we wished to recognize those trees. The
  following case-match would do:

    (case-match tree
      ((x . (y . z))
       (and (atom x) (atom y) (atom z)))
      (((x . y) . z)
       (and (atom x) (atom y) (atom z))))

  Suppose we wished to recognize such trees where all three tips are
  identical. Suppose further we wish to return the tip if the tree is
  one of those recognized ones and to return the number 7 otherwise.

    (case-match tree
      ((x . (x . x))
       (if (atom x) x 7))
      (((x . x) . x)
       (if (atom x) x 7))
      (& 7))

  Note that case-match returns nil if no pati matches. Thus if we must
  return 7 in that case, we have to add as the final pattern the &,
  which always matches anything.")
 (CASE-SPLIT
  (REWRITE LINEAR TYPE-PRESCRIPTION
           DEFINITION META FORWARD-CHAINING)
  "Like force but immediately splits the top-level goal on the
  hypothesis

  Case-split is an variant of [force], which has similar special
  treatment in hypotheses of rules for the same [rule-classes] as for
  force (see [force]). This treatment takes place for rule classes
  :[rewrite], :[linear], :[type-prescription], :[definition], :[meta]
  (actually in that case, the result of evaluating the hypothesis
  metafunction call), and :[forward-chaining].

  When a hypothesis of a conditional rule (of one of the classes listed
  above) has the form (case-split hyp) it is logically equivalent to
  hyp. However it affects the application of the rule generated as
  follows: if ACL2 attempts to apply the rule but cannot establish
  that the required instance of hyp holds in the current context, it
  considers the hypothesis true anyhow, but (assuming all hypotheses
  are seen to be true and the rule is applied) creates a subgoal in
  which that instance of hyp is assumed false. (There are exceptions,
  noted below.)

  For example, given the rule

    (defthm p1->p2
      (implies (case-split (p1 x))
               (p2 x)))

  then an attempt to prove

    (implies (p3 x) (p2 (car x)))

  can give rise to a single subgoal:

    (IMPLIES (AND (NOT (P1 (CAR X))) (P3 X))
             (P2 (CAR X))).

  Unlike [force], case-split does not delay the ``false case'' to a
  forcing round but tackles it more or less immediately.

  The special ``split'' treatment of case-split can be disabled by
  disabling forcing: see [force] for a discussion of disabling
  forcing, and also see [disable-forcing]. Finally, we should mention
  that the rewriter is never willing to split when there is an [if]
  term present in the goal being simplified. Since [and] terms and
  [or] terms are merely abbreviations for [if] terms, they also
  prevent splitting. Note that [if] terms are ultimately eliminated
  using the ordinary flow of the proof (but see
  [set-case-split-limitations]), so case-split will ultimately
  function as intended.

  When in the proof checker, case-split behaves like force.

  Function: <case-split>

    (defun case-split (x)
           (declare (xargs :guard t))
           x)")
 (CASE-SPLIT-LIMITATIONS
  (MISCELLANEOUS)
  "A list of two ``numbers'' limiting the number of cases produced at
  once

    Examples:
    ACL2 !>(case-split-limitations (w state))
    (500 100)

  With the setting above, clausify will not try subsumption/replacement
  if more than 500 clauses are involved. Furthermore, the simplifier,
  as it sweeps over a clause, will inhibit further case splits when
  it has accumulated 100 subgoals. This inhibition is implemented by
  continuing to rewrite subsequent literals but not splitting out
  their cases. This can produce literals containing IFs.

  See [set-case-split-limitations] for a more general discussion.")
 (CASES (POINTERS)
        "See [hints] for keyword :cases.")
 (CBD
  (BOOKS-REFERENCE PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "Connected book directory string

    Example:
    ACL2 !>:cbd
    \"/usr/home/smith/\"

  The connected book directory is a nonempty string that specifies a
  directory as an absolute pathname. (See [pathname] for a discussion
  of file naming conventions.) When [include-book] is given a
  relative book name it elaborates it into a full book name,
  essentially by appending the connected book directory string to the
  left and \".lisp\" to the right. (For details, see [book-name] and
  also see [full-book-name].) Furthermore, [include-book] temporarily
  sets the connected book directory to the directory string of the
  resulting full book name so that references to inferior [books] in
  the same directory may omit the directory. See [set-cbd] for how to
  set the connected book directory string.

    General Form:
    (cbd)

  This is a macro that expands into a term involving the single free
  variable [state]. It returns the connected book directory string.

  The connected book directory (henceforth called the ``cbd'') is used
  by [include-book] to elaborate the supplied book name into a full
  book name (see [full-book-name]). For example, if the cbd is
  \"/usr/home/smith/\" then the elaboration of the [book-name]
  \"project/task-1/arith\" (to the \".lisp\" extension) is
  \"/usr/home/smith/project/task-1/arith.lisp\". That [full-book-name]
  is what [include-book] opens to read the source text for the book.

  The cbd may be changed using [set-cbd] (see [set-cbd]). Furthermore,
  during the processing of the [events] in a book, [include-book]
  sets the cbd to be the directory string of the [full-book-name] of
  the book. Thus, if the cbd is \"/usr/home/smith/\" then during the
  processing of [events] by

    (include-book \"project/task-1/arith\")

  the cbd will be set to \"/usr/home/smith/project/task-1/\". Note that
  if \"arith\" recursively includes a sub-book, say \"naturals\", that
  resides on the same directory, the [include-book] event for it may
  omit the specification of that directory. For example, \"arith\"
  might contain the event

    (include-book \"naturals\").

  In general, suppose we have a superior book and several inferior
  [books] which are included by [events] in the superior book. Any
  inferior book residing on the same directory as the superior book
  may be referenced in the superior without specification of the
  directory.

  We call this a ``relative'' as opposed to ``absolute'' naming. The
  use of relative naming is preferred because it permits [books] (and
  their accompanying inferiors) to be moved between directories while
  maintaining their [certificate]s and utility. Certified [books]
  that reference inferiors by absolute file names are unusable (and
  rendered uncertified) if the inferiors are moved to new
  directories.

  Technical Note and a Challenge to Users:

  After elaborating the book name to a full book name, [include-book]
  opens a channel to the file to process the [events] in it. In some
  host Common Lisps, the actual file opened depends upon a notion of
  ``connected directory'' similar to our connected book directory.
  Our intention in always elaborating book names into absolute
  filename strings (see [pathname] for terminology) is to circumvent
  the sensitivity to the connected directory. But we may have
  insufficient control over this since the ultimate file naming
  conventions are determined by the host operating system rather than
  Common Lisp (though, we do check that the operating system
  ``appears'' to be one that we ``know'' about). Here is a question,
  which we'll pose assuming that we have an operating system that
  calls itself ``Unix.'' Suppose we have a file name, filename, that
  begins with a slash, e.g., \"/usr/home/smith/...\". Consider two
  successive invocations of CLTL's

    (open filename :direction :input)

  separated only by a change to the operating system's notion of
  connected directory. Must these two invocations produce streams to
  the same file? A candidate string might be something like
  \"/usr/home/smith/*/usr/local/src/foo.lisp\" which includes some
  operating system-specific special character to mean ``here insert
  the connected directory'' or, more generally, ``here make the name
  dependent on some non-ACL2 aspect of the host's state.'' If such
  ``tricky'' name strings beginning with a slash exist, then we have
  failed to isolate ACL2 adequately from the operating system's file
  naming conventions. Once upon a time, ACL2 did not insist that the
  cbd begin with a slash and that allowed the string \"foo.lisp\" to be
  tricky because if one were connected to \"/usr/home/smith/\" then
  with the empty cbd \"foo.lisp\" is a full book name that names the
  same file as \"/usr/home/smith/foo.lisp\". If the actual file one
  reads is determined by the operating system's state then it is
  possible for ACL2 to have two distinct ``full book names'' for the
  same file, the ``real'' name and the ``tricky'' name. This can
  cause ACL2 to include the same book twice, not recognizing the
  second one as redundant.")
 (CCL-UPDATES
  (HONS-AND-MEMOIZATION)
  "Updating Clozure Common Lisp (CCL)

  Those who use ACL2 built on CCL, especially those who make
  compute-intensive use of ACL2's [hons-enabled] features, are
  advised to to stay plugged into the ``trunk'' or ``bleeding edge''
  of CCL development. This is very easy to do by typing a few
  commands to a shell, for example standing above the target
  directory as follows, provided one has svn working.

    For linux:

      rm -rf ccl
      svn co http://svn.clozure.com/publicsvn/openmcl/trunk/linuxx8664/ccl

    For an x86 Macintosh running the Darwin OS:

      svn co http://svn.clozure.com/publicsvn/openmcl/trunk/darwinx8664/ccl

    To keep up to date, you may find it sufficient to do:

      cd ccl
      svn update

    Whether obtaining a fresh CCL or just updating, finally issue these
    commands.

      ./lx86cl64
      (rebuild-ccl :full t)
      (quit)
      ./lx86cl64
      (rebuild-ccl :full t)
      (quit)")
 (CDAAAR
    (CONSES ACL2-BUILT-INS)
    "[cdr] of the [caaar]

  See any Common Lisp documentation for details.")
 (CDAADR
    (CONSES ACL2-BUILT-INS)
    "[cdr] of the [caadr]

  See any Common Lisp documentation for details.")
 (CDAAR
     (CONSES ACL2-BUILT-INS)
     "[cdr] of the [caar]

  See any Common Lisp documentation for details.")
 (CDADAR
    (CONSES ACL2-BUILT-INS)
    "[cdr] of the [cadar]

  See any Common Lisp documentation for details.")
 (CDADDR
    (CONSES ACL2-BUILT-INS)
    "[cdr] of the [caddr]

  See any Common Lisp documentation for details.")
 (CDADR
     (CONSES ACL2-BUILT-INS)
     "[cdr] of the [cadr]

  See any Common Lisp documentation for details.")
 (CDAR
      (CONSES ACL2-BUILT-INS)
      "[cdr] of the [car]

  See any Common Lisp documentation for details.")
 (CDDAAR
    (CONSES ACL2-BUILT-INS)
    "[cdr] of the [cdaar]

  See any Common Lisp documentation for details.")
 (CDDADR
    (CONSES ACL2-BUILT-INS)
    "[cdr] of the [cdadr]

  See any Common Lisp documentation for details.")
 (CDDAR
     (CONSES ACL2-BUILT-INS)
     "[cdr] of the [cdar]

  See any Common Lisp documentation for details.")
 (CDDDAR
    (CONSES ACL2-BUILT-INS)
    "[cdr] of the [cddar]

  See any Common Lisp documentation for details.")
 (CDDDDR
    (CONSES ACL2-BUILT-INS)
    "[cdr] of the [cdddr]

  See any Common Lisp documentation for details.")
 (CDDDR
     (CONSES ACL2-BUILT-INS)
     "[cdr] of the [cddr]

  See any Common Lisp documentation for details.")
 (CDDR
      (CONSES ACL2-BUILT-INS)
      "[cdr] of the [cdr]

  See any Common Lisp documentation for details.")
 (CDR
  (CONSES ACL2-BUILT-INS)
  "Returns the second element of a [cons] pair, else nil

  Completion Axiom (completion-of-cdr):

    (equal (cdr x)
           (cond
            ((consp x)
             (cdr x))
            (t nil)))

  [Guard]:

    (or (consp x) (equal x nil))

  Notice that in the ACL2 logic, cdr returns nil for every [atom].")
 (CEILING
  (NUMBERS ACL2-BUILT-INS)
  "Division returning an integer by truncating toward positive infinity

    Example Forms:
    ACL2 !>(ceiling 14 3)
    5
    ACL2 !>(ceiling -14 3)
    -4
    ACL2 !>(ceiling 14 -3)
    -4
    ACL2 !>(ceiling -14 -3)
    5
    ACL2 !>(ceiling -15 -3)
    5

  (Ceiling i j) is the result of taking the quotient of i and j and
  returning the smallest integer that is at least as great as that
  quotient. For example, the quotient of -14 by 3 is -4 2/3, and the
  smallest integer at least that great is -4.

  The [guard] for (ceiling i j) requires that i and j are rational
  ([real], in ACL2(r)) numbers and j is non-zero.

  Ceiling is a Common Lisp function. See any Common Lisp documentation
  for more information. However, note that unlike Common Lisp, the
  ACL2 ceiling function returns only a single value,

  Function: <ceiling>

    (defun ceiling (i j)
           (declare (xargs :guard (and (real/rationalp i)
                                       (real/rationalp j)
                                       (not (eql j 0)))))
           (let* ((q (* i (/ j)))
                  (n (numerator q))
                  (d (denominator q)))
                 (cond ((= d 1) n)
                       ((>= n 0)
                        (+ (nonnegative-integer-quotient n d)
                           1))
                       (t (- (nonnegative-integer-quotient (- n)
                                                           d))))))")
 (CERTIFICATE
  (BOOKS-TOUR)
  "How a book is known to be admissible and where its [defpkg]s reside

  A book, say \"arith\", is said to have a ``certificate'' if there is a
  file named \"arith.cert\". Certificates are created by the function
  [certify-book] and inspected by [include-book]. Check sums are used
  to help ensure that certificates are legitimate and that the
  corresponding book has not been modified since certification. But
  because the file system is insecure and check sums are not perfect
  it is possible for the inclusion of a book to cause inconsistency
  even though the book carries an impeccable certificate.

  The certificate includes the version number of the certifying ACL2. A
  book is considered uncertified if it is included in an ACL2 with a
  different [version] number.

  The presence of a ``valid'' certificate file for a book attests to
  two things: all of the [events] of the book are admissible in a
  certain extension of the initial ACL2 logic, and the non-[local]
  [events] of the book are independent of the [local] ones (see
  [local-incompatibility]). In addition, the certificate contains the
  [command]s used to construct the [world] in which certification
  occurred. Among those [command]s, of course, are the [defpkg]s
  defining the packages used in the book. When a book is included
  into a host [world], that [world] is first extended by the
  [command]s listed in the certificate for the book. Unless that
  causes an error due to name conflicts, the extension ensures that
  all the packages used by the book are identically defined in the
  host [world].

  Security:

  Because the host file system is insecure, there is no way ACL2 can
  guarantee that the contents of a book remain the same as when its
  certificate was written. That is, between the time a book is
  certified and the time it is used, it may be modified. Furthermore,
  certificates can be counterfeited. Check sums (see [check-sum]) are
  used to help detect such problems. But check sums provide imperfect
  security: two different files can have the same check sum.

  Therefore, from the strictly logical point of view, one must consider
  even the inclusion of certified [books] as placing a burden on the
  user:

      The non-erroneous inclusion of a certified book is consistency
      preserving provided (a) the objects read by [include-book] from
      the certificate were the objects written there by a
      [certify-book] and (b) the forms read by [include-book] from
      the book itself are the forms read by the corresponding
      [certify-book].

  We say that a given execution of [include-book] is ``certified'' if a
  certificate file for the book is present and well-formed and the
  check sum information contained within it supports the conclusion
  that the [events] read by the [include-book] are the ones checked
  by [certify-book]. When an uncertified [include-book] occurs,
  warnings are printed or errors are caused. But even if no warning
  is printed, you must accept burdens (a) and (b) if you use [books].
  These burdens are easier to live with if you protect your [books]
  so that other users cannot write to them, you abstain from running
  concurrent ACL2 jobs, and you abstain from counterfeiting
  certificates. But even on a single user uniprocessor, you can shoot
  yourself in the foot by using the ACL2 [io] primitives to fabricate
  an inconsistent book and the corresponding certificate.

  Note that part (a) of the burden described above implies, in
  particular, that there are no guarantees when a certificate is
  copied. When [books] are renamed (as by copying them), it is
  recommended that their certificates be removed and the [books] be
  recertified. The expectation is that recertification will go
  through without a hitch if relative [pathname]s are used. See
  [pathname], which is not on the guided tour.

  Certificates essentially contain two parts, a [portcullis] and a
  [keep]. There is a third part, an expansion-alist, in order to
  record expansions if [make-event] has been used, but the user need
  not be concerned with that level of detail.

  See [portcullis] to continue the guided tour through [books].


Subtopics

  [Check-sum]
      Assigning ``often unique'' integers to files and objects")
 (CERTIFY-BOOK
  (BOOKS-REFERENCE BOOKS-TOUR)
  "How to produce a [certificate] for a book

    Examples:
    (certify-book \"my-arith\")          ; certify in a world with 0 commands
    (certify-book \"my-arith\" 3)        ; ... in a world with 3 commands
    (certify-book \"my-arith\" ?)        ; ... in a world without checking the
                                       ;     number of commands
    (certify-book \"my-arith\" 0 nil)    ; ... without compilation
    (certify-book \"my-arith\" 0 t)      ; ... with compilation (default)
    (certify-book \"my-arith\" 0 t :ttags (foo))
                                       ; ... allowing trust tag (ttag) foo
    (certify-book \"my-arith\" 0 t :ttags :all)
                                       ; ... allowing all trust tags (ttags)
    (certify-book \"my-arith\" t)        ; ... from world of old certificate
    (certify-book \"my-arith\" 0 nil :acl2x t)
                                       ; ... writing or reading a .acl2x file

    General Form:
    (certify-book book-name
                  k                       ; [default 0]
                  compile-flg             ; [default t]
                  :defaxioms-okp t/nil    ; [default nil]
                  :skip-proofs-okp t/nil  ; [default nil]
                  :ttags ttags            ; [default nil]
                  :acl2x t/nil            ; [default nil]
                  :ttagsx ttags           ; [default nil]
                  :pcert pcert            ; [default nil]
                  :write-port t/nil       ; [default t unless pcert is non-nil]
                  )

  where book-name is a book name (see [book-name]), k is used to
  indicate your approval of the ``certification [world],'' and
  compile-flg can control whether the book is to be compiled. The
  defaults for compile-flg, skip-proofs-okp, acl2x, write-port, and
  pcert can be affected by environment variables. All of these
  arguments are described in detail below, except for :pcert. (We
  assume below that the value of :pcert is nil (and environment
  variable ACL2_PCERT_ARG is unset or the empty string). For a
  discussion of this argument, see [provisional-certification].)

  Certification occurs in some logical [world], called the
  ``certification [world].'' That [world] must contain the [defpkg]s
  needed to read and execute the forms in the book. The [command]s
  necessary to recreate that [world] from the ACL2 initial [world]
  are called the ``[portcullis] commands,'' and will be copied into
  the [certificate] created for the book. Those [command]s will be
  re-executed whenever the book is included, to ensure that the
  appropriate packages (and all other names used in the certification
  [world]) are correctly defined. Note that Step 1 of certify-book
  will fail if a package mentioned in the book is not defined before
  attempting the certification, i.e., defined by a portcullis command
  in the certification world. For example, suppose that your book
  contains the symbol FOO::X, but the package \"FOO\" is not currently
  defined. Then an error message will likely complain either about a
  missing package \"FOO\", or about a symbol FOO::X that is ``not in
  any of the packages known to ACL2.'' A solution is to define the
  package \"FOO\", perhaps directly using [defpkg] or by including a
  book that defines this package, before attempting the
  certification.

  The certified book will be more often usable if the certification
  [world] is kept to a minimal extension of the ACL2 initial [world]
  (for example, to prevent name clashes with functions defined in
  other books). Thus, before you call certify-book for the first time
  on a book, you may wish to get into the initial ACL2 [world] (e.g.,
  with :ubt 1 or just starting a new version of ACL2), [defpkg] the
  desired packages, and then invoke certify-book.

  The k argument to certify-book must be either a nonnegative integer
  or else one of the symbols t or ? in any package. If k is an
  integer, then it must be the number of [command]s that have been
  executed after the initial ACL2 [world] to create the [world] in
  which certify-book was called. One way to obtain this number is by
  doing :pbt :start to see all the [command]s back to the first one.

  If k is t (or any symbol whose [symbol-name] is \"T\"), it means that
  certify-book should use the same [world] used in the last
  certification of this book. K may have such a value only if you
  call certify-book in the initial ACL2 [world] and there is a
  [certificate] on file for the book being certified. (Of course, the
  [certificate] is probably invalid.) In this case, certify-book
  reads the old [certificate] to obtain the [portcullis] [command]s
  and executes them to recreate the certification [world].

  Finally, k may be ? (or any symbol whose [symbol-name] is \"?\"), in
  which case there is no check made on the certification world. That
  is, if k is such a value then no action related to the preceding
  two paragraphs is performed, which can be a nice convenience but at
  the cost of eliminating a potentially valuable check that the
  certification [world] may be as expected.

  We next describe the meaning of compile-flg and how it defaults. If
  explicit compilation has been suppressed by (set-compiler-enabled
  nil state), then compile-flg is coerced to nil; see [compilation].
  Otherwise compile-flg may be given the value of t (or :all, which
  is equivalent to t except during provisional certification; see
  [provisional-certification]), indicating that the book is to be
  compiled, or else nil. (Note that compilation initially creates a
  compiled file with a temporary file name, and then moves that
  temporary file to the final compiled file name obtained by adding a
  suitable extension to the book name. Thus, a compiled file will
  appear atomically in its intended location.) Finally, suppose that
  compile-flg is not supplied (or is :default). If environment
  variable ACL2_COMPILE_FLG is defined and not the empty string, then
  its value should be T, NIL, or ALL after converting to upper case,
  in which case compile-flg is considered to have value t, nil, or
  :all (respectively). Otherwise compile-flg defaults to t. Note that
  the value :all is equivalent to t except for during the Convert
  procedure of provisional certification; see
  [provisional-certification].

  Two keyword arguments, :defaxioms-okp and :skip-proofs-okp, determine
  how the system handles the inclusion of [defaxiom] events and
  [skip-proofs] events, respectively, in the book. The value t allows
  such events, but prints a warning message. The value nil causes an
  error if such an event is found. Nil is the default unless keyword
  argument :acl2x t is provided and state global 'write-acl2x is a
  cons (see [set-write-ACL2x]), in which case the default is t.

  The keyword argument :ttags may normally be omitted. A few
  constructs, used for example if you are building your own system
  based on ACL2, may require it. See [defttag] for an explanation of
  this argument.

  When book B is certified with value t (the default, unless the value
  used for pcert is non-nil) for keyword argument :write-port, a file
  B.port is written by certification process. This file contains all
  of the [portcullis] [command]s for B, i.e., all user commands
  present in the ACL2 logical [world] at the time certify-book is
  called. if B.lisp later becomes uncertified, say because [events]
  from that file or an included book have been edited, then
  (include-book \"B\") will consult B.port to evaluate forms in that
  file before evaluating the events in B.lisp. On the other hand,
  B.port is ignored when including B if B is certified.

  If you use [guard]s, please note certify-book is executed as though
  (set-guard-checking nil) has been evaluated; see
  [set-guard-checking]. If you want guards checked, consider using ld
  instead, or in addition; see [ld].

  For a general discussion of books, see [books]. Certify-book is akin
  to what we have historically called a ``proveall'': all the forms
  in the book are ``proved'' to guarantee their admissibility. More
  precisely, certify-book (1) reads the forms in the book, confirming
  that the appropriate packages are defined in the certification
  [world]; (2) does the full admissibility checks on each form
  (proving termination of recursive functions, proving theorems,
  etc.), checking as it goes that each form is an embedded event form
  (see [embedded-event-form]); (3) may roll back the [world] (how
  far? ~-[] see below) and perform an [include-book] to check for
  [local] incompatibilities (see [local-incompatibility]); (4) writes
  a [certificate] recording not only that the book was certified but
  also recording the [command]s necessary to recreate the
  certification [world] (so the appropriate packages can be defined
  when the book is included in other [world]s) and the check sums of
  all the [books] involved (see [certificate]); (5) compiles the book
  if so directed (and then loads the object file in that case). The
  result of executing a certify-book [command] is the creation of a
  single new event, which is actually an [include-book] event. If you
  don't want its included [events] in your present [world], simply
  execute :[ubt] :here afterwards.

  Technical Remark. Step 3 above mentions rolling the logical [world]
  back to check for local incompatibilies. For efficiency, this
  retraction to an initial segment of the the world is skipped if a
  local event is not encountered as described below; otherwise, the
  world is rolled back to the point just before the first such event
  was admitted. For this purpose, a relevant local event is one at
  the top level of the book or under a sequences of [progn] calls in
  the book. Here, we include forms generated by [make-event]. But
  this category does not include local [events] within an
  [encapsulate] event, since those are ignored in the final
  processing of the encapsulate event. We also do not consider local
  events within an [include-book] event. End of Technical Remark.

  A utility is provided to assist in debugging failures of
  certify-book; see [redo-flat].)

  Certify-book requires that the default [defun-mode] (see
  [default-defun-mode]) be :[logic] when certification is attempted.
  If the mode is not :[logic], an error is signalled.

  An error will occur if certify-book has to deal with any uncertified
  book other than the one on which it was called. For example, if the
  book being certified includes another book, that sub-book must
  already have been certified; that is, that sub-book must have a
  valid [certificate] file.

  If you have a certified book that has remained unchanged for some
  time you might well not remember the appropriate [defpkg]s for it,
  though they are stored in the [certificate] file and (by default)
  also in the .port file. If you begin to change the book, don't
  throw away its [certificate] file just because it has become
  invalid! It is an important historical document until the book is
  re-certified. More important, don't throw away the .port file, as
  it will provide the [portcullis] commands when including the book
  as an uncertified book; see [include-book].

  When certify-book is directed to produce a compiled file, it calls
  the Common Lisp function compile-file on the original source file.
  This creates a compiled file with an extension known to ACL2, e.g.,
  if the book is named \"my-book\" then the source file is
  \"my-book.lisp\" and the compiled file under GCL will be \"my-book.o\"
  while under SBCL it will be \"my-book.fasl\". The compiled file is
  then loaded. When [include-book] is used later on \"my-book\" it will
  automatically load the compiled file, provided the compiled file
  has a later write date than the source file. The only effect of
  such [compilation] and loading is that the functions defined in the
  book execute faster. See [guard] for a discussion of the issues,
  and if you want more details about [books] and compilation, see
  [book-compiled-file].

  When certify-book is directed not to produce a compiled file, it will
  delete any existing compiled file for the book, so as not to
  mislead [include-book] into loading the now outdated compiled file.
  Otherwise, certify-book will create a temporary ``expansion file''
  to compile, obtained by appending the string \"@expansion.lsp\" to
  the end of the book name. Remark: Users may ignore that file, which
  is automatically deleted unless [state] global variable
  'save-expansion-file has been set, presumably by a system
  developer, to a non-nil value; see [book-compiled-file] for more
  information about hit issue, including the role of environment
  variable ACL2_SAVE_EXPANSION.

  After execution of a certify-book form, the value of
  [ACL2-defaults-table] is restored to what it was immediately before
  that certify-book form was executed. See [ACL2-defaults-table].

  Those who use the relatively advanced features of trust tags (see
  [defttag]) and [make-event] may wish to know how to create a
  [certificate] file that avoids dependence on trust tags that are
  used only during [make-event] expansion. For this, including
  documentation of the :acl2x and :ttagsx keyword arguments for
  certify-book, see [set-write-ACL2x].

  This completes the tour through the [documentation] of [books].


Subtopics

  [Certify-book!]
      A variant of [certify-book]")
 (CERTIFY-BOOK!
  (CERTIFY-BOOK)
  "A variant of [certify-book]

    Examples:
    (certify-book! \"my-arith\" 3)     ;Certify in a world with 3
                                       ; commands, starting in a world
                                       ; with at least 3 commands.
    (certify-book! \"my-arith\")       ;Certify in the initial world.

    General Form:
    (certify-book! book-name k compile-flg)

  where book-name is a book name (see [book-name]), k is a nonnegative
  integer used to indicate the ``certification [world],'' and
  compile-flg indicates whether you wish to compile the (functions in
  the) book.

  This [command] is identical to [certify-book], except that the second
  argument k may not be t in certify-book! and if k exceeds the
  current [command] number, then an appropriate [ubt!] will be
  executed first. See [certify-book] and see [ubt!].")
 (CERTIFYING-BOOKS (POINTERS)
                   "See [books-certification].")
 (CHANGE
  (DEFREC ACL2-BUILT-INS)
  "Mutator macro for [defrec] structures.

  The change macro is built into ACL2, and allows you to \"modify\"
  instances of structures that have been introduced with [defrec]. Of
  course, since ACL2 is applicative, the original structure is not
  actually changed---instead, a new structure is constructed, copying
  some fields from the original structure and installing new values
  for other fields.

  For instance, suppose we first use [make] to create an employee
  structure, e.g.,:

    (defconst *jimmy* (make employee :name \"Jimmy\"
                                     :salary 0
                                     :position \"Unpaid Intern\")

  Then we can use change to mutate this structure, e.g.,:

    (change employee *jimmy* :salary 300000
                             :position \"Vice President\")

  Produces a new employee structure where the name is still \"Jimmy\",
  but where the salary and position have been updated to 300000 and
  \"Vice President\", respectively.

  See [defrec] for more information.")
 (CHAR
  (CHARACTERS ACL2-BUILT-INS)
  "The [nth] element (zero-based) of a string

  (Char s n) is the nth element of s, zero-based. If n is greater than
  or equal to the length of s, then char returns nil.

  (Char s n) has a [guard] that n is a non-negative integer and s is a
  [stringp].

  Char is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Function: <char>

    (defun char (s n)
           (declare (xargs :guard (and (stringp s)
                                       (integerp n)
                                       (>= n 0)
                                       (< n (length s)))))
           (nth n (coerce s 'list)))")
 (CHAR-CODE
  (CHARACTERS NUMBERS ACL2-BUILT-INS)
  "The numeric code for a given character

  This function maps a character to its code, for example: (char-code
  #\\A) evaluates to 65. See [code-char] for a sort of inverse
  function, which maps a code to the corresponding character.

  Completion Axiom (completion-of-char-code):

    (equal (char-code x)
           (if (characterp x)
               (char-code x)
             0))

  [Guard] for (char-code x):

    (characterp x)

  This function maps all non-characters to 0.")
 (CHAR-DOWNCASE
  (CHARACTERS ACL2-BUILT-INS)
  "Turn upper-case [characters] into lower-case [characters]

  (Char-downcase x) is equal to #\\a when x is #\\A, #\\b when x is #\\B,
  ..., and #\\z when x is #\\Z, and is x for any other character.

  The [guard] for char-downcase requires its argument to be a standard
  character (see [standard-char-p]).

  Char-downcase is a Common Lisp function. See any Common Lisp
  documentation for more information.

  Function: <char-downcase>

    (defun char-downcase (x)
           (declare (xargs :guard (and (characterp x)
                                       (standard-char-p x))))
           (let ((pair (assoc x
                              '((#\\A . #\\a)
                                (#\\B . #\\b)
                                (#\\C . #\\c)
                                (#\\D . #\\d)
                                (#\\E . #\\e)
                                (#\\F . #\\f)
                                (#\\G . #\\g)
                                (#\\H . #\\h)
                                (#\\I . #\\i)
                                (#\\J . #\\j)
                                (#\\K . #\\k)
                                (#\\L . #\\l)
                                (#\\M . #\\m)
                                (#\\N . #\\n)
                                (#\\O . #\\o)
                                (#\\P . #\\p)
                                (#\\Q . #\\q)
                                (#\\R . #\\r)
                                (#\\S . #\\s)
                                (#\\T . #\\t)
                                (#\\U . #\\u)
                                (#\\V . #\\v)
                                (#\\W . #\\w)
                                (#\\X . #\\x)
                                (#\\Y . #\\y)
                                (#\\Z . #\\z)))))
                (cond (pair (cdr pair))
                      ((characterp x) x)
                      (t (code-char 0)))))")
 (CHAR-EQUAL
  (CHARACTERS ACL2-BUILT-INS)
  "Character equality without regard to case

  For [characters] x and y, (char-equal x y) is true if and only if x
  and y are the same except perhaps for their case.

  The [guard] on char-equal requires that its arguments are both
  standard [characters] (see [standard-char-p]).

  Char-equal is a Common Lisp function. See any Common Lisp
  documentation for more information.

  Function: <char-equal>

    (defun char-equal (x y)
           (declare (xargs :guard (and (characterp x)
                                       (standard-char-p x)
                                       (characterp y)
                                       (standard-char-p y))))
           (eql (char-downcase x)
                (char-downcase y)))")
 (CHAR-UPCASE
  (CHARACTERS ACL2-BUILT-INS)
  "Turn lower-case [characters] into upper-case [characters]

  (Char-upcase x) is equal to #\\A when x is #\\a, #\\B when x is #\\b,
  ..., and #\\Z when x is #\\z, and is x for any other character.

  The [guard] for char-upcase requires its argument to be a standard
  character (see [standard-char-p]).

  Char-upcase is a Common Lisp function. See any Common Lisp
  documentation for more information.

  Function: <char-upcase>

    (defun char-upcase (x)
           (declare (xargs :guard (and (characterp x)
                                       (standard-char-p x))))
           (let ((pair (assoc x
                              '((#\\a . #\\A)
                                (#\\b . #\\B)
                                (#\\c . #\\C)
                                (#\\d . #\\D)
                                (#\\e . #\\E)
                                (#\\f . #\\F)
                                (#\\g . #\\G)
                                (#\\h . #\\H)
                                (#\\i . #\\I)
                                (#\\j . #\\J)
                                (#\\k . #\\K)
                                (#\\l . #\\L)
                                (#\\m . #\\M)
                                (#\\n . #\\N)
                                (#\\o . #\\O)
                                (#\\p . #\\P)
                                (#\\q . #\\Q)
                                (#\\r . #\\R)
                                (#\\s . #\\S)
                                (#\\t . #\\T)
                                (#\\u . #\\U)
                                (#\\v . #\\V)
                                (#\\w . #\\W)
                                (#\\x . #\\X)
                                (#\\y . #\\Y)
                                (#\\z . #\\Z)))))
                (cond (pair (cdr pair))
                      ((characterp x) x)
                      (t (code-char 0)))))")
 (CHAR<
  (CHARACTERS ACL2-BUILT-INS)
  "Less-than test for [characters]

  (char< x y) is true if and only if the character code of x is less
  than that of y. See [char-code].

  The [guard] for char< specifies that its arguments are [characters].

  Char< is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <char<>

    (defun char< (x y)
           (declare (xargs :guard (and (characterp x) (characterp y))))
           (< (char-code x) (char-code y)))")
 (CHAR<=
  (CHARACTERS ACL2-BUILT-INS)
  "Less-than-or-equal test for [characters]

  (char<= x y) is true if and only if the character code of x is less
  than or equal to that of y. See [char-code].

  The [guard] for char<= specifies that its arguments are [characters].

  Char<= is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <char<=>

    (defun char<= (x y)
           (declare (xargs :guard (and (characterp x) (characterp y))))
           (<= (char-code x) (char-code y)))")
 (CHAR>
  (CHARACTERS ACL2-BUILT-INS)
  "Greater-than test for [characters]

  (char> x y) is true if and only if the character code of x is greater
  than that of y. See [char-code].

  The [guard] for char> specifies that its arguments are [characters].

  Char> is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <char>>

    (defun char> (x y)
           (declare (xargs :guard (and (characterp x) (characterp y))))
           (> (char-code x) (char-code y)))")
 (CHAR>=
  (CHARACTERS ACL2-BUILT-INS)
  "Greater-than-or-equal test for [characters]

  (char>= x y) is true if and only if the character code of x is
  greater than or equal to that of y. See [char-code].

  The [guard] for char>= specifies that its arguments are [characters].

  Char>= is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <char>=>

    (defun char>= (x y)
           (declare (xargs :guard (and (characterp x) (characterp y))))
           (>= (char-code x) (char-code y)))")
 (CHARACTER-ALISTP
  (CHARACTERS ALISTS ACL2-BUILT-INS)
  "Recognizer for association lists with characters as keys

  (Character-alistp x) is true if and only if x is a list of pairs of
  the form (cons key val) where key is a [characterp].

  Function: <character-alistp>

    (defun character-alistp (x)
           (declare (xargs :guard t))
           (cond ((atom x) (eq x nil))
                 (t (and (consp (car x))
                         (characterp (car (car x)))
                         (character-alistp (cdr x))))))")
 (CHARACTER-ENCODING
  (IO)
  "How bytes are parsed into characters

  When the Common Lisp reader comes across bytes in a file or at the
  terminal, they are parsed into characters. The simplest case is
  when each byte that is read is a standard character (see
  [standard-char-p]). It is actually quite common that each byte that
  is read corresponds to a single character. The parsing of bytes
  into characters is based on a character encoding, that is, a
  mapping that associates one or more bytes with each legal
  character.

  In order to help guarantee the portability of files (including
  [books]), ACL2 installs a common character encoding for reading
  files, often known as iso-8859-1 or latin-1. For some host Lisps
  this character encoding is also used for reading from the terminal;
  but, sadly, this may not hold for all host Lisps, and may not even
  be possible for some of them.

  The use of the above encoding could in principle cause problems if
  one's editor produces files using an encoding other than
  iso-8859-1, at least if one uses non-standard characters. In
  particular, the default Emacs buffer encoding may be utf-8. If your
  file has non-standard characters, then in Emacs you can evaluate
  the form

    (setq save-buffer-coding-system 'iso-8859-1)

  before saving the buffer into a file. This will happen automatically
  for users who load distributed file emacs/emacs-acl2.el into their
  Emacs sessions.

  For an example of character encodings in action, see the community
  book books/misc/character-encoding-test.lisp.")
 (CHARACTER-LISTP
  (CHARACTERS LISTS ACL2-BUILT-INS)
  "Recognizer for a true list of characters

  The predicate character-listp tests whether its argument is a true
  list of [characters].

  Function: <character-listp>

    (defun character-listp (l)
           (declare (xargs :guard t))
           (cond ((atom l) (equal l nil))
                 (t (and (characterp (car l))
                         (character-listp (cdr l))))))")
 (CHARACTERP
  (CHARACTERS ACL2-BUILT-INS)
  "Recognizer for [characters]

  (characterp x) is true if and only if x is a character.")
 (CHARACTERS
  (PROGRAMMING)
  "Characters in ACL2 and operations on them

  ACL2 accepts 256 distinct characters, which are the characters
  obtained by applying the function [code-char] to each integer from
  0 to 255. Among these, Common Lisp designates certain ones as
  standard characters, namely those of the form (code-char n) where n
  is from 33 to 126, together with #\\Newline and #\\Space. The actual
  standard characters may be viewed by evaluating the [defconst]
  *standard-chars*.

  To be more precise, Common Lisp does not specify the precise
  relationship between [code-char] and the standard characters.
  However, we check that the underlying Common Lisp implementation
  uses a particular relationship that extends the usual ASCII coding
  of characters. We also check that Space, Tab, Newline, Page, and
  Rubout correspond to characters with respective [char-code]s 32, 9,
  10, 12, and 127.

  [Code-char] has an inverse, [char-code]. Thus, when [char-code] is
  applied to an ACL2 character, c, it returns a number n between 0
  and 255 inclusive such that (code-char n) = c.

  The preceding paragraph implies that there is only one ACL2 character
  with a given character code. CLTL allows for ``attributes'' for
  characters, which could allow distinct characters with the same
  code, but ACL2 does not allow this.

  The Character Reader

  ACL2 supports the `#\\' notation for characters provided by Common
  Lisp, with some restrictions. First of all, for every character c,
  the notation

    #\\c

  may be used to denote the character object c. That is, the user may
  type in this notation and ACL2 will read it as denoting the
  character object c. In this case, the character immediately
  following c must be one of the following ``terminating
  characters'': a Tab, a Newline, a Page character, a space, or one
  of the characters:

    \"  '  (  )  ;  `  ,

  Other than the notation above, ACL2 accepts alternate notation for
  five characters.

    #\\Space
    #\\Tab
    #\\Newline
    #\\Page
    #\\Rubout

  Again, in each of these cases the next character must be from among
  the set of ``terminating characters'' described in the
  single-character case. Our implementation is consistent with
  IS0-8859, even though we don't provide #\\ syntax for entering
  characters other than that described above.

  Finally, we note that it is our intention that any object printed by
  ACL2's top-level-loop may be read back into ACL2. Please notify the
  implementors if you find a counterexample to this claim.


Subtopics

  [Alpha-char-p]
      Recognizer for alphabetic characters

  [Char]
      The [nth] element (zero-based) of a string

  [Char-code]
      The numeric code for a given character

  [Char-downcase]
      Turn upper-case [characters] into lower-case [characters]

  [Char-equal]
      Character equality without regard to case

  [Char-upcase]
      Turn lower-case [characters] into upper-case [characters]

  [Char<]
      Less-than test for [characters]

  [Char<=]
      Less-than-or-equal test for [characters]

  [Char>]
      Greater-than test for [characters]

  [Char>=]
      Greater-than-or-equal test for [characters]

  [Character-alistp]
      Recognizer for association lists with characters as keys

  [Character-listp]
      Recognizer for a true list of characters

  [Characterp]
      Recognizer for [characters]

  [Code-char]
      The character corresponding to a given numeric code

  [Coerce]
      Coerce a character list to a string and a string to a list

  [Digit-char-p]
      The number, if any, corresponding to a given character

  [Digit-to-char]
      Map a digit to a character

  [Explode-atom]
      Convert any [atom] into a [character-listp] that contains its
      printed representation, rendering numbers in your choice of
      print base.

  [Explode-nonnegative-integer]
      The list of [characters] in the radix-r form of a number

  [Lower-case-p]
      Recognizer for lower case characters

  [Make-character-list]
      [coerce] to a list of characters

  [Standard-char-listp]
      Recognizer for a true list of standard characters

  [Standard-char-p]
      Recognizer for standard characters

  [Upper-case-p]
      Recognizer for upper case characters")
 (CHECK-INVARIANT-RISK (POINTERS)
                       "See [set-check-invariant-risk].")
 (CHECK-SUM
  (CERTIFICATE)
  "Assigning ``often unique'' integers to files and objects

  A ``check sum'' is an integer in some fixed range computed from the
  printed representation of an object, e.g., the sum, modulo 2**32,
  of the ascii codes of all the [characters] in the printed
  representation.

  Ideally, you would like the check sum of an object to be uniquely
  associated with that object, like a fingerprint. It could then be
  used as a convenient way to recognize the object in the future: you
  could remember the check sum (which is relatively small) and when
  an object is presented to you and alleged to be the special one you
  could compute its check sum and see if indeed it was. Alas, there
  are many more objects than check sums (after all, each check sum is
  an object, and then there's t). So you try to design a check sum
  algorithm that maps similar looking objects far apart, in the hopes
  that corruptions and counterfeits --- which appear to be similar to
  the object --- have different check sums. Nevertheless, the best
  you can do is a many-to-one map. If an object with a different
  check sum is presented, you can be positive it is not the special
  object. But if an object with the same check sum is presented, you
  have no grounds for positive identification.

  The basic check sum algorithm in ACL2 is called check-sum-obj, which
  computes the check sum of an ACL2 object. Roughly speaking, we scan
  the print representation of the object and, for each character
  encountered, we multiply the ascii code of the character times its
  position in the stream (modulo a certain prime) and then add
  (modulo a certain prime) that into the running sum. This is
  inaccurate in many senses (for example, we don't always use the
  ascii code and we see numbers as though they were printed in base
  127) but indicates the basic idea.

  ACL2 uses check sums to increase security in the [books] mechanism;
  see [certificate].")
 (CHECKPOINT-FORCED-GOALS
  (PROOF-TREE)
  "Cause forcing goals to be checkpointed in proof trees

    Example forms:
    (checkpoint-forced-goals t)
    (checkpoint-forced-goals nil)

  Also see [proof-tree].

  By default, goals are not marked as checkpoints by a proof tree
  display (as described elsewhere; see [proof-tree]) merely because
  they [force] some hypotheses, thus possibly contributing to a
  forcing round. However, some users may want such behavior, which
  will occur once the command (checkpoint-forced-goals t) has been
  executed. To return to the default behavior, use the command
  (checkpoint-forced-goals nil).")
 (CLAUSE-IDENTIFIER
  (GOAL-SPEC)
  "The internal form of a [goal-spec]

  To each goal-spec, str, there corresponds a clause-identifier
  produced by (parse-clause-id str). For example,

    (parse-clause-id \"[2]Subgoal *4.5.6/7.8.9'''\")

  returns ((2 4 5 6) (7 8 9) . 3).

  The function string-for-tilde-@-clause-id-phrase inverts
  parse-clause-id in the sense that given a clause identifier it
  returns the corresponding goal-spec.

  As noted in the documentation for [goal-spec], each clause printed in
  the theorem prover's proof attempt is identified by a name. When
  these names are represented as strings they are called ``goal
  specs.'' Such strings are used to specify where in the proof
  attempt a given hint is to be applied. The function parse-clause-id
  converts goal-specs into clause identifiers, which are cons-trees
  containing natural numbers.

  Examples of goal-specs and their corresponding clause identifiers are
  shown below.

                 parse-clause-id
                       -->

    \"Goal\"                       ((0) NIL . 0)
    \"Subgoal 3.2.1'\"             ((0) (3 2 1) . 1)
    \"[2]Subgoal *4.5.6/7.8.9'''\" ((2 4 5 6) (7 8 9) . 3)

                       <--
          string-for-tilde-@-clause-id-phrase

  The caar of a clause id specifies the forcing round, the cdar
  specifies the goal being proved by induction, the cadr specifies
  the particular subgoal, and the cddr is the number of primes in
  that subgoal.

  Internally, the system maintains clause ids, not goal-specs. The
  system prints clause ids in the form shown by goal-specs. When a
  goal-spec is used in a hint, it is parsed (before the proof attempt
  begins) into a clause id. During the proof attempt, the system
  watches for the clause id and uses the corresponding hint when the
  id arises. (Because of the expense of creating and garbage
  collecting a lot of strings, this design is more efficient than the
  alternative.)")
 (CLAUSE-PROCESSOR
  (RULE-CLASSES)
  "Make or apply a :clause-processor rule (goal-level simplifier)

  See [rule-classes] for a general discussion of rule classes,
  including how they are used to build rules from formulas and a
  discussion of the various keywords in a rule class description.

  We will introduce clause-processor rules by way of the following
  example. But note that the clause-processor utility is more general
  than this example may suggest; for example, the second argument of
  evl0 in the hypothesis need not be the same as its second argument
  in the conclusion.

    ; Example (which we'll return to, below):
    (defthm correctness-of-note-fact-clause-processor
      (implies (and (pseudo-term-listp cl)
                    (alistp a)
                    (evl0 (conjoin-clauses
                           (note-fact-clause-processor cl term))
                          a))
               (evl0 (disjoin cl) a))
      :rule-classes :clause-processor)

  We begin this documentation with an introduction, focusing on the
  example above, and then conclude with a detailed general discussion
  of clause-processor rules. You might find it most useful simply to
  look at the examples in community books directory
  books/clause-processors/; see file Readme.lsp in that directory.

  Also see [define-trusted-clause-processor] for documentation of an
  analogous utility that does not require the clause-processor to be
  proved correct. But please read the present documentation before
  reading about that utility. Both utilities designate functions as
  ``clause-processors''. Such functions must be executable --- hence
  not constrained by virtue of being introduced in the [signature] of
  an [encapsulate] --- and must respect [stobj] and output arity
  restrictions. For example, something like (car (mv ...)) is
  illegal; also see [signature].

  INTRODUCTION

  A :clause-processor rule installs a simplifier at the level of goals,
  where a goal is represented as a clause: a list of [term]s that is
  implicitly viewed as a disjunction (the application of [or]). For
  example, if ACL2 prints a goal in the form (implies (and p q) r),
  then the clause might be the one-element list containing the
  internal representation of this term --- (implies (if p q 'nil) r)
  --- but more likely, the corresponding clause is ((not p) (not q)
  r). Note that the members of a clause are translated terms; see
  [term] and [termp]. For example, they do not contain calls of the
  macro AND, and constants are quoted. The result of running a
  clause-processor must be a list of legal clauses; see [meta] for a
  discussion of translated terms, and for related discussion about
  ``forbidden'' function symbols, [set-skip-meta-termp-checks].

  Technically, the recognizer for a clause is the function [term-listp]
  and the recognizer for a list of clauses is [term-list-listp].

  Note that clause-processor simplifiers are similar to metafunctions,
  and similar efficiency considerations apply. See [meta], in
  particular the discussion on how to ``make a metafunction maximally
  efficient.''

  Unlike rules of class :[meta], rules of class :clause-processor must
  be applied by explicit :clause-processor [hints]; they are not
  applied automatically (unless by way of computed hints; see
  [computed-hints]). But :clause-processor rules can be useful in
  situations for which it is more convenient to code a simplifier
  that manipulates the entire goal clause rather than individual
  subterms of terms in the clause.

  We begin with a simple illustrative example: a clause-processor that
  assumes an alleged fact (named term in the example) and creates a
  separate goal to prove that fact. We can extend the hypotheses of
  the current goal (named cl in the example) with a term by adding
  the negation of that term to the clause (disjunctive)
  representation of that goal. So the following returns a list of two
  clauses: the result of adding term as a hypothesis to the input
  clause, as just described, and a second clause consisting only of
  that term. This list of two clauses can be viewed as the
  conjunction of the first clause and the second clause (where again,
  each clause is viewed as a disjunction).

    (defun note-fact-clause-processor (cl term)
      (declare (xargs :guard t)) ; optional, for better efficiency
      (list (cons (list 'not term)
                  cl)
            (list term)))

  As with :[meta] rules, we need to introduce a suitable evaluator; see
  [defevaluator] if you want details. Since we expect to reason about
  the function [not], because of its role in
  note-fact-clause-processor as defined above, we include NOT in the
  set of functions known to this evaluator. We also include IF, as is
  often a good idea.

    (defevaluator evl0 evl0-list
      ((not x) (if x y z)))

  ACL2 can now prove the following theorem automatically. (This is the
  example displayed at the outset of this [documentation] topic.) Of
  course, :clause-processor rules about clause-processor functions
  less trivial than note-fact-clause-processor may require lemmas to
  be proved first! The function disjoin takes a clause and returns
  its disjunction (the result of applying [or] to its members), and
  conjoin-clauses applies disjoin to every element of a given list of
  clauses and then conjoins (applies AND) to the corresponding list
  of resulting terms.

    (defthm correctness-of-note-fact-clause-processor
      (implies (and (pseudo-term-listp cl)
                    (alistp a)
                    (evl0 (conjoin-clauses
                           (note-fact-clause-processor cl term))
                          a))
               (evl0 (disjoin cl) a))
      :rule-classes :clause-processor)

  Now let us submit a silly but illustrative example theorem to ACL2,
  to show how a corresponding :clause-processor hint is applied. The
  hint says to apply the clause-processor function,
  note-fact-clause-processor, to the current goal clause and a ``user
  hint'' as the second argument of that function, in this case (equal
  a a). Thus, a specific variable, clause, is always bound to the
  current goal clause for the evaluation of the :clause-processor
  hint, to produce a list of clauses. Since two subgoals are created
  below, we know that this list contained two clauses. Indeed, these
  are the clauses returned when note-fact-clause-processor is applied
  to two arguments: the current clause, which is the one-element list
  ((equal (car (cons x y)) x)), and the user hint, (equal a a).

    ACL2 !>(thm (equal (car (cons x y))
                       x)
                :hints
                ((\"Goal\"
                  :clause-processor
                  (note-fact-clause-processor clause '(equal a a)))))

    [Note:  A hint was supplied for our processing of the goal above.
    Thanks!]

    We now apply the verified :CLAUSE-PROCESSOR function NOTE-FACT-CLAUSE-
    PROCESSOR to produce two new subgoals.

    Subgoal 2
    (IMPLIES (EQUAL A A)
             (EQUAL (CAR (CONS X Y)) X)).

    But we reduce the conjecture to T, by the :executable-counterpart of
    IF and the simple :rewrite rule CAR-CONS.

    Subgoal 1
    (EQUAL A A).

    But we reduce the conjecture to T, by primitive type reasoning.

    Q.E.D.

    Summary
    Form:  ( THM ...)
    Rules: ((:EXECUTABLE-COUNTERPART IF)
            (:EXECUTABLE-COUNTERPART NOT)
            (:FAKE-RUNE-FOR-TYPE-SET NIL)
            (:REWRITE CAR-CONS))
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

    Proof succeeded.
    ACL2 !>

  That concludes our introduction to clause-processor rules and hints.
  We turn now to detailed documentation.

  DETAILED DOCUMENTATION

  The [signature] of a clause-processor function, CL-PROC, must have
  one of the following forms. Here, each st_i is a [stobj] (possibly
  state) while the other parameters and results are not stobjs (see
  [stobj]). Note that there need not be input stobjs in [3] --- i.e.,
  k can be 0 --- and even if there are, there need not be output
  stobjs.

    [1]  ((CL-PROC cl) => cl-list)

    [2]  ((CL-PROC cl hint) => cl-list)

    [3]  ((CL-PROC cl hint st_1 ... st_k) => (mv erp cl-list st_i1 ... st_in))

  In [3], we think of the first component of the result as an error
  flag. Indeed, a proof will instantly abort if that error flag is
  not nil.

  We next discuss the legal forms of :clause-processor rules, followed
  below by a discussion of :clause-processor [hints]. In the
  discussion below, we use lower-case names to represent specific
  symbols, for example implies, and we use upper-case names to
  represent more arbitrary pieces of syntax (which we will describe),
  for example, CL.

  If a :[rule-classes] specification includes :clause-processor, then
  the corresponding term must have the following form. (Additional
  ``meta-extract'' hypotheses, not shown or discussed below, may be
  included as desired in order to use facts from the logical [world]
  to help prove the rule; see [meta-extract] for explanation of this
  advanced feature.)

    ; General Form (omitting possible meta-extract hypotheses)
    (implies (and (pseudo-term-listp CL)
                  (alistp A)
                  (EVL (conjoin-clauses <CL-LIST>)
                        B))
             (EVL (disjoin CL) A))

  Here EVL is a known evaluator; CL and A are distinct non-stobj
  variables; and <CL-LIST> is an expression representing the clauses
  returned by the clause-processor function CL-PROC, whose form
  depends on the [signature] of that function, as follows. Typically
  B is A, but it can be any term (useful when generalization is
  occurring; see the example ``Test generalizing alist'' in community
  book books/clause-processors/basic-examples.lisp). For cases [1]
  and [2] above, <CL-LIST> is of the form (CL-PROC CL) or (CL-PROC CL
  HINT), respectively, where in the latter case HINT is a non-stobj
  variable distinct from the variables CL and A. For case [3],
  <CL-LIST> is of the form

    (clauses-result (CL-PROC CL HINT st_1 ... st_k))

  where the st_i are the specific stobj names mentioned in [3].
  Logically, clauses-result returns the [cadr] if the [car] is NIL,
  and otherwise (for the error case) returns a list containing the
  empty (false) clause. So in the non-error case, clauses-result
  picks out the second result, denoted cl-list in [3] above, and in
  the error case the implication above trivially holds.

  In the above theorem, we are asked to prove (EVL (disjoin CL) A)
  assuming that the conjunction of all clauses produced by the clause
  processor evaluates to a non-nil value under some alist B. In fact,
  we can choose B so as to allow us to assume evaluations of the
  generated clauses over many different alists. This technique is
  discussed in the community book
  books/clause-processors/multi-env-trick.lisp, which introduces some
  macros that may be helpful in accomplishing proofs of this type.

  The clause-processor function, CL, must have a guard that ACL2 can
  trivially prove from the hypotheses that the first argument of CL
  is known to be a pseudo-term-listp and any [stobj] arguments are
  assumed to satisfy their stobj predicates.

  Next we specify the legal forms for :clause-processor [hints]. These
  depend on the signature as described in [1] through [3] above.
  Below, as above, CL-PROC is the clause-processor function, and
  references to ``clause'' refer to that exact variable (not, for
  example, to cl). In each of the three cases, the forms shown for
  that case are equivalent; in particular, the :function syntax is
  simply a convenience for the final form in each case.

  Signature [1], ((cl-proc cl) => cl-list):

    :clause-processor CL-PROC
    :clause-processor (:function CL-PROC)
    :clause-processor (CL-PROC clause)

  or any term macroexpanding to (CL-PROC clause).

  Signature [2], ((cl-proc cl hint) => cl-list):

    :clause-processor (:function CL-PROC :hint HINT)
    :clause-processor (CL-PROC clause HINT)

  or any term macroexpanding to (CL-PROC clause HINT), where HINT is
  any term with at most CLAUSE free.

  Signature [3], ((CL-PROC cl hint ...) => (mv erp cl-list ...))

    :clause-processor (:function CL-PROC :hint HINT)
    :clause-processor (CL-PROC clause HINT st_1 ... st_k)

  or any term macroexpanding to (CL-PROC clause HINT st_1 ... st_k),
  where HINT is any term with at most CLAUSE free.

  A :clause-processor hint causes the proof to abort if the result,
  val, returned by evaluating the suitable CL-PROC call, as above, is
  not a list of clauses, i.e., a list of (translated) [term] lists
  (see [term-list-listp]) in the current logical [world]. More
  precisely, the proof aborts if (term-list-listp val (w state)) is
  nil. This term-list-listp test is done explicitly every time a
  clause processor is run unless a :[well-formedness-guarantee] has
  been provided with the :clause-processor rule or
  [set-skip-meta-termp-checks] has been used with an active trust tag
  to skip the check at the user's risk.

  The proof also aborts if in case [3] the first (erp) value returned
  is not nil, in which case erp is used for printing an error message
  as follows: if it is a string, then that string is printed; but if
  it is a non-empty true list whose first element is a string, then
  it is printed as though by (fmt ~@0 (list (cons #\\0 erp)) ...) (see
  [fmt]). Otherwise, a non-nil erp value causes a generic error
  message to be printed.

  If there is no error as above, but the CL-PROC call returns clause
  list whose single element is equal to the input clause, then the
  hint is ignored since we are left with the goal with which we
  started. In that case, the other prover processes are then applied
  as usual.

  You can see all current :clause-processor rules by issuing the
  following command: (print-clause-processor-rules).

  The following paper discusses ACL2 clause-processors at a high level
  suitable for a non-ACL2 audience:

      M. Kaufmann, J S. Moore, S. Ray, and E. Reeber, ``Integrating
      External Deduction Tools with ACL2.'' Journal of Applied Logic
      (Special Issue: Empirically Successful Computerized Reasoning),
      Volume 7, Issue 1, March 2009, pp. 3--25. Also published online
      (DOI 10.1016/j.jal.2007.07.002). Preliminary version in:
      Proceedings of the 6th International Workshop on the
      Implementation of Logics (IWIL 2006) (C. Benzmueller, B.
      Fischer, and G. Sutcliffe, editors), {CEUR Workshop Proceedings
      Vol. 212 | http://ceur-ws.org/Vol-212/}, Phnom Penh, Cambodia,
      pp. 7-26, November 2006.


Subtopics

  [Set-skip-meta-termp-checks]
      Skip output checks for [meta] functions and [clause-processor]s

  [Set-skip-meta-termp-checks!]
      Skip output checks non-[local]ly for [meta] functions and
      [clause-processor]s")
 (CLEAR-HASH-TABLES
  (MEMOIZE)
  "Deprecated feature

  Deprecated. Calls [clear-memoize-tables] and then [hons-clear] or
  [hons-wash], whichever makes sense for the underlying Common Lisp.")
 (CLEAR-MEMOIZE-STATISTICS
  (MEMOIZE)
  "Clears all profiling info displayed by ([memoize-summary])

  Logically, this function just returns nil. It clears all profiling
  info displayed by ([memoize-summary])

  Function: <clear-memoize-statistics>

    (defun clear-memoize-statistics
           nil (declare (xargs :guard t))
           nil)")
 (CLEAR-MEMOIZE-TABLE
  (MEMOIZE)
  "Forget values remembered for the given function

  This function returns its argument, fn, unchanged. The values
  memoized for fn are forgotten.

  Function: <clear-memoize-table>

    (defun clear-memoize-table (fn)
           (declare (xargs :guard t))
           fn)")
 (CLEAR-MEMOIZE-TABLES
  (MEMOIZE)
  "Forget values remembered for all the memoized functions

  Clear-memoize-tables is a logical no-op. All memoized values are
  forgotten. It returns nil, invoking [clear-memoize-table] for each
  memoized function.

  Function: <clear-memoize-tables>

    (defun clear-memoize-tables
           nil (declare (xargs :guard t))
           nil)")
 (CLOSE-INPUT-CHANNEL (POINTERS)
                      "See [io].")
 (CLOSE-OUTPUT-CHANNEL (POINTERS)
                       "See [io].")
 (CLOSE-TRACE-FILE
  (TRACE)
  "Stop redirecting trace output to a file

    General Form:
    (close-trace-file) ; trace output is no longer redirected to a file

  Output from [trace$] normally goes to the screen, or more precisely,
  [standard-co]. It can be redirected to a file; see
  [open-trace-file]. Use close-trace-file to redirect trace output to
  [standard-co].")
 (CODE-CHAR
  (CHARACTERS NUMBERS ACL2-BUILT-INS)
  "The character corresponding to a given numeric code

  This function maps a numeric code to the corresponding character, for
  example: (code-char 65) evaluates to #\\A. See [char-code] for a
  sort of inverse function, which maps a character to its code.

  Completion Axiom (completion-of-code-char):

    (equal (code-char x)
           (if (and (integerp x)
                    (>= x 0)
                    (< x 256))
               (code-char x)
             (code-char 0)))

  [Guard] for (code-char x):

    (and (integerp x)
         (>= x 0)
         (< x 256))

  ACL2 supports 8-bit [characters]. Inputs not between 0 and 255 are
  treated as 0.")
 (COERCE
  (STRINGS CHARACTERS ACL2-BUILT-INS)
  "Coerce a character list to a string and a string to a list

  Completion Axiom (completion-of-coerce):

    (equal (coerce x y)
           (cond
            ((equal y 'list)
             (if (stringp x)
                 (coerce x 'list)
               nil))
            (t
             (coerce (make-character-list x) 'string))))

  [Guard] for (coerce x y):

    (if (equal y 'list)
        (stringp x)
      (if (equal y 'string)
          (character-listp x)
        nil))

  Also see community book books/misc/fast-coerce.lisp, contributed by
  Jared Davis, for a version of coerce that may be faster for Common
  Lisp implementations other than CCL 1.3 or later, if the second
  argument is 'list (for coercing a string to a list).

  Logical Note

  The function coerce can be viewed as the constructor for strings. As
  discussed in Section 7 of \"{A Precise Description of the ACL2 Logic
  | http://www.cs.utexas.edu/users/moore/publications/km97a.pdf}\"
  (Matt Kaufmann and J Moore, April, 1998), a string may be built by
  coercing its list of characters: for example, \"abc\" is (coerce
  '(#\\a #\\b #\\c) 'string). More precisely, \"abc\" is an abbreviation
  for (coerce '(#\\a #\\b #\\c) 'string), where even more pedantically,
  '(#\\a #\\b #\\c) is an abbreviation for (cons '#\\a (cons '#\\b (cons
  '#\\c 'nil))).")
 (COMMAND
  (HISTORY)
  "Forms you type at the top-level, but...

  ...the word ``command'' usually refers to a top-level form whose
  evaluation produces a new logical [world].

    Typical commands are:
    (defun foo (x) (cons x x))
    (defthm consp-foo (consp (foo x)))
    (defrec pair (hd . tl) nil)

  The first two forms are examples of commands that are in fact
  primitive [events]. See [events]. Defrec, on the other hand, is a
  macro that expands into a [progn] of several primitive [events]. In
  general, a [world] extending command generates one or more
  [events].

  Both [events] and commands leave landmarks on the [world] that enable
  us to determine how the given [world] was created from the previous
  one. Most of your interactions will occur at the command level,
  i.e., you type commands, you print previous commands, and you undo
  back through commands. Commands are denoted by command descriptors.
  See [command-descriptor].")
 (COMMAND-DESCRIPTOR
  (HISTORY)
  "An object describing a particular [command] typed by the user

    Examples:

    :max      ; the command most recently typed by the user
    :x        ; synonymous with :max
    (:x -1)   ; the command before the most recent one
    (:x -2)   ; the command before that
    :x-2      ; synonymous with (:x -2)
    5         ; the fifth command typed by the user
    1         ; the first command typed by the user
    0         ; the last command of the system initialization
    -1        ; the next-to-last initialization command
    :min      ; the first command of the initialization
    :start    ; the last command of the initial ACL2 logical world
    fn        ; the command that introduced the logical name fn
    (:search (defmacro foo-bar))
              ; the first command encountered in a search from :max to
              ; 0 that either contains defmacro and foo-bar in the
              ; command form or contains defmacro and foo-bar in some
              ; event within its block.

  The recorded [history] of your interactions with the top-level ACL2
  [command] loop is marked by the [command]s you typed that changed
  the logical [world]. Each such [command] generated one or more
  [events], since the only way for you to change the logical [world]
  is to execute an event function. See [command] and see [events]. We
  divide [history] into ``[command] blocks,'' grouping together each
  [world] changing [command] and its [events]. A ``[command]
  descriptor'' is an object that can be used to describe a particular
  [command] in the [history] of the ongoing session.

  Each [command] is assigned a unique integer called its ``[command]
  number'' which indicates the [command]'s position in the
  chronological ordering of all of the [command]s ever executed in
  this session (including those executed to initialize the system).
  We assign the number 1 to the first [command] you type to ACL2. We
  assign 2 to the second and so on. The non-positive integers are
  assigned to ``prehistoric'' [command]s, i.e., the [command]s used
  to initialize the ACL2 system: 0 is the last [command] of the
  initialization, -1 is the one before that, etc.

  The legal [command] descriptors are described below. We use n to
  denote any integer, sym to denote any logical name (see
  [logical-name]), and cd to denote, recursively, any [command]
  descriptor.

     command                   command
    descriptor                described

    :max   -- the most recently executed command (i.e., the one with
              the largest command number)
    :x     -- synonymous with :max
    :x-k   -- synonymous with (:x -k), if k is an integer and k>0
    :min   -- the earliest command (i.e., the one with the smallest
              command number and hence the first command of the system
              initialization)
    :start -- the last command when ACL2 starts up
    n      -- command number n  (If n is not in the
              range :min<=n<=:max, n is replaced by the nearest of :min
              and :max.)
    sym    -- the command that introduced the logical name sym
    (cd n) -- the command whose number is n plus the command number of
              the command described by cd
    (:search pat cd1 cd2)
              In this command descriptor, pat must be either an atom or
              a true list of atoms and cd1 and cd2 must be command
              descriptors.  We search the interval from cd1 through cd2
              for the first command that matches pat.  Note that if cd1
              occurs chronologically after cd2, the search is
              ``backwards'' through history while if cd1 occurs
              chronologically before cd2, the search is ``forwards''.  A
              backwards search will find the most recent match; a
              forward search will find the chronologically earliest
              match.  A command matches pat if either the command form
              itself or one of the events in the block contains pat (or
              all of the atoms in pat if pat is a list).
    (:search pat)
              the command found by (:search pat :max 0), i.e., the most
              recent command matching pat that was part of the user's
              session, not part of the system initialization.")
 (COMMAND-LINE
  (INTERFACING-TOOLS)
  "Handling of command-line arguments when ACL2 is invoked

  You may provide command-line arguments when invoking ACL2, which are
  passed to the host Lisp. For more information on this topic, along
  with a discussion of how to save an ACL2 executable that avoids
  passing command-line arguments to the host Lisp, see [save-exec].


Subtopics

  [Save-exec]
      Save an executable image and a wrapper script")
 (COMMON-LISP
  (ABOUT-ACL2)
  "Relation to Common Lisp, including deviations from the spec

  ACL2 is a logic, a theorem prover, and a programming language based
  on Common Lisp. A connection with Common Lisp is established with
  guards (see [guard]).

  However, here we document potential deviations from Common Lisp
  semantics even in the presence of verified guards. Our view is that
  these deviations are extremely unlikely to manifest; indeed, as of
  this writing we are unaware of any cases in which these issues
  arise in practice. However, we feel obligated to acknowledge their
  possibility, which could result in surprises during evaluation or
  even proof.

  The Common Lisp spec allows certain predicates to return what it
  calls ``generalized Booleans,'' which are really arbitrary values
  that are to be viewed as either nil or non-nil. However, in ACL2
  these functions are assumed to return nil or t. For details,see
  [generalized-booleans].

  The execution of forms with :[program] mode functions can result in
  calls of functions on arguments that do not satisfy their [guard]s.
  In practice, this simply causes hard Lisp errors. But in principle
  one could imagine a damaged Lisp image that operates incorrectly.
  See [defun-mode-caveat].

  The Common Lisp spec, specifically Section {Section 3.2.2.3 |
  http://www.lispworks.com/documentation/HyperSpec/Body/03_bbc.htm}
  of the {Common Lisp Hyperspec |
  http://www.lispworks.com/documentation/HyperSpec/Front}, allows for
  undefined results when a function is ``multiply defined'' in a
  compiled file. ACL2 allows redundant [defun]s in a book, and in
  general [books] are compiled by certify-book (but see
  [certify-book] and see [compilation] for how to control such
  compilation). Moreover, ACL2 provides a redefinition capability
  (see [ld-redefinition-action] and see [redef]), and the above
  section also allows for undefined results when a function is
  defined in a compiled file and then redefined, presumably (for
  example) because of inlining.


Subtopics

  [Defun-mode-caveat]
      Potential soundness issue for functions with [defun-mode] :[program]

  [Escape-to-common-lisp]
      Escaping to Common Lisp

  [Generalized-booleans]
      Potential soundness issues related to ACL2 predicates")
 (COMMON_LISP
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Common Lisp

  [{IMAGE}]

  {IMAGE}

  The logic of ACL2 is based on Common Lisp.

  Common Lisp is the standard list processing programming language. It
  is documented in: Guy L. Steele, {Common Lisp The Language | },
  Digital Press, 12 Crosby Drive, Bedford, MA 01730, 1990.

  ACL2 formalizes only a subset of Common Lisp. It includes such
  familiar Lisp functions as cons, car and cdr for creating and
  manipulating list structures, various arithmetic primitives such as
  +, *, expt and <=, and intern and symbol-name for creating and
  manipulating symbols. Control primitives include cond, case and if,
  as well as function call, including recursion. New functions are
  defined with defun and macros with defmacro. See [programming]
  [{ICON}] for a list of the Common Lisp primitives supported by
  ACL2.

  ACL2 supports five of Common Lisp's datatypes:

  * the precisely represented, unbounded numbers (integers, rationals,
  and the complex numbers with rational components, called the
  ``complex rationals'' here),

  * the characters with ASCII codes between 0 and 255

  * strings of such characters

  * symbols (including packages)

  * conses

  ACL2 is a very small subset of full Common Lisp. ACL2 does not
  include the Common Lisp Object System (CLOS), higher order
  functions, circular structures, and other aspects of Common Lisp
  that are non-applicative. Roughly speaking, a language is
  applicative if it follows the rules of function application. For
  example, f(x) must be equal to f(x), which means, among other
  things, that the value of f must not be affected by ``global
  variables'' and the object x must not change over time.

  [{IMAGE}]")
 (COMMON_LISP_AS_A_MODELING_LANGUAGE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Common Lisp as a Modeling Language

  {IMAGE}

  In ACL2 we have adopted Common Lisp as the basis of our modeling
  language. If you have already read our brief note on Common Lisp
  and recall the example of app, please proceed. Otherwise click
  [here] for an exceedingly brief introduction to Common Lisp and
  then come back here.

  In Common Lisp it is very easy to write systems of formulas that
  manipulate discrete, inductively constructed data objects. In
  building a model you might need to formalize the notion of
  sequences and define such operations as concatenation, length,
  whether one is a permutation of the other, etc. It is easy to do
  this in Common Lisp. Furthermore, if you have a Common Lisp
  ``theory of sequences'' you can run the operations and relations
  you define. That is, you can execute the functions on concrete data
  to see what results your formulas produce.

  If you define the function app as shown above and then type

    (app '(A B) '(C D E))

  in any Common Lisp, the answer will be computed and will be (A B C D
  E).

  The executable nature of Common Lisp and thus of ACL2 is very handy
  when producing models.

  But executability is not enough for a modeling language because the
  purpose of models is to permit analysis.

  Click [here] to continue.")
 (COMMUNITY-BOOKS
  (BOOKS)
  "Libraries of ACL2 [books] developed by the ACL2 community.

  ACL2 [books] are files of ACL2 [events] like definitions and
  theorems.

  The ACL2 Community Books are the canonical set of open-source books
  for ACL2, developed since the early 1990s by members of the ACL2
  community. They include libraries for reasoning in many domains,
  macro libraries for more quickly writing and documenting code,
  interfacing tools for connecting ACL2 to other systems,
  productivity tools for better proof automation and debugging, and
  specialty libraries for areas like hardware verification.

  From the {github ACL2 project | https://github.com/acl2/acl2/} web
  site you can:

    * Download the Community Books;
    * Learn how to contribute books to the ACL2 community; and
    * Obtain updates between ACL2 releases.

  See [git-quick-start] for information about how to download the
  ``bleeding edge'' ACL2 system and community books.


Subtopics

  [Books-certification]
      Instructions for certifying the ACL2 [community-books].")
 (COMP
  (COMPILATION EVENTS ACL2-BUILT-INS)
  "Compile some ACL2 functions

  NOTE: Comp is a no-op if explicit compilation is suppressed; see
  [compilation]. The documentation here assumes that this is not the
  case.

    Examples:
    :comp t          ; compile all uncompiled ACL2 functions
    (comp t)         ; same as above, but can be put into a book
    (comp :exec)     ; compile all uncompiled logic (``*1*'') definitions
    :comp foo        ; compile the defined function foo
    :comp (:raw foo) ; compile the raw Lisp version of the defined function foo
                       but not the corresponding logic definition
    :comp (foo bar)  ; compile the defined functions foo and bar
    :comp (foo (:raw bar))  ; compile the defined functions foo and bar, but for
                            ; bar do not compile the corresponding logic definition

    General Form:
    :comp specifier
    where specifier is one of the following:

      t                     compile all user-defined ACL2 functions that are
                              currently uncompiled (redefined built-in functions
                              are not recompiled)
      :exec                 same as t, except that only logic versions are
                              compiled (see below), not raw Lisp definitions
      :raw                  same as t, except that only raw Lisp definitions are
                              compiled, not logic version (see below)
      (name-1 ... name-k)   a non-empty list of names of functions defined by
                              DEFUN in ACL2, except that each name-i can be of
                              the form (:raw sym) or (:exec sym), where sym is
                            the name of such a function
      name                  same as (name)

  When you define a function in ACL2, you are really causing two
  definitions to be made ``under the hood'' in Common Lisp: the
  definition is submitted explicitly to raw Lisp, but so is a
  corresponding ``logic definition''. If guards have not been
  verified, then only the logic definition will be evaluated; see
  [guards-and-evaluation], in particular the section titled ``Guards
  and evaluation V: efficiency issues''.

  Thus, if you are not verifying [guard]s and you want the benefit of
  Lisp compilation for speed and space efficiency, then you may want
  to place the form (comp :exec) in your [books].

  Generally it is not necessary to place the form (comp t), or the form
  (comp :raw), in a book, because [certify-book] compiles the raw
  Lisp definitions anyhow, by default. But you may wish to put (comp
  t) or (comp fn1 fn2 ... fnk) in a book when such a form precedes
  expensive calls of functions, for example for proofs involving
  calls of functions on large constants, or to support
  computationally expensive macroexpansion.

  As suggested by the examples above, if a function specifier is of the
  form (:raw fn), then fn will be compiled in raw Common Lisp but its
  corresponding logic definition will not be compiled; and for (:exec
  fn), it's the other way around.

  The use of :comp may create various files whose names start with
  ``TMP*'', but it then deletes them. If you want to save these
  files, evaluate (assign keep-tmp-files t).

  Also see [set-compile-fns] for a way to compile each function as it
  is defined. But note that set-compile-fns is ignored during
  [include-book].

  Note that if functions are traced (see [trace$]), then comp will
  first untrace the functions that are to be compiled, then will do
  the compile(s), and finally will re-trace the functions that it
  untraced (using their original trace specs). In particular, if you
  have traced a function and then you compile it using :comp, the
  resulting traced function will be compiled as well unless you
  specified :compile nil in your trace spec; and after you untrace
  the function it will definitely run compiled.

  We conclude with a technical remark only for those who use trust tags
  to write raw Lisp code. :Comp generally creates files to compile
  unless it is given a single function to compile. Those files
  contain the ACL2 definitions of all functions to compile, omitting
  those in the lists obtained by evaluating the forms (@
  logic-fns-with-raw-code) and (@ program-fns-with-raw-code). :Comp
  skips compilation for functions that are already compiled, as is
  typically the case when you redefine functions in raw Lisp using
  [include-raw]. But if you define interpreted (as opposed to
  compiled) functions with raw Lisp code, say by using trust tags
  (see [defttag]) and [progn!], then you are advised to add all such
  symbols to one of the lists stored in the two [state] globals
  above: to logic-fns-with-raw-code if the function symbol is in
  :[logic] mode, else to program-fns-with-raw-code. Then, instead of
  the corresponding ACL2 definition (without raw Lisp code) being
  written to a file, the function symbol will be passed directly to
  the Lisp compile function. Note that the above two state globals
  are both untouchable, so you may need to deal with that before
  modifying them, for example as follows (also see
  [remove-untouchable]).

    (defttag t)
    (state-global-let*
     ((temp-touchable-vars t set-temp-touchable-vars))
     (progn! (f-put-global 'logic-fns-with-raw-code
                           (cons 'my-fn (@ logic-fns-with-raw-code))
                           state)))")
 (COMP-GCL
  (COMPILATION ACL2-BUILT-INS)
  "Compile some ACL2 functions leaving .c and .h files

  Comp-gcl is for use by experts who want to examine the results of GCL
  compilation, and it may only be used with ACL2 implementations
  built on top of GCL. It takes exactly the same arguments as [comp],
  and has the same basic functionality (see [comp]), but has two
  additional effects. First, files \"TMP.lisp\" and \"TMP1.lisp\" are
  always created, even when a single function is specified. Second,
  comp-gcl always leaves files \"TMP.c\", \"TMP.h\", \"TMP1.c\", and
  \"TMP1.h\" when compilation is complete.")
 (COMPILATION
  (PROGRAMMING)
  "Compiling ACL2 functions

  ACL2 has several mechanisms to speed up the evaluation of function
  calls by compiling functions: see [comp], see [set-compile-fns],
  and see [certify-book]. The intention is that compilation never
  changes the value returned by a function call, though it could
  cause the call to succeed rather than fail, for example by avoiding
  a stack overflow.

  The [state] global variable 'compiler-enabled is set automatically
  when the system is built, and may depend on the underlying Lisp
  implementation. (In order to disable the compiler at build time,
  which will defeat the speed-up but usually be pretty harmless when
  the host Lisp is CCL or SBCL, see the discussion of
  ACL2_COMPILER_DISABLED in distributed file GNUmakefile.) The value
  of 'compiler-enabled, as returned by (@ compiler-enabled), can be
  t, :books, or nil. If the value is nil, then [include-book] and
  [certify-book] coerce their arguments :load-compile-file and
  compile-flg arguments (respectively) to nil. Otherwise, the value
  is :books or t and there is no such coercion; but if the value is
  not t, then [comp] and [set-compile-fns] are no-ops, which is
  probably desirable for Lisps such as CCL and SBCL that compile
  on-the-fly even when the compiler is not explicitly invoked.

  However, you may have reason to want to change the above (default)
  behavior. To enable compilation by default for [certify-book] and
  [include-book] but not for [comp] or [set-compile-fns]:

    (set-compiler-enabled :books state)

  To enable compilation not only as above but also for [comp] and
  [set-compile-fns]:

    (set-compiler-enabled t state)

  To suppress compilation and loading of compiled files by
  [include-book] (for example, if you get a raw Lisp error such as
  ``Wrong FASL version''):

    (set-compiler-enabled nil state)

  Remark for users of [make-event]. If set-compiler-enabled is invoked
  during make-event expansion, its effect on [state] global variable
  'compiler-enabled will persist after evaluation completes for that
  make-event form. So for example, one might use the following idiom
  in a book so that for all books included on behalf of a given
  [include-book] form, no compiled files are loaded, but (optionally)
  no such effect takes place for later include-book forms in that
  book.

    (make-event
     (pprogn (f-put-global 'saved-compiler-enabled (@ compiler-enabled) state)
             (set-compiler-enabled nil state)
             (value '(value-triple nil)))
     :check-expansion t)
    (include-book \"my-book\")
    ; optional
    (make-event
     (pprogn (set-compiler-enabled (@ saved-compiler-enabled) state)
             (value '(value-triple nil)))
     :check-expansion t)

  Upon completion of an invocation of [include-book] or [certify-book],
  the value of [state] global variable 'compiler-enabled is restored
  to the value it had immediately before that invocation.

  See [book-compiled-file] for more discussion about compilation and
  [books].

  We close with a discussion of a feature that allows control over the
  loading of .port files in close analogy to how loading of compiled
  files is controlled by set-compiler-enabled, as described above.
  (See [uncertified-books] for a discussion of .port files.) A
  [state] global variable, 'port-file-enabled exists for this
  purpose, and it is set as follows.

    (set-port-file-enabled t state)   ; permit loading of .port files (default)
    (set-port-file-enabled nil state) ; skip loading of .port files

  Just as described above for state global compiler-enabled, the value
  of 'port-file-enabled persists after [make-event] expansion and is
  restored after [certify-book] and [include-book]. The idiom
  displayed above, for avoiding loading of compiled files, can be
  modified or extended in the obvious way to avoid loading of .port
  files.


Subtopics

  [Comp]
      Compile some ACL2 functions

  [Comp-gcl]
      Compile some ACL2 functions leaving .c and .h files

  [Disassemble$]
      Disassemble a function

  [Set-compile-fns]
      Have each function compiled as you go along.

  [Set-compiler-enabled]
      Disable [compilation].

  [The]
      The is a special form that can be used to optimize the execution
      efficiency of [guard]-verified ACL2 definitions, or (less
      frequently) to carry out a low-level run-time type checks.
      (Advanced)")
 (COMPILING-ACL2P
  (PARALLELISM)
  "Compiling ACL2(p)

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].
  See [parallelism-tutorial] for an introduction to parallel
  programming in ACL2.

  You can build an experimental version of ACL2 that supports parallel
  execution in the following host Common Lisp implementations:

      * CCL (OpenMCL)

      * Lispworks 6.0

      * SBCL with threads (feature :sb-thread)

  The command below will compile ACL2 to support parallel execution,
  including parallel execution during proofs. Any non-empty string
  may be used in place of t, and the value of LISP (shown here as
  ccl) is any Lisp executable on which one can build ACL2(p) (see
  [parallelism]).

    make ACL2_PAR=t LISP=ccl

  So for example, to make an executable image and also documentation
  (which will appear in subdirectories doc/EMACS and doc/HTML), using
  the Lisp executable ccl:

    make large DOC ACL2_PAR=t LISP=ccl")
 (COMPLEX
  (NUMBERS ACL2-BUILT-INS)
  "Create an ACL2 number

    Examples:
    (complex x 3) ; x + 3i, where i is the principal square root of -1
    (complex x y) ; x + yi
    (complex x 0) ; same as x, for rational numbers x

  The function complex takes two rational number arguments and returns
  an ACL2 number. This number will be of type (complex rational) [as
  defined in the Common Lisp language], except that if the second
  argument is zero, then complex returns its first argument. The
  function [complex-rationalp] is a recognizer for complex rational
  numbers, i.e. for ACL2 numbers that are not rational numbers.

  The reader macro #C (which is the same as #c) provides a convenient
  way for typing in complex numbers. For explicit rational numbers x
  and y, #C(x y) is read to the same value as (complex x y).

  The functions [realpart] and [imagpart] return the real and imaginary
  parts (respectively) of a complex (possibly rational) number. So
  for example, (realpart #C(3 4)) = 3, (imagpart #C(3 4)) = 4,
  (realpart 3/4) = 3/4, and (imagpart 3/4) = 0.

  The following built-in axiom may be useful for reasoning about
  complex numbers.

    (defaxiom complex-definition
      (implies (and (real/rationalp x)
                    (real/rationalp y))
               (equal (complex x y)
                      (+ x (* #c(0 1) y))))
      :rule-classes nil)

  A completion axiom that shows what complex returns on arguments
  violating its [guard] (which says that both arguments are rational
  numbers) is the following, named completion-of-complex.

    (equal (complex x y)
           (complex (if (rationalp x) x 0)
                    (if (rationalp y) y 0)))")
 (COMPLEX-RATIONALP
  (NUMBERS ACL2-BUILT-INS)
  "Recognizes complex rational numbers

    Examples:
    (complex-rationalp 3)       ; nil, as 3 is rational, not complex rational
    (complex-rationalp #c(3 0)) ; nil, since #c(3 0) is the same as 3
    (complex-rationalp t)       ; nil
    (complex-rationalp #c(3 1)) ; t, as #c(3 1) is the complex number 3 + i

  See [complex] for more about complex rationals in ACL2.")
 (COMPLEX/COMPLEX-RATIONALP
  (NUMBERS ACL2-BUILT-INS)
  "Recognizer for complex numbers

  For most ACL2 users, this is a macro abbreviating complex-rationalp;
  see [complex-rationalp]. In ACL2(r) (see [real]), a complex number
  x may have irrational real and imaginary parts. This macro
  abbreviates the predicate complexp in ACL2(r), which holds for such
  x. Most ACL2 users can ignore this macro and use
  [complex-rationalp] instead. Some community books use
  complex/complex-rationalp so that they are suitable for ACL2(r) as
  well.")
 (COMPOUND-RECOGNIZER
  (RULE-CLASSES)
  "Make a rule used by the typing mechanism

  See [rule-classes] for a general discussion of rule classes,
  including how they are used to build rules from formulas and a
  discussion of the various keywords in a rule class description.

    Examples:
    (defthm alistp-implies-true-listp-compound-recognizer
      (implies (alistp x)                 ; When (alistp x) is assumed true, add
               (true-listp x))            ; the additional hypothesis that x is
      :rule-classes :compound-recognizer) ; of primitive type true-listp.

    (defthm natp-compound-recognizer      ; See discussion below.
      (equal (natp x)
             (and (integerp x)
                  (<= 0 x)))
      :rule-classes :compound-recognizer)

  Before presenting the General Forms, we start with a motivating
  example: the second [defthm] form above, which provides a nice
  example of a :compound-recognizer rule that is built into ACL2. To
  see how this rule might be useful, consider the following
  (admittedly very simple) [events].

    (defun triple (x)
      (* 3 x))

    (defthm triple-preserves-integerp
      (implies (integerp x)
               (integerp (triple x))))

    (in-theory (disable triple natp))

  If the above :compound-recognizer rule is disabled, then the
  following trivial theorem fails as shown; we explain below.

    (thm (implies (natp x)
                  (integerp (triple x)))
      :hints ((\"Goal\" :in-theory (disable natp-compound-recognizer))))

  The problem is that when ACL2 tries to rewrite the term (integerp
  (triple x)) using the :[rewrite] rule triple-preserves-integerp, it
  needs to rewrite the hypothesis (integerp x) to t, but instead what
  is known is (natp x). If we remove the hint, then the proof
  succeeds because the above :compound-recognizer rule tells ACL2
  that when assuming (natp x) to be true, it should actually assume
  both (integerp x) and (<= 0 x) to be true.

    General Forms:
    (implies (fn x) concl)               ; (1)
    (implies (not (fn x)) concl)         ; (2)
    (and (implies (fn x) concl1)         ; (3)
         (implies (not (fn x)) concl2))
    (if (fn x) concl1 concl2)            ; (4)
    (iff (fn x) concl)                   ; (5)
    (equal (fn x) concl)                 ; (6)

  where fn is a Boolean valued function of one argument, x is a
  variable symbol, and the system can deduce some restriction on the
  primitive type of x from the assumption that concl holds. The last
  restriction is vague but one way to understand it is to weaken it a
  little to ``and concl is a non-tautological conjunction or
  disjunction of the primitive type recognizers listed below.''

  The primitive ACL2 types and a suitable primitive recognizing
  expression for each are listed below.

    type                suitable primitive recognizer

    zero                (equal x 0)
    negative integers   (and (integerp x) (< x 0))
    positive integers   (and (integerp x) (> x 0))
    negative ratio      (and (rationalp x)
                             (not (integerp x))
                             (< x 0))
    positive ratio      (and (rationalp x)
                             (not (integerp x))
                             (> x 0))
    complex rational    (complex-rationalp x)
    nil                 (equal x nil)
    t                   (equal x t)
    other symbols       (and (symbolp x)
                             (not (equal x nil))
                             (not (equal x t)))
    proper conses       (and (consp x)
                             (true-listp x))
    improper conses     (and (consp x)
                             (not (true-listp x)))
    strings             (stringp x)
    characters          (characterp x)

  Thus, a suitable concl to recognize the naturals would be (or (equal
  x 0) (and (integerp x) (> x 0))) but it turns out that we also
  permit (and (integerp x) (>= x 0)). Similarly, the true-lists could
  be specified by

    (or (equal x nil) (and (consp x) (true-listp x)))

  but we in fact allow (true-listp x). When time permits we will
  document more fully what is allowed or implement a macro that
  permits direct specification of the desired type in terms of the
  primitives.

  There are essentially four forms of :compound-recognizer rules, as
  the forms labeled (3) and (4) above are equivalent, as are those
  labeled (5) and (6). We explain how such rules are used by
  considering the individual forms.

  Consider form (1), (implies (fn x) concl). The effect of such a rule
  is that when the rewriter assumes (fn x) true, as it would while
  diving through (if (fn x) xxx ...) to rewrite xxx, it restricts the
  type of x as specified by concl. For example, if concl is the term
  (integerp x), then when rewriting xxx, x will be assumed to be an
  integer. However, when assuming (fn x) false, as necessary in (if
  (fn x) ... xxx), the rule permits no additional assumptions about
  the type of x. For example, if fn is primep, i.e., the predicate
  that recognizes prime numbers, then (implies (primep x) (and
  (integerp x) (>= x 0))) is a compound recognizer rule of the first
  form. When (primep x) is assumed true, the rewriter gains the
  additional information that x is a natural number. When (primep x)
  is assumed false, no additional information is gained --- since x
  may be a non-prime natural or may not even be a natural.

  Form (2) is the symmetric case, when assuming (fn x) false permits
  type restrictions on x but assuming (fn x) true permits no such
  restrictions. For example, if we defined exprp to be the recognizer
  for well-formed expressions for some language in which all symbols,
  numbers, character objects and strings were well-formed --- e.g.,
  the well-formedness rules only put restrictions on expressions
  represented by [consp]s --- then the theorem (implies (not (exprp
  x)) (consp x)) is a rule of the second form. Assuming (exprp x)
  true tells us nothing about the type of x; assuming it false tells
  us x is a [consp].

  Forms (3) and (4), which are really equivalent, address themselves to
  the case where one type may be deduced from (fn x) and a generally
  unrelated type may be deduced from its negation. If we modified the
  expression recognizer above so that character objects are illegal,
  then rules of the forms (3) and (4) are

    (and (implies (exprp x) (not (characterp x)))
         (implies (not (exprp x)) (or (consp x) (characterp x)))).
    (if (exprp x)
        (not (characterp x))
      (or (consp x) (characterp x)))

  Finally, rules of forms (5) and (6) address the case where fn
  recognizes all and only the objects whose type is described. In
  these cases, fn is really just a new name for some ``compound
  recognizers.'' The classic example is (booleanp x), which is just a
  handy combination of two primitive types:

    (iff (booleanp x) (or (equal x t) (equal x nil))).

  Often it is best to disable fn after proving that it is a compound
  recognizer, since otherwise the term (fn x) will be expanded and
  thus disappear.

  Every time you prove a new compound recognizer rule about fn it
  overrides all previously proved compound recognizer rules about fn.
  Thus, if you want to establish the type implied by (fn x) and you
  want to establish the type implied by (not (fn x)), you must prove
  a compound recognizer rule of the third, fourth, fifth, or sixth
  forms. Proving a rule of the first form followed by one of the
  second only leaves the second fact in the database.

  Compound recognizer rules can be disabled with the effect that older
  rules about fn, if any, are exposed.

  If you prove more than one compound recognizer rule for a function,
  you may see a warning message to the effect that the new rule is
  not as ``restrictive'' as the old. That is, the new rules do not
  give the rewriter strictly more type information than it already
  had. The new rule is stored anyway, overriding the old, if enabled.
  You may be playing subtle games with enabling or rewriting. But two
  other interpretations are more likely, we think. One is that you
  have forgotten about an earlier rule and should merely print it out
  to make sure it says what you intend, and then discard your new
  rule. The other is that you meant to give the system more
  information and the system has simply been unable to extract the
  intended type information from the term you placed in the
  conclusion of the new rule. Given our lack of specificity in saying
  how type information is extracted from rules, you can hardly blame
  yourself for this problem. Sorry. If you suspect you've been burned
  this way, you should rephrase the new rule in terms of the
  primitive recognizing expressions above and see if the warning is
  still given. It would also be helpful to let us see your example so
  we can consider it as we redesign this stuff.

  Compound recognizer rules are similar to :[forward-chaining] rules in
  that the system deduces new information from the act of assuming
  something true or false. If a compound recognizer rule were stored
  as a forward chaining rule it would have essentially the same
  effect as described, when it has any effect at all. The important
  point is that :[forward-chaining] rules, because of their more
  general and expensive form, are used ``at the top level'' of the
  simplification process: we forward chain from assumptions in the
  goal being proved. But compound recognizer rules are built in at
  the bottom-most level of the simplifier, where type reasoning is
  done.

  All that said, compound recognizer rules are a rather fancy,
  specialized mechanism. It may be more appropriate to create
  :[forward-chaining] rules instead of :compound-recognizer rules.")
 (COMPRESS1
  (ARRAYS ACL2-BUILT-INS)
  "Remove irrelevant pairs from a 1-dimensional array

    Example Form:
    (compress1 'delta1 a)

    General Form:
    (compress1 name alist)

  where name is a symbol and alist is a 1-dimensional array, generally
  named name. See [arrays] for details. Logically speaking, this
  function removes irrelevant pairs from alist, possibly shortening
  it. The function returns a new array, alist', with the same
  [header] (including name and dimension) as alist, that, under
  [aref1], is everywhere equal to alist. That is, (aref1 name alist'
  i) is (aref1 name alist i), for all legal indices i. Alist' may be
  shorter than alist and the non-irrelevant pairs may occur in a
  different order than in alist.

  Practically speaking, this function plays an important role in the
  efficient implementation of [aref1]. In addition to creating the
  new array, alist', compress1 makes that array the ``semantic
  value'' of name and allocates a raw lisp array to name. For each
  legal index, i, that raw lisp array contains (aref1 name alist' i)
  in slot i. Thus, subsequent [aref1] operations can be executed in
  virtually constant time provided they are given name and the alist'
  returned by the most recently executed compress1 or [aset1] on
  name. See [arrays].

  In general, compress1 returns an alist whose [cdr] is an association
  list whose keys are nonnegative integers in ascending order.
  However, if the [header] specifies an :order of > then the keys
  will occur in descending order, and if the :order is :none or nil
  then the keys will not be sorted, i.e., compress1 is logically the
  identity function (though it still attaches an array under the
  hood). Note however that a [compress1] call is replaced by a hard
  error if the header specifies an :order of :none or nil and the
  array's length exceeds the [maximum-length] field of its [header].

  Function: <compress1>

    (defun
     compress1 (name l)
     (declare (xargs :guard (array1p name l)))
     (case
      (array-order (header name l))
      (< (cons (header name l)
               (compress11 name l 0 (car (dimensions name l))
                           (default name l))))
      (> (cons (header name l)
               (reverse (compress11 name l 0 (car (dimensions name l))
                                    (default name l)))))
      (t
       (prog2$
        (and
         (> (length l) (maximum-length name l))
         (hard-error
          'compress1
          \"Attempted to compress a one-dimensional array named ~
                            ~x0 whose header specifies :ORDER ~x1 and whose ~
                            length, ~x2, exceeds its maximum-length, ~x3.\"
          (list (cons #\\0 name)
                (cons #\\1 nil)
                (cons #\\2 (length l))
                (cons #\\3 (maximum-length name l)))))
        l))))")
 (COMPRESS2
  (ARRAYS ACL2-BUILT-INS)
  "Remove irrelevant pairs from a 2-dimensional array

    Example Form:
    (compress2 'delta1 a)

    General Form:
    (compress2 name alist)

  where name is a symbol and alist is a 2-dimensional array, generally
  named name. See [arrays] for details. Logically speaking, this
  function removes irrelevant pairs from alist, possibly shortening
  it. The function returns a new array, alist', with the same
  [header] (including name and dimension) as alist, that, under
  [aref2], is everywhere equal to alist. That is, (aref2 name alist'
  i j) is (aref2 name alist i j), for all legal indices i and j.
  Alist' may be shorter than alist and the non-irrelevant pairs may
  occur in a different order in alist' than in alist.

  Practically speaking, this function plays an important role in the
  efficient implementation of [aref2]. In addition to creating the
  new array, alist', compress2 makes that array the ``semantic
  value'' of name and allocates a raw lisp array to name. For all
  legal indices, i and j, that raw lisp array contains (aref2 name
  alist' i j) in slot i,j. Thus, subsequent [aref2] operations can be
  executed in virtually constant time provided they are given name
  and the alist' returned by the most recently executed compress2 or
  [aset2] on name. See [arrays].

  Function: <compress2>

    (defun compress2 (name l)
           (declare (xargs :guard (array2p name l)))
           (cons (header name l)
                 (compress21 name l 0 (car (dimensions name l))
                             (cadr (dimensions name l))
                             (default name l))))")
 (COMPUTED-HINTS
  (HINTS)
  "Computing advice to the theorem proving process

    General Form of :hints:
    (hint1 hint2 ... hintk)

  Each element, hinti, must be either a common hint or a computed hint.

  A common hint is of the form

    (goal-spec :key1 val1 ... :keyn valn)

  where goal-spec is as specified in [goal-spec] and each :keyi and
  vali is as specified in [hints]. Among the ``common hints'' we
  include both the primitive hints and user-defined custom keyword
  hints (see [custom-keyword-hints]).

  A computed hint may be a function symbol, fn, of three, four or seven
  arguments. Otherwise, a computed hint is a term with the following
  properties:

  (a) the only free variables allowed in the term are ID, CLAUSE,
  WORLD, STABLE-UNDER-SIMPLIFICATIONP, HIST, PSPV, CTX, and [state];

  (b) the output signature of the term is either (MV * * STATE), which
  is to be treated as an error triple (see below), or is *, denoting
  a single non-[stobj] value; and

  (c) in the former case of (b) above, the term is single-threaded in
  [state].

  If a computed hint is a function symbol fn, whose arity n is
  therefore three, four, or seven, then it is treated as the term
  resulting from applying that fn to the first n variables shown in
  (a) above. Notice that it must then return a single non-[stobj]
  value, not an error triple, since state is not one of the first
  seven variables shown in (a).

  Note: Error triples are an ACL2 idiom for implementing ``errors'';
  see [error-triple]. If a computation returns (mv erp val state) in
  a context in which ACL2 is respecting the error triple convention
  (see [ld-error-triples] and see [ld-error-action]), then an error
  is deemed to have occurred if erp is non-nil. The computation is
  expected to have printed an appropriate error message to [state]
  and further computation is aborted. On the other hand, if a
  computation returns an error triple in which erp is nil, then
  ``value'' of the computation is taken to be the second component,
  val, of the triple (along with the possibly modified [state]), and
  computation continues. For more information about programming with
  error triples, see [programming-with-state].

  The function symbol cases are treated as abbreviations of the term
  (fn ID CLAUSE WORLD), (fn ID CLAUSE WORLD
  STABLE-UNDER-SIMPLIFICATIONP), or (fn ID CLAUSE WORLD
  STABLE-UNDER-SIMPLIFICATIONP HIST PSPV CTX) as appropriate for the
  arity of fn. (Note that this tells you which argument of fn is
  which.) Moreover, in these cases the value returned must be a
  single ordinary (non-[stobj]) value, not an error triple. In the
  discussion below we assume all computed hints are of the term form.
  Indeed, we almost assume all computed hints are of the 3 and 4
  argument forms. We only comment briefly on the 7 argument form in
  [using-computed-hints-8].

  The semantics of a computed hint term is as follows. On every
  subgoal, the term is evaluated in an environment in which the
  variables mentioned in (a) above are bound to context-sensitive
  values explained below. Either the computed hint signals an error,
  in which the proof attempt aborts, or else it returns a value, val
  and a new state, [state]. Any changes to those parts of [state]
  that affect logical soundness are undone; more specifically, the
  values of symbols (sometimes called ``state global variables'') in
  the list *protected-system-state-globals* in the global table of
  the state (see [state]) are restored when changed during
  evaluation. The value, val, of a non-erroneous computed hint
  calculation is either nil, which means the computed hint did not
  apply to the subgoal in question, or it is an alternating list of
  :keyi vali pairs as specified in [hints]. With one exception, those
  new hints are applied to the given subgoal as though the user had
  typed them explicitly.

  The exception is that the first keyword in the returned val is
  allowed to be :COMPUTED-HINT-REPLACEMENT. Its value should be nil,
  t, or a list of terms. If this keyword is not present, the default
  value of nil is provided. We explain :COMPUTED-HINT-REPLACEMENT
  below.

  The evaluation of a hint term is done with guard checking turned off
  (see [set-guard-checking]); e.g., the form (car 23) in a computed
  hint returns nil as per the axioms.

  When a non-nil value is returned, the keyword/value pairs (other than
  the optional :COMPUTED-HINT-REPLACEMENT) are used as the hint for
  the subgoal in question. Thus, your job as the programmer of
  computed hints is either to cause an error, typically by invoking
  [er], or to return a non-erroneous value triple whose value is the
  list of keys and values you would have typed had you supplied a
  common hint for the subgoal. (In particular, any theory expressions
  in it are evaluated with respect to the global current-theory, not
  whatever theory is active at the subgoal in question.) If the
  generated list of keywords and values is illegal, an error will be
  signaled and the proof attempt will be aborted.

  The purpose of the :COMPUTED-HINT-REPLACEMENT keyword and its value,
  chr, is to change the list of hints. If chr is nil, then the hint
  which was applied is removed from the list of hints that is passed
  down to the children of the subgoal in question. This is the
  default. If chr is t, then the hint is left in the list of hints.
  This means that the same hint may act on the children of the
  subgoal. Otherwise, chr must be a list of terms, each of which is
  treated as a computed hint. The hint which was applied is deleted
  from the list of hints and the hints in chr are added to the list
  of hints passed to the children of the subgoal. The ability to
  compute new hints and pass them down allows strange and wonderful
  behavior.

  For these purposes, the goals produced by induction and the top-level
  goals of forcing rounds are not considered children; all original
  hints are available to them.

  Only the first hint applicable to a goal, as specified in the
  user-supplied list of :hints followed by the [default-hints-table],
  will be applied to that goal. (For an advanced exception, see
  [override-hints].)

  It remains only to describe the bindings of the free variables.

  Suppose the theorem prover is working on some clause, clause, named
  by some [goal-spec], e.g., \"Subgoal *1/2'''\" in some logical world,
  world. Corresponding to the printed goal-spec is an internal data
  structure called a ``clause identifier'' id. See
  [clause-identifier].

  In the case of a common hint, the hint applies if the goal-spec of
  the hint is the same as the goal-spec of the clause in question.

  In the case of a computed hint, the variable ID is bound to the
  clause id, the variable CLAUSE is bound to the (translated form of
  the) clause, and the variable WORLD is bound to the current ACL2
  world. The variable STABLE-UNDER-SIMPLIFICATIONP is bound to t or
  nil. It is bound to t only if the clause is known to be stable
  under simplification. That is, the simplifier has been applied to
  the clause and did not change it. Such a clause is sometimes known
  as a ``simplification checkpoint.'' It is frequently useful to
  inject hints (e.g., to enable a rule or provide a :use hint) only
  when the goal in question has stabilized. If a hint is provided,
  the processing of the clause starts over with simplification.

  As for CTX and [state], they are provided so that you can pass them
  to the [er] macro to print error messages. We recommend not writing
  computed hints that otherwise change [state]!

  The remaining variables, HIST and PSPV are not documented yet. Only
  users familiar with the internals of ACL2 are likely to need them
  or understand their values.

  For some instruction about how to use computed hints, see
  [using-computed-hints].


Subtopics

  [Using-computed-hints]
      How to use computed hints")
 (CONCATENATE
  (LISTS STRINGS ACL2-BUILT-INS)
  "Concatenate lists or strings together

    Examples:
    (concatenate 'string \"ab\" \"cd\" \"ef\")     ; equals \"abcdef\"
    (concatenate 'string \"ab\")               ; equals \"ab\"
    (concatenate 'list '(a b) '(c d) '(e f)) ; equals '(a b c d e f)
    (concatenate 'list)                      ; equals nil

    General Form:
    (concatenate result-type x1 x2 ... xn)

  where n >= 0 and either: result-type is '[string] and each xi is a
  string; or result-type is '[list] and each xi is a true list.
  Concatenate simply concatenates its arguments to form the result
  string or list. Also see [append] and see [string-append]. (The
  latter immediately generates a call to concatenate when applied to
  strings.)

  Note: We do *not* try to comply with the Lisp language's insistence
  that concatenate copies its arguments. Not only are we in an
  applicative setting, where this issue shouldn't matter for the
  logic, but also we do not actually modify the underlying lisp
  implementation of concatenate; we merely provide a definition for
  it.

  Concatenate is a Common Lisp function. See any Common Lisp
  documentation for more information.

  Macro: <concatenate>

    (defmacro concatenate
              (result-type &rest sequences)
              (declare (xargs :guard (or (equal result-type ''string)
                                         (equal result-type ''list))))
              (cond ((equal result-type ''string)
                     (cond ((and sequences (cdr sequences)
                                 (null (cddr sequences)))
                            (list 'string-append
                                  (car sequences)
                                  (cadr sequences)))
                           (t (list 'string-append-lst
                                    (cons 'list sequences)))))
                    ((endp sequences) nil)
                    (t (cons 'append
                             (append sequences (list nil))))))")
 (COND
  (BASICS ACL2-BUILT-INS)
  "Conditional based on if-then-else

  Cond is the construct for IF, THEN, ELSE IF, ... The test is against
  nil. The argument list for cond is a list of ``clauses'', each of
  which is a list. In ACL2, clauses must have length 1 or 2.

  Cond is a Common Lisp macro. See any Common Lisp documentation for
  more information.

  Macro: <cond>

    (defmacro cond (&rest clauses)
              (declare (xargs :guard (cond-clausesp clauses)))
              (cond-macro clauses))

  Function: <cond-macro>

    (defun cond-macro (clauses)
           (declare (xargs :guard (cond-clausesp clauses)))
           (if (consp clauses)
               (if (and (eq (car (car clauses)) t)
                        (eq (cdr clauses) nil))
                   (if (cdr (car clauses))
                       (car (cdr (car clauses)))
                       (car (car clauses)))
                   (if (cdr (car clauses))
                       (list 'if
                             (car (car clauses))
                             (car (cdr (car clauses)))
                             (cond-macro (cdr clauses)))
                       (list 'or
                             (car (car clauses))
                             (cond-macro (cdr clauses)))))
               nil))")
 (CONGRUENCE
  (RULE-CLASSES)
  "The relations to maintain while simplifying arguments

  See [rule-classes] for a general discussion of rule classes and how
  they are used to build rules from formulas. An example :[corollary]
  formula from which a :congruence rule might be built, assuming that
  set-equal is a known [equivalence] relation, is:

    Example:
    (defthm set-equal-implies-iff-memb-2
      (implies (set-equal x y)
               (iff (memb e x) (memb e y)))
      :rule-classes :congruence)

  Also see [defcong] and see [equivalence].

  NOTE: This topic discusses so-called ``classic'' congruence rules. A
  more general class of rules, so-called ``patterned'' congruence
  rules, is supported. We discuss only classic congruence rules
  below; for a discussion of patterned congruence rules, first read
  the present topic and then see [patterned-congruence].

    General Form:
    (implies (equiv1 xk xk-equiv)
             (equiv2 (fn x1... xk       ...xn)
                     (fn x1... xk-equiv ...xn)))

  where equiv1 and equiv2 are known equivalence relations, fn is an
  n-ary function symbol other than if, and the xi and xk-equiv are
  all distinct variables. The effect of such a rule is to record that
  the equiv2-equivalence of fn-expressions can be maintained if,
  while rewriting the kth argument position, equiv1-equivalence is
  maintained. See [equivalence] for a general discussion of the
  issues. We say that equiv2, above, is the ``outside equivalence''
  in the rule and equiv1 is the ``inside equivalence for the kth
  argument.''

  The macro form (defcong equiv1 equiv2 (fn x1 ... x1) k) is an
  abbreviation for a [defthm] of rule-class :congruence that attempts
  to establish that equiv2 is maintained by maintaining equiv1 in
  fn's kth argument. The [defcong] macro automatically generates the
  general formula shown above. See [defcong].

  The memb example above tells us that (memb e x) is propositionally
  equivalent to (memb e y), provided x and y are set-equal. The
  outside equivalence is [iff] and the inside equivalence for the
  second argument is set-equal. If we see a memb expression in a
  propositional context, e.g., as a literal of a clause or test of an
  [if] (but not, for example, as an argument to [cons]), we can
  rewrite its second argument maintaining set-equality. For example,
  a rule stating the commutativity of [append] (modulo set-equality)
  could be applied in this context. Since equality is a refinement of
  all equivalence relations, all equality rules are always available.
  See [refinement].

  All known :congruence rules about a given outside equivalence and fn
  can be used independently. That is, consider two :congruence rules
  with the same outside equivalence, equiv, and about the same
  function fn. Suppose one says that equiv1 is the inside equivalence
  for the first argument and the other says equiv2 is the inside
  equivalence for the second argument. Then (fn a b) is equiv (fn a'
  b') provided a is equiv1 to a' and b is equiv2 to b'. This is an
  easy consequence of the transitivity of equiv. It permits you to
  think independently about the inside equivalences.

  Furthermore, it is possible that more than one inside equivalence for
  a given argument slot will maintain a given outside equivalence.
  For example, (length a) is equal to (length a') if a and a' are
  related either by list-equal or by [string-equal]. You may prove
  two (or more) :congruence rules for the same slot of a function.
  The result is that the system uses a new, ``generated'' equivalence
  relation for that slot with the result that rules of both (or all)
  kinds are available while rewriting.

  :Congruence rules can be disabled. For example, if you have two
  different inside equivalences for a given argument position and you
  find that the :[rewrite] rules for one are unexpectedly preventing
  the application of the desired rule, you can disable the rule that
  introduced the unwanted inside equivalence.

  Remark on Replacing IFF by EQUAL. You may encounter a warning
  suggesting that a congruence rule ``can be strengthened by
  replacing the second equivalence relation, IFF, by EQUAL.'' Suppose
  for example that this warning occurs when you submit the following
  rule:

    (defcong equiv1 iff (fn x y) 2)

  which is shorthand for the following:

    (defthm equiv1-implies-iff-fn-2
           (implies (equiv1 y y-equiv)
                    (iff (fn x y) (fn x y-equiv)))
           :rule-classes (:congruence))

  The warning is telling you that ACL2 was able to deduce that fn
  always returns a Boolean, and hence a trivial but useful
  consequence is obtained by replacing [iff] by [equal] ---

    (defcong equiv1 equal (fn x y) 2)

  --- which is shorthand for the following:

    (defthm equiv1-implies-equal-fn-2
           (implies (equiv1 y y-equiv)
                    (equal (fn x y) (fn x y-equiv)))
           :rule-classes (:congruence))

  If you have difficulty proving the latter directly, you can derive it
  from the former by giving a suitable hint, minimally as follows.

    (defcong equiv1 equal (fn x y) 2
      :hints ((\"Goal\"
               :use equiv1-implies-iff-fn-2
               :in-theory
               (union-theories '((:type-prescription fn))
                               (theory 'minimal-theory)))))

  By heeding this warning, you may avoid unnecessary [double-rewrite]
  warnings later. We now explain why, but see [double-rewrite] for
  relevant background material.

  For example, suppose you have proved the ``iff'' version of the
  congruence rule above, and later you submit the following rewrite
  rule.

    (defthm equal-list-perm
      (implies (equiv1 x y)
               (fn x y)))

  Since fn is known to return a Boolean, ACL2 performs an optimization
  that stores this rule as though it were the following.

    (defthm equal-list-perm
      (implies (equiv1 x y)
               (equal (fn x y) t)))

  Thus, if ACL2's rewriter sees a term (fn a b) in a context where the
  equivalence relation [iff] is not being maintained, then it cannot
  use rule equiv1-implies-iff-fn-2, so it rewrites argument a without
  the benefit of knowing that it suffices to maintain equiv1; and
  then it caches the result. When ACL2 subsequently attempts to
  relieve the hypothesis (equiv1 x y), it will rewrite x simply by
  returning the rewritten value of a from the result cache. This is
  unfortunate if a could have been rewritten more completely under
  maintainance of the equivalence relation equiv1 --- which is legal
  in the hypothesis since a is an argument of equiv1, which is an
  [equivalence] relation. The user who observes the warning from rule
  equiv1-implies-iff-fn-2, and replaces it with
  equiv1-implies-equal-fn-2, will avoid this unfortunate case.")
 (CONJUGATE
  (NUMBERS ACL2-BUILT-INS)
  "Complex number conjugate

  Conjugate takes an ACL2 number as an argument, and returns its
  complex conjugate (i.e., the result of negating its imaginary
  part.).

  Conjugate is a Common Lisp function. See any Common Lisp
  documentation for more information.

  Function: <conjugate>

    (defun conjugate (x)
           (declare (xargs :guard (acl2-numberp x)))
           (if (complex/complex-rationalp x)
               (complex (realpart x) (- (imagpart x)))
               x))")
 (CONS
  (CONSES ACL2-BUILT-INS)
  "Pair and list constructor

  (cons x y) is a pair whose first component is x and second component
  is y. If y is a list, then (cons x y) is a list that has an
  additional element x on the front.")
 (CONS-SUBTREES
  (FAST-ALISTS ACL2-BUILT-INS)
  "Build a fast alist whose keys are the subtrees of X

  (cons-subtrees x nil) builds a fast alist that associates each
  subtree of X with T, without duplication.

  Function: <cons-subtrees>

    (defun
         cons-subtrees (x al)
         (declare (xargs :guard t))
         (cond ((atom x) al)
               ((hons-get x al) al)
               (t (cons-subtrees (car x)
                                 (cons-subtrees (cdr x)
                                                (hons-acons x t al))))))")
 (CONSERVATIVITY-OF-DEFCHOOSE
  (DEFCHOOSE)
  "Proof of conservativity of [defchoose]

  This documentation topic provides underlying theory. It is of
  theoretical interest only; it has no relationship to the effective
  use of ACL2.

  The argument below for the conservativity of [defchoose] replaces the
  terse and somewhat misleading reference to a forcing argument in
  Appendix B of the paper by ACL2 authors Kaufmann and Moore,
  ``Structured Theory Development for a Mechanized Logic'' (Journal
  of Automated Reasoning 26, no. 2 (2001), pp. 161-203).

  Our basic idea is to to take a (countable) first-order structure for
  ACL2, M, together with a function symbol, f, introduced by
  [defchoose], and find a way to expand M with an interpretation of f
  (without changing the universe of M) so that e0-induction continues
  to hold in the expansion. A remark at the end of this documentation
  topic shows why care is necessary. A concept called ``forcing'',
  originally introduced by Paul Cohen for set theory, has long since
  been adapted by logicians (in a simplified form) to model theory.
  This simplified model-theoretic forcing provides the means for
  making our careful expansion.

  The forcing argument presented below is intended to be completely
  self-contained for those familiar with basic first-order logic and
  ACL2; in particular, see [defchoose]. No background in forcing
  (model-theoretic or otherwise) is expected, though we do expect a
  rudimentary background in first-order logic and familiarity with
  the following.

  Preliminaries. We write s[p<-p0] to denote the result of extending or
  modifying the assignment s by binding p to p0. Now let A be a
  subset of the universe U of a first-order structure M. A is said to
  be ``first-order definable with parameters'' in M if for some
  formula phi, variable x, and assignment s binding the free
  variables of phi except perhaps for x, A = {a \\in U: M |=
  phi[s[x<-a]]}. Note that we are writing ``\\in'' to denote set
  membership. Finally, we indicate the end of a proof (or of a
  theorem statement, when the proof is omitted) with the symbol
  ``-|''.

  We gratefully acknowledge very helpful feedback from John Cowles, who
  found several errors in a draft of this note and suggested the
  exercises. We also thank Ruben Gamboa for helpful feedback, and we
  thank Jim Schmerl for an observation that led us directly to this
  proof in the first place.

  We are given a consistent first-order theory T, extending the ACL2
  ground-zero theory, that satisfies the e0-induction scheme. We wish
  to show that the extension of T by the following arbitrary
  defchoose event is conservative, where g is a new function symbol.

    (defchoose g <bound-vars> <free-vars> <body>)

  Note that by ``the extension of T'' here we mean the extension of T
  by not only the new defchoose axiom displayed just below, but also
  the addition of e0-induction axioms for formulas in the expanded
  language obtained by including the new defchoose function symbol,
  g.

    <body> -> (LET <bound-vars> = g(<free-vars>) in <body>)

  By definition of conservativity, since proofs are finite, it clearly
  suffices to consider an arbitrary finite subset of T. Then by the
  completeness, soundness, and downward Lowenheim-Skolem theorems of
  first-order logic, it suffices to show that an arbitrary countable
  model of T can be expanded (i.e., by interpreting the new symbol g
  without changing the universe of the model) to a model of the
  corresponding defchoose axiom above, in which all e0-induction
  axioms hold in the language of that model (i.e., the expanded
  language).

  Below, we will carry out a so-called forcing construction, which
  allows us to expand any countable model M of T to a model M[G] for
  the expanded language that satisfies e0-induction (in the expanded
  language) and also satisfies the axiom displayed above, generated
  from the defchoose event. The ideas in this argument are standard
  in model theory; no novelty is claimed here.

  Fix a countable model M of a theory T that satisfies e0-induction for
  its countable language and extends the ACL2 ground-zero theory.
  Also fix the above defchoose axiom, where g is not in the language
  of T.

  We start by defining a partial order P as follows. Let Nb and Nf be
  the lengths of <bound-vars> and <free-vars>, respectively. P
  consists of all fn in M such that the following formula is true in
  M. Roughly speaking, it says that fn is a finite function that
  witnesses, on its domain, the requirement above for g.

    alistp(fn) &
    no-duplicatesp-equal(strip-cars(fn)) &
    (forall <bound-vars>, <free-vars> .
       (member-equal(cons(<free-vars>,<bound-vars>), fn) ->
        (length(<bound-vars>) = Nb &
         length(<free-vars>)  = Nf &
         ((exists <bound-vars> . <body>) ->
          (LET <bound-vars> = g(<free-vars>) in <body>)))))

  P is ordered by subset, i.e., we say that p2 extends p1 if p1 is a
  subset (not necessarily proper) of p2 (more precisely, M |=
  subsetp-equal(p1,p2)).

  Remark. The original argument in Appendix B of the aforementioned
  paper can essentially be salvaged, as we now show. The key
  observation is that the particular choice of P is nearly irrelevant
  for the argument that follows below. In particular, we can instead
  define P to consist of finite one-one functions with domain
  contained in the set of natural numbers. More precisely, consider
  the following definitions.

    (defun function-p (fn)
      (and (alistp fn)
           (no-duplicatesp-equal (strip-cars fn))))

    (defun nat-function-p (x)
      (and (function-p x)
           (nat-listp (strip-cars x))))

  and define an inverse function on alists as follows.

    (defun inverse (fn)
      (if (endp fn)
          nil
        (cons (cons (cdar fn) (caar fn))
              (inverse (cdr fn)))))

  Then P may instead be defined to consist of those fn for which
  nat-function-p(fn) & function-p(inverse(fn)). With this alternate
  definition of P, the argument below then goes through virtually
  unchanged, and we get an expansion M[G] of M in which there is a
  definable enumeration of the universe. The conservativity of
  defchoose then follows easily because the function being introduced
  can be defined explicitly using that enumeration (namely, always
  pick the least witness in the sense of the enumeration).

  End of Remark.

  Next we present the relevant forcing concepts from model theory.

  A dense subset of P is a subset D of P such that for every p \\in P,
  there is d \\in D such that d extends p. A subset G of P is generic
  with respect to a collection Ds of dense subsets of P, also written
  ``G is Ds-generic,'' if G is closed under subset (if p2 \\in G and
  p2 extends p1 then p1 \\in G), G is pairwise compatible (the
  union-equal of any two elements of G is in G), and every set in Ds
  has non-empty intersection with G.

  For p \\in P, we say that a subset D of P is dense beyond p if for all
  p1 extending p there exists p2 extending p1 such that p2 \\in D.
  This notion makes sense even for D not a subset of P if we treat
  elements of D not in P as nil.

  Proposition 1. For any partial order P and countable collection Ds of
  dense subsets of P, there is a Ds-generic subset of P.

  Proof. Let Ds = {D0,D1,D2,...}. Define a sequence <p_0,p_1,...> such
  that for all i, p_i \\in Di and p_(i+1) extends p_i. Let G = {p \\in
  P: for some i, pi extends p}. Then G is Ds-generic. -|

  Note that P is first-order definable (with parameters) in M. Let Df
  be the set of dense subsets of P that are first-order definable
  (with parameters) in M. A standard argument shows there are only
  countably many first-order definitions with parameters in a
  countable model M whose language is countable --- for example, we
  can Goedel number all terms and then all formulas --- hence, Df is
  countable.

  By Proposition 1, let G be Df-generic. Notice that for any list x of
  length Nf in M, the set of elements f of P for which x is in the
  domain of f is dense and first-order definable. We may thus define
  a function g0 as follows: g0(x_1,...,x_Nf) = y if there is some
  element of G containing the pair ((x_1 ... x_Nf) . y). It is easy
  to see that g0 is a total function on M. Let L be the language of T
  and let L[g] be the union of L with a set containing a single new
  function symbol, g. Let M[G] be the expansion of M to L[g] obtained
  by interpreting g to be g0 (see also Proposition 5 below).

  So now we have fixed M, P, Df, G, and g0, where G is Df-generic.

  Proposition 2. Let Df be the set of dense subsets of P that are
  first-order definable (with parameters) in M. Suppose that p \\in G
  and D \\in Df. Then for some q \\in G extending p, q \\in D.

  Proof. Let D0 be the set of p' \\in D that either extend p or have no
  extension in D that extends p. We leave it as a straightforward
  exercise to show that D0 is dense, and D0 is clearly first-order
  definable (with parameters) in M. So by genericity of G, we may
  pick q \\in D0 such that q \\in G. Thus q \\in D. By definition of
  generic, some extension q1 of both p and q belongs to G. Pick q2
  \\in D extending q1; thus q has an extension in D that extends p
  (namely, q2), so by definition of D0, q extends p. -|

  Definition of forcing. Let phi(x1,...,xk) be a first-order formula in
  L[g] and let p \\in P. We define a formula of L, denoted ``p ||-
  phi'' (``p forces phi''), by recursion on phi (in the metatheory)
  as follows. (Here, we view ``or'' and ``forall'' as abbreviations.)

      If phi is atomic, then let phi'(A) be the result of replacing,
      inside-out, each subterm of the form g(x_1,...,x_Nb) with the
      term (cdr (assoc-equal (list x_1 ... x_Nb) A)), where A is
      neither p nor a variable occurring in phi. Then p ||- phi is
      defined as follows: ``The set {A \\in P: A extends p and
      phi'(A)} is dense beyond p''. That is, p ||- phi is the
      following formula:

        (forall p1 \\in P extending p)
         (exists p2 \\in P extending p1) phi'(p2).

      p ||- ~phi is: (forall p' \\in P extending p) ~(p' ||- phi)

      p ||- phi_1 & phi_2 is: (p ||- phi_1) & (p ||- phi_2)

      p ||- (exists x) phi is: (exists x) (p ||- phi)

  We will need the following definition later.

  Definition. p ||-w phi (p weakly forces phi) is an abbreviation for p
  ||- ~~phi.

  The following exercises were suggested by John Cowles as a means for
  gaining familiarity with the definition of forcing.

  Exercise 1. Consider the formula (phi_1 OR phi_2) as an abbreviation
  for ~(~phi_1 & ~phi_2), Show that p ||- (phi_1 OR phi_2) is
  equivalent to the following.

    (forall p' \\in P extending p) (exists p'' \\in P extending p')
     ((p'' ||- phi_1) OR (p'' ||- phi_2))

  Exercise 2. Consider the formula (forall x)phi as an abbreviation for
  ~(exists x)~phi, Show that p ||- (forall x)phi is equivalent to the
  following.

    (forall x)
     (forall p1 \\in P extending p)
      (exists p2 \\in P extending p1) (p2 ||- phi).

  Exercise 3. Prove that p ||-w phi is equivalent to the following.

    (forall p' \\in P extending p)
     (exists p'' \\in P extending p') (p'' ||- phi).

  Exercise 4. Let phi be a formula of L[g]. Prove: M |= (p ||-
  phi)[s[p<-p0]] implies M |= (p ||-w phi)[s[p<-p0]].

  Exercise 5. Let phi be a formula of L[g]. Prove: M |= (p ||-
  ~phi)[s[p<-p0]] iff M |= (p ||-w ~phi)[s[p<-p0]].

  [End of exercises.]

  The definition of forcing stipulates how to view ``p ||-
  phi(x1,...,xk)'' as a new formula theta(p,x1,...,xk). That is,
  ``||-'' transforms formulas, so for any first-order formula phi,
  ``p ||- phi'' is just another first-order formula. That observation
  shows that a formula such as ((p ||- phi) OR (p ||- ~phi)) is
  really just another first-order formula. The following proposition
  thus follows easily.

  Proposition 3. For any formula phi of L[g], {p0: M |= ((p ||- phi) OR
  (p ||- ~phi))[s[p<-p0]]]} is a dense subset of P, which (since it
  is first-order definable with parameters in M) intersects G. -|

  The following proposition is easily proved by a structural induction
  on phi, and is left to the reader.

  Proposition 4. Let phi be a formula of L[g]. Suppose p0 \\in P, p1 \\in
  P,
  M |= (p ||- phi)[s[p<-p0]],
  and p1 extends p0. Then
  M |= (p ||- phi)[s[p<-p1]]. -|

  We will also need the following.

  Proposition 5. The following is dense for any finite set S of
  Nf-tuples: {p \\in P: for some <x_1 ... x_Nf> \\in S, (list x_1 ...
  x_Nf) \\in strip-cars(p)}. Thus, the function g0 is a total
  function. -|

  The next lemma tells us that the sentences true in M[G] are those
  that are forced by an element of G.

  Truth Lemma. Let phi be a formula in L[g], let s be an assignment to
  the free variables of phi, and let p be a variable not in the
  domain of s. Then M[G] |= phi[s] iff for some p0 \\in G, M |= (p ||-
  phi)[s[p<-p0]].

  Proof. The proof is by induction on the structure of phi. First
  suppose phi is atomic. Let D* be the set of elements p0 \\in P such
  that every assoc-equal evaluation from the definition of forcing
  phi returns a pair when A is bound to p0. (Intuitively, this means
  that p0 is a sufficiently large approximation from any G containing
  p0 to make sense of phi in M[G].) We make the following claim.

    (*)   For all p0 \\in G such that p0 \\in D*,
          M[G] |= phi[s] iff M |= (p ||- phi)[s[p<-p0]].

  To prove the claim, fix p0 in both G and D*, and recall the function
  g0 constructed from G in the definition of M[G]. Suppose that t_1,
  ..., t_Nf are terms and g(t_1, ..., t_Nf) is a subterm of phi. Then
  s assigns a value in M to each of the t_i. Let a_i be the value
  assigned by s to t_i. Then g0(a_1, ..., a_Nf) = (cdr (assoc-equal
  (list a_1 ... a_Nf) p0)), as the assoc-equal is a pair (since p0
  \\in D*) and has the indicated value (because p0 \\in G). It follows
  by the definition of formula phi' in the definition of forcing:

    M[G] |= phi[s]  iff  M |= phi'(p)[s[p<-p0]]

  Moreover, because p0 \\in D* it is clear that this holds if p0 is
  replaced by an arbitrary extension of p0. Then (*) easily follows.

  By Proposition 5, D* is dense, so there is some p0 in the
  intersection of D* and G. The forward direction of the conclusion
  then follows by (*). The reverse direction is clear from (*) by
  application of Proposition 2 to D* and Proposition 4.

  Next, suppose M[G] |= ~phi[x]. Then it is not the case that M[G] |=
  phi, so by the inductive hypothesis, there is no p0 \\in G for which
  M |= (p ||- phi)[s[p<-p0]]. By Proposition 3, there is p0 \\in G for
  which M |= (p ||- ~phi)[s[p<-p0]]. For the other direction, suppose
  it is not the case that M[G] |= ~phi[s]. So M[G] |= phi[s], and by
  the inductive hypothesis, there is p0 \\in G for which M |= (p ||-
  phi)[s[p<-p0]]. It follows that there is no p1 \\in G for which M |=
  (p ||- ~phi)[s[p<-p1]], since from such p1 we can find a common
  extension p2 of p0 and p1 (since G is generic), and since p2
  extends p0 then by Proposition 4, M |= (p ||- phi)[s[p<-p2]],
  contradicting (by definition of forcing) M |= (p ||-
  ~phi)[s[p<-p1]] since p2 extends p1.

  The case (phi_1 & phi_2) follows easily from the inductive
  hypothesis. For the forward direction, apply Proposition 4 and the
  observation that by genericity, if p0 \\in G and p1 \\in G then p0
  and p1 they have a common extension in G.

  Finally, the case (exists x) phi follows trivially from the inductive
  hypothesis. -|

  Truth Lemma Corollary. The Truth Lemma holds with ||-w replacing ||-.

  Proof. This is clear by applying the Truth Lemma to ~~phi. -|

  Here is our main theorem. Recall that all first-order theories in our
  ACL2 context satisfy the e0-induction scheme.

  Theorem. M[G] satisfies e0-induction.

  Proof. We consider an arbitrary instance of e0-induction in L[g],
  stated using a strict well-founded relation <| and a formula phi.
  We write phi(y) to indicate that y may be among the free variables
  of phi, and phi(y<-x) to denote the result of substituting x for y
  in phi.

    theta:   (forall y) [((forall x <| y) phi(y<-x)) -> phi(y)]
          -> (forall y) phi(y)

  Our goal is to prove that theta holds in M[G].

  Below, we abuse notation by leaving assignments implicit and by
  writing ``p ||- phi(y0)'' to signify that the formula (p ||-
  phi(y)) is true in M under the extension of the explicit assignment
  that binds y to y0. We believe that the intended meaning will be
  clear.

  Consider the following set D.

    D = {p \\in P: either p ||-w phi(y0) for all y0,
                  or else
                  for some y0, p ||- ~phi(y0) and
                               for all y1 <| y0 p ||-w phi(y1)}.

  The set D is clearly first-order definable (with parameters) in M. We
  claim that D is a dense subset of P. For suppose p0 \\in P; we find
  p1 \\in D extending p0, as follows. If p0 ||-w phi(y0) for all y0,
  then we may take p1 to be p0. Otherwise, by definition of ||-w and
  ||-, there is some y0 such that for some extension p0' of p0, p0'
  ||- ~phi(y0). Pick a <|-minimal such y0, and correspondingly pick
  p1 so that p1 extends p0 and p1 ||- ~phi(y0). In order to show that
  p1 \\in D, it remains to show that for all y1 <| y0, p1 ||-w
  phi(y1), i.e., there is no q extending p1 such that q ||- ~phi(y1).
  This is indeed the case since otherwise q and y1 would contradict
  the <|-minimality of y0.

  Applying the genericity of G and just-proved density of D, pick p0
  \\in G such that p0 \\in D. If p0 ||-w phi(y0) for all y0, then by
  the Truth Lemma Corollary, M[G] |= phi(y0) for all y0, and thus
  M[G] |= theta. Otherwise, since p0 \\in D we may choose y0 such that
  p0 ||- ~phi(y0) and for all y1 <| y0, p0 ||-w phi(y1). By the Truth
  Lemma and its corollary, since p0 \\in G we have:

    (1)   M[G] |= ~phi(y0).
    (2)   For all y1 <| y0, M[G] |= phi(y1).

  It follows that the antecedent of theta is false in M[G], as
  witnessed by y = y0; thus M[G] |= theta. -|

  Remark. We close by returning, as promised above, to the question of
  why so much care is necessary in constructing an expansion of M. We
  assume familiarity here with the notion of a ``non-standard''
  natural number of M, i.e., one that is greater than the
  interpretation of any term that has the form (+ 1 1 1 ... 1). Here
  is a very simple example that illustrates the need for some care.
  Consider the following event, which introduces a function foo with
  the following property: for all x, if natp(x) then natp(foo(x)).

    (defchoose foo (y) (x)
      (implies (natp x) (natp y)))

  Certainly we can build a model of the above property from a model M
  of the ground-zero theory, by interpreting foo so that for all x
  for which M satisfies natp(x), foo(x) is also a natp in M. But
  suppose we start with a non-standard model M of the ground-zero
  theory, and we happen to define foo(x) to be 1 for all non-standard
  natural numbers x and 0 for all other x. The resulting expansion of
  M will not satisfy the e0-induction scheme or even the ordinary
  natural number induction scheme: foo(0)=0 holds in that expansion
  as does the implication foo(n)=0 => foo(n+1)=0 for every natural
  number n of M, standard or not; and yet foo(k)=0 fails for every
  non-standard natural number k of M.")
 (CONSES
  (PROGRAMMING)
  "A cons is an ordered pair. In ACL2, data structures like [lists],
  [alists], etc., are made up of conses.


Subtopics

  [Atom]
      Recognizer for atoms

  [Caaaar]
      [car] of the [caaar]

  [Caaadr]
      [car] of the [caadr]

  [Caaar]
      [car] of the [caar]

  [Caadar]
      [car] of the [cadar]

  [Caaddr]
      [car] of the [caddr]

  [Caadr]
      [car] of the [cadr]

  [Caar]
      [car] of the [car]

  [Cadaar]
      [car] of the [cdaar]

  [Cadadr]
      [car] of the [cdadr]

  [Cadar]
      [car] of the [cdar]

  [Caddar]
      [car] of the [cddar]

  [Cadddr]
      [car] of the [cdddr]

  [Caddr]
      [car] of the [cddr]

  [Cadr]
      [car] of the [cdr]

  [Car]
      Returns the first element of a non-empty list, else nil

  [Cdaaar]
      [cdr] of the [caaar]

  [Cdaadr]
      [cdr] of the [caadr]

  [Cdaar]
      [cdr] of the [caar]

  [Cdadar]
      [cdr] of the [cadar]

  [Cdaddr]
      [cdr] of the [caddr]

  [Cdadr]
      [cdr] of the [cadr]

  [Cdar]
      [cdr] of the [car]

  [Cddaar]
      [cdr] of the [cdaar]

  [Cddadr]
      [cdr] of the [cdadr]

  [Cddar]
      [cdr] of the [cdar]

  [Cdddar]
      [cdr] of the [cddar]

  [Cddddr]
      [cdr] of the [cdddr]

  [Cdddr]
      [cdr] of the [cddr]

  [Cddr]
      [cdr] of the [cdr]

  [Cdr]
      Returns the second element of a [cons] pair, else nil

  [Cons]
      Pair and list constructor

  [Consp]
      Recognizer for [cons] pairs

  [Listp]
      Recognizer for (not necessarily proper) lists

  [Subst]
      A single substitution into a tree")
 (CONSP
  (CONSES ACL2-BUILT-INS)
  "Recognizer for [cons] pairs

  (consp x) is true if and only if x is a [cons] pair.")
 (CONSTRAINT
  (ENCAPSULATE)
  "Restrictions on certain functions introduced in [encapsulate]
  [events]

  Suppose that a given theorem, thm, is to be functionally instantiated
  using a given functional substitution, alist. (See
  [lemma-instance], or for an example, see
  [functional-instantiation-example].) What is the set of proof
  obligations generated? It is the set obtained by applying alist to
  all terms, tm, such that (a) tm mentions some function symbol in
  the domain of alist, and (b) either (i) tm arises from the
  ``constraint'' on a function symbol ancestral in thm or in some
  [defaxiom] or (ii) tm is the body of a [defaxiom]. Here, a function
  symbol is ``ancestral'' in thm if either it occurs in thm, or it
  occurs in the definition of some function symbol that occurs in
  thm, and so on.

  The remainder of this note explains what we mean by ``constraint'' in
  the words above.

  In a certain sense, function symbols are introduced in essentially
  two ways. The most common way is to use [defun] (or when there is
  mutual recursion, [mutual-recursion] or [defuns]). There is also a
  mechanism for introducing ``witness functions''; see [defchoose].
  The documentation for these [events] describes the axioms they
  introduce, which we will call here their ``definitional axioms.''
  These definitional axioms are generally the constraints on the
  function symbols that these axioms introduce.

  However, when a function symbol is introduced in the scope of an
  [encapsulate] event, its constraints may differ from the
  definitional axioms introduced for it. For example, suppose that a
  function's definition is [local] to the [encapsulate]; that is,
  suppose the function is introduced in the [signature] of the
  [encapsulate]. Then its constraints include, at the least, those
  non-[local] theorems and definitions in the [encapsulate] that
  mention the function symbol.

  Actually, it will follow from the discussion below that if the
  [signature] is empty for an [encapsulate], then the constraint on
  each of its new function symbols is exactly the definitional axiom
  introduced for it. Intuitively, we view such encapsulates just as
  we view [include-book] [events]. But the general case, where the
  [signature] is not empty, is more complicated.

  In the discussion that follows we describe in detail exactly which
  constraints are associated with which function symbols that are
  introduced in the scope of an [encapsulate] event. In order to
  simplify the exposition we make two cuts at it. In the first cut we
  present an over-simplified explanation that nevertheless captures
  the main ideas. In the second cut we complete our explanation by
  explaining how we view certain [events] as being ``lifted'' out of
  the [encapsulate], resulting in a possibly smaller [encapsulate],
  which becomes the target of the algorithm described in the first
  cut.

  At the end of this note we present an example showing why a more
  naive approach is unsound.

  Finally, before we start our ``first cut,'' we note that any
  information you want ``exported'' outside an [encapsulate] event
  must be there as an explicit definition or theorem. For example,
  even if a function foo has output type (mv t t) in its [signature],
  the system will not know (true-listp (foo x)) merely on account of
  this information. Thus, if you are using functions like foo
  (constrained [mv] functions), then you may find it useful to prove
  (inside the encapsulate, to be exported) a :[type-prescription]
  rule for the constrained function, for example, the
  :[type-prescription] rule (true-listp (foo x)).

  First cut at constraint-assigning algorithm. Quite simply, the
  formulas introduced in the scope of an [encapsulate] are conjoined,
  and each function symbol introduced by the [encapsulate] is
  assigned that conjunction as its constraint.

  Clearly this is a rather severe algorithm. Let us consider two
  possible optimizations in an informal manner before presenting our
  second cut.

  Consider the (rather artificial) event below. The function before1
  does not refer at all, even indirectly, to the locally-introduced
  function sig-fn, so it is unfortunate to saddle it with constraints
  about sig-fn.

    (encapsulate
     (((sig-fn *) => *))

     (defun before1 (x)
       (if (consp x)
           (before1 (cdr x))
         x))

     (local (defun sig-fn (x) (cons x x)))

     (defthm sig-fn-prop
       (consp (sig-fn x)))
     )

  We would like to imagine moving the definition of before1 to just in
  front of this [encapsulate], as follows.

    (defun before1 (x)
      (if (consp x)
          (before1 (cdr x))
        x))

    (encapsulate
     (((sig-fn *) => *))

     (local (defun sig-fn (x) (cons x x)))

     (defthm sig-fn-prop
       (consp (sig-fn x)))
     )

  Thus, we will only assign the constraint (consp (sig-fn x)), from the
  theorem sig-fn-prop, to the function sig-fn, not to the function
  before1.

  More generally, suppose an event in an [encapsulate] event does not
  mention any function symbol in the [signature] of the
  [encapsulate], nor any function symbol that mentions any such
  function symbol, and so on. (We might say that no function symbol
  from the [signature] is an ``ancestor'' of any function symbol
  occurring in the event.) Then we imagine moving the event, so that
  it appears in front of the [encapsulate]. We don't actually move
  it, but we pretend we do when it comes time to assign constraints.
  Thus, such definitions only introduce definitional axioms as the
  constraints on the function symbols being defined. In the example
  above, the event sig-fn-prop introduces no constraints on function
  before1.

  Once this first optimization is performed, we have in mind a set of
  ``constrained functions.'' These are the functions introduced in
  the [encapsulate] that would remain after moving some of them in
  front, as indicated above. Consider the collection of all formulas
  introduced by the [encapsulate], except the definitional axioms,
  that mention these constrained functions. So for example, in the
  event below, no such formula mentions the function symbol after1.

    (encapsulate
     (((sig-fn *) => *))

     (local (defun sig-fn (x) (cons x x)))

     (defthm sig-fn-prop
       (consp (sig-fn x)))

     (defun after1 (x)
       (sig-fn x))
     )

  We can see that there is really no harm in imagining that we move the
  definition of after1 out of the [encapsulate], to just after the
  [encapsulate].

  Many subtle aspects of this rearrangement process have been omitted.
  For example, suppose the function fn uses sig-fn, the latter being
  a function in the signature of the encapsulation. Suppose a formula
  about fn is proved in the encapsulation. Then from the discussion
  above fn is among the constrained functions of the encapsulate: it
  cannot be moved before the encapsulate and it cannot be moved after
  the encapsulation. But why is fn constrained? The reason is that
  the theorem proved about fn may impose or express constraints on
  sig-fn. That is, the theorem proved about fn may depend upon
  properties of the witness used for sig-fn. Here is a simple
  example:

    (encapsulate
     (((sig-fn *) => *))

     (local (defun sig-fn (x) (declare (ignore x)) 0))

     (defun fn (lst)
       (if (endp lst)
           t
           (and (integerp (sig-fn (car lst)))
                (fn (cdr lst)))))

     (defthm fn-always-true
       (fn lst)))

  In this example, there are no [defthm] events that mention sig-fn
  explicitly. One might therefore conclude that it is completely
  unconstrained. But the witness we chose for it always returns an
  integer. The function fn uses sig-fn and we prove that fn always
  returns true. Of course, the proof of this theorem depends upon the
  properties of the witness for sig-fn, even though those properties
  were not explicitly ``called out'' in theorems proved about sig-fn.
  It would be unsound to move fn-always-true after the encapsulate.
  It would also be unsound to constrain sig-fn to satisfy just
  fn-always-true without including in the constraint the relation
  between sig-fn and fn. Hence both sig-fn and fn are constrained by
  this encapsulation and the constraint imposed on each is the same
  and states the relation between the two as characterized by the
  equation defining fn as well as the property that fn always returns
  true. Suppose, later, one proved a theorem about sig-fn and wished
  to functionally instantiate it. Then one must also functionally
  instantiate fn, even if it is not involved in the theorem, because
  it is only through fn that sig-fn inherits its constrained
  properties.

  This is a pathological example that illustrate a trap into which one
  may easily fall: rather than identify the key properties of the
  constrained function the user has foreshadowed its intended
  application and constrained those notions. Clearly, the user
  wishing to introduce the sig-fn above would be well-advised to use
  the following instead:

    (encapsulate
     (((sig-fn *) => *))
     (local (defun sig-fn (x) (declare (ignore x)) 0))
     (defthm integerp-sig-fn
       (integerp (sig-fn x))))

    (defun fn (lst)
      (if (endp lst)
          t
        (and (integerp (sig-fn (car lst)))
             (fn (cdr lst)))))

    (defthm fn-always-true
       (fn lst)))

  Note that sig-fn is constrained merely to be an integer. It is the
  only constrained function. Now fn is introduced after the
  encapsulation, as a simple function that uses sig-fn. We prove that
  fn always returns true, but this fact does not constrain sig-fn.
  Future uses of sig-fn do not have to consider fn at all.

  Sometimes it is necessary to introduce a function such as fn within
  the encapsulate merely to state the key properties of the undefined
  function sig-fn. But that is unusual and the user should understand
  that both functions are being constrained.

  Another subtle aspect of encapsulation that has been brushed over so
  far has to do with exactly how functions defined within the
  encapsulation use the signature functions. For example, above we
  say ``Consider the collection of all formulas introduced by the
  encapsulate, except the definitional axioms, that mention these
  constrained functions.'' We seem to suggest that a definitional
  axiom which mentions a constrained function can be moved out of the
  encapsulation and considered part of the ``post-encapsulation''
  extension of the logical [world], if the defined function is not
  used in any non-definitional formula proved in the encapsulation.
  For example, in the encapsulation above that constrained sig-fn and
  introduced fn within the encapsulation, fn was constrained because
  we proved the formula fn-always-true within the encapsulation. Had
  we not proved fn-always-true within the encapsulation, fn could
  have been moved after the encapsulation. But this suggests an
  unsound rule because whether such a function can be moved after the
  encapsulate depend on whether its admission used properties of the
  witnesses! In particular, we say a function is ``subversive'' if
  any of its governing tests or the actuals in any recursive call
  involve a function in which the signature functions are ancestral.
  See [subversive-recursions].

  (Aside: The definition of fn in the first enapsulation above that
  defines fn, i.e., the encapsulation with fn-always-true inside, is
  subversive because the call of the macro [and] expands to a call of
  IF that governs a recursive call of fn, in this case:

    (defun fn (lst)
      (if (endp lst)
          t
          (if (integerp (sig-fn (car lst)))
              (fn (cdr lst))
            nil))).

  If we switch the order of conjuncts in fn, then the definition of fn
  is no longer subversive, but it still ``infects'' the constraint
  generated for the encapsulation, hence for sig-fn, because
  fn-always-true blocks the definition of fn from being moved back
  (to after the encapsulation). If we both switch the order of
  conjuncts and drop fn-always-true from the encapsulation, then the
  definition of fn is in essence moved back to after the
  encapsulation, and the constraint for sig-fn no longer includes the
  definition of fn. End of aside.)

  Another aspect we have not discussed is what happens to nested
  encapsulations when each introduces constrained functions. We say
  an encapsulate event is ``trivial'' if it introduces no constrained
  functions, i.e., if its signatures is nil. Trivial encapsulations
  are just a way to wrap up a collection of events into a single
  event.

  From the foregoing discussion we see we are interested in exactly how
  we can ``rearrange'' the events in a non-trivial encapsulation --
  moving some ``before'' the encapsulation and others ``after'' the
  encapsulation. We are also interested in which functions introduced
  by the encapsulation are ``constrained'' and what the
  ``constraints'' on each are. We may summarize the observations
  above as follows, after which we conclude with a more elaborate
  example.

  Second cut at constraint-assigning algorithm. First, we focus only on
  non-trivial encapsulations that neither contain nor are contained
  in non-trivial encapsulations. (Nested non-trivial encapsulations
  are not rearranged at all: do not put anything in such a nest
  unless you mean for it to become part of the constraints
  generated.) Second, in what follows we only consider the non-local
  events of such an encapsulate, assuming that they satisfy the
  restriction of using no locally defined function symbols other than
  the signature functions. Given such an encapsulate event, move, to
  just in front of it and in the same order, all definitions and
  theorems for which none of the signature functions is ancestral.
  Now collect up all formulas (theorems) introduced in the
  [encapsulate] other than definitional axioms. Add to this set any
  of those definitional equations that is either subversive or
  defines a function used in a formula in the set. The conjunction of
  the resulting set of formulas is called the ``constraint'' and the
  set of all the signature functions of the encapsulate together with
  all function symbols defined in the encapsulate and mentioned in
  the constraint is called the ``constrained functions.'' Assign the
  constraint to each of the constrained functions. Move, to just
  after the encapsulate, the definitions of all function symbols
  defined in the encapsulate that have been omitted from the
  constraint.

  Implementation note. In the implementation we do not actually move
  [events], but we create constraints that pretend that we did.

  Here is an example illustrating our constraint-assigning algorithm.
  It builds on the preceding examples.

    (encapsulate
     (((sig-fn *) => *))

     (defun before1 (x)
       (if (consp x)
           (before1 (cdr x))
         x))

     (local (defun sig-fn (x) (cons x x)))

     (defthm sig-fn-prop
       (consp (sig-fn x)))

     (defun during (x)
       (if (consp x)
           x
         (cons (car (sig-fn x))
               17)))

     (defun before2 (x)
       (before1 x))

     (defthm before2-prop
       (atom (before2 x)))

     (defthm during-prop
       (implies (and (atom x)
                     (before2 x))
                (equal (car (during x))
                       (car (sig-fn x)))))

     (defun after1 (x)
       (sig-fn x))

     (defchoose after2 (x) (u)
       (and (< u x) (during x)))
     )

  Only the functions sig-fn and during receive extra constraints. The
  functions before1 and before2 are viewed as moving in front of the
  [encapsulate], as is the theorem before2-prop. The functions after1
  and after2 are viewed as being moved past the [encapsulate]. The
  implementation reports the following.

    In addition to SIG-FN, we export AFTER2, AFTER1, BEFORE2, DURING and
    BEFORE1.

    The following constraint is associated with both of the functions DURING and
    SIG-FN:

    (AND (EQUAL (DURING X)
                (IF (CONSP X)
                    X (CONS (CAR (SIG-FN X)) 17)))
         (CONSP (SIG-FN X))
         (IMPLIES (AND (ATOM X) (BEFORE2 X))
                  (EQUAL (CAR (DURING X))
                         (CAR (SIG-FN X)))))

  Notice that the formula (consp (during x)) is not a conjunct of the
  constraint. During the first pass of the encapsulate, this formula
  is stored as a :[type-prescription] rule deduced during the
  definition of the function during. However, the rule is not
  exported because of a rather subtle soundness issue. (If you are
  interested in details, see the comments in source function
  putprop-type-prescription-lst.)

  We conclude by asking (and to a certain extent, answering) the
  following question: Isn't there an approach to assigning
  constraints that avoids over-constraining more simply than our
  ``second cut'' above? Perhaps it seems that given an [encapsulate],
  we should simply assign to each locally defined function the
  theorems exported about that function. If we adopted that simple
  approach the events below would be admissible.

    (encapsulate
     (((foo *) => *))
     (local (defun foo (x) x))
     (defun bar (x)
       (foo x))
     (defthm bar-prop
       (equal (bar x) x)
       :rule-classes nil))

    (defthm foo-id
      (equal (foo x) x)
      :hints ((\"Goal\" :use bar-prop)))

    ; The following event is not admissible in ACL2.

    (defthm ouch!
      nil
      :rule-classes nil
      :hints
      ((\"Goal\" :use
        ((:functional-instance foo-id
                               (foo (lambda (x) (cons x x))))))))

  Under the simple approach we have in mind, bar is constrained to
  satisfy both its definition and bar-prop because bar mentions a
  function declared in the signature list of the encapsulation. In
  fact, bar is so-constrained in the ACL2 semantics of encapsulation
  and the first two events above (the encapsulate and the consequence
  that foo must be the identity function) are actually admissible.
  But under the simple approach to assigning constraints, foo is
  unconstrained because no theorem about it is exported. Under that
  approach, ouch! is provable because foo can be instantiated in
  foo-id to a function other than the identity function.

  It's tempting to think we can fix this by including definitions, not
  just theorems, in constraints. But consider the following slightly
  more elaborate example. The problem is that we need to include as a
  constraint on foo not only the definition of bar, which mentions
  foo explicitly, but also abc, which has foo as an ancestor.

    (encapsulate
     (((foo *) => *))
     (local (defun foo (x) x))
     (local (defthm foo-prop
              (equal (foo x) x)))
     (defun bar (x)
       (foo x))
     (defun abc (x)
       (bar x))
     (defthm abc-prop
       (equal (abc x) x)
       :rule-classes nil))

    (defthm foo-id
      (equal (foo x) x)
      :hints ((\"Goal\" :use abc-prop)))

    ; The following event is not admissible in ACL2.

    (defthm ouch!
      nil
      :rule-classes nil
      :hints
      ((\"Goal\" :use
        ((:functional-instance foo-id
                               (foo (lambda (x) (cons x x)))
                               (bar (lambda (x) (cons x x))))))))")
 (CONVERSION
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Conversion to Uppercase

  When symbols are read by Common Lisp they are converted to upper
  case. Note carefully that this remark applies to the characters in
  symbols. The characters in strings are not converted upper case.

  To type a symbol containing lower case characters you can enclose the
  symbol in vertical bars, as in |AbC| or you can put a ``backslash''
  before each lower case character you wish to preserve, as in A\\bC.
  |AbC| and A\\bC are two different ways of writing the same symbol
  (just like 2/4 and 1/2 are two different ways of writing the same
  rational and 123 and 0123 are two different ways to write the same
  natural number). The symbol has three characters in its name, the
  middle one of which is a lower case b.")
 (COPYRIGHT
  (ABOUT-ACL2)
  "ACL2 copyright, license, sponsorship

  This topic provides information about copyright, license, authorship,
  and sponsorship of the ACL2 system. For information about copyright
  and authorship of [documentation], see [documentation-copyright],
  which notes that there are many documentation authors.

  ACL2 Version 7.2 --- A Computational Logic for Applicative Common
  Lisp

  Copyright (C) 2016, Regents of the University of Texas

  This version of ACL2 is a descendent of ACL2 Version 1.9, Copyright
  (C) 1997 Computational Logic, Inc. See the documentation topic
  NOTE-2-0.

  This program is free software; you can redistribute it and/or modify
  it under the terms of the LICENSE file distributed with ACL2.

  This program is distributed in the hope that it will be useful, but
  WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  LICENSE for more details.

  Written by: Matt Kaufmann and J Strother Moore
  email: Kaufmann@cs.utexas.edu and Moore@cs.utexas.edu
  Department of Computer Science
  University of Texas at Austin
  Austin, TX 78712 U.S.A.

  Please also see [acknowledgments].


Subtopics

  [Documentation-copyright]
      Copyright and authorship of documentation")
 (COROLLARY
  (RULE-CLASSES)
  "The corollary formula of a [rune]

  See [formula]. This is a low-level system function at the present
  time. See [pr] and see [pr!] instead. Also see [rule-classes] for
  the use of the symbol :corollary in specifying a rule class.")
 (CORROBORATING_MODELS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Corroborating Models

  [{IMAGE}]

  After producing a model, it must be corroborated against reality. The
  Falling Body Model has been corroborated by a vast number of
  experiments in which the time and distance were measured and
  compared according to the formula. In general all models must be
  corroborated by experiment.

  The Falling Body Model can be derived from deeper models, namely
  Newton's laws of motion and the assertion that, over the limited
  distances concerned, graviation exerts a constant acceleration on
  the object. When the model in question can be derived from other
  models, it is the other models that are being corroborated by our
  experiments.

  Because nature is not formal, we cannot prove that our models of it
  are correct. All we can do is test our models against nature's
  behavior.

  Such testing often exposes restrictions on the applicability of our
  models. For example, the Falling Body Model is inaccurate if air
  resistance is significant. Thus, we learn not to use that model to
  predict how long it takes a feather to fall from a 200 foot tower
  in the earth's atmosphere.

  In addition, attempts at corroboration might reveal that the model is
  actually incorrect. Careful measurements might expose the fact that
  the gravitational force increases as the body falls closer to
  earth. Very careful measurements might reveal relativistic effects.
  Technically, the familiar Falling Body Model is just wrong, even
  under excessive restrictions such as ``in a perfect vacuum'' and
  ``over small distances.'' But it is an incredibly useful model
  nonetheless.

  There are several morals here.

  Models need not be complete to be useful.

  Models need not be perfectly accurate to be useful.

  The user of a model must understand its limitations.

  [{IMAGE}]")
 (COUNT
  (LISTS STRINGS ACL2-BUILT-INS)
  "Count the number of occurrences of an item in a string or true-list

    Example Forms:
    (count #\\D \"DabcDefcDe\")                 ; = 3
    (count #\\D \"DabcDefcDe\" :start 1)        ; = 2
    (count #\\D \"DabcDefcDe\" :start 1 :end 5) ; = 1
    (count #\\D \"DabcDefcDe\" :start 1 :end 4) ; = 0
    (count #\\z \"DabcDefcDe\")                 ; = 0
    (count '(a b) '(17 (a b) 23 (a b) (c d)))   ; = 2

    General Form:
    (count item sequence &key start end)

  (Count item sequence) returns the number of times item occurs in
  sequence. The [guard] for calls of count (which is actually a macro
  in ACL2) specifies that sequence is a string or a true-list, and
  that start, which defaults to 0, and end, which defaults to the
  length of sequence, are valid indices into sequence.

  See any Common Lisp documentation for more information about count,
  which is a Common Lisp utility. At this time ACL2 does not support
  keyword arguments for count other than :start and :end; we may add
  support for the :from-end keyword upon request.

  Macro: <count>

    (defmacro count
              (item sequence &key (start '0) end)
              (cons 'count-fn
                    (cons item
                          (cons sequence
                                (cons start (cons end 'nil))))))")
 (CPU-CORE-COUNT
  (PARALLELISM ACL2-BUILT-INS)
  "The number of cpu cores

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].

  Unless the ACL2 executable supports parallel execution (see
  [parallelism]), this function returns (mv 1 state). Otherwise:

  (Cpu-core-count state) returns (mv core-count state), where
  core-count is determined as follows. If environment variable
  ACL2_CORE_COUNT has a non-empty value, then that value should
  represent a positive integer (else an error occurs), which is the
  returned core-count. Otherwise, the returned core-count may be
  obtained from the underlying Common Lisp implementation, else as a
  positive integer value from [state] global variable 'cpu-core-count
  (see [assign]). Otherwise an error occurs.

    Example:
    (cpu-core-count state) ==> (mv 4 state)

  Cpu-core-count has the following logical definition.

  Function: <cpu-core-count>

    (defun cpu-core-count (state)
           (declare (xargs :stobjs state :guard t))
           (mv-let (nullp val state)
                   (read-acl2-oracle state)
                   (declare (ignore nullp))
                   (mv val state)))")
 (CURRENT-PACKAGE
  (LD)
  "The package used for reading and printing

  Current-package is an [ld] special (see [ld]). The accessor is
  (current-package state) and the updater is (set-current-package val
  state), or more conventionally, (in-package val). The value of
  current-package is actually the string that names the package.
  (Common Lisp's ``package'' objects do not exist in ACL2.) The
  current package must be known to ACL2, i.e., it must be one of the
  initial packages or a package defined with [defpkg] by the user.

  When printing symbols, the package prefix is displayed if it is not
  the current-package and may be optionally displayed otherwise.
  Thus, if current-package is \"ACL2\" then the symbol 'ACL2::SYMB may
  be printed as SYMB or ACL2::SYMB, while 'MY-PKG::SYMB must be
  printed as MY-PKG::SYMB. But if current-package is \"MY-PKG\" then
  the former symbol must be printed as ACL2::SYMB while the latter
  may be printed as SYMB.

  In Common Lisp, current-package also affects how objects are read
  from character streams. Roughly speaking, read and print are
  inverses if the current-package is fixed, so reading from a stream
  produced by printing an object must produce an equal object.

  In ACL2, the situation is more complicated because we never read
  objects from character streams, we only read them from object
  ``streams'' (channels). Logically speaking, the objects in such a
  channel are fixed regardless of the setting of current-package.
  However, our host file systems do not support the idea of Lisp
  object files and instead only support character files. So when you
  open an object input channel to a given (character file) we must
  somehow convert it to a list of ACL2 objects. This is done by a
  deus ex machina (``a person or thing that appears or is introduced
  suddenly and unexpectedly and provides a contrived solution to an
  apparently insoluble difficulty,'' Webster's Ninth New Collegiate
  Dictionary). Roughly speaking, the deus ex machina determines what
  sequence of calls to read-object will occur in the future and what
  the current-package will be during each of those calls, and then
  produces a channel containing the sequence of objects produced by
  an analogous sequence of Common Lisp reads with *current-package*
  bound appropriately for each.

  A simple rule suffices to make sane file [io] possible: before you
  read an object from an object channel to a file created by printing
  to a character channel, make sure the current-package at read-time
  is the same as it was at print-time.")
 (CURRENT-THEORY
  (THEORIES THEORY-FUNCTIONS)
  "Currently [enable]d rules as of logical name

    Examples:
    (current-theory :here)
    (current-theory 'lemma3)

  See [logical-name].

    General Form:
    (current-theory logical-name)

  Returns the current theory as it existed immediately after the
  introduction of [logical-name] provided it is evaluated in an
  environment in which the variable symbol WORLD is bound to the
  current ACL2 logical world, (w state). Thus,

    ACL2 !>(current-theory :here)

  will cause an (unbound variable) error while

    ACL2 !>(let ((world (w state))) (current-theory :here))

  will return the current theory in world.

  See [theories] and see [logical-name] for a discussion of theories in
  general and why the commonly used ``theory functions'' such as
  current-theory are really macros that expand into terms involving
  the variable world.

  The theory returned by current-theory is in fact the theory selected
  by the [in-theory] event most recently preceding logical name,
  extended by the rules introduced up through [logical-name].

  You may experience a fencepost problem in deciding which logical name
  to use. [Deflabel] can always be used to mark unambiguously for
  future reference a particular point in the development of your
  theory. The order of [events] in the vicinity of an [encapsulate]
  is confusing. See [encapsulate].

  This ``function'' is actually a macro that expands to a term
  mentioning the single free variable [world]. When theory
  expressions are evaluated by [in-theory] or the :[in-theory] hint,
  [world] is bound to the current ACL2 [world].")
 (CUSTOM-KEYWORD-HINTS
  (HINTS)
  "User-defined hints

  See [add-custom-keyword-hint] for a discussion of how advanced users
  can define their own hint keywords. For examples, see the community
  books directory books/hints/, in particular basic-tests.lisp.


Subtopics

  [Show-custom-keyword-hint-expansion]
      Print out custom keyword hints when they are expanded")
 (CW
  (IO ACL2-BUILT-INS)
  "Print to the comment window

  Example:

    (cw \"The goal is ~p0 and the alist is ~x1.~%\"
        (untranslate term t nil)
        unify-subst)

  Logically, this expression is equivalent to nil. However, it has the
  effect of first printing to the so-called ``comment window'' the
  [fmt] string as indicated. Thus, cw is like fmt (see [fmt]) except
  in three important ways. First, it is a macro whose calls expand to
  calls of a :[logic] mode function. Second, it neither takes nor
  returns the ACL2 [state]; logically cw simply returns nil, although
  it prints to a comment window that just happens to share the
  terminal screen with the standard character output [*standard-co*].
  Third, its fmt args are positional references, so that for example

    (cw \"Answers: ~p0 and ~p1\" ans1 ans2)

  prints in the same manner as:

    (fmt \"Answers: ~p0 and ~p1\"
         (list (cons #\\0 ans1) (cons #\\1 ans2))
         *standard-co* state nil)

  Typically, calls of cw are embedded in [prog2$] forms, e.g.,

    (prog2$ (cw ...)
            (mv a b c))

  which has the side-effect of printing to the comment window and
  logically returning (mv a b c).

    General Form:
    (cw fmt-string arg1 arg2 ... argn)

  where n is between 0 and 9 (inclusive). The macro uses
  [fmt-to-comment-window], passing it the column 0 and [evisc-tuple]
  nil, after assembling the appropriate alist binding the [fmt] vars
  #\\0 through #\\9; see [fmt]. If you want

    (a) more than 10 vars,
    (b) vars other than the digit chars,
    (c) a different column, or
    (d) a different evisc-tuple,

  then call [fmt-to-comment-window] instead.

  Also see [cw!], which is useful if you want to be able to read the
  printed forms back in.

  Finally, we discuss another way to create formatted output that also
  avoids the need to pass in the ACL2 [state]. The idea is to use
  wormholes; see [wormhole]. Below is a function you can write, along
  with some calls, providing an illustration of this approach.

    (defun my-fmt-to-comment-window (str alist)
      (wormhole 'my-fmt-to-comment-window
                '(lambda (whs) whs)
                (list str alist)
                '(pprogn
                  (fms (car (@ wormhole-input))
                       (cadr (@ wormhole-input))
                       *standard-co*
                       state
                       nil)
                  (value :q))
                :ld-verbose nil
                :ld-error-action :return ; harmless return on error
                :ld-prompt nil))

    ; A non-erroneous call:
    (my-fmt-to-comment-window \"Here is ~x0 for your inspection~%\"
                              (list (cons #\\0 'foo)))

    ; An error inside the fmt string (unbound fmt var); note that even
    ; with the error, the wormhole is exited.
    (my-fmt-to-comment-window \"Here is ~x1 for your inspection~%\"
                              (list (cons #\\0 'foo)))

    ; A guard violation in the binding; note that even with the error,
    ; the wormhole is exited.
    (my-fmt-to-comment-window \"Here is ~x0 for your inspection~%\"
                              (list (cons #\\0 (car 'foo))))")
 (CW!
  (IO ACL2-BUILT-INS)
  "Print to the comment window

  This is the same as [cw], except that [cw] inserts backslash (\\)
  characters when forced to print past the right margin, in order to
  make the output a bit clearer in that case. Use cw! instead if you
  want to be able to read the forms back in.")
 (CW-GSTACK
  (BREAK-REWRITE DEBUGGING)
  "Debug a rewriting loop or stack overflow

    Example Forms:
    (cw-gstack)
    (cw-gstack :frames 10)       ; show only the top 10 frames
    (cw-gstack :frames '(1 10))  ; same as above:  show only frames 1 through 10
    (cw-gstack :frames '(10 20)) ; show only frames 10 through 20
    (cw-gstack :evisc-tuple (evisc-tuple 3 4 nil nil))
                                 ; print with print-level 3 and print-length 4
    (cw-gstack :evisc-tuple nil) ; print using default ``evisceration'',
                                 ;   essentially the same as just above
    (cw-gstack :evisc-tuple '(nil 3 4 (hide)))
                                 ; same as just above

    General Form:
    (cw-gstack :frames frames :evisc-tuple evisc-tuple)

  where :frames and :evisc-tuple are optional, but if they are
  supplied, their values are evaluated. The value of frames should be
  either a natural number or a list of two natural numbers, the first
  less than the second; and the value of evisc-tuple should be an
  evisc-tuple (see [evisc-tuple]). If :evisc-tuple is omitted, then
  substructures deeper than 3 are replaced by ``#'' and those longer
  than 4 are replaced by ``...'', and terms of the form (hide ...)
  are printed as <hidden>. Also see [set-iprint] for an alternative
  to printing ``#'' and ``...''.

  Stack overflows may occur, perhaps caused by looping rewrite rules.
  In some Lisps, stack overflows may manifest themselves as
  segmentation faults, causing the entire ACL2 image to crash.
  Finding looping rewrite rules can be tricky, especially if you are
  using books supplied by other people. (However, see
  [set-rewrite-stack-limit] for a way to avoid stack overflows caused
  by rewriter loops.)

  Normally, a stack overflow will cause the printing of an error
  message that suggests how to proceed. Just follow those
  instructions, and you will generally be able to see what is causing
  the loop.

  Suggestion: Once you have found the loop and fixed it, you should
  execute the ACL2 command :[brr] nil, so that you don't slow down
  subsequent proof attempts.")
 (DEAD-EVENTS
  (DEBUGGING)
  "Using proof supporters to identify dead code and unused theorems

  Below, when we talk about ``an event A'', we mean an event whose name
  is A.

  When event A is used in a proof performed to admit event B that you
  submit to ACL2, we say that A is a ``proof-supporter'' of B. ACL2
  stores an association list such that for every event B with at
  least one proof-supporter, B is associated with a list of all of
  its proof-supporters, sorted by [symbol-<]. The following form
  evaluates to that alist, which is called the
  ``proof-supporters-alist''.

    (global-val 'proof-supporters-alist (w state))

  By ``used in a proof'' above, we mean: applied as a rule or supplied
  explicitly via [hints] of type :use, :by, or :clause-processor.
  That is, the [events] ``used in a proof'' for admitting an event E
  are those listed in the summary printed at the conclusion of
  admitting E.

  Note that if proofs are skipped when admitting event E, say because
  the last admission of E was done by [include-book] (or
  certify-book, which ends with an [include-book]), then there will
  be no entry in that alist for E. (An exception is made however for
  [encapsulate] [events], where proof-supporters are remembered from
  the first pass; see below.) So if you want the
  proof-supporters-alist to include supporters for events in a book,
  use [ld] rather than [include-book] or [certify-book] to process
  the events in that book. If however you are interested in the
  proof-supporters FROM a book that support a later event, then it is
  fine to include that book.

  The case for [encapsulate] is slightly tricky. Consider an example of
  the following form.

    A ; event preceding the encapsulate
    (encapsulate
     ()
     B
     (local C) ; uses A and B in a proof
     D ; uses C in a proof
     )

  At the conclusion of this [encapsulate] event, the
  proof-supporters-alist associates D with A and B, but not C (which
  has disappeared, since it is [local]).

  Note that this sort of ``transitive closure'' operation is only
  performed when necessary due to the disappearance of [local]
  [events]. For example, if we replace (local C) above by just C,
  then D is associated in the proof-supporters-alist only with C, not
  with A or B. If you want the transitive closure of the relation
  computed by the proof-supporters-alist, you have to compute it
  yourself. (This was a deliberate design decision, in order to avoid
  slowing down event processing.) However, there is help available on
  how to do such a computation:

  A community book, books/tools/dead-events.lisp, does such a
  transitive closure, and moreover uses that information to find
  ``dead events'' relative to a list of ``desired'' events. For
  example, suppose you use [ld] to process the events, with proofs,
  in a book intended to prove theorems MAIN-1 and MAIN-2. (Remember,
  [certify-book] will not save such information.) Suppose furthermore
  that the book begins with some [include-book] forms followed by
  (deflabel book-start). You could evaluate this form:

    (dead-events '(main-1 main-2) :start 'book-start)

  The result is a list of events that you probably can delete from the
  book without causing any proofs to fail. See the dead-events.lisp
  book for further documentation.

  You might also find the code in the above book to be helpful for
  writing your own utilities based on the proof-supporters-alist.")
 (DEALING-WITH-KEY-COMBINATIONS-OF-FUNCTION-SYMBOLS
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "How to get rid of key combinations of function symbols

  Suppose REV reverses a list, MEMBER checks that its first argument is
  an element of its second, and SQUARES-PLUS-3P is some complicated
  predicate. Suppose you're proving some Main Theorem that involves
  those concepts and the theorem prover presents you with the
  following hideous formula as a key checkpoint. What action should
  you take?

  Hint: Don't read the formula ``for sense,'' i.e., don't try to
  understand what this formula is saying! Just look at every subterm
  involving a nest of two function symbols and ask if you know
  something about those two symbols that allows you to simplify that
  one subterm.

    (IMPLIES (AND (CONSP X)
                  (MEMBER (+ 3 (* I I)) (REV X))
                  (LIST-OF-INTEGERS X)
                  (INTEGERP I)
                  (<= 0 I)
                  (INTEGERP K)
                  (<= 0 K)
                  (< I K)
                  (SQUARES-PLUS-3P K X)
                  (NOT (EQUAL (CAR X) (+ 3 (* I I))))
                  (NOT (MEMBER (+ 3 (* I I)) X)))
             (SQUARES-PLUS-3P K (REV X)))?

  The experienced ACL2 user will stop reading at the second hypothesis!

    (MEMBER (+ 3 (* I I)) (REV X))

  The combination of MEMBER and REV can be simplified. The question
  ``is e a member of (REV x)'' can be answered by asking ``is e a
  member of x''. The two questions are equivalent. This insight comes
  from your intuition about the semantics of REV -- it just reorders
  the elements but doesn't add or delete any. The second question is
  simpler since it doesn't mention REV, so this is a good
  transformation to make. And the theorem that they are equivalent is
  simpler than the key checkpoint above because it involves fewer
  functions and smaller expressions.

  You might formalize this insight as

    (equal (member e (rev x))
           (member e x))

  But this conjecture is not a theorem, because (member e x) returns
  the cdr of x that begins with e, not just a Boolean (t or nil)
  indicating whether e is an element of x. The location of the first
  e in (rev x) is generally different than the location in x. So when
  we say the two questions are ``equivalent'' we don't mean they are
  equal. We mean that they're propositionally equivalent: both nil or
  both non-nil. This sense of equivalence is called ``if and only
  if'' and is checked by the function iff.

  So our intuitive insight can be phrased as this theorem:

    (iff (member e (rev x))
         (member e x))

  Suggesting that this formulation of the insight is ``obvious'' begs
  many questions. Mathematically, we could have avoided iff and just
  written two implications:

    (and (implies (member e x) (member e (rev x)))
         (implies (member e (rev x)) (member e x))).

  or

    (and (implies (member e x) (member e (rev x)))
         (implies (not (member e x))  (not (member e (rev x))))).

  Or we could have used iff but ``oriented'' it the other way:

    (iff (member e x)
         (member e (rev x)))

  We choose to write

    (iff (member e (rev x))
         (member e x))

  because of our knowledge of how ACL2 turns formulas into rules!

  We deal with this at greater length later. But just to drive the
  point home, if we issue the command:

    (defthm member-rev
      (iff (member e (rev x))
           (member e x)))

  ACL2 will build in a rule that causes every propositional occurrence
  of (MEMBER e (REV x)) to be replaced by (MEMBER e x). (By
  ``propositional occurrence'' we mean an occurrence in which the
  value is tested, as by IF or the propositional connectives.
  Remember, one might use member to determine the location of an
  element too.)

  Note carefully: if you do not tell ACL2 how to make a rule from a
  theorem, it makes a rewrite rule. Rewrite rules always replace
  instances of the left-hand side by the corresponding instances of
  the right-hand side. That is, when interpreted as a rewrite rule,
  (iff alpha beta) makes ACL2 replace alpha by beta.

  Probably the biggest mistake new users make is forgetting that every
  theorem they prove creates a very specific rule. You must remember
  that you are programming ACL2 with these rules. Being careless in
  your statement of theorems is tantamount to being careless in your
  programming. What you get is a mess.

  Had we proved the same equivalence, but with the iff commuted, we
  would be giving ACL2 bad advice. We would be telling it ``replace
  instances of (MEMBER e x) by the corresponding instances of (MEMBER
  e (REV x))''! If ACL2 had that rule and ever tried to simplify any
  member expression, e.g., (MEMBER A B), it would get into an
  infinite loop, e.g., producing the following sequence of
  transformations:

    (MEMBER A B)
    (MEMBER A (REV B))
    (MEMBER A (REV (REV B)))
    ...

  until it eventually exhausted some resource.

  Recall that we entertained the idea of phrasing our insight about
  member and rev with implications rather than iff. Generally
  speaking, implications produce weaker rules -- rules that apply
  less often. We discuss that later.

  Now suppose we've proved member-rev, oriented so as to rewrite
  (member e (rev x)) to (member e x), and built it in as a rewrite
  rule. Then suppose we repeated the attempt to prove our Main
  Theorem. This time, when the prover is processing the hideous Key
  Checkpoint printed above, our new lemma, member-rev, will hit it.
  It will transform the formula to:

    (IMPLIES (AND (CONSP X)
                  (MEMBER (+ 3 (* I I)) X)   ; <-- the hyp has simplified
                  (LIST-OF-INTEGERS X)
                  (INTEGERP I)
                  (<= 0 I)
                  (INTEGERP K)
                  (<= 0 K)
                  (< I K)
                  (SQUARES-PLUS-3P K X)
                  (NOT (EQUAL (CAR X) (+ 3 (* I I))))
                  (NOT (MEMBER (+ 3 (* I I)) X)))
             (SQUARES-PLUS-3P K (REV X)))?

  and then that will collapse to T, since the IMPLIES has contradictory
  hypotheses (note the last hypothesis above).

  By proving member-rev we proved the hideous checkpoint. We never had
  to look at the rest of the formula or think about why it is a
  theorem. Furthermore, attacking the main theorem again, from
  scratch, with member-rev in the database, may eliminate other
  checkpoints that came up the last time we tried to prove our main
  goal. So we recommend addressing one checkpoint at a time.

  This example illustrates that purely local thinking -- looking for
  simplifiable combinations of function symbols -- can sometimes lead
  to proofs and should always be your first reaction to a key
  checkpoint: what local fact do you know that would clean up the
  formula? Don't think about deep questions like ``why is this
  true?'' until you can't see any way to make it simpler.

  It is important to train yourself to see combinations of function
  symbols and to create strong rules for eliminating them. We will
  give you opportunities to practice this later in the tutorial.

  If you have been reading the tutorial introduction to the theorem
  prover, use your browser's Back Button now to return to
  [introduction-to-key-checkpoints].")
 (DEALING-WITH-TAU-PROBLEMS
  (INTRODUCTION-TO-THE-TAU-SYSTEM)
  "Some advice on dealing with problems caused by the tau system

  For background on the tau system, see
  [introduction-to-the-tau-system]. The two most common problems
  caused by the tau system have to do with the system's interaction
  with ``legacy'' proof scripts. Such scripts may suffer because they
  were not designed to exploit tau reasoning and which may configure
  the tau database in quite incomplete and arbitrary ways. The two
  most common problems we have seen are (a) significant slow downs in
  a few proofs and (b) failed proof attempts due to hints being
  misapplied because the tau system caused subgoals to be renumbered.

  We discuss the rather limited means of dealing with these problems
  here. In [future-work-related-to-the-tau-system] we list some major
  inadequacies of the tau system.

  If the tau system contributes to a proof, the [rune]
  (:[executable-counterpart] tau-system) will be listed among the
  Rules in the Summary. However, merely by being attempted the tau
  system can slow down proofs in which it makes no contribution.

  The most brutal and fool-proof way to isolate a proof from the tau
  system is to disable the entire system. This can be done globally
  by

    (in-theory (disable (tau-system)))  ; (:executable-counterpart tau-system)

  or locally with a subgoal specific hint:

    ...
    :hints ((\"...subgoal id...\" :in-theory (disable (tau-system))))

  Conducting a proof with and without the participation of the tau
  system can help you determine whether tau reasoning is helping or
  hurting.

  Dealing with Slowdowns

  The [time-tracker] utility was added to allow users to investigate
  whether excessive amounts of time are being spent in a given
  function. It was then used to annotate the code for the tau system
  as described in [time-tracker-tau]. The result is that if
  ``excessive'' time is spent in tau reasoning, messages to that
  effect will be printed to the proof log. The question is: aside
  from disabling the tau system how can the proof be sped up?

  There are two common causes of slowdown in the tau system. The first
  stems from the system's use of :[executable-counterpart]s to
  determine whether a constant has a given tau. Recall that a tau is
  a conjunction of monadic predicates. To determine whether some
  constant satisfies the tau, the predicates are executed. If you
  have a hard-to-compute predicate this can be very slow. The most
  typical such predicates in ACL2 applications are those that check
  invariants, e.g., that recognize ``good states'' or ``well-formed
  data.'' These are often written inefficiently because they are
  intended only for used in theorems and, before the tau system was
  added, they may have never been applied to constants. The most
  common constants tau predicates are applied to are 0, T, and NIL,
  although different models may stress other constants. To understand
  why NIL for example is frequently tested, if the test of an
  IF-expression is computed to have tau s then the next question we
  ask is ``does nil satisfy s?''

  You may determine whether the tau system is spending time executing
  tau predicates by observing the rewriter --- see [dmr] --- or by
  interrupting the system and getting a backtrace (see
  [set-debugger-enable]).

  If excessive time is being spent in a tau predicate, a draconian
  solution is to disable the :[executable-counterpart] of that
  predicate, for example in either of these equivalent ways. The tau
  system does not execute disabled :[executable-counterpart]s.

    (in-theory (disable (:executable-counterpart foo)))
    (in-theory (disable (foo)))

  In either case above, you may prefer to provide local :[in-theory]
  :[hints] rather than :in-theory [events].

  Disabling the executable counterpart of expensive tau predicates will
  weaken the tau system, probably only negligibly, because it can no
  longer run the predicates to determine whether they admits given
  constants.

  A more sophisticated solution is to make the tau system record values
  of the :[logic]-mode function in question, so that the system will
  look up the necessary values rather than running the function every
  time the question arises. It will look up recorded values whether
  the executable counterpart of the tau predicate is enabled or
  disabled. Here is an example of a lemma that can provide such a
  solution. See the discussion of the Eval form of :[tau-system]
  rules.

    (defthm lemma
      (and (foo 0)
           (foo 17)
           (foo t)
           (not (foo '(a b c))))
      :rule-classes :tau-system)

  It might be difficult to determine which constants are being
  repeatedly tested, although tracing ([trace$]) suspected tau
  predicates will show what they are being called on.

  At the moment there are no better user-level tools to discover this.
  However, some users may wish to consider the following hack: In the
  ACL2 source file tau.lisp, immediately after the definition of the
  system function ev-fncall-w-tau-recog, there is a comment which
  contains some raw Lisp code that can be used to investigate whether
  tau's use of evaluation on constants is causing a problem and to
  determine which constants are involved.

  The second main cause of slowdowns by the tau system is that the
  system contains ``too many'' conjunctive rules (see the Conjunctive
  form in [tau-system]). Unfortunately, we have no tools for either
  identifying the problem or addressing it! That said, let us tell
  you what we do know!

  Conjunctive rules are used to ``complete'' each tau as it is built.
  Referring to the weekdayp example in [tau-system], if a tau is
  constructed that recognizes weekdays but not MON, TUE, THU, or FRI,
  it is completed by adding that the tau recognizes (only) WED. This
  means that when we construct a tau we scan all known conjunctive
  rules and see whether all but one of the literals of any
  conjunctive rule are present. This can be expensive. To mitigate
  this expense, the tau system caches the computation on a per proof
  basis (the cache is cleared after every proof).

  To learn what conjunctive rules there are in your system, evaluate

    (assoc 'tau-conjunctive-rules (tau-database (w state)))

  Perhaps by sending the implementors that list, we can think of ways
  to index the conjunctive rules to save time.

  Dealing with Misapplied Hints

  The second common problem caused by the tau system in legacy proof
  scripts is that it can cause subgoals to be renumbered and thus
  cause hints to be missed. The only ways to address this problem is
  either to disable the tau system (locally or globally by disabling
  (:executable-counterpart tau-system)) or change the legacy hints to
  use the new subgoal names.")
 (DEBUGGING
  (TOP ACL2)
  "Tools for debugging failed or slow proofs, or misbehaving functions.


Subtopics

  [Accumulated-persistence]
      To get statistics on which [rune]s are being tried

  [Break-rewrite]
      The read-eval-print loop entered to [monitor] rules

  [Cw-gstack]
      Debug a rewriting loop or stack overflow

  [Dead-events]
      Using proof supporters to identify dead code and unused theorems

  [Disassemble$]
      Disassemble a function

  [Dmr]
      Dynamically monitor rewrites and other prover activity

  [Failed-forcing]
      How to deal with a proof [failure] in a forcing round

  [Failure]
      How to deal with a proof failure

  [Forward-chaining-reports]
      To see reports about the forward chaining process

  [Guard-debug]
      Generate markers to indicate sources of [guard] proof obligations

  [Measure-debug]
      Generate markers to indicate sources of [measure] proof obligations

  [Nil-goal]
      How to proceed when the prover generates a goal of nil

  [Print-gv]
      Print a form whose evaluation caused a guard violation

  [Proof-checker]
      An interactive tool for controlling ACL2's proof processes.

  [Proof-tree]
      Proof tree displays

  [Pstack]
      Seeing what the prover is up to

  [Quick-and-dirty-subsumption-replacement-step]
      (advanced topic) controlling a heuristic in the prover's clausifier

  [Redo-flat]
      Redo on failure of a [progn], [encapsulate], or [certify-book]

  [Set-check-invariant-risk]
      Potential slowdown for [program]-mode updates to [stobj]s or
      [arrays]

  [Set-debugger-enable]
      Control whether Lisp errors and breaks invoke the Lisp debugger

  [Set-guard-msg]
      Specify what is printed when a [guard] is violated

  [Set-print-gv-defaults]
      Set default keyword values for [print-gv]

  [Splitter]
      Reporting of rules whose application may have caused case splits

  [Time-tracker]
      Display time spent during specified evaluation

  [Trace]
      Tracing functions in ACL2

  [Type-prescription-debugging]
      Improve a built-in [type-prescription] rule

  [Walkabout]
      Explore an ACL2 cons tree")
 (DECLARE
  (PROGRAMMING ACL2-BUILT-INS)
  "Extra declarations that can occur in function definitions, [let]
  bindings, and so forth.

  Common Lisp provides a declaration mechanism that allows the
  programmer to explain additional information to the compiler. For
  instance:

    * The programmer might declare that some variable always has some
      particular type. The compiler might then, depending on its
      optimization/safety settings, either add run-time checks to
      ensure that this really is true, or optimize the compiled code
      by assuming the variable has the correct type.
    * The programmer might declare that some variable is ignored. The
      compiler might then, instead of warning the programmer that the
      variable is never used, explicitly check to make sure that it
      really is never used.

  ACL2 supports the above kinds of declarations, and also adds its own
  kinds of declarations for specifying things like the [guard]s and
  [measure]s of functions, as described in [xargs].

  There are also other kinds of Common Lisp declarations that ACL2 does
  not support, e.g., pertaining to inlining, safety settings,
  variable lifetime, and so forth.


Usage

  Examples:

    (declare (ignore x y z))
    (declare (ignorable x y z)
             (type integer i j k)
             (type (satisfies integerp) m1 m2))
    (declare (xargs :guard (and (integerp i)
                                (&lt;= 0 i))
                    :guard-hints ((\"Goal\" :use (:instance lemma3
                                                  (x (+ i j)))))))

  General Form:

    (declare d1 ... dn)

  where, in ACL2, each di is of one of the following forms:

    (ignore v1 ... vn)
      where each vi is a variable introduced in the immediately superior
      lexical environment. These variables must not occur free in the
      scope of the declaration. This declaration can be useful for
      inhibiting compiler warnings; see also [set-ignore-ok].
    (ignorable v1 ... vn)
      where each vi is a variable introduced in the immediately superior
      lexical environment. These variables need not occur free in the
      scope of the declaration. This declaration can be useful for
      inhibiting compiler warnings; see also [set-ignore-ok].
    (type type-spec v1 ... vn)
      where each vi is a variable introduced in the immediately superior
      lexical environment and type-spec is a type specifier (as
      described in the documentation for [type-spec]). This
      declaration can be useful for optimizing Common Lisp execution
      speed. See also [the].
    (xargs :key1 val1 ... :keyn valn)
      where the legal values of the keys and values are described in the
      documentation for [xargs]. These declarations are only allowed
      at the top level of definitions ([defun] and [defmacro], as
      shown below), and convey information such as the [guard] and
      [measure] for a function.
    (optimize ...)
      for example, (optimize (safety 3)). This is allowed only at the top
      level of [defun] forms and is probably only rarely of any
      interest. See any Common Lisp documentation for more
      information.

  Declarations in ACL2 may occur only where dcl occurs below:

    * (DEFUN name args doc-string dcl ... dcl body)
    * (DEFMACRO name args doc-string dcl ... dcl body)
    * (LET ((v1 t1) ...) dcl ... dcl body)
    * (MV-LET (v1 ...) term dcl ... dcl body)
    * (FLET ((name args dcl ... dcl body) ...))

  Of course, if a form macroexpands into one of these (e.g., as [let*]
  expands into nested [let]s and our er-let* expands into nested
  [mv-let]s) then declarations are permitted as handled by the macros
  involved.

  Declare is defined in Common Lisp. See any Common Lisp documentation
  for more information.


Subtopics

  [Declare-stobjs]
      Declaring a formal parameter name to be a single-threaded object

  [Set-ignore-ok]
      Allow unused formals and locals without an ignore or ignorable
      declaration

  [Type-spec]
      Type specifiers can be used in Common Lisp type declarations and
      [the] forms, and may result in improved efficiency of
      execution.

  [Xargs]
      Extra arguments, for example to give [hints] to [defun]")
 (DECLARE-STOBJS
  (STOBJ DECLARE)
  "Declaring a formal parameter name to be a single-threaded object

  When a [defun] uses one of its formals as a single-threaded object
  ([stobj]), the defun must include a declaration that the formal is
  to be so used. An exception is the formal ``[state],'' which if not
  declared as explained below, may still be used provided an
  appropriate global ``declaration'' is issued: see [set-state-ok].

  If the formal in question is counters then an appropriate declaration
  is

    (declare (xargs :stobjs counters))

  or, more generally,

    (declare (xargs :stobjs (... counters ...)))

  where all the single-threaded formals are listed.

  For such a declaration to be legal it must be the case that all the
  names have previously been defined as single-threaded objects with
  [defstobj].

  When an argument is declared to be single-threaded the guard of the
  function is augmented by conjoining to it the condition that the
  argument satisfy the recognizer for the single-threaded object.
  Furthermore, the syntactic checks done to enforce the legal use of
  single-threaded objects are also sufficient to allow these guard
  conjuncts to be automatically proved.

  The obvious question arises: Why does ACL2 insist that you declare
  stobj names before using them in defuns if you can only declare
  names that have already been defined with defstobj? What would go
  wrong if a formal were treated as a single-threaded object if and
  only if it had already been so defined?

  Suppose that one user, say Jones, creates a book in which counters is
  defined as a single-threaded object. Suppose another user, Smith,
  creates a book in which counters is used as an ordinary formal
  parameter. Finally, suppose a third user, Brown, wishes to use both
  books. If Brown includes Jones' book first and then Smith's, then
  Smith's function treats counters as single-threaded. But if Brown
  includes Smith's book first, the argument is treated as ordinary.

  ACL2 insists on the declaration to ensure that the definition is
  processed the same way no matter what the context.")
 (DEFABBREV
  (MACROS EVENTS PROGRAMMING)
  "A convenient form of macro definition for simple expansions

    Examples:
    (defabbrev snoc (x y) (append y (list x)))
    (defabbrev sq (x) (declare (type (signed-byte 8) x)) (* x x))

    General Form:
    (defabbrev name (v1 ... vn) doc-string decl1 ... declk body)

  where name is a new function symbol, the vi are distinct variable
  symbols, and body is a term. The decli, if supplied, should be
  legal declare forms; see [declare]. Doc-string, if non-nil, is an
  optional string that can provide documentation but is essentially
  ignored by ACL2.

  Roughly speaking, the defabbrev event is akin to defining f so that
  (f v1 ... vn) = body. But rather than do this by adding a new
  axiom, defabbrev defines f to be a macro so that (f a1 ... an)
  expands to body, with the ``formals,'' vi, replaced by the
  ``actuals,'' ai.

  For example, if snoc is defined as shown in the first example above,
  then (snoc (+ i j) temp) is just an abbreviation for

    (append temp (list (+ i j))).

  In order to generate efficiently executable Lisp code, the macro that
  defabbrev introduces uses a [let] to bind the ``formals'' to the
  ``actuals.'' Consider the second example above. Logically speaking,
  (sq (ack i j)) is an abbreviation for (* (ack i j) (ack i j)). But
  in fact the macro for sq introduced by defabbrev actually arranges
  for (sq (ack i j)) to expand to:

    (let ((x (ack i j)))
      (* x x))

  which executes more efficiently than (* (ack i j) (ack i j)).

  In the theorem prover, the let above expands to

    ((lambda (x) (* x x)) (ack i j))

  and thence to (* (ack i j) (ack i j)).

  It is important to note that the term in body should not contain a
  call of name --- i.e., defabbrev should not be used in place of
  defun when the function is recursive. ACL2 will not complain when
  the defabbrev form is processed, but instead ACL2 will more than
  likely go into an infinite loop during macroexpansion of any form
  that has a call of name.

  It is also important to note that the parameters of any call of a
  macro defined by defabbrev will, as is the case for the parameters
  of a function call, be evaluated before the body is evaluated,
  since this is the evaluation order of [let]. This may lead to some
  errors or unexpected inefficiencies during evaluation if the body
  contains any conditionally evaluted forms like cond, case, or if.
  Consider the following example.

    (defabbrev foo (x y)
      (if (test x) (bar y) nil))

  Notice a typical one-step expansion of a call of foo (see [trans1]):

    ACL2 !>:trans1 (foo expr1 expr2)
     (LET ((X EXPR1) (Y EXPR2))
          (IF (TEST X) (BAR Y) NIL))
    ACL2 !>

  Now imagine that expr2 is a complicated expression whose evaluation
  is intended only when the predicate test holds of expr1. The
  expansion above suggests that expr2 will always be evaluated by the
  call (foo expr1 expr2), which may be inefficient (since perhaps we
  only need that value when test is true of expr1). The evaluation of
  expr2 may even cause an error, for example in :[program] mode if
  the expression expr2 has been constructed in a manner that could
  cause a guard violation unless test holds of expr1.")
 (DEFABSSTOBJ
  (EVENTS STOBJ)
  "Define a new abstract single-threaded object

  We assume familiarity with single-threaded objects; see [stobj] and
  see [defstobj]. The event defabsstobj defines a so-called
  ``abstract stobj'', a notion we introduce briefly now and then
  explain in more depth below.

  The evaluation of a [defstobj] event produces logical definitions for
  several functions: a recognizer, which characterizes the [stobj] in
  terms of lists; a creator, which produces an initial suitable list
  structure; and field accessors and updators, defined in terms of
  [nth] and [update-nth]. Defabsstobj provides a way to define
  alternate definitions for ``stobj primitives'' for a corresponding
  single-threaded object. These stobj primitives include a
  recognizer, a creator, and other ``exported'' functions. In
  essence, defabsstobj establishes interface functions, or
  ``exports'', on a new stobj that is a copy of an indicated
  ``concrete'' stobj that already exists.

  We begin below with an introduction to abstract [stobj]s. We then
  explain the [defabsstobj] event by way of an example. We conclude
  by giving summary documentation for the defabsstobj event.

  For another introduction to abstract stobjs, see the paper ``Abstract
  Stobjs and Their Application to ISA Modeling'' by Shilpi Goel,
  Warren A. Hunt, Jr., and Matt Kaufmann, in the proceedings of {ACL2
  Workshop 2013 | http://www.cs.uwyo.edu/~ruben/acl2-13}.

  INTRODUCTION

  We start with a brief review of [stobj]s and some potential problems
  with them, followed by an introduction to abstract stobjs and how
  they can avoid these problems. Prior experience with stobjs will
  probably help the reader to absorb the ideas below.

  Recall that single-threaded objects, or [stobj]s, provide a way for
  ACL2 users to stay within the ACL2 logic, where every data object
  is an atom or a [cons] of data objects, while obtaining the
  benefits of fast evaluation through destructive updates. Consider
  for example this very simple event.

    (defstobj st fld)

  This event introduces a recognizer, stp, and a creator, create-st,
  for a data structure consisting of a single field accessed and
  updated by functions fld and update-fld, respectively. Each of
  these four primitive functions has both a logical definition, which
  is used when the prover reasons about the function, and an
  executable definition, which is used in raw Lisp. In the logic, stp
  recognizes objects that have the requisite fields. In raw Lisp,
  there is a ``live stobj'', which is an array object whose fields
  correspond to those specified by the [defstobj] event, implemented
  as Lisp arrays.

  Here are the logical definition and the executable definition,
  respectively, that are introduced for the field accessor, fld,
  introduced above. Notice that since a stobj is represented in raw
  Lisp using an array, the raw Lisp accessor uses a raw Lisp array
  accessor, svref. (You can see all the logical and executable
  definitions by evaluating the form (trace$ defstobj-axiomatic-defs
  defstobj-raw-defs) before evaluating the [defstobj] form.)

    ; logical definition
    (defun fld (st)
      (declare (xargs :guard (stp st)
                      :verify-guards t))
      (nth 0 st))

    ; executable (raw Lisp) definition
    (defun fld (st)
      (svref st 0))

  Sophisticated programming with stobjs can provide efficient
  implementations of algorithms, but may require the preservation of
  a complex invariant. One can, of course, define a function to
  implement such an invariant after introducing the stobj, as
  follows.

    ; Introduce a stobj.
    (defstobj st fld1 ... fldk)

    ; Define an invariant on that stobj.
    (defun good-stp (st)
      (declare (xargs :stobjs st))
      ...)

    ; Define some basic functions that update the stobj and preserve the
    ; invariant.
    (defun update-st (... st ...)
      (declare (xargs :stobjs st
                      :guard (and (good-stp st) ...)))
      ...)
    ...

    ; Prove that the invariant is indeed preserved by those basic functions.
    (defthm good-stp-update-st
      (implies (and (good-stp st)
                    ...)
               (good-stp (update-st ... st ...))))
    ...

    ; Implement algorithms built on the basic functions.
    (defun foo (... st ...)
      (declare (xargs :stobjs st
                      :guard (and (good-stp st) ...)))
      ... (update-st ... st ...) ...)

    ; Prove invariance theorems about these algorithms.
    (defthm good-stp-foo
      (implies (and (good-stp st)
                    ...)
               (good-stp (foo ... st ...))))
    ...

    ; Prove other properties of these algorithms.
    (defthm foo-is-correct
      (implies (and (good-stp st)
                    ...)
               (some-property (foo ... st ...))))
    ...

  But there are at least two potential difficulties in using stobjs as
  described above.

      1. When foo is executed on concrete data in the ACL2 loop, the guard
      check may be expensive because (good-stp st) is expensive.

      2. Reasoning about foo (using rules like foo-is-correct above)
      involves proving hypotheses of invariance theorems, which may
      be complicated for the user to manage or slow for the theorem
      prover.

  The defabsstobj event offers an opportunity to address these issues.
  It introduces a new stobj, which we call an ``abstract stobj'',
  which is associated with a corresponding ``concrete stobj''
  introduced by an earlier [defstobj] event. The defabsstobj event
  specifies a logical (:LOGIC) and an executable (:EXEC) definition
  for each primitive operation, or ``stobj primitive'', involving
  that stobj. As is the case for [defstobj], the logical definition
  is what ACL2 reasons about, and is appropriate to apply to an ACL2
  object satisfying the logical definition of the recognizer function
  for the stobj. The executable definition is applied in raw Lisp to
  a live stobj, which is an array object associated with the given
  stobj name.

  We can picture a sequence of updates to corresponding abstract and
  concrete stobjs as follows. Initially in this picture, st$a0 and
  st$c0 are a corresponding abstract and concrete stobj
  (respectively). Then an update, u1, is applied with :LOGIC and
  :EXEC functions u$a1 and u$c1, respectively. The resulting abstract
  and concrete stobj, st$a1 and st$c1, correspond as before. Then a
  second update, u2, is applied with :LOGIC and :EXEC functions u$a2
  and u$c2, respectively --- again preserving the correspondence. And
  so on.

    Abstract               u$a1       u$a2       u$a3
    (:logic)         st$a0  --> st$a1  --> st$a2  -->   ...

                       ^          ^          ^               ^
    Correspondence     |          |          |          ...  |
                       v          v          v               v

                           u$c1       u$c2       u$c3
    Concrete         st$c0  --> st$c1  --> st$c2  -->   ...
    (:exec)

  We conclude this introduction with some remarks about implementation.
  Consider an abstract stobj st with corresponding concrete stobj
  st$c. The live stobjs for st and st$c have the same structure, but
  are distinct arrays. Indeed, the raw Lisp creator function for st$c
  is called to create a new initial live stobj for st. As we will see
  below, reads and writes in raw Lisp to the live stobj for st are
  ultimately performed using the primitive accessors and updaters
  defined for st$c. One might think of the live stobjs for st and
  st$c as being congruent stobjs (see [defstobj]), except that the
  stobjs themselves are not congruent: the stobj primitives
  introduced for st may be applied to st but not arbitrary field
  updaters of st$c, for example. As one might expect, the :EXEC
  function for an exported function is applied to the live stobj for
  st in raw Lisp.

  EXAMPLE

  We present examples, with detailed comments intended to explain
  abstract stobjs, in two community books:
  books/misc/defabsstobj-example-1.lisp and
  books/misc/defabsstobj-example-2.lisp. In this section we outline
  the first of these. We suggest that after you finish this
  [documentation] topic, you read through those two books.

  Here is the first of two closely related defabsstobj [events] from
  the book defabsstobj-example-1.lisp, but in expanded form. We will
  show the abbreviated form later, which omits most of data in the
  form that is immediately below. Thus most of the information shown
  here is default information. We believe that the comments below
  explain most or all of what you need to know in order to start
  using defabsstobj, and that you will learn the remainder when you
  see error messages. For example, we do not say in the comments
  below that every :LOGIC and :EXEC function must be
  [guard]-verified, but that is indeed a requirement.

    (defabsstobj st ; The new abstract stobj is named st.

    ; The concrete stobj corresponding to st is st$c:

      :concrete st$c

    ; The recognizer for the new abstract stobj is stp, which is defined to be
    ; st$ap in the logic, and is executed on the live stobj in raw Lisp using
    ; st$cp.

      :recognizer (stp :logic st$ap :exec st$cp)

    ; The initial stobj is defined as create-st (a function of no arguments),
    ; which is defined logically as create-st$a, though create-st$c is invoked to
    ; create the initial live stobj for st.  The :correspondence and :preserved
    ; keywords refer to proof obligations, discussed below.

      :creator (create-st :logic create-st$a :exec create-st$c
                          :correspondence create-st{correspondence}
                          :preserved create-st{preserved})

    ; Proof obligations are generated that involve a correspondence between the
    ; new abstract stobj and corresponding concrete stobj.  The function
    ; st$corr, which need not be executable (see :DOC defun-nx), takes two
    ; arguments, a concrete stobj and an abstract stobj.  This function symbol is
    ; used in the statements of the proof obligations.

      :corr-fn st$corr

    ; In this example we have four exports.  In each case a new function is
    ; introduced that has the same signature as its :EXEC function, except that
    ; st$c is replaced by st.  The :LOGIC and :EXEC functions are as specified,
    ; and the other keywords refer to proof obligations that we discuss below.

      :exports ((lookup :logic lookup$a
                        :exec mem$ci
                        :correspondence lookup{correspondence}
                        :guard-thm lookup{guard-thm})
                (update :logic update$a
                        :exec update-mem$ci
                        :correspondence update{correspondence}
                        :preserved update{preserved}
                        :guard-thm update{guard-thm})
                (misc :logic misc$a
                      :exec misc$c
                      :correspondence misc{correspondence})
                (update-misc :logic update-misc$a
                             :exec update-misc$c
                             :correspondence update-misc{correspondence}
                             :preserved update-misc{preserved}))
      :doc nil)

  Note that all stobj primitives (recognizer, creator, and exported
  functions) are defined in the ACL2 loop in terms of their :LOGIC
  functions and in raw Lisp in terms of their :EXEC functions. In the
  ACL2 loop, a [defun] form defines a function, while in raw Lisp, a
  [defmacro] form defines a macro (for efficiency). We first
  illustrate how that works for the recognizer. (You can see all the
  logical and executable definitions by evaluating the form (trace$
  defabsstobj-axiomatic-defs defabsstobj-raw-defs) before evaluating
  the [defstobj] form.)

    ; In the ACL2 loop:
    (defun stp (st)
      (declare (xargs :guard 't))
      (st$ap st))

    ; In raw Lisp:
    (defmacro stp (&rest args) (cons 'st$cp args))

  The definitions are made similarly for exported functions, with
  [guard]s derived from their :LOGIC functions as follows. Consider
  the exported function update in our example. Its :LOGIC function,
  update$a, has formals (k val st$a) and the following guard.

    (and (and (integerp k) (<= 0 k) (<= k 49))
         (and (integerp val) (<= 0 val))
         (st$ap st$a)
         (mem$c-entryp val))

  The formals of update are obtained by starting with the formals of
  its :EXEC function, update-mem$ci --- which are (i v st$c) --- and
  replacing the concrete stobj name st$c by the new stobj name st.
  The formals of update are thus (i v st). The guard for update is
  obtained in two steps. The first step is to substitute the formals
  of update for the formals of update$a in the guard for update$a, to
  obtain the following.

    (and (and (integerp i) (<= 0 i) (<= i 49))
         (and (integerp v) (<= 0 v))
         (st$ap st)
         (mem$c-entryp v))

  The second step is to replace, for each new stobj primitive p, the
  :LOGIC function for p by p itself. The only :LOGIC function
  occurring in the formula just above is st$ap, which is the :LOGIC
  funcction for stp. The guard for update is thus as follows.

    (and (and (integerp i) (<= 0 i) (<= i 49))
         (and (integerp v) (<= 0 v))
         (stp st)
         (mem$c-entryp v))

  We turn now to the proof obligations, as promised above. There are
  three types: :CORRESPONDENCE, :PRESERVED, and :GUARD-THM. All
  required lemmas may be printed simply by defining the necessary
  :LOGIC and :EXEC functions and then submitting the defabsstobj
  event. (To advanced users: also see [defabsstobj-missing-events]
  for a utility that returns the required formulas in translated
  form.) Although the defabsstobj event will fail if the required
  lemmas have not been proved, first it will print the [defthm] forms
  that must be admitted in order to complete submission of the
  defabsstobj event. (Note that although the those theorems are
  stated exactly in the form expected by the system, you are welcome
  to supply whatever :[rule-classes] you prefer, even though the
  system creates :rule-classes nil by default.)

  The detailed theory explaining the need for these lemmas may be found
  in a comment in ACL2 source file other-events.lisp, in a comment
  entitled ``Essay on the Correctness of Abstract Stobjs''. Here, we
  give an informal sense of the importance of these lemmas as we
  present examples of them. Fundamental is the notion of evaluation
  in the logic versus evaluation using live stobjs, where one
  imagines tracking the current value of each abstract stobj during
  each of these two evaluations.

  We start with the :CORRESPONDENCE lemmas. These guarantee that
  evaluation in the logic agrees with evaluation using live stobjs,
  in the sense that the only difference is between a logical stobj
  and a live stobj, where the two correspond in the sense of the
  function specified by :CORR-FN. We start with the :CREATOR function
  where the statement is quite simple, stating that the :CORR-FN
  holds initially.

    (defthm create-st{correspondence}
      (st$corr (create-st$c) (create-st$a)))

  For the exported functions, there are essentially two cases. If an
  exported function returns other than the new abstract stobj, then
  the theorem asserts the equality of the results of applying the
  :LOGIC and :EXEC functions for the exported function. Hypotheses
  include the :CORR-FN correspondence followed by the [guard] for the
  :LOGIC function, which is stated in terms of the formal parameters
  of the :EXEC function except using the abstract stobj (here, st) in
  place of the concrete stobj (here, st$c). The conclusion uses the
  :EXEC formals, modified in the call of the :LOGIC function (here,
  lookup$a) to use the abstract stobj, as in the hypotheses.

    (defthm lookup{correspondence}
      (implies (and (st$corr st$c st)
                    (integerp i) (<= 0 i) (<= i 49)
                    (st$ap st))
               (equal (mem$ci i st$c)
                      (lookup$a i st)))
      :rule-classes nil)

  By contrast, if the exported function returns the new abstract stobj,
  then the conclusion uses the correspondence function insted of
  EQUAL, as in the following.

    (defthm update{correspondence}
      (implies (and (st$corr st$c st)
                    (integerp i) (<= 0 i) (<= i 49)
                    (integerp v) (<= 0 v)
                    (st$ap st)
                    (mem$c-entryp v))
               (st$corr (update-mem$ci i v st$c)
                        (update$a i v st)))
      :rule-classes nil)

  For exported functions that return multiple values, such conclusions
  are conjoined together over the returned values.

  The :PRESERVED lemmas guarantee that updates to the abstract stobj
  preserve its recognizer. The fact that every exported function has
  this property provides justification for an optimization performed
  by ACL2 during generation of proof obligations for [guard]
  verification, by assuming that the recognizer always holds. The
  :PRESERVED lemma for the :CREATOR shows that the recognizer holds
  initially.

    (defthm create-st{preserved}
      (st$ap (create-st$a)))

  Here is a typical such lemma, for the exported function update. Note
  that there is no such lemma for lookup, since lookup does not
  return st.

    (defthm update{preserved}
      (implies (and (integerp i) (<= 0 i) (<= i 49)
                    (integerp v) (<= 0 v)
                    (st$ap st)
                    (mem$c-entryp v))
               (st$ap (update$a i v st))))

  Finally, we consider the :GUARD-THM lemmas. These serve to guarantee
  that the [guard] holds for each call of an :EXEC function. During
  guard verification, logical definitions are used; in particular,
  since each exported function is defined in the logic as the
  corresponding call of its :LOGIC function, guard verification shows
  that each call of the :LOGIC function for an exported function
  satisfies that function's guard. But why is this true for raw Lisp
  evaluation using live stobjs, where the :EXEC function is called
  for an exported function? The :GUARD-THM lemmas provide the answer,
  as they state that if the :LOGIC function's guard holds, then the
  :EXEC function's guard holds. Here is an example. Note that the
  hypotheses come from the correspondence of the concrete and
  abstract function as guaranteed by the :CORR function, together
  with the guard of the :LOGIC function; and the conclusion comes
  from the guard of the :EXEC function.

    (defthm lookup{guard-thm}
      (implies (and (st$corr st$c c)
                    (integerp i)
                    (<= 0 i)
                    (<= i 49)
                    (st$ap st))
               (and (integerp i)
                    (<= 0 i)
                    (< i (mem$c-length st$c))))
      :rule-classes nil)

  We conclude this EXAMPLE section by showing a short form for the
  defabsstobj form displayed above.

    (defabsstobj st
      :exports ((lookup :exec mem$ci)
                (update :exec update-mem$ci)
                misc update-misc))

  SUMMARY DOCUMENTATION

  The General Form is as shown below, where the order of keywords is
  unimportant. Duplicate keywords are discouraged; while permitted,
  only the first (leftmost) occurrence of a given keyword is used.
  Only the :exports keyword is required.

    (defabsstobj st
      :concrete concrete
      :recognizer recognizer
      :creator creator
      :corr-fn corr-fn
      :congruent-to congruent-to
      :protect-default protect-default
      :exports (e1 ... ek)
      :doc doc)

  The keyword argument :EXPORTS must be supplied, and missing or nil
  keyword arguments have defaults as indicated below. All arguments
  must satisfy the conditions below.

  Before we describe the arguments, we define a notion of a ``function
  spec'' and its ``completion''. A function spec is either a symbol
  or else a list of the form

    (fn :kwd1 val1 ... :kwdn valn),

  that is, a symbol followed by a [keyword-value-listp]. We view the
  case of a symbol, s, as the function spec (s), with no keywords.
  There must be no duplicate keywords. In each case that we expect a
  function spec, the context provides a set of valid keywords for
  that function spec; it is an error to provide any other keyword in
  the function spec. Each function spec is interpreted as its
  ``completion'', obtained by extending the function spec with a
  default value for each valid keyword as indicated below. With that
  interpretation, the ``exported function'' of a function spec is its
  car, and that function symbol and each keyword value must be a
  guard-verified function symbol; and moreover, the :EXEC function
  must not include the new abstract stobj name, st, among its
  formals.

  We are ready to describe the arguments of defabsstobj.

      St is a symbol, which names the new abstract stobj.

      Concrete is the name of an existing stobj that is not an abstract
      stobj, i.e., was introduced with [defstobj] (not
      [defabsstobj]).

      Recognizer is a function spec (for the recognizer function). The
      valid keywords are :LOGIC and :EXEC. The default for recognizer
      is obtained by adding the suffix \"P\" to name. The default value
      for :LOGIC is formed by adding the suffix \"$AP\" to recognizer;
      for :EXEC, by adding the suffix \"$CP\". The :EXEC function must
      be the recognizer for the specified :CONCRETE stobj.

      Creator is a function spec (for the creator function). The valid
      keywords are :LOGIC and :EXEC. The default for creator is
      obtained by adding the prefix \"CREATE-\" to name. The default
      value for :LOGIC is formed by adding the suffix \"$A\" to
      creator; for :EXEC, by adding the suffix \"$C\". The :CREATOR
      function must be the creator for the specified :CONCRETE stobj,
      as ACL2 checks that the :CREATOR function takes no arguments
      and returns the :CONCRETE stobj.

      Corr-fn is a known function symbol that takes two arguments (for the
      correspondence theorems). The default for corr-fn is obtained
      by adding the suffix \"$CORR\" to name.

      Congruent-to should either be nil (the default) or the name of an
      abstract stobj previously introduced (by [defabsstobj]). In the
      latter case, the current and previous abstract stobj should
      have the same concrete stobj (not merely congruent concrete
      stobjs), and their :EXPORTS fields should have the same length
      and also correspond, as follows: the ith export of each should
      have the same :LOGIC and :EXEC symbols. See [defstobj] for more
      about congruent stobjs. Note that if two names are congruent,
      then they are either both ordinary stobjs or both abstract
      stobjs.

      Protect-default should either be nil (the default) or t. It provides
      the value of keyword :PROTECT for each member of exports that
      does not explicitly specify :PROTECT. See the discussion of
      exports below.

      An important aspect of the congruent-to parameter is that if it is
      not nil, then the checks for lemmas --- {CORRESPONDENCE},
      {GUARD-THM}, and {PRESERVED} --- are omitted. Thus, the values
      of keyword :CORR-FN, and the values of keywords
      :CORRESPONDENCE, :GUARD-THM, and :PRESERVED in each export (as
      we discuss next), are irrelevant; they are not inferred and
      they need not be supplied.

      The value of :EXPORTS is a non-empty true list. Each ei is a function
      spec (for an exported function). The valid keywords are :LOGIC,
      :EXEC, :CORRESPONDENCE, and :GUARD-THM, :PROTECT, and also
      :PRESERVED if and only if the specified :EXEC function returns
      the :CONCRETE stobj. The default values for all of these
      keywords except :PROTECT are obtained by respectively adding
      the suffix \"$A\" \"$C\", \"{CORRESPONDENCE}\", \"{GUARD-THM}\", or
      \"{PRESERVED}\". For :PROTECT, the default is nil unless the
      defabsstobj event specifies :PROTECT-DEFAULT t.

      Doc, if non-nil, is a string that can provide documentation but is
      essentially ignored by ACL2.

  Not shown is the keyword, :MISSING; the effect of :missing t is to
  turn the call of defabsstobj into a corresponding call of
  [defabsstobj-missing-events].

  Note that a defabsstobj event will fail if the required lemmas ---
  that is, those for valid keywords :CORRESPONDENCE, :GUARD-THM, and
  :PRESERVED --- have not been proved, unless proofs are being
  skipped. The exemption when skipping proofs allows the supporting
  lemmas to be [local] to [books] and [encapsulate] [events]. If the
  [ld] special [ld-skip-proofsp] is t, then the missing [events] are
  printed with a warning before the defabsstobj event is admitted;
  but if ld-skip-proofsp is the symbol INCLUDE-BOOK, then that
  warning is omitted. (Also see [skip-proofs] and see
  [ld-skip-proofsp].) If however proofs are not being skipped, then
  the defabsstobj event will fail after printing the missing events.
  Advanced users may wish to see [defabsstobj-missing-events] for a
  utility that returns a data structure containing the missing
  lemmas.

  Let st be an abstract stobj with corresponding concrete stobj st$c.
  let f be an exported function for st and let f$a and f$c be the
  corresponding :LOGIC and :EXEC functions, respectively. The formals
  of f are obtained by taking the formals of f$c and replacing st$c
  by st. The [guard] for f is derived as follows from the guard of
  f$a. First, the formals of f$a are replaced by the formals of f in
  the guard of f$a, to obtain a term we denote here as guard-pre. Now
  for each exported function symbol g of st with corresponding :LOGIC
  function g$a, form a functional substitution by consing g$a with g.
  Finally, apply that functional substitution to guard-pre; the
  result is the guard of f. That guard must satisfy the usual
  conditions of a guard: thus, it must return a single non-[stobj]
  value and satisfy normal syntactic restrictions, including
  single-threadedness in its handling of stobjs.

  Remark. Because of how guards are created for exported functions, and
  in particular because :LOGIC functions are replaced as discussed
  above, a good discipline is to define :LOGIC functions that are not
  intended for general use, but are intended only for use as :LOGIC
  functions of corresponding stobj primitives. For example, suppose
  that you use length as the :LOGIC function for some stobj
  primitive, f (as opposed to using your own function, say,
  foo-length or foo$a). Then every call of length will be replaced by
  f when creating the guard of a stobj primitive from the guard of
  its :LOGIC function. This might not be what you intended if you
  were using length in that guard simply to compute the length of an
  ordinary list.

  There are a few additional restrictions, as follows.

      All exported function names must be new (unless redefinition is on;
      see [ld-redefinition-action]), and there must be no duplicates
      among them.

      The :CONCRETE stobj name must be a formal parameter of the :EXEC fn
      of every function spec, except for the :CREATOR function spec.
      Also the input signatures of the :LOGIC and :EXEC function for
      a function spec must agree, except perhaps at the position of
      that :CONCRETE formal.

      For function specs other than the :CREATOR function spec, the output
      signatures of the :LOGIC and :EXEC functions must have the same
      length and must agree, except perhaps at position p_out of the
      :CONCRETE stobj in the :EXEC function's output. If p_in is the
      position of the :CONCRETE stobj in the :EXEC function's
      formals, then the :LOGIC function's output at position p_out
      should match the :LOGIC function's formal at position p_in.

      The :PROTECT keyword is something that you should ignore unless you
      get an error message about it, pertaining to modifying the
      concrete stobj non-atomically. In that case, you can eliminate
      the error by providing :PROTECT t in the function spec, or by
      providing defabsstobj keyword argument :PROTECT-DEFAULT t at
      the top level. The above explanation is probably all you need
      to know about :PROTECT, but just below is a more complete
      explanation for those who desire it. Further information is
      also available if you need it; see [set-absstobj-debug], and
      see the example uses of these keywords in community book
      books/misc/defabsstobj-example-2.lisp.

  For those who are interested, here is a more detailed discussion of
  :PROTECT and :PROTECT-DEFAULT, as promised above. It applies to any
  function spec for an export (hence not to the :CREATOR function
  spec). If the :EXEC function is a stobj primitive, then clearly the
  following property holds: any execution of a call of that function
  can only update the concrete stobj at most once --- i.e.,
  modification of the concrete stobj is atomic. ACL2 can deduce this
  property not only for stobj primitives but for many other functions
  as well. However, if ACL2 cannot deduce this property, then it will
  cause an error saying that the :EXEC function ``appears capable of
  modifying the concrete stobj, <stobj_name>, non-atomically.'' That
  message also explains how to eliminate this error: provide :PROTECT
  t for the function spec. Alternatively, all function specs without
  an explicit :PROTECT keyword can be implicitly supplied :PROTECT t
  by supplying the value t for the :PROTECT-DEFAULT keyword parameter
  of the defabsstobj event. However, beware that when :PROTECT is t,
  the generated raw Lisp code runs slightly less efficiently ---
  though perhaps with negligible efficiency loss if the :EXEC
  function is not trivial. Community books
  books/misc/defabsstobj-example-3.lisp and
  books/misc/defabsstobj-example-4.lisp provide related information.

  We conclude with some remarks.

  Unlike [defstobj], there is no :renaming argument. Instead, the
  scheme described above provides a flexible way to assign names.
  Also unlike [defstobj], there is no :inline or :non-memoizable
  argument; :inline is essentially t, in the sense that stobj
  primitives are macros in raw Lisp; and the :non-memoizable argument
  is derived implicitly from the value of that argument (nil by
  default) for the corresponding concrete stobj.

  Those who use [hons-enabled] features, including function memoization
  (see [memoize]), may be aware that the memo table for a function is
  flushed whenever it is the case that one of its stobj inputs is
  updated. In fact, such flushing happens even when a stobj that is
  congruent to one of its stobj inputs is updated. For that purpose,
  an abstract stobj is considered to be congruent to its
  corresponding concrete stobj.


Subtopics

  [Set-absstobj-debug]
      Obtain debugging information upon atomicity violation for an
      abstract stobj")
 (DEFABSSTOBJ-MISSING-EVENTS
  (EVENTS)
  "Obtain the [events] needed to admit a [defabsstobj] event

  We assume familiarity with [defabsstobj]. Defabsstobj-missing-events
  is a macro is for advanced users (who, for example, understand the
  role of the translate and untranslate functions), who want
  programmatic access to the [defthm] events required to admit a
  specific defabsstobj event.

  This macro has the same syntax as [defabsstobj] --- to use it, just
  replace a call of [defabsstobj] by a call of
  defabsstobj-missing-events on the same arguments. The result is an
  error triple (mv erp val state). If erp is nil, then val is the
  list of all objects (name formula . old-formula), where a [defthm]
  event named name remains to be admitted whose translated formula is
  formula, and where old-formula is nil unless the indicated event
  already exists (hence with a different formula), in which case
  old-formula is the existing translated formula.

  To build a [defthm] event from the above value, val, we suggest
  evaluating a form like (untranslate formula t (w state)).")
 (DEFATTACH
  (EVENTS)
  "Execute constrained functions using corresponding attached functions

  This [documentation] topic is organized into the following sections:

  Introductory example.
  Syntax and semantics of defattach.
  Three primary uses of defattach.
  Miscellaneous remarks, with discussion of possible user errors.

  Please see [encapsulate] if you intend to use defattach but are not
  already familiar with the use of encapsulate to introduce
  constrained functions.

  See community book books/misc/defattach-example.lisp for a small
  example. it illustrates how defattach may be used to build
  something like ``higher-order'' programs, in which constrained
  functions may be refined to different executable functions. More
  uses of defattach may be found in the ACL2 source code,
  specifically, file boot-strap-pass-2.lisp.

  The argument :skip-checks t enables easy experimentation with
  defattach, by permitting use of :[program] mode functions and the
  skipping of semantic checks. Also permitted is :skip-checks nil
  (the default) and :skip-checks :cycles, which turns off only the
  update of the extended ancestor relation (see below) and hence the
  check for cycles in this relation; see below. We do not make any
  logical claims when the value of :skip-checks is non-nil; indeed, a
  trust tag is required in this case (see [defttag]). Note that the
  interaction of memoization and attachments is not tracked for
  attachments introduced with a non-nil value of :skip-checks. For
  more discussion of :skip-checks t, see [defproxy]; we do not
  discuss :skip-checks further, here.

  Introductory example.

  We begin with a short log illustrating the use of defattach. Notice
  that after evaluating the event (defattach f g), a call of the
  constrained function f is evaluated by instead calling g on the
  arguments.

    ACL2 !>(encapsulate
            ((f (x) t :guard (true-listp x)))
            (local (defun f (x) x))
            (defthm f-property
              (implies (consp x) (consp (f x)))))
    [... output omitted ...]
     T
    ACL2 !>(defun g (x)
             (declare (xargs :guard (or (consp x) (null x))))
             (cons 17 (car x)))
    [... output omitted ...]
     G
    ACL2 !>(f '(3 4)) ; undefined function error

    ACL2 Error in TOP-LEVEL:  ACL2 cannot ev the call of undefined function
    F on argument list:

    ((3 4))

    To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.

    ACL2 !>(defattach f g)
    [... output omitted ...]
     :ATTACHMENTS-RECORDED
    ACL2 !>(f '(3 4)) ; f is evaluated using g
    (17 . 3)
    ACL2 !>(trace$ f g)
     ((F) (G))
    ACL2 !>(f '(3 4)) ; f is evaluated using g
    1> (ACL2_*1*_ACL2::F (3 4))
      2> (ACL2_*1*_ACL2::G (3 4))
        3> (G (3 4))
        <3 (G (17 . 3))
      <2 (ACL2_*1*_ACL2::G (17 . 3))
    <1 (ACL2_*1*_ACL2::F (17 . 3))
    (17 . 3)
    ACL2 !>(defattach f nil) ; unattach f (remove its attachment)
    [... output omitted ...]
     :ATTACHMENTS-RECORDED
    ACL2 !>(f '(3 4)) ; undefined function error once again
    1> (ACL2_*1*_ACL2::F (3 4))

    ACL2 Error in TOP-LEVEL:  ACL2 cannot ev the call of undefined function
    F on argument list:

    ((3 4))

    To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.

    ACL2 !>

  Syntax and semantics of defattach.

  The log above shows that the event (defattach f g) allows g to be
  used for evaluating calls of f. From a logical perspective, the
  evaluation takes place in the addition to the current session of an
  ``attachment equation'' axiom (universally quantified over all x)
  for each defattach event:

    (equal (f x) (g x)) ;;; attachment equation axiom for (defattach f g)

  Below we explain defattach in some detail. But it is important to
  keep in mind that evaluation with the attachment equations takes
  place in an extension of the logical theory of the session. ACL2
  guarantees that this so-called ``evaluation theory'' remains
  consistent, assuming the absence of [defaxiom] [events] from the
  user. This guarantee is a consequence of a more general guarantee:
  an ACL2 logical [world] exists in which (loosely speaking) the
  attachment equation for (defattach f g), as (defun f (...) (g
  ...)), takes the place of the original defining event for f, for
  each defattach event. This more general guarantee holds even if
  there are [defaxiom] events, though as explained below, no function
  symbol that syntactically supports a defaxiom formula is allowed to
  get an attachment. A deeper discussion of the logical issues is
  available (but not intended to be read by most users) in a long
  comment in the ACL2 source code labeled ``Essay on Defattach.''

    Example Forms:
    (defattach f g)   ; call g in place of calling constrained function f
    (defattach (f g)) ; same as just above
    (defattach (f g :hints ((\"Goal\" :in-theory (enable foo)))))
                      ; equivalent to first form above, except with hints for the
                      ; proof that the guard of f implies the guard of g
    (defattach (f g :hints ((\"Goal\" :in-theory (enable foo)))
                    :otf-flg t))
                      ; as above, except with an :otf-flg of t for the proof that
                      ; the guard of f implies the guard of g
    (defattach (f g)
               :hints ((\"Goal\" :use my-thm)))
                      ; equivalent to first form above, except with hints for the
                      ; proof that the constraints on f hold for g
    (defattach (f g)
               :hints ((\"Goal\" :use my-thm))
               :otf-flg t)
                      ; as above, except with an :otf-flg of t for the proof that
                      ; the constraints on f hold for g
    (defattach (f g)
               (h j)) ; Attach g to f and attach j to h
    (defattach (f g :attach nil)
               (h j)) ; Same as just above, including the same proof obligations,
                      ; except for one difference: because of :attach nil, calls
                      ; of f will not be evaluated, i.e., there will be no
                      ; executable attachment of g to f
    (defattach (f nil)
               (h j)) ; Attach j to h and unattach f
    (defattach (f g :hints ((\"Goal\" :in-theory (enable foo))))
               (h j :hints ((\"Goal\" :in-theory (enable bar))))
               :hints ((\"Goal\" :use my-thm)))
                      ; Attach g to f and attach j to h, with hints:
                      ; - For proving that the guard of f implies the guard of g,
                      ;   enable foo;
                      ; - For proving that the guard of h implies the guard of j,
                      ;   enable bar; and
                      ; - For proving that the constraints on f and h hold for
                      ;   g and j (respectively), use theorem my-thm.

    (defattach f nil)   ; remove the attachment of f, if any (e.g., g above)
    (defattach (f nil)) ; same as just above

    General Forms:
    (defattach f g)   ; single attach or, if g is nil, unattach
    (defattach (f1 g1 :kwd val ...)
               ...
               (fk gk :kwd' val' ...)
               :kwd'' val'' ...)

  where each indicated keyword-value pair is optional and each keyword
  is one of :ATTACH, :HINTS, :OTF-FLG, or :INSTRUCTIONS. The value of
  each :ATTACH keyword is either t or nil, with default t except that
  the value of :ATTACH at the ``top level,'' after each entry (fi gi
  ...), is the default for each :ATTACH keyword supplied in such an
  entry. We discuss the :ATTACH keyword later in this [documentation]
  topic. The associated values for the other keywords have the usual
  meanings for the proof obligations described below: the guard proof
  obligation for keywords within each (fi gi ...) entry, and the
  constraint proof obligation for keywords at the top level. No
  keyword may occur twice in the same context, i.e., within the same
  (fi gi ...) entry or at the top level; and :INSTRUCTIONS may not
  occur in the same context with :HINTS or :OTF-FLG.

  The first General Form above is simply an abbreviation for the form
  (defattach (f g)), which is an instance of the second General Form
  above. For the second General Form we say that gi is ``attached
  to'' fi (by the defattach event) if gi is not nil, and otherwise we
  say that fi is ``unattached'' (by the defattach event). It is also
  convenient to refer to <fi,gi> as an ``attachment pair'' (of the
  event) if gi is not nil. We may refer to the set of fi as the
  ``attachment nest'' of each fi.

  We start with a brief introduction to the first General Form in the
  case that g is not nil. This form arranges that during evaluation,
  with exceptions noted below, every call of the constrained function
  symbol f will in essence be replaced by a call of the function
  symbol g on the same arguments. We may then refer to g as the
  ``attachment of'' f, or say that ``g is attached to f.'' Notable
  exceptions, where we do not use attachments during evaluation, are
  for macroexpansion, evaluation of [defconst] and [defpkg] terms,
  evaluation during [table] events, some [stobj] operations including
  all [updates], and especially evaluation of ground terms (terms
  without free variables) during proofs. However, even for these
  cases we allow the use of attachments in the first argument of
  [prog2$] and, more generally, the next-to-last (i.e., second)
  argument of [return-last] when its first argument is not of the
  form 'm for some macro, m.

  To see why attachments are disallowed during evaluation of ground
  terms during proofs (except for the [prog2$] and [return-last]
  cases mentioned above), consider the following example.

    (defstub f (x) t)
    (defun g (x) (+ 3 x))
    (defattach f g)

  If the form (f 2) is submitted at the ACL2 prompt, the result will be
  5 because the attachment g of f is called on the argument, 2.
  However, during a proof the term (f 2) will not be simplified to 5,
  since that would be unsound, as there are no axioms about f that
  would justify such a simplification.

  For the case that g is nil in the first General Form above, the
  result is the removal of the existing attachment to f, if any.
  After this removal, calls of f will once again cause errors saying
  that ``ACL2 cannot ev the call of undefined function f ...''. In
  this case not only is the previous attachment to f removed;
  moreover, for every function symbol f' in the attachment nest of f
  in the defattach event that introduced the existing attachment to
  f, then f' is unattached. (An example near the end of this
  [documentation] topic shows why this unattachment needs to be
  done.) Such removal takes place before the current defattach is
  processed, but is restored if the new event fails to be admitted.

  We focus henceforth on the second General Form. There must be at
  least one attachment, i.e., i must be at least 1. All keywords are
  optional; their role is described below. The fi must be distinct
  constrained function symbols, that is, function symbols all
  introduced in [signature]s of [encapsulate] [events] (or macros
  such as [defstub] that generate [encapsulate] events). Each non-nil
  gi is a :[logic]-mode function symbol that has had its guards
  verified, with the same [signature] as fi (though formal parameters
  for fi and gi may have different names). (Note: The macro
  defattach!, defined in community book books/misc/defattach-bang,
  avoids this restriction.) This event generates proof obligations
  and an ordering check, both described below. The effect of this
  event is first to remove any existing attachments for all the
  function symbols fi, as described above for the first General Form,
  and then to attach each gi to fi.

  Proof obligations must be checked before making attachments. For this
  discussion we assume that each gi is non-nil (otherwise first
  remove all attachment pairs <fi,gi> for which gi is nil). Let s be
  the functional substitution mapping each fi to gi. For any term u,
  we write u\\s for the result of applying s to u; that is, u\\s is the
  ``functional instance'' obtained by replacing each fi by gi in u.
  Let G_fi and G_gi be the guards of fi and gi, respectively. Let
  G_fi' be the result of replacing each formal of fi by the
  corresponding formal of gi in G_fi. ACL2 first proves, for each i
  (in order), the formula (implies G_fi' G_gi)\\s. If this sequence of
  proofs succeeds, then the remaining formula to prove is the
  functional instance C\\s of the conjunction C of the constraints on
  the symbols fi; see [constraint]. This last proof obligation is
  thus similar to the one generated by functional instantiation (see
  [constraint]). As with functional instantiation, ACL2 stores the
  fact that such proofs have been done so that they are avoided in
  future events (see [lemma-instance]). Thus, you will likely avoid
  some proofs with the sequence

    (defattach f g)
    (defattach f nil)
    (defattach f g)
    (defattach f nil)
    ...

  rather than the sequence:

    (defattach f g)
    :u
    (defattach f g)
    :u
    ...

  It remains to describe an ordering check. We begin with the following
  motivating example.

    (defstub f (x) t) ; constrained function with no constraints
    (defun g (x) (declare (xargs :guard t)) (not (f x)))
    (defattach f g) ; ILLEGAL!

  Were the above defattach event to succeed, the evaluation theory
  (discussed above) would be inconsistent: (f x) equals (g x) by the
  new attachment equation, which in turn equals (not (f x)) by
  definition of g. The evaluation would therefore be meaningless.
  Also, from a practical perspective, there would be an infinite loop
  resulting from any call of f.

  We consider a function symbol g to be an ``extended immediate
  ancestor of'' a function symbol f if either of the following two
  criteria is met: (a) g occurs in the formula that introduces f
  (i.e., definition body or constraint) and g is introduced by an
  event different from (earlier than) the event introducing f; or (b)
  g is attached to f. For a proposed defattach event, we check that
  this relation has no cycles, where for condition (b) we include all
  attachment pairs that would result, including those remaining from
  earlier defattach events.

  Of course, a special case is that no function symbol may be attached
  to itself. Similarly, no function symbol may be attached to any of
  its ``siblings'' --- function symbols introduced by the same event
  --- as siblings are considered equivalent for purposes of the
  acyclicity check.

  Three primary uses of defattach.

  We anticipate three uses of defattach:

  (1) Constrained function execution

  (2) Sound modification of the ACL2 system

  (3) Program refinement

  We discuss these in turn.

  (1) The example at the beginning of this [documentation] illustrates
  constrained function execution.

  (2) ACL2 is written essentially in itself. Thus, there is an
  opportunity to attaching to system functions. For example,
  encapsulated function too-many-ifs-post-rewrite, in the ACL2 source
  code, receives an attachment of too-many-ifs-post-rewrite-builtin,
  which implements a heuristic used in the rewriter. To find all such
  examples, search the source code for the string `-builtin'.

  Over time, we expect to continue replacing ACL2 source code in a
  similar manner. We invite the ACL2 community to assist in this
  ``open architecture'' enterprise; feel free to email the ACL2
  implementors if you are interested in such activity.

  (3) Recall that for an attachment pair <f,g>, a proof obligation is
  (speaking informally) that g satisfies the constraint on f. Yet
  more informally speaking, g is ``more defined'' than f; we can
  think of g as ``refining'' f. With these informal notions as
  motivation, we can view defattach as providing refinement though
  the following formal observation: the evaluation theory extends the
  theory of the ACL2 session, specifically by the addition of all
  attachment equations. For the logic-inclined, it may be useful to
  think model-theoretically: The class of models of the evaluation
  theory is non-empty but is a subset of the class of models of the
  current session theory.

  Miscellaneous remarks, with discussion of possible user errors.

  We conclude with remarks on some details.

  A defattach event is never redundant (see [redundant-events]); in
  that sense it is analogous to [in-theory].

  As mentioned above, the use of attachments is disabled for evaluation
  of ground terms during proofs. However, attachments can be used on
  code during the proof process, essentially when the ``program
  refinement'' is on theorem prover code rather than on functions we
  are reasoning about. The attachment to too-many-ifs-post-rewrite
  described above provides one example of such attachments. Meta
  functions and clause-processor functions can also have attachments,
  with the restriction that no common ancestor with the evaluator can
  have an attachment; see [evaluator-restrictions].

  For an attachment pair <f,g>, evaluation of f never consults the
  [guard] of f. Rather, control passes to g, whose guard is checked
  if necessary. The proof obligation related to guards, as described
  above, guarantees that any legal call of f is also a legal call of
  g. Thus for guard-verified code that results in calls of f in raw
  Lisp, it is sound to replace these calls with corresponding calls
  of g.

  Defattach events are illegal inside any [encapsulate] event with a
  non-empty [signature] unless they are [local] to the [encapsulate].

  We next discuss a restriction based on a notion of a function symbol
  syntactically supporting an event. Function symbol f is ancestral
  in event E if either f occurs in E, or (recursively) f occurs in an
  event E' that introduces some function symbol g that is ancestral
  in E. We require that no function symbol ancestral in the formula
  of a [defaxiom] event may have an attachment. Theoretical reasons
  are discussed in comments in the ACL2 source code, but here we give
  a little example showing the need for some such restriction:
  without it, we show how to prove nil!

    (defn g1 () 1)
    (defn g2 () 2)
    (defstub f1 () t)
    (defstub f2 () t)
    (defund p (x)
      (declare (ignore x))
      t)
    (defevaluator evl evl-list
      ((p x)))
    (defaxiom f1-is-f2
      (equal (f1) (f2)))
    (defun meta-fn (x)
      (cond ((equal (f1) (f2))
             x)
            (t *nil*)))
    (defthm bad-meta-rule
      (equal (evl x a)
             (evl (meta-fn x) a))
      :rule-classes ((:meta :trigger-fns (p))))
    (defattach f1 g1)
    (defattach f2 g2)
    (defthm contradiction
      nil
      :hints ((\"Goal\" :use ((:instance (:theorem (not (p x)))
                                       (x t)))))
      :rule-classes nil)

  To see all attachments: (all-attachments (w state)). However, note
  that attachments introduced with a non-nil value of :skip-checks
  will be omitted from this list. To obtain the attachment to a
  function symbol FN, without the above restriction and with value
  nil if there is no attachment to FN: (cdr (attachment-pair 'FN (w
  state))).

  Next we discuss the :ATTACH keyword. There is rarely if ever a reason
  to specify :ATTACH T, but the following (admittedly contrived)
  example shows why it may be necessary to specify :ATTACH NIL. First
  we introduce three new function symbols.

    (defstub f (x) t)

    (defun g (x)
      (f x))

    (encapsulate ((h (x) t))
      (local (defun h (x) (g x)))
      (defthm h-prop
        (equal (h x) (g x))))

  Now suppose we want to attach the function [ACL2-numberp] to both f
  and h.

    (defattach (f acl2-numberp) (h acl2-numberp))

  Such an attempt fails, because the following constraint is generated
  but is not a theorem: (EQUAL (ACL2-NUMBERP X) (G X)). Clearly we
  also need to attach to g as well.

    (defattach (f acl2-numberp) (h acl2-numberp) (g acl2-numberp))

  But this fails for a different reason, as explained by the error
  message:

    ACL2 Error in ( DEFATTACH (F ACL2-NUMBERP) ...):  It is illegal to
    attach to function symbol G, because it was introduced with DEFUN.
    See :DOC defattach.

  That is: logically, we need to attach acl2-numberp to g, but we
  cannot actually attach to g because it was introduced with [defun],
  not with [encapsulate]. So we specify :ATTACH NIL for the
  attachment to g, saying that no actual attachment should be made to
  the code for g, even though for logical purposes we should consider
  that g has been given the indicated attachment.

    (defattach (f acl2-numberp) (h acl2-numberp) (g acl2-numberp :attach nil))

  Finally, we can check that f, g, and h execute as expected.

    ACL2 !>(assert-event (and (f 3)
                       (not (f t))
                       (g 3)
                       (not (g t))
                       (h 3)
                       (not (h t))))
     :PASSED
    ACL2 !>

  We conclude with an example promised above, showing why it is
  necessary in general to unattach all function symbols in an
  existing attachment nest when unattaching any one of those function
  symbols. Consider the following example.

    (defstub f1 () t)
    (encapsulate ((f2 () t))
      (local (defun f2 () (f1)))
      (defthm f2=f1 (equal (f2) (f1))))
    (encapsulate ((f3 () t))
      (local (defun f3 () (f1)))
      (defthm f3=f1 (equal (f3) (f1))))
    (defun four () (declare (xargs :guard t)) 4)
    (defun five () (declare (xargs :guard t)) 5)
    (defattach (f1 four) (f2 four))
    (defattach (f1 five) (f3 five))

  The second defattach replaces erases the existing attachment pair
  <f1,four> before installing the new attachment pairs <f1,five> and
  <f3,five>. After the second defattach, both (f1) and (f3) evaluate
  to 5. Now suppose that the attachment pair <f2,four> were not
  erased. Then we would have (f1) evaluating to 5 and (f2) evaluating
  to 4, contradicting the constraint f2=f1. The evaluation theory
  would thus be inconsistent, and at a more concrete level, the user
  might well be surprised by evaluation results if the code were
  written with the assumption specified in the constraint f2=f1.


Subtopics

  [Ignored-attachment]
      Why attachments are sometimes not used")
 (DEFAULT
  (ARRAYS ACL2-BUILT-INS)
  "Return the :default from the [header] of a 1- or 2-dimensional array

    Example Form:
    (default 'delta1 a)

    General Form:
    (default name alist)

  where name is an arbitrary object and alist is a 1- or 2-dimensional
  array. This function returns the contents of the :default field of
  the [header] of alist. When [aref1] or [aref2] is used to obtain a
  value for an index (or index pair) not bound in alist, the default
  value is returned instead. Thus, the array alist may be thought of
  as having been initialized with the default value. default operates
  in virtually constant time if alist is the semantic value of name.
  See [arrays].

  Function: <default>

    (defun
         default (name l)
         (declare (xargs :guard (or (array1p name l) (array2p name l))))
         (cadr (assoc-keyword :default (cdr (header name l)))))")
 (DEFAULT-BACKCHAIN-LIMIT
  (RULE-CLASSES)
  "Specifying the backchain limit for a rule

  See [backchain-limit].

  The initial value is (nil nil). To inspect the current value (as
  explained elsewhere; see [backchain-limit]):

    (default-backchain-limit wrld :ts) ; for type-set reasoning
    (default-backchain-limit wrld :rewrite) ; for rewriting")
 (DEFAULT-DEFUN-MODE
  (MISCELLANEOUS)
  "The default [defun-mode] of [defun]'d functions

  When a [defun] is processed and no :mode xarg is supplied, the
  function default-defun-mode is used. To find the default
  [defun-mode] of the current ACL2 [world], type (default-defun-mode
  (w state)). See [defun-mode] for a discussion of [defun-mode]s. To
  change the default [defun-mode] of the ACL2 [world], type one of
  the keywords :[program] or :[logic].

  The default ACL2 [prompt] displays the current default [defun-mode]
  by showing the character p for :[program] mode, and omitting it for
  :[logic] mode; see [default-print-prompt]. The default [defun-mode]
  may be changed using the keyword [command]s :[program] and
  :[logic], which are equivalent to the [command]s (program) and
  (logic). Each of these names is documented separately: see
  [program] and see [logic]. The default [defun-mode] is stored in
  the [table] [ACL2-defaults-table] and hence may also be changed by
  a [table] [command]. See [table] and also see
  [ACL2-defaults-table]. Both mode-changing [command]s are [events].

  While [events] that change the default [defun-mode] are permitted
  within an [encapsulate] or the text of a book, their effects are
  [local] in scope to the duration of the encapsulation or inclusion.
  For example, if the default [defun-mode] is :[logic] and a book is
  included that contains the event (program), then subsequent
  [events] within the book are processed with the default
  [defun-mode] :[program]; but when the [include-book] event
  completes, the default [defun-mode] will still be :[logic].
  [Command]s that change the default [defun-mode] are not permitted
  inside [local] forms.")
 (DEFAULT-HINTS
  (HINTS)
  "A list of hints added to every proof attempt

    Examples:
    ACL2 !>(default-hints (w state))
    ((computed-hint-1 clause)
     (computed-hint-2 clause stable-under-simplificationp))

  The value returned by this function is added to the right of the
  :[hints] argument of every [defthm] and [thm] command, and to hints
  provided to [defun]s as well (:hints, :guard-hints, and (for
  ACL2(r)) :std-hints).

  See [set-default-hints] for a more general discussion. Advanced users
  only: see [override-hints] for an advanced variant of default hints
  that are not superseded by :[hints] arguments.


Subtopics

  [Add-default-hints]
      Add to the default hints

  [Add-default-hints!]
      Add to the default hints non-[local]ly

  [Default-hints-table]
      A [table] used to provide [hints] for proofs

  [Remove-default-hints]
      Remove from the default hints

  [Remove-default-hints!]
      Remove from the default hints non-[local]ly

  [Set-default-hints]
      Set the default hints

  [Set-default-hints!]
      Set the default hints non-[local]ly")
 (DEFAULT-HINTS-TABLE
  (DEFAULT-HINTS)
  "A [table] used to provide [hints] for proofs

  Please see [set-default-hints], see [add-default-hints], and see
  [remove-default-hints] for how to use this table. For completeness,
  we mention here that under the hood, these events all update the
  default-hints-table by updating its key, t, for example as follows.

    (table default-hints-table t
           '((computed-hint-1 clause)
             (computed-hint-2 clause
                              stable-under-simplificationp)))

  The use of default hints is explained elsewhere; see
  [set-default-hints].

  Advanced users only: see [override-hints] for an advanced variant of
  default hints.")
 (DEFAULT-PRINT-PROMPT
  (LD)
  "The default [prompt] printed by [ld]

    Example prompt:
    ACL2 p!s>

  The [prompt] printed by ACL2 displays the current package, followed
  by a space, followed by zero or more of the three [characters] as
  specified below, followed by the character [>] printed one or more
  times, reflecting the number of recursive calls of [ld]. The three
  [characters] in the middle are as follows:

    p     ; when (default-defun-mode (w state)) is :program
    !     ; when guard checking is on
    s     ; when (ld-skip-proofsp state) is t

  See [default-defun-mode], see [set-guard-checking], and see
  [ld-skip-proofsp].

  Also see [ld-prompt] to see how to install your own [prompt].

  Here are some examples with ld-skip-proofsp nil.

    ACL2 !>    ; logic mode with guard checking on
    ACL2 >     ; logic mode with guard checking off
    ACL2 p!>   ; program mode with guard checking on
    ACL2 p>    ; program mode with guard checking off

  Here are some examples with [default-defun-mode] of :[logic].

    ACL2 >     ; guard checking off, ld-skip-proofsp nil
    ACL2 s>    ; guard checking off, ld-skip-proofsp t
    ACL2 !>    ; guard checking on, ld-skip-proofsp nil
    ACL2 !s>   ; guard checking on, ld-skip-proofsp t

  Finally, here is the prompt in raw mode (see [set-raw-mode]),
  regardless of the settings above:

    ACL2 P>")
 (DEFAULT-RULER-EXTENDERS
  (RULER-EXTENDERS)
  "The default [ruler-extenders] for [defun]'d functions

  When a [defun] is processed and no :ruler-extenders xarg is supplied,
  the function default-ruler-extenders is used to obtain the current
  ruler-extenders; see [ruler-extenders]. To find the default
  [ruler-extenders] of the current ACL2 [world], type
  (default-ruler-extenders (w state)).

  While [events] that change the default [ruler-extenders] are
  permitted within an [encapsulate] or the text of a book, their
  effects are [local] in scope to the duration of the encapsulation
  or inclusion. See [default-defun-mode] for an analogous discussion
  for defun-modes.")
 (DEFAULT-TOTAL-PARALLELISM-WORK-LIMIT
  (PARALLEL-PROOF)
  "For ACL2(p): returns the default value for global
  total-parallelism-work-limit

  See [set-total-parallelism-work-limit].")
 (DEFAULT-VERIFY-GUARDS-EAGERNESS (POINTERS)
                                  "See [set-verify-guards-eagerness].")
 (DEFAXIOM
  (EVENTS)
  "Add an axiom

  WARNING: We strongly recommend that you not add axioms. If at all
  possible you should use [defun] or [mutual-recursion] to define new
  concepts recursively or use [encapsulate] to constrain them
  constructively. If your goal is to defer a proof by using a
  top-down style, consider using [skip-proofs]; see the discussion on
  ``Top-Down Proof'' in Section B.1.2 of ``Computer-Aided Reasoning:
  An Approach.'' Adding new axioms frequently renders the logic
  inconsistent.

    Example:
    (defaxiom sbar (equal t nil)
              :rule-classes nil)

    General Form:
    (defaxiom name term
             :rule-classes rule-classes)

  where name is a new symbolic name (see [name]), term is a term
  intended to be a new axiom, and rule-classes is a legal value for
  :rule-classes (see [rule-classes]). The keyword argument is
  optional. If :[rule-classes] is not supplied, the list (:rewrite)
  is used; if you wish the axiom to generate no rules, specify
  :[rule-classes] nil.")
 (DEFCHOOSE
  (EVENTS)
  "Define a Skolem (witnessing) function

    Examples:
    (defchoose choose-x-for-p1-and-p2 (x) (y z)
      (and (p1 x y z)
           (p2 x y z)))

    ; Axiom added by the event above:
    (IMPLIES (AND (P1 X Y Z) (P2 X Y Z))
             (LET ((X (CHOOSE-X-FOR-P1-AND-P2 Y Z)))
                  (AND (P1 X Y Z) (P2 X Y Z))))

    (defchoose choose-x-for-p1-and-p2 x (y z) ; equivalent to the above
      (and (p1 x y z)
           (p2 x y z)))

    ; The following is as above, but strengthens the axiom added to pick a sort
    ; of canonical witness, as described below.
    (defchoose choose-x-for-p1-and-p2 x (y z)
      (and (p1 x y z)
           (p2 x y z))
      :strengthen t)

    (defchoose choose-x-and-y-for-p1-and-p2 (x y) (z)
      (and (p1 x y z)
           (p2 x y z)))

    General Form:
    (defchoose fn
               (bound-var1 ... bound-varn)
               (free-var1 ... free-vark)
               body
               :strengthen b),

  where fn is the symbol you wish to define and is a new symbolic name
  (see [name]), (bound-var1 ... bound-varn) is a list of distinct
  `bound' variables (see below), (free-var1 ... free-vark) is the
  list of formal parameters of fn and is disjoint from the bound
  variables, and body is a term. The use of lambda-list keywords
  (such as &optional) is not allowed. The :strengthen keyword
  argument is optional; if supplied, it must be t or nil.

  The system treats fn very much as though it were declared in the
  [signature] of an [encapsulate] event, with a single axiom exported
  as described below. If you supply a :use hint (see [hints]), :use
  fn, it will refer to that axiom. No rule (of class :[rewrite] or
  otherwise; see [rule-classes]) is created for fn.

  Defchoose is only executed in [defun-mode] :[logic]; see
  [defun-mode]. Also see [defun-sk].

  In the most common case, where there is only one bound variable, it
  is permissible to omit the enclosing parentheses on that variable.
  The effect is the same whether or not those parentheses are
  omitted. We describe this case first, where there is only one bound
  variable, and then address the other case. Both cases are discussed
  assuming :strengthen is nil, which is the default. We deal with the
  case :strengthen t at the end.

  The effect of the form

    (defchoose fn bound-var (free-var1 ... free-vark)
      body)

  is to introduce a new function symbol, fn, with formal parameters
  (free-var1 ... free-vark). Now consider the following axiom, which
  states that fn picks a value of bound-var so that the body will be
  true, if such a value exists:

    (1)   (implies body
                   (let ((bound-var (fn free-var1 ... free-vark)))
                     body))

  This axiom is ``clearly conservative'' under the conditions expressed
  above: the function fn simply picks out a ``witnessing'' value of
  bound-var if there is one. For a rigorous statement and proof of
  this conservativity claim, see [conservativity-of-defchoose].

  Next consider the case that there is more than one bound variable,
  i.e., there is more than one bound-var in the following.

    (defchoose fn
               (bound-var1 ... bound-varn)
               (free-var1 ... free-vark)
               body)

  Then fn returns a multiple value with n components, and formula (1)
  above is expressed using [mv-let] as follows:

    (implies body
             (mv-let (bound-var1 ... bound-varn)
                     (fn free-var1 ... free-vark)
                     body))

  We now discuss the case that :strengthen t is supplied. For
  simplicity we return to our simplest case, with defchoose applied
  to function fn, a single free variable y, and a single bound
  variable bound-var. The idea is that if we pick the ``smallest''
  witnessing bound-var for two different free variables y and y1,
  then either those two witnesses are the same, or else one is less
  than the other, in which case the smaller one is a witness for its
  free variable but not for the other. (See comments in source
  function defchoose-constraint-extra for more details.) Below, body1
  is the result of replacing y by y1 in body.

    (2)   (or (equal (fn y) (fn y1))
              (let ((bound-var (fn y)))
                (and body
                     (not body1)))
              (let ((bound-var (fn y1)))
                (and body1
                     (not body))))

  An important application of this additional axiom is to be able to
  define a ``fixing'' function that picks a canonical representative
  of each equivalence class, for a given equivalence relation. The
  following events illustrate this point.

    (encapsulate
     ((equiv (x y) t))
     (local (defun equiv (x y) (equal x y)))
     (defequiv equiv))

    (defchoose efix (x) (y)
      (equiv x y)
      :strengthen t)

    (defthm equiv-implies-equal-efix-1
      (implies (equiv y y1)
               (equal (efix y) (efix y1)))
      :hints ((\"Goal\" :use efix))
      :rule-classes (:congruence))

    (defthm efix-fixes
      (equiv (efix x) x)
      :hints ((\"Goal\" :use ((:instance efix (y x))))))

  If there is more than one bound variable, then (2) is modified in
  complete analogy to (1) to use [mv-let] in place of [let].

  Comment for logicians: As we point out in the documentation for
  [defun-sk], defchoose is ``appropriate,'' by which we mean that it
  is conservative, even in the presence of epsilon-0 induction. For a
  proof, See [conservativity-of-defchoose].


Subtopics

  [Conservativity-of-defchoose]
      Proof of conservativity of [defchoose]")
 (DEFCONG
  (EVENTS)
  "Prove [congruence] rule

  Defcong is used to prove that one [equivalence] relation preserves
  another in a given argument position of a given function.

    Example:
    (defcong set-equal iff (memb x y) 2)

    is an abbreviation for

    (defthm set-equal-implies-iff-memb-2
      (implies (set-equal y y-equiv)
               (iff (memb x y) (memb x y-equiv)))
      :rule-classes (:congruence))

  See [congruence] and also see [equivalence].

  NOTE: defcong may only be used to create classic [congruence] rules,
  not [patterned-congruence] rules.

    General Form:
    (defcong equiv1 equiv2 term k
      :rule-classes rule-classes
      :instructions instructions
      :hints hints
      :otf-flg otf-flg
      :event-name event-name
      :doc doc)

  where equiv1 and equiv2 are known [equivalence] relations; term is a
  call of a function fn, other than if, on the correct number of
  distinct variable arguments, (fn x1 ... xn); k is a positive
  integer less than or equal to the arity of fn; and other arguments
  are as specified in the documentation for [defthm]. The defcong
  macro expands into a call of [defthm]. The name of the [defthm]
  event is equiv1-implies-equiv2-fn-k unless an :event-name keyword
  argument is supplied for the name. The term of the theorem is

    (implies (equiv1 xk yk)
             (equiv2 (fn x1... xk ...xn)
                     (fn x1... yk ...xn))).

  The rule-class :[congruence] is added to the [rule-classes]
  specified, if it is not already there. All other arguments to the
  generated [defthm] form are as specified by the keyword arguments
  above.")
 (DEFCONST
  (EVENTS PROGRAMMING)
  "Define a constant

    Examples:
    (defconst *digits* '(0 1 2 3 4 5 6 7 8 9))
    (defconst *n-digits* (the unsigned-byte (length *digits*)))

    General Form:
    (defconst name term doc-string)

  where name is a symbol beginning and ending with the character *,
  term is a variable-free term that is evaluated to determine the
  value of the constant, and doc-string, if non-nil, is an optional
  string that can provide documentation but is essentially ignored by
  ACL2.

  When a constant symbol is used as a [term], ACL2 replaces it by its
  value; see [term].

  Note that defconst uses a ``safe mode'' to evaluate its form, in
  order to avoids soundness issues but with an efficiency penalty
  (perhaps increasing the evaluation time by several hundred
  percent). If efficiency is a concern, or if for some reason you
  need the form to be evaluated without safe mode (e.g., you are an
  advanced system hacker using trust tags to traffic in raw Lisp
  code), consider using [defconsts] instead. Also see
  [using-tables-efficiently] for an analogous issue with [table]
  events.

  It may be of interest to note that defconst is implemented at the
  lisp level using defparameter, as opposed to defconstant.
  (Implementation note: this is important for proper support of
  undoing and redefinition.)

  We close with a technical remark, perhaps of interest only who make
  use of the [hons-enabled] features of ACL2. For an event of the
  form (defconst *C* (quote OBJ)), i.e., (defconst *C* 'OBJ), then
  the value associated with *C* is OBJ; that is, the value of *C* is
  [eq] to the actual object OBJ occurring in the defconst form. So
  for example, if [make-event] is used to generate such a defconst
  event, as it is in the two books mentioned above, and OBJ is a fast
  alist (see [fast-alists]), then the value of *C* is a fast alist.
  This guarantee disappears if the term in the defconst form is not a
  quoted object, i.e., if it is not of the form (quote OBJ).


Subtopics

  [Sharp-dot-reader]
      Read-time evaluation of constants")
 (DEFDOC
  (EVENTS)
  "Deprecated event (formerly for adding documentation)

  This event is deprecated; see [xdoc] for information about
  [documentation] in ACL2. Defdoc [events] are never considered
  redundant (see [redundant-events]).")
 (DEFEQUIV
  (EVENTS)
  "Prove that a function is an [equivalence] relation

    Example:
    (defequiv set-equal)

    is an abbreviation for
    (defthm set-equal-is-an-equivalence
      (and (booleanp (set-equal x y))
           (set-equal x x)
           (implies (set-equal x y) (set-equal y x))
           (implies (and (set-equal x y)
                         (set-equal y z))
                    (set-equal x z)))
      :rule-classes (:equivalence))

  See [equivalence].

    General Form:
    (defequiv fn
      :rule-classes rule-classes
      :instructions instructions
      :hints hints
      :otf-flg otf-flg
      :event-name event-name
      :doc doc)

  where fn is a function symbol of arity 2, event-name, if supplied, is
  a symbol, and all other arguments are as specified in the
  documentation for [defthm]. The defequiv macro expands into a call
  of defthm. The name of the defthm is fn-is-an-equivalence, unless
  event-name is supplied, in which case event-name is the name used.
  The term generated for the defthm event states that fn is Boolean,
  reflexive, symmetric, and transitive. The rule-class :equivalence
  is added to the [rule-classes] specified, if it is not already
  there. All other arguments to the generated defthm form are as
  specified by the other keyword arguments above.")
 (DEFEVALUATOR
  (EVENTS)
  "Introduce an evaluator function

    Example:
    (defevaluator evl evl-list
      ((length x) (member-equal x y)))

  See [meta].

    General Form:
    (defevaluator ev ev-list
       ((g1 x1 ... xn_1)
        ...
        (gk x1 ... xn_k))
       :namedp flg)       ; [optional keyword argument]

  where ev and ev-list are new function symbols and g1, ..., gk are old
  function symbols with the indicated number of formals, i.e., each
  gi has n_i formals. If the :namedp keyword argument is provided,
  its value should be Boolean. If not provided, the default value for
  flg is nil.

  This function provides a convenient way to constrain ev and ev-list
  to be mutually-recursive evaluator functions for the symbols g1,
  ..., gk. Roughly speaking, an evaluator function for a fixed,
  finite set of function symbols is a restriction of the universal
  evaluator to terms composed of variables, constants, lambda
  expressions, and applications of the given functions. However,
  evaluator functions are constrained rather than defined, so that
  the proof that a given metafunction is correct vis-a-vis a
  particular evaluator function can be lifted (by functional
  instantiation) to a proof that it is correct for any larger
  evaluator function. See [meta] for a discussion of metafunctions.

  If the :namedp flg is nil (the default) constraints have names of the
  form ev-CONSTRAINT-i, e.g., EV-CONSTRAINT-0, EV-CONSTRAINT-1, etc.
  If flg is non-nil, the constraints are named more mnemonically,
  e.g., EV-OF-VARIABLE, EV-OF-REVAPPEND-CALL, etc. We illustrate the
  :namedp t names below.

  Defevaluator executes an [encapsulate] after generating the
  appropriate [defun] and [defthm] events. Perhaps the easiest way to
  understand what defevaluator does is to execute the keyword command

    :trans1 (defevaluator evl evl-list ((length x) (member-equal x y)))

  and inspect the output. This trick is also useful in the rare case
  that the event fails because a hint is needed. In that case, the
  output of :[trans1] can be edited by adding hints, then submitted
  directly.

  Formally, ev is said to be an ``evaluator function for g1, ..., gk,
  with mutually-recursive counterpart ev-list'' iff ev and ev-list
  are constrained functions satisfying just the [constraint]s
  discussed below.

  Ev and ev-list must satisfy [constraint]s (0)-(5) and (k) below. When
  :namedp nil is supplied, the i in the generated constraint names
  are the parenthesized numbers below. When :namedp t is supplied,
  the mnemonic names are those shown in brackets below.

    (0) How to ev an arbitrary function application:
        [EV-OF-FNCALL-ARGS]
        (implies (and (consp x)
                      (syntaxp (not (equal a ''nil)))
                      (not (equal (car x) 'quote)))
                 (equal (ev x a)
                        (ev (cons (car x)
                                  (kwote-lst (ev-list (cdr x) a)))
                            nil)))

    (1) How to ev a variable symbol:
        [EV-OF-VARIABLE]
        (implies (symbolp x)
                 (equal (ev x a) (and x (cdr (assoc-equal x a)))))

    (2) How to ev a constant:
        [EV-OF-QUOTE]
        (implies (and (consp x)
                      (equal (car x) 'quote))
                 (equal (ev x a) (cadr x)))

    (3) How to ev a lambda application:
        [EV-OF-LAMBDA]
        (implies (and (consp x)
                      (consp (car x)))
                 (equal (ev x a)
                        (ev (caddar x)
                            (pairlis$ (cadar x)
                                      (ev-list (cdr x) a)))))

    (4) How to ev an empty argument list:
        [EV-LIST-OF-ATOM]
        (implies (not (consp x-lst))
                 (equal (ev-list x-lst a)
                        nil))

    (5) How to ev a non-empty argument list:
        [EV-LIST-OF-CONS]
        (implies (consp x-lst)
                 (equal (ev-list x-lst a)
                        (cons (ev (car x-lst) a)
                              (ev-list (cdr x-lst) a))))

    (k) For each i from 1 to k, how to ev an application of gi,
        where gi is a function symbol of n arguments:
        [EV-OF-gi-CALL]
        (implies (and (consp x)
                      (equal (car x) 'gi))
                 (equal (ev x a)
                        (gi (ev x1 a)
                            ...
                            (ev xn a)))),
        where xi is the (cad...dr x) expression equivalent to (nth i x).

  Defevaluator defines suitable witnesses for ev and ev-list, proves
  the theorems about them, and constrains ev and ev-list
  appropriately. We expect defevaluator to work without assistance
  from you, though the proofs do take some time and generate a lot of
  output. The proofs are done in the context of a fixed theory,
  namely the value of the constant *defevaluator-form-base-theory*.

  (Aside: (3) above may seem surprising, since the bindings of a are
  not included in the environment that is used to evaluate the lambda
  body, (caddar x). However, ACL2 lambda expressions are all closed:
  in (lambda (v1 ... vn) body), the only free variables in body are
  among the vi. See [term].)

  Acknowledgement: We thank Sol Swords and Jared Davis for their
  community book tools/defevaluator-fast.lisp, which provided the
  model on which the current defevaluator is based. The original
  defevaluator was very inefficient, e.g., taking thousands of times
  longer than the current one on an evaluator interpreting 800
  function symbols. We refactored their defevaluator-fast (with
  permission) and made it the new implementation as of ACL2
  Version_7.2. Both implementations produce the same constraints
  modulo the naming option provided by :namedp.")
 (DEFEXEC
  (EVENTS MBE)
  "Attach a terminating executable function to a definition

  Suppose you define a function (fn x) with a [guard] of (good-input-p
  x), and you know that when the guard holds, the measure decreases
  on each recursive call. Unfortunately, the definitional principle
  (see [defun]) ignores the guard. For example, if the definition has
  the form

    (defun fn (x)
      (declare (xargs :guard (good-input-p x)))
      (if (not-done-yet x)
          (... (fn (destr x)) ...)
        ...))

  then in order to admit this definition, ACL2 must prove the
  appropriate formula asserting that (destr x) is ``smaller than'' x
  under the assumption (not-done-yet x) but without the assumption
  (good-input-p x), even if (not-done-yet x) is true. In essence, it
  may be necessary to submit instead the following definition.

    (defun fn (x)
      (declare (xargs :guard (good-input-p x)))
      (if (good-input-p x)
          (if (not-done-yet x)
              (... (fn (destr x)) ...)
            ...)
        nil)

  But it is unfortunate that when calls of fn are evaluated, for
  example when fn is applied to an explicit constant during a proof,
  then a call of good-input-p must now be evaluated on each recursive
  call.

  Fortunately, defexec provides a way to keep the execution efficient.
  For the example above we could use the following form.

    (defexec fn (x)
      (declare (xargs :guard (good-input-p x)))
      (mbe :logic (if (good-input-p x)
                      (if (not-done-yet x)
                          (... (fn (destr x)) ...)
                        ...)
                    nil)
           :exec  (if (not-done-yet x)
                      (... (fn (destr x)) ...)
                    ...)))

  Here ``[mbe]'' stands for ``must be equal'' and, roughly speaking,
  its call above is logically equal to the :logic form but is
  evaluated using the :exec form when the guard holds. See [mbe]. The
  effect is thus to define fn as shown in the [defun] form above, but
  to cause execution of fn using the :exec body. The use of defexec
  instead of [defun] in the example above causes a termination proof
  to be performed, in order to guarantee that evaluation always
  theoretically terminates, even when using the :exec form for
  evaluation.

    Example:

    ; Some of the keyword arguments in the declarations below are irrelevant or
    ; unnecessary, but they serve to illustrate their use.

    (defexec f (x)
      (declare (xargs :measure (+ 15 (acl2-count x))
                      :ruler-extenders :basic
                      :hints ((\"Goal\" :in-theory (disable nth)))
                      :guard-hints ((\"Goal\" :in-theory (disable last)))
                      :guard (and (integerp x) (<= 0 x) (< x 25)))
               (exec-xargs
                      :test (and (integerp x) (<= 0 x))
                      :default-value 'undef ; defaults to nil
                      :measure (nfix x)
                      :ruler-extenders :basic
                      :well-founded-relation o<))
      (mbe :logic (if (zp x)
                      1
                    (* x (f (- x 1))))
           :exec  (if (= x 0)
                      1
                    (* x (f (- x 1))))))

  The above example macroexpands to the following.

    (ENCAPSULATE ()
     (LOCAL
      (ENCAPSULATE ()
       (SET-IGNORE-OK T)
       (SET-IRRELEVANT-FORMALS-OK T)
       (LOCAL (DEFUN F (X)
                (DECLARE
                 (XARGS :VERIFY-GUARDS NIL
                        :HINTS ((\"Goal\" :IN-THEORY (DISABLE NTH)))
                        :MEASURE (NFIX X)
                        :RULER-EXTENDERS :BASIC
                        :WELL-FOUNDED-RELATION O<))
                (IF (AND (INTEGERP X) (<= 0 X))
                    (IF (= X 0) 1 (* X (F (- X 1))))
                    'UNDEF)))
       (LOCAL (DEFTHM F-GUARD-IMPLIES-TEST
                (IMPLIES (AND (INTEGERP X) (<= 0 X) (< X 25))
                         (AND (INTEGERP X) (<= 0 X)))
                :RULE-CLASSES NIL))))
     (DEFUN F (X)
       (DECLARE (XARGS :MEASURE (+ 15 (ACL2-COUNT X))
                       :RULER-EXTENDERS :BASIC
                       :HINTS ((\"Goal\" :IN-THEORY (DISABLE NTH)))
                       :GUARD-HINTS ((\"Goal\" :IN-THEORY (DISABLE LAST)))
                       :GUARD (AND (INTEGERP X) (<= 0 X) (< X 25))))
       (MBE :LOGIC
            (IF (ZP X) 1 (* X (F (- X 1))))
            :EXEC
            (IF (= X 0) 1 (* X (F (- X 1)))))))

  Notice that in the example above, the :[hints] in the [local]
  definition of F are inherited from the :hints in the [xargs] of the
  defexec form. We discuss such inheritance below.

  CAVEAT: Termination is not considered for calls of [mbe] under the
  top-level call. Moreover, the :exec part of an [mbe] call under the
  :logic part of any superior mbe call is completely ignored.

    General Form:
    (defexec fn (var1 ... varn) doc-string dcl ... dcl
      (mbe :LOGIC logic-body
           :EXEC  exec-body))

  where the syntax is identical to the syntax of [defun] where the body
  is a call of mbe, with the exceptions described below. Thus, fn is
  the symbol you wish to define and is a new symbolic name and (var1
  ... varn) is its list of formal parameters (see [name]). The first
  exception is that at least one dcl (i.e., [declare] form) must
  specify a :guard, guard. The second exception is that one of the
  dcls is allowed to contain an element of the form (exec-xargs ...).
  The exec-xargs form, if present, must specify a non-empty
  [keyword-value-listp] each of whose keys is one of :test,
  :default-value, or one of the standard [xargs] keys of :measure,
  :ruler-extenders, :well-founded-relation, :hints, or :stobjs. Any
  of these five standard xargs keys that is present in an xargs of
  some dcl but is not specified in the (possibly nonexistent)
  exec-xargs form is considered to be specified in the exec-xargs
  form, as illustrated in the example above for :hints. (So for
  example, if you want :hints in the final, non-local definition but
  not in the local definition, then specify the :hints in the xargs
  but specify :hints nil in the exec-xargs.) If :test is specified
  and not nil, let test be its value; otherwise let test default to
  guard. If :default-value is specified, let default-value be its
  value; else default-value is nil. Default-value should have the
  same [signature] as exec-body; otherwise the defexec form will fail
  to be admitted.

  The above General Form's macroexpansion is of the form (PROGN encap
  final-def), where encap and final-def are as follows. Final-def is
  simply the result of removing the exec-xargs declaration (if any)
  from its [declare] form, and is the result of evaluating the given
  defexec form, since encap is of the following form.

    ; encap
    (ENCAPSULATE ()
      (set-ignore-ok t)             ; harmless for proving termination
      (set-irrelevant-formals-ok t) ; harmless for proving termination
      (local local-def)
      (local local-thm))

  The purpose of encap is to ensure the the executable version of name
  terminates on all arguments. Thus, local-def and local-thm are as
  follows, where the xargs of the [declare] form are the result of
  adding :VERIFY-GUARDS NIL to the result of removing the :test and
  (optional) :default-value from the exec-xargs.

    ; local-def
    (DEFUN fn formals
      (DECLARE (XARGS :VERIFY-GUARDS NIL ...))
      (IF test
          exec-body
        default-value))

    ; local-thm
    (DEFTHM fn-EXEC-GUARD-HOLDS
      (IMPLIES guard test)
      :RULE-CLASSES NIL)

  We claim that if the above local-def and local-thm are admitted, then
  all evaluations of calls of fn terminate. The concern is that the
  use of [mbe] in final-def allows for the use of exec-body for a
  call of fn, as well as for subsequent recursive calls, when guard
  holds and assuming that the guards have been verified for
  final-def. However, by local-thm we can conclude in this case that
  test holds, in which case the call of fn may be viewed as a call of
  the version of fn defined in local-def. Moreover, since guards have
  been verified for final-def, then guards hold for subsequent
  evaluation of exec-body, and in particular for recursive calls of
  fn, which can thus continue to be viewed as calls using local=def.")
 (DEFINE-PC-HELP
  (PROOF-CHECKER)
  "Define a macro command whose purpose is to print something

    Example:
    (define-pc-help pp ()
      (if (goals t)
          (io? proof-checker nil state
               (state-stack)
               (fms0 \"~|~y0~|\"
                     (list (cons #0
                                 (fetch-term (conc t)
                                             (current-addr t))))))
        (print-all-goals-proved-message state)))

    General Form:
    (define-pc-help name args &rest body)

  This defines a macro command named name, as explained further below.
  The body should (after removing optional declarations) be a form
  that returns state as its single value. Typically, it will just
  print something.

  What (define-pc-help name args &rest body) really does is to create a
  call of define-pc-macro that defines name to take arguments args,
  to have the declarations indicated by all but the last form in
  body, and to have a body that (via pprogn) first executes the form
  in the last element of body and then returns a call to the command
  skip (which will return (mv nil t state)).")
 (DEFINE-PC-MACRO
  (PROOF-CHECKER)
  "Define a proof-checker macro command

    Example:
    (define-pc-macro ib (&optional term)
      (value
       (if term
           `(then (induct ,term) bash)
         `(then induct bash))))

  The example above captures a common paradigm: one attempts to prove
  the current goal by inducting and then simplifying the resulting
  goals. (see [proof-checker-commands] for documentation of the
  command then, which is itself a pc-macro command, and commands
  induct and bash.) Rather than issuing (then induct bash), or worse
  yet issuing induct and then issuing bash for each resulting goals,
  the above definition of ib would let you issue ib and get the same
  effect.

    General Form:
    (define-pc-macro cmd args doc-string dcl ... dcl body)

  where cmd is the name of the pc-macro than you want to define, args
  is its list of formal parameters. Args may include lambda-list
  keywords &optional and &rest; see [macro-args], but note that here,
  args may not include &key or &whole.

  The value of body should be an [error-triple], of the form (mv erp
  xxx state) for some erp and xxx. If erp is nil, then xxx is handed
  off to the proof-checker's instruction interpreter. Otherwise,
  evaluation typically halts. We may write more on the full story
  later if there is interest in reading it.")
 (DEFINE-PC-META
  (PROOF-CHECKER)
  "Define a proof-checker meta command

  Built-in proof-checker meta commands include undo and restore, and
  others (lisp, exit, and sequence); see [proof-checker-commands].
  The advanced proof-checker user can define these as well. See ACL2
  source file proof-checker-b.lisp for examples, and contact the ACL2
  implementors if those examples do not provide sufficient
  documentation.")
 (DEFINE-TRUSTED-CLAUSE-PROCESSOR
  (EVENTS)
  "Define a trusted (unverified) goal-level simplifier

  This [documentation] assumes familiarity with :clause-processor
  rules; see [clause-processor]. Briefly put, a clause-processor is a
  user-defined function that takes as input the ACL2 representation
  of a goal --- a clause --- and returns a list of goals (i.e., a
  list of clauses). A :clause-processor rule is a way to inform ACL2
  that a clause-processor has been proved correct and now may be
  specified in :clause-processor [hints].

  Here we describe a utility, define-trusted-clause-processor, that
  provides another way to inform ACL2 that a function is to be
  considered a clause-processor that can be specified in a
  :clause-processor hint. You can find examples of correct and
  incorrect use of this utility in community book
  books/clause-processors/basic-examples.

  Consider the simple example already presented for :clause-processor
  rules (again, see [clause-processor]), for a simple
  clause-processor named note-fact-clause-processor. Instead of
  introducing an evaluator and proving a correctness theorem with
  :rule-classes :clause-processor, we can simply inform ACL2 that we
  trust the function note-fact-clause-processor to serve as a
  clause-processor.

    (define-trusted-clause-processor
      note-fact-clause-processor
      nil
      :ttag my-ttag)

  A non-nil :ttag argument generates a [defttag] event in order to
  acknowledge the dependence of the ACL2 session on the (unproved)
  correctness of this clause-processor. That argument can be omitted
  if there is currently an active trust tag. Note that the extra
  [defttag] event will be [local] to the
  define-trusted-clause-processor event; that is, its effect will
  disappear after the define-trusted-clause-processor event
  completes. (This point becomes clear if one understands that a call
  of define-trusted-clause-processor expands to a call of
  [encapsulate], and a [defttag] event is essentially [local] within
  any [encapsulate] event, as is any event that sets the
  [ACL2-defaults-table].) See [defttag]. Because we are trusting this
  clause-processor, rather than having proved it correct, we refer to
  it as a ``trusted'' clause-processor to contrast with a
  proved-correct, or ``verified'', clause-processor.

  Now that the event displayed above has established
  note-fact-clause-processor as a (trusted) clause-processor, we can
  use it in a :clause-processor hint, for example as follows. Notice
  that the output is identical to that for the corresponding example
  presented for the verified case (see [clause-processor]), except
  that the word ``verified'' has been replaced by the word
  ``trusted''.

    ACL2 !>(thm (equal (car (cons x y))
                       x)
                :hints
                ((\"Goal\"
                  :clause-processor
                  (note-fact-clause-processor clause '(equal a a)))))

    [Note:  A hint was supplied for our processing of the goal above.
    Thanks!]

    We now apply the trusted :CLAUSE-PROCESSOR function NOTE-FACT-CLAUSE-
    PROCESSOR to produce two new subgoals.

    Subgoal 2
    (IMPLIES (EQUAL A A)
             (EQUAL (CAR (CONS X Y)) X)).

    But we reduce the conjecture to T, by the :executable-counterpart of
    IF and the simple :rewrite rule CAR-CONS.

    Subgoal 1
    (EQUAL A A).

    But we reduce the conjecture to T, by primitive type reasoning.

    Q.E.D.

    Summary
    Form:  ( THM ...)
    Rules: ((:EXECUTABLE-COUNTERPART IF)
            (:EXECUTABLE-COUNTERPART NOT)
            (:FAKE-RUNE-FOR-TYPE-SET NIL)
            (:REWRITE CAR-CONS))
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

    Proof succeeded.
    ACL2 !>

  Indeed, if one runs this example first and subsequently verifies the
  clause-processor, one will see the word ``trusted'' change to
  ``verified''.

  The general form is as follows.

    (define-trusted-clause-processor
      cl-proc           ;;; clause-processor function
      supporters        ;;; see below
      &key
      label             ;;; optional, but required if doc is non-nil
      doc               ;;; optional
      ttag              ;;; discussed above
      partial-theory    ;;; optional encapsulate event
      )

  If a :label LAB is supplied, then a subsidiary [deflabel] event will
  be generated with name LAB, which will enable you to to undo this
  define-trusted-clause-processor event using: :[ubt] LAB. If you
  supply a :label then you may supply a :doc argument to use with
  that generated [deflabel] event. We discussed the :ttag argument
  above. The entire form is considered redundant (skipped) if it is
  identical to one already executed in the current ACL2 world; but if
  it is not redundant, then cl-proc must not already have been
  similarly designated as a trusted clause-processor.

  Note that cl-proc may be defined either in :program-mode or
  :logic-mode.

  The supporters argument should be a true list of function symbols in
  the current ACL2 world. It is important that this list include
  user-defined functions whose definitions support the correctness of
  the clause-processor function. Otherwise, [local] definitions of
  those missing supporters can render the use of this
  clause-processor unsound, as discussed in the paper referenced at
  the end of the [clause-processor] documentation topic. Moreover,
  ACL2 assumes for dependent clause-processors (discussed below) that
  every function symbol constrained by the ``promised encapsulate''
  of that event is either among those supporters or ancestral in one
  of them (i.e. a supporter of a supporter, a supporter of one of
  those, etc.).

  Dependent clause-processors and promised encapsulates: The
  :partial-theory argument

  Suppose you want to introduce a clause-processor to reason about a
  complex hardware simulator that is implemented outside ACL2. Sawada
  and Reeber had just such a problem, as reported in their FMCAD 2006
  paper. Indeed, they used [sys-call] to implement a :[program]-mode
  function in ACL2 that can invoke that simulator. In principle one
  could code the simulator directly in ACL2; but it would be a
  tremendous amount of work that has no practical purpose, given the
  interface to the external simulator. So: In what sense can we have
  a clause-processor that proves properties about a simulator when
  that simulator is not fully axiomatized in ACL2? Our answer, in a
  nutshell, is this: The above :partial-theory argument provides a
  way to write merely some of the [constraint]s on the external tool
  (or even no constraints at all), with the understanding that such
  constraints are present implicitly in a stronger ``promised''
  encapsulate, for example by exporting the full definition.

  If a trusted clause-processor is introduced with a :partial-theory
  argument, we call it a ``dependent'' clause-processor, because its
  correctness is dependent on the constraints implicitly introduced
  by the :partial-theory encapsulate form. The implicit constraints
  should logically imply the constraints actually introduced by the
  explicit encapsulate, but they should also be sufficient to justify
  every possible invocation of the clause-processor in a
  :clause-processor hint. The user of a
  define-trusted-clause-processor form is making a guarantee --- or,
  is relying on a guarantee provided by the writer of that form ---
  that in principle, there exists a so-called ``promised
  encapsulate'': an encapsulate form with the same [signature] as the
  :partial-theory encapsulate form associated with the trusted
  clause-processor, but whose constraints introduced are the
  aforementioned implicit constraints.

  There are several additional requirements on a :partial-theory
  argument. First, it must be an [encapsulate] event with non-empty
  [signature]. Moreover, the functions introduced by that event must
  be exactly those specified in the signature, and no more. And
  further still, the define-trusted-clause-processor form cannot be
  executed inside any [encapsulate] form with non-empty [signature];
  we can think of this situation as attempting to associate more than
  one encapsulate with the functions introduced in the inner
  encapsulate.

  The :partial-theory event will (in essence) be executed as part of
  the evaluation of the define-trusted-clause-processor form. Again,
  a critical obligation rests on the user who provides a
  :partial-theory: there must exist (in principle at least) a
  corresponding promised encapsulate form with the same [signature]
  that could logically be admitted, whenever the above
  define-trusted-clause-processor form is evaluated successfully,
  that justifies the designation of cl-proc as a clause-processor.
  See also the paper mentioned above for more about promised
  encapsulates. A key consequence is that the [constraint]s are
  unknown for the functions introduced in (the signature of) a
  :partial-theory [encapsulate] form. Thus, functional instantiation
  (see [functional-instantiation-example]) is disabled for function
  in the signature of a :partial-theory form.

  A remark on the underlying implementation

  You can see all of the current trusted clause-processors by issuing
  the command (table trusted-clause-processor-table). Those that are
  dependent clause-processors will be associated in the resulting
  association list with a pair whose car is the list of supporters
  and whose cdr is t, i.e., with (supporters . t); the others will be
  associated just with (supporters).

  Thus, define-trusted-clause-processor is actually a macro that
  generates (among other things) a table event for a table named
  trusted-clause-processor-table; see [table]. You are invited to use
  :[trans1] to see expansions of calls of this macro.

  A technique for using raw Lisp to define a trusted clause-processor

  The following code is intended to give an idea for how one might
  define the ``guts'' of a trusted clause-processor in raw Lisp. The
  idea is to stub out functions, such as acl2-my-prove below, that
  you want to define in raw Lisp; and then, load a raw Lisp file to
  overwrite any such function with the real code. But then we make
  any such overwritten function untouchable. (This last step is
  important because otherwise, one can prove nil using a
  :functional-instance :use hint, by exploiting the fact that this
  function has executable code for which there is no corresponding
  definitional axiom.) Note: The point here is only to illustrate the
  use of raw Lisp, so we do not bother to define or explain functions
  hint-to-termlist or disjoin-clause-segments-to-clause, which this
  example assumes are defined elsewhere; their meanings are not
  important for this example.

    (defstub acl2-my-prove (term hint) t)

    (program)

    (defttag :my-cl-proc)

    (progn

    ; We wrap everything here in a single progn, so that the entire form is
    ; atomic.  That's important because we want the use of push-untouchable to
    ; prevent anything besides my-clause-processor from calling acl2-my-prove.

      (progn!

       (set-raw-mode-on state)

       (load \"my-hint-raw.lsp\") ; defines my-prove in raw Lisp

       (defun acl2-my-prove (term hint)
         (my-prove term hint)))

      (defun my-clause-processor (cl hint)
        (declare (xargs :guard (pseudo-term-listp cl)
                        :mode :program))
        (if (acl2-my-prove (disjoin cl) hint)
            (disjoin-clause-segments-to-clause
             (pairlis$ (hint-to-termlist hint) nil)
             cl)
          (prog2$ (cw \"~|~%NOTE: Unable to prove goal with ~
                      my-clause-processor and indicated hint.~|\")
                  (list cl))))

      (push-untouchable acl2-my-prove t)
      )")
 (DEFINITION
  (RULE-CLASSES)
  "Make a rule that acts like a function definition

  See [rule-classes] for a general discussion of rule classes and how
  they are used to build rules from formulas. An example :[corollary]
  formula from which a :definition rule might be built is:

    Examples:
    (defthm open-len-twice
      (implies (true-listp x)
               (equal (len x)
                      (if (null x)
                          0
                        (if (null (cdr x))
                            1
                          (+ 2 (len (cddr x)))))))
      :rule-classes :definition)

    ; Same as above, with :controller-alist made explicit:
    (defthm open-len-twice
      (implies (true-listp x)
               (equal (len x)
                      (if (null x)
                          0
                        (if (null (cdr x))
                            1
                          (+ 2 (len (cddr x)))))))
      :rule-classes ((:definition :controller-alist ((len t)))))

    General Form:
    (implies hyp (equiv (fn a1 ... an) body))

  where equiv is an equivalence relation and fn is a function symbol
  other than [if], [hide], [force] or [case-split]. Such rules allow
  ``alternative'' definitions of fn to be proved as theorems but used
  as definitions. These rules are not true ``definitions'' in the
  sense that they (a) cannot introduce new function symbols and (b)
  do not have to be terminating recursion schemes. They are just
  conditional rewrite rules that are controlled the same way we
  control recursive definitions. We call these ``definition rules''
  or ``generalized definitions''.

  Consider the general form above. Generalized definitions are stored
  among the :[rewrite] rules for the function ``defined,'' fn above,
  but the procedure for applying them is a little different. During
  rewriting, instances of (fn a1 ... an) are replaced by
  corresponding instances of body provided the hyps can be
  established as for a :[rewrite] rule and the result of rewriting
  body satisfies the criteria for function expansion. There are two
  primary criteria, either of which permits expansion. The first is
  that the ``recursive'' calls of fn in the rewritten body have
  arguments that already occur in the goal conjecture. The second is
  that the ``controlling'' arguments to fn are simpler in the
  rewritten body.

  The notions of ``recursive call'' and ``controllers'' are complicated
  by the provisions for mutually recursive definitions. Consider a
  ``clique'' of mutually recursive definitions. Then a ``recursive
  call'' is a call to any function defined in the clique and an
  argument is a ``controller'' if it is involved in the measure that
  decreases in all recursive calls. These notions are precisely
  defined by the definitional principle and do not necessarily make
  sense in the context of generalized definitional equations as
  implemented here.

  But because the heuristics governing the use of generalized
  definitions require these notions, it is generally up to the user
  to specify which calls in body are to be considered recursive and
  what the controlling arguments are. This information is specified
  in the :clique and :controller-alist fields of the :definition rule
  class.

  The :clique field is the list of function symbols to be considered
  recursive calls of fn. In the case of a non-recursive definition,
  the :clique field is empty; in a singly recursive definition, it
  should consist of the singleton list containing fn; otherwise it
  should be a list of all of the functions in the mutually recursive
  clique with this definition of fn.

  If the :clique field is not provided it defaults to nil if fn does
  not occur as a function symbol in body and it defaults to the
  singleton list containing fn otherwise. Thus, :clique must be
  supplied by the user only when the generalized definition rule is
  to be treated as one of several in a mutually recursive clique.

  The :controller-alist is an alist that maps each function symbol in
  the :clique to a mask specifying which arguments are considered
  controllers. The mask for a given member of the clique, fn, must be
  a list of t's and nil's of length equal to the arity of fn. A t
  should be in each argument position that is considered a
  ``controller'' of the recursion. For a function admitted under the
  principle of definition, an argument controls the recursion if it
  is one of the arguments measured in the termination argument for
  the function. But in generalized definition rules, the user is free
  to designate any subset of the arguments as controllers. Failure to
  choose wisely may result in the ``infinite expansion'' of
  definitional rules but cannot render ACL2 unsound since the rule
  being misused is a theorem.

  If the :controller-alist is omitted it can sometimes be defaulted
  automatically by the system. If the :clique is nil, the
  :controller-alist defaults to nil. If the :clique is a singleton
  containing fn, the :controller-alist defaults to the controller
  alist computed by (defun fn args body). (The user can obtain some
  control over this analysis by setting the default ruler-extenders;
  see [ruler-extenders].) If the :clique contains more than one
  function, the user must supply the :controller-alist specifying the
  controllers for each function in the clique. This is necessary
  since the system cannot determine and thus cannot analyze the other
  definitional equations to be included in the clique.

  For example, suppose fn1 and fn2 have been defined one way and it is
  desired to make ``alternative'' mutually recursive definitions
  available to the rewriter. Then one would prove two theorems and
  store each as a :definition rule. These two theorems would exhibit
  equations ``defining'' fn1 and fn2 in terms of each other. No
  provision is here made for exhibiting these two equations as a
  system of equations. One is proved and then the other. It just so
  happens that the user intends them to be treated as mutually
  recursive definitions. To achieve this end, both :definition rules
  should specify the :clique (fn1 fn2) and should specify a suitable
  :controller-alist. If, for example, the new definition of fn1 is
  controlled by its first argument and the new definition of fn2 is
  controlled by its second and third (and they each take three
  arguments) then a suitable :controller-alist would be ((fn1 t nil
  nil) (fn2 nil t t)). The order of the pairs in the alist is
  unimportant, but there must be a pair for each function in the
  clique.

  Inappropriate heuristic advice via :clique and :controller-alist can
  cause ``infinite expansion'' of generalized definitions, but cannot
  render ACL2 unsound.

  Note that the actual definition of fn1 has the runic name
  (:definition fn1). The runic name of the alternative definition is
  (:definition lemma), where lemma is the name given to the event
  that created the generalized :definition rule. This allows theories
  to switch between various ``definitions'' of the functions.

  By default, a :definition rule establishes the so-called ``body'' of
  a function. The body is used by :expand [hints], and it is also
  used heuristically by the theorem prover's preprocessing (the
  initial simplification using ``simple'' rules that is controlled by
  the preprocess symbol in :do-not [hints]), induction analysis, and
  the determination for when to warn about non-recursive functions in
  rules. The body is also used by some heuristics involving whether a
  function is recursively defined, and by the expand, x, and x-dumb
  commands of the [proof-checker].

  See [rule-classes] for a discussion of the optional field
  :install-body of :definition rules, which controls whether a
  :definition rule is used as described in the paragraph above. Note
  that even if :install-body nil is supplied, the rewriter will still
  rewrite with the :definition rule; in that case, ACL2 just won't
  install a new body for the top function symbol of the left-hand
  side of the rule, which for example affects the application of
  :expand hints as described in the preceding paragraph. Also see
  [set-body] and see [show-bodies] for how to change the body of a
  function symbol.

  Note only that if you prove a definition rule for function foo, say,
  foo-new-def, you will need to refer to that definition as
  foo-new-def or as (:DEFINITION foo-new-def). That is because a
  :definition rule does not change the meaning of the symbol foo for
  :use [hints], nor does it change the meaning of the symbol foo in
  theory expressions; see [theories], in particular the discussion
  there of runic designators. Similarly :[pe] foo and :[pf] foo will
  still show the original definition of foo.

  The definitional principle, [defun], actually adds :definition rules.
  Thus the handling of generalized definitions is exactly the same as
  for ``real'' definitions because no distinction is made in the
  implementation. Suppose (fn x y) is [defun]'d to be body. Note that
  [defun] (or [defuns] or [mutual-recursion]) can compute the clique
  for fn from the syntactic presentation and it can compute the
  controllers from the termination analysis. Provided the definition
  is admissible, [defun] adds the :definition rule (equal (fn x y)
  body).


Subtopics

  [Bind-free]
      To bind free variables of a rewrite, definition, or linear rule

  [Case-split]
      Like force but immediately splits the top-level goal on the
      hypothesis

  [Force]
      Identity function used to force a hypothesis

  [Set-body]
      Set the definition body

  [Show-bodies]
      Show the potential definition bodies

  [Simple]
      :[definition] and :[rewrite] rules used in preprocessing

  [Syntaxp]
      Attach a heuristic filter on a rule")
 (DEFLABEL
  (EVENTS)
  "Build a landmark

    Examples:
    (deflabel interp-section)

    General Form:
    (deflabel name)

  where name is a new symbolic name (see [name]). By virtue of the fact
  that deflabel is an event, it marks the current [history] with the
  name. For example, you may wish to undo back through some label or
  compute a theory expression (see [theories]) in terms of some
  labels. Deflabel [events] are never considered redundant. See
  [redundant-events].")
 (DEFLOCK
  (PARALLEL-PROGRAMMING)
  "Define a wrapper macro that provides mutual exclusion in ACL2(p)

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel evaluation and proof; see [parallelism].

    Example Form:
    (deflock *my-lock*)

    General Form:
    (deflock *symbol*)

  where *symbol* is a symbol whose first and last characters are both
  the character #\\*.

  A call of this macro generates a definition of another macro, named
  with-<modified-lock-symbol>, where <modified-lock-symbol> is the
  given symbol with the leading and trailing * characters removed.
  This newly defined macro will guarantee mutually exclusive
  execution when called in the body of the raw Lisp definition of a
  function, as is typically the case for [guard]-verified functions,
  for :[program] mode functions, and for calls of macro [top-level].
  (See [guard-evaluation-table] for details of how raw Lisp code
  might not be invoked when guard-checking (see [set-guard-checking])
  has value :none or :all.) Note that this macro is also simply the
  identity when invoked directly in the top-level loop; see
  [top-level] for a way to avoid this issue, and see
  [parallelism-at-the-top-level] for a general discussion of this
  issue for calls of [parallelism] primitives.

  To see how mutual exclusion is guaranteed, consider the raw Lisp code
  generated for the macro, with-<modified-lock-symbol>, that is
  introduced by a call of deflock. This code uses a lock (with the
  given *symbol* as its name), which guarantees that for any two
  forms that are each in the scope of a call of
  with-<modified-lock-symbol>, the forms do not execute concurrently.

  Note that a call of deflock expands into the application of progn to
  two events, as illustrated below.

    ACL2 !>:trans1 (deflock *my-cw-lock*)
     (PROGN (TABLE LOCK-TABLE '*MY-CW-LOCK* T)
            (DEFMACRO WITH-MY-CW-LOCK (&REST ARGS)
                      (LIST* 'WITH-LOCK '*MY-CW-LOCK* ARGS)))
    ACL2 !>

  Thus, deflock forms are legal embedded event forms (see
  [embedded-event-form]) for [books] as well as [encapsulate] and
  [progn] [events].

  The following log shows a lock in action. Recall that locks work as
  expected in [guard]-verified and :[program] mode functions; they do
  not, however, work in :[logic] mode functions that have not been
  guard-verified, as illustrated below.

    ACL2 !>(deflock *my-cw-lock*)
    [[.. output omitted ..]]
     WITH-MY-CW-LOCK
    ACL2 !>(defun foo (n)
             (declare (xargs :guard (natp n) :verify-guards nil))
             (plet ((x1 (with-my-cw-lock (cw \"~x0\" (make-list n))))
                    (x2 (with-my-cw-lock (cw \"~x0\" (make-list n)))))
                   (and (null x1) (null x2))))
    [[.. output omitted ..]]
     FOO
    ACL2 !>(foo 20)
    (NIL NIL NIL NIL( NIL NIL NIL NIL NIL NILNIL  NIL NILNIL  NIL NILNIL
         NIL NILNIL NIL  NIL NILNIL  NIL NIL
    NIL      NILNIL  NIL NILNIL )
    NIL NIL NIL NIL NIL NIL NIL NIL)
    T
    ACL2 !>(verify-guards foo)
    [[.. output omitted ..]]
     FOO
    ACL2 !>(foo 20)
    (NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
         NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)
    (NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
         NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)
    T
    ACL2 !>")
 (DEFMACRO
  (MACROS EVENTS PROGRAMMING)
  "Define a macro

    Example Defmacros:
    (defmacro xor (x y)
      (list 'if x (list 'not y) y))

    (defmacro git (sym key)
      (list 'getprop sym key nil
            '(quote current-acl2-world)
            '(w state)))

    (defmacro one-of (x &rest rst)
      (declare (xargs :guard (symbol-listp rst)))
      (cond ((null rst) nil)
            (t (list 'or
                     (list 'eq x (list 'quote (car rst)))
                     (list* 'one-of x (cdr rst))))))

    Example Expansions:
    term                    macroexpansion

    (xor a b)              (if a (not b) b)
    (xor a (foo b))        (if a (not (foo b)) (foo b))

    (git 'car 'lemmas)     (getprop 'car 'lemmas nil
                                    'current-acl2-world
                                    (w state))

    (one-of x a b c)       (or (eq x 'a)
                               (or (eq x 'b)
                                   (or (eq x 'c) nil)))

    (one-of x 1 2 3)       ill-formed (guard violation)

    General Form:
    (defmacro name macro-args doc-string dcl ... dcl body)

  where name is a new symbolic name (see [name]), macro-args specifies
  the formal parameters of the macro, and body is a term. The formal
  parameters can be specified in a much more general way than is
  allowed by ACL2 [defun] [events]; see [macro-args] for a
  description of keyword (&key) and optional (&optional) parameters
  as well as other so-called ``lambda-list keywords'', &rest and
  &whole. Doc-string, if non-nil, is an optional string that can
  provide documentation but is essentially ignored by ACL2. Each dcl
  is an optional declaration (see [declare]) except that the only
  [xargs] keyword permitted by defmacro is :[guard].

  For compute-intensive applications see the community book
  misc/defmac.lisp, which can speed up macroexpansion by introducing
  an auxiliary defun. For more information, evaluate the form
  (include-book \"misc/defmac\" :dir :system) and then evaluate :doc
  defmac.

  Macroexpansion occurs when a form is read in, i.e., before the
  evaluation or proof of that form is undertaken. To experiment with
  macroexpansion, see [trans]. When a form whose [car] is name arises
  as the form is read in, the arguments are bound as described in
  CLTL pp. 60 and 145, the [guard] is checked, and then the body is
  evaluated. The result is used in place of the original form.

  In ACL2, macros do not have access to the ACL2 state, [state]. (If
  [state] or any user-defined stobj (see [stobj]) is a macro
  argument, it is treated as an ordinary variable, bound at
  macro-expansion time to a piece of syntax.) This is in part a
  reflection of CLTL, p. 143, ``More generally, an implementation of
  Common Lisp has great latitude in deciding exactly when to expand
  macro calls with a program. ... Macros should be written in such a
  way as to depend as little as possible on the execution environment
  to produce a correct expansion.'' In ACL2, the product of
  macroexpansion is independent of the current environment and is
  determined entirely by the macro body and the functions and
  constants it references. It is possible, however, to define macros
  that produce expansions that refer to [state] or other
  single-threaded objects (see [stobj]) or variables not among the
  macro's arguments. See the git example above. For a related utility
  that does have access to the ACL2 [state], see [make-event].")
 (DEFMACRO-LAST
  (EVENTS)
  "Define a macro that returns its last argument, but with side effects

  This is an advanced feature that requires a trust tag. For
  explanation, including an example, see [return-last].")
 (DEFN (DEFUN EVENTS)
       "Definition with [guard] t

  Defn is [defun] with [guard] t.")
 (DEFND
  (DEFUN EVENTS)
  "[disable]d definition with [guard] t

  Defnd is [defund] with [guard] t.")
 (DEFPKG
  (EVENTS PACKAGES PROGRAMMING)
  "Define a new symbol package

    Example:
    (defpkg \"MY-PKG\"
            (union-eq *acl2-exports*
                      *common-lisp-symbols-from-main-lisp-package*))

    General Form:
    (defpkg \"name\" term doc-string)

  where \"name\" is a non-empty string consisting of standard characters
  (see [standard-char-p]), none of which is lower case, that names
  the package to be created; term is a variable-free expression that
  evaluates to a list of symbols, where no two distinct symbols in
  the list may have the same [symbol-name], to be imported into the
  newly created package; and doc-string, if non-nil, is an optional
  string that can provide documentation but is essentially ignored by
  ACL2. The name of the new package must be ``new'': the host lisp
  must not contain any package of that name. There are two exceptions
  to this newness rule, discussed at the end of this documentation.

  (There is actually an additional argument, book-path, that is used
  for error reporting but has no logical content. Users should
  generally ignore this argument, as well as the rest of this
  sentence: a book-path will be specified for [defpkg] events added
  by ACL2 to the [portcullis] of a book's [certificate]; see
  [hidden-death-package].)

  Defpkg forms can be entered at the top-level of the ACL2 [command]
  loop. They should not occur in [books] (see [certify-book]).

  After a successful defpkg it is possible to ``intern'' a string into
  the package using [intern-in-package-of-symbol]. The result is a
  symbol that is in the indicated package, provided the imports allow
  it. For example, suppose 'my-pkg::abc is a symbol whose
  [symbol-package-name] is \"MY-PKG\". Suppose further that the imports
  specified in the defpkg for \"MY-PKG\" do not include a symbol whose
  [symbol-name] is \"XYZ\". Then

    (intern-in-package-of-symbol \"XYZ\" 'my-pkg::abc)

  returns a symbol whose [symbol-name] is \"XYZ\" and whose
  [symbol-package-name] is \"MY-PKG\". On the other hand, if the
  imports to the defpkg does include a symbol with the name \"XYZ\",
  say in the package \"LISP\", then

    (intern-in-package-of-symbol \"XYZ\" 'my-pkg::abc)

  returns that symbol (which is uniquely determined by the restriction
  on the imports list above). See [intern-in-package-of-symbol].

  Upon admission of a defpkg event, the function pkg-imports is
  extended to compute a list of all symbols imported into the given
  package, without duplicates.

  Defpkg is the only means by which an ACL2 user can create a new
  package or specify what it imports. That is, ACL2 does not support
  the Common Lisp functions make-package or import. Currently, ACL2
  does not support exporting at all.

  The Common Lisp function [intern] is weakly supported by ACL2; see
  [intern]. A more general form of that function is also provided:
  see [intern$].

  We now explain the two exceptions to the newness rule for package
  names. The careful experimenter will note that if a package is
  created with a defpkg that is subsequently undone, the host lisp
  system will contain the created package even after the undo.
  Because ACL2 hangs onto [world]s after they have been undone, e.g.,
  to implement :[oops] but, more importantly, to implement error
  recovery, we cannot actually destroy a package upon undoing it.
  Thus, the first exception to the newness rule is that name is
  allowed to be the name of an existing package if that package was
  created by an undone defpkg and the newly proposed set of imports
  is identical to the old one. See
  [package-reincarnation-import-restrictions]. This exception does
  not violate the spirit of the newness rule, since one is
  disinclined to believe in the existence of undone packages. The
  second exception is that name is allowed to be the name of an
  existing package if the package was created by a defpkg with
  identical set of imports. That is, it is permissible to execute
  ``redundant'' defpkg [command]s. The redundancy test is based on
  the values of the two import forms (comparing them after sorting
  and removing duplicates), not on the forms themselves.

  Finally, we explain why we require the package name to contain
  standard characters, none of which is lower case. We have seen at
  least one implementation that handled lower-case package names
  incorrectly. Since we see no need for lower-case characters in
  package names, which can lead to confusion anyhow (note for example
  that foo::bar is a symbol whose [symbol-package-name] is \"FOO\", not
  \"foo\"), we simply disallow them. Since the notion of ``lower case''
  is only well-specified in Common Lisp for standard characters, we
  restrict to these.

  NOTE: Also see [managing-ACL2-packages] for contributed documentation
  on managing ACL2 packages.


Subtopics

  [Hidden-death-package]
      Handling [defpkg] [events] that are [local]

  [Hidden-defpkg]
      Handling defpkg events that are local")
 (DEFPROXY
  (EVENTS)
  "Define a non-executable :[program]-mode function for attachment

  This event is provided for those who want to experiment with
  [defattach] using :[program] mode functions, and without proof
  obligations or constraints on cycles in the extended ancestors
  graph; see [defattach]. If you merely want to define a stub or a
  non-executable function, see [defstub] or see [defun-nx],
  respectively.

  See community book books/misc/defproxy-test.lisp for an extended (but
  simple) example.

    Example Forms:
    (defproxy subr1 (* *) => *)
    (defproxy add-hash (* * hashtable) => (mv * hashtable))

    General Form:
    (defproxy name args-sig => output-sig)

  where name is a new function symbol and (name . args-sig) =>
  output-sig) is a signature; see [signature].

  The macro defproxy provides a convenient way to introduce a
  ``proxy'': a :program mode function that can be given attachments
  for execution (see [defattach]), assuming that there is an active
  trust tag (see [defttag]). Thus, a defproxy calls expands to a
  [defun] form with the following [xargs] [declare] form:
  :non-executable :program. Note that [verify-termination] is not
  permitted for such a function. However, it is permitted to put the
  proxy function into :[logic] mode by use of an [encapsulate] event;
  indeed, this is the way to ``upgrade'' an attachment so that the
  normal checks are performed and no trust tag is necessary.

  In order to take advantage of a [defproxy] form, one provides a
  subsequent defattach form to attach an executable function to the
  defproxy-introduced function. When :skip-checks t is provided in a
  [defattach] form, the usual checks for defattach [events] are
  skipped, including proof obligations and the check that the
  extended ancestor relation has no cycles (see [defattach]). There
  must be an active trust tag (see [defttag]) in order to use
  :skip-checks t. In that case the use of :skip-checks t is
  permitted; but note that its use is in fact required if a
  :[program] mode function is involved, and even if a :[logic] mode
  function is involved that has not been [guard]-verified.

  The following log shows a simple use of defproxy.

    ACL2 !>(defproxy foo-stub (*) => *)

    Summary
    Form:  ( DEFUN FOO-STUB ...)
    Rules: NIL
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
     FOO-STUB
    ACL2 !>(foo-stub '(3 4 5))

    ACL2 Error in TOP-LEVEL:  ACL2 cannot ev the call of undefined function
    FOO-STUB on argument list:

    ((3 4 5))

    To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.

    ACL2 !>(defun foo-impl (x)
             (declare (xargs :mode :program
                             :guard (or (consp x) (eq x nil))))
             (car x))

    Summary
    Form:  ( DEFUN FOO-IMPL ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     FOO-IMPL
    ACL2 !>(defttag t)

    TTAG NOTE: Adding ttag :T from the top level loop.
     T
    ACL2 !>(defattach (foo-stub foo-impl) :skip-checks t)

    Summary
    Form:  ( DEFATTACH (FOO-STUB FOO-IMPL) ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     :ATTACHMENTS-RECORDED
    ACL2 !>(foo-stub '(3 4 5))
    3
    ACL2 !>

  One can replace this attachment with one that uses :[logic] mode
  functions and does not skip checks. The idea is to reintroduce the
  proxy function using an [encapsulate] form, which does not require
  redefinition (see [ld-redefinition-action]) to be enabled, and
  either to put the attachment into :[logic] mode with the [guard]
  verified, as we do in the example below, or else to attach to a
  different [guard]-verified :[logic] mode function.

    ACL2 !>(defattach (foo-stub nil) :skip-checks t) ; remove attachment

    Summary
    Form:  ( DEFATTACH (FOO-STUB NIL) ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     :ATTACHMENTS-RECORDED
    ACL2 !>(encapsulate
            ((foo-stub (x) t :guard (true-listp x)))
            (local (defun foo-stub (x) (cdr x)))
            (defthm foo-stub-reduces-acl2-count
              (implies (consp x)
                       (< (acl2-count (foo-stub x))
                          (acl2-count x)))))

    [[ ... output omitted here ... ]]

    The following constraint is associated with the function FOO-STUB:

    (IMPLIES (CONSP X) (< (ACL2-COUNT (FOO-STUB X)) (ACL2-COUNT X)))

    Summary
    Form:  ( ENCAPSULATE ((FOO-STUB ...) ...) ...)
    Rules: NIL
    Warnings:  Non-rec
    Time:  0.02 seconds (prove: 0.01, print: 0.00, other: 0.01)
     T
    ACL2 !>(verify-termination foo-impl)

    Since FOO-IMPL is non-recursive, its admission is trivial.  We could
    deduce no constraints on the type of FOO-IMPL.

    Computing the guard conjecture for FOO-IMPL....

    The guard conjecture for FOO-IMPL is trivial to prove.  FOO-IMPL is
    compliant with Common Lisp.

    Summary
    Form:  ( DEFUN FOO-IMPL ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

    Summary
    Form:  ( MAKE-EVENT (VERIFY-TERMINATION-FN ...))
    Rules: NIL
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
     FOO-IMPL
    ACL2 !>(defttag nil) ; optional
     NIL
    ACL2 !>(defattach (foo-stub foo-impl))

    The guard proof obligation is

    (IMPLIES (TRUE-LISTP X)
             (OR (CONSP X) (EQ X NIL))).

    But we reduce the conjecture to T, by primitive type reasoning.

    Q.E.D.

    This concludes the guard proof.

    We now prove that the attachment satisfies the required constraint.
    The goal to prove is

    (IMPLIES (CONSP X)
             (< (ACL2-COUNT (FOO-IMPL X))
                (ACL2-COUNT X))).

    [[ ... output omitted here ... ]]

    Q.E.D.

    Summary
    Form:  ( DEFATTACH (FOO-STUB FOO-IMPL))
    Rules: ((:DEFINITION ACL2-COUNT)
            (:DEFINITION FOO-IMPL)
            (:ELIM CAR-CDR-ELIM)
            (:FAKE-RUNE-FOR-LINEAR NIL)
            (:FAKE-RUNE-FOR-TYPE-SET NIL)
            (:REWRITE CAR-CONS)
            (:REWRITE CDR-CONS)
            (:TYPE-PRESCRIPTION ACL2-COUNT))
    Time:  0.02 seconds (prove: 0.01, print: 0.01, other: 0.00)
     :ATTACHMENTS-RECORDED
    ACL2 !>

  We close with some remarks on the checking of [guard]s in the case
  that [defattach] has been called with keyword argument :skip-checks
  t. We illustrate with examples, where we assume an attachment pair
  (f . g) created by an event (defattach ... (f g) ... :skip-checks t
  ...). A good model for the treatment of :skip-checks t is dependent
  on whether f was introduced with defproxy or with [encapsulate]:
  for defproxy, the normal guard-related checks are treated as
  skipped, while for [encapsulate], they are assumed to hold.

  First suppose that f was introduced using defproxy, and consider the
  following example.

    (defproxy f (*) => *)
    (defun g (x) (car x)) ; not guard-verified; implicit guard of t is too weak
    (defttag t) ; trust tag needed for :skip-checks t
    (defattach (f g) :skip-checks t)

  If we try to evaluate the form (f 3) in ACL2, then the top-level
  so-called ``executable counterpart'' (i.e., the logically-defined
  funcction, also known as the ``*1*'' function) of f is invoked. It
  calls the executable counterpart of g, which calls the executable
  counterpart of [car], which in turn checks the [guard] of [car] and
  causes a guard violation error (unless we first turn off
  guard-checking; see [set-guard-checking]).

    ACL2 !>(trace$ f g)
     ((F) (G))
    ACL2 !>(f 3)
    1> (ACL2_*1*_ACL2::F 3)
      2> (ACL2_*1*_ACL2::G 3)

    ACL2 Error in TOP-LEVEL:  The guard for the function call (CAR X),
    which is (OR (CONSP X) (EQUAL X NIL)), is violated by the arguments
    in the call (CAR 3).  To debug see :DOC print-gv, see :DOC trace, and
    see :DOC wet.  See :DOC set-guard-checking for information about suppressing
    this check with (set-guard-checking :none), as recommended for new
    users.

    ACL2 !>

  Little changes if we modify the example above by strengtheing the
  guard of g.

    (defproxy f (*) => *)
    (defun g (x)
      (declare (xargs :guard (consp x)))
      (car x))
    (defttag t) ; trust tag needed for :skip-checks t
    (defattach (f g) :skip-checks t)

  The result of evaluating (f 3) is as before, except that this time
  the guard violation occurs at the time that g is called.

    ACL2 !>(trace$ f g)
     ((F) (G))
    ACL2 !>(f 3)
    1> (ACL2_*1*_ACL2::F 3)
      2> (ACL2_*1*_ACL2::G 3)

    ACL2 Error in TOP-LEVEL:  The guard for the function call (G X), which
    is (CONSP X), is violated by the arguments in the call (G 3).  To debug
    see :DOC print-gv, see :DOC trace, and see :DOC wet.  See :DOC set-
    guard-checking for information about suppressing this check with (set-
    guard-checking :none), as recommended for new users.

    ACL2 !>

  Now consider a slight variation of the example just above, in which f
  is introduced using [encapsulate] instead of using defproxy.

    (encapsulate ( ((f *) => *) )
                 (local (defun f (x) x)))
    (defun g (x)
      (declare (xargs :guard (consp x)))
      (car x))
    (defttag t) ; trust tag needed for :skip-checks t
    (defattach (f g) :skip-checks t)

  Since f was introduced by [encapsulate] instead of by defproxy, ACL2
  assumes that the usual guard properties hold. In particular, it
  assumes that (informally speaking) the guard of f implies the guard
  of g; see [defattach] for details. So in this case, ACL2 proceeds
  under that assumption even though it's actually false, and the
  result is a raw Lisp error.

    ACL2 !>(trace$ f g)
     ((F) (G))
    ACL2 !>(f 3)
    1> (ACL2_*1*_ACL2::F 3)
      2> (G 3)

    ***********************************************
    ************ ABORTING from raw Lisp ***********
    Error:  Attempt to take the car of 3 which is not listp.
    ***********************************************

    If you didn't cause an explicit interrupt (Control-C),
    then the root cause may be call of a :program mode
    function that has the wrong guard specified, or even no
    guard specified (i.e., an implicit guard of t).
    See :DOC guards.

    To enable breaks into the debugger (also see :DOC acl2-customization):
    (SET-DEBUGGER-ENABLE T)
    ACL2 !>

  If you replace g by its definition in the first example of this
  series, i.e. with a guard (implicitly) of t, you will see the same
  error, this time because the [defattach] event assumed that g was
  guard-verified.")
 (DEFPUN
  (EVENTS)
  "Define a tail-recursive function symbol

  Defpun is a macro developed by Pete Manolios and J Moore that allows
  tail-recursive definitions. It is defined in community book
  books/misc/defpun.lisp, so to use it, execute the following event.

    (include-book \"misc/defpun\" :dir :system)

  Details of defpun are provided by Manolios and Moore in the ``Partial
  Functions in ACL2'' published with the {ACL2 2000 workshop |
  http://www.cs.utexas.edu/users/moore/acl2/workshop-2000/}. Also see
  {Partial Functions in ACL2 |
  http://www.cs.utexas.edu/users/moore/publications/defpun/index.html}.

  A variant, defp, has been developed by Matt Kaufmann to allow more
  general forms of tail recursion. If defpun doesn't work for you,
  try defp by first executing the following event.

    (include-book \"misc/defp\" :dir :system)

  Sandip Ray has contributed a variant of defpun, defpun-exec, that
  supports executability. See community book
  books/defexec/defpun-exec/defpun-exec.lisp:

    (include-book \"defexec/defpun-exec/defpun-exec\" :dir :system)

  He has also contributed community book
  books/misc/misc2/defpun-exec-domain-example.lisp, for functions
  that are uniquely defined in a particular domain.")
 (DEFREC
  (EVENTS)
  "Introduce a record structure, like a struct in C.

  The defrec macro is built into ACL2 and is frequently used in the
  ACL2 sources to define basic kinds of structures.


Better Alternatives to Defrec

  While defrec may be a reasonable choice for writing [program]-mode
  code, most users would likely be better served by using one of the
  many, richer alternatives to [defrec] that are available in various
  books. See for instance macros such as:

    * The [std::defaggregate] macro from [std/util],
    * The [defdata] macro,
    * The [fty::defprod] macro from the [fty] library, and
    * The data-structures/structures book.

  A major reason to favor these macros over defrec is that they
  introduce the constructors and accessors for the structure as
  proper functions, rather than mere macros. This is very helpful
  when you are trying to use ACL2 to reason about code that works
  with structures. For instance, it means that your proof goals will
  involve terms like (employee->position x) instead of (cdddr x).

  Another reason is that defrec does not support putting constraints on
  the fields of your structure. For instance, you might want to have
  an employee structure where the name field is always a string. You
  can't do this with defrec, but any of the above macros support it.

  Some of the above macros also have other useful features, e.g.,
  integration with [b*], support for [xdoc] documentation, and so
  forth.


Usage

  A typical use of defrec might look like this:

    (defrec employee             ;; name of the structure
      (name salary . position)   ;; fields of the structure
      nil)                       ;; \"cheap\" flag

  This will result in the introduction of:

    * A \"weak\" recognizer function, weak-employee-p, which recognizes cons
      structures that have the right shape. We call the recognizer
      weak because it doesn't impose any constraints on the fields,
      e.g., there is no requirement that the name of an employee must
      be a string or that the salary must be a number.
    * A [make] macro that can be used like this:

          (make employee :name \"Jimmy\"
                         :salary 0
                         :position \"Unpaid Intern\")

    * A [change] macro that can be used like this:

          (let ((jimmy (make-employee :name \"Jimmy\" ...)))
            (change employee jimmy :salary 300000
                                   :position \"Vice President\"))

    * Suitable [access] macros that can be used like this:

          (let ((jimmy (make-employee :name \"Jimmy\" ...)))
            (access employee jimmy :name))


Subtopics

  [Access]
      Accessor macro for [defrec] structures.

  [Change]
      Mutator macro for [defrec] structures.

  [Make]
      Constructor macro for [defrec] structures.")
 (DEFREFINEMENT
  (EVENTS)
  "Prove that equiv1 refines equiv2

    Example:
    (defrefinement equiv1 equiv2)

    is an abbreviation for
    (defthm equiv1-refines-equiv2
      (implies (equiv1 x y) (equiv2 x y))
      :rule-classes (:refinement))

  See [refinement].

    General Form:
    (defrefinement equiv1 equiv2
      :rule-classes rule-classes
      :instructions instructions
      :hints hints
      :otf-flg otf-flg
      :event-name event-name
      :doc doc)

  where equiv1 and equiv2 are known [equivalence] relations,
  event-name, if supplied, is a symbol and all other arguments are as
  specified in the documentation for [defthm]. The defrefinement
  macro expands into a call of defthm. The name supplied is
  equiv1-refines-equiv2, unless event-name is supplied, in which case
  it is used as the name. The term supplied states that equiv1
  refines equiv2. The rule-class :refinement is added to the
  rule-classes specified, if it is not already there. All other
  arguments to the generated defthm form are as specified by the
  other keyword arguments above.")
 (DEFSTOBJ
  (EVENTS STOBJ)
  "Define a new single-threaded object

  Note: Novices are advised to avoid defstobj, perhaps instead using
  community books [std::defaggregate] or
  books/data-structures/structures.lisp. At the least, consider using
  ([set-verify-guards-eagerness] 0) to avoid [guard] verification. On
  the other hand, after you learn to use defstobj, see [defabsstobj]
  for another way to introduce single-threaded objects.

    Example:
    (defconst *mem-size* 10) ; for use of *mem-size* just below
    (defstobj st
              (reg :type (array (unsigned-byte 31) (8))
                   :initially 0)
              (p-c :type (unsigned-byte 31)
                   :initially 555)
              halt                  ; = (halt :type t :initially nil)
              (mem :type (array (unsigned-byte 31) (*mem-size*))
                   :initially 0 :resizable t))

    General Form:
    (defstobj name
              (field1 :type type1 :initially val1 :resizable b1)
              ...
              (fieldk :type typek :initially valk :resizable bk)
              :renaming alist
              :inline flg
              :congruent-to old-stobj-name
              :non-memoizable nm-flg)

  where name is a new symbol, each fieldi is a symbol, each typei is
  either a type-indicator (a [type-spec] or [stobj] name) or of the
  form (ARRAY type-indicator max), each vali is an object satisfying
  typei, and each bi is t or nil. Each pair :initially vali and
  :resizable bi may be omitted; more on this below. The :renaming
  alist argument is optional and allows the user to override the
  default function names introduced by this event. The :inline flg
  Boolean argument is also optional and declares to ACL2 that the
  generated access and update functions for the stobj should be
  implemented as macros under the hood (which has the effect of
  inlining the function calls). The optional :congruent-to
  old-stobj-name argument specifies an existing stobj with exactly
  the same structure, and is discussed below. The optional
  :non-memoizable nm-flg Boolean argument is ignored when nm-flg is
  nil; otherwise, it instructs ACL2 to lay down faster code for
  functions that return the new stobj but disallows [memoization] of
  any function that takes the new stobj as an argument. We describe
  further restrictions on the fieldi, typei, vali, and on alist
  below. We recommend that you read about single-threaded objects
  (stobjs) in ACL2 before proceeding; see [stobj].

  The effect of this event is to introduce a new single-threaded object
  (i.e., a ``[stobj]''), named name, and the associated recognizers,
  creator, accessors, updaters, constants, and, for fields of ARRAY
  type, length and resize functions.

  The Single-Threaded Object Introduced

  The defstobj event effectively introduces a new global variable,
  named name, which has as its initial logical value a list of k
  elements, where k is the number of ``field descriptors'' provided.
  The elements are listed in the same order in which the field
  descriptors appear. If the :type of a field is (ARRAY
  type-indicator (max)) then max is a non-negative integer or a
  symbol introduced by [defconst]) whose value is a non-negative
  integer, and the corresponding element of the stobj is initially of
  length specified by max.

  Whether the value :type is of the form (ARRAY type-indicator (max))
  or, otherwise, just type-indicator, then type-indicator is
  typically a type-spec; see [type-spec]. However, type-indicator can
  also be the name of a stobj that was previously introduced (by
  defstobj or [defabsstobj]). We ignore this ``nested stobj'' case
  below; see [nested-stobjs] for a discussion of stobjs within
  stobjs.

  The keyword value :initially val specifies the initial value of a
  field, except for the case of a :type (ARRAY type-indicator (max)),
  in which case val is the initial value of the corresponding array.

  Note that the actual representation of the stobj in the underlying
  Lisp may be quite different; see [stobj-example-2]. For the moment
  we focus entirely on the logical aspects of the object.

  In addition, the defstobj event introduces functions for recognizing
  and creating the stobj and for recognizing, accessing, and updating
  its fields. For fields of ARRAY type, length and resize functions
  are also introduced. Constants are introduced that correspond to
  the accessor functions.

  Restrictions on the Field Descriptions in Defstobj

  Each field descriptor is of the form:

    (fieldi :TYPE typei :INITIALLY vali)

  Note that the type and initial value are given in ``keyword
  argument'' format and may be given in either order. The typei and
  vali ``arguments'' are not evaluated. If omitted, the type defaults
  to t (unrestricted) and the initial value defaults to nil.

  Each typei must be either a [type-spec] or else a list of the form
  (ARRAY type-spec (max)). (Again, we are ignoring the case of nested
  stobjs, discussed elsewhere; see [nested-stobjs].) The latter forms
  are said to be ``array types.'' Examples of legal typei are:

    (INTEGER 0 31)
    (SIGNED-BYTE 31)
    (ARRAY (SIGNED-BYTE 31) (16))
    (ARRAY (SIGNED-BYTE 31) (*c*)) ; where *c* has a non-negative integer value

  The typei describes the objects which are expected to occupy the
  given field. Those objects in fieldi should satisfy typei. We are
  more precise below about what we mean by ``expected.'' We first
  present the restrictions on typei and vali.

  Non-Array Types

  When typei is a [type-spec] it restricts the contents, x, of fieldi
  according to the ``meaning'' formula given in the table for
  [type-spec]. For example, the first typei above restricts the field
  to be an integer between 0 and 31, inclusive. The second restricts
  the field to be an integer between -2^30 and (2^30)-1, inclusive.

  The initial value, vali, of a field description may be any ACL2
  object but must satisfy typei. Note that vali is not a form to be
  evaluated but an object. A form that evaluates to vali could be
  written 'vali, but defstobj does not expect you to write the quote
  mark. For example, the field description

    (days-off :initially (saturday sunday))

  describes a field named days-off whose initial value is the list
  consisting of the two symbols SATURDAY and SUNDAY. In particular,
  the initial value is NOT obtained by applying the function saturday
  to the variable sunday! Had we written

    (days-off :initially '(saturday sunday))

  it would be equivalent to writing

    (days-off :initially (quote (saturday sunday)))

  which would initialize the field to a list of length two, whose first
  element is the symbol quote and whose second element is a list
  containing the symbols saturday and sunday.

  Array Types

  When typei is of the form (ARRAY type-spec (max)), the field is
  supposed to be a list of items, initially of length specified by
  max, each of which satisfies the indicated type-spec. Max must be a
  non-negative integer or a defined constant evaluating to a
  non-negative integer. Thus, each of

    (ARRAY (SIGNED-BYTE 31) (16))
    (ARRAY (SIGNED-BYTE 31) (*c*)) ; given previous event (defconst *c* 16)

  restricts the field to be a list of integers, initially of length 16,
  where each integer in the list is a (SIGNED-BYTE 31). We sometimes
  call such a list an ``array'' (because it is represented as an
  array in the underlying Common Lisp). The elements of an array
  field are indexed by position, starting at 0. Thus, the maximum
  legal index of an array field one less than is specified by max.
  Note that the value of max must be less than the Common Lisp
  constant array-dimension-limit, and also (though this presumably
  follows) less than the Common Lisp constant array-total-size-limit.

  Note also that the ARRAY type requires that the max be enclosed in
  parentheses. This makes ACL2's notation consistent with the Common
  Lisp convention of describing the (multi-)dimensionality of arrays.
  But ACL2 currently supports only single dimensional arrays in
  stobjs.

  For array fields, the initial value vali must be an object satisfying
  the [type-spec] of the ARRAY description. The initial value of the
  field is a list of max repetitions of vali.

  Array fields can be ``resized,'' that is, their lengths can be
  changed, if :resizable t is supplied as shown in the example and
  General Form above. The new length must satisfy the same
  restriction as does max, as described above. Each array field in a
  defstobj event gives rise to a length function, which gives the
  length of the field, and a resize function, which modifies the
  length of the field if :resizable t was supplied with the field
  when the defstobj was introduced and otherwise causes an error. If
  :resizable t was supplied and the resize function specifies a new
  length k, then: if k is less than the existing array length, the
  array is shortened simply by dropping elements with index at least
  k; otherwise, the array is extended to length k by mapping the new
  indices to the initial value (supplied by :initially, else default
  nil).

  Array resizing is relatively slow, so we recommend using it somewhat
  sparingly.

  The Default Function Names

  To recap, in

    (defstobj name
              (field1 :type type1 :initially val1)
              ...
              (fieldk :type typek :initially valk)
              :renaming alist
              :doc doc-string
              :inline inline-flag)

  name must be a new symbol, each fieldi must be a symbol, each typei
  must be a [type-spec] or (ARRAY type-spec (max)), and each vali
  must be an object satisfying typei.

  Roughly speaking, for each fieldi, a defstobj introduces a recognizer
  function, an accessor function, and an updater function. The
  accessor function, for example, takes the stobj and returns the
  indicated component; the updater takes a new component value and
  the stobj and return a new stobj with the component replaced by the
  new value. But that summary is inaccurate for array fields.

  The accessor function for an array field does not take the stobj and
  return the indicated component array, which is a list of length
  specified by max. Instead, it takes an additional index argument
  and returns the indicated element of the array component.
  Similarly, the updater function for an array field takes an index,
  a new value, and the stobj, and returns a new stobj with the
  indicated element replaced by the new value.

  These functions --- the recognizer, accessor, and updater, and also
  length and resize functions in the case of array fields --- have
  ``default names.'' The default names depend on the field name,
  fieldi, and on whether the field is an array field or not. For
  clarity, suppose fieldi is named c. The default names are shown
  below in calls, which also indicate the arities of the functions.
  In the expressions, we use x as the object to be recognized by
  field recognizers, i as an array index, v as the ``new value'' to
  be installed by an updater, and name as the single-threaded object.

                     non-array field        array field
    recognizer         (cP x)                (cP x)
    accessor           (c name)              (cI i name)
    updater            (UPDATE-c v name)     (UPDATE-cI i v name)
    length                                   (c-LENGTH name)
    resize                                   (RESIZE-c k name)

  Finally, a recognizer and a creator for the entire single-threaded
  object are introduced. The creator returns the initial stobj, but
  may only be used in limited contexts; see [with-local-stobj]. If
  the single-threaded object is named name, then the default names
  and arities are as shown below.

    top recognizer     (nameP x)
    creator            (CREATE-name)

  For example, the event

    (DEFSTOBJ $S
      (X :TYPE INTEGER :INITIALLY 0)
      (A :TYPE (ARRAY (INTEGER 0 9) (3)) :INITIALLY 9))

  introduces a stobj named $S. The stobj has two fields, X and A. The A
  field is an array. The X field contains an integer and is initially
  0. The A field contains a list of integers, each between 0 and 9,
  inclusively. Initially, each of the three elements of the A field
  is 9.

  This event introduces the following sequence of definitions:

    (DEFUN XP (X) ...)               ; recognizer for X field
    (DEFUN AP (X) ...)               ; recognizer of A field
    (DEFUN $SP ($S) ...)             ; top-level recognizer for stobj $S
    (DEFUN CREATE-$S () ...)         ; creator for stobj $S
    (DEFUN X ($S) ...)               ; accessor for X field
    (DEFUN UPDATE-X (V $S) ...)      ; updater for X field
    (DEFUN A-LENGTH ($S) ...)        ; length of A field
    (DEFUN RESIZE-A (K $S) ...)      ; resizer for A field
    (DEFUN AI (I $S) ...)            ; accessor for A field at index I
    (DEFUN UPDATE-AI (I V $S) ...)   ; updater for A field at index I

  Avoiding the Default Function Names

  If you do not like the default names listed above you may use the
  optional :renaming alist to substitute names of your own choosing.
  Each element of alist should be of the form (fn1 fn2), where fn1 is
  a default name and fn2 is your choice for that name.

  For example

    (DEFSTOBJ $S
      (X :TYPE INTEGER :INITIALLY 0)
      (A :TYPE (ARRAY (INTEGER 0 9) (3)) :INITIALLY 9)
      :renaming ((X XACCESSOR) (CREATE-$S MAKE$S)))

  introduces the following definitions

    (DEFUN XP (X) ...)               ; recognizer for X field
    (DEFUN AP (X) ...)               ; recognizer of A field
    (DEFUN $SP ($S) ...)             ; top-level recognizer for stobj $S
    (DEFUN MAKE$S () ...)            ; creator for stobj $S
    (DEFUN XACCESSOR ($S) ...)       ; accessor for X field
    (DEFUN UPDATE-X (V $S) ...)      ; updater for X field
    (DEFUN A-LENGTH ($S) ...)        ; length of A field
    (DEFUN RESIZE-A (K $S) ...)      ; resizer for A field
    (DEFUN AI (I $S) ...)            ; accessor for A field at index I
    (DEFUN UPDATE-AI (I V $S) ...)   ; updater for A field at index I

  Note that even though the renaming alist substitutes ``XACCESSOR''
  for ``X'' the updater for the X field is still called ``UPDATE-X.''
  That is because the renaming is applied to the default function
  names, not to the field descriptors in the event.

  Use of the :renaming alist may be necessary to avoid name clashes
  between the default names and and pre-existing function symbols.

  Constants

  Defstobj events also introduce constant definitions (see [defconst]).
  One constant is introduced for each accessor function by prefixing
  and suffixing a `*' character on the function name. The value of
  that constant is the position of the field being accessed. For
  example, if the accessor functions are a, b, and c, in that order,
  then the following constant definitions are introduced.

    (defconst *a* 0)
    (defconst *b* 1)
    (defconst *c* 2)

  These constants are used for certain calls of [nth] and [update-nth]
  that are displayed to the user in proof output. For example, for
  stobj st with accessor functions a, b, and c, in that order, the
  term (nth '2 st) would be printed during a proof as (nth *c* st).
  Also see [term], in particular the discussion there of untranslated
  terms, and see [nth-aliases-table].

  Inspecting the Effects of a Defstobj

  Because the stobj functions are introduced as ``sub-events'' of the
  defstobj the history commands :[pe] and :[pc] will not print the
  definitions of these functions but will print the superior defstobj
  event. To see the definitions of these functions use the history
  command :[pcb!].

  To see an s-expression containing the definitions what constitute the
  raw Lisp implementation of the event, evaluate the form

    (nth 4 (global-val 'cltl-command (w state)))

  immediately after the defstobj event has been processed.

  A defstobj is considered redundant only if the name, field
  descriptors, renaming alist, and inline flag are identical to a
  previously executed defstobj. Note that a redundant defstobj does
  not reset the [stobj] fields to their initial values.

  Inlining and Performance

  The :inline keyword argument controls whether or not accessor,
  updater, and length functions are inlined (as macros under the
  hood, in raw Lisp). If :inline t is provided then these are
  inlined; otherwise they are not. The advantage of inlining is
  potentially better performance; there have been contrived examples,
  doing essentially nothing except accessing and updating array
  fields, where inlining reduced the time by a factor of 10 or more;
  and inlining has sped up realistic examples by a factor of at least
  2. Inlining may get within a factor of 2 of C execution times for
  such contrived examples, and within a few percent of C execution
  times on realistic examples.

  A drawback to inlining is that redefinition may not work as expected,
  much as redefinition may not work as expected for macros: defined
  functions that call a macro, or inlined stobj function, will not
  see a subsequent redefinition of the macro or inlined function.
  Another drawback to inlining is that because inlined functions are
  implemented as macros in raw Lisp, tracing (see [trace$]) will not
  show their calls. These drawbacks are avoided by default, but the
  user who is not concerned about them is advised to specify :inline
  t.

  Specifying Congruent Stobjs

  Two stobjs are may be considered to be ``congruent'' if they have the
  same structure, that is, their defstobj events are identical when
  ignoring field names. In particular, every stobj is congruent to
  itself. In order to tell ACL2 that a new stobj st2 is indeed to be
  considered as congruent to an existing stobj st1, the defstobj
  event introducing st2 is given the keyword argument :congruent-to
  st1. Congruence is an equivalence relation: when you specify a new
  stobj to be congruent to an old one, you are also specifying that
  the new stobj is congruent to all other stobjs that are congruent
  to the old one. Thus, continuing the example above, if you specify
  that st3 is :congruent-to st2, then st1, st2, and st3 will all be
  congruent to each other.

  When two stobjs are congruent, ACL2 allows you to substitute one for
  another in a function call. Any number of stobjs may be replaced
  with congruent stobjs in the call, provided no two get replaced
  with the same stobj. The return values are correspondingly
  modified: if stobj st1 is replaced by st2 at an argument position,
  and if st1 is returned in the output [signature] of the function,
  then st2 is returned in place of st1.

  The following example illustrates congruent stobjs. For more examples
  of how to take advantage of congruent stobjs, and also of how to
  misuse them, see community book
  books/misc/congruent-stobjs-test.lisp.

    (defstobj st1 fld1)
    (defstobj st2 fld2 :congruent-to st1)
    (defstobj st3 fld3 :congruent-to st2) ; equivalently, :congruent-to st1
    (defun f (st1 st2 st3)
      (declare (xargs :stobjs (st1 st2 st3)))
      (list (fld2 st1) (fld3 st2) (fld1 st3)))
    (update-fld1 1 st1)
    (update-fld1 2 st2) ; notice use of update-fld1 on st2
    (update-fld1 3 st3) ; notice use of update-fld1 on st3
    (assert-event (equal (f st3 st2 st1) '(3 2 1)))

  The following example shows an error that occurs when stobj arguments
  are repeated, i.e., at least two stobj arguments (in this case,
  three) get replaced by the same stobj.

    ACL2 !>(f st1 st1 st1)

    ACL2 Error in TOP-LEVEL:  The form ST1 is being used, as an argument
    to a call of F, where the single-threaded object ST2 was expected,
    even though these are congruent stobjs.  See :DOC defstobj, in particular
    the discussion of congruent stobjs.  Note:  this error occurred in
    the context (F ST1 ST1 ST1).

    ACL2 !>")
 (DEFSTUB
  (EVENTS)
  "Stub-out a function symbol

    Examples:
    ACL2 !>(defstub subr1 (* * state) => (mv * state))
    ACL2 !>(defstub add-hash (* * hashtable) => hashtable)

    General Form:
    (defstub name (args-sig) => output-sig)

  Name is a new function symbol and ((name . args-sig) => output-sig)
  is a [signature]. See also the ``Old Style'' heading below.

  A defstub macro call expands into an [encapsulate] event (see
  [encapsulate]). Thus, no axioms are available about name but it may
  be used wherever a function of the given signature is permitted.
  Exception: if output-sig is of the form (mv ...), then a
  :[type-prescription] rule is introduced stating that name returns a
  value satisfying [true-listp].

  Old Style:

    Old Style General Form:
    (defstub name formals output)
    (defstub name formals output)

  where name is a new function symbol, formals is its list of formal
  parameters, and output is either a symbol (indicating that the
  function returns one result) or a term of the form (mv s1 ... sn),
  where each si is a symbol (indicating that the function returns n
  results). Whether and where the symbol [state] occurs in formals
  and output indicates how the function handles [state]. It should be
  the case that (name formals output) is in fact a signature (see
  [signature]).

  Note that with the old style notation it is impossible to stub-out a
  function that uses any single-threaded object other than state. The
  old style is preserved for compatibility with earlier versions of
  ACL2.")
 (DEFTHEORY
  (EVENTS THEORIES)
  "Define a theory (to [enable] or [disable] a set of rules)

    Example:
    (deftheory interp-theory
               (set-difference-theories
                 (universal-theory :here)
                 (universal-theory 'interp-section)))

    General Form:
    (deftheory name term)

  where name is a new symbolic name (see [name]) and term is a term
  that when evaluated will produce a theory (see [theories]). Except
  for the variable [world], term must contain no free variables. Term
  is evaluated with [world] bound to the current world (see [world])
  and the resulting theory is then converted to a runic theory (see
  [theories]) and associated with name. Henceforth, this runic theory
  is returned as the value of the theory expression (theory name).

  The value returned is the length of the resulting theory. For
  example, in the following, the theory associated with 'FOO has 54
  [rune]s:

    ACL2 !>(deftheory foo (union-theories '(binary-append)
                                          (theory 'minimal-theory)))

    Summary
    Form:  ( DEFTHEORY FOO ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     54
    ACL2 !>

  Note that the theory being defined depends on the context. For
  example, consider the following (contrived) example book.

    (in-package \"ACL2\")
    (defund foo (x) (consp x)) ; defund disables foo
    (local (in-theory (enable foo)))
    (deftheory my-theory (current-theory :here))
    (in-theory (disable foo))
    (defthm foo-property
      (implies (consp x)
               (foo x))
      :hints ((\"Goal\" :in-theory (enable my-theory))))

  At the time foo-property is proved admissible during book
  certification (see [certify-book]), the [local] [in-theory] event
  has previously been evaluated, so the [definition] of foo is
  [enable]d. Thus, the :in-theory hint on foo-property will [enable]
  foo, and the theorem proves. HOWEVER, when the book is later
  included (see [include-book]), the [local] event is skipped, so the
  definition of foo is [disable]d at the time the [theory] my-theory
  is defined. Hence, unlike the case for the admissibility pass of
  the book's certification, that theory does not include the
  definition of foo when the book is included.

  There is, however, a way to ensure that a [theory] defined in a book
  is the same at [include-book] time as it was during the
  admissibility pass of the book's certification; see
  [deftheory-static].

  Note that a deftheory event is never redundant, see
  [redundant-events].")
 (DEFTHEORY-STATIC
  (EVENTS THEORIES)
  "Define a `static' theory (to [enable] or [disable] a set of rules)

  This macro provides a variant of [deftheory], such that the resulting
  theory is the same at [include-book] time as it was at
  [certify-book] time.

  We assume that the reader is familiar with [theories]; see
  [deftheory]. We begin here by illustrating how deftheory-static
  differs from [deftheory]. Suppose for example that the following
  events are the first two events in a book, where that book is
  certified in the initial ACL2 [world] (see [ground-zero]).

    (deftheory my-theory
      (current-theory :here))
    (deftheory-static my-static-theory
      (current-theory :here))

  Now suppose we include that book after executing the following event.

    (in-theory (disable car-cons))

  Suppose that later we execute (in-theory (theory 'my-theory)). Then
  the rule car-cons will be disabled, because it was disabled at the
  time the expression (current-theory :here) was evaluated when
  processing the deftheory of my-theory while including the book.
  However, if we execute (in-theory (theory 'my-static-theory)), then
  the rule car-cons will be enabled, because the value of the theory
  my-static-theory was saved at the time the book was certified.

    General Form:
    (deftheory-static name term)

  The arguments are handled the same as for [deftheory]. Thus, name is
  a new symbolic name (see [name]), and term is a term that when
  evaluated will produce a theory (see [theories]). Except for the
  variable [world], term must contain no free variables. Term is
  evaluated with [world] bound to the current world (see [world]) and
  the resulting theory is then converted to a runic theory (see
  [theories]) and associated with name. Henceforth, this runic theory
  is returned as the value of the theory expression (theory name).

  As for [deftheory], the value returned is the length of the resulting
  theory.

  We conclude with an optional discussion about the implementation of
  deftheory-static, for those familiar with [make-event]. The
  following macroexpansion of the deftheory-static form above shows
  how this works (see [trans1]).

    ACL2 !>:trans1 (deftheory-static my-static-theory
                     (current-theory :here))
     (MAKE-EVENT (LET ((WORLD (W STATE)))
                      (LIST 'DEFTHEORY
                            'MY-STATIC-THEORY
                            (LIST 'QUOTE (CURRENT-THEORY :HERE)))))
    ACL2 !>

  The idea is that upon evaluation of this make-event form, the first
  step is to evaluate the indicated [let] expression to obtain a form
  (deftheory my-theory '(...)), where ``(...)'' is a list of all
  [rune]s in current theory. If this form is in a book being
  certified, then the resulting deftheory form is stored in the
  book's certificate, and is used when the book is included later.")
 (DEFTHM
  (EVENTS)
  "Prove and name a theorem

    Examples:
    (defthm assoc-of-app
            (equal (app (app a b) c)
                   (app a (app b c))))

  The following nonsensical example illustrates all the optional
  arguments but is illegal because not all combinations are
  permitted. See [hints] for a complete list of [hints].

    (defthm main
            (implies (hyps x y z) (concl x y z))
           :rule-classes (:REWRITE :GENERALIZE)
           :instructions (induct prove promote (dive 1) x
                                 (dive 2) = top (drop 2) prove)
           :hints ((\"Goal\"
                    :do-not '(generalize fertilize)
                    :in-theory (set-difference-theories
                                 (current-theory :here)
                                 '(assoc))
                    :induct (and (nth n a) (nth n b))
                    :use ((:instance assoc-of-append
                                     (x a) (y b) (z c))
                          (:functional-instance
                            (:instance p-f (x a) (y b))
                            (p consp)
                            (f assoc)))))
           :otf-flg t)

    General Form:
    (defthm name term
            :rule-classes rule-classes
            :instructions instructions
            :hints        hints
            :otf-flg      otf-flg)

  where name is a new symbolic name (see [name]), term is a term
  alleged to be a theorem, and [rule-classes], [instructions],
  [hints], and [otf-flg] are as described in their respective
  [documentation]. The keyword arguments above are all optional,
  however you may not supply both :[instructions] and :[hints], since
  one drives the proof checker and the other drives the theorem
  prover. If :[rule-classes] is not specified, the list (:rewrite) is
  used; if you wish the theorem to generate no rules, specify
  :[rule-classes] nil.

  When ACL2 processes a defthm event, it first tries to prove the
  [term] using the indicated hints (see [hints]) or [instructions]
  (see [proof-checker]). If it is successful, it stores the rules
  described by the rule-classes (see [rule-classes]), proving the
  necessary corollaries.


Subtopics

  [Otf-flg]
      Allow more than one initial subgoal to be pushed for induction")
 (DEFTHMD
  (EVENTS)
  "Prove and name a theorem and then disable it

  Use defthmd instead of [defthm] when you want to disable a theorem
  immediately after proving it. This macro has been provided for
  users who prefer working in a mode where theorems are only enabled
  when explicitly directed by :[in-theory]. Specifically, the form

    (defthmd NAME TERM ...)

  expands to:

    (progn
      (defthmd NAME TERM ...)
      (with-output
       :off summary
       (in-theory (disable NAME)))
      (value-triple '(:defthmd NAME))).

  Note that defthmd commands are never redundant (see
  [redundant-events]). Even if the defthm event is redundant, then
  the [in-theory] event will still be executed.

  The summary for the [in-theory] event is suppressed. See [defthm] for
  documentation of defthm.")
 (DEFTTAG
  (INTERFACING-TOOLS EVENTS)
  "Introduce a trust tag (ttag)

  Introduction. This event is intended for advanced users who, in
  essence, want to build extensions of ACL2. The typical intended use
  is to create [books] that extend the functionality of ACL2 in ways
  not allowed without a so-called ``active trust tag''. A trust tag
  thus represents a contract: The writer of such a book is
  guaranteeing that the book extends ACL2 in a ``correct'' way as
  defined by the writer of the book. The writer of the book will
  often have a small section of the book in the scope of an active
  trust tag that can be inspected by potential users of that book:

    <initial part of book, which does not use trust tags>
    (defttag :some-ttag) ; install :some-ttag as an active trust tag
    <various code that requires an active trust tag>
    (defttag nil)        ; remove active trust tag
    <final part of book, which does not use trust tags>

  Why might trust tags be needed? The evaluation of certain functions
  can introduce bugs and even unsoundness, but can be useful in
  restricted ways that avoid such issues. For example, [sys-call] can
  be used in an unsafe way, for example to overwrite files, or worse;
  see [sys-call] for a frightening example from Bob Boyer. The
  following example shows that the function [sys-call] is restricted
  by default, but can be called after installing an active trust tag.

    ACL2 !>(sys-call \"pwd\" nil)

    ACL2 Error in TOP-LEVEL:  The SYS-CALL function cannot be called unless
    a trust tag is in effect.  See :DOC defttag.

    ACL2 !>(defttag t) ; Install :T as an active trust tag.

    TTAG NOTE: Adding ttag :T from the top level loop.
     T
    ACL2 !>(sys-call \"pwd\" nil) ; print the current directory and return NIL
    /u/kaufmann
    NIL
    ACL2 !>(defttag nil) ; Remove the active trust tag (using value NIL).
     NIL
    ACL2 !>(sys-call \"pwd\" nil) ; Now we get the error again:

    ACL2 Error in TOP-LEVEL:  The SYS-CALL function cannot be called unless
    a trust tag is in effect.  See :DOC defttag.

    ACL2 !>

  Of course, using [sys-call] with the Linux command pwd is not likely
  to cause any soundness problems! So suppose we want to create a
  function that prints the working directory. We might put the
  following [events] into a book that is to be certified.

    (in-package \"ACL2\")
    (defttag :pwd-ttag)
    (defun print-working-dir ()
      (declare (xargs :mode :program))
      (sys-call \"pwd\" nil))
    (defttag nil) ; optional (books end with this implicitly)

  We can certify this book with a specification that :pwd-ttag is a
  legal trust tag:

    (certify-book \"pwd\" 0 t :ttags (:pwd-ttag))

  One can now use this book by executing [include-book] with keyword
  parameter :ttags (:pwd-ttag) and then calling function
  print-working-dir:

    (include-book \"pwd\" :ttags (:pwd-ttag))
    (print-working-dir) ; working directory is printed to terminal

  Detailed documentation.

    General Form:
    (defttag tag-name)

  where tag-name is a symbol.

  Note however that if tag-name is not nil, then it is converted to a
  ``corresponding [keyword]'': a symbol in the \"KEYWORD\" package with
  the same [symbol-name] as tag-name. Thus, for example, (defttag
  foo) is equivalent to (defttag :foo). Moreover, a non-nil symbol
  with a [symbol-name] of \"NIL\" is illegal for trust tags; thus, for
  example, (defttag :nil) is illegal.

  This event introduces or removes a so-called active trust tag (or
  ``ttag'', pronounced ``tee tag''). An active ttag is a [keyword]
  symbol that is associated with potentially unsafe evaluation. For
  example, calls of [sys-call] are illegal unless there is an active
  trust tag. An active trust tag can be installed using a defttag
  event. If one introduces an active ttag and then writes definitions
  with calls [sys-call], presumably in a defensibly ``safe'' way,
  then responsibility for those calls is attributed to that ttag.
  This attribution (or blame!) is at the level of [books]; a book's
  [certificate] contains a list of ttags that are active in that
  book, or in a book that is included (possibly [local]ly), or in a
  book included in a book that is included (either inclusion being
  potentially [local]), and so on. We explain all this in more detail
  below.

  (Defttag :tag-name) is essentially equivalent to

    (table acl2-defaults-table :ttag :tag-name)

  and hence is [local] to any [books] and [encapsulate] [events] in
  which it occurs; see [ACL2-defaults-table]. We say more about the
  scope of defttag forms below.

  Note: This is an event! It does not print the usual event summary but
  nevertheless executes the above [table] event and hence changes the
  ACL2 logical [world], and is so recorded. Although no event summary
  is printed, it is important to note that the ``TTAG NOTE'',
  discussed below, is always printed for a non-nil :tag-name (unless
  deferred; see [set-deferred-ttag-notes]).

  Active ttags. Suppose tag-name is a non-nil symbol. Then (defttag
  :tag-name) sets :tag-name to be the (unique) ``active ttag.'' There
  must be an active ttag in order for there to be any mention of
  certain function and macro symbols, including [sys-call]; evaluate
  the form (strip-cars *ttag-fns-and-macros*) to see the full list of
  such symbols. On the other hand, (defttag nil) removes the active
  ttag, if any; there is then no active ttag. The scope of a defttag
  form in a book being certified or included is limited to subsequent
  forms in the same book before the next defttag (if any) in that
  book. Similarly, if a defttag form is evaluated in the top-level
  loop, then its effect is limited to subsequent forms in the
  top-level loop before the next defttag in the top-level loop (if
  any). Moreover, [certify-book] is illegal when a ttag is active; of
  course, in such a circumstance one can execute (defttag nil) in
  order to allow book certification.

  Ttag notes and the ``certifier.'' When a defttag is executed with an
  argument other than nil, output is printed, starting on a fresh
  line with: TTAG NOTE. For example:

    ACL2 !>(defttag :foo)

    TTAG NOTE: Adding ttag :FOO from the top level loop.
     :FOO
    ACL2 !>

  If the defttag occurs in an included book, the message looks like
  this.

    TTAG NOTE (for included book): Adding ttag :FOO from file /u/smith/acl2/my-book.lisp.

  The ``TTAG NOTE'' message is always printed on a single line. The
  intention is that one can search the standard output for all such
  notes in order to find all defttag events. In a sense, defttag
  events can allow you to define your own system on top of ACL2 (for
  example, see [progn!]). So in order for someone else (who we might
  call the ``certifier'') to be confident that your collection of
  [books] is meaningful, that certifier should certify all the
  user-supplied books from scratch and check either that no :ttags
  were supplied to [certify-book], or else look for every TTAG NOTE
  in the standard output in order to locate all defttag [events] with
  non-nil tag name. In this way, the certifier can in principle
  decide whether to be satisfied that those defttag events did not
  allow inappropriate forms in the user-supplied books.

  In order to eliminate much of the output from TTAG NOTEs, see
  [set-deferred-ttag-notes]. Note however that the resulting security
  is somewhat less; therefore, a TTAG NOTE is printed when invoking
  set-deferred-ttag-notes to defer printing of ttag notes.

  Allowed ttags when certifying and including books. A defttag form may
  not be evaluated unless its argument is a so-called ``allowed''
  ttag. All ttags are allowed in the interactive top-level loop.
  However, during [certify-book] and [include-book], the set of
  allowed ttags is restricted according to the :ttags keyword
  argument. If this argument is omitted then no ttag is allowed, so a
  defttag call will fail during book certification or inclusion in
  this case. This restriction applies even to defttag forms already
  evaluated in the so-called certification [world] at the time
  [certify-book] is called. But note that (defttag nil) is always
  legal.

  A :ttags argument of [certify-book] and [include-book] can have value
  :all, indicating that every ttag is allowed, i.e., no restriction
  is being placed on the arguments, just as in the interactive
  top-level loop. In the case of include-book, an omitted :ttags
  argument or an argument of :default is treated as :all, except that
  warnings will occur when the book's [certificate] includes ttags;
  but for certify-book, an omitted ttags argument is treated as nil.
  Otherwise, if the :ttags argument is supplied but not :all, then
  its value is a true list of ttag specifications, each having one of
  the following forms, where sym is a non-nil symbol which is treated
  as the corresponding [keyword].

      (1) :sym

      (2) (:sym)

      (3) (:sym x1 x2 ... xk), where k > 0 and each xi is a string, except
      that one xi may be nil.

  In Case (1), (defttag :sym) is allowed to occur in at most one book
  or else in the top-level loop (i.e., the certification world for a
  book under certification or a book being included). Case (2) allows
  (defttag :sym) to occur in an unlimited number of books. For case
  (3) the xi specify where (defttag :sym) may occur, as follows. The
  case that xi is nil refers to the top-level loop, while all other
  xi are filenames, where the \".lisp\" extension is optional and
  relative pathnames are considered to be relative to the connected
  book directory (see [cbd]). Note that the restrictions on (defttag
  :sym) apply equally to any equivalent for based on the notion of
  ``corresponding keyword'' discussed above, e.g., (defttag
  acl2::sym).

  An error message, as shown below, illustrates how ACL2 enforcess the
  notion of allowed ttags. Suppose that you call [certify-book] with
  argument :ttags (:foo), where you have already executed (defttag
  :foo) in the certification world (i.e., before calling
  [certify-book]). Then ACL2 immediately associates the ttag :foo
  with nil, where again, nil refers to the top-level loop. If ACL2
  then encounters (defttag foo) inside that book, you will get the
  following error (using the full book name for the book, as shown):

    ACL2 Error in ( TABLE ACL2-DEFAULTS-TABLE ...):  The ttag :FOO associated
    with file /u/smith/work/my-book.lisp is not among the set of ttags permitted
    in the current context, specified as follows:
      ((:FOO NIL)).
    See :DOC defttag.

  In general the structure displayed by the error message, which is
  ((:FOO NIL)) in this case, represents the currently allowed ttags
  with elements as discussed in (1) through (3) above. In this case,
  that list's unique element is (:FOO NIL), meaning that ttag :FOO is
  only allowed at the top level (as represented by NIL).

  Associating ttags with books and with the top-level loop. When a book
  is certified, each form (defttag tag) that is encountered for
  non-nil tag in that book or an included book is recorded in the
  generated [certificate], which associates the keyword corresponding
  to tag with the [full-book-name] of the book containing that
  deftag. If such a defttag form is encountered outside a book, hence
  in the [portcullis] of the book being certified or one of its
  included books, then that keyword is associated with nil in the
  generated [certificate]. Note that the notion of ``included book''
  here applies to the recursive notion of a book either included
  directly in the book being certified or else included in such a
  book, where we account even for [local]ly included books.

  For examples of ways to take advantage of ttags, see [hacker],
  [include-raw], [quicklisp], and more generally [interfacing-tools].
  See also [ttags-seen], [progn!], [remove-untouchable],
  [set-raw-mode], and [sys-call].


Subtopics

  [Push-untouchable]
      Add name or list of names to the list of untouchable symbols

  [Remove-untouchable]
      Remove names from lists of untouchable symbols

  [Set-deferred-ttag-notes]
      Modify the verbosity of TTAG NOTE printing

  [Set-raw-mode]
      Enter or exit ``raw mode,'' a raw Lisp environment

  [Set-raw-mode-on!]
      Enter ``raw mode,'' a raw Lisp environment")
 (DEFUN
  (EVENTS PROGRAMMING)
  "Define a function symbol

    Examples:
    (defun app (x y)
      (if (consp x)
          (cons (car x) (app (cdr x) y))
          y))

    (defun fact (n)
      (declare (xargs :guard (and (integerp n)
                                  (>= n 0))))
      (if (zp n)
          1
          (* n (fact (1- n)))))

    General Form:
    (defun fn (var1 ... varn) doc-string dcl ... dcl body),

  where fn is the symbol you wish to define and is a new symbolic name
  (see [name]), (var1 ... varn) is its list of formal parameters (see
  [name]), and body is its body. The definitional axiom is logically
  admissible provided certain restrictions are met. These are
  sketched below.

  Note that ACL2 does not support the use of lambda-list keywords (such
  as &optional) in the formals list of functions. We do support some
  such keywords in macros and often you can achieve the desired
  syntax by defining a macro in addition to the general version of
  your function. See [defmacro]. Doc-string, if non-nil, is an
  optional string that can provide documentation but is essentially
  ignored by ACL2.

  The declarations (see [declare]), dcl, are also optional. If more
  than one dcl form appears, they are effectively grouped together as
  one. Perhaps the most commonly used ACL2 specific declaration is of
  the form (declare (xargs :guard g :measure m)). This declaration in
  the defun of some function fn has the effect of making the
  ``[guard]'' for fn be the term g and the ``measure'' be the term m.
  The notion of ``measure'' is crucial to ACL2's definitional
  principle. The notion of ``guard'' is not, and is discussed
  elsewhere; see [verify-guards] and see
  [set-verify-guards-eagerness]. Note that the :measure is ignored in
  :[program] mode; see [defun-mode].

  We now briefly discuss the ACL2 definitional principle, using the
  following definition form which is offered as a more or less
  generic example.

    (defun fn (x y)
      (declare (xargs :guard (g x y)
                      :measure (m x y)))
      (if (test x y)
          (stop x y)
        (step (fn (d x) y))))

  Note that in our generic example, fn has just two arguments, x and y,
  the [guard] and measure terms involve both of them, and the body is
  a simple case split on (test x y) leading to a ``non-recursive''
  branch, (stop x y), and a ``recursive'' branch. In the recursive
  branch, fn is called after ``decrementing'' x to (d x) and some
  step function is applied to the result. Of course, this generic
  example is quite specific in form but is intended to illustrate the
  more general case.

  Provided this definition is admissible under the logic, as outlined
  below, it adds the following axiom to the logic.

    Defining Axiom:
    (fn x y)
      =
    (if (test x y)
        (stop x y)
      (step (fn (d x) y)))

  Note that the [guard] of fn has no bearing on this logical axiom.

  This defining axiom is actually implemented in the ACL2 system by a
  :[definition] rule, namely

    (equal (fn x y)
           (if (test a b)
               (stop a b)
             (step (fn (d a) b)))).

  See [definition] for a discussion of how definition rules are
  applied. Roughly speaking, the rule causes certain instances of (fn
  x y) to be replaced by the corresponding instances of the body
  above. This is called ``opening up'' (fn x y). The instances of (fn
  x y) opened are chosen primarily by heuristics which determine that
  the recursive calls of fn in the opened body (after simplification)
  are more desirable than the unopened call of fn.

  This discussion has assumed that the definition of fn was admissible.
  Exactly what does that mean? First, fn must be a previously
  unaxiomatized function symbol (however, see
  [ld-redefinition-action]). Second, the formal parameters must be
  distinct variable names. Third, the [guard], measure, and body
  should all be terms and should mention no free variables except the
  formal parameters. Thus, for example, body may not contain
  references to ``global'' or ``special'' variables; ACL2 constants
  or additional formals should be used instead.

  The final conditions on admissibility concern the termination of the
  recursion. Roughly put, all applications of fn must terminate. In
  particular, there must exist a binary relation, rel, and some unary
  predicate mp such that rel is well-founded on objects satisfying
  mp, the measure term m must always produce something satisfying mp,
  and the measure term must decrease according to rel in each
  recursive call, under the hypothesis that all the tests governing
  the call are satisfied. By the meaning of well-foundedness, we know
  there are no infinitely descending chains of successively
  rel-smaller mp-objects. Thus, the recursion must terminate.

  The only primitive well-founded relation in ACL2 is [o<] (see [o<]),
  which is known to be well-founded on the [o-p]s (see [o-p]). For
  the proof of well-foundedness, see [proof-of-well-foundedness].
  However it is possible to add new well-founded relations. For
  details, see [well-founded-relation]. We discuss later how to
  specify which well-founded relation is selected by defun and in the
  present discussion we assume, without loss of generality, that it
  is [o<] on the [o-p]s.

  For example, for our generic definition of fn above, with measure
  term (m x y), two theorems must be proved. The first establishes
  that m produces an ordinal:

    (o-p (m x y)).

  The second shows that m decreases in the (only) recursive call of fn:

    (implies (not (test x y))
             (o< (m (d x) y) (m x y))).

  Observe that in the latter formula we must show that the ``m-size''
  of (d x) and y is ``smaller than'' the m-size of x and y, provided
  the test, (test x y), in the body fails, thus leading to the
  recursive call (fn (d x) y).

  See [o<] for a discussion of this notion of ``smaller than.'' It
  should be noted that the most commonly used ordinals are the
  natural numbers and that on natural numbers, [o<] is just the
  familiar ``less than'' relation ([<]). Thus, it is very common to
  use a measure m that returns a nonnegative integer, for then (o-p
  (m x y)) becomes a simple conjecture about the type of m and the
  second formula above becomes a conjecture about the less-than
  relationship of nonnegative integer arithmetic.

  The most commonly used measure function is [ACL2-count], which
  computes a nonnegative integer size for all ACL2 objects. See
  [ACL2-count].

  Probably the most common recursive scheme in Lisp [programming] is
  when some formal is supposed to be a list and in the recursive call
  it is replaced by its [cdr]. For example, (test x y) might be
  simply (atom x) and (d x) might be (cdr x). In that case,
  (acl2-count x) is a suitable measure because the [ACL2-count] of a
  [cons] is strictly larger than the [ACL2-count]s of its [car] and
  [cdr]. Thus, ``recursion by [car]'' and ``recursion by [cdr]'' are
  trivially admitted if [ACL2-count] is used as the measure and the
  definition protects every recursive call by a test insuring that
  the decremented argument is a [consp]. Similarly, ``recursion by
  [1-]'' in which a positive integer formal is decremented by one in
  recursion, is also trivially admissible. See [built-in-clause] to
  extend the class of trivially admissible recursive schemes.

  We now turn to the question of which well-founded relation defun
  uses. It should first be observed that defun must actually select
  both a relation (e.g., [o<]) and a domain predicate (e.g., [o-p])
  on which that relation is known to be well-founded. But, as noted
  elsewhere (see [well-founded-relation]), every known well-founded
  relation has a unique domain predicate associated with it and so it
  suffices to identify simply the relation here.

  The [xargs] field of a [declare] permits the explicit specification
  of any known well-founded relation with the keyword
  :[well-founded-relation]. An example is given below. If the [xargs]
  for a defun specifies a well-founded relation, that relation and
  its associated domain predicate are used in generating the
  termination conditions for the definition.

  If no :[well-founded-relation] is specified, defun uses the
  :[well-founded-relation] specified in the [ACL2-defaults-table].
  See [set-well-founded-relation] to see how to set the default
  well-founded relation (and, implicitly, its domain predicate). The
  initial default well-founded relation is [o<] (with domain
  predicate [o-p]).

  This completes the brief sketch of the ACL2 definitional principle.
  Optionally, see [ruler-extenders] for a more detailed discussion of
  the termination analysis and resulting proof obligations for
  admissibility, as well as a discussion of the relation to how ACL2
  stores induction schemes.

  On very rare occasions ACL2 will seem to \"hang\" when processing a
  definition, especially if there are many subexpressions of the body
  whose function symbol is [if] (or which macroexpand to such an
  expression). In those cases you may wish to supply the following to
  [xargs]: :normalize nil. This is an advanced feature that turns off
  ACL2's usual propagation upward of if tests along with potential
  simplification with [type-set] reasoning and the expansion of calls
  of a few built-in functions.

  When a defun form is submitted, ACL2 sometimes computes and stores a
  [type-prescription] rule for the function. See
  [type-prescription-debugging] for relevant discussion.

  The following example illustrates all of the available declarations
  and most hint keywords, but is completely nonsensical. For
  documentation, see [xargs] and see [hints].

    (defun example (x y z a b c i j)
      (declare (ignore a b c)
               (type integer i j)
               (xargs :guard (symbolp x)
                      :measure (- i j)
                      :ruler-extenders :basic
                      :well-founded-relation my-wfr
                      :hints ((\"Goal\"
                               :do-not-induct t
                               :do-not '(generalize fertilize)
                               :expand ((assoc x a) (member y z))
                               :restrict ((<-trans ((x x) (y (foo x)))))
                               :hands-off (length binary-append)
                               :in-theory (set-difference-theories
                                            (current-theory :here)
                                            '(assoc))
                               :induct (and (nth n a) (nth n b))
                               :use ((:instance assoc-of-append
                                                (x a) (y b) (z c))
                                     (:functional-instance
                                       (:instance p-f (x a) (y b))
                                       (p consp)
                                       (f assoc)))))
                      :guard-hints ((\"Subgoal *1/3'\"
                                     :use ((:instance assoc-of-append
                                                      (x a) (y b) (z c)))))
                      :mode :logic
                      :normalize nil
                      :verify-guards nil
                      :non-executable t
                      :otf-flg t))
      (example-body x y z i j))


Subtopics

  [Defn]
      Definition with [guard] t

  [Defnd]
      [disable]d definition with [guard] t

  [Defun-inline]
      Define a potentially inlined function symbol and associated macro

  [Defun-mode]
      Determines whether a function definition is a logical act

  [Defun-notinline]
      Define a not-to-be-inlined function symbol and associated macro

  [Defun-nx]
      Define a non-executable function symbol

  [Defund]
      Define a function symbol and then disable it

  [Defund-inline]
      Define a potentially disabled, inlined function symbol and
      associated macro

  [Defund-notinline]
      Define a disabled, not-to-be-inlined function symbol and associated
      macro

  [Mutual-recursion]
      Define some mutually recursive functions

  [Ruler-extenders]
      Control for ACL2's termination and induction analyses

  [Set-bogus-defun-hints-ok]
      Allow unnecessary ([xargs] :hints ...).

  [Set-ignore-ok]
      Allow unused formals and locals without an ignore or ignorable
      declaration

  [Set-irrelevant-formals-ok]
      Allow irrelevant formals in definitions

  [Set-measure-function]
      Set the default measure function symbol

  [Set-well-founded-relation]
      Set the default well-founded relation

  [Xargs]
      Extra arguments, for example to give [hints] to [defun]")
 (DEFUN-INLINE
  (DEFUN EVENTS)
  "Define a potentially inlined function symbol and associated macro

  You may be able to improve performance by replacing an event (defun f
  ...) with a corresponding event (defun-inline f ...), in order to
  encourage the host Lisp compiler to inline calls of f.

    Example Form:
    (defun-inline lng (x)
      (declare (xargs :guard (true-listp x)))
      (if (endp x) 0 (1+ (lng (cdr x)))))

    General Form:
    (defun-inline fn (var1 ... varn) doc-string dcl ... dcl body)

  satisfying the same requirements as in the General Form for [defun].
  The effect is to define a macro fn and a function fn$inline (i.e.,
  a symbol in the same package as fn but whose [symbol-name] has the
  suffix \"$INLINE\", such that each call of fn expands to a call of
  the function symbol fn$inline on the same arguments. Moreover,
  [table] [events] are generated that allow the use of fn in [theory]
  expressions to represent fn$inline and that cause any untranslated
  (user-level) call of fn$inline to be printed as the corresponding
  call of fn. Doc-string, if non-nil, is an optional string that can
  provide documentation but is essentially ignored by ACL2.

  A form (defun-inline f ...) actually defines a function named
  f$inline and a corresponding macro named f whose calls expand to
  calls of f$inline, while providing the illusion that there is just
  the ``function'' f. For example, the Example Form above
  macroexpands in one step to the following form.

    (progn (defmacro lng (non-stobj-var0)
             (list 'lng$inline non-stobj-var0))
           (add-macro-fn lng lng$inline)
           (defun lng$inline (x)
             (declare (xargs :guard (true-listp x)))
             (if (endp x) 0 (1+ (lng (cdr x))))))

  Note that the above call of [add-macro-fn] generates the
  aforementioned two table events (see [add-macro-fn]), which provide
  the illusion that we are just defining a function lng, as you can
  see in the following log: lng appears rather than lng$inline.

    ACL2 !>(set-gag-mode nil)
    <state>
    ACL2 !>(thm (equal (lng (append x y))
                       (+ (lng x) (lng y)))
                :hints ((\"Goal\" :in-theory (enable lng))))

    [.. output omitted ..]

    Subgoal *1/2
    (IMPLIES (AND (NOT (ENDP X))
                  (EQUAL (LNG (APPEND (CDR X) Y))
                         (+ (LNG (CDR X)) (LNG Y))))
             (EQUAL (LNG (APPEND X Y))
                    (+ (LNG X) (LNG Y)))).

    [.. output omitted ..]

  Under the hood, ACL2 arranges that every function symbol with suffix
  \"$INLINE\" is presented to the compiler as one whose calls we would
  prefer to inline. Technically: the Common Lisp form (declaim
  (inline f$inline)) is generated for a function symbol f$inline
  before that symbol's definition is submitted. However, the Common
  Lisp spec explicitly avoids requiring that the compiler respect
  this declaim form. Fortunately, Common Lisp implementations often
  do respect it.

  Also see [defund-inline], see [defun-notinline], and see
  [defund-notinline].

  Remarks.

  (1) None of these macros (including defun-inline) is supported for
  use inside a [mutual-recursion].

  (2) Every function symbol defined in ACL2 whose [symbol-name] has the
  suffix \"$INLINE\" is proclaimed to be inline; similarly for
  \"$NOTINLINE\" and notinline.

  (3) No special treatment for inlining (or notinlining) is given for
  function symbols locally defined by [flet], with two exceptions:
  when explicitly declared inline or notinline by the flet form, and
  for symbols discussed in (1) and (2) above that, at some point in
  the current ACL2 session, were defined as function symbols in ACL2
  (even if not currently defined because of undoing or being
  [local]).

  (4) The function symbol actually being defined by (defun-inline foo
  ...) is foo$inline. As mentioned above, one can be oblivious to
  this fact when writing [theory] expressions or perusing prover
  output. However, for other purposes (for example, [verify-guards]
  and [defabsstobj] :exports) you will need to supply the name of the
  function symbol rather than the name of the macro; e.g., for the
  above form (defun-inline foo ...), you may subsequently issue the
  event (verify-guards foo$inline) but not (verify-guards foo).

  (5) Obscure Remark. Suppose that you certify a book with compilation
  (the default) in one host Lisp, saving the expansion file. Suppose
  that you then compile in another host Lisp by using [include-book]
  with argument :load-compiled-file :comp. Then in subsequent
  sessions, including that book with the second host Lisp will not
  result in any inline or notinline behavior for functions defined in
  the book. This may be fixed in a future release if someone
  complains.")
 (DEFUN-MODE
  (DEFUN)
  "Determines whether a function definition is a logical act

  Two ``[defun-mode]s'' are supported, :[program] and :[logic]. Roughly
  speaking, :[program] mode allows you to prototype a function for
  execution without any proof burdens, while :[logic] mode allows you
  to add a new definitional axiom to the logic. The system comes up
  in :[logic] mode. Execution of functions whose [defun-mode] is
  :[program] may render ACL2 unsound! See [defun-mode-caveat].

  Note that calls of [local] and of many [events] are skipped in
  :program mode; see [program].

  When you define a function in the ACL2 logic, that function can be
  run on concrete data. But it is also possible to reason deductively
  about the function because each definition extends the underlying
  logic with a definitional axiom. To ensure that the logic is sound
  after the addition of this axiom, certain restrictions have to be
  met, namely that the recursion terminates. This can be quite
  challenging.

  Because ACL2 is a [programming] language, you often may wish simply
  to program in ACL2. For example, you may wish to define your system
  and test it, without any logical burden. Or, you may wish to define
  ``utility'' functions --- functions that are executed to help
  manage the task of building your system but functions whose logical
  properties are of no immediate concern. Such functions might be
  used to generate test data or help interpret the results of tests.
  They might create files or explore the ACL2 database. The
  termination arguments for such functions are an unnecessary burden
  provided no axioms about the functions are ever used in deductions.

  Thus, ACL2 introduces the idea of the ``[defun-mode]'' of a function.
  The :mode keyword of [defun]'s [declare] xarg allows you to specify
  the [defun-mode] of a given definition. If no :mode keyword is
  supplied, the default [defun-mode] is used; see
  [default-defun-mode].

  There are two [defun-mode]s, each of which is written as a keyword:

  :[program] --- logically undefined but executable outside deductive
  contexts.

  :[logic] --- axiomatically defined as per the ACL2 definitional
  principle.

  It is possible to change the [defun-mode] of a function from
  :[program] to :[logic]. We discuss this below.

  We think of functions having :[program] mode as ``dangerous''
  functions, while functions having :[logic] mode are ``safe.'' The
  only requirement enforced on :[program] mode functions is the
  syntactic one: each definition must be well-formed ACL2. Naively
  speaking, if a :[program] mode function fails to terminate then no
  harm is done because no axiom is added (so inconsistency is
  avoided) and some invocations of the function may simply never
  return. This simplistic justification of :[program] mode execution
  is faulty because it ignores the damage that might be caused by
  ``mis-guarded'' functions. See [defun-mode-caveat].

  We therefore implicitly describe an imagined implementation of
  [defun-mode]s that is safe and, we think, effective. But please see
  [defun-mode-caveat].

  The default [defun-mode] is :[logic]. This means that when you
  [defun] a function the system will try to prove termination. If you
  wish to introduce a function of a different [defun-mode] use the
  :mode [xargs] keyword. Below we show fact introduced as a function
  in :[program] mode.

    (defun fact (n)
      (declare (xargs :mode :program))
      (if (or (not (integerp n)) (= n 0))
          1
        (* n (fact (1- n)))))

  No axiom is added to the logic as a result of this definition. By
  introducing fact in :[program] mode we avoid the burden of a
  termination proof, while still having the option of executing the
  function. For example, you can type

    ACL2 !>(fact 3)

  and get the answer 6. If you type (fact -1) you will get a hard lisp
  error due to ``infinite recursion.''

  However, the ACL2 theorem prover knows no axioms about fact. In
  particular, if the term (fact 3) arises in a proof, the theorem
  prover is unable to deduce that it is 6. From the perspective of
  the theorem prover it is as though fact were an undefined function
  symbol of arity 1. Thus, modulo certain important issues (see
  [defun-mode-caveat]), the introduction of this function in
  :[program] mode does not imperil the soundness of the system ---
  despite the fact that the termination argument for fact was omitted
  --- because nothing of interest can be proved about fact. Indeed,
  we do not allow fact to be used in logical contexts such as
  conjectures submitted for proof.

  It is possible to convert a function from :[program] mode to :[logic]
  mode at the cost of proving that it is admissible. This can be done
  by invoking

    (verify-termination fact)

  which is equivalent to submitting the [defun] of fact, again, but in
  :[logic] mode.

    (defun fact (n)
      (declare (xargs :mode :logic))
      (if (or (not (integerp n)) (= n 0))
          1
        (* n (fact (1- n)))))

  This particular event will fail because the termination argument
  requires that n be nonnegative. A repaired [defun], for example
  with [=] replaced by [<=], will succeed, and an axiom about fact
  will henceforth be available.

  Technically, [verify-termination] submits a redefinition of the
  :[program] mode function. This is permitted, even when
  [ld-redefinition-action] is nil, because the new definition is
  identical to the old (except for its :mode and, possibly, other
  non-logical properties).

  See [guard] for a discussion of how to restrict the execution of
  functions. [Guard]s may be ``verified'' for functions in :[logic]
  mode; see [verify-guards].


Subtopics

  [Logic]
      To set the default [defun-mode] to :logic

  [Program]
      To set the default [defun-mode] to :[program]")
 (DEFUN-MODE-CAVEAT
  (COMMON-LISP)
  "Potential soundness issue for functions with [defun-mode] :[program]

  Technically speaking, in the current implementation, the execution of
  functions having [defun-mode] :[program] may damage the ACL2 system
  in a way that renders it unsound. In practice, we have never seen
  this happen; so, the explanations below can be viewed as extremely
  paranoid. Nevertheless, here we document this concern, even if it
  should be taken with more than a grain of salt.

  See [defun-mode] for a discussion of [defun-mode]s. That discussion
  describes an imagined implementation that is slightly different
  from this one. This note explains that the current implementation
  is open to unsoundness.

  For discussion of a different soundness issue that is also related to
  function execution, see [generalized-booleans].

  The execution of a function having [defun-mode] :[program] may
  violate Common Lisp [guard]s on the subroutines used. (This may be
  true even for calls of a function on arguments that satisfy its
  [guard], because ACL2 has not verified that its [guard] is
  sufficient to protect its subroutines.) When a [guard] is violated
  at runtime all bets are off. That is, no guarantees are made either
  about the answer being ``right'' or about the continued rationality
  of the ACL2 system itself.

  For example, suppose you make the following [defun]:

    (defun crash (i)
      (declare (xargs :mode :program :guard (integerp i)))
      (car i))

  Note that the declared guard does not in fact adequately protect the
  subroutines in the body of crash; indeed, satisfying the guard to
  crash will guarantee that the [car] expression is in violation of
  its guard. Because this function is admitted in :[program]-mode, no
  checks are made concerning the suitability of the guard.
  Furthermore, in the current ACL2 implementation, crash is executed
  directly in Common Lisp. Thus if you call crash on an argument
  satisfying its guard you will cause an erroneous computation to
  take place.

    ACL2 !>(crash 7)

    Error: Caught fatal error [memory may be damaged]
    ...

  There is no telling how much damage is done by this errant
  computation. In some lisps your ACL2 job may actually crash back to
  the operating system. In other lisps you may be able to recover
  from the ``hard error'' and resume ACL2 in a damaged but apparently
  functional image.

  THUS, HAVING A FUNCTION WITH [defun-mode] :[program] IN YOUR SYSTEM
  ABSOLVES US, THE ACL2 IMPLEMENTORS, FROM RESPONSIBILITY FOR THE
  SOUNDNESS OF OUR SYSTEM.

  Furthermore

  ACL2 DOES NOT YET PROVIDE ANY MEANS OF REGAINING ASSURANCES OF
  SOUNDNESS AFTER THE INTRODUCTION OF A FUNCTION IN :[program] MODE,
  EVEN IF IT IS ULTIMATELY CONVERTED TO :[logic] MODE (since its
  execution could have damaged the system in a way that makes it
  possible to verify its termination and [guard]s unsoundly).

  Finally,

  THE VAST MAJORITY OF ACL2 SYSTEM CODE IS IN :[program] MODE AND SO
  ALL BETS ARE OFF FROM BEFORE YOU START!

  This hopeless state of current affairs will change, we think. We
  think we have defined our functions ``correctly'' in the sense that
  they can be converted, without ``essential'' modification, to
  :[logic] mode. We think it very unlikely that a mis-guarded
  function in :[program] mode (whether ours or yours) will cause
  unsoundness without some sort of hard lisp error accompanying it.
  We think that ultimately we can make it possible to execute your
  functions (interpretively) without risk to the system, even when
  some have :[program] mode. In that imagined implementation, code
  using functions having :[program] mode would run more slowly, but
  safely. These functions could be introduced into the logic ex post
  facto, whereupon the code's execution would speed up because Common
  Lisp would be allowed to execute it directly. We therefore ask that
  you simply pretend that this is that imagined implementation,
  introduce functions in :[program] mode, use them as convenient and
  perhaps ultimately introduce some of them in :[logic] mode and
  prove their properties. If you use the system this way we can
  develop (or dismiss) this style of formal system development. BUT
  BE ON THE LOOKOUT FOR SCREWUPS DUE TO DAMAGE CAUSED BY THE
  EXECUTION OF YOUR FUNCTIONS HAVING :[program] MODE!")
 (DEFUN-NOTINLINE
  (DEFUN EVENTS)
  "Define a not-to-be-inlined function symbol and associated macro

  See [defun-inline] for an analogous utility that supports inlining.
  The present utility is probably far less useful; it tells the
  compiler not to inline calls of the function being defined. Also
  see [defund-notinline] for a variant of this event that disables
  the newly-defined function symbol.

  Under the hood, (defun-inline f ...) and (defun-notinline f ...)
  cause evaluation of Common Lisp forms (declaim (inline f$inline))
  and (declaim (notinline f$notinline)), respectively. According to
  the Common Lisp spec, the compiler need not respect the first of
  these (for inline), but it must respect the second of these (for
  notinline). Fortunately, Common Lisp implementations often do
  respect the first of these as well.")
 (DEFUN-NX
  (DEFUN EVENTS)
  "Define a non-executable function symbol

    Example:

    (set-state-ok t)
    (defun-nx foo (x state)
      (mv-let (a b c)
              (cons x state)
              (list a b c b a)))
    ; Note ``ill-formed'' call of foo just below.
    (defun bar (state y)
      (foo state y))

  The macro defun-nx introduces definitions using the [defun] macro,
  always in :[logic] mode, such that the calls of the resulting
  function cannot be evaluated. Such a definition is admitted without
  enforcing syntactic restrictions for executability, in particular
  for single-threadedness (see [stobj]) and multiple-values passing
  (see [mv] and see [mv-let]). After such a definition is admitted,
  the usual syntactic rules for [state] and user-defined [stobj]s are
  relaxed for calls of the function it defines. Also see [non-exec]
  for a way to designate subterms of function bodies, or subterms of
  code to be executed at the top level, as non-executable.

  The syntax of defun-nx is identical to that of [defun]. A form

    (defun-nx name (x1 ... xk) ... body)

  expands to the following form.

    (defun name (x1 ... xk)
      (declare (xargs :non-executable t :mode :logic))
      ...
      (prog2$ (throw-nonexec-error 'name (list x1 ... xk))
              body))

  Note that because of the insertion of the above call of
  throw-nonexec-error, no formal is ignored when using defun-nx.

  During proofs, the error is silent; it is ``caught'' by the proof
  mechanism and generally results in the introduction of a call of
  [hide] during a proof. If an error message is produced by
  evaluating a call of the function on a list of arguments that
  includes state or user-defined [stobj]s, these arguments will be
  shown as symbols such as |<state>| in the error message. In the
  case of a user-defined stobj bound by [with-local-stobj] or
  [stobj-let], the symbol printed will include the suffix {instance},
  for example, |<st>{instance}|.

  It is harmless to include :non-executable t in your own [xargs]
  [declare] form; defun-nx will still lay down its own such
  declaration, but ACL2 can tolerate the duplication.

  Note that defund-nx is also available. It has an effect identical to
  that of defun-nx except that as with [defund], it leaves the
  function disabled.

  If you use guards (see [guard]), please be aware that even though
  syntactic restrictions are relaxed for defun-nx, guard verification
  proceeds exactly as for [defun]. If you want ACL2 to skip a form
  for purposes of generating guard proof obligations, use the macro
  [non-exec], which generates a call of throw-nonexec-error that
  differs somewhat from the one displayed above. See [non-exec].

  See [defun] for documentation of defun.")
 (DEFUN-SK
  (EVENTS)
  "Define a function whose body has an outermost quantifier

    Examples:
    (defun-sk exists-x-p0-and-q0 (y z)
      (exists x
              (and (p0 x y z)
                   (q0 x y z))))

    (defun-sk exists-x-p0-and-q0 (y z) ; equivalent to the above
      (exists (x)
              (and (p0 x y z)
                   (q0 x y z))))

    (defun-sk forall-x-y-p0-and-q0 (z)
      (forall (x y)
              (and (p0 x y z)
                   (q0 x y z)))
      :strengthen t)

    General Form:
    (defun-sk fn (var1 ... varn) body
      &key rewrite quant-ok skolem-name thm-name witness-dcls strengthen)

  where fn is the symbol you wish to define and is a new symbolic name
  (see [name]), (var1 ... varn) is its list of formal parameters (see
  [name]), and body is its body, which must be quantified as
  described below. The other arguments are explained below.

  For a simple example, see [defun-sk-example]. For a more elaborate
  example, see [Tutorial4-Defun-Sk-Example]. See
  [quantifier-tutorial] for a careful beginner's introduction that
  takes you through typical kinds of quantifier-based reasoning in
  ACL2. Also see [quantifiers] for an example illustrating how the
  use of recursion, rather than explicit quantification with
  defun-sk, may be preferable.

  Below we describe the defun-sk event precisely. First, let us
  consider the examples above. The first example, again, is:

    (defun-sk exists-x-p0-and-q0 (y z)
      (exists x
              (and (p0 x y z)
                   (q0 x y z))))

  It is intended to represent the predicate with formal parameters y
  and z that holds when for some x, (and (p0 x y z) (q0 x y z))
  holds. In fact defun-sk is a macro that adds the following two
  [events], as shown just below. The first event guarantees that if
  this new predicate holds of y and z, then the term shown,
  (exists-x-p0-and-q0-witness y z), is an example of the x that is
  therefore supposed to exist. (Intuitively, we are axiomatizing
  exists-x-p0-and-q0-witness to pick a witness if there is one. We
  comment below on the use of [defun-nx]; for now, consider defun-nx
  to be [defun].) Conversely, the second event below guarantees that
  if there is any x for which the term in question holds, then the
  new predicate does indeed hold of y and z.

    (defun-nx exists-x-p0-and-q0 (y z)
      (let ((x (exists-x-p0-and-q0-witness y z)))
        (and (p0 x y z) (q0 x y z))))
    (defthm exists-x-p0-and-q0-suff
      (implies (and (p0 x y z) (q0 x y z))
               (exists-x-p0-and-q0 y z)))

  Now let us look at the third example from the introduction above:

    (defun-sk forall-x-y-p0-and-q0 (z)
      (forall (x y)
              (and (p0 x y z)
                   (q0 x y z))))

  The intention is to introduce a new predicate (forall-x-y-p0-and-q0
  z) which states that the indicated conjunction holds of all x and
  all y together with the given z. This time, the axioms introduced
  are as shown below. The first event guarantees that if the
  application of function forall-x-y-p0-and-q0-witness to z picks out
  values x and y for which the given term (and (p0 x y z) (q0 x y z))
  holds, then the new predicate forall-x-y-p0-and-q0 holds of z.
  Conversely, the (contrapositive of) the second axiom guarantees
  that if the new predicate holds of z, then the given term holds for
  all choices of x and y (and that same z).

    (defun-nx forall-x-y-p0-and-q0 (z)
      (mv-let (x y)
              (forall-x-y-p0-and-q0-witness z)
              (and (p0 x y z) (q0 x y z))))
    (defthm forall-x-y-p0-and-q0-necc
      (implies (not (and (p0 x y z) (q0 x y z)))
               (not (forall-x-y-p0-and-q0 z))))

  The examples above suggest the critical property of defun-sk: it
  indeed does introduce the quantified notions that it claims to
  introduce.

  Notice that the [defthm] event just above, forall-x-y-p0-and-q0-necc,
  may not be of optimal form as a rewrite rule. Users sometimes find
  that when the quantifier is forall, it is useful to state this rule
  in a form where the new quantified predicate is a hypothesis
  instead. In this case that form would be as follows:

    (defthm forall-x-y-p0-and-q0-necc
      (implies (forall-x-y-p0-and-q0 z)
               (and (p0 x y z) (q0 x y z))))

  ACL2 will turn this into one :[rewrite] rule for each conjunct, (p0 x
  y z) and (q0 x y z), with hypothesis (forall-x-y-p0-and-q0 z) in
  each case. In order to get this effect, use :rewrite :direct, in
  this case as follows.

    (defun-sk forall-x-y-p0-and-q0 (z)
      (forall (x y)
              (and (p0 x y z)
                   (q0 x y z)))
      :rewrite :direct)

  We now turn to a detailed description of defun-sk, starting with a
  discussion of its arguments as shown in the \"General Form\" above.

  The third argument, body, must be of the form

    (Q bound-vars term)

  where: Q is the symbol [forall] or [exists], in the \"ACL2\" package;
  bound-vars is a variable or true list of variables disjoint from
  (var1 ... varn) and not including [state]; and term is a term. The
  case that bound-vars is a single variable v is treated exactly the
  same as the case that bound-vars is (v).

  The result of this event is to introduce a ``Skolem function,'' whose
  name is the keyword argument skolem-name if that is supplied, and
  otherwise is the result of modifying fn by suffixing \"-WITNESS\" to
  its name. The following definition and one of the following two
  theorems (as indicated) are introduced for skolem-name and fn in
  the case that bound-vars (see above) is a single variable v. The
  name of the [defthm] event may be supplied as the value of the
  keyword argument :thm-name; if it is not supplied, then it is the
  result of modifying fn by suffixing \"-SUFF\" to its name in the case
  that the quantifier is [exists], and \"-NECC\" in the case that the
  quantifier is [forall].

    (defun-nx fn (var1 ... varn)
      (let ((v (skolem-name var1 ... varn)))
        term))

    (defthm fn-suff ;in case the quantifier is EXISTS
      (implies term
               (fn var1 ... varn)))

    (defthm fn-necc ;in case the quantifier is FORALL
      (implies (not term)
               (not (fn var1 ... varn))))

  In the forall case, however, the keyword pair :rewrite :direct may be
  supplied after the body of the defun-sk form, in which case the
  contrapositive of the above form is used instead:

    (defthm fn-necc ;in case the quantifier is FORALL
      (implies (fn var1 ... varn)
               term))

  This is often a better choice for the \"-NECC\" rule, provided ACL2 can
  parse term as a :[rewrite] rule. A second possible value of the
  :rewrite argument of defun-sk is :default, which gives the same
  behavior as when :rewrite is omitted. Otherwise, the value of
  :rewrite should be the term to use as the body of the fn-necc
  theorem shown above; ACL2 will attempt to do the requisite proof in
  this case. If that term is weaker than the default, the properties
  introduced by defun-sk may of course be weaker than they would be
  otherwise. Finally, note that the :rewrite keyword argument for
  defun-sk only makes sense if the quantifier is forall; it is thus
  illegal if the quantifier is exists. Enough said about :rewrite!

  In the case that bound-vars is a list of at least two variables, say
  (bv1 ... bvk), the definition above (with no keywords) is the
  following instead, but the theorem remains unchanged.

    (defun-nx fn (var1 ... varn)
      (mv-let (bv1 ... bvk)
              (skolem-name var1 ... varn)
              term))

  In order to emphasize that the last element of the list, body, is a
  term, defun-sk checks that the symbols [forall] and [exists] do not
  appear anywhere in it. However, on rare occasions one might
  deliberately choose to violate this convention, presumably because
  [forall] or [exists] is being used as a variable or because a macro
  call will be eliminating ``calls of'' [forall] and [exists]. In
  these cases, the keyword argument quant-ok may be supplied a
  non-nil value. Then defun-sk will permit [forall] and [exists] in
  the body, but it will still cause an error if there is a real
  attempt to use these symbols as quantifiers.

  The use of [defun-nx] above, rather than [defun], disables certain
  checks that are required for evaluation, in particular the
  single-threaded use of [stobj]s. However, there is a price: calls
  of these defined functions cannot be evaluated; see [defun-nx].
  Normally that is not a problem, since these notions involve
  quantifiers. But you are welcome to replace this [declare] form
  with your own, as follows: if you supply a list of declare forms to
  keyword argument :witness-dcls, these will become the declare forms
  in the generated [defun]. Note that if your value of witness-dcls
  does not contain the form (declare (xargs :non-executable t)), then
  the appropriate wrapper for non-executable functions will not be
  added automatically, i.e., [defun] will be used in place of
  defun-nx. Note also that if [guard] verification is attempted, then
  it will likely fail with an error message complaining that ``guard
  verification may depend on local properties.'' In that case, you
  may wish to delay guard verification, as in the following example.

    (encapsulate
     ()
     (defun-sk foo (x)
       (exists n (and (integerp n)
                      (< n x)))
       :witness-dcls ((declare (xargs :guard (integerp x)
                                      :verify-guards nil))))
     (verify-guards foo))

  Defun-sk is a macro implemented using [defchoose]. Hence, it should
  only be executed in [defun-mode] :[logic]; see [defun-mode] and see
  [defchoose]. Advanced feature: If argument :strengthen t is passed
  to defun-sk, then :strengthen t will generate the extra constraint
  that that is generated for the corresponding defchoose event; see
  [defchoose]. You can use the command :[pcb!] to see the event
  generated by a call of the defun-sk macro.

  If you find that the rewrite rules introduced with a particular use
  of defun-sk are not ideal, even when using the :rewrite keyword
  discussed above (in the forall case), then at least two reasonable
  courses of action are available for you. Perhaps the best option is
  to prove the [rewrite] rules you want. If you see a pattern for
  creating rewrite rules from your defun-sk events, you might want to
  write a macro that executes a defun-sk followed by one or more
  [defthm] events. Another option is to write your own variant of the
  defun-sk macro, say, my-defun-sk, for example by modifying a copy
  of the definition of defun-sk from the ACL2 sources.

  If you want to represent nested quantifiers, you can use more than
  one defun-sk event. For example, in order to represent

    (forall x (exists y (p x y z)))

  you can use defun-sk twice, for example as follows.

    (defun-sk exists-y-p (x z)
      (exists y (p x y z)))

    (defun-sk forall-x-exists-y-p (z)
      (forall x (exists-y-p x z)))

  Some distracting and unimportant warnings are inhibited during
  defun-sk.

  Note for ACL2(r) users (see [real]): In ACL2(r), the keyword
  :CLASSICALP is also supported. Its legal values are t (the default)
  and nil, and it determines whether or not (respectively) ACL2(r)
  will consider fn to be a classical function. It must be the case
  that the value is t (perhaps implicitly, by default) if and only if
  body is classical.

  Note that this way of implementing quantifiers is not a new idea.
  Hilbert was certainly aware of it 60 years ago! Also see
  [conservativity-of-defchoose] for a technical argument that
  justifies the logical conservativity of the [defchoose] event in
  the sense of the paper by Kaufmann and Moore entitled ``Structured
  Theory Development for a Mechanized Logic'' (Journal of Automated
  Reasoning 26, no. 2 (2001), pp. 161-203).


Subtopics

  [Defun-sk-example]
      A simple example using [defun-sk]

  [Exists]
      Existential quantifier

  [Forall]
      Universal quantifier

  [Quantifier-tutorial]
      A Beginner's Guide to Reasoning about Quantification in ACL2

  [Quantifiers]
      Issues about quantification in ACL2")
 (DEFUN-SK-EXAMPLE
  (DEFUN-SK)
  "A simple example using [defun-sk]

  For a more through, systematic beginner's introduction to
  quantification in ACL2, see [quantifier-tutorial].

  The following example illustrates how to do proofs about functions
  defined with [defun-sk]. The events below can be put into a
  certifiable book (see [books]). The example is contrived and rather
  silly, in that it shows how to prove that a quantified notion
  implies itself, where the antecedent and conclusion are defined
  with different [defun-sk] events. But it illustrates the formulas
  that are generated by [defun-sk], and how to use them. Thanks to
  Julien Schmaltz for presenting this example as a challenge.

    (in-package \"ACL2\")

    (encapsulate
     (((p *) => *)
      ((expr *) => *))

     (local (defun p (x) x))
     (local (defun expr (x) x)))

    (defun-sk forall-expr1 (x)
      (forall (y) (implies (p x) (expr y))))

    (defun-sk forall-expr2 (x)
      (forall (y) (implies (p x) (expr y)))))

    ; We want to prove the theorem my-theorem below.  What axioms are there that
    ; can help us?  If you submit the command

    ; :pcb! forall-expr1

    ; then you will see the following two key events.  (They are completely
    ; analogous of course for FORALL-EXPR2.)

    ;   (DEFUN FORALL-EXPR1 (X)
    ;     (LET ((Y (FORALL-EXPR1-WITNESS X)))
    ;          (IMPLIES (P X) (EXPR Y))))
    ;
    ;   (DEFTHM FORALL-EXPR1-NECC
    ;     (IMPLIES (NOT (IMPLIES (P X) (EXPR Y)))
    ;              (NOT (FORALL-EXPR1 X)))
    ;     :HINTS
    ;     ((\"Goal\" :USE FORALL-EXPR1-WITNESS)))

    ; We see that the latter has value when FORALL-EXPR1 occurs negated in a
    ; conclusion, or (therefore) positively in a hypothesis.  A good rule to
    ; remember is that the former has value in the opposite circumstance: negated
    ; in a hypothesis or positively in a conclusion.

    ; In our theorem, FORALL-EXPR2 occurs positively in the conclusion, so its
    ; definition should be of use.  We therefore leave its definition enabled,
    ; and disable the definition of FORALL-EXPR1.

    ;   (thm
    ;     (implies (and (p x) (forall-expr1 x))
    ;              (forall-expr2 x))
    ;     :hints ((\"Goal\" :in-theory (disable forall-expr1))))
    ;
    ;   ; which yields this unproved subgoal:
    ;
    ;   (IMPLIES (AND (P X) (FORALL-EXPR1 X))
    ;            (EXPR (FORALL-EXPR2-WITNESS X)))

    ; Now we can see how to use FORALL-EXPR1-NECC to complete the proof, by
    ; binding y to (FORALL-EXPR2-WITNESS X).

    ; We use defthmd below so that the following doesn't interfere with the
    ; second proof, in my-theorem-again that follows.
    (defthmd my-theorem
      (implies (and (p x) (forall-expr1 x))
               (forall-expr2 x))
      :hints ((\"Goal\"
               :use ((:instance forall-expr1-necc
                                (x x)
                                (y (forall-expr2-witness x)))))))

    ; The following illustrates a more advanced technique to consider in such
    ; cases.  If we disable forall-expr1, then we can similarly succeed by having
    ; FORALL-EXPR1-NECC applied as a :rewrite rule, with an appropriate hint in how
    ; to instantiate its free variable.  See :doc hints.

    (defthm my-theorem-again
      (implies (and (P x) (forall-expr1 x))
               (forall-expr2 x))
      :hints ((\"Goal\"
               :in-theory (disable forall-expr1)
               :restrict ((forall-expr1-necc
                           ((y (forall-expr2-witness x))))))))")
 (DEFUND
  (DEFUN EVENTS)
  "Define a function symbol and then disable it

  Use defund instead of [defun] when you want to disable a function
  immediately after its definition in :[logic] mode. This macro has
  been provided for users who prefer working in a mode where
  functions are only enabled when explicitly directed by
  :[in-theory]. Specifically, the form

    (defund NAME FORMALS ...)

  expands to:

    (progn
      (defun NAME FORMALS ...)
      (with-output
       :off summary
       (in-theory (disable NAME)))
      (value-triple '(:defund NAME))).

  Only the :[definition] rule (and, for recursively defined functions,
  the :[induction] rule) for the function are disabled. In
  particular, defund does not disable either the :[type-prescription]
  or the :[executable-counterpart] rule. Also, the summary for the
  [in-theory] event is suppressed.

  If the function is defined in :[program] mode, either because the
  [default-defun-mode] is :[program] or because :mode :program has
  been specified in an [xargs] form of a [declare] form, then no
  [in-theory] event is executed. (More precisely, [in-theory] events
  are ignored when the [default-defun-mode] is :[program], and if
  :mode :program is specified then defund does not generate an
  [in-theory] event.)

  Note that defund commands are never redundant (see
  [redundant-events]) when the [default-defun-mode] is :[logic],
  because the [in-theory] event will always be executed.

  See [defun] for documentation of defun.")
 (DEFUND-INLINE
  (DEFUN EVENTS)
  "Define a potentially disabled, inlined function symbol and associated
  macro

  Defund-inline is a variant of [defun-inline], the difference being
  that defund-inline disables the newly-defined function symbol. See
  [defun-inline].")
 (DEFUND-NOTINLINE
  (DEFUN EVENTS)
  "Define a disabled, not-to-be-inlined function symbol and associated
  macro

  Defund-notinline is a variant of [defun-notinline], the difference
  being that defund-notinline disables the newly-defined function
  symbol. See [defun-notinline].")
 (DEFUNS
  (MUTUAL-RECURSION)
  "An alternative to [mutual-recursion]

    Example:
    (DEFUNS
     (evenlp (x)
       (if (consp x) (oddlp (cdr x)) t))
     (oddlp (x)
       (if (consp x) (evenlp (cdr x)) nil)))

    General Form:
    (DEFUNS defuns-tuple1 ... defuns-tuplen)

  is equivalent to

    (MUTUAL-RECURSION
      (DEFUN . defuns-tuple1)
      ...
      (DEFUN . defuns-tuplen))

  In fact, defuns is the more primitive of the two and
  [mutual-recursion] is just a macro that expands to a call of
  [defun] after stripping off the [defun] at the [car] of each
  argument to [mutual-recursion]. We provide and use
  [mutual-recursion] rather than defuns because by leaving the
  [defun]s in place, [mutual-recursion] forms can be processed by the
  Emacs tags program. See [mutual-recursion].")
 (DELETE-ASSOC
  (ALISTS ACL2-BUILT-INS)
  "Remove the first pair from an association list for a given key

    General Forms:
    (delete-assoc key alist)
    (delete-assoc key alist :test 'eql)   ; same as above (eql as equality test)
    (delete-assoc key alist :test 'eq)    ; same, but eq is equality test
    (delete-assoc key alist :test 'equal) ; same, but equal is equality test

  (Delete-assoc key alist) returns an alist that is the same as the
  list alist, except that the first pair in alist with a [car] of key
  is deleted, if there is one; otherwise alist is returned. Note that
  the order of the elements of alist is unchanged (though one may be
  deleted).

  The [guard] for a call of delete-assoc depends on the test. In all
  cases, the second argument must satisfy [alistp]. If the test is
  [eql], then either the first argument must be suitable for [eql]
  (see [eqlablep]) or the second argument must satisfy
  [eqlable-alistp]. If the test is [eq], then either the first
  argument must be a symbol or the second argument must satisfy
  [symbol-alistp].

  See [equality-variants] for a discussion of the relation between
  delete-assoc and its variants:

      (delete-assoc-eq key alist) is equivalent to (delete-assoc key alist
      :test 'eq);

      (delete-assoc-equal key alist) is equivalent to (delete-assoc key
      alist :test 'equal).

  In particular, reasoning about any of these primitives reduces to
  reasoning about the function delete-assoc-equal.

  Function: <delete-assoc-equal>

    (defun delete-assoc-equal (key alist)
           (declare (xargs :guard (alistp alist)))
           (cond ((endp alist) nil)
                 ((equal key (caar alist)) (cdr alist))
                 (t (cons (car alist)
                          (delete-assoc-equal key (cdr alist))))))")
 (DELETE-ASSOC-EQ (POINTERS)
                  "See [delete-assoc].")
 (DELETE-ASSOC-EQUAL (POINTERS)
                     "See [delete-assoc].")
 (DELETE-INCLUDE-BOOK-DIR
  (BOOKS-REFERENCE)
  "Unlink keyword for :dir argument of [ld] and [include-book]

    Example Forms:
    ; Remove association of a directory with :smith for include-book and ld:
    (delete-include-book-dir :smith)

    General Form:
    (delete-include-book-dir kwd)

  where kwd is a [keywordp]. The effect of this event is to modify the
  meaning of the :dir keyword argument of [include-book] and [ld] as
  indicated by the example above, namely by removing association of a
  directory with the indicated keyword for purposes of the :dir
  argument of [include-book] and [ld]. See [add-include-book-dir] for
  how to associate a new directory with a keyword.

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.

  This macro is [local] to any [books] and [encapsulate] [events] in
  which it occurs; see [add-include-book-dir] for a discussion of
  this aspect of both macros. For non-local associations of keywords
  with directories, see [add-include-book-dir!] and
  [delete-include-book-dir!]. Note that delete-include-book-dir may
  only be used to remove keywords added by calls of
  [add-include-book-dir], and [delete-include-book-dir!] may only be
  used to remove keywords added by calls of [add-include-book-dir!]")
 (DELETE-INCLUDE-BOOK-DIR!
  (BOOKS-REFERENCE)
  "Non-[local]ly unlink keyword for :dir argument of [ld] and
  [include-book]

  Please see [delete-include-book-dir], which has completely analogous
  syntax and semantics, but is used for removing associations
  previously placed by [add-include-book-dir]. By contrast,
  delete-include-book-dir! removes associations previously placed by
  [add-include-book-dir!].

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.

  This macro is essentially a [table] event that updates the table
  include-book-dir!-table, which associates keywords with absolute
  pathnames. However, as with [delete-include-book-dir], direct table
  updates are disallowed; you must use delete-include-book-dir! to
  remove from the table and [add-include-book-dir!] to add to the
  table.

  It is illegal to call delete-include-book-dir! in a [local] context.
  For an explanation, see [add-include-book-dir!].")
 (DENOMINATOR
  (NUMBERS ACL2-BUILT-INS)
  "Divisor of a ratio in lowest terms

  Completion Axiom (completion-of-denominator):

    (equal (denominator x)
           (if (rationalp x)
               (denominator x)
             1))

  [Guard] for (denominator x):

    (rationalp x)")
 (DIGIT-CHAR-P
  (CHARACTERS ACL2-BUILT-INS)
  "The number, if any, corresponding to a given character

  (digit-char-p ch) is the integer corresponding to the character ch in
  base 10. For example, (digit-char-p #\\3) is equal to the integer 3.
  More generally, an optional second argument specifies the radix
  (default 10, as indicated above).

  The [guard] for digit-char-p (more precisely, for the function
  our-digit-char-p that calls of this macro expand to) requires its
  second argument to be an integer between 2 and 36, inclusive, and
  its first argument to be a character.

  Digit-char-p is a Common Lisp function, though it is implemented in
  the ACL2 logic as an ACL2 macro. See any Common Lisp documentation
  for more information.

  Macro: <digit-char-p>

    (defmacro digit-char-p (ch &optional (radix '10))
              (cons 'our-digit-char-p
                    (cons ch (cons radix 'nil))))

  Function: <our-digit-char-p>

    (defun our-digit-char-p (ch radix)
           (declare (xargs :guard (and (characterp ch)
                                       (integerp radix)
                                       (<= 2 radix)
                                       (<= radix 36))))
           (let ((l (assoc ch
                           '((#\\0 . 0)
                             (#\\1 . 1)
                             (#\\2 . 2)
                             (#\\3 . 3)
                             (#\\4 . 4)
                             (#\\5 . 5)
                             (#\\6 . 6)
                             (#\\7 . 7)
                             (#\\8 . 8)
                             (#\\9 . 9)
                             (#\\a . 10)
                             (#\\b . 11)
                             (#\\c . 12)
                             (#\\d . 13)
                             (#\\e . 14)
                             (#\\f . 15)
                             (#\\g . 16)
                             (#\\h . 17)
                             (#\\i . 18)
                             (#\\j . 19)
                             (#\\k . 20)
                             (#\\l . 21)
                             (#\\m . 22)
                             (#\\n . 23)
                             (#\\o . 24)
                             (#\\p . 25)
                             (#\\q . 26)
                             (#\\r . 27)
                             (#\\s . 28)
                             (#\\t . 29)
                             (#\\u . 30)
                             (#\\v . 31)
                             (#\\w . 32)
                             (#\\x . 33)
                             (#\\y . 34)
                             (#\\z . 35)
                             (#\\A . 10)
                             (#\\B . 11)
                             (#\\C . 12)
                             (#\\D . 13)
                             (#\\E . 14)
                             (#\\F . 15)
                             (#\\G . 16)
                             (#\\H . 17)
                             (#\\I . 18)
                             (#\\J . 19)
                             (#\\K . 20)
                             (#\\L . 21)
                             (#\\M . 22)
                             (#\\N . 23)
                             (#\\O . 24)
                             (#\\P . 25)
                             (#\\Q . 26)
                             (#\\R . 27)
                             (#\\S . 28)
                             (#\\T . 29)
                             (#\\U . 30)
                             (#\\V . 31)
                             (#\\W . 32)
                             (#\\X . 33)
                             (#\\Y . 34)
                             (#\\Z . 35)))))
                (cond ((and l (< (cdr l) radix)) (cdr l))
                      (t nil))))")
 (DIGIT-TO-CHAR
  (CHARACTERS ACL2-BUILT-INS)
  "Map a digit to a character

    Example:
    ACL2 !>(digit-to-char 8)
    #\\8

  For an integer n from 0 to 15, (digit-to-char n) is the character
  corresponding to n in hex notation, using uppercase letters for
  digits exceeding 9. If n is in the appropriate range, that result
  is of course also the binary, octal, and decimal digit.

  The [guard] for digit-to-char requires its argument to be an integer
  between 0 and 15, inclusive.

  Function: <digit-to-char>

    (defun
         digit-to-char (n)
         (declare (xargs :guard (and (integerp n) (<= 0 n) (<= n 15))))
         (case n (1 #\\1)
               (2 #\\2)
               (3 #\\3)
               (4 #\\4)
               (5 #\\5)
               (6 #\\6)
               (7 #\\7)
               (8 #\\8)
               (9 #\\9)
               (10 #\\A)
               (11 #\\B)
               (12 #\\C)
               (13 #\\D)
               (14 #\\E)
               (15 #\\F)
               (otherwise #\\0)))")
 (DIMENSIONS
  (ARRAYS ACL2-BUILT-INS)
  "Return the :dimensions from the [header] of a 1- or 2-dimensional
  array

    Example Form:
    (dimensions 'delta1 a)

    General Form:
    (dimensions name alist)

  where name is arbitrary and alist is a 1- or 2-dimensional array.
  This function returns the dimensions list of the array alist. That
  list will either be of the form (dim1) or (dim1 dim2), depending on
  whether alist is a 1- or 2-dimensional array. Dim1 and dim2 will be
  integers and each exceed by 1 the maximum legal corresponding
  index. Thus, if dimensions returns, say, '(100) for an array a
  named 'delta1, then (aref1 'delta1 a 99) is legal but (aref1
  'delta1 a 100) violates the [guard]s on [aref1]. Dimensions
  operates in virtually constant time if alist is the semantic value
  of name. See [arrays].

  Function: <dimensions>

    (defun
         dimensions (name l)
         (declare (xargs :guard (or (array1p name l) (array2p name l))))
         (cadr (assoc-keyword :dimensions (cdr (header name l)))))")
 (DISABLE
  (THEORIES THEORY-FUNCTIONS)
  "Deletes names from current theory

    Example:
    (disable fact (fact) associativity-of-app)

    General Form:
    (disable name1 name2 ... namek)

  where each namei is a runic designator; see [theories]. The result is
  the theory that contains all the names in the current theory except
  those listed. Note that this is merely a function that returns a
  theory. The result is generally a very long list of [rune]s and you
  will probably regret printing it.

  For related utilities, see [enable] and see [e/d].

  The standard way to ``disable'' a fixed set of names, is as follows;
  see [hints] and see [in-theory].

    :in-theory (disable name1 name2 ... namek)    ; in a hint
    (in-theory (disable name1 name2 ... namek))   ; as an event
    (local ; often desirable, to avoid exporting from the current context
     (in-theory (disable name1 name2 ... namek)))

  Note that all the names are implicitly quoted. If you wish to disable
  a computed list of names, lst, use the theory expression
  (set-difference-theories (current-theory :here) lst).")
 (DISABLE-FORCING
  (FORCE)
  "To disallow forced case-splits

    General Form:
    ACL2 !>:disable-forcing   ; disallow forced case splits

  See [force] and see [case-split] for a discussion of forced case
  splits, which are inhibited by this command.

  Disable-forcing is actually a macro that [disable]s the executable
  counterpart of the function symbol force; see [force]. When you
  want to use [hints] to turn off forced case splits, use a form such
  as one of the following (these are equivalent).

    :in-theory (disable (:executable-counterpart force))
    :in-theory (disable (force))

  The following example shows how this works. First evaluate these
  forms.

    (defstub f1 (x) t)
    (defstub f2 (x) t)
    (defaxiom ax (implies (case-split (f2 x)) (f1 x)))
    (thm (f1 x))

  You will see the application of the rule, ax, in the proof of the
  [thm] call above. However, if you first evaluate (disable-forcing),
  then there will be no application of ax. To restore forced case
  splitting, see [enable-forcing].")
 (DISABLE-IMMEDIATE-FORCE-MODEP
  (FORCE)
  "[force]d hypotheses are not attacked immediately

    General Form:
    ACL2 !>:disable-immediate-force-modep

  This event causes ACL2 to delay [force]d hypotheses to the next
  forcing round, rather than attacking them immediately. See
  [immediate-force-modep]. Or for more basic information, first see
  [force] for a discussion of [force]d case splits.

  Disable-immediate-force-modep is a macro that [disable]s the
  executable counterpart of the function symbol
  [immediate-force-modep]. When you want to [disable] this mode in
  [hints], use a form such as one of the following (these are
  equivalent).

    :in-theory (disable (:executable-counterpart immediate-force-modep))
    :in-theory (disable (immediate-force-modep))")
 (DISABLEDP
  (THEORIES)
  "Determine whether a given name or rune is disabled

    Examples:

    :disabledp foo   ; returns a list of all disabled runes whose base
                     ; symbol is foo (see [rune])
    (disabledp 'foo) ; same as above (i.e., :disabledp foo)
    :disabledp (:rewrite bar . 1) ; returns t if the indicated rune is
                                  ; disabled, else nil
    (disabledp (:rewrite bar . 1)); same as immediately above
    (disabledp '(:definition binary-append))
        ; returns t if the indicated definition is disabled, else nil
    (disabledp '(:d append))
        ; same as above

  Also see [pr], which gives much more information about the rules
  associated with a given event.

  Disabledp takes one argument, which is a symbol, a [rune], or a runic
  abbreviation such as (:d append) (see [theories]). In the former
  case it returns the list of disabled runes associated with that
  name, in the sense that the rune's ``base symbol'' is that name
  (see [rune]) or, if the event named is a [defmacro] event, then the
  list of disabled runes associated with the function corresponding
  to that macro name, if any (see [macro-aliases-table]). In the
  other cases, where the argument is a [rune] or a runic abbreviation
  for a rune, disabledp returns t if the rune is disabled, and nil
  otherwise.

  Remark for users of the [break-rewrite] utility. Inside the :[brr]
  loop, the computation performed by disabledp takes place with
  respect to the state of the proof that is currently underway,
  rather than the global state. For example, if you break while the
  prover is working on Subgoal 3, and the [hints] supplied for the
  proof specify (\"Subgoal 3\" :in-theory (disable foo)), then disabled
  will return the runes associated with foo, regardless of whether or
  not those runes are disabled globally.")
 (DISASSEMBLE$
  (COMPILATION DEBUGGING)
  "Disassemble a function

  The macro disassemble$ provides a convenient interface to the
  underlying disassemble utility of the host Common Lisp
  implementation, which prints assembly code for a given function
  symbol at the terminal. If the argument is instead a macro alias
  for a function symbol (see [macro-aliases-table]), then it prints
  assembly code for that function symbol instead.

  Disassemble$ works by including the community book
  books/misc/disassemble.lisp, which defines the supporting function
  disassemble$-fn, and then by calling that function. Note that the
  arguments to disassemble$ are evaluated. Also note that
  disassemble$ is intended as a top-level utility for the ACL2 loop,
  not to be called in code; for such a purpose, include the above
  book and call disassemble$-fn directly.

    Example Forms:

    (disassemble$ 'foo)
    (disassemble$ 'foo :recompile t)

    General Forms:
    (disassemble$ form)
    (disassemble$ form :recompile flg)

  where form evaluates to a function symbol or a macro alias for a
  function symbol and flg evaluates to any value. If flg is nil, then
  the existing definition of that function symbol is disassembled.
  But if flg is supplied and has a value other than nil or :default,
  and if that function symbol is defined in the ACL2 loop (not merely
  in raw Lisp; for example, see [set-raw-mode]), then the disassembly
  will be based on a recompilation of that ACL2 definition. Normally
  this recompilation is not necessary, but for some host Lisps, it
  may be useful; in particular, for CCL the above book arranges that
  source code information is saved, so that the output is annotated
  with such information. When recompilation takes place, the previous
  definition is restored after disassembly is complete. Finally, if
  flg is omitted or has the value :default --- i.e., in the default
  case --- then recompilation may take place or not, depending on the
  host Lisp. The values of (@ host-lisp) for which recompilation
  takes place by default may be found by looking at the above book,
  or by including it and evaluating the constant
  *host-lisps-that-recompile-by-default*. As of this writing, CCL is
  the only such Lisp (because that is the one for which we can obtain
  source annotation in the output by recompiling).")
 (DIVE-INTO-MACROS-TABLE
  (PROOF-CHECKER ACL2-PC::DV)
  "Right-associated function information for the [proof-checker]

    Examples:
    ACL2 !>(dive-into-macros-table (w state))
    ((CAT . EXPAND-ADDRESS-CAT)
     (LXOR . EXPAND-ADDRESS-LXOR)

  This table associates macro names with functions used by the
  [proof-checker]'s DV and numeric diving commands (e.g., 3) in order
  to dive properly into subterms. See [proof-checker], in particular
  the documentation for DV.

  This table can be extended easily. See [add-dive-into-macro] and also
  see [remove-dive-into-macro].

  The symbol associated with a macro should be a function symbol taking
  four arguments, in this order:

    * car-addr
          the first number in the list given to the [proof-checker]'s DV
          command

    * raw-term
          the untranslated term into which we will dive

    * term
          the translated term into which we will dive

    * wrld
          the current ACL2 logical [world]

  The function will normally return a list of positive integers,
  representing the (one-based) address for diving into term that
  corresponds to the single-address dive into raw-term by
  car-address. However, it can return (cons str alist), where str is
  a string suitable for [fmt] and args is the corresponding alist for
  [fmt].

  Referring to the example above, expand-address-cat would be such a
  function, which will be called on raw-term values that are calls of
  cat. See the community book books/misc/rtl-untranslate.lisp for the
  definition of such a function.

  See [table] for a general discussion of tables.


Subtopics

  [Add-dive-into-macro]
      Associate [proof-checker] diving function with macro name

  [Remove-dive-into-macro]
      Removes association of [proof-checker] diving function with macro
      name")
 (DMR
  (DEBUGGING BREAK-REWRITE ACCUMULATED-PERSISTENCE)
  "Dynamically monitor rewrites and other prover activity

  In addition to utilities that allow you to set breakpoints or print
  rewriting information to the screen --- see [break-rewrite] ---
  ACL2 provides a utility for watching the activity of the rewriter
  and some other proof processes, in real time. This utility is
  called ``dmr'', which is an acronym for ``dynamically monitor
  rewrites''. The utility comes in two parts: an ACL2 component that
  frequently updates a file (the ``dmr file'') containing the
  relevant information, and an Emacs component that frequently
  updates an Emacs buffer (the ``dmr buffer'') with the contents of
  that file. Other editors could, in principle, be programmed to
  display that file; anyone developing such a capability is invited
  to contribute it to the ACL2 community.

  The dmr utility can be extremely helpful for expensive proofs,
  especially when ACL2 is not providing any output to the terminal.
  The [break-rewrite] and [accumulated-persistence] utilities may be
  a bit easier to use, so you might want to try those first. But the
  dmr utility can be a very helpful debugging aide, as it can
  visually give you a sense of where ACL2 is spending its time.

  The Emacs portion of this utility is already loaded if you load the
  distributed Emacs file emacs/emacs-acl2.el. Otherwise, invoke the
  following Emacs command, say by typing Control-X Control-E after
  the right parenthesis, where DIR is the directory of your ACL2
  distribution.

    (load \"<DIR>/emacs/monitor.el\") ; absolute pathnames might work best

  You only need to do that once. Then each time you want to observe the
  rewriter in action, invoke the following to see it displayed in a
  buffer, which we call the ``dmr buffer'':

    Control-t 1

  But first you will need to enable monitoring at the ACL2 level:

    (dmr-start)

  Monitoring has some cost. So if you have started it, then at some
  point you may want to turn it off when not using it. Any time the
  dmr buffer (generally called \"acl2-dmr-<user_name>\") is not
  visible, Emacs monitoring is turned off. You can also turn off
  Emacs monitoring explicitly, with:

    Control-t 2

  At the ACL2 level you can disable monitoring as follows:

    (dmr-stop)

  Interpreting the dmr buffer display.

  We explain the dmr buffer display by way of the following example. It
  is a snapshot of a dmr buffer taken from one of the community
  books,
  books/workshops/2004/legato/support/proof-by-generalization-mult.lisp.

     0. (DEFTHM . WP-ZCOEF-G-MULTIPLIES)
     1. SIMPLIFY-CLAUSE
       2. Rewriting (to simplify) the atom of literal 18; argument(s) 1
       4. Rewriting (to simplify) the expansion; argument(s) 3|2
       7. Applying (:DEFINITION WP-ZCOEF-G)
    *  8. Rewriting (to simplify) the rewritten body; argument(s) 2|1|2|2
    *  13. Applying (:REWRITE MOD-ZERO . 2)
    *    14. Rewriting (to establish) the atom of hypothesis 4
    *    15. Applying (:META META-INTEGERP-CORRECT)

  Each line indicates an ACL2 activity that leads to the activity shown
  on the line just below it. Moreover, lines are sometimes collapsed
  to make the display more compact. Consider for example the first
  few lines. Above, we are proving a theorem named
  WP-ZCOEF-G-MULTIPLIES. Lines 1 and 2 show the clause simplification
  process invokes the rewriter on the 18th literal. (Recall that a
  clause is a disjunction of literals; for example the clause {(NOT
  A), (NOT B), C} would be displayed as (IMPLIES (AND A B) C).) This
  18th literal mentioned on line 2 is a function call (f arg1 ...),
  and ``argument(s) 1'' indicates that the rewriter, which works
  inside-out, is considering the first argument (``arg1''). Thus the
  display could instead have shown the following.

    2. Rewriting (to simplify) the atom of literal 18
    3. Rewriting (to simplify) the first argument
    4. Rewriting (to simplify) the expansion; argument(s) 3|2

  But it saved space to combine lines 2 and 3. Line 4 suggests that the
  above arg1 is a function call that has been opened up because of an
  :expand hint or, perhaps, an expansion directed explicitly by the
  prover (as can happen during induction). The annotation
  ``argument(s) 3|2'' then indicates that the rewriter is diving into
  the third argument of the expansion, and then into the second
  argument of that. Let us call the result term7 (since it is the one
  to be considered on line 7).

  Now consider the next two lines:

       7. Applying (:DEFINITION WP-ZCOEF-G)
    *  8. Rewriting (to simplify) the rewritten body; argument(s) 2|1|2|2

  Line 7 is saying that term7 (defined above) is modified by applying
  the definition of WP-ZCOEF-G to it. Line 8 then says that the body
  of this definition has been rewritten (with its formals bound to
  the actuals from term7) and the rewriter is diving into the
  subterms of that rewritten body, as indicated. Notice also that
  line 8 is the first line marked with an asterisk (``*'') in the
  margin. This line is the first that is different from what was
  shown the previous time the display was updated (about 1/10 second
  earlier, by default). When a line is marked with an asterisk, so
  are all the lines below it; so the lines without an asterisk are
  those that have been stable since the last display. In this example
  we may see line 7 marked without an asterisk for a while, which
  suggests that the rule (:DEFINITION WP-ZCOEF-G) is expensive. (Also
  see [accumulated-persistence].) In general, a line that persists
  for awhile without a leading asterisk can suggest why the proof is
  taking a long time.

  Finally, note the indentation of line 14 relative to line 13. Extra
  indentation occurs when an attempt is being made to relieve a
  hypothesis (i.e., rewrite it to t). In particular, rewrites that
  will be incorporated directly into a (top-level) literal are all
  indented just two spaces, starting with the first rewrite directly
  under a process such as SIMPLIFY-CLAUSE (shown line 1 above). If
  the indentation is at least the value of raw Lisp variable
  *dmr-indent-max* (by default, 20), then the indentation is
  restricted to that column, but ACL2 prints {n} where n is the
  column that would have been used for indentation if there were no
  maximum.

  You can move the cursor around in the dmr buffer even while it is
  being updated. But emacs will attempt to keep the cursor no later
  than the first asterisk (``*'') in the margin. Thus, you can move
  the cursor around in the stable part of the display, and emacs will
  keep the cursor in that stable part.

  WARNING: Things could go terribly wrong if the same user runs two
  different ACL2 sessions with dmr active, because the same file will
  be written by two different ACL2 processes.

  WARNING: For dmr to work, emacs and ACL2 need to be run on the same
  machine because the file used to communicate between ACL2 and emacs
  is under /tmp. Except, you can probably hack around that
  restriction by changing *dmr-file-name* in ACL2 (in raw Lisp) and
  correspondingly in Emacs file monitor.el.

  More generally, advanced users are welcome to search for the string

    User-settable dmr variables

  in ACL2 files interface-raw.lisp and emacs/monitor.el in order to
  customize their dmr environments.

  In order to update the dmr file with the latest stack information,
  interrupt ACL2 and then evaluate: (dmr-flush). In order to support
  resumption of the interrupted proof (assuming your host Common Lisp
  supports resumption), evaluation of (dmr-start) will automatically
  enable the debugger if it is not already enabled and not fully
  disabled with value :never (see [set-debugger-enable]). If such
  automatic enabling takes place, then (dmr-stop) will restore the
  old setting of the debugger unless, after (dmr-start) enables the
  debugger but before (dmr-stop) is called, you call
  [set-debugger-enable] (or more precisely: function
  set-debugger-enable-fn is called).

  Note for users of the experimental extension ACL2(p) (see
  [parallelism]): when waterfall-parallelism has been set to a
  non-nil value (see [set-waterfall-parallelism]), statistics about
  parallel execution are printed instead of the usual information.")
 (DO-NOT
  (HINTS)
  "Instruct the theorem prover not to do certain things.

  See [hints] for documentation about the :do-not keyword for prover
  :hints.

  See [do-not-hint] for documentation about the do-not macro that
  controls a mechanism for automatically suggesting :do-not and
  :do-not-induct hints.")
 (DO-NOT-INDUCT (POINTERS)
                "See [hints] for keyword :do-not-induct.")
 (DOC
  (DOCUMENTATION)
  "[Documentation] at the terminal

  The :doc command may be used at the ACL2 prompt to access the ACL2
  system [documentation]. Usually it may also access documentation
  defined in books. However, most users will probably access the ACL2
  documentation in other ways; see [documentation]. In particular,
  consider using the {ACL2+Books Manual |
  http://www.cs.utexas.edu/users/moore/acl2/v7-2/combined-manual/index.html},
  for topics documented in the ACL2 community [books] or in the ACL2
  system (where the latter are rearranged).

  Alternatively, consider using the ACL2-doc Emacs browser; see
  [ACL2-doc].

    Examples:
    ACL2 !>:doc DEFTHM          ; print documentation of DEFTHM
    ACL2 !>:doc logical-name    ; print documentation of LOGICAL-NAME

    General Form:
    ACL2>:doc name")
 (DOCUMENTATION
  (ACL2)
  "Information about options for downloading and viewing the ACL2
  documentation, contributing documentation, and the available tools
  for documenting your own books.


Available Documentation

  If you are new to ACL2, see the [ACL2-tutorial] for introductory
  tours, tutorials, and information about textbooks about ACL2. The
  {ACL2 home page | http://www.cs.utexas.edu/users/moore/acl2} also
  provides many links to academic publications about ACL2, including
  the ACL2 Workshop series.

  Beyond these resources, there is a vast ACL2+Books Manual with
  reference material covering the ACL2 system itself and also many
  [community-books]. There are a few ways to access the manual:

    * The online version (recommended). If you expect to have an internet
      connection while using the documentation, you may prefer to use
      the online version of the {ACL2+Books Manual |
      http://www.cs.utexas.edu/users/moore/acl2/v7-2/combined-manual/index.html}.
    * A local version. If you sometimes work without an internet
      connection, you can {download | download/} a local copy of any
      web-based XDOC manual using the \"down arrow\" icon at the top of
      the page. You can alternately build your own copy of the
      manual; see Building the manual in [books-certification].
    * The ACL2-Doc Emacs version. If you would like to view the
      documentation using Emacs instead of a web browser, there is a
      feature-rich Emacs-based documentation browser provided by the
      ACL2 system. See [ACL2-doc] for details.

  While you are using ACL2, you can get documentation at the terminal
  with the :[doc] command, e.g., by typing :doc rewrite. This is
  often handy, but note that it won't show you any documentation for
  books that you haven't loaded yet!

  Separately from the ACL2+Books Manual, the ACL2 User's Manual is
  distributed with ACL2. This is much like the ACL2+Books Manual but
  it does not include documentation from the books. A web-based copy
  is included with the ACL2 distribution in directory doc/manual/,
  and you can easily get to it by opening file doc/home-page.html in
  your browser.


Documenting Your Books

  Documentation is written using [xdoc], and may be found in the
  [community-books]. Everyone is welcome to edit and contribute to
  that documentation. In particular, you are welcome to edit the book
  that contains ACL2 system documentation,
  books/system/doc/acl2-doc.lisp. (Please do not edit ACL2 source
  file doc.lisp, which is generated from that book. More generaly,
  edit only files under the books/ directory.)

  You can also use XDOC to document your own books and to build custom
  manuals for your organization.


Other Resources

  If you want documentation on an ACL2 function or macro that is not
  documented, there are still several alternatives.

    ACL2 !>:args fn

  will print the arguments and some other relevant information about
  the named function or macro. This information is all gleaned from
  the definition and hence this is a definitive way to determine if
  fn is defined as a function or macro.

  You might also want to type:

    ACL2 !>:pc fn

  which will print the [command] that introduced fn. You should see
  [command-descriptor] for details on the kinds of input you can give
  the :[pc] command.


Subtopics

  [ACL2-doc]
      A custom Emacs browser for reading ACL2 [documentation]

  [Args]
      args, [guard], type, [constraint], etc., of a function symbol

  [Broken-link]
      Placeholder for link to documentation that resides in the community
      books

  [Doc]
      [Documentation] at the terminal

  [Documentation-copyright]
      Copyright and authorship of documentation

  [Finding-documentation]
      Searching the documentation

  [Pointers]
      Links pointing to relevant documentation topics")
 (DOCUMENTATION-COPYRIGHT
  (COPYRIGHT DOCUMENTATION)
  "Copyright and authorship of documentation

  There are two manuals associated with ACL2: the ACL2 User's Manual
  and the ACL2+Books Manual. See [documentation]. The former is
  distributed with ACL2, you can reach many links into it from the
  ACL2 home page. The latter may be preferred for routine browsing,
  since it extends the ACL2 User's Manual with documentation obtained
  from the [community-books].

  The ACL2 User's Manual is copyrighted under the terms of the LICENSE
  file distributed with ACL2. Its original authors are the ACL2
  authors, but it is now defined in an ACL2 community book,
  books/system/doc/acl2-doc.lisp, so that members of the ACL2
  community may contribute to it.

  The ACL2+Books Manual is a mechanically generated mashup derived from
  both the ACL2 User's Manual and the [community-books]. The
  ACL2+Books Manual thus has contributions from many authors. At the
  top of each topic, in a line under the topic name, you will
  generally find either ``ACL2 Sources'' or the name of a Community
  Book. In the former case, the text is from the ACL2 User's Manual
  and is authored, copyrighted, and licensed as per the ACL2
  [copyright]. When a book is named, the content was extracted from
  that book which may be inspected for authorship, copyright, and
  license terms.

  There are two standard tools for browsing these manuals, other than
  using the :[doc] command at the terminal.

    * The ACL2 [Xdoc] Fancy Viewer. This tool, written by Jared Davis, is
      included with the web-based version of each manual. Information
      on copyright and licensing are provided in {its LICENSE file |
      LICENSE}.
    * The [ACL2-doc] Emacs browser. This tool, authored by Matt Kaufmann
      and J Strother Moore, is distributed with ACL2 and is licensed
      under the terms of the LICENSE file distributed with ACL2.")
 (DOUBLE-REWRITE
  (REWRITE)
  "Cause a term to be rewritten twice

  Logically, double-rewrite is the [identity] function: (double-rewrite
  x) is equal to x. However, the ACL2 rewriter treats calls of
  double-rewrite in the following special manner. When it encounters
  a term (double-rewrite u), it first rewrites u in the current
  context, and then the rewriter rewrites the result.

  Such double-rewriting is rarely necessary, but it can be useful when
  rewriting under non-trivial equivalence relations (see
  [equivalence]). The following example will illustrate the issue.

    ; Define an equivalence relation.
    (defun my-equiv (x y)
      (equal x y))
    (defequiv my-equiv)

    ; Define a unary function whose argument is preserved by my-equiv.
    (defun foo (x)
      (declare (ignore x))
      t)
    (defcong my-equiv equal (foo x) 1)

    ; Define some other unary functions.
    (defun g (x) x)
    (defun h1 (x) x)
    (defun h2 (x) x)

    ; Prove some lemmas and then disable the functions above.
    (defthm lemma-1
      (my-equiv (h1 x) (h2 x)))
    (defthm lemma-2
      (foo (h2 x)))
    (defthm lemma-3
      (implies (foo x)
               (equal (g x) x)))
    (in-theory (union-theories (theory 'minimal-theory)
                               '(lemma-1 lemma-2 lemma-3
                                 my-equiv-implies-equal-foo-1)))

    ; Attempt to prove a simple theorem that follows ``obviously'' from the
    ; events above.
    (thm (equal (g (h1 a)) (h1 a)))

  We might expect the proof of this final thm to succeed by the
  following reasoning. It is immediate from lemma-3 provided we can
  establish (foo (h1 a)). By the defcong event above, we know that
  (foo (h1 a)) equals (foo (h2 a)) provided (my-equiv (h1 a) (h2 a));
  but this is immediate from lemma-1. And finally, (foo (h2 a)) is
  true by lemma-2.

  Unfortunately, the proof fails. But fortunately, ACL2 gives the
  following useful warning when lemma-3 is submitted:

    ACL2 Warning [Double-rewrite] in ( DEFTHM LEMMA-3 ...):  In the :REWRITE
    rule generated from LEMMA-3, equivalence relation MY-EQUIV is maintained
    at one problematic occurrence of variable X in hypothesis (FOO X),
    but not at any binding occurrence of X.  Consider replacing that occurrence
    of X in this hypothesis with (DOUBLE-REWRITE X).  See :doc double-
    rewrite for more information on this issue.

  We can follow the warning's advice by changing lemma-3 to the
  following.

    (defthm lemma-3
      (implies (foo (double-rewrite x))
               (equal (g x) x)))

  With this change, the proof succeeds for the final thm above.

  In practice, it should suffice for users to follow the advice given
  in the ``Double-rewrite'' warnings, by adding calls of
  double-rewrite around certain variable occurrences. But this can
  cause inefficiency in large proof efforts. For that reason, and for
  completeness, it seems prudent to explain more carefully what is
  going on; and that is what we do for the remainder of this
  [documentation] topic. Optionally, also see the paper ``Double
  Rewriting for Equivalential Reasoning in ACL2'' by Matt Kaufmann
  and J Strother Moore, in the proceedings of the 2006 ACL2 Workshop
  (paper is published in ACM Digital Library,
  {http://portal.acm.org/toc.cfm?id=1217975 |
  http://portal.acm.org/toc.cfm?id=1217975}).

  Suggesting congruence rules.

  Sometimes the best way to respond to a ``Double-rewrite'' warning may
  be to prove a congruence rule. Consider for example this rule.

    (defthm insert-sort-is-id
      (perm (insert-sort x) x))

  Assuming that perm has been identified as an [equivalence] relation
  (see [defequiv]), we will get the following warning.

    ACL2 Warning [Double-rewrite] in ( DEFTHM INSERT-SORT-IS-ID ...):
    In a :REWRITE rule generated from INSERT-SORT-IS-ID, equivalence relation
    PERM is maintained at one problematic occurrence of variable X in the
    right-hand side, but not at any binding occurrence of X.  Consider
    replacing that occurrence of X in the right-hand side with
    (DOUBLE-REWRITE X).  See :doc double-rewrite for more information on
    this issue.

  The problem is that the second occurrence of x (the right-hand side
  of the rule insert-sort-is-id) is in a context where perm is to be
  maintained, yet in this example, the argument x of insert-sort on
  the left-hand side of that rule is in a context where perm will not
  be maintained. This can lead one to consider the possibility that
  perm could be maintained in that left-hand side occurrence of x,
  and if so, to prove the following congruence rule.

    (defcong perm perm (insert-sort x) 1)

  This will eliminate the above warning for insert-sort-is-id. More
  important, this [defcong] event would probably be useful, since it
  would allow rewrite rules with equivalence relation perm to operate
  on the first argument of any call of insert-sort whose context
  calls for maintaining perm.

  Details on double-rewrite.

  The reader who wants these details may first wish to see
  [equivalence] for relevant review.

  The ACL2 rewriter takes a number of contextual arguments, including
  the generated equivalence relation being maintained (see
  [congruence]) and an association list that maps variables to terms.
  We call the latter alist the unify-subst because it is produced by
  unifying (actually matching) a pattern against a current term; let
  us explain this point by returning to the example above. Consider
  what happens when the rewriter is given the top-level goal of the
  thm above.

    (equal (g (h1 a)) (h1 a))

  This rewrite is performed with the empty alist (unify-subst), and is
  begun by rewriting the first argument (in that same empty
  unify-subst):

    (g (h1 a))

  Note that the only equivalence relation being maintained at this
  point is equal. Now, the rewriter notices that the left-hand side
  of lemma-3, which is (g x), matches (g (h1 a)). The rewriter thus
  creates a unify-subst binding x to (h1 a): ((x . (h1 a))). It now
  attempts to rewrite the hypothesis of lemma-3 to t under this
  unify-subst.

  Consider what happens now if the hypothesis of lemma-3 is (foo x). To
  rewrite this hypothesis under a unify-subst of ((x . (h1 a))), it
  will first rewrite x under this unify-subst. The key observation
  here is that this rewrite takes place simply by returning the value
  of x in the unify-subst, namely (h1 a). No further rewriting is
  done! The efficiency of the ACL2 rewriter depends on such caching
  of previous rewriting results.

  But suppose that, instead, the hypothesis of lemma-3 is (foo
  (double-rewrite x)). As before, the rewriter dives to the first
  argument of this call of foo. But this time the rewriter sees the
  call (double-rewrite x), which it handles as follows. First, x is
  rewritten as before, yielding (h1 a). But now, because of the call
  of double-rewrite, the rewriter takes (h1 a) and rewrites it under
  the empty unify-subst. What's more, because of the defcong event
  above, this rewrite takes place in a context where it suffices to
  maintain the equivalence relation my-equiv. This allows for the
  application of lemma-1, hence (h1 a) is rewritten (under
  unify-subst = nil) to (h2 a). Popping back up, the rewriter will
  now rewrite the call of foo to t using lemma-2.

  The example above explains how the rewriter treats calls of
  double-rewrite, but it may leave the unfortunate impression that
  the user needs to consider each :[rewrite] or :[linear] rule
  carefully, just in case a call of double-rewrite may be
  appropriate. Fortunately, ACL2 provides a ``[Double-rewrite]''
  warning to inform the user of just this sort of situation. If you
  don't see this warning when you submit a (:[rewrite] or :[linear])
  rule, then the issue described here shouldn't come up for that
  rule. Such warnings may appear for hypotheses or right-hand side of
  a :[rewrite] rule, and for hypotheses or full conclusion (as
  opposed to just the trigger term) of a :[linear] rule.

  If you do see a ``[Double-rewrite]'' warning, then should you add the
  indicated call(s) of double-rewrite? At the time of writing this
  [documentation], the answer is not clear. Early experiments with
  double rewriting suggested that it may be too expensive to call
  double-rewrite in every instance where a warning indicates that
  there could be an advantage to doing so. And at the time of this
  writing, the ACL2 regression suite has about 1900 such warnings
  (but note that books were developed before double-rewrite or the
  ``[Double-rewrite]'' warning were implemented), which suggests that
  one can often do fine just ignoring such warnings. However, it
  seems advisable to go ahead and add the calls of double-rewrite
  indicated by the warnings unless you run across efficiency problems
  caused by doing so. Of course, if you decide to ignore all such
  warnings you can execute the event:
  ([set-inhibit-warnings] \"Double-rewrite\").

  Finally, we note that it is generally not necessary to call
  double-rewrite in order to get its effect in the following case,
  where the discussion above might have led one to consider a call of
  double-rewrite: a hypothesis is a variable, or more generally, we
  are considering a variable occurrence that is a branch of the
  top-level IF structure of a hypothesis. The automatic handling of
  this case, by a form of double rewriting, was instituted in ACL2
  Version_2.9 and remains in place with the introduction of
  double-rewrite. Here is a simple illustrative example. Notice that
  foo-holds applies to prove the final [thm] below, even without a
  call of double-rewrite in the hypothesis of foo-holds, and that
  there is no ``[Double-rewrite]'' warning when submitting foo-holds.

    (encapsulate
     (((foo *) => *)
      ((bar *) => *))

     (local (defun foo (x) (declare (ignore x)) t))
     (local (defun bar (x) (declare (ignore x)) t))

     (defthm foo-holds
       (implies x
                (equal (foo x) t)))
     (defthm bar-holds-propositionally
       (iff (bar x) t)))

    (thm (foo (bar y)))")
 (DYNAMICALLY-MONITOR-REWRITES (POINTERS)
                               "See [dmr].")
 (E/D
  (THEORIES THEORY-FUNCTIONS)
  "Enable/disable rules

  The macro e/d creates theory expressions for use in [in-theory] hints
  and events. It provides a convenient way to [enable] and [disable]
  simultaneously, without having to write arcane theory expressions.
  For related utilities, see [enable] and see [disable].

    Examples:
    (e/d (lemma1 lemma2))          ; equivalent to (enable lemma1 lemma2)
    (e/d () (lemma))               ; equivalent to (disable lemma)
    (e/d (lemma1) (lemma2 lemma3)) ; Enable lemma1 then disable lemma2, lemma3.
    (e/d () (lemma1) (lemma2))     ; Disable lemma1 then enable lemma2.

    General Form:
    (e/d enables-0 disables-0 ... enables-n disables-n)

  where each enables-i and disables-i is a list of runic designators;
  see [theories], see [enable], and see [disable].

  The e/d macro takes any number of lists suitable for the [enable] and
  [disable] macros, and creates a theory that is equal to
  (current-theory :here) after executing the following commands.

    (in-theory (enable . enables-0))
    (in-theory (disable . disables-0))
    ...
    (in-theory (enable . enables-n))
    (in-theory (disable . disables-n))")
 (EARLY-TERMINATION
  (PARALLEL-PROGRAMMING)
  "Early termination for [pand] and [por].

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].

  The evaluation of (and expr1 expr2) returns nil if expr1 evaluates to
  nil, avoiding the evaluation of expr2. More generally, the
  evaluation of (and expr1 expr2 ... exprk) terminates with a return
  value of nil as soon as any expri evaluates to nil --- no exprj is
  evaluated in this case for j > i. This so-called ``lazy
  evaluation'' of [and] terms can thus save some computation; roughly
  speaking, the smaller the i, the more computation is saved.

  If the above call of [and] is replaced by its parallel version,
  [pand], then there can be even more opportunity for skipping work.
  The arguments to [pand] can be evaluated in parallel, in which case
  the first such evaluation that returns with a value of nil, if any,
  causes the remaining such evaluations to abort.

  Consider the following functions that compute whether a tree is valid
  (see [granularity] for a discussion of the granularity form).

    (defun valid-tip (x)
      (declare (xargs :guard t))
      (or (eq x 'A)
          (eq x 'T)
          (eq x 'C)
          (eq x 'G)))

    (defun pvalid-tree (x depth)
      (declare (xargs :guard (natp depth)))
      (if (atom x)
          (valid-tip x)
        (pand (declare (granularity (< depth 10)))
              (pvalid-tree (car x) (1+ depth))
              (pvalid-tree (cdr x) (1+ depth)))))

  We would like to stop execution as soon as any tip is found to be
  invalid. So, when computing the conjunction of terms by using
  [pand], once one of those terms evaluates to nil, the computations
  for the other terms are aborted and the [pand] call returns nil. By
  using [pand], we can in principle attain a speedup factor greater
  than the number of available cores.

  The concept of early termination also applies to [por], except that
  early termination occurs when an argument evaluates to non-nil.")
 (EC-CALL
  (GUARD ACL2-BUILT-INS)
  "Execute a call in the ACL2 logic instead of raw Lisp

  The name ``ec-call'' represents ``executable-counterpart call.'' This
  utility is intended for users who are familiar with guards. See
  [guard] for a general discussion of guards.

  Logically, ec-call behaves like the identity macro; during proofs,
  (ec-call TERM) is typically replaced quickly by TERM during a proof
  attempt. However, ec-call causes function calls to be evaluated in
  the ACL2 logic rather than raw Lisp, as explained below.

    General Form:
    (ec-call (fn term1 ... termk))

  where fn is a known function symbol other than those in the list that
  is the value of the constant *ec-call-bad-ops*. (But see the Final
  Note below for an exception pertaining to inlining.) In particular,
  fn is not a macro. Semantically, (ec-call (fn term1 ... termk))
  equals (fn term1 ... termk). However, this use of ec-call has two
  effects.

      (1) [Guard] verification generates no proof obligations from the
      guard of fn for this call. Indeed, guards need not have been
      verified for fn.

      (2) During evaluation, after the arguments of fn are evaluated as
      usual, the executable counterpart of fn is called, rather than
      fn as defined in raw Lisp. That is, the call of fn is made on
      its evaluated arguments as though this call is being made in
      the ACL2 top-level loop, rather than in raw Lisp. In
      particular, the [guard] of fn is checked, at least by default
      (see [set-guard-checking]).

  Note that in the term (ec-call (fn term1 ... termk)), only the
  indicated call of fn is made in the logic; each termi is evaluated
  in the normal manner. If you want an entire term evaluated in the
  logic, wrap ec-call around each function call in the term (other
  than calls of if and ec-call).

  Technical Remark (probably best ignored). During evaluation of a call
  of [defconst] or [defpkg] in raw Lisp, a form (ec-call (fn term1
  ... termk)) is treated as (fn term1 ... termk), that is, without
  calling the executable counterpart of fn. This situation occurs
  when loading a compiled file (or expansion file) on behalf of an
  [include-book] event. The reason is technical: executable
  counterparts are defined below a book's events in the book's
  compiled file. End of Technical Remark.

  Here is a small example. We define foo recursively but with guard
  verification inhibited on the recursive call, which is to be
  evaluated in the ACL2 logic.

    ACL2 !>(defun foo (x y)
            (declare (xargs :guard (consp y)))
            (if (consp x)
                (cons (car x) (ec-call (foo (cdr x) (cdr y))))
              (car y)))

    The admission of FOO is trivial, using the relation O< (which is known
    to be well-founded on the domain recognized by O-P) and the measure
    (ACL2-COUNT X).  We could deduce no constraints on the type of FOO.

    Computing the guard conjecture for FOO....

    The guard conjecture for FOO is trivial to prove.  FOO is compliant
    with Common Lisp.

    Summary
    Form:  ( DEFUN FOO ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     FOO
    ACL2 !>(foo '(2 3 4 5) '(6 7))

    ACL2 Error in TOP-LEVEL:  The guard for the function call (FOO X Y),
    which is (CONSP Y), is violated by the arguments in the call
    (FOO '(4 5) NIL).  To debug see :DOC print-gv, see :DOC trace, and
    see :DOC wet.  See :DOC set-guard-checking for information about suppressing
    this check with (set-guard-checking :none), as recommended for new
    users.

    ACL2 !>

  The error above arises because eventually, foo recurs down to a value
  of parameter y that violates the guard. This is clear from tracing
  (see [trace$] and see [trace]). Each call of the executable
  counterpart of foo (the so-called ``*1*'' function for foo) checks
  the guard and then invokes the raw Lisp version of foo. The raw
  Lisp version calls the executable counterpart on the recursive
  call. When the guard check fails we get a violation.

    ACL2 !>(trace$ foo)
     ((FOO))
    ACL2 !>(foo '(2 3 4 5) '(6 7))
    1> (ACL2_*1*_ACL2::FOO (2 3 4 5) (6 7))
      2> (FOO (2 3 4 5) (6 7))
        3> (ACL2_*1*_ACL2::FOO (3 4 5) (7))
          4> (FOO (3 4 5) (7))
            5> (ACL2_*1*_ACL2::FOO (4 5) NIL)

    ACL2 Error in TOP-LEVEL:  The guard for the function call (FOO X Y),
    which is (CONSP Y), is violated by the arguments in the call
    (FOO '(4 5) NIL).  To debug see :DOC print-gv, see :DOC trace, and
    see :DOC wet.  See :DOC set-guard-checking for information about suppressing
    this check with (set-guard-checking :none), as recommended for new
    users.

    ACL2 !>

  If we turn off guard errors then we can see the trace as above, but
  where we avoid calling the raw Lisp function when the guard fails
  to hold.

    ACL2 !>:set-guard-checking nil

    Masking guard violations but still checking guards except for self-
    recursive calls.  To avoid guard checking entirely, :SET-GUARD-CHECKING
    :NONE.  See :DOC set-guard-checking.

    ACL2 >(foo '(2 3 4 5) '(6 7))
    1> (ACL2_*1*_ACL2::FOO (2 3 4 5) (6 7))
      2> (FOO (2 3 4 5) (6 7))
        3> (ACL2_*1*_ACL2::FOO (3 4 5) (7))
          4> (FOO (3 4 5) (7))
            5> (ACL2_*1*_ACL2::FOO (4 5) NIL)
              6> (ACL2_*1*_ACL2::FOO (5) NIL)
                7> (ACL2_*1*_ACL2::FOO NIL NIL)
                <7 (ACL2_*1*_ACL2::FOO NIL)
              <6 (ACL2_*1*_ACL2::FOO (5))
            <5 (ACL2_*1*_ACL2::FOO (4 5))
          <4 (FOO (3 4 5))
        <3 (ACL2_*1*_ACL2::FOO (3 4 5))
      <2 (FOO (2 3 4 5))
    <1 (ACL2_*1*_ACL2::FOO (2 3 4 5))
    (2 3 4 5)
    ACL2 >

  Final note: although in general, the form (ec-call (fn term1 ...
  termk)) is only legal if fn is a function symbol, such a form is
  also legal if fn is introduced with [defun-inline], or with
  [define] using keyword argument :inline t. In those cases, fn is a
  macro whose calls expand to corresponding calls of fn$INLINE, the
  symbol in the same package as fn but with the string \"$INLINE\"
  added as a suffix to the [symbol-name] of fn. We do not however
  extend this exception to macros in general, even when
  [add-macro-fn] has been invoked. Consider the following example.

    (encapsulate
     ()
     (defun foo () nil)
     (defun bar () t)
     (defmacro mac () nil)
     (add-macro-alias mac foo)
     (local (add-macro-alias mac bar))
     (defun h () (ec-call (mac)))
     (defthm bad (h)))

  Consider what would happen if this were legal, where (ec-call (mac))
  used the macro-alias, foo, for mac. Then in the first pass of the
  [encapsulate] form above, the final [defthm] event would prove,
  since (ec-call (mac)) is treated as (ec-call (bar)). But on the
  second pass, ACL2 would store bad as a theorem even though (h)
  would evaluate to nil, since the macro-alias of mac is foo on the
  second pass.")
 (EIGHTH
  (NTH ACL2-BUILT-INS)
  "Eighth member of the list

  See any Common Lisp documentation for details.")
 (ELIM
  (RULE-CLASSES)
  "Make a destructor elimination rule

  See [rule-classes] for a general discussion of rule classes,
  including how they are used to build rules from formulas and a
  discussion of the various keywords in a rule class description.

  The following example of an :elim rule is an important one, and is
  built into ACL2.

    (defaxiom car-cdr-elim
      (implies (consp x)
               (equal (cons (car x) (cdr x)) x))
      :rule-classes :elim)

  The class of :elim rules is fundamentally quite different from the
  more common class of :[rewrite] rules. Briefly put, a :rewrite rule
  replaces instances of its left-hand side with corresponding
  instances of its right-hand side. But an :elim rule, on the other
  hand, has the effect of generalizing so-called ``destructor''
  function applications to variables. In essence, applicability of a
  :rewrite rule is based on matching its left-hand side, while
  applicability of an :elim rule is based on the presence of at least
  one destructor term.

  For example, a conjecture about (car x) and (cdr x) can be replaced
  by a conjecture about new variables x1 and x2, as shown in the
  following example. (Run the command :mini-proveall and search for
  CAR-CDR-ELIM to see the full proof containing this excerpt.)

    Subgoal *1/1'
    (IMPLIES (AND (CONSP X)
                  (TRUE-LISTP (REV (CDR X))))
             (TRUE-LISTP (APP (REV (CDR X)) (LIST (CAR X))))).

    The destructor terms (CAR X) and (CDR X) can be eliminated by using
    CAR-CDR-ELIM to replace X by (CONS X1 X2), (CAR X) by X1 and (CDR X)
    by X2.  This produces the following goal.

    Subgoal *1/1''
    (IMPLIES (AND (CONSP (CONS X1 X2))
                  (TRUE-LISTP (REV X2)))
             (TRUE-LISTP (APP (REV X2) (LIST X1)))).

    This simplifies, using primitive type reasoning, to

    Subgoal *1/1'''
    (IMPLIES (TRUE-LISTP (REV X2))
             (TRUE-LISTP (APP (REV X2) (LIST X1)))).

  The resulting conjecture is often simpler and hence more amenable to
  proof.

  The application of an :elim rule thus replaces a variable by a term
  that contains applications of so-called ``destructor'' functions to
  that variable. The example above is typical: the variable x is
  replaced by the term (cons (car x) (cdr x)), which applies a
  so-called ``constructor'' function, [cons], to applications (car x)
  and (cdr x) of destructor functions [car] and [cdr] to that same
  variable, x. But that is only part of the story. ACL2 then
  generalizes the destructor applications (car x) and (cdr x) to new
  variables x1 and x2, respectively, and ultimately the result is a
  simpler conjecture.

  More generally, the application of an :elim rule replaces a variable
  by a term containing applications of destructors; there need not be
  a clear-cut notion of ``constructor.'' But the situation described
  above is typical, and we will focus on it, giving full details when
  we introduce the ``General Form'' below.

  Notice that the situation can be complicated a bit by a rule's
  hypotheses. For example, the replacement specified by the rule
  car-cdr-elim (shown near the beginning of this discussion) is only
  valid if the variable being replaced is a cons structure. Thus,
  when ACL2 applies car-cdr-elim to replace a variable v, it will
  split into two cases: one case in which (consp v) is true, in which
  v is replaced by (cons (car v) (cdr v)) and then (car v) and (cdr
  v) are generalized to new variables; and one case in which (consp
  v) is false. In practice, (consp v) is often provable, perhaps even
  literally present as a hypotheses; then of course there is no need
  to introduce the second case. That is why there is no such second
  case in the example above.

  You might find :elim rules to be useful whenever you have in mind a
  data type that can be built up from its fields with a
  ``constructor'' function and whose fields can be accessed by
  corresponding ``destructor'' functions. So for example, if you have
  a ``house'' data structure that represents a house in terms of its
  address, price, and color, you might have a rule like the
  following.

    Example:
    (implies (house-p x)
             (equal (make-house (address x)
                                (price x)
                                (color x))
                    x))

  The application of such a rule is entirely analogous to the
  application of the rule car-cdr-elim discussed above. We discuss
  such rules and their application more carefully below.

    General Form:
    (implies hyp (equiv lhs x))

  where equiv is a known equivalence relation (see [defequiv]); x is a
  variable symbol; and lhs contains one or more terms (called
  ``destructor terms'') of the form (fn v1 ... vn), where fn is a
  function symbol and the vi are distinct variable symbols, v1, ...,
  vn include all the variable symbols in the formula, no fn occurs in
  lhs in more than one destructor term, and all occurrences of x in
  lhs are inside destructor terms.

  To use an :elim rule, the theorem prover waits until a conjecture has
  been maximally simplified. It then searches for an instance of some
  destructor term (fn v1 ... vn) in the conjecture, where the
  instance for x is some variable symbol, vi, and every occurrence of
  vi outside the destructor terms is in an equiv-hittable position.
  If such an instance is found, then the theorem prover instantiates
  the :elim formula as indicated by the destructor term matched;
  splits the conjecture into two goals, according to whether the
  instantiated hypothesis, hyp, holds; and in the case that it does
  hold, generalizes all the instantiated destructor terms in the
  conjecture to new variables and then replaces vi in the conjecture
  by the generalized instantiated lhs. An occurrence of vi is
  ``equiv-hittable'' if sufficient congruence rules (see [defcong])
  have been proved to establish that the propositional value of the
  clause is not altered by replacing that occurrence of vi by some
  equiv-equivalent term.

  If an :elim rule is not applied when you think it should have been,
  and the rule uses an equivalence relation, equiv, other than equal,
  it is most likely that there is an occurrence of the variable that
  is not equiv-hittable. Easy occurrences to overlook are those in
  the governing hypotheses. If you see an unjustified occurrence of
  the variable, you must prove the appropriate congruence rule to
  allow the :elim to fire.

  Further examples of how ACL2 :elim rules are used may be found in the
  corresponding discussion of ``Elimation of Destructors'' for Nqthm,
  in Section 10.4 of A Computational Logic Handbook.")
 (EMACS
  (ACL2-TUTORIAL)
  "Emacs support for ACL2

  Many successful ACL2 users run in an shell under the Emacs editor. If
  you do so, then you may wish to load the distributed file
  emacs/emacs-acl2.el. The file begins with considerable comments
  describing what it offers. It is intended to work both with GNU
  Emacs and XEmacs.

  In particular, the above file provides the ACL2-Doc browser, a
  convenient tool for viewing, in Emacs, documentation for both the
  ACL2 system and the documented community books. See [ACL2-Doc].

  If you are not comfortable with Emacs, you may prefer to use an
  Eclipse-based interface; see [ACL2-sedan].")
 (EMBEDDED-EVENT-FORM
  (EVENTS)
  "Forms that may be embedded in other [events]

    Examples:
    (defun hd (x) (if (consp x) (car x) 0))
    (local (defthm lemma23 ...))
    (progn (defun fn1 ...)
           (local (defun fn2 ...))
           ...)

    General Form:
    An embedded event form is a term, x, such that:

    * x is a call of an event function other than [defpkg] (see [events]
      for a listing of the event functions);
    * x is of the form ([local] x1) where x1 is an embedded event form;
    * x is of the form ([skip-proofs] x1) where x1 is an embedded event
      form;
    * x is of the form ([make-event] &), where & is any term whose
      expansion is an embedded event (see [make-event]);
    * x is of the form ([with-output] ... x1), ([with-prover-step-limit]
      ... x1 ...), or ([with-prover-time-limit] ... x1), where x1 is
      an embedded event form;
    * x is a call of [encapsulate], [progn], [progn!], or [include-book];
    * x macroexpands to one of the forms above; or
    * [intended only for the implementation] x is (RECORD-EXPANSION x1 x2),
      where x1 and x2 are embedded event forms.

  However, we add the following restrictions for [local] contexts.

    * An embedded event form may not set the [ACL2-defaults-table] when in
      the context of [local]. Thus for example, the form

          (local (table acl2-defaults-table :defun-mode :program))

      is not an embedded event form, nor is the form (local (program)),
      since the latter sets the [ACL2-defaults-table] implicitly. An
      example at the end of the discussion below illustrates why
      there is this restriction.
    * A call of [defaxiom] is illegal in the context of [local]. Without
      this restriction, one could locally assert a strong axiom like
      (equal t nil) and then non-locally prove that formula, leaving
      you in an ACL2 logical [world] in which it appears that the
      formula is actually provable without such an axiom.
    * A call of [add-include-book-dir!] or [delete-include-book-dir!] is
      illegal in the context of [local]. For an explanation, see
      [add-include-book-dir!].

  Only embedded event forms are allowed in a book after its initial
  [in-package] form. See [books]. However, you may find that
  [make-event] allows you to get the effect you want for a form that
  is not an embedded event form. For example, you can put the
  following into a book, which assigns the value 17 to [state] global
  variable x:

    (make-event (er-progn (assign x 17)
                          (value '(value-triple nil)))
                :check-expansion t)

  When an embedded event is executed while [ld-skip-proofsp] is
  '[include-book], those parts of it inside [local] forms are
  ignored. Thus,

    (progn (defun f1 () 1)
           (local (defun f2 () 2))
           (defun f3 () 3))

  will define f1, f2, and f3 when [ld-skip-proofsp] is nil or t, but
  will define only f1 and f3 when [ld-skip-proofsp] is
  '[include-book].

  Discussion:

  [Encapsulate], [progn], and [include-book] place restrictions on the
  kinds of forms that may be processed. These restrictions ensure
  that the non-local [events] are indeed admissible provided that the
  sequence of [local] and non-local [events] is admissible when
  proofs are done, i.e., when ld-skip-proofs is nil. But [progn!]
  places no such restrictions, hence is potentially dangerous and
  should be avoided unless you understand the ramifications; so it is
  illegal unless there is an active trust tag (see [defttag]).

  [Local] permits the hiding of an event or group of [events] in the
  sense that [local] [events] are processed when we are trying to
  establish the admissibility of a sequence of [events] embedded in
  [encapsulate] forms or in [books], but are ignored when we are
  constructing the [world] produced by assuming that sequence. Thus,
  for example, a particularly ugly and inefficient :[rewrite] rule
  might be made [local] to an [encapsulate] that ``exports'' a
  desirable theorem whose proof requires the ugly lemma.

  To see why we can't allow just anything as an embedded event,
  consider allowing the form

    (if (ld-skip-proofsp state)
        (defun foo () 2)
        (defun foo () 1))

  followed by

    (defthm foo-is-1 (equal (foo) 1)).

  When we process the [events] with [ld-skip-proofsp] is nil, the
  second [defun] is executed and the [defthm] succeeds. But when we
  process the [events] with [ld-skip-proofsp] '[include-book], the
  second [defun] is executed, so that foo no longer has the same
  definition it did when we proved foo-is-1. Thus, an invalid formula
  is assumed when we process the [defthm] while skipping proofs.
  Thus, the first form above is not a legal embedded event form.

  If you encounter a situation where these restrictions seem to prevent
  you from doing what you want to do, then you may find make-event to
  be helpful. See [make-event].

  [Defpkg] is not allowed because it affects how things are read after
  it is executed. But all the forms embedded in an event are read
  before any are executed. That is,

    (encapsulate nil
                 (defpkg \"MY-PKG\" nil)
                 (defun foo () 'my-pkg::bar))

  makes no sense since my-pkg::bar must have been read before the
  [defpkg] for \"MY-PKG\" was executed.

  Finally, let us elaborate on the restriction mentioned earlier
  related to the [ACL2-defaults-table]. Consider the following form.

    (encapsulate
     ()
     (local (program))
     (defun foo (x)
       (if (equal 0 x)
           0
         (1+ (foo (- x))))))

  See [local-incompatibility] for a discussion of how [encapsulate]
  processes event forms. Briefly, on the first pass through the
  [events] the definition of foo will be accepted in [defun] mode
  :[program], and hence accepted. But on the second pass the form
  (local (program)) is skipped because it is marked as [local], and
  hence foo is accepted in [defun] mode :[logic]. Yet, no proof has
  been performed in order to admit foo, and in fact, it is not hard
  to prove a contradiction from this definition!")
 (ENABLE
  (THEORIES THEORY-FUNCTIONS)
  "Adds names to current theory

    Example:
    (enable fact (fact) associativity-of-app)

    General Form:
    (enable name1 name2 ... namek)

  where each namei is a runic designator; see [theories]. The result is
  the theory that contains all the names in the current theory plus
  those listed. Note that this is merely a function that returns a
  theory. The result is generally a very long list of [rune]s and you
  will probably regret printing it.

  For related utilities, see [disable] and see [e/d].

  The standard way to ``enable'' a fixed set of names, is as follows;
  see [hints] and see [in-theory].

    :in-theory (enable name1 name2 ... namek)  ; in a hint
    (in-theory (enable name1 name2 ... namek)) ; as an event
    (local ; often desirable, to avoid exporting from the current context
     (in-theory (enable name1 name2 ... namek)))

  Note that all the names are implicitly quoted. If you wish to enable
  a computed list of names, lst, use the theory expression
  (union-theories (current-theory :here) lst).")
 (ENABLE-FORCING
  (FORCE)
  "To allow forced case splits

    General Form:
    ACL2 !>:enable-forcing    ; allowed forced case splits

  See [force] and see [case-split] for a discussion of forced case
  splits, which are turned back on by this command. See
  [disable-forcing] for an example showing how to turn off forced
  case splits.

  Enable-forcing is actually a macro that [enable]s the executable
  counterpart of the function symbol force; see [force]. When you
  want to use [hints] to turn on forced case splits, use a form such
  as one of the following (these are equivalent).

    :in-theory (enable (:executable-counterpart force))
    :in-theory (enable (force))")
 (ENABLE-IMMEDIATE-FORCE-MODEP
  (FORCE)
  "[force]d hypotheses are attacked immediately

    General Form:
    ACL2 !>:enable-immediate-force-modep

  This event causes ACL2 to attack [force]d hypotheses immediately
  instead of delaying them to the next forcing round. See
  [immediate-force-modep]. Or for more basic information, first see
  [force] for a discussion of [force]d case splits.

  Enable-immediate-force-modep is a macro that [enable]s the executable
  counterpart of the function symbol [immediate-force-modep]. When
  you want to [enable] this mode in [hints], use a form such as one
  of the following (these are equivalent).

    :in-theory (enable (:executable-counterpart immediate-force-modep))
    :in-theory (enable (immediate-force-modep))")
 (ENCAPSULATE
  (EVENTS)
  "Hide some [events] and/or constrain some functions

  Encapsulate provides a way to execute a sequence of [events] and then
  hide some of the resulting effects. There are two kinds of
  encapsulations: ``trivial'' and ``non-trivial''. We discuss these
  briefly before providing detailed [documentation].

  A trivial encapsulation is an event of the following form.

    (encapsulate
     () ; nil here indicates \"trivial\"
     <event-1>
     ...
     <event-k>)

  We use the term ``sub-events'' to refer to <event-1> through
  <event-k>. Each sub-event <event-i> may be ``[local]'', that is, of
  the form (local <event-i'>); the other sub-events are called
  ``non-local''. When this encapsulate form is submitted to ACL2, it
  is processed in two passes. On the first pass, each sub-event is
  printed (by default) and processed in sequence; admission of the
  encapsulate fails if any <event-i> fails to be admitted. Then a
  second pass is made after rolling back the logical [world] to what
  it was just before executing the encapsulate form. In the second
  pass, only the non-[local] forms <event-i> are evaluated, again in
  order, and proofs are skipped.

  For example, the following trivial encapsulation exports a single
  event, member-equal-reverse. The lemma member-revappend is used (as
  a [rewrite] rule) to prove member-equal-reverse on the first pass,
  but since member-revappend is [local], it is ignored on the second
  (final) pass.

    (encapsulate
     ()

     (local
      (defthm member-revappend
        (iff (member-equal a (revappend x y))
             (or (member-equal a x)
                 (member-equal a y)))
        :hints ((\"Goal\" :induct (revappend x y)))))

     (defthm member-equal-reverse
       (iff (member-equal a (reverse x))
            (member-equal a x))))

  Of course, one might prefer to prove these [events] at the top level,
  rather than within an encapsulation; but the point here is to
  illustrate that you can have [local] [events] that do not become
  part of the logical [world]. (Such a capability is also provided at
  the level of [books]; in particular, see [include-book].)

  Note that trivial encapsulates must introduce at least one sub-event,
  or else they are treated as no-ops, with no effect on the logical
  [world]. Consider the following example.

    ACL2 !>(encapsulate nil (local (defun f (x) x)))

    To verify that the encapsulated event correctly extends the current
    theory we will evaluate it.  The theory thus constructed is only ephemeral.

    Encapsulated Event:


    ACL2 !>>(LOCAL (DEFUN F (X) X))

    Since F is non-recursive, its admission is trivial.  We observe that
    the type of F is described by the theorem (EQUAL (F X) X).

    Summary
    Form:  ( DEFUN F ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
    F

    End of Encapsulated Event.

    ACL2 Observation in ( ENCAPSULATE NIL (LOCAL ...) ...):  The submitted
    encapsulate event has created no new ACL2 events, and thus is leaving
    the ACL2 logical world unchanged.  See :DOC encapsulate.

    Summary
    Form:  ( ENCAPSULATE NIL (LOCAL ...) ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     :EMPTY-ENCAPSULATE
    ACL2 !>

  After the above evaluation, we are left in the [world] with which we
  began. For example, if you evaluate the above form in the initial
  ACL2 world, you can see the following both before and after that
  evaluation.

    ACL2 !>:pbt 0
               0:x(EXIT-BOOT-STRAP-MODE)
    ACL2 !>

  On the other hand, non-trivial encapsulations provide a way to
  introduce axioms about new function symbols, without introducing
  inconsistency and without introducing complete definitions. The
  following example illustrates how that works.

    (encapsulate

    ; The following list has a single signature, introducing a function foo of
    ; one argument that returns one value.  (The list is non-empty, so we call
    ; this a \"non-trivial\" encapsulation.)
     ( ((foo *) => *) )

    ; Introduce a ``witness'' (example) for foo, marked as local so that
    ; it is not exported:
     (local (defun foo (x) x))

    ; Introduce a non-local property to be exported:
     (defthm foo-preserves-consp
       (implies (consp x)
                (consp (foo x))))
    )

  The form above introduces a new function symbol, foo, with the
  indicated property and no definition. In fact, the output from ACL2
  concludes as follows.

    The following constraint is associated with the function FOO:

    (IMPLIES (CONSP X) (CONSP (FOO X)))

  To understand this example, we consider how non-trivial
  encapsulations are processed. The same two passes are made as for
  trivial encapsulations, and the ([local]) definition of foo is
  ignored on the second pass, and hence does not appear in the
  resulting ACL2 logical [world]. But before the second pass, each
  [signature] is stored in the [world]. Thus, when the theorem
  foo-preserves-consp is encountered in the second pass, foo is a
  known function symbol with the indicated signature.

  If any event fails while evaluating a call of encapsulate, the entire
  encapsulate call is deemed to have failed, and the logical [world]
  is rolled back to what it was immediately before the encapsulate
  call.

  We now provide detailed documentation. But discussion of redundancy
  for encapsulate events may be found elsewhere; see
  [redundant-encapsulate].

    Other Examples:
    (encapsulate (((an-element *) => *))

    ; The list of signatures above could also be written
    ;            ((an-element (lst) t))

      (local (defun an-element (lst)
               (if (consp lst) (car lst) nil)))
      (local (defthm member-equal-car
                (implies (and lst (true-listp lst))
                         (member-equal (car lst) lst))))
      (defthm thm1
         (implies (null lst) (null (an-element lst))))
      (defthm thm2
         (implies (and (true-listp lst)
                       (not (null lst)))
                  (member-equal (an-element lst) lst))))

    (encapsulate
     () ; empty signature: no constrained functions indicated

     (local (defthm hack
              (implies (and (syntaxp (quotep x))
                            (syntaxp (quotep y)))
                       (equal (+ x y z)
                              (+ (+ x y) z)))))

     (defthm nthcdr-add1-conditional
       (implies (not (zp (1+ n)))
                (equal (nthcdr (1+ n) x)
                       (nthcdr n (cdr x))))))

    General Form:
    (encapsulate (signature ... signature)
      ev1
      ...
      evn)

  where each [signature] is a well-formed signature, each signature
  describes a different function symbol, and each evi is an embedded
  event form (See [embedded-event-form]). Also see [signature], in
  particular for a discussion of how a signature can assign a [guard]
  to a function symbol. There must be at least one evi. The evi
  inside [local] special forms are called ``local'' [events] below.
  [Events] that are not [local] are sometimes said to be ``exported''
  by the encapsulation. We make the further restriction that no
  [defaxiom] event may be introduced in the scope of an encapsulate
  (not even by encapsulate or [include-book] events that are among
  the evi). Furthermore, no non-[local] [include-book] event is
  permitted in the scope of any encapsulate with a non-empty list of
  signatures.

  To be well-formed, an encapsulate event must have the properties that
  each event in the body (including the [local] ones) can be
  successfully executed in sequence and that in the resulting theory,
  each function mentioned among the [signature]s was introduced via a
  [local] event and has the [signature] listed. (A utility is
  provided to assist in debugging failures of such execution; see
  [redo-flat].) In addition, the body may contain no ``local
  incompatibilities'' which, roughly stated, means that the [events]
  that are not [local] must not syntactically require symbols defined
  by [local] [events], except for the functions listed in the
  [signature]s. See [local-incompatibility]. Finally, no non-[local]
  recursive definition in the body may involve in its suggested
  induction scheme any function symbol listed among the [signature]s.
  See [subversive-recursions].

  Observe that if the [signature]s list is empty, the resulting
  ``trivial'' encapsulate may still be useful for deriving theorems
  to be exported whose proofs require lemmas you prefer to hide
  (i.e., made [local]). Whether trivial or not (i.e., whether the
  signature is empty or not), encapsulate exports the results of
  evaluating its non-[local] [events], but its [local] [events] are
  ignored for the resulting logical [world].

  The result of a non-trivial encapsulate event is an extension of the
  logic in which, roughly speaking, the functions listed in the
  [signature]s are constrained to have the [signature]s listed and to
  satisfy the non-[local] theorems proved about them. In fact, other
  functions introduced in the encapsulate event may be considered to
  have ``[constraint]s'' as well. (See [constraint] for details,
  which are only relevant to functional instantiation.) Since the
  [constraint]s were all theorems in the ``ephemeral'' or ``local''
  theory, we are assured that the extension produced by encapsulate
  is sound. In essence, the [local] definitions of the constrained
  functions are just ``witness functions'' that establish the
  consistency of the [constraint]s. Because those definitions are
  [local], they are not present in the theory produced by
  encapsulation. After a non-trivial encapsulate event is admitted,
  theorems about the constrained function symbols may then be proved
  --- theorems whose proofs necessarily employ only the
  [constraint]s. Thus, those theorems may be later functionally
  instantiated, as with the :functional-instance lemma instance (see
  [lemma-instance]), to derive analogous theorems about different
  functions, provided the constraints (see [constraint]) can be
  proved about the new functions.

  The [default-defun-mode] for the first event in an encapsulation is
  the default [defun-mode] ``outside'' the encapsulation. But since
  [events] changing the [defun-mode] are permitted within the body of
  an encapsulate, the default [defun-mode] may be changed. However,
  [defun-mode] changes occurring within the body of the encapsulate
  are not exported. In particular, the [ACL2-defaults-table] after an
  encapsulate is always the same as it was before the encapsulate,
  even though the encapsulate body might contain [defun-mode]
  changing [events], :[program] and :[logic]. See [defun-mode]. More
  generally, after execution of an encapsulate event, the value of
  [ACL2-defaults-table] is restored to what it was immediately before
  that event was executed. See [ACL2-defaults-table].

  We make some remarks on [guard]s and evaluation. Calls of functions
  introduced in the [signature]s list cannot be evaluated in the ACL2
  read-eval-print loop. See [defattach] for a way to overcome this
  limitation. Moreover, any :[guard] supplied in the signature is
  automatically associated in the [world] with its corresponding
  function symbol, with no requirement other than that the guard is a
  legal term all of whose function symbols are in :[logic] mode with
  their [guard]s verified. In particular, there need not be any
  relationship between a guard in a signature and the guard in a
  local witness function. Finally, note that for functions introduced
  non-[local]ly inside a non-trivial encapsulate event, [guard]
  verification is illegal unless ACL2 determines that the proof
  obligations hold outside the [encapsulate] event as well.

    (encapsulate
     ((f (x) t))
     (local (defun f (x) (declare (xargs :guard t)) (consp x)))
     ;; ERROR!
     (defun g (x)
       (declare (xargs :guard (f x)))
       (car x)))

  The order of the [events] in the vicinity of an encapsulate is
  confusing. We discuss it in some detail here because when logical
  names are being used with theory functions to compute sets of
  rules, it is sometimes important to know the order in which
  [events] were executed. (See [logical-name] and see
  [theory-functions].) What, for example, is the set of function
  names extant in the middle of an encapsulation?

  If the most recent event is previous and then you execute an
  encapsulate constraining an-element with two non-[local] [events]
  in its body, thm1 and thm2, then the order of the [events] after
  the encapsulation is (reading chronologically forward): previous,
  thm1, thm2, an-element (the encapsulate itself). Actually, between
  previous and thm1 certain extensions were made to the [world] by
  the superior encapsulate, to permit an-element to be used as a
  function symbol in thm1.

  Remark for ACL2(r) (see [real]). For ACL2(r), [encapsulate] can be
  used to introduce classical and non-classical functions, as
  determined by the signatures; see [signature]. Those marked as
  classical (respectively non-classical) must have classical
  (respectively, non-classical) [local] witness functions. A related
  requirement applies to functional instantiation; see
  [lemma-instance].


Subtopics

  [Constraint]
      Restrictions on certain functions introduced in [encapsulate]
      [events]

  [Functional-instantiation]
      An analogue in ACL2 of higher-order logical reasoning. Functional
      instantiation allows you to prove theorems ``by analogy'' with
      previous theorems. See [hints] and see [lemma-instance].

  [Redundant-encapsulate]
      Redundancy of [encapsulate] [events]

  [Signature]
      How to specify the arity of a constrained function")
 (ENDP
  (LISTS ACL2-BUILT-INS)
  "Recognizer for empty lists

  In the ACL2 logic, (endp x) is the same as (atom x). See [atom].

  Unlike [atom], the [guard] for endp requires that x is a [cons] pair
  or is nil. Thus, endp is typically used as a termination test for
  functions that recur on a [true-listp] argument. See [guard] for
  general information about [guard]s.

  Endp is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Function: <endp>

    (defun endp (x)
           (declare (xargs :guard (or (consp x) (eq x nil))))
           (atom x))")
 (ENTER-BOOT-STRAP-MODE
  (HISTORY)
  "The first millisecond of the Big Bang

  ACL2 functions, e.g., [if], that show enter-boot-strap-mode as their
  defining [command] are in fact primitives. It is impossible for the
  system to display defining axioms about these symbols.

  Enter-boot-strap-mode is a Common Lisp function but not an ACL2
  function. It magically creates from nil an ACL2 property list
  [world] that lets us start the boot-strapping process. That is,
  once enter-boot-strap-mode has created its [world], it is possible
  to process the [defconst]s, [defun]s, and [defaxiom]s, necessary to
  bring up the rest of the system. Before that [world] is created,
  the attempt by ACL2 even to translate a [defun] form, say, would
  produce an error because [defun] is undefined.

  Several ACL2 functions show enter-boot-strap-mode as their defining
  [command]. Among them are [if], [cons], [car], and [cdr]. These
  functions are characterized by axioms rather than definitional
  equations --- axioms that in most cases are built into our code and
  hence do not have any explicit representation among the rules and
  formulas in the system.")
 (EQ
  (EQUAL EQUALITY-VARIANTS ACL2-BUILT-INS)
  "Equality of symbols

  Eq is the function for determining whether two objects are identical
  (i.e., have the exact same store address in the current von Neumann
  implementation of Common Lisp). It is the same as [equal] in the
  ACL2 logic.

  Eq is a Common Lisp function. In order to ensure conformance with
  Common Lisp, the ACL2 [guard] on eq requires at least one of the
  arguments to eq to be a symbol. Common Lisp guarantees that if x is
  a symbol, then x is eq to y if and only if x is [equal] to y. Thus,
  the ACL2 user should think of eq as nothing besides a fast means
  for checking [equal] when one argument is known to be a symbol. In
  particular, it is possible that an eq test will not even require
  the cost of a function call but will be as fast as a single machine
  instruction.

  Function: <eq>

    (defun eq (x y)
           (declare (xargs :guard (if (symbolp x) t (symbolp y))))
           (equal x y))")
 (EQL
  (EQUAL EQUALITY-VARIANTS ACL2-BUILT-INS)
  "Test equality (of two numbers, symbols, or [characters])

  (eql x y) is logically equivalent to (equal x y).

  Unlike [equal], eql has a [guard] requiring at least one of its
  arguments to be a number, a symbol, or a character. Generally, eql
  is executed more efficiently than [equal].

  For a discussion of the various ways to test against 0, See
  [zero-test-idioms].

  Eql is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Function: <eql>

    (defun eql (x y)
           (declare (xargs :guard (or (eqlablep x) (eqlablep y))))
           (equal x y))")
 (EQLABLE-ALISTP
  (ALISTS ACL2-BUILT-INS)
  "Recognizer for a true list of pairs whose [car]s are suitable for
  [eql]

  The predicate eqlable-alistp tests whether its argument is a
  [true-listp] of [consp] objects whose [car]s all satisfy
  [eqlablep].

  Function: <eqlable-alistp>

    (defun eqlable-alistp (x)
           (declare (xargs :guard t))
           (cond ((atom x) (equal x nil))
                 (t (and (consp (car x))
                         (eqlablep (car (car x)))
                         (eqlable-alistp (cdr x))))))")
 (EQLABLE-LISTP
  (EQLABLEP EQUAL LISTS ACL2-BUILT-INS)
  "Recognizer for a true list of objects each suitable for [eql]

  The predicate eqlable-listp tests whether its argument is a
  [true-listp] of objects satisfying [eqlablep].

  Function: <eqlable-listp>

    (defun eqlable-listp (l)
           (declare (xargs :guard t))
           (if (consp l)
               (and (eqlablep (car l))
                    (eqlable-listp (cdr l)))
               (equal l nil)))")
 (EQLABLEP
  (EQUAL ACL2-BUILT-INS)
  "The [guard] for the function [eql]

  The predicate eqlablep tests whether its argument is suitable for
  [eql], at least one of whose arguments must satisfy this predicate
  in Common Lisp. (Eqlablep x) is true if and only if its argument is
  a number, a symbol, or a character.

  Function: <eqlablep>

    (defun eqlablep (x)
           (declare (xargs :guard t))
           (or (acl2-numberp x)
               (symbolp x)
               (characterp x)))


Subtopics

  [Eqlable-listp]
      Recognizer for a true list of objects each suitable for [eql]")
 (EQUAL
  (BASICS ACL2-BUILT-INS)
  "True equality

  (equal x y) is equal to t or nil, according to whether or not x and y
  are the same value.

  For a discussion of the various idioms for testing against 0, See
  [zero-test-idioms].


Subtopics

  [=]
      Test equality of two numbers

  [Eq]
      Equality of symbols

  [Eql]
      Test equality (of two numbers, symbols, or [characters])

  [Eqlable-listp]
      Recognizer for a true list of objects each suitable for [eql]

  [Eqlablep]
      The [guard] for the function [eql]

  [Hons-equal]
      ([hons-equal] x y) is a recursive equality check that optimizes when
      parts of its arguments are [normed].")
 (EQUALITY-VARIANTS
  (PROGRAMMING)
  "Versions of a function using different equality tests

  The ACL2 environment includes not only a logic but also a programming
  language, which is based on Common Lisp. Execution efficiency may
  be increased by using fast equality tests: [eq] for symbols and
  [eql] for numbers, symbols, and characters (see [eqlablep]).
  Several list-processing functions built into ACL2 thus have three
  variants, depending on whether the equality function used is [eq],
  [eql], or [equal]; a list is provided below. ACL2 has taken
  measures to ensure that one can reason about a single logical
  function even when one uses these different variants.

  Consider for example the case of list membership. Common Lisp
  provides a utility for this purposes, [member], which can take a
  :TEST keyword argument, default [eql]. So for example, one might
  write

    (member a x :TEST 'eq)

  if either a is a symbol or x is a list of symbols, so that the
  fastest equality test ([eq]) may be used when comparing a to
  successive elements of the list, x. One might elsewhere write
  (member b (foo y)), which is equivalent to (member b (foo y) :TEST
  'eql), for example if b is a number. If one wants to reason about
  both (member a x :TEST 'eq) and (member b y), it might be helpful
  for both calls of member to be the same logically, even though
  Common Lisp will execute them differently (using [eq] or [eql],
  respectively). ACL2 arranges that in fact, both references to
  [member] generate calls of [member-equal] in the theorem prover.

  In fact, since [member] can take the optional :TEST keyword argument,
  then in ACl2 it must be defined as a macro, not a function (see
  [defun]). ACL2 arranges that a call of member generates a
  corresponding call of the function [member-equal], regardless of
  the value of TEST, in a manner that produces [member-equal] in
  prover output. More generally, you can expect ACL2 to treat your
  use of [member] as though you had written [member-equal], for
  example in the way it stores [rewrite] rules and other kinds of
  rules as well (see [rule-classes]). We say little here about how
  this is all arranged by ACL2, other than to mention that [mbe] is
  utilized (so, you might see mention in proof logs) of the function
  [return-last] that implements [mbe]. Such details, which involve a
  notion of ``macro alias'' and probably can be ignored by most
  users, may be found elsewhere; see [equality-variants-details].

  As a convenience to the user, the macro member-eq is provided that
  expands to a corresponding call of member with :TEST 'eq, as
  follows.

    ACL2 !>:trans1 (member-eq (foo x) (bar y))
     (MEMBER (FOO X) (BAR Y) :TEST 'EQ)
    ACL2 !>

  For efficiency we recommend using the -equal equality variant, for
  example [member-equal] or ([member] ... :TEST 'equal), in certain
  contexts: [defmacro], [defpkg], [defconst], and [value-triple]
  forms. However, the implementation of equality variants has been
  designed so that when defining a function, one may choose freely in
  a definition an equality variant of primitive F, to get efficient
  execution but where subsequent reasoning is about F-equal. For
  details about the above recommendation and for a discussion of the
  implementation, see [equality-variants-details].

  The following alphabetical list includes all primitives that have
  equality variants. Each macro F listed below takes an optional
  :TEST keyword argument of 'eq, 'eql, or 'equal, where 'eql is the
  default. For each such F, a function F-equal is defined such that
  for logical purposes (in particular theorem proving), each call of
  F expands to a corresponding call of F-equal. For convenience, a
  macro F-eq is also defined, so that a call of F-eq expands to a
  corresponding call of F with :TEST 'eq.

    [add-to-set]
    [assoc]
    [delete-assoc]
    [intersection$] ; (see Note below)
    [intersectp]
    [member]
    [no-duplicatesp]
    position-ac
    [position]
    [put-assoc]
    [rassoc]
    [remove-duplicates]
    [remove1]
    [remove]
    [set-difference$] ; (see Note below)
    [subsetp]
    [union$] ; (see Note below)

  Note: Three of the macros above have names ending with the character,
  `$': [intersection$], [set-difference$], and [union$]. In each case
  there is a corresponding Common Lisp primitive without the trailing
  `$': intersection, set-difference, and union. However, Common Lisp
  does not specify the order of elements in the list returned by
  those primitives, so ACL2 has its own. Nevertheless, the only use
  of the trailing `$' is to distinguish the primitives; associated
  functions and macros, for example union-eq and intersection-equal,
  do not include the `$' character in their names.

  We conclude with a brief discussion of [guards]. The expansion of any
  of the above macros depends on the keyword argument, which
  generates a function call with a guard suitable for the equality
  test being used. Consider for example the call (member x lst :test
  'eq), or equivalently, (member-eq x lst). Expanding these macros
  leads to a call of [mbe]; you can see how that goes by using
  :[trans1]. Ultimately, the guard being checked is that of the
  function member-eq-exec, which is as follows.

    (if (symbolp x)
        (true-listp lst)
      (symbol-listp lst))

  Care has been taken to ensure that this guard is checked during
  evaluation and also that it generates suitable proof obligations
  for guard verification (see [verify-guards]). A guard violation
  might look something like this:

    ACL2 !>(member-eq 3 '(4 5))


    ACL2 Error in TOP-LEVEL:  The guard for the function call
    (MEMBER-EQ-EXEC$GUARD-CHECK X LST), which is
    (IF (SYMBOLP X) (TRUE-LISTP LST) (SYMBOL-LISTP LST)), is violated by
    the arguments in the call (MEMBER-EQ-EXEC$GUARD-CHECK 3 '(4 5)).
    See :DOC set-guard-checking for information about suppressing this
    check with (set-guard-checking :none), as recommended for new users.
    To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.

    ACL2 !>

  Above, member-eq-exec$guard-check is a function generated as part of
  ACL2's expansion of member with :test 'eq, and this function symbol
  can be quite reasonably ignored. The important thing is that it
  refers to the guard for member-eq-exec, which as the name may
  suggest is intended to guard the execution of a call of
  [member-eq], or a call of [member] with :test 'eq. The important
  part of the message above is the guard actually being violated: (IF
  (SYMBOLP X) (TRUE-LISTP LST) (SYMBOL-LISTP LST)).


Subtopics

  [=]
      Test equality of two numbers

  [Eq]
      Equality of symbols

  [Eql]
      Test equality (of two numbers, symbols, or [characters])

  [Equality-variants-details]
      Details about [equality-variants]")
 (EQUALITY-VARIANTS-DETAILS
  (EQUALITY-VARIANTS)
  "Details about [equality-variants]

  Here we present details about equality variants, none of which is
  likely to be important to the majority of ACL2 users. Please see
  [equality-variants] for relevant background.

  We begin by presenting [events] that implement the equality variants
  for [member], as these illustrate the events introduced for all
  macros having equality variants. The definition of [member], just
  below, calls the macro let-mbe, which in turn is just an
  abbreviation for a combination of [let] and [mbe]. Here is a
  simplified version of the definition of this macro. For relevant
  background, see [mbe].

    (defmacro let-mbe (bindings &key logic exec)
      `(let ,bindings
         (mbe :logic ,logic
              :exec ,exec)))

  This use of [let] arranges that each argument of a call of member is
  evaluated only once.

  The actual definition of the macro let-mbe is a bit more complex, in
  order to guarantee that [guard]s are appropriately checked. For
  purposes of this discussion we ignore this simplification. (You can
  find the definition of let-mbe in ACL2 source file axioms.lisp.)

  Consider the following definition from ACL2 source file axioms.lisp.
  Notice that it invokes the macro let-mbe, discussed above.

    (defmacro member (x l &key (test ''eql))
      (declare (xargs :guard (or (equal test ''eq)
                                 (equal test ''eql)
                                 (equal test ''equal))))
      (cond
       ((equal test ''eq)
        `(let-mbe ((x ,x) (l ,l))
                  :logic (member-equal x l)
                  :exec  (member-eq-exec x l)))
       ((equal test ''eql)
        `(let-mbe ((x ,x) (l ,l))
                  :logic (member-equal x l)
                  :exec  (member-eql-exec x l)))
       (t ; (equal test 'equal)
        `(member-equal ,x ,l))))

  Inspection of the definition above shows that every call of [member]
  expands to one that is logically equivalent to the corresponding
  call of [member-equal], which is defined as follows.

    (defun member-equal (x lst)
      (declare (xargs :guard (true-listp lst)))
      (cond ((endp lst) nil)
            ((equal x (car lst)) lst)
            (t (member-equal x (cdr lst)))))

  The following two definitions model equality variants of [member] for
  tests [eq] and [eql], respectively.

    (defun member-eq-exec (x lst)
      (declare (xargs :guard (if (symbolp x)
                                 (true-listp lst)
                               (symbol-listp lst))))
      (cond ((endp lst) nil)
            ((eq x (car lst)) lst)
            (t (member-eq-exec x (cdr lst)))))

    (defun member-eql-exec (x lst)
      (declare (xargs :guard (if (eqlablep x)
                                 (true-listp lst)
                               (eqlable-listp lst))))
      (cond ((endp lst) nil)
            ((eql x (car lst)) lst)
            (t (member-eql-exec x (cdr lst)))))

  At this point the user can write (member x y) or (member-equal x y)
  to call equality variants of member with test eql or equal,
  respectively. We thus provide the following macro for the eq
  variant.

    (defmacro member-eq (x lst)
      `(member ,x ,lst :test 'eq))

  [Guard] proof obligations generated by calls of member will include
  those based on its use of mbe, and are supported by the following
  two lemmas.

    (defthm member-eq-exec-is-member-equal
      (equal (member-eq-exec x l)
             (member-equal x l)))

    (defthm member-eql-exec-is-member-equal
      (equal (member-eql-exec x l)
             (member-equal x l)))

  Finally, the following two events arrange that in certain contexts
  such as [theories] (including the use of [in-theory] in [events]
  and [hints]), [member-eq] and [member] are treated as references to
  [member-equal].

    (add-macro-alias member-eq member-equal)
    (add-macro-alias member member-equal)

  Note however that these events do not affect printing of calls during
  proofs: calls of member and member-eq will be macroexpanded away,
  leaving you with calls of member-equal that are displayed in proof
  output. For a way to change this behavior, see [add-macro-fn].

  We conclude this topic by exploring the following recommendation made
  in the [documentation] for [equality-variants].

      For efficiency we recommend using the -equal equality variant, for
      example [member-equal] or ([member] ... :TEST 'equal), in
      certain contexts: [defmacro], [defpkg], [defconst], and
      [value-triple] forms.

  ACL2 relies on the underlying Common Lisp for evaluation. It also
  processes events in the ACL2 logic. In order to guarantee
  consistency of its logical and Common Lisp evaluations, ACL2 uses a
  ``safe mode'' to avoid ill-guarded calls. In particular, consider
  the use of [mbe] in execution of a call of an equality variant of a
  primitive, F, other than its F-equal variant. The [mbe] call
  discussed above requires a connection to be established between the
  :logic and :exec forms. For example, if F is called with :TEST 'eql
  (either explicitly or as the default), then ACL2 will call both
  F-eql-exec and F-equal, and check that the two results are equal.

  The following partial log illustrates the point above. We define a
  macro that calls [member], and when a call of this macro is
  expanded during processing of a subsequent definition, we see that
  two membership functions are called on the same arguments.

    ACL2 !>(defmacro mac (lst)
             (list 'quote (and (true-listp lst)
                               (member 'c lst :test 'eq))))

    Summary
    Form:  ( DEFMACRO MAC ...)
    Rules: NIL
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
     MAC
    ACL2 !>(trace$ member-equal member-eq-exec)
     ((MEMBER-EQUAL) (MEMBER-EQ-EXEC))
    ACL2 !>(defun f () (mac (a b c d)))
    1> (ACL2_*1*_ACL2::MEMBER-EQ-EXEC C (A B C D))
      2> (MEMBER-EQ-EXEC C (A B C D))
      <2 (MEMBER-EQ-EXEC (C D))
    <1 (ACL2_*1*_ACL2::MEMBER-EQ-EXEC (C D))
    1> (ACL2_*1*_ACL2::MEMBER-EQUAL C (A B C D))
      2> (MEMBER-EQUAL C (A B C D))
      <2 (MEMBER-EQUAL (C D))
    <1 (ACL2_*1*_ACL2::MEMBER-EQUAL (C D))

    Since F is non-recursive, its admission is trivial.

  If performance is an issue then we can avoid such a problem, for
  example as follows. In a fresh session, let us define a suitable
  wrapper for calling [member] with :TEST 'eq. This time, the trace
  in our partial log shows that we have avoided calling two
  membership functions.

    ACL2 !>(defun mem-eq (x lst)
             (declare (xargs :guard (if (symbolp x)
                                        (true-listp lst)
                                      (symbol-listp lst))))
             (member x lst :test 'eq))
    [[ ... output omitted here ... ]]
     MEM-EQ
    ACL2 !>(defmacro mac (lst)
             (list 'quote (and (true-listp lst)
                               (mem-eq 'c lst))))

    Summary
    Form:  ( DEFMACRO MAC ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     MAC
    ACL2 !>(trace$ member-equal member-eq-exec mem-eq)
     ((MEMBER-EQUAL)
      (MEMBER-EQ-EXEC)
      (MEM-EQ))
    ACL2 !>(defun f () (mac (a b c d)))
    1> (ACL2_*1*_ACL2::MEM-EQ C (A B C D))
      2> (MEM-EQ C (A B C D))
      <2 (MEM-EQ (C D))
    <1 (ACL2_*1*_ACL2::MEM-EQ (C D))

    Since F is non-recursive, its admission is trivial.")
 (EQUIVALENCE
  (RULE-CLASSES)
  "Mark a relation as an equivalence relation

  See [rule-classes] for a general discussion of rule classes,
  including how they are used to build rules from formulas and a
  discussion of the various keywords in a rule class description.

    Example:
    (defthm r-equal-is-an-equivalence ; assumes that r-equal has been defined
      (and (booleanp (r-equal x y))
           (r-equal x x)
           (implies (r-equal x y) (r-equal y x))
           (implies (and (r-equal x y)
                         (r-equal y z))
                    (r-equal x z)))
      :rule-classes :equivalence)

  Also see [defequiv].

    General Form:
    (and (booleanp (equiv x y))
         (equiv x x)
         (implies (equiv x y) (equiv y x))
         (implies (and (equiv x y)
                       (equiv y z))
                  (equiv x z)))

  except that the order of the conjuncts and terms and the choice of
  variable symbols is unimportant. The effect of such a rule is to
  identify equiv as an equivalence relation. Note that only Boolean
  2-place function symbols can be treated as equivalence relations.
  See [congruence] and see [refinement] for closely related concepts.

  The macro form (defequiv equiv) is an abbreviation for a [defthm] of
  rule-class :equivalence that establishes that equiv is an
  equivalence relation. It generates the formula shown above. See
  [defequiv].

  When equiv is marked as an equivalence relation, its reflexivity,
  symmetry, and transitivity are built into the system in a deeper
  way than via :[rewrite] rules. More importantly, after equiv has
  been shown to be an equivalence relation, lemmas about equiv, e.g.,

    (implies hyps (equiv lhs rhs)),

  when stored as :[rewrite] rules, cause the system to rewrite certain
  occurrences of (instances of) lhs to (instances of) rhs. Roughly
  speaking, an occurrence of lhs in the kth argument of some
  fn-expression, (fn ... lhs' ...), can be rewritten to produce (fn
  ... rhs' ...), provided the system ``knows'' that the value of fn
  is unaffected by equiv-substitution in the kth argument. Such
  knowledge is communicated to the system via ``congruence lemmas.''

  For example, suppose that r-equal is known to be an equivalence
  relation. The :[congruence] lemma

    (implies (r-equal s1 s2)
             (equal (fn s1 n) (fn s2 n)))

  informs the rewriter that, while rewriting the first argument of
  fn-expressions, it is permitted to use r-equal rewrite-rules. See
  [congruence] for details about :[congruence] lemmas. Interestingly,
  congruence lemmas are automatically created when an equivalence
  relation is stored, saying that either of the equivalence
  relation's arguments may be replaced by an equivalent argument.
  That is, if the equivalence relation is fn, we store congruence
  rules that state the following fact:

    (implies (and (fn x1 y1)
                  (fn x2 y2))
             (iff (fn x1 x2) (fn y1 y2)))

  Another aspect of equivalence relations is that of ``refinement.'' We
  say equiv1 ``refines'' equiv2 iff (equiv1 x y) implies (equiv2 x
  y). :[refinement] rules permit you to establish such connections
  between your equivalence relations. The value of refinements is
  that if the system is trying to rewrite something while maintaining
  equiv2 it is permitted to use as a :[rewrite] rule any refinement
  of equiv2. Thus, if equiv1 is a refinement of equiv2 and there are
  equiv1 rewrite-rules available, they can be brought to bear while
  maintaining equiv2. See [refinement].

  The system initially has knowledge of two equivalence relations,
  equality, denoted by the symbol [equal], and propositional
  equivalence, denoted by [iff]. [Equal] is known to be a refinement
  of all equivalence relations and to preserve equality across all
  arguments of all functions.

  Typically there are five steps involved in introducing and using a
  new equivalence relation, equiv.

      (1) Define equiv,

      (2) prove the :equivalence lemma about equiv,

      (3) prove the :[congruence] lemmas that show where equiv can be used
      to maintain known relations,

      (4) prove the :[refinement] lemmas that relate equiv to known
      relations other than equal, and

      (5) develop the theory of conditional :[rewrite] rules that drive
      equiv rewriting.

  More will be written about this as we develop the techniques. For
  now, here is an example that shows how to make use of equivalence
  relations in rewriting.

  Among the theorems proved below is

    (defthm insert-sort-is-id
      (perm (insert-sort x) x))

  Here perm is defined as usual with delete and is proved to be an
  equivalence relation and to be a congruence relation for [cons] and
  [member].

  Then we prove the lemma

    (defthm insert-is-cons
      (perm (insert a x) (cons a x)))

  which you must think of as you would (insert a x) = (cons a x).

  Now prove (perm (insert-sort x) x). The base case is trivial. The
  induction step is

       (consp x)
     & (perm (insert-sort (cdr x)) (cdr x))

    -> (perm (insert-sort x) x).

  Opening insert-sort makes the conclusion be

    (perm (insert (car x) (insert-sort (cdr x))) x).

  Apply insert-is-cons to get

    (perm (cons (car x) (insert-sort (cdr x)) x)).

  Note that we have proved that perm is a congruence relation for cons.
  That allows us to apply the induction hypothesis (rewriting
  (insert-sort (cdr x)) to (cdr x)), to make the conclusion be

    (perm (cons (car x) (cdr x)) x).

  But we know that (cons (car x) (cdr x)) is x, so we get (perm x x)
  which is trivial, since perm is an equivalence relation. An
  exercise left to the reader is how this proof will change had we
  also proved that perm is a congruence relation for insert.

  Here are the events.

    (encapsulate (((lt * *) => *))
      (local (defun lt (x y) (declare (ignore x y)) nil))
      (defthm lt-non-symmetric (implies (lt x y) (not (lt y x)))))

    (defun insert (x lst)
      (cond ((atom lst) (list x))
            ((lt x (car lst)) (cons x lst))
            (t (cons (car lst) (insert x (cdr lst))))))

    (defun insert-sort (lst)
      (cond ((atom lst) nil)
            (t (insert (car lst) (insert-sort (cdr lst))))))

    (defun del (x lst)
      (cond ((atom lst) nil)
            ((equal x (car lst)) (cdr lst))
            (t (cons (car lst) (del x (cdr lst))))))

    (defun mem (x lst)
      (cond ((atom lst) nil)
            ((equal x (car lst)) t)
            (t (mem x (cdr lst)))))

    (defun perm (lst1 lst2)
      (cond ((atom lst1) (atom lst2))
            ((mem (car lst1) lst2)
             (perm (cdr lst1) (del (car lst1) lst2)))
            (t nil)))

    (defthm perm-reflexive
      (perm x x))

    (defthm perm-cons
      (implies (mem a x)
               (equal (perm x (cons a y))
                      (perm (del a x) y)))
      :hints ((\"Goal\" :induct (perm x y))))

    (defthm perm-symmetric
      (implies (perm x y) (perm y x)))

    (defthm mem-del
      (implies (mem a (del b x)) (mem a x)))

    (defthm perm-mem
      (implies (and (perm x y)
                    (mem a x))
               (mem a y)))

    (defthm mem-del2
      (implies (and (mem a x)
                    (not (equal a b)))
               (mem a (del b x))))

    (defthm comm-del
      (equal (del a (del b x)) (del b (del a x))))

    (defthm perm-del
      (implies (perm x y)
               (perm (del a x) (del a y))))

    (defthm perm-transitive
      (implies (and (perm x y) (perm y z)) (perm x z)))

    (defequiv perm)

    (in-theory (disable perm
                        perm-reflexive
                        perm-symmetric
                        perm-transitive))

    (defcong perm perm (cons x y) 2)

    (defcong perm iff (mem x y) 2)

    (defthm atom-perm
      (implies (not (consp x)) (perm x nil))
      :rule-classes :forward-chaining
      :hints ((\"Goal\" :in-theory (enable perm))))

    (defthm insert-is-cons
      (perm (insert a x) (cons a x)))

    (defthm insert-sort-is-id
      (perm (insert-sort x) x))

    (defun app (x y) (if (consp x) (cons (car x) (app (cdr x) y)) y))

    (defun rev (x)
      (if (consp x) (app (rev (cdr x)) (list (car x))) nil))

    (defcong perm perm (app x y) 2)

    (defthm app-cons
      (perm (app a (cons b c)) (cons b (app a c))))

    (defthm app-commutes
      (perm (app a b) (app b a)))

    (defcong perm perm (app x y) 1
      :hints ((\"Goal\" :induct (app y x))))

    (defthm rev-is-id (perm (rev x) x))

    (defun == (x y)
      (if (consp x)
          (if (consp y)
              (and (equal (car x) (car y))
                   (== (cdr x) (cdr y)))
              nil)
          (not (consp y))))

    (defthm ==-reflexive (== x x))

    (defthm ==-symmetric (implies (== x y) (== y x)))

    (defequiv ==)

    (in-theory (disable ==-symmetric ==-reflexive))

    (defcong == == (cons x y) 2)

    (defcong == iff (consp x) 1)

    (defcong == == (app x y) 2)

    (defcong == == (app x y) 1)

    (defthm rev-rev (== (rev (rev x)) x))")
 (EQUIVALENT-FORMULAS-DIFFERENT-REWRITE-RULES
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Logically equivalent formulas can generate radically different rules

  Consider the rewrite rules that would be generated from the three
  commands below. In all three cases, the fact being stated relates
  the nth element of the reverse of x to the nth element of x. In
  fact, the three formulas are simple rearrangements of each other
  and are all equivalent. The theorem prover treats all three
  formulas equivalently when proving them. But the rules generated
  from them are very different.

    (defthm nth-rev-1
      (implies (and (natp n)
                    (< n (len x)))
               (equal (nth n (rev x))
                      (nth (- (len x) (+ 1 n)) x))))

    (defthm nth-rev-2
      (implies (and (natp n)
                    (< n (len x)))
               (equal (nth (- (len x) (+ 1 n)) x)
                      (nth n (rev x)))))

    (defthm nth-rev-3
      (implies (and (natp n)
                    (not (equal (nth n (rev x))
                                (nth (- (len x) (+ 1 n)) x))))
               (not (< n (len x)))))

  Here are the three rewrite rules:

  nth-rev-1:
  Replace instances of (NTH n (REV x))
  by (NTH (- (LEN x) (+ 1 n)) x),
  if you can establish that n is a natural number less than the length
  of x.

  nth-rev-2:
  Replace instances of (NTH (- (LEN x) (+ 1 n)) x)
  by (NTH n (REV x)),
  if you can establish that n is a natural number less than the length
  of x.

  nth-rev-3:
  Replace instances of (< n (LEN x))
  by NIL
  if you can establish that n is a natural number and that (NTH n (REV
  x)) is different from (NTH (- (LEN x) (+ 1 n)) x).

  As the driver of ACL2, you have to decide which rule you want when
  you give the command to prove it.

  If you tell the theorem prover to use both nth-rev-1 and nth-rev-2,
  ACL2 will enter an infinite loop when it sees any term matching
  either NTH expression.

  Most users would choose form nth-rev-1 of the rule. It eliminates rev
  from the problem -- at the expense of introducing some arithmetic.
  But arithmetic is so fundamental it is rarely possible to avoid it
  and it is likely to be in the problem already since you're indexing
  into (rev x). The nth-rev-2 form of the rule is ``bad'' because it
  introduces rev into a problem where it might not have appeared. The
  nth-rev-3 version is ``bad'' because it makes the theorem prover
  shift its attention from a simple arithmetic inequality to a
  complicated property of nth and rev, which might not be in the
  problem.

  Use your browser's Back Button now to return to
  [introduction-to-rewrite-rules-part-1].")
 (ER
  (ERRORS ACL2-BUILT-INS)
  "Print an error message and ``cause an error''

  See [fmt] for a general discussion of formatted printing in ACL2. All
  calls of er print formatted strings, just as is done by [fmt].

    Example Forms:
    (er hard  'top-level \"Illegal inputs, ~x0 and ~x1.\" a b)
    (er hard? 'top-level \"Illegal inputs, ~x0 and ~x1.\" a b)
    (er soft  'top-level \"Illegal inputs, ~x0 and ~x1.\" a b)

  The examples above all print an error message to standard output
  saying that a and b are illegal inputs. However, the first two
  abort evaluation after printing an error message (while logically
  returning nil, though in ordinary evaluation the return value is
  never seen); while the third returns (mv t nil state) after
  printing an error message. The result in the third case can be
  interpreted as an ``error'' when programming with the ACL2 [state],
  something most ACL2 users will probably not want to do unless they
  are building systems of some sort; see [programming-with-state]. If
  state is not available in the current context then you will
  probably want to use (er hard ...) or (er hard? ...) to cause an
  error; for example, if you are returning two values, you may write
  (mv (er hard ...) nil).

  The difference between the hard and hard? forms is one of guards. Use
  hard if you want the call to generate a (clearly impossible) guard
  proof obligation of (essentially) NIL. But use hard? if you want to
  be able to call this function in guard-verified code, since the
  call generates a (trivially satisfied) guard proof obligation of T.

  Er is a macro, and the above three examples expand to calls of ACL2
  functions, as shown below. See [illegal], see [hard-error], and see
  [error1]. The first two have guards of (essentially) NIL and T,
  respectively, while [error1] is in :[program] mode.

    General forms:
    (er hard  ctx fmt-string arg1 arg2 ... argk)
      ==> {macroexpands, in essence, to:}
    (ILLEGAL    CTX FMT-STRING
                (LIST (CONS #\\0 ARG1) (CONS #\\1 ARG2) ... (CONS #\\k ARGk)))

    (er hard? ctx fmt-string arg1 arg2 ... argk)
      ==> {macroexpands, in essence, to:}
    (HARD-ERROR CTX FMT-STRING
                (LIST (CONS #\\0 ARG1) (CONS #\\1 ARG2) ... (CONS #\\k ARGk)))

    (er soft  ctx fmt-string arg1 arg2 ... argk)
      ==> {macroexpands, in essence, to:}
    (ERROR1     CTX FMT-STRING
                (LIST (CONS #\\0 ARG1) (CONS #\\1 ARG2) ... (CONS #\\k ARGk)))

  Technical note for raw Lisp programmers only: It is possible to cause
  hard errors to signal actual raw Lisp errors. See [hard-error].")
 (ER-PROGN
  (ERRORS PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "Perform a sequence of state-changing ``error triples''

    Example:
    (er-progn (check-good-foo-p (f-get-global 'my-foo state) state)
              (value (* (f-get-global 'my-foo state)
                        (f-get-global 'bar state))))

  This sequencing primitive is only useful when programming with
  [state], something that very few users will probably want to do.
  See [state].

  Er-progn is used much the way that [progn] is used in Common Lisp,
  except that it expects each form within it to evaluate to an
  [error-triple] of the form (mv erp val state). The first such form,
  if any, that evaluates to such a triple where erp is not nil yields
  the error triple returned by the er-progn. If there is no such
  form, then the last form returns the value of the er-progn form.

    General Form:
    (er-progn <expr1> ... <exprk>)

  where each <expri> is an expression that evaluates to an error triple
  (see [programming-with-state]). The above form is essentially
  equivalent to the following (``essentially'' because in fact, care
  is taken to avoid variable capture).

    (mv-let (erp val state)
            <expr1>
            (cond (erp (mv erp val state))
                  (t (mv-let (erp val state)
                             <expr2>
                             (cond (erp (mv erp val state))
                                   (t ...
                                          (mv-let (erp val state)
                                                  <expr{k-1}>
                                                  (cond (erp (mv erp val state))
                                                        (t <exprk>)))))))))")
 (ERROR-TRIPLE
  (ERRORS PROGRAMMING-WITH-STATE)
  "A common ACL2 programming idiom

  When evaluation returns three values, where the first two are
  ordinary (non-[stobj]) objects and the third is the ACL2 [state],
  the result may be called an ``error triple'' or ``error-triple''.
  If an error triple is (mv erp val state), we think of erp as an
  error flag and val as the returned value. By default, if the result
  of evaluating a top-level form is an error triple (mv erp val
  state), then that result is not printed if erp is non-nil or if val
  is the keyword :INVISIBLE, and otherwise val is printed with a
  preceding space. For example:

    ACL2 !>(+ 3 4) ; ordinary value
    7
    ACL2 !>(mv nil (+ 3 4) state) ; error triple, error component of nil
     7
    ACL2 !>(mv t (+ 3 4) state) ; error triple, non-nil error component
    ACL2 !>(mv nil :invisible state) ; special case for :INVISIBLE
    ACL2 !>

  See [programming-with-state] for a discussion of error triples and
  how to program with them. Also see [ld-error-triples] and see [ld]
  for a discussion of the value :COMMAND-CONVENTIONS for keyword
  :LD-POST-EVAL-PRINT.")
 (ERROR-TRIPLES-AND-PARALLELISM
  (PARALLEL-PROGRAMMING)
  "How to avoid error triples in ACL2(p)

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].

  ACL2 supports the use of error triples in many features; e.g.,
  [computed-hints]. (For background on error triples, see
  [programming-with-state].) However, ACL2(p) does not support the
  use of error triples in some of these features (e.g.,
  [computed-hints]) while [waterfall-parallelism] is enabled.

  You may see an error message like the following when running ACL2(p)
  with [waterfall-parallelism] enabled:

    ACL2 Error in ( THM ...):  Since we are translating a form in ACL2(p)
    intended to be executed with waterfall parallelism enabled, the form
    (MY-STATE-MODIFYING-COMPUTED-HINT ID STATE) was expected to represent
    an ordinary value, not an error triple (mv erp val state), as would
    be acceptable in a serial execution of ACL2.  Therefore, the form returning
    a tuple of the form (* * STATE) is an error.  See :DOC unsupported-
    waterfall-parallelism-features and :DOC error-triples-and-parallelism
    for further explanation.

  In this particular example, the cause of the error was trying to use
  a computed hint that returned state, which is not allowed when
  executing the waterfall in parallel (see
  [unsupported-waterfall-parallelism-features] for other related
  information).

  Often, the only reason users need to return state is so they can
  perform some output during the proof process. In this case, we
  suggest using one of the state-free output functions, like [cw] or
  [observation-cw]. If the user is concerned about the interleaving
  of their output with other output, these calls can be surrounded
  with the macro [with-output-lock].

  Another frequent reason users return state is so they can cause a
  soft error and halt the proof process. In this case, we suggest
  instead calling [er] with the hard or hard? severity. By using
  these mechanisms, the user avoids modifying [state], a requirement
  for much of the code written in ACL2(p).

  You may encounter other similar error messages when using
  [computed-hints], [custom-keyword-hints], or [override-hints].
  Chances are that you are somehow returning an error triple when an
  ordinary value is needed. If this turns out not to be the case,
  please let the ACL2 implementors know.")
 (ERROR1
  (ERRORS ACL2-BUILT-INS)
  "Print an error message and cause a ``soft error''

  (Error1 ctx str alist) returns (mv t nil state). An error message is
  first printed using the the ``context'' ctx, as well as the string
  str and alist alist that are of the same kind as expected by [fmt].
  See [fmt].

  Error1 can be interpreted as causing an ``error'' when programming
  with the ACL2 [state], something most ACL2 users will probably not
  want to do; see [ld-error-triples] and see [er-progn]. In order to
  cause errors with :[logic] mode functions, see [hard-error] and see
  [illegal]. Better yet, see [er] for a macro that provides a unified
  way of signaling errors.

  As mentioned above, error1 always returns (mv t nil state). But if a
  call (error1 ctx str alist) is encountered during evaluation, then
  the string str is first printed using the association list alist
  (as in [fmt]). Here is a trivial, contrived example.

    ACL2 !>(error1 'my-context
                   \"Printing 4: ~n0\"
                   (list (cons #\\0 4))
                   state)

    ACL2 Error in MY-CONTEXT:  Printing 4: four

    ACL2 !>")
 (ERRORS
  (PROGRAMMING)
  "Support for causing runtime errors, breaks, assertions, etc.


Subtopics

  [Assert$]
      Cause a hard error if the given test is false

  [Assert*]
      Create a [guard] proof obligation that given test holds

  [Break$]
      Cause an immediate Lisp break

  [Breaks]
      Common Lisp breaks

  [Er]
      Print an error message and ``cause an error''

  [Er-progn]
      Perform a sequence of state-changing ``error triples''

  [Error-triple]
      A common ACL2 programming idiom

  [Error1]
      Print an error message and cause a ``soft error''

  [Hard-error]
      Print an error message and stop execution

  [Illegal]
      Print an error message and stop execution")
 (ESCAPE-TO-COMMON-LISP
  (COMMON-LISP)
  "Escaping to Common Lisp

    Example:
    ACL2 !>:Q

  There is essentially no Common Lisp escape feature in the [lp] (but
  see [set-raw-mode]). This is part of the price of purity. To
  execute a form in Common Lisp as opposed to ACL2, exit [lp] with
  :[q], submit the desired forms to the Common Lisp read-eval-print
  loop, and reenter ACL2 with (lp).")
 (EVALUATING_APP_ON_SAMPLE_INPUT
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Evaluating App on Sample Input

  [{IMAGE}]

  {IMAGE}

    ACL2 !>(app nil '(x y z))
    (X Y Z)

    ACL2 !>(app '(1 2 3) '(4 5 6 7))
    (1 2 3 4 5 6 7)

    ACL2 !>(app '(a b c d e f g) '(x y z))   ; click [here] for an explanation
    (A B C D E F G X Y Z)

    ACL2 !>(app (app '(1 2) '(3 4)) '(5 6))
    (1 2 3 4 5 6)

    ACL2 !>(app '(1 2) (app '(3 4) '(5 6)))
    (1 2 3 4 5 6)

    ACL2!>(let ((a '(1 2))
                (b '(3 4))
                (c '(5 6)))
            (equal (app (app a b) c)
                   (app a (app b c))))
    T

  {IMAGE}

  As we can see from these examples, ACL2 functions can be executed
  more or less as Common Lisp.

  The last three examples suggest an interesting property of app.

  [{IMAGE}]")
 (EVALUATOR-RESTRICTIONS
  (META)
  "Some restrictions on the use of evaluators in meta-level rules

  Note: This topic, which explains some subtleties for evaluators, can
  probably be skipped by most readers.

  Rules of class :[meta] and of class :[clause-processor] are stated
  using so-called ``evaluator'' functions. Here we explain some
  restrictions related to evaluators. Below we refer primarily to
  :meta rules, but the discussion applies equally to
  :clause-processor rules.

  In a nutshell, we require that a rule's evaluator does not support
  other functions in the rule, and we require that the evaluator not
  be introduced under a non-trivial encapsulate. We also require that
  no function has an attachment (see [defattach]) that is both
  ancestral in the evaluator and also ancestral in the meta or
  clause-processor functions. We explain these restrictions in detail
  below.

  An argument given elsewhere (see [meta], in particular ``Aside for
  the logic-minded'') explains that the correctness argument for
  applying metatheoretic simplifiers requires that one be able to
  ``grow'' an evaluator (see [defevaluator]) to handle all functions
  in the current ACL2 [world]. Then we may, in essence, functionally
  instantiate the original evaluator to the new (``grown'')
  evaluator, provided that the new evaluator satisfies all of the
  axioms of the original. We therefore require that the evaluator
  function does not support the formula of any [defaxiom] event. This
  notion of ``support'' (sometimes denoted ``is an ancestor of'') is
  defined recursively as follows: a function symbol supports a
  formula if either it occurs in that formula, or else it supports
  the definition or constraint for some function symbol that occurs
  in that formula. Moreover, we require that neither the evaluator
  function nor its list version support the definition or constraint
  for any other function symbol occurring in the proposed :meta
  theorem.

  We also require that the evaluator does not support the formula of a
  :meta rule's metafunction (nor, if there is one, hypothesis
  metafunction) or of a :clause-processor rule's clause-processor
  function. This requirement, along with with the analogous
  requirement for [defaxiom] [events] stated above, are necessary in
  order to carry out the functional instantiation argument alluded to
  above, as follows (where the reader may find it useful to have some
  familiarity with the paper ``Structured Theory Development for a
  Mechanized Logic'' (Journal of Automated Reasoning 26, no. 2
  (2001), pages 161-203). By the usual conservativity argument, we
  know that the rule follows logically from the axiomatic events for
  its supporters. This remains true if we functionally instantiate
  the evaluator with one corresponding to all the functions symbols
  of the current session, since none of the definitions of supporters
  of defaxioms or metafunctions are hit by that functional
  substitution.

  Notice though that the argument above depends on knowing that the
  rule is not itself an axiom about the evaluator! Therefore, we also
  restrict evaluators so that they are not defined in the scope of a
  superior [encapsulate] event with non-empty signature, in order to
  avoid an even more subtle problem. The aforementioned correctness
  argument depends on knowing that the rule is provable from the
  axioms on the evaluator and metafunction (and hypothesis
  metafunction, if any). The additional restriction avoids
  unsoundness! The following events, if allowed, produce a proof that
  (f x) equals t even though, as shown below, that does not follow
  logically from the axioms introduced.

    ; Introduce our metafunction.
    (defun my-cancel (term)
      (case-match term
        (('f ('g))
         *t*)
        (& term)))

    ; Introduce our evaluator and prove our meta rule, but in the same
    ; encapsulate!
    (encapsulate
     ((f (x) t))

     (local (defun f (x) (declare (ignore x)) t))

     (defevaluator evl evl-list
       ((f x)))

     (defthm correctness-of-my-cancel
       (equal (evl x a)
              (evl (my-cancel x) a))
       :rule-classes ((:meta :trigger-fns (f)))))

    ; Prove that (f x) = t.
    (encapsulate
     ()

     (local (defstub c () t))

     (local (encapsulate
             ()
             (local (defun g () (c)))
             (local (in-theory (disable g (g))))
             (local (defthm f-g
                      (equal (f (g)) t)
                      :rule-classes nil))
             (defthm f-c
               (equal (f (c)) t)
               :hints ((\"Goal\" :use f-g
                        :in-theory (e/d (g) (correctness-of-my-cancel))))
               :rule-classes nil)))

     (defthm f-t
       (equal (f x) t)
       :hints ((\"Goal\" :by (:functional-instance
                            f-c
                            (c (lambda () x)))))
       :rule-classes nil))

  To see that the term (equal (f x) t) does not follow logically from
  the axiomatic [events] above, consider following the above
  definition of my-cancel with the following [events] instead.

    ; (defun my-cancel (term) ...) as before, then:

    (defun f (x)
      (not x))

    (defun g ()
      nil)

    (defevaluator evl evl-list
       ((f x) (g)))

  These events imply the axiomatic events above, because we still have
  the definition of my-cancel, we have a stronger [defevaluator]
  event, and we can now prove correctness-of-my-cancel exactly as it
  is stated above. So, the rule f-t is a logical consequence of the
  chronology of the current session. However, in the current session
  we can also prove the following rule, which contradicts f-t.

    (defthm f-not-t
      (equal (f t) nil)
      :rule-classes nil)

  It follows that the current session logically yields a contradiction!

  Erik Reeber has taken the above example and modified it to prove nil
  in ACL2 Version_3.1, as follows.

    (in-package \"ACL2\")

    (defun my-cancel (term)
       (case-match term
         (('f ('g))
          *t*)
         (('f2 ('g2))
          *t*)
         (& term)))

    (defun f2 (x)
       (not x))

    (defun g2 ()
       nil)

    (encapsulate
      ((f (x) t))

      (local (defun f (x) (declare (ignore x)) t))

      (defevaluator evl evl-list
        ((f x)
         (f2 x)
         (g2)))

      (defthm correctness-of-my-cancel
        (equal (evl x a)
               (evl (my-cancel x) a))
        :rule-classes ((:meta :trigger-fns (f)))))

    (encapsulate
      ()

      (local (defstub c () t))

      (local (encapsulate
              ()
              (local (defun g () (c)))
              (local (in-theory (disable g (g))))
              (local (defthm f-g
                       (equal (f (g)) t)
                       :rule-classes nil))
              (defthm f-c
                (equal (f (c)) t)
                :hints ((\"Goal\" :use f-g
                         :in-theory (e/d (g) (correctness-of-my-cancel))))
                :rule-classes nil)))

      (defthm f-t
        (equal (f x) t)
        :hints ((\"Goal\" :by (:functional-instance
                             f-c
                             (c (lambda () x)))))
        :rule-classes nil))

    (defun g ()
       nil)

    ; Below is the expansion of the following defevaluator, changed slightly as
    ; indicated by comments.
    ; (defevaluator evl2 evl2-list ((f x) (f2 x) (g) (g2)))

    (ENCAPSULATE
      (((EVL2 * *) => *)
       ((EVL2-LIST * *) => *))
      (SET-INHIBIT-WARNINGS \"theory\")
      (LOCAL (IN-THEORY *DEFEVALUATOR-FORM-BASE-THEORY*))
      (LOCAL
       (MUTUAL-RECURSION (DEFUN EVL2 (X A)
                           (DECLARE (XARGS :VERIFY-GUARDS NIL
                                           :MEASURE (ACL2-COUNT X)
                                           :WELL-FOUNDED-RELATION O<
                                           :MODE :LOGIC))
                           (COND ((SYMBOLP X) (CDR (ASSOC-EQ X A)))
                                 ((ATOM X) NIL)
                                 ((EQ (CAR X) 'QUOTE) (CAR (CDR X)))
                                 ((CONSP (CAR X))
                                  (EVL2 (CAR (CDR (CDR (CAR X))))
                                        (PAIRLIS$ (CAR (CDR (CAR X)))
                                                  (EVL2-LIST (CDR X) A))))
                                 ((EQUAL (CAR X) 'F) ; changed f to f2 just below
                                  (F2 (EVL2 (CAR (CDR X)) A)))
                                 ((EQUAL (CAR X) 'F2)
                                  (F2 (EVL2 (CAR (CDR X)) A)))
                                 ((EQUAL (CAR X) 'G) (G))
                                 ((EQUAL (CAR X) 'G2) (G2))
                                 (T NIL)))
                         (DEFUN EVL2-LIST (X-LST A)
                           (DECLARE (XARGS :MEASURE (ACL2-COUNT X-LST)
                                           :WELL-FOUNDED-RELATION O<))
                           (COND ((ENDP X-LST) NIL)
                                 (T (CONS (EVL2 (CAR X-LST) A)
                                          (EVL2-LIST (CDR X-LST) A)))))))

      (DEFTHM EVL2-CONSTRAINT-1
        (IMPLIES (SYMBOLP X)
                 (EQUAL (EVL2 X A)
                        (CDR (ASSOC-EQ X A)))))
      (DEFTHM EVL2-CONSTRAINT-2
        (IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'QUOTE))
                 (EQUAL (EVL2 X A) (CADR X))))
      (DEFTHM EVL2-CONSTRAINT-3
        (IMPLIES (AND (CONSP X) (CONSP (CAR X)))
                 (EQUAL (EVL2 X A)
                        (EVL2 (CADDAR X)
                              (PAIRLIS$ (CADAR X)
                                        (EVL2-LIST (CDR X) A))))))
      (DEFTHM EVL2-CONSTRAINT-4
        (IMPLIES (NOT (CONSP X-LST))
                 (EQUAL (EVL2-LIST X-LST A) NIL)))
      (DEFTHM EVL2-CONSTRAINT-5
        (IMPLIES (CONSP X-LST)
                 (EQUAL (EVL2-LIST X-LST A)
                        (CONS (EVL2 (CAR X-LST) A)
                              (EVL2-LIST (CDR X-LST) A)))))
      (DEFTHM EVL2-CONSTRAINT-6
        (IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'F))
                 (EQUAL (EVL2 X A) ; changed f to f2 just below
                        (F2 (EVL2 (CADR X) A)))))
      (DEFTHM EVL2-CONSTRAINT-7
        (IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'F2))
                 (EQUAL (EVL2 X A)
                        (F2 (EVL2 (CADR X) A)))))
      (DEFTHM EVL2-CONSTRAINT-8
        (IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'G))
                 (EQUAL (EVL2 X A) (G))))
      (DEFTHM EVL2-CONSTRAINT-9
        (IMPLIES (AND (CONSP X) (EQUAL (CAR X) 'G2))
                 (EQUAL (EVL2 X A) (G2)))))

    (defthm f2-t
       (equal (f2 x) t)
       :hints ((\"Goal\" :by (:functional-instance
                            f-t
                            (f f2)
                            (evl evl2)
                            (evl-list evl2-list)))))

    (defthm bug-implies-nil
       nil
       :hints ((\"Goal\" :use ((:instance f2-t (x t)))))
       :rule-classes nil)

  Finally, we also require that no function has an attachment (see
  [defattach]) that is both ancestral in the evaluator and also
  ancestral in the meta or clause-processor functions. (If you don't
  use [defattach] then you can ignore this condition.) Without this
  restriction, the following events prove nil.

    (in-package \"ACL2\")
    (defstub f () t)
    (defevaluator evl evl-list
      ((f)))
    (defun my-meta-fn (x)
      (if (equal x '(f))
          (list 'quote (f))
        x))
    (defthm my-meta-fn-correct
      (equal (evl x a)
             (evl (my-meta-fn x) a))
      :rule-classes ((:meta :trigger-fns (f))))
    (defun constant-nil ()
      (declare (xargs :guard t))
      nil)
    (defattach f constant-nil)
    (defthm f-is-nil
    ; proved using my-meta-fn-correct
      (equal (f) nil)
      :rule-classes nil)
    (defthm contradiction
      nil
      :hints ((\"Goal\" :use ((:functional-instance
                             f-is-nil
                             (f (lambda () t))))))
      :rule-classes nil)

  To see why this restriction is sufficient, see a comment in the ACL2
  source code entitled ``; Essay on Correctness of Meta Reasoning.''")
 (EVENP
  (NUMBERS ACL2-BUILT-INS)
  "Test whether an integer is even

  (evenp x) is true if and only if the integer x is even. Actually, in
  the ACL2 logic (evenp x) is defined to be true when x/2 is an
  integer.

  The [guard] for evenp requires its argument to be an integer.

  Evenp is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <evenp>

    (defun evenp (x)
           (declare (xargs :guard (integerp x)))
           (integerp (* x (/ 2))))")
 (EVENTS
  (ACL2)
  "Functions that extend the logic

  Any extension of the syntax of ACL2 (i.e., the definition of a new
  constant or macro), the axioms (i.e., the definition of a
  function), or the rule database (i.e., the proof of a theorem),
  constitutes a logical ``event.'' Events change the ACL2 logical
  world (see [world]). Indeed, the only way to change the ACL2
  [world] is via the successful evaluation of an event function.
  Every time the [world] is changed by an event, a landmark is left
  on the [world] and it is thus possible to identify the [world] ``as
  of'' the evaluation of a given event. An event may introduce new
  logical names. Some events introduce no new names (e.g.,
  [verify-guards]), some introduce exactly one (e.g., [defmacro] and
  [defthm]), and some may introduce many (e.g., [encapsulate] ).

  ACL2 typically completes processing of an event by printing a
  summary. Unless proofs are skipped (see [ld-skip-proofsp]) or
  summary output is inhibited (see [set-inhibit-output-lst]),
  information about the proof attempt (if any) is printed that
  includes a list of rules used, a summary of warnings, and the
  number of ``prover steps'' (if any; see [with-prover-step-limit]).
  A breakdown of the time used is also printed, which by default is
  runtime (cpu time), but can be changed to realtime (wall clock
  time); see [get-internal-time].

  See [embedded-event-form] for a discussion of events permitted in
  [books].


Subtopics

  [Add-custom-keyword-hint]
      Add a new custom keyword hint

  [Assert-event]
      Assert that a given form returns a non-nil value

  [Comp]
      Compile some ACL2 functions

  [Defabbrev]
      A convenient form of macro definition for simple expansions

  [Defabsstobj]
      Define a new abstract single-threaded object

  [Defabsstobj-missing-events]
      Obtain the [events] needed to admit a [defabsstobj] event

  [Defattach]
      Execute constrained functions using corresponding attached functions

  [Defaxiom]
      Add an axiom

  [Defchoose]
      Define a Skolem (witnessing) function

  [Defcong]
      Prove [congruence] rule

  [Defconst]
      Define a constant

  [Defdoc]
      Deprecated event (formerly for adding documentation)

  [Defequiv]
      Prove that a function is an [equivalence] relation

  [Defevaluator]
      Introduce an evaluator function

  [Defexec]
      Attach a terminating executable function to a definition

  [Define-trusted-clause-processor]
      Define a trusted (unverified) goal-level simplifier

  [Deflabel]
      Build a landmark

  [Defmacro]
      Define a macro

  [Defmacro-last]
      Define a macro that returns its last argument, but with side effects

  [Defn]
      Definition with [guard] t

  [Defnd]
      [disable]d definition with [guard] t

  [Defpkg]
      Define a new symbol package

  [Defproxy]
      Define a non-executable :[program]-mode function for attachment

  [Defpun]
      Define a tail-recursive function symbol

  [Defrec]
      Introduce a record structure, like a struct in C.

  [Defrefinement]
      Prove that equiv1 refines equiv2

  [Defstobj]
      Define a new single-threaded object

  [Defstub]
      Stub-out a function symbol

  [Deftheory]
      Define a theory (to [enable] or [disable] a set of rules)

  [Deftheory-static]
      Define a `static' theory (to [enable] or [disable] a set of rules)

  [Defthm]
      Prove and name a theorem

  [Defthmd]
      Prove and name a theorem and then disable it

  [Defttag]
      Introduce a trust tag (ttag)

  [Defun]
      Define a function symbol

  [Defun-inline]
      Define a potentially inlined function symbol and associated macro

  [Defun-notinline]
      Define a not-to-be-inlined function symbol and associated macro

  [Defun-nx]
      Define a non-executable function symbol

  [Defun-sk]
      Define a function whose body has an outermost quantifier

  [Defund]
      Define a function symbol and then disable it

  [Defund-inline]
      Define a potentially disabled, inlined function symbol and
      associated macro

  [Defund-notinline]
      Define a disabled, not-to-be-inlined function symbol and associated
      macro

  [Embedded-event-form]
      Forms that may be embedded in other [events]

  [Encapsulate]
      Hide some [events] and/or constrain some functions

  [Evisc-table]
      Support for abbreviated output

  [In-arithmetic-theory]
      Designate theory for some rewriting done for non-linear arithmetic

  [In-theory]
      Designate ``current'' theory (enabling its rules)

  [Include-book]
      Load the [events] in a file

  [Local]
      Hiding an event in an encapsulation or book

  [Logical-name]
      A name created by a logical event

  [Make-event]
      Evaluate (expand) a given form and then evaluate the result

  [Memoize]
      Turn on memoization for a specified function

  [Mutual-recursion]
      Define some mutually recursive functions

  [Name]
      Syntactic rules on logical names

  [Profile]
      Turn on profiling for one function

  [Progn]
      Evaluate some [events]

  [Progn!]
      Evaluate some forms, not necessarily [events]

  [Redundant-events]
      Allowing a name to be introduced ``twice''

  [Regenerate-tau-database]
      Regenerate the tau database relative to the current enabled theory

  [Remove-custom-keyword-hint]
      Remove a custom keyword hint

  [Set-body]
      Set the definition body

  [Skip-proofs]
      Skip proofs for a given form --- a quick way to introduce
      unsoundness

  [Table]
      User-managed tables

  [Theory-invariant]
      User-specified invariants on [theories]

  [Unmemoize]
      Turn off memoization for the specified function

  [Value-triple]
      Compute a value, optionally checking that it is not nil

  [Verify-guards]
      Verify the [guard]s of a function

  [Verify-guards+]
      Verify the [guard]s of a function

  [Verify-termination]
      Convert a function from :program mode to :logic mode")
 (EVISC-TABLE
  (EVENTS)
  "Support for abbreviated output

  The evisc-table is an ACL2 table (see [table]) whose purpose is to
  modify the print representations of specified non-nil objects. When
  a key (some object) is associated with a string value, then that
  string is printed instead of that key (as an abbreviation). For
  example, the following log shows how to abbreviate the key (a b c)
  with the token <my-abc-list>.

    ACL2 !>(table evisc-table '(a b c) \"<my-abc-list>\")

    Summary
    Form:  ( TABLE EVISC-TABLE ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     EVISC-TABLE
    ACL2 !>'(a b c)
    <my-abc-list>
    ACL2 !>'(4 5 a b c)
    (4 5 . <my-abc-list>)
    ACL2 !>

  Every value in this [table] must be either a string or nil, where nil
  eliminates any association of the key with an abbreviation.
  Continuing with the log above:

    ACL2 !>(table evisc-table '(a b c) nil)

    Summary
    Form:  ( TABLE EVISC-TABLE ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     EVISC-TABLE
    ACL2 !>'(a b c)
    (A B C)
    ACL2 !>'(4 5 a b c)
    (4 5 A B C)
    ACL2 !>

  It can be particularly helpful to use this table to abbreviate a
  constant introduced by [defconst] by prefixing the constant name
  with \"#,\", as we now describe. Consider first the following
  example.

    (defconst *abc* '(1 2 3 4 5 6 7 8))
    (table evisc-table *abc*
      (concatenate 'string \"#,\" (symbol-name '*abc*)))

  Then the constant *abc* is printed as follows --- very helpful if its
  associated structure is significantly larger than the 8-element
  list of numbers shown above!

    ACL2 !>*abc*
    #,*ABC*
    ACL2 !>

  What's more, the ACL2 reader will replace #,*C*, where *C* is defined
  by [defconst], by its value, regardless of evisc-table; see
  [sharp-dot-reader]. Continuing with the example above, we have:

    ACL2 !>(cdr (quote #,*ABC*))
    (2 3 4 5 6 7 8)
    ACL2 !>

  Of course, more care needs to be taken if packages are involved (see
  [defpkg]), as we now illustrate.

    ACL2 !>(defpkg \"FOO\" nil)

    Summary
    Form:  ( DEFPKG \"FOO\" ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     \"FOO\"
    ACL2 !>(defconst foo::*a* '(1 2 3))

    Summary
    Form:  ( DEFCONST FOO::*A* ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     FOO::*A*
    ACL2 !>(table evisc-table foo::*a* \"#,foo::*a*\")

    Summary
    Form:  ( TABLE EVISC-TABLE ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     EVISC-TABLE
    ACL2 !>foo::*a*
    #,foo::*a*
    ACL2 !>'#,foo::*a*
    #,foo::*a*
    ACL2 !>(cdr '#,foo::*a*)
    (2 3)
    ACL2 !>

  We conclude by an example showing some extra care that may be
  important to consider taking. We start with:

    (defconst |*BaR*| '(3 4))

  Then the following works just fine; but try it without the extra code
  for the may-need-slashes case and you'll see that the sharp-dot
  printing is missing. First:

    (table evisc-table
           |*BaR*|
           (let ((x (symbol-name '|*BaR*|)))
             (if (may-need-slashes x)
                 (concatenate 'string \"#.|\" x \"|\")
               (concatenate 'string \"#.\" x))))

  Then:

    ACL2 !>|*BaR*|
    #,|*BaR*|
    ACL2 !>")
 (EVISC-TUPLE
  (IO)
  "Control suppression of details when printing

  ACL2 output is generally printed in full. However, ACL2 can be
  directed to abbreviate, or ``eviscerate'', objects before printing
  them. To ``eviscerate'' an object we replace certain substructures
  within it by strings that are printed in their stead. Such
  replacement is made relative to a so-called ``evisc-tuple'', which
  has four components: (evisc-tuple print-level print-length alist
  hiding-cars) is the same as the value of (list alist print-level
  print-length hiding-cars), and the components are used as follows
  (with priority order as discussed below). The alist component is
  used to replace any substructure occurring as a key by the
  corresponding string. The print-level and print-length are
  analogous to Common Lisp variables *print-level* and
  *print-length*, respectively, and cause replacement of
  substructures deeper than print-level by `#' and those longer than
  print-length by `...'. Finally, any [consp] x that starts with one
  of the symbols in hiding-cars is printed as <hidden>.

  The following example illustrates the use of an evisc-tuple that
  limits the print-level to 3 --- only three descents into list
  structures are permitted before replacing a subexpression by `#'
  --- and limits the print-length to 4 --- only the first four
  elements of any list structure will be printed before replacing its
  tail by `...'.

    ACL2 !>(fms \"~x0~%\"
                (list (cons #\\0 '((a b ((c d)) e f g) u v w x y)))
                *standard-co*
                state
                (evisc-tuple 3 4 nil nil))

    ((A B (#) E ...) U V W ...)
    <state>
    ACL2 !>

  Notice that it is impossible to read the printed value back into
  ACL2, since there is no way for the ACL2 reader to interpret `#' or
  `...'. To solve this problem, see [set-iprint].

  In the above example we pass an evisc-tuple explicitly to a printing
  function, in this case, [fms] (see [fmt]). But ACL2 also does its
  own printing, for example during a proof attempt. There are global
  evisc-tuples that control ACL2's printing; see [set-evisc-tuple]
  and see [without-evisc].")
 (EVISCERATE-HIDE-TERMS
  (IO)
  "To print (hide ...) as <hidden>

    Example:
    (assign eviscerate-hide-terms t)
    (assign eviscerate-hide-terms nil)

  Eviscerate-hide-terms is a [state] global variable whose value is
  either t or nil. The variable affects how terms are displayed by
  default (but not if you have set the term-evisc-tuple to other than
  its default; see [set-evisc-tuple]). If t, terms of the form (hide
  ...) are printed as <hidden>. Otherwise, they are printed normally.")
 (EXAMPLE-INDUCTION-SCHEME-BINARY-TREES
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Induction on binary trees

  See [logic-knowledge-taken-for-granted-inductive-proof] for an
  explanation of what we mean by the induction suggested by a
  recursive function or a term.

  Classical Induction on Binary Trees: To prove (p x), for all x, by
  classical induction on binary tree structures, prove each of the
  following:

    Base Case:
    (implies (atom x) (p x))

    Induction Step:
    (implies (and (not (atom x))
                  (p (car x))
                  (p (cdr x)))
             (p x))

  An argument analogous to that given in
  [example-induction-scheme-on-lists] should convince you that (p x)
  holds for every object.

  A function that suggests this induction is:

    (defun flatten (x)
      (if (atom x)
          (list x)
          (app (flatten (car x))
               (flatten (cdr x))))).")
 (EXAMPLE-INDUCTION-SCHEME-DOWN-BY-2
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Induction downwards 2 steps at a time

  See [logic-knowledge-taken-for-granted-inductive-proof] for an
  explanation of what we mean by the induction suggested by a
  recursive function or a term.

  Classical Induction on Natural Numbers Preserving Parity: Here is
  another way to decompose natural numbers. To prove (p n), for all
  n, prove each of the following:

    Base Case 1:
    (implies (zp n) (p n))

    Base Case 2:
    (implies (equal n 1) (p n))

    Induction Step:
    (implies (and (not (zp n))
                  (not (equal n 1))
                  (p (- n 2)))
             (p n))

  Base Case 1 establishes that p holds for 0 (and all objects other
  than positive naturals).

  Base Case 2 establishes that p holds for 1.

  The Induction Step establishes that if n is a natural number greater
  than 1, and if p holds for n-2, then p holds for n.

  Note that we have thus proved that (p n) holds, for all n. For
  example, (p -7), (p 'abc), and (p 0) are all established by Base
  Case 1. (p 1) is established by Base Case 2. (p 2) is established
  from (p 0) and the Induction Step. Think about it! (p 3) is
  established form (p 1) and the Induction Step, etc.

  A function that suggests this induction is:

    (defun parity (n)
      (if (zp n)
          'even
          (if (equal n 1)
              'odd
              (parity (- n 2))))).")
 (EXAMPLE-INDUCTION-SCHEME-NAT-RECURSION
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Induction on natural numbers

  See [logic-knowledge-taken-for-granted-inductive-proof] for an
  explanation of what we mean by the induction suggested by a
  recursive function or a term.

  Classical Induction on Natural Numbers: Induction is familiar in the
  arithmetic setting. To prove (p n), for all n, by classical
  induction on the construction of the natural numbers, prove each of
  the following:

    Base Case:
    (implies (zp n) (p n))

    Induction Step:
    (implies (and (not (zp n))
                  (p (- n 1)))
             (p n))

  The Base Case establishes that p holds for 0. In fact, because of the
  definition of [zp] [{ICON}], it establishes that (p n) holds when n
  is 0 and it holds when n is not a natural number.

  The Induction Step establishes that if n is a natural number other
  than 0, and if p holds for n-1, then p holds for n. The hypothesis
  (p (- n 1)) above is called the induction hypothesis.

  A function that suggests this induction is

    (defun nat-recursion (n)
      (if (zp n)
          n
          (nat-recursion (- n 1))))

  Similarly, the term (fact n) suggests this induction if fact is
  defined:

    (defun fact (k)
     (if (zp k)
         1
         (* k (fact (- k 1))))).

  even though the formal parameter of this definition of fact is k, not
  n.")
 (EXAMPLE-INDUCTION-SCHEME-ON-LISTS
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Induction on lists

  See [logic-knowledge-taken-for-granted-inductive-proof] for an
  explanation of what we mean by the induction suggested by a
  recursive function or a term.

  Classical Induction on Lists: To prove (p x), for all x, by classical
  induction on the linear list structure, prove each of the
  following:

    Base Case:
    (implies (endp x) (p x))

    Induction Step:
    (implies (and (not (endp x))
                  (p (cdr x)))
             (p x))

  An argument analogous to that given for natural numbers,
  [example-induction-scheme-nat-recursion], establishes (p x) for
  every x. For example, (p -7), (p 'abc), and (p nil) are all
  established by the Base Case. (p '(Friday)) follows from (p nil),
  given the Induction Step. That sentence bears thinking about! Think
  about it! Similarly, (p '(Yellow)) holds for the same reason. (p
  '(Thursday Friday)) follows from (p '(Friday)) and the Induction
  Step, etc.

  A function that suggests this induction is

    (defun app (x y)
      (if (endp x)
          y
          (cons (car x)
                (app (cdr x) y)))).")
 (EXAMPLE-INDUCTION-SCHEME-ON-SEVERAL-VARIABLES
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Induction on several variables

  See [logic-knowledge-taken-for-granted-inductive-proof] for an
  explanation of what we mean by the induction suggested by a
  recursive function or a term.

  Induction on Several Variables To (p n x) for all n and all x, prove
  each of the following:

    Base Case 1:
    (implies (endp x)
             (p n x))

    Base Case 2:
    (implies (and (not (endp x))
                  (zp n))
             (p n x))

    Induction Step:
    (implies (and (not (endp x))
                  (not (zp n))
                  (p (- n 1) (cdr x)))
             (p n x))

  A function that suggests this induction is

    (defun nth (n x)
      (if (endp x)
          nil
          (if (zp n)
              (car x)
              (nth (- n 1) (cdr x))))).")
 (EXAMPLE-INDUCTION-SCHEME-UPWARDS
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Induction upwards

  See [logic-knowledge-taken-for-granted-inductive-proof] for an
  explanation of what we mean by the induction suggested by a
  recursive function or a term.

  Induction Upwards: To (p i max) for all i and all max, prove each of
  the following:

    Base Case:
    (implies (not (and (natp i)
                       (natp max)
                       (< i max)))
             (p i max))

    Induction Step:
    (implies (and  (natp i)
                   (natp max)
                   (< i max)
                   (p (+ i 1) max))
             (p i max))

  Note that the induction hypothesis is about an i that is bigger than
  the i in in the conclusion. In induction, as in recursion, the
  sense of one thing being ``smaller'' than another is determined by
  an arbitrary measure of all the variables, not the magnitude or
  extent of some particular variable.

  A function that suggests this induction is shown below. ACL2 has to
  be told the measure, namely the difference between max and i
  (coerced to a natural number to insure that the measure is an
  ordinal).

    (defun count-up (i max)
      (declare (xargs :measure (nfix (- max i))))
      (if (and (natp i)
               (natp max)
               (< i max))
          (cons i (count-up (+ 1 i) max))
          nil)).")
 (EXAMPLE-INDUCTION-SCHEME-WITH-ACCUMULATORS
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Induction scheme with accumulators

  See [logic-knowledge-taken-for-granted-inductive-proof] for an
  explanation of what we mean by the induction suggested by a
  recursive function or a term.

  To prove (p x a) for all x and all a, prove each of the following:

    Base Case:
    (implies (endp x)
             (p x a))

    Induction Step:
    (implies (and (not (endp x))
                  (p (cdr x) (cons (car x) a)))
             (p x a))

  Note that in the induction hypothesis we assume p for a smaller x but
  a larger a. In fact, we could include as many induction hypotheses
  as we want and use any terms we want in the a position as long as
  the x position is occupied by a smaller term.

  A function that suggests this particular induction is shown below.

    (defun rev1 (x a)
      (if (endp x)
          a
          (rev1 (cdr x) (cons (car x) a)))).

  A function that suggests a similar induction in which three induction
  hypotheses are provided, one in which the a position is occupied by
  (cons (car x) a), another in which the a position is occupied by
  some arbitrary term b, and a third in which the a position is
  occupied by a, is suggested by the term (rev1-modified x a b) where

    (defun rev1-modified (x a b)
      (if (endp x)
          (list x a b)
          (list (rev1-modified (cdr x) (cons (car x) a) b)
                (rev1-modified (cdr x) b b)
                (rev1-modified (cdr x) a b))))

  Remember that the value of this term or function is irrelevant to the
  induction suggested. Because ACL2's definitional principle insists
  that all the formal parameters play a role in the computation (at
  least syntactically), it is common practice when defining functions
  for their induction schemes to return the list of all the formals
  (to insure all variables are involved) and to combine recursive
  calls on a given branch with list (to avoid introducing additional
  case analysis as would happen if and or or or other propositional
  functions are used).

  If you tried to prove (p x a) and suggested the induct hint
  (rev1-modified x a (fact k)), as by

    (thm (p x a)
         :hints ((\"Goal\" :induct (rev1-modified x a (fact k)))))

  the inductive argument would be:

    Base Case:
    (implies (endp x)
             (p x a))

    Inductive Step:
    (implies (and (not (endp x))
                  (p (cdr x) (cons (car x) a))
                  (p (cdr x) (fact k))
                  (p (cdr x) a))
             (p x a))")
 (EXAMPLE-INDUCTION-SCHEME-WITH-MULTIPLE-INDUCTION-STEPS
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Induction scheme with more than one induction step

  See [logic-knowledge-taken-for-granted-inductive-proof] for an
  explanation of what we mean by the induction suggested by a
  recursive function or a term.

  Several Induction Steps: To (p x i a) for all x, i, and a, prove each
  of the following:

    Base Case 1:
    (implies (zp i)
             (p x i a))

    Induction Step 1:
    (implies (and (not (zp i))
                  (equal (parity i) 'even)
                  (p (* x x)
                     (floor i 2)
                     a))
             (p x i a))

    Induction Step 2:
    (implies (and (not (zp i))
                  (not (equal (parity i) 'even))
                  (p x
                     (- i 1)
                     (* x a)))
             (p x i a))

  A function that suggests this induction is the binary exponentiation
  function for natural numbers.

    (defun bexpt (x i a)
      (cond ((zp i) a)
            ((equal (parity i) 'even)
             (bexpt (* x x)
                    (floor i 2)
                    a))
            (t (bexpt x
                      (- i 1)
                      (* x a)
                      )))).

  In order to admit this function it is necessary to know that (floor i
  2) is smaller than i in the case above. This can be proved if the
  community book \"arithmetic-5/top\" has been included from the ACL2
  system directory, i.e.,

    (include-book \"arithmetic-5/top\" :dir :system)

  should be executed before defining bexpt.")
 (EXAMPLE-INDUCTIONS
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Some examples of induction schemes in ACL2

  Here are some pages illustrating various induction schemes suggested
  by recursive functions.

  Classical Induction on Natural Numbers: see
  [example-induction-scheme-nat-recursion].

  Induction Preserving Even/Odd Parity or
  Induction Downwards by 2 or
  Induction with Multiple Base Cases: see
  [example-induction-scheme-down-by-2] for an induction in which the
  induction hypothesis decreases the induction variable by an amount
  other than 1. This illustrates that the induction hypothesis can be
  about whatever term or terms are needed to explain how the formula
  recurs. The example also illustrates an induction with more than
  one Base Case.

  Classical Induction on Lists: see [example-induction-scheme-on-lists]
  for an induction over linear lists, in which we inductively assume
  the conjecture for (cdr x) and prove it for x. It doesn't matter
  whether the list is nil-terminated or not; the Base Case addresses
  all the possibilities.

  Classical Induction on Binary (Cons) Trees: see
  [example-induction-scheme-binary-trees] for an induction over the
  simplest form of binary tree. Here the Induction Step provides two
  hypotheses, one about the left subtree and one about the right
  subtree.

  Induction on Several Variables: see
  [example-induction-scheme-on-several-variables] for an induction in
  which several variables participate in the case analysis and
  induction hypotheses.

  Induction Upwards: see [example-induction-scheme-upwards] for an
  induction scheme in which the induction hypothesis is about
  something ``bigger than'' the induction conclusion. This
  illustrates that the sense in which the hypothesis is about
  something ``smaller'' than the conclusion is determined by a
  measure of all the variables, not the magnitude or extent of some
  single variable.

  Induction with Auxiliary Variables or
  Induction with Accumulators: see
  [example-induction-scheme-with-accumulators] for an induction
  scheme in which one variable ``gets smaller'' but another is
  completely arbitrary. Such schemes are common when dealing with
  tail-recursive functions that accumulate partial results in
  auxiliary variables. This example also shows how to provide several
  arbitrary terms in a non-inductive variable of a scheme.

  Induction with Multiple Induction Steps: see
  [example-induction-scheme-with-multiple-induction-steps] for an
  induction in which we make different inductive hypotheses depending
  on which case we're in. This example also illustrates the handling
  of auxiliary variables or accumulators.")
 (EXECUTABLE-COUNTERPART
  (RULE-CLASSES)
  "A rule for computing the value of a function

    Examples:
    (:executable-counterpart length)

  which may be abbreviated in [theories] as

    (length)

  Every [defun] introduces at least two rules used by the theorem
  prover. Suppose fn is the name of a [defun]'d function. Then
  (:definition fn) is the rune (see [rune]) naming the rule that
  allows the simplifier to replace calls of fn by its instantiated
  body. (:executable-counterpart fn) is the [rune] for the rule for
  how to evaluate the function on known constants.

  When typing [theories] it is convenient to know that (fn) is a runic
  designator that denotes (:executable-counterpart fn). See
  [theories].

  If (:executable-counterpart fn) is [enable]d, then when applications
  of fn to known constants are seen by the simplifier they are
  computed out by executing the Common Lisp code for fn (with the
  appropriate handling of [guard]s). Suppose fact is defined as the
  factorial function. If the executable counterpart [rune] of fact,
  (:executable-counterpart fact), is [enable]d when the simplifier
  encounters (fact 12), then that term will be ``immediately''
  expanded to 479001600. Note that even if subroutines of fn have
  disabled executable counterparts, fn will call their Lisp code
  nonetheless: once an executable counterpart function is applied, no
  subsidiary enable checks are made.

  Such one-step expansions are sometimes counterproductive because they
  prevent the anticipated application of certain lemmas about the
  subroutines of the expanded function. Such computed expansions can
  be prevented by disabling the executable counterpart [rune] of the
  relevant function. For example, if (:executable-counterpart fact)
  is [disable]d, (fact 12) will not be expanded by computation. In
  this situation, (fact 12) may be rewritten to (* 12 (fact 11)),
  using the rule named (:definition fact), provided the system's
  heuristics permit the introduction of the term (fact 11). Note that
  lemmas about multiplication may then be applicable (while such
  lemmas would be inapplicable to 479001600). In many proofs it is
  desirable to [disable] the executable counterpart [rune]s of
  certain functions to prevent their expansion by computation. See
  [executable-counterpart-theory].

  Finally: What do we do about functions that are ``constrained''
  rather than defined, such as the following? (See [encapsulate].)

    (encapsulate (((foo *) => *))
                 (local (defun foo (x) x)))

  Does foo have an executable counterpart? Yes: since the vast majority
  of functions have sensible executable counterparts, it was decided
  that all functions, even such ``constrained'' ones, have executable
  counterparts. We essentially ``trap'' when such calls are
  inappropriate. Thus, consider for example:

    (defun bar (x)
      (if (rationalp x)
          (+ x 1)
        (foo x)))

  If the term (bar '3) is encountered by the ACL2 rewriter during a
  proof, and if the :executable-counterpart of bar is [enable]d, then
  it will be invoked to reduce this term to '4. However, if the term
  (bar 'a) is encountered during a proof, then since 'a is not a
  [rationalp] and since the :executable-counterpart of foo is only a
  ``trap,'' then this call of the :executable-counterpart of bar will
  result in a ``trap.'' In that case, the rewriter will return the
  term (hide (bar 'a)) so that it never has to go through this
  process again. See [hide].")
 (EXECUTABLE-COUNTERPART-THEORY
  (THEORIES THEORY-FUNCTIONS)
  "Executable counterpart rules as of logical name

    Examples:
    (executable-counterpart-theory :here)
    (executable-counterpart-theory 'lemma3)

  See [logical-name].

    General Form:
    (executable-counterpart-theory logical-name)

  Returns the theory containing all the :[executable-counterpart]
  [rune]s, whether [enable]d or not, that existed immediately after
  [logical-name] was introduced. See the documentation for
  [theories], [logical-name], [executable-counterpart] and
  [function-theory].

  You may experience a fencepost problem in deciding which logical name
  to use. [Deflabel] can always be used to mark unambiguously for
  future reference a particular point in the development of your
  theory. The order of [events] in the vicinity of an [encapsulate]
  is confusing. See [encapsulate].

  This ``function'' is actually a macro that expands to a term
  mentioning the single free variable [world]. When theory
  expressions are evaluated by [in-theory] or the :[in-theory] hint,
  [world] is bound to the current ACL2 [world].")
 (EXISTS
  (DEFUN-SK)
  "Existential quantifier

  The symbol exists (in the ACL2 package) represents existential
  quantification in the context of a [defun-sk] form. See [defun-sk]
  and see [forall].

  See [quantifiers] for an example illustrating how the use of
  recursion, rather than explicit quantification with [defun-sk], may
  be preferable.")
 (EXIT (GOOD-BYE)
       "Quit entirely out of Lisp

  Same as [good-bye].")
 (EXIT-BOOT-STRAP-MODE
  (HISTORY)
  "The end of pre-history

  Exit-boot-strap-mode is the last step in creating the ACL2 [world] in
  which the user lives. It has [command] number 0. [Command]s before
  it are part of the system initialization and extend all the way
  back to :[min]. [Command]s after it are those of the user.

  Exit-boot-strap-mode is a Common Lisp function but not an ACL2
  function. It is called when every [defconst], [defun], etc., in our
  source code has been processed under ACL2 and the [world] is all
  but complete. exit-boot-strap-mode has only one job: to signal the
  completion of the boot-strapping.")
 (EXPAND (POINTERS)
         "See [hints] for keyword :expand.")
 (EXPLODE-ATOM
  (CHARACTERS ACL2-BUILT-INS)
  "Convert any [atom] into a [character-listp] that contains its printed
  representation, rendering numbers in your choice of print base.

  (explode-atom x print-base) prints the atom x as a list of
  characters, using some [print-base-p] to decide what base to print
  numbers in.

  Examples:

    (explode-atom 15 10) --> (#\\1 #\\5)              ; 15 in decimal
    (explode-atom 15 16) --> (#\\F)                  ; 15 in hex
    (explode-atom \"foo\" 10) --> (#\\f #\\o #\\o)
    (explode-atom 'acl2::foo 10) --> (#\\F #\\O #\\O)  ; note: no package

  See also [explode-nonnegative-integer], [str::numbers], and
  [printing-to-strings].

  Function: <explode-atom>

    (defun
     explode-atom (x print-base)
     (declare (xargs :guard (and (or (acl2-numberp x)
                                     (characterp x)
                                     (stringp x)
                                     (symbolp x))
                                 (print-base-p print-base))))
     (cond
      ((rationalp x)
       (cond
        ((integerp x)
         (cond ((< x 0)
                (cons #\\-
                      (explode-nonnegative-integer (- x)
                                                   print-base nil)))
               (t (explode-nonnegative-integer x print-base nil))))
        (t
         (append (explode-atom (numerator x) print-base)
                 (cons #\\/
                       (explode-nonnegative-integer (denominator x)
                                                    print-base nil))))))
      ((complex-rationalp x)
       (list*
            #\\# #\\C #\\(
            (append (explode-atom (realpart x) print-base)
                    (cons #\\Space
                          (append (explode-atom (imagpart x) print-base)
                                  '(#\\)))))))
      ((characterp x) (list x))
      ((stringp x) (coerce x 'list))
      (t (coerce (symbol-name x) 'list))))")
 (EXPLODE-NONNEGATIVE-INTEGER
  (CHARACTERS NUMBERS ACL2-BUILT-INS)
  "The list of [characters] in the radix-r form of a number

    Examples:
    ACL2 !>(explode-nonnegative-integer 925 10 nil)
    (#9 #2 #5)
    ACL2 !>(explode-nonnegative-integer 325 16 nil)
    (#3 #9 #D)

  For a non-negative integer n, (explode-nonnegative-integer n r nil)
  is the list of [characters] in the radix-r (base-r) representation
  of n.

  The [guard] for explode-nonnegative-integer requires the first
  argument to be a nonnegative integer and second argument to be a
  valid radix for ACL2 (2, 8, 10, or 16).

  See also [explode-atom], [str::numbers], and [printing-to-strings].

  Function: <explode-nonnegative-integer>

    (defun explode-nonnegative-integer
           (n print-base ans)
           (declare (xargs :guard (and (integerp n)
                                       (>= n 0)
                                       (print-base-p print-base))))
           (cond ((or (zp n)
                      (not (print-base-p print-base)))
                  (cond ((null ans) '(#\\0)) (t ans)))
                 (t (explode-nonnegative-integer
                         (floor n print-base)
                         print-base
                         (cons (digit-to-char (mod n print-base))
                               ans)))))")
 (EXPT
  (NUMBERS ACL2-BUILT-INS)
  "Exponential function

  (Expt r i) is the result of raising the number r to the integer power
  i.

  The [guard] for (expt r i) is that r is a number and i is an integer,
  and furthermore, if r is 0 then i is nonnegative. When the type
  requirements of the [guard] aren't met, (expt r i) first coerces r
  to a number and i to an integer.

  Expt is a Common Lisp function. See any Common Lisp documentation for
  more information. Note that r can be a complex number; this is
  consistent with Common lisp.

  Function: <expt>

    (defun expt (r i)
           (declare (xargs :guard (and (acl2-numberp r)
                                       (integerp i)
                                       (not (and (eql r 0) (< i 0))))))
           (cond ((zip i) 1)
                 ((= (fix r) 0) 0)
                 ((> i 0) (* r (expt r (+ i -1))))
                 (t (* (/ r) (expt r (+ i 1))))))")
 (EXTEND-PE-TABLE
  (HISTORY)
  "Replace [events] displayed by [history] commands

    Example Form:
    (extend-pe-table all-natp (all-p natp))

    General Form:
    (extend-pe-table event-name form)

  where event-name is the name of an existing event and form is to be
  displayed by [history] commands in place of the actual event that
  introduced event-name.

  We motivate and illustrate this utility with the following example.
  Suppose you develop a macro to define the notion that each element
  of a list satisfies a given predicate, as follows.

    (defmacro all-p (pred)
      (declare (xargs :guard (symbolp pred)))
      (let ((name (intern$ (concatenate 'string \"ALL-\" (symbol-name pred))
                           (symbol-package-name pred))))
        `(defun ,name (lst)
           (if (atom lst)
               t
             (and (,pred lst)
                  (,name (cdr lst)))))))

  So for example, after evaluating (all-p natp), you see the following.

    ACL2 !>:pe all-natp
     L         2:x(ALL-P NATP)

    >L             (DEFUN ALL-NATP (LST)
                          (IF (ATOM LST)
                              T
                              (AND (NATP LST) (ALL-NATP (CDR LST)))))
    ACL2 !>

  So far so good. But suppose that instead, you introduce this event
  within a call of [progn], as follows.

    (progn (defun f1 (x) x)
           (defun f2 (x) x)
           (all-p natp))

  Then when we ask to see the event introducing all-natp, we will not
  see any use of the macro all-p.

    ACL2 !>:pe all-natp
               2:x(PROGN (DEFUN F1 # ...)
                         (DEFUN F2 # ...)
                         ...)

    >L             (DEFUN ALL-NATP (LST)
                          (IF (ATOM LST)
                              T
                              (AND (NATP LST) (ALL-NATP (CDR LST)))))
    ACL2 !>

  Perhaps we therefore prefer that [history] commands display the event
  for all-natp as (all-p natp), rather than as the generated [defun]
  event. Of course, in this simple example that might not be
  important; but it is easy to imagine examples where a small macro
  invocation generates a large, ugly primitive event that is best not
  viewed by any user!

  A solution is to associate the name all-natp with the form that
  introduced this name, as follows.

    (extend-pe-table all-natp (all-p natp))

  After evaluating this form, we see the desired call of all-natp. In
  essence, :[pe] and other [history] commands consider the defining
  event for all-natp to be (all-p natp) rather than the actual defun
  form that introduced all-natp.

    ACL2 !>:pe all-natp
               2  (PROGN (DEFUN F1 # ...)
                         (DEFUN F2 # ...)
                         ...)

    >L             (ALL-P NATP)
    ACL2 !>

  As mentioned above, other [history] commands are sensitive to the
  result of evaluating a call of extend-pe-table. For example:

    ACL2 !>:pcb all-natp
               2  (PROGN (DEFUN F1 # ...)
                         (DEFUN F2 # ...)
                         ...)
     L             (DEFUN F1 (X) ...)
     L             (DEFUN F2 (X) ...)
     L             (ALL-P NATP)
    ACL2 !>

  Note that extend-pe-table actually associates the indicated form with
  the most recent event introducing the given event name. Consider
  the following example (output elided as shown).

    ACL2 !>(encapsulate
             ()
             (program)
             (all-p alistp))
    [[.. elided ..]]
     T
    ACL2 !>:pe all-alistp
               4:x(ENCAPSULATE NIL ...)

    >P             (DEFUN ALL-ALISTP (LST)
                          (IF (ATOM LST)
                              T
                              (AND (ALISTP LST)
                                   (ALL-ALISTP (CDR LST)))))
    ACL2 !>(extend-pe-table all-alistp (all-p alistp))

    Summary
    Form:  ( TABLE PE-TABLE ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     PE-TABLE
    ACL2 !>:pe all-alistp
               4  (ENCAPSULATE NIL ...)

    >P             (ALL-P ALISTP)
    ACL2 !>(verify-termination all-alistp)
    [[.. elided ..]]
     ALL-ALISTP
    ACL2 !>:pe all-alistp
     L         6:x(VERIFY-TERMINATION ALL-ALISTP)

    >L             (DEFUN ALL-ALISTP (LST)
                          (IF (ATOM LST)
                              T
                              (AND (ALISTP LST)
                                   (ALL-ALISTP (CDR LST)))))

    Additional events for the logical name ALL-ALISTP:
               4  (ENCAPSULATE NIL ...)

    >PL            (ALL-P ALISTP)
    ACL2 !>(extend-pe-table all-alistp (:termination-verified (all-p alistp)))

    Summary
    Form:  ( TABLE PE-TABLE ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     PE-TABLE
    ACL2 !>:pe all-alistp
     L         6  (VERIFY-TERMINATION ALL-ALISTP)

    >L             (:TERMINATION-VERIFIED (ALL-P ALISTP))

    Additional events for the logical name ALL-ALISTP:
               4  (ENCAPSULATE NIL ...)

    >PL            (ALL-P ALISTP)
    ACL2 !>

  Note that by using :[pe!], in place of :[pe], you can avoid using the
  information that was provided by extend-pe-table.

    ACL2 !>:pe! all-alistp
     L         6  (VERIFY-TERMINATION ALL-ALISTP)

    >L             (DEFUN ALL-ALISTP (LST)
                          (IF (ATOM LST)
                              T
                              (AND (ALISTP LST)
                                   (ALL-ALISTP (CDR LST)))))

    Additional events for the logical name ALL-ALISTP:
               4  (ENCAPSULATE NIL ...)

    >PL            (DEFUN ALL-ALISTP (LST)
                          (IF (ATOM LST)
                              T
                              (AND (ALISTP LST)
                                   (ALL-ALISTP (CDR LST)))))
    ACL2 !>

  In the examples above we invoked extend-pe-table explicitly. It might
  have been better, however, to ``bake in'' such calls by way of the
  macro itself, as follows.

    (defmacro all-p (&whole form pred)
      (declare (xargs :guard (symbolp pred)))
      (let ((name (intern$ (concatenate 'string \"ALL-\" (symbol-name pred))
                           (symbol-package-name pred))))
        `(progn (defun ,name (lst)
                  (if (atom lst)
                      t
                    (and (,pred lst)
                         (,name (cdr lst)))))
                (extend-pe-table ,name ,form))))

  Then in a fresh session, after defining all-p as shown immediately
  above, we can obtain the following (edited) log.

    ACL2 !>(all-p natp)
    [[.. elided ..]]
    ACL2 !>:pe all-natp
               2:x(ALL-P NATP)
    ACL2 !>

  We close with two remarks. First, note that the indicated event must
  have already been defined at the time extend-pe-table is invoked.
  Second --- in case an advanced user wishes to extend directly the
  underlying table, pe-table --- we mention that this table
  associates each key, an event name, with an association list that
  maps so-called absolute event numbers with events to display. So
  for example, we can remove all custom printing of events for the
  name all-natp as follows.

    (table pe-table 'all-natp nil)")
 (EXTENDED-METAFUNCTIONS
  (META)
  "State and context sensitive metafunctions

    General Form of an Extended :Meta theorem:
    (implies (and (pseudo-termp x)              ; this hyp is optional
                  (alistp a)                    ; this hyp is optional
                  (ev (hyp-fn x mfc state) a)   ; this hyp is optional
                  ; meta-extract hyps may also be included (see below)
                  )
             (equiv (ev x a)
                    (ev (fn x mfc state) a)))

  where the restrictions are as described in the [documentation] for
  [meta] where state is literally the symbol STATE, and x, a, mfc,
  and state are distinct variable symbols. A :meta theorem of the
  above form installs fn as a metatheoretic simplifier with
  hypothesis function hyp-fn, exactly as for vanilla metafunctions.
  The only difference is that when the metafunctions are applied,
  some contextual information is passed in via the mfc argument and
  the ACL2 [state] is made available.

  See [meta] for a discussion of vanilla flavored metafunctions. This
  documentation assumes you are familiar with the simpler situation,
  in particular, how to define a vanilla flavored metafunction, fn,
  and its associated hypothesis metafunction, hyp-fn, and how to
  state and prove metatheorems installing such functions. Defining
  extended metafunctions requires that you also be familiar with many
  ACL2 implementation details. This documentation is sketchy on these
  details; see the ACL2 source code or email the [ACL2-help] list if
  you need more help.

  Additional hypotheses are supported, called ``meta-extract
  hypotheses'', that allow metafunctions to depend on the validity of
  certain terms extracted from the context or the logical [world].
  These hypotheses provide an even more advanced form of metatheorem
  so we explain them elsewhere; see [meta-extract].

  The metafunction context, mfc, is a list containing many different
  data structures used by various internal ACL2 functions. We do not
  document the form of mfc. Your extended metafunction should just
  take mfc as its second formal and pass it into the functions
  mentioned below. The ACL2 state is well-documented (see [state]).
  Below we present expressions below that can be useful in defining
  extended metafunctions. Some of these expressions involve keyword
  arguments, :forcep and :ttree, which are optional and in most cases
  are fine to omit, and which we explain after we present the useful
  expressions.

  (mfc-clause mfc): returns the current goal, in clausal form. A clause
  is a list of ACL2 terms, implicitly denoting the disjunction of the
  listed terms. The clause returned by mfc-clause is the clausal form
  of the translation (see [trans]) of the goal or subgoal on which
  the rewriter is working. When a metafunction calls mfc-clause, the
  term being rewritten by the metafunction either occurs somewhere in
  this clause or, perhaps more commonly, is being rewritten on behalf
  of some lemma to which the rewriter has backchained while trying to
  rewrite a term in the clause.

  (mfc-ancestors mfc): returns an alist whose keys are the negations of
  the backchaining hypotheses being pursued. In particular, (null
  (mfc-ancestors mfc)) will be true exactly when rewriting is on part
  of the current goal. Exception: An element of this alist whose key
  is of the form (:binding-hyp hyp unify-subst) indicates that hyp
  has been encountered as a hypothesis of the form (equal var term)
  or (equiv var (double-rewrite-term)), in each case binding variable
  var to the result of rewriting term under unify-subst.

  (mfc-rdepth mfc): returns the remaining stack depth for calls of the
  rewriter (by default, *default-rewrite-stack-limit* at the top
  level; see [rewrite-stack-limit]). When this is 0, no further calls
  of the rewriter can be made without error.

  (mfc-type-alist mfc): returns the type-alist governing the occurrence
  of the term, x, being rewritten by the metafunction. A type-alist
  is an association list, each element of which is of the form (term
  ts . ttree). Such an element means that the term term has the
  [type-set] ts; see [type-alist]. The ttree component is probably
  irrelevant here. All the terms in the type-alist are in translated
  form (see [trans]). The ts are numbers denoting finite Boolean
  combinations of ACL2's primitive types (see [type-set]). The
  type-alist includes not only information gleaned from the
  conditions governing the term being rewritten but also that gleaned
  from forward chaining from the (negations of the) other literals in
  the clause returned by mfc-clause.

  (mfc-unify-subst mfc): returns nil except when evaluating a [syntaxp]
  or [bind-free] hypothesis, in which case, returns the unifying
  substitution present at the start of that evaluation.

  (mfc-world mfc): returns the ACL2 logical [world].

  (mfc-ts term mfc state :forcep forcep :ttreep ttreep): returns the
  type-set of term in the current context; see [type-set].

  (mfc-rw term obj equiv-info mfc state): returns the result of
  rewriting term in the current context, mfc, with objective obj and
  the equivalence relation described by equiv-info. Obj should be t,
  nil, or ?, and describes your objective: try to show that term is
  true, false, or anything. Equiv-info is either nil, t, a function
  symbol fn naming a known equivalence relation, or a list of
  congruence rules. Nil means return a term that is equal to term. T
  means return a term that is propositionally equivalent (i.e., in
  the iff sense) to term, while fn means return a term fn-equivalent
  to term. The final case, which is intended only for advanced users,
  allows the specification of generated equivalence relations, as
  supplied to the geneqv argument of rewrite. Generally, if you wish
  to establish that term is true in the current context, use the
  idiom

    (equal (mfc-rw term t t mfc state) *t*)

  The constant *t* is set to the internal form of the constant term t,
  i.e., 't.

  (mfc-rw+ term alist obj equiv-info mfc state): if alist is nil then
  this is equivalent to (mfc-rw term obj equiv-info mfc state).
  However, the former takes an argument, alist, that binds variables
  to terms, and returns the result of rewriting term under that
  alist, where this rewriting is as described for mfc-rw above. The
  function mfc-rw+ can be more efficient than mfc-rw, because the
  terms in the binding alist have generally already been rewritten,
  and it can be inefficient to rewrite them again. For example,
  consider a rewrite rule of the following form.

    (implies (and ...
                  (syntaxp (... (mfc-rw `(bar ,x) ...) ...))
                  ...)
             (equal (... x ...) ...))

  Here, x is bound in the conclusion to the result of rewriting some
  term, say, tm. Then the above call of mfc-rw will rewrite tm, which
  is probably unnecessary. So a preferable form of the rule above may
  be as follows, so that tm is not further rewritten by mfc-rw+.

    (implies (and ...
                  (syntaxp (... (mfc-rw+ '(bar v) `((v . ,x)) ...) ...))
                  ...)
             (equal (... x ...) ...))

  However, you may find that the additional rewriting done by mfc-rw is
  useful in some cases.

  (mfc-ap term mfc state): returns t or nil according to whether linear
  arithmetic can determine that term is false. To the cognoscenti:
  returns the contradiction flag produced by linearizing term and
  adding it to the linear-pot-lst.

  (mfc-relieve-hyp hyp alist rune target bkptr mfc state): returns t or
  nil according to whether the indicated hypothesis term, hyp, can be
  relieved (proved) under the giving variable bindings, alist. Note
  that this function returns nil if hyp has free variables (see
  [free-variables]). Here, hyp is the hypothesis of the indicated
  [rune] at (one-based) position bkptr, and target is an instantiated
  term to which rune is being applied. Note that no indication is
  returned for whether any assumptions have been generated by [force]
  or [case-split]. (If you need such a feature, feel free to request
  it of the ACL2 implementors.)

  We explain the :forcep and :ttreep keyword arguments provided in some
  expressions, as promised above. Their defaults are :same and nil,
  respectively. A value of :same for :forcep means that forcing will
  be allowed if and only if it is allowed in the current rewriting
  environment; see [force]. A value of t or nil for :forcep overrides
  this default and allows or disallows forcing, respectively. By
  default these functions return a single value, val, but if :ttreep
  is t then they return (mv val ttree), where ttree is the tag-tree
  (see [ttree]) returned by the indicated operation, with an input
  tag-tree of nil).

  During the execution of a metafunction by the theorem prover, the
  expressions above compute the results specified. Typically, you
  should imagine that there are no axioms about the mfc- function
  symbols: treat them as uninterpreted function symbols. There is an
  advanced feature, meta-extract hypotheses, that can avoid this
  logical weakness in some cases when proving :[meta] rules; see
  [meta-extract]. But we assume for the rest of the present
  [documentation] topic that you do not use meta-extract hypotheses.
  Thus, in the proof of the correctness of a metafunction, no
  information is available about the results of these functions: you
  should use these functions for heuristic purposes only.

  For example, your metafunction may use these functions to decide
  whether to perform a given transformation, but the transformation
  must be sound regardless of the value that your metafunction
  returns. We illustrate this below. It is sometimes possible to use
  the hypothesis metafunction, hyp-fn, to generate a sufficient
  hypothesis to justify the transformation. The generated hypothesis
  might have already been ``proved'' internally by your use of mfc-ts
  or mfc-rw, but the system will have to prove it ``officially'' by
  relieving it. We illustrate this below also.

  We conclude with a script that defines, verifies, and uses several
  extended metafunctions. This script is based on one provided by
  Robert Krug, who was instrumental in the development of this style
  of metafunction and whose help we gratefully acknowledge.

    ; Here is an example.  I will define (foo i j) simply to be (+ i j).
    ; But I will keep its definition disabled so the theorem prover
    ; doesn't know that.  Then I will define an extended metafunction
    ; that reduces (foo i (- i)) to 0 provided i has integer type and the
    ; expression (< 10 i) occurs as a hypothesis in the clause.

    ; Note that (foo i (- i)) is 0 in any case.

    (defun foo (i j) (+ i j))

    (defevaluator eva eva-lst ((foo i j)
                               (unary-- i)

    ; I won't need these two cases until the last example below, but I
    ; include them now.

                               (if x y z)
                               (integerp x)))

    (set-state-ok t)

    (defun metafn (x mfc state)
      (cond
       ((and (consp x)
             (equal (car x) 'foo)
             (equal (caddr x) (list 'unary-- (cadr x))))

    ; So x is of the form (foo i (- i)).  Now I want to check some other
    ; conditions.

        (cond ((and (ts-subsetp (mfc-ts (cadr x) mfc state)
                                *ts-integer*)
                    (member-equal `(NOT (< '10 ,(cadr x)))
                                  (mfc-clause mfc)))
               (quote (quote 0)))
              (t x)))
       (t x)))

    (defthm metafn-correct
      (equal (eva x a) (eva (metafn x mfc state) a))
      :rule-classes ((:meta :trigger-fns (foo))))

    (in-theory (disable foo))

    ; The following will fail because the metafunction won't fire.
    ; We don't know enough about i.

    (thm (equal (foo i (- i)) 0))

    ; Same here.

    (thm (implies (and (integerp i) (< 0 i)) (equal (foo i (- i)) 0)))

    ; But this will work.

    (thm (implies (and (integerp i) (< 10 i))
                  (equal (foo i (- i)) 0)))

    ; This won't, because the metafunction looks for (< 10 i) literally,
    ; not just something that implies it.

    (thm (implies (and (integerp i) (< 11 i))
                  (equal (foo i (- i)) 0)))

    ; Now I will undo the defun of metafn and repeat the exercise, but
    ; this time check the weaker condition that (< 10 i) is provable
    ; (by rewriting it) rather than explicitly present.

    (ubt 'metafn)

    (defun metafn (x mfc state)
      (cond
       ((and (consp x)
             (equal (car x) 'foo)
             (equal (caddr x) (list 'unary-- (cadr x))))
        (cond ((and (ts-subsetp (mfc-ts (cadr x) mfc state)
                                *ts-integer*)
                    (equal (mfc-rw `(< '10 ,(cadr x)) t t mfc state)
                           *t*))

    ; The mfc-rw above rewrites (< 10 i) with objective t and iffp t.  The
    ; objective means the theorem prover will try to establish it.  The
    ; iffp means the theorem prover can rewrite maintaining propositional
    ; equivalence instead of strict equality.

               (quote (quote 0)))
              (t x)))
       (t x)))

    (defthm metafn-correct
      (equal (eva x a) (eva (metafn x mfc state) a))
      :rule-classes ((:meta :trigger-fns (foo))))

    (in-theory (disable foo))

    ; Now it will prove both:

    (thm (implies (and (integerp i) (< 10 i))
                  (equal (foo i (- i)) 0)))

    (thm (implies (and (integerp i) (< 11 i))
                  (equal (foo i (- i)) 0)))

    ; Now I undo the defun of metafn and change the problem entirely.
    ; This time I will rewrite (integerp (foo i j)) to t.  Note that
    ; this is true if i and j are integers.  I can check this
    ; internally, but have to generate a hyp-fn to make it official.

    (ubt 'metafn)

    (defun metafn (x mfc state)
      (cond
       ((and (consp x)
             (equal (car x) 'integerp)
             (consp (cadr x))
             (equal (car (cadr x)) 'foo))

    ; So x is (integerp (foo i j)).  Now check that i and j are
    ; ``probably'' integers.

        (cond ((and (ts-subsetp (mfc-ts (cadr (cadr x)) mfc state)
                                *ts-integer*)
                    (ts-subsetp (mfc-ts (caddr (cadr x)) mfc state)
                                *ts-integer*))
               *t*)
              (t x)))
       (t x)))

    ; To justify this transformation, I generate the appropriate hyps.

    (defun hyp-fn (x mfc state)

      (declare (ignore mfc state))

    ; The hyp-fn is run only if the metafn produces an answer different
    ; from its input.  Thus, we know at execution time that x is of the
    ; form (integerp (foo i j)) and we know that metafn rewrote
    ; (integerp i) and (integerp j) both to t.  So we just produce their
    ; conjunction.  Note that we must produce a translated term; we
    ; cannot use the macro AND and must quote constants!  Sometimes you
    ; must do tests in the hyp-fn to figure out which case the metafn
    ; produced, but not in this example.

               `(if (integerp ,(cadr (cadr x)))
                    (integerp ,(caddr (cadr x)))
                    'nil))

    (defthm metafn-correct
      (implies (eva (hyp-fn x mfc state) a)
               (equal (eva x a) (eva (metafn x mfc state) a)))
      :rule-classes ((:meta :trigger-fns (integerp))))

    (in-theory (disable foo))

    ; This will not be proved.

    (thm (implies (and (rationalp x) (integerp i)) (integerp (foo i j))))

    ; But this will be.

    (thm (implies (and (rationalp x)
                       (integerp i)
                       (integerp j))
                  (integerp (foo i j))))")
 (EXTERNAL-FORMAT (POINTERS)
                  "See [character-encoding].")
 (EXTRA-INFO
  (GUARD)
  "Sources of measure or guard proof obligations

  (Extra-info x y) always returns t by definition. See [guard-debug]
  and see [measure-debug] for a discussion of this function, which is
  useful for debugging failures from attempts to prove measure
  conjectures or to verify [guard]s.")
 (F-GET-GLOBAL
  (PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "Get the value of a global variable in [state]

    Examples:
    (+ (f-get-global 'y state) 1)
    (f-put-global 'a
                  (aset1 'ascii-map-array
                         (f-get-global 'a state)
                         66
                         'Upper-case-B)
                  state)

    General Form:
    (f-get-global 'symbol state)

  where symbol is any symbol to which you have [assign]ed a global
  value.

  The macro [@] is closely related to f-get-global: (@ var)
  macroexpands to (f-get-global 'var state).

  The macro [f-put-global] makes it convenient to set the value of a
  symbol. The :[ubt] operation has no effect on the global-table of
  [state]. Thus, you may use these globals to hang onto useful data
  structures even though you may undo back past where you computed
  and saved them.")
 (F-PUT-GLOBAL
  (PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "Assign to a global variable in [state]

    Examples:
    (f-put-global 'x (expt 2 10) state)
    (f-put-global 'a (aset1 'ascii-map-array (@ a) 66 'Upper-case-B) state)

    General Form:
    (f-put-global (quote symbol) term state)

  where symbol is any symbol (with certain enforced exclusions to avoid
  overwriting ACL2 system ``globals'') and term is any ACL2 term that
  could be evaluated at the top-level. F-put-global evaluates the
  term, stores the result as the value of the given symbol in the
  global-table of [state], and returns the new state. (Note: the
  actual implementation of the storage of this value is much more
  efficient than this discussion of the logic might suggest.)

  The macro [assign] is closely related to f-put-global: (assign var
  val) macroexpands to (f-put-global 'var val state).

  The macros [@] and [f-get-global] give convenient access to the value
  of such globals. The :[ubt] operation has no effect on the
  global-table of [state]. Thus, you may use these globals to hang
  onto useful data structures even though you may undo back past
  where you computed and saved them.")
 (FAILED-FORCING
  (FORCE DEBUGGING)
  "How to deal with a proof [failure] in a forcing round

  See [forcing-round] for a background discussion of the notion of
  forcing rounds. When a proof fails during a forcing round it means
  that the ``gist'' of the proof succeeded but some ``technical
  detail'' failed. The first question you must ask yourself is
  whether the [force]d goals are indeed theorems. We discuss the
  possibilities below.

  If you believe the [force]d goals are theorems, you should follow the
  usual methodology for ``fixing'' failed ACL2 proofs, e.g., the
  identification of key lemmas and their timely and proper use as
  rules. See [failure], see [gag-mode], and see [proof-tree].

  The rules designed for the goals of forcing rounds are often just
  what is needed to prove the [force]d hypothesis at the time it is
  [force]d. Thus, you may find that when the system has been
  ``taught'' how to prove the goals of the forcing round no forcing
  round is needed. This is intended as a feature to help structure
  the discovery of the necessary rules.

  If a hint must be provided to prove a goal in a forcing round, the
  appropriate ``goal specifier'' (the string used to identify the
  goal to which the hint is to be applied) is just the text printed
  on the line above the formula, e.g., \"[1]Subgoal *1/3''\". See
  [goal-spec].

  If you solve a forcing problem by giving explicit [hints] for the
  goals of forcing rounds, you might consider whether you could avoid
  forcing the assumption in the first place by giving those [hints]
  in the appropriate places of the main proof. This is one reason
  that we print out the origins of each [force]d assumption. An
  argument against this style, however, is that an assumption might
  be [force]d in hundreds of places in the main goal and proved only
  once in the forcing round, so that by delaying the proof you
  actually save time.

  We now turn to the possibility that some goal in the forcing round is
  not a theorem.

  There are two possibilities to consider. The first is that the
  original theorem has insufficient hypotheses to ensure that all the
  [force]d hypotheses are in fact always true. The ``fix'' in this
  case is to amend the original conjecture so that it has adequate
  hypotheses.

  A more difficult situation can arise and that is when the conjecture
  has sufficient hypotheses but they are not present in the forcing
  round goal. This can be caused by what we call ``premature''
  forcing.

  Because ACL2 rewrites from the inside out, it is possible that it
  will [force] hypotheses while the context is insufficient to
  establish them. Consider trying to prove (p x (foo x)). We first
  rewrite the formula in an empty context, i.e., assuming nothing.
  Thus, we rewrite (foo x) in an empty context. If rewriting (foo x)
  [force]s anything, that [force]d assumption will have to be proved
  in an empty context. This will likely be impossible.

  On the other hand, suppose we did not attack (foo x) until after we
  had expanded p. We might find that the value of its second
  argument, (foo x), is relevant only in some cases and in those
  cases we might be able to establish the hypotheses [force]d by (foo
  x). Our premature forcing is thus seen to be a consequence of our
  ``over eager'' rewriting.

  Here, just for concreteness, is an example you can try. In this
  example, (foo x) rewrites to x but has a [force]d hypothesis of
  (rationalp x). P does a case split on that very hypothesis and uses
  its second argument only when x is known to be rational. Thus, the
  hypothesis for the (foo x) rewrite is satisfied. On the false
  branch of its case split, p simplies to (p1 x) which can be proved
  under the assumption that x is not rational.

    (defun p1 (x) (not (rationalp x)))
    (defun p (x y)(if (rationalp x) (equal x y) (p1 x)))
    (defun foo (x) x)
    (defthm foo-rewrite (implies (force (rationalp x)) (equal (foo x) x)))
    (in-theory (disable foo))

  The attempt then to do (thm (p x (foo x))) [force]s the unprovable
  goal (rationalp x).

  Since all ``formulas'' are presented to the theorem prover as single
  terms with no hypotheses (e.g., since [implies] is a function),
  this problem would occur routinely were it not for the fact that
  the theorem prover expands certain ``simple'' definitions
  immediately without doing anything that can cause a hypothesis to
  be [force]d. See [simple]. This does not solve the problem, since
  it is possible to hide the propositional structure arbitrarily
  deeply. For example, one could define p, above, recursively so that
  the test that x is rational and the subsequent first ``real'' use
  of y occurred arbitrarily deeply.

  Therefore, the problem remains: what do you do if an impossible goal
  is [force]d and yet you know that the original conjecture was
  adequately protected by hypotheses?

  One alternative is to disable forcing entirely. See
  [disable-forcing]. Another is to [disable] the rule that caused the
  [force].

  A third alternative is to prove that the negation of the main goal
  implies the [force]d hypothesis. For example,

    (defthm not-p-implies-rationalp
      (implies (not (p x (foo x))) (rationalp x))
      :rule-classes nil)

  Observe that we make no rules from this formula. Instead, we merely
  :use it in the subgoal where we must establish (rationalp x).

    (thm (p x (foo x))
         :hints ((\"Goal\" :use not-p-implies-rationalp)))

  When we said, above, that (p x (foo x)) is first rewritten in an
  empty context we were misrepresenting the situation slightly. When
  we rewrite a literal we know what literal we are rewriting and we
  implicitly assume it false. This assumption is ``dangerous'' in
  that it can lead us to simplify our goal to nil and give up --- we
  have even seen people make the mistake of assuming the negation of
  what they wished to prove and then via a very complicated series of
  transformations convince themselves that the formula is false.
  Because of this ``tail biting'' we make very weak use of the
  negation of our goal. But the use we make of it is sufficient to
  establish the [force]d hypothesis above.

  A fourth alternative is to weaken your desired theorem so as to make
  explicit the required hypotheses, e.g., to prove

    (defthm rationalp-implies-main
      (implies (rationalp x) (p x (foo x)))
      :rule-classes nil)

  This of course is unsatisfying because it is not what you originally
  intended. But all is not lost. You can now prove your main theorem
  from this one, letting the [implies] here provide the necessary
  case split.

    (thm (p x (foo x))
         :hints ((\"Goal\" :use rationalp-implies-main)))")
 (FAILURE
  (DEBUGGING)
  "How to deal with a proof failure

  When ACL2 gives up it does not mean that the submitted conjecture is
  invalid, even if the last formula ACL2 printed in its proof attempt
  is manifestly false. Since ACL2 sometimes [generalize]s the goal
  being proved, it is possible it adopted an invalid subgoal as a
  legitimate (but doomed) strategy for proving a valid goal.
  Nevertheless, conjectures submitted to ACL2 are often invalid and
  the proof attempt often leads the careful reader to the realization
  that a hypothesis has been omitted or that some special case has
  been forgotten. It is good practice to ask yourself, when you see a
  proof attempt fail, whether the conjecture submitted is actually a
  theorem.

  If you think the conjecture is a theorem, then you must figure out
  from ACL2's output what you know that ACL2 doesn't about the
  functions in the conjecture and how to impart that knowledge to
  ACL2 in the form of rules. The ``key checkpoint'' information
  printed at the end of the summary provides a fine place to start.
  See [the-method] for a general discussion of how to prove theorems
  with ACL2, and see [introduction-to-the-theorem-prover] for a more
  detailed tutorial. Also see [set-gag-mode] for discussion of key
  checkpoints and an abbreviated output mode that focuses attention
  on them. You may find it most useful to start by focusing on key
  checkpoints that are not under a proof by induction, if any, both
  because these are more likely to suggest useful lemmas and because
  they are more likely to be theorems; for example, generalization
  may have occurred before a proof by induction has begun. If you
  need more information than is provided by the key checkpoints ---
  although this should rarely be necessary --- then you can look at
  the full proof, perhaps with the aid of certain utilities: see
  [proof-tree], see [set-gag-mode], and see [set-saved-output].

  For information on a tool to help debug failures of [encapsulate] and
  [progn] events, as well as [certify-book] failures, see
  [redo-flat].

  Again, see [the-method] for a general discussion of how to prove
  theorems with ACL2, and see [introduction-to-the-theorem-prover]
  for a more detailed tutorial. See also the book ``Computer-Aided
  Reasoning: An Approach'' (Kaufmann, Manolios, Moore), as well as
  the discussion of how to read Nqthm proofs and how to use Nqthm
  rules in ``A Computational Logic Handbook'' by Boyer and Moore
  (Academic Press, 1988).

  If the failure occurred during a forcing round, see [failed-forcing].")
 (FAKE-RUNE (POINTERS) "See [rune].")
 (FANCY-STRING-READER
  (READER)
  "A friendly syntax for strings literals that have backslashes and
  quotes.

  Examples:

    ACL2 !> #{\"\"\"Hello, World!\"\"\"}
    \"Hello, World!\"

    ACL2 !> #{\"\"\"<img src=\"hello.png\"/>\"\"\"}
    \"<img src=\\\"hello.png\\\"/>\"

    ACL2 !> #{\"\"\"C:\\ACL2\\axioms.lisp\"\"\"}
    \"C:\\\\ACL2\\\\axioms.lisp\"

  String literals in ACL2 and Common Lisp source code files are usually
  written as text strings within quote marks. For instance, the
  5-character string whose contents are Hello is normally written as
  \"Hello\".

  Usually this syntax is fine, but things can get tricky when you want
  to write a string whose contents include \" marks. For example, if
  you wanted to write down a string whose contents were:

    <img src=\"hello.png\"/>

  then you would need to escape the quote marks within it using
  backslash characters, e.g., as follows:

    \"<img src=\\\"hello.png\\\"/>\"

  But using \\ as a special character means we also need a special way
  to write backslashes. For instance, if we want to write a string
  literal whose contents are:

    C:\\ACL2\\axioms.lisp

  Then we would need to write something a string literal such as:

    \"C:\\\\ACL2\\\\axioms.lisp\"

  In certain cases, such as when writing long [documentation] strings,
  the extra escaping can be tedious and error-prone.

  To simplify this, ACL2 provides an alternate #{\"\"\"...\"\"\"} syntax for
  string literals. This syntax has no special characters, so nothing
  needs to be escaped. The end of the string is recognized by the
  unusual character sequence \"\"\"}.

  Of course, a string that needs to contain the sequence \"\"\"} cannot be
  represented using this fancy string literal syntax, but in practice
  that's rarely ever a problem.")
 (FAST-ALIST (POINTERS)
             "See [fast-alists].")
 (FAST-ALIST-CLEAN
  (FAST-ALISTS ACL2-BUILT-INS)
  "(fast-alist-clean alist) can be used to eliminate \"shadowed pairs\"
  from a fast alist.

  This [documentation] topic assumes familiarity with fast alists; see
  [fast-alists]. See [fast-alist-clean!], [fast-alist-fork], and
  [fast-alist-fork!] for related utilities.

  Logically, (fast-alist-clean alist) is defined as follows:

  Function: <fast-alist-clean>

    (defun fast-alist-clean (alist)
           (declare (xargs :guard t))
           (fast-alist-fork alist
                            (if (consp alist)
                                (cdr (last alist))
                                alist)))

  The result is thus a corresponding fast alist, with the order
  reversed and with atoms and shadowed pairs removed, as per the
  definition above; see [fast-alist-fork] for details. Moreover, if
  alist is not a fast alist, then (fast-alist-clean alist) is
  executed in raw Lisp by calling fast-alist-fork as indicated above.

  However, if alist is a fast alist, then a special definition under
  the hood provides a different handling of associated hash tables.
  After running (fast-alist-clean alist) to obtain a result,
  cleaned-alist, the hash table that had been associated with alist
  will now be associated with cleaned-alist instead. This saves the
  expense of creating a new hash table, but there is still the
  expense of copying the alist, as for [fast-alist-fork]. However,
  unlike fast-alist-fork, there is no need to free the input alist.

  Note that the final cdr is preserved, so that the name is preserved
  for use by [fast-alist-summary] (also see [hons-acons]).")
 (FAST-ALIST-CLEAN!
  (FAST-ALISTS ACL2-BUILT-INS)
  "(fast-alist-clean! alist) is an alternative to [fast-alist-clean]
  that produces a [normed] result.

  Logically this function is just fast-alist-clean; we leave it enabled
  and would think it odd to ever prove a theorem about it.

  Under the hood, this is the same as fast-alist-clean except that it
  uses something like [hons-acons!] instead of [hons-acons]. You
  generally should not use this function unless you really know what
  you're doing and understand the drawbacks discussed in
  [hons-acons!].")
 (FAST-ALIST-FORK
  (FAST-ALISTS ACL2-BUILT-INS)
  "(fast-alist-fork alist ans) can be used to eliminate \"shadowed pairs\"
  from an alist or to copy [fast-alists].

  This [documentation] topic assumes familiarity with fast alists; see
  [fast-alists]. See [fast-alist-fork!], [fast-alist-clean], and
  [fast-alist-clean!] for related utilities.

  Logically, (fast-alist-fork alist ans) is defined as follows:

  Function: <fast-alist-fork>

    (defun fast-alist-fork (alist ans)
           (declare (xargs :guard t))
           (cond ((atom alist) ans)
                 ((atom (car alist))
                  (fast-alist-fork (cdr alist) ans))
                 ((hons-assoc-equal (car (car alist)) ans)
                  (fast-alist-fork (cdr alist) ans))
                 (t (fast-alist-fork (cdr alist)
                                     (cons (car alist) ans)))))

  The alist argument need not be a fast alist.

  Typically ans is set to nil or some other atom. In this case,
  shrinking produces a new, fast alist which is like alist except
  that (1) any \"malformed,\" atomic entries have been removed, (2) all
  \"shadowed pairs\" have been removed, and (3) incidentally, the
  surviving elements have been reversed. This can be useful as a way
  to clean up any unnecessary bindings in alist, or as a way to
  obtain a \"deep copy\" of a fast alist that can extended
  independently from the original while maintaining discipline.

  Note that fast-alist-fork is potentially expensive, for the following
  two reasons.

    * The alist is copied, dropping any shadowed pairs. This process will
      require a hash table lookup for each entry in the alist; and it
      will require creating a new alist, which uses additional
      memory.
    * Unless ans is a fast alist that is stolen (see below), a new hash
      table is created, which uses additional memory. This hash table
      is populated in time that is linear in the number of unique
      keys in the alist.

  When ans is not an atom, good discipline requires that it is a fast
  alist. In this case, fast-alist-fork steals the hash table for ans
  and extends it with all of the bindings in alist that are not in
  ans. From the perspective of [hons-assoc-equal], you can think of
  the resulting alist as being basically similar to (append ans
  alist), but in a different order.

  Note that when ans is not a fast alist (e.g., ans is an atom) then
  such stealing does not take place.

  A common idiom is to replace an alist by the result of shrinking it,
  in which case it is best to free the input alist, for example as
  follows.

    (let ((alist (fast-alist-free-on-exit alist
                                          (fast-alist-fork alist nil))))
      ...)

  See [fast-alist-free-on-exit] and see [fast-alist-free].


Subtopics

  [Hons-shrink-alist]
      Deprecated feature")
 (FAST-ALIST-FORK!
  (FAST-ALISTS ACL2-BUILT-INS)
  "(fast-alist-fork! alist ans) is an alternative to [fast-alist-fork]
  that produces a [normed] result.

  Logically this function is just fast-alist-fork; we leave it enabled
  and would think it odd to ever prove a theorem about it.

  Under the hood, this is the same as fast-alist-fork except that it
  uses something like [hons-acons!] instead of [hons-acons]. You
  generally should not use this function unless you really know what
  you're doing and understand the drawbacks discussed in
  [hons-acons!].


Subtopics

  [Hons-shrink-alist!]
      Deprecated feature")
 (FAST-ALIST-FREE
  (FAST-ALISTS ACL2-BUILT-INS)
  "(fast-alist-free alist) throws away the hash table associated with a
  fast alist.

  Logically, this function is the identity; we leave it enabled and
  would think it odd to ever prove a theorem about it.

  Under the hood, fast-alist-free removes the hash table associated
  with this alist, if one exists. This effectively converts the alist
  into an ordinary alist.

  Also see [fast-alist-free-on-exit].

  Because there is no automatic mechanism for freeing the hash tables
  used in fast alists, to avoid memory leaks you should manually free
  any alists that will no longer be used. You may find
  [fast-alist-summary] useful in tracking down alists that were not
  properly freed.

  It is safe to call fast-alist-free on any argument, including fast
  alists that have already been freed and objects which are not
  alists at all.

  Function: <fast-alist-free>

    (defun fast-alist-free (alist)
           (declare (xargs :guard t))
           alist)


Subtopics

  [Flush-hons-get-hash-table-link]
      Deprecated feature")
 (FAST-ALIST-FREE-ON-EXIT
  (FAST-ALISTS ACL2-BUILT-INS)
  "Free a fast alist after the completion of some form.

  Logically, (fast-alist-free-on-exit alist form) is the identity and
  returns form. Also see [fast-alist-free].

  Under the hood, this essentially expands to:

    (prog1 form
           (fast-alist-free alist))

  In other words, alist is not freed immediately, but instead remains a
  fast alist until the form completes. This may be useful when you
  are writing code that uses a fast alist but has many return points.

  See also the macro fast-alists-free-on-exit defined in the community
  book \"books/centaur/misc/hons-extra.lisp\", which can be used to
  free several alists.

  The community book \"books/centaur/misc/hons-extra.lisp\" extends the
  [b*] macro with the free-on-exit pattern binder. That is, after
  executing (include-book \"centaur/misc/hons-extra.lisp\" :dir
  :system), the form

    (b* (...
         ((free-on-exit a b c))
         ...)
      ...)

  causes a, b, and c to be freed when the b* completes, but they remain
  fast alists until then.")
 (FAST-ALIST-LEN
  (FAST-ALISTS ACL2-BUILT-INS)
  "(fast-alist-len alist) counts the number of unique keys in a fast
  alist.

  Logically this function counts how many elements would remain in the
  alist were we to shrink it with [fast-alist-fork].

  Good discipline requires that the alist is a fast alist. Under the
  hood, when the alist is a fast alist we can simply call the
  underlying Common Lisp function hash-table-count on the associated
  hash table, which is very fast and doesn't require us to actually
  shrink the alist.

  Function: <fast-alist-len>

    (defun fast-alist-len (alist)
           (declare (xargs :guard t))
           (len (fast-alist-fork alist nil)))")
 (FAST-ALIST-SUMMARY
  (FAST-ALISTS ACL2-BUILT-INS)
  "(fast-alist-summary) prints some basic statistics about any current
  fast alists.

  Logically, fast-alist-summary just returns nil; we leave it enabled
  and would think it odd to ever prove a theorem about it.

  Under the hood, this function gathers and prints some basic
  statistics about the current fast alists. It may be useful for
  identifying fast alists that should have been freed with
  [fast-alist-free].

  Function: <fast-alist-summary>

    (defun fast-alist-summary
           nil (declare (xargs :guard t))
           nil)")
 (FAST-ALISTS
  (ALISTS PROGRAMMING HONS-AND-MEMOIZATION)
  "Alists with hidden hash tables for faster execution

  The implementation of fast alists is, in many ways, similar to that
  of ACL2 arrays. Logically, [hons-acons] is just like acons, and
  [hons-get] is similar to [assoc-equal]. But under the hood, hash
  tables are associated with these alists, and, when a certain
  discipline is followed, these functions execute with hash table
  speeds.

  What is this discipline? Each hons-acons operation \"steals\" the hash
  table associated with the alist that is being extended. Because of
  this, one must be very conscious of which object is the most recent
  extension of an alist and use that extension exclusively.

  The only penalty for a failure to keep track of the most recent
  extension is a loss of execution speed, not of correctness, and
  perhaps the annoyance of some [slow-alist-warning]s.

  Maintaining discipline may require careful passing of a fast alist up
  and down through function calls, as with any single threaded object
  in an applicative setting, but there is no syntactic enforcement
  that insists you only use the most recent extension of an alist as
  there is for single threaded objects ([stobj]s). Also, even with
  perfectly proper code, discipline can sometimes be lost due to user
  interrupts and aborts.

  Performance Notes

  See [hons-acons] for how the final [cdr] of a fast alist can be used
  as a size hint or as a name for reports printed by calling
  [fast-alist-summary].

  The keys of fast alists are always [normed]. Why? In Common Lisp,
  equal-based hashing is relatively slow, so to allow the use of
  eql-based hash tables, [hons-acons] and [hons-get] always
  [hons-copy] the keys involved.

  Since alist keys are frequently atoms, this norming activity may
  often be so fast that you do not need to think about it. But if you
  are going to use large structures as the keys for your fast alist,
  this overhead can be significant, and you may want to ensure that
  your keys are normed ahead of time.

  There is no automatic mechanism for reclaiming the hash tables that
  are associated with alists. Because of this, to avoid memory leaks,
  you should call [fast-alist-free] to remove the hash table
  associated with alists that will no longer be used.


Subtopics

  [Cons-subtrees]
      Build a fast alist whose keys are the subtrees of X

  [Fast-alist-clean]
      ([fast-alist-clean] alist) can be used to eliminate \"shadowed pairs\"
      from a fast alist.

  [Fast-alist-clean!]
      ([fast-alist-clean!] alist) is an alternative to [fast-alist-clean]
      that produces a [normed] result.

  [Fast-alist-fork]
      ([fast-alist-fork] alist ans) can be used to eliminate \"shadowed
      pairs\" from an alist or to copy [fast-alists].

  [Fast-alist-fork!]
      ([fast-alist-fork!] alist ans) is an alternative to
      [fast-alist-fork] that produces a [normed] result.

  [Fast-alist-free]
      ([fast-alist-free] alist) throws away the hash table associated with
      a fast alist.

  [Fast-alist-free-on-exit]
      Free a fast alist after the completion of some form.

  [Fast-alist-len]
      ([fast-alist-len] alist) counts the number of unique keys in a fast
      alist.

  [Fast-alist-summary]
      ([fast-alist-summary]) prints some basic statistics about any
      current fast alists.

  [Hons-acons]
      ([hons-acons] key val alist) is the main way to create or extend
      [fast-alists].

  [Hons-acons!]
      ([hons-acons!] key val alist) is an alternative to [hons-acons] that
      produces [normed], fast alists.

  [Hons-assoc-equal]
      ([hons-assoc-equal] key alist) is not fast; it serves as the logical
      definition for [hons-get].

  [Hons-get]
      ([hons-get] key alist) is the efficient lookup operation for
      [fast-alists].

  [Make-fast-alist]
      ([make-fast-alist] alist) creates a fast-alist from the input alist,
      returning alist itself or, in some cases, a new object equal to
      it.

  [Slow-alist-warning]
      Warnings issued when [fast-alists] are used inefficiently

  [With-fast-alist]
      ([with-fast-alist] name form) causes name to be a fast alist for the
      execution of form.")
 (FC-REPORT
  (FORWARD-CHAINING-REPORTS)
  "To report on the forward chaining activity in the most recent proof

    Example: (fc-report 15)

    General Form: (fc-report k)

  where k is the number of some forward chaining report printed in the
  most recent event.

  See [forward-chaining-reports] for details.")
 (FIFTH
  (NTH ACL2-BUILT-INS)
  "Fifth member of the list

  See any Common Lisp documentation for details.")
 (FILE-READING-EXAMPLE
  (TUTORIAL5-MISCELLANEOUS-EXAMPLES)
  "Example of reading files in ACL2

  This example illustrates the use of ACL2's [io] primitives to read
  the forms in a file. See [io].

  This example provides a solution to the following problem. Let's say
  that you have a file that contains s-expressions. Suppose that you
  want to build a list by starting with nil, and updating it
  ``appropriately'' upon encountering each successive s-expression in
  the file. That is, suppose that you have written a function
  update-list such that (update-list obj current-list) returns the
  list obtained by ``updating'' current-list with the next object,
  obj, encountered in the file. The top-level function for processing
  such a file, returning the final list, could be defined as follows.
  Notice that because it opens a channel to the given file, this
  function modifies [state] and hence must return [state]. Thus it
  actually returns two values: the final list and the new [state].

    (defun process-file (filename state)
      (mv-let
       (channel state)
       (open-input-channel filename :object state)
       (mv-let (result state)
               (process-file1 nil channel state) ;see below
               (let ((state (close-input-channel channel state)))
                 (mv result state)))))

  The function process-file1 referred to above takes the currently
  constructed list (initially, nil), together with a channel to the
  file being read and the [state], and returns the final updated
  list. Notice that this function is tail recursive. This is
  important because many Lisp compilers will remove tail recursion,
  thus avoiding the potential for stack overflows when the file
  contains a large number of forms.

    (defun process-file1 (current-list channel state)
      (mv-let (eofp obj state)
              (read-object channel state)
              (cond
               (eofp (mv current-list state))
               (t (process-file1 (update-list obj current-list)
                                 channel state)))))

  As an exercise, you might want to add [guard]s to the functions above
  and verify the guards (see [verify-guards]). See [args] or make a
  call of the form (guard 'your-function nil (w state)) to see the
  guard of an existing function.")
 (FINALIZE-EVENT-USER
  (PROVER-OUTPUT)
  "User-supplied code to complete [events], e.g., with extra summary
  output

  This utility is intended for system hackers, not standard ACL2 users.

  ACL2 prints summaries at the conclusions of processing [events]
  (unless summaries are inhibited; see [set-inhibit-output-lst] and
  also see [set-inhibited-summary-types]). You may arrange for
  processing to take place just after the summary, by defining a
  function with argument list (ctx body state) that returns one
  value, namely state. We describe ctx and body at the end below, but
  you may simply prefer to ignore these arguments.) Your function
  should normally be a [guard]-verified :[logic] mode function with
  no guard other than that provided by the input requirement on
  [state], that is, (state-p state); but later below we discuss how
  to avoid this requirement. You then attach (see [defattach]) your
  function to the function finalize-event-user. The following example
  illustrates how this all works.

    (defun finalize-event-user-test (ctx body state)
      (declare (xargs :stobjs state)
               (ignore ctx body))
      (cond ((and (boundp-global 'abbrev-evisc-tuple state)
                  (open-output-channel-p *standard-co*
                                         :character
                                         state))
             (pprogn
              (if (eq (f-get-global 'abbrev-evisc-tuple state) :DEFAULT)
                  (princ$ \"Abbrev-evisc-tuple has its default value.~%\"
                          *standard-co*
                          state)
                (princ$ \"Abbrev-evisc-tuple has been modified.~%\"
                        *standard-co*
                        state))))
            (t state)))

    (defattach finalize-event-user finalize-event-user-test)

  After admission of the two events above, an event summary will
  conclude with extra printout, for example:

    Note: Abbrev-evisc-tuple has its default value.

  If the attachment function (above, finalize-event-user-test) does not
  meet all the requirements stated above, then you can use the
  :skip-checks argument of [defattach] to get around the requirement,
  as illustrated by the following example.

    (defun finalize-event-user-test2 (state)
      (declare (xargs :stobjs state
                      :mode :program)
               (ignore ctx body))
      (observation
       'my-test
       \"~|Value of term-evisc-tuple: ~x0~|\"
       (f-get-global 'term-evisc-tuple state)))

    (defttag t) ; needed for :skip-checks t

    (defattach (finalize-event-user finalize-event-user-test2)
               :skip-checks t)

  So for example:

    ACL2 !>(set-term-evisc-tuple (evisc-tuple 2 7 nil nil) state)
     (:TERM)
    ACL2 !>(defconst *foo6* '(a b c))

    Summary
    Form:  ( DEFCONST *FOO6* ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

    ACL2 Observation in MY-TEST:
    Value of term-evisc-tuple: (NIL 2 7 NIL)
     *FOO6*
    ACL2 !>

  Note that (as of this writing) the macro [observation] expands to a
  call of a :[program]-mode function. Thus, the trick shown above
  involving :skip-checks allows the use of :program-mode functions;
  for example, you can print with [fmt].

  See community book books/misc/defattach-bang.lisp for a variant of
  [defattach] that uses [ec-call] to avoid issues of [guard]
  verification.

  Also see [initialize-event-user], which discusses the handling of
  [state] globals by that utility as well as by finalize-event-user.

  Finally, as promised above, we briefly describe the arguments ctx and
  body. These are the arguments passed to the call of macro
  with-ctx-summarized under which finalize-event-user (or
  initialize-event-user) was called. Thus, they are unevaluated
  expressions. For example, system function defthm-fn1 has a body of
  the following form.

    (with-ctx-summarized
     (if (output-in-infixp state) event-form (cons 'defthm name))
     (let ((wrld (w state))
           (ens (ens state))
           .....

  Thus, when initialize-event-user and finalize-event-user are called
  on behalf of [defthm], ctx is the s-expression

    (if (output-in-infixp state) event-form (cons 'defthm name))

  while body is the following s-expression (with most code elided).

    (let ((wrld (w state))
          (ens (ens state))
          .....

  You might find it helpful to use [trace$] to get a sense of ctx and
  body, for example, (trace$ finalize-event-user).")
 (FIND-RULES-OF-RUNE
  (RUNE)
  "Find the rules named rune

    General Form:
    (find-rules-of-rune rune wrld)

  This function finds all the rules in wrld with :[rune] rune. It
  returns a list of rules in their internal form (generally as
  described by the corresponding defrec). Decyphering these rules is
  difficult since one cannot always look at a rule object and decide
  what kind of record it is without exploiting many system invariants
  (e.g., that :[rewrite] runes only name rewrite-rules).

  At the moment this function returns nil if the rune in question is a
  :[refinement] rune, because there is no object representing
  :[refinement] rules. (:[refinement] rules cause changes in the
  'coarsenings properties.) In addition, if the rune is an
  :[equivalence] rune, then congruence rules with that rune will be
  returned --- because :[equivalence] lemmas generate some congruence
  rules --- but the fact that a certain function is now known to be
  an equivalence relation is not represented by any rule object and
  so no such rule is returned. (The fact that the function is an
  equivalence relation is encoded entirely in its presence as a
  'coarsening of [equal].)")
 (FINDING-DOCUMENTATION
  (DOCUMENTATION)
  "Searching the documentation

  The :[doc] command will display, at the terminal, [documentation]
  topics defined in ACL2 or in [books] that have already been
  included. But how can you find documentation for books that are not
  included in the current ACL2 session?

  The [xdoc] {ACL2+Books Manual |
  http://www.cs.utexas.edu/users/moore/acl2/v7-2/combined-manual/index.html}
  includes documentation for both the ACL2 system and the
  [community-books]. For more information on this manual and how to
  view it, see [documentation].")
 (FIRST
  (NTH ACL2-BUILT-INS)
  "First member of the list

  See any Common Lisp documentation for details.")
 (FIX
  (NUMBERS ACL2-BUILT-INS)
  "Coerce to a number

  Fix simply returns any numeric argument unchanged, returning 0 on a
  non-numeric argument. Also see [nfix], see [ifix], and see [rfix]
  for analogous functions that coerce to a natural number, an
  integer, and a rational number, respectively.

  Fix has a [guard] of t.

  Function: <fix>

    (defun fix (x)
           (declare (xargs :guard t))
           (if (acl2-numberp x) x 0))")
 (FIX-TRUE-LIST
  (LISTS ACL2-BUILT-INS)
  "Coerce to a true list

  Fix-true-list is the identity function on [true-listp] objects. It
  converts every list to a true list by dropping the final [cdr], and
  it converts every [atom] to nil.

  Function: <fix-true-list>

    (defun fix-true-list (x)
           (declare (xargs :guard t))
           (if (consp x)
               (cons (car x) (fix-true-list (cdr x)))
               nil))")
 (FLAWED_INDUCTION_CANDIDATES_IN_APP_EXAMPLE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Flawed Induction Candidates in App Example

  Induction on a is unflawed: every occurrence of a in the conjecture

    (equal (app (app a b) c)
           (app a (app b c)))

  is in a position being recursively decomposed!

  Now look at the occurrences of b. The first (shown in bold below) is
  in a position that is held constant in the recursion of (app a b).
  It would be ``bad'' to induct on b here.

    (equal (app (app a b) c)
           (app a (app b c)))")
 (FLET
  (BASICS ACL2-BUILT-INS)
  "Local binding of function symbols

    Example Form:
    ; The following evaluates to (mv 7 10):
    (flet ((f (x)
              (+ x 3))
           (g (x)
              (declare (type integer x))
              (* x 2)))
      (mv (f 4) (g 5)))

    General Forms:
    (flet (def1 ... defk) body)
    (flet (def1 ... defk) declare-form1 .. declare-formk body)

  where body is a term, and each defi is a definition as in [defun] but
  with the leading defun symbol omitted. See [defun]. If any
  declare-formi are supplied, then each must be of the form (declare
  decl1 ... decln), where each decli is of the form (inline g1 ...
  gm) or (notinline g1 ... gm), and each gi is defined by some defi.

  The only effect of the declarations is to provide advice to the host
  Lisp compiler. The declarations are otherwise ignored by ACL2, so
  we mainly ignore them in the discussion below.

  The innermost flet-binding of a function symbol, f, above a call of
  f, is the one that provides the definition of f for that call. Note
  that flet does not provide recursion. Consider the following
  example.

    ; Give a global definition of f:
    (defun f (x) (+ x 3))
    ; Evaluate an expression using a local binding of f:
    (flet ((f (x) (cons x (f (1+ x)))))
      (f 4))

  In the above term (cons x (f (1+ x))), f refers to the global
  definition of f above the flet expression. However, (f 4) refers to
  the flet-binding of f, (f (x) (cons x (f x))). The result of the
  flet expression is thus obtained by evaluating (f 4) where (f 4) is
  (cons 4 (f (1+ 4))), where the latter call of f refers to the
  global definition; thus we have (cons 4 (f 5)), which evaluates to
  (4 . 8).

  Although flet behaves in ACL2 essentially as it does in Common Lisp,
  ACL2 imposes the following restrictions and qualifications.

    * Every [declare] form for a local definition (def1 through defk,
      above) must be an ignore, ignorable, or type expression.
    * Each defi must bind a different function symbol.
    * Each defi must bind a symbol that is a legal name for an ACL2
      function symbol. In particular, the symbol may not be in the
      keyword package or the main Lisp package. Moreover, the symbol
      may not be a built-in ACL2 function or macro.
    * Every variable occurring in the body of a defi must be a formal
      parameter of that defi. (This restriction is not enforced in
      Common Lisp.)
    * If the flet-binding defi is in the body of a function f, then the
      [stobj] inputs for defi are implicitly those of its inputs that
      are declared [stobj] inputs of f.

  Flet bindings are evaluated in parallel. Consider the following
  example.

    (defun f (x) x)
    (flet ((f (x) (cons x x))
           (g (x) (f x)))
      (g 3))

  The binding of g refers to the global value of f, not the
  flet-binding of f. Thus, the flet expression evaluates to 3.
  Compare the flet expression above to the following one, which
  instead evaluates to (3 . 3).

    (defun f (x) x)
    (flet ((f (x) (cons x x)))
      (flet ((g (x) (f x)))
        (g 3)))

  Under the hood, ACL2 translates flet bindings to [lambda] expressions
  (see [term]), throwing away the inline and notinline declarations
  (if any). The following example illustrates this point.

    ACL2 !>:trans (flet ((f (x) (cons x x))
                         (g (x y) (+ x y)))
                    (declare (inline f))
                    (f (g 3 4)))

    ((LAMBDA (X) (CONS X X))
     ((LAMBDA (X Y) (BINARY-+ X Y)) '3 '4))

    => *

    ACL2 !>

  Flet is part of Common Lisp. See any Common Lisp documentation for
  more information. We conclude by pointing out an important aspect
  of flet shared by ACL2 and Common Lisp: The binding is lexical, not
  dynamic. That is, the flet binding of a function symbol only
  applies to calls of that function symbol in the body of the flet,
  not other calls made in the course of evaluation. Consider the
  following example. Suppose we define:

    (defun f (x) x)
    (defun g (x) (f x))
    (defun h (x)
      (flet ((f (x) (cons x x)))
        (g x)))

  Then evaluation of (h 3) results in 3, not in the cons pair (3 . 3),
  because the flet binding of f only applies to calls of f that
  appear in the body of that flet. In this case, only g is called in
  the body of that flet.")
 (FLOOR
  (NUMBERS ACL2-BUILT-INS)
  "Division returning an integer by truncating toward negative infinity

    Example Forms:
    ACL2 !>(floor 14 3)
    4
    ACL2 !>(floor -14 3)
    -5
    ACL2 !>(floor 14 -3)
    -5
    ACL2 !>(floor -14 -3)
    4
    ACL2 !>(floor -15 -3)
    5

  (Floor i j) returns the result of taking the quotient of i and j and
  returning the greatest integer not exceeding that quotient. For
  example, the quotient of -14 by 3 is -4 2/3, and the largest
  integer not exceeding that rational number is -5.

  The [guard] for (floor i j) requires that i and j are rational
  ([real], in ACL2(r)) numbers and j is non-zero.

  Floor is a Common Lisp function. See any Common Lisp documentation
  for more information. However, note that unlike Common Lisp, the
  ACL2 floor function returns only a single value,

  Function: <floor>

    (defun floor (i j)
           (declare (xargs :guard (and (real/rationalp i)
                                       (real/rationalp j)
                                       (not (eql j 0)))))
           (let* ((q (* i (/ j)))
                  (n (numerator q))
                  (d (denominator q)))
                 (cond ((= d 1) n)
                       ((>= n 0)
                        (nonnegative-integer-quotient n d))
                       (t (+ (- (nonnegative-integer-quotient (- n) d))
                             -1)))))")
 (FLUSH-COMPRESS
  (ARRAYS ACL2-BUILT-INS)
  "Flush the under-the-hood array for the given name

    Example Form:
    (flush-compress 'my-array)

    General Form:
    (flush-compress name)

  where name is a symbol.

  Recall that (compress1 nm alist) associates an under-the-hood raw
  Lisp one-dimensional array of name nm with the given association
  list, alist, while (compress2 nm alist) is the analogous function
  for two-dimensional arrays; see [compress1] and see [compress2].
  The only purpose of flush-compress, which always returns nil, is to
  remove the association of any under-the-hood array with the given
  name, thus eliminating slow array accesses (see
  [slow-array-warning]). It is not necessary if the return values of
  [compress1] and [compress2] are always used as the ``current'' copy
  of the named array, and thus flush-compress should rarely, if ever,
  be needed in user applications.

  Nevertheless, we provide the following contrived example to show how
  flush-compress can be used to good effect. Comments have been added
  to this log to provide explanation.

    ACL2 !>(assign a (compress1 'demo
                                '((:header :dimensions (5)
                                           :maximum-length 15
                                           :default uninitialized
                                           :name demo)
                                  (0 . zero)
                                  (1 . one))))
     ((:HEADER :DIMENSIONS (5)
               :MAXIMUM-LENGTH
               15 :DEFAULT UNINITIALIZED :NAME DEMO)
      (0 . ZERO)
      (1 . ONE))
    ACL2 !>(aref1 'demo (@ a) 0)
    ZERO
    ; As expected, the above evaluation did not cause a slow array warning.  Now
    ; we associate a different under-the-hood array with the name 'demo.
    ACL2 !>(compress1 'demo
                      '((:header :dimensions (5)
                                 :maximum-length 15
                                 :default uninitialized
                                 :name demo)
                        (0 . zero)))
    ((:HEADER :DIMENSIONS (5)
              :MAXIMUM-LENGTH
              15 :DEFAULT UNINITIALIZED :NAME DEMO)
     (0 . ZERO))
    ; The following array access produces a slow array warning because (@ a) is
    ; no longer associated under-the-hood with the array name 'demo.
    ACL2 !>(aref1 'demo (@ a) 0)

    **********************************************************
    Slow Array Access!  A call of AREF1 on an array named
    DEMO is being executed slowly.  See :DOC slow-array-warning
    **********************************************************

    ZERO
    ; Now we associate under-the-hood, with array name 'demo, an alist equal to
    ; (@ a).
    ACL2 !>(compress1 'demo
                      '((:header :dimensions (5)
                                 :maximum-length 15
                                 :default uninitialized
                                 :name demo)
                        (0 . zero)
                        (1 . one)))
    ((:HEADER :DIMENSIONS (5)
              :MAXIMUM-LENGTH
              15 :DEFAULT UNINITIALIZED :NAME DEMO)
     (0 . ZERO)
     (1 . ONE))
    ; The following array access is still slow, because the under-the-hood array
    ; is merely associated with a copy of (@ a), not with the actual object
    ; (@ a).
    ACL2 !>(aref1 'demo (@ a) 0)

    **********************************************************
    Slow Array Access!  A call of AREF1 on an array named
    DEMO is being executed slowly.  See :DOC slow-array-warning
    **********************************************************

    ZERO
    ; So we might try to fix the problem by recompressing. But this doesn't
    ; work.  It would work, by the way, if we re-assign a:
    ; (assign a (compress1 'demo (@ a))).  That is why we usually will not need
    ; flush-compress.
    ACL2 !>(compress1 'demo (@ a))
    ((:HEADER :DIMENSIONS (5)
              :MAXIMUM-LENGTH
              15 :DEFAULT UNINITIALIZED :NAME DEMO)
     (0 . ZERO)
     (1 . ONE))
    ACL2 !>(aref1 'demo (@ a) 0)

    **********************************************************
    Slow Array Access!  A call of AREF1 on an array named
    DEMO is being executed slowly.  See :DOC slow-array-warning
    **********************************************************

    ZERO
    ; Finally, we eliminate the warning by calling flush-compress before we call
    ; compress1.  The call of flush-compress removes any under-the-hood
    ; association of an array with the name 'demo.  Then the subsequent call of
    ; compress1 associates the object (@ a) with that name.  (Technical point:
    ; compress1 always associates the indicated name with the value that it
    ; returns.  in this case, what compress1 returns is (@ a), because (@ a) is
    ; already, logically speaking, a compressed array1p (starts with a :header
    ; and the natural number keys are ordered).
    ACL2 !>(flush-compress 'demo)
    NIL
    ACL2 !>(compress1 'demo (@ a))
    ((:HEADER :DIMENSIONS (5)
              :MAXIMUM-LENGTH
              15 :DEFAULT UNINITIALIZED :NAME DEMO)
     (0 . ZERO)
     (1 . ONE))
    ACL2 !>(aref1 'demo (@ a) 0)
    ZERO
    ACL2 !>

  Function: <flush-compress>

    (defun flush-compress (name)
           (declare (xargs :guard t))
           (declare (ignore name))
           nil)")
 (FLUSH-HONS-GET-HASH-TABLE-LINK
      (FAST-ALIST-FREE ACL2-BUILT-INS)
      "Deprecated feature

  Deprecated. Alias for [fast-alist-free].")
 (FMS
  (IO ACL2-BUILT-INS)
  "(fms str alist co-channel state evisc) => state

  See [fmt] for further explanation, including documentation of the
  tilde-directives.")
 (FMS!
  (IO ACL2-BUILT-INS)
  "(fms! str alist co-channel state evisc) => state

  This function is nearly identical to fms; see [fms]. The only
  difference is that fms may insert backslash (\\) characters when
  forced to print past the right margin in order to make the output a
  bit clearer in that case. Use fms! instead if you want to be able
  to read the forms back in.")
 (FMS!-TO-STRING (POINTERS)
                 "See [printing-to-strings].")
 (FMS-TO-STRING (POINTERS)
                "See [printing-to-strings].")
 (FMT
  (IO ACL2-BUILT-INS)
  "Formatted printing

  ACL2 provides the functions fmt, [fmt1], and [fms] as substitutes for
  Common Lisp's format function. Also see [fmt!], see [fmt1!], and
  see [fms!] for versions of these functions that write forms to
  files in a manner that allows them to be read, by avoiding using
  backslash (\\) to break long lines. There are also analogues of
  these functions that return a string without taking [state] as an
  argument; see [printing-to-strings].

  All three print a given string under an alist pairing character
  objects with values, interpreting certain ``tilde-directives'' in
  the string. Channel must be a character output channel (e.g.,
  [*standard-co*]).

    General Forms:                                            result
    (fms string alist channel state evisc-tuple)         ; state
    (fmt string alist channel state evisc-tuple)         ; (mv col state)
    (fmt1 string alist column channel state evisc-tuple) ; (mv col state)

  [Fms] and fmt print an initial newline to put channel in column 0;
  [Fmt1] requires the current column as input. Columns are numbered
  from 0. The current column is the column into which the next
  character will be printed. (Thus, the current column number is also
  the number of [characters] printed since the last newline.) The col
  returned by fmt and [fmt1] is the current column at the conclusion
  of the formatting. Evisc-tuple must be either nil (meaning no
  abbreviations are used when objects are printed) or an
  ``evisceration tuple''; see [evisc-tuple].

  We list the tilde-directives below. The notation is explained after
  the chart.

    ~xx  pretty print vx (maybe after printing a newline)
    ~yx  pretty print vx starting in current column; end with newline
    ~Xxy like ~xx but use vy as the evisceration tuple
    ~Yxy like ~yx but use vy as the evisceration tuple
    ~@x  if vx is a string, \"str\",  recursively format \"str\"
         if vx is (\"str\" . a), recursively format \"str\" under a+
    ~#x~[...~/...~/ ... ~/...~] cases on vx
         ^    ^     ...   ^  if 0<=vx<=k, choose vxth alternative
         0    1     ...   k  if vx is a list of length 1, case 0; else 1
    ~*x  iterator: vx must be of the form
         (\"str0\" \"str1\" \"str2\" \"str3\" lst . a);
         if lst is initially empty, format \"str0\" under a+; otherwise,
         bind #\\* successively to the elements of lst and then
         recursively format \"stri\" under a+, where i=1 if there is one
         element left to process, i=2 if there are two left, and i=3
         otherwise.
    ~&x  print elements of vx with ~x, separated by commas and a
         final ``and''
    ~vx  print elements of vx with ~x, separated by commas and a
         final ``or''
    ~nx  if vx is a small positive integer, print it as a word, e.g.,
         seven;
         if vx is a singleton containing a small positive integer, print
           the corresponding ordinal as a word, e.g., seventh
    ~Nx  like ~nx but the word is capitalized, e.g., Seven or Seventh
    ~tx  tab out to column vx; newline first if at or past column vx
    ~cx  vx is (n . w), print integer n right justified in field of
         width w
    ~fx  print object vx flat over as many lines as necessary
    ~Fx  same as ~f, except that subsequent lines are indented to
         start one character to the right of the first character printed
    ~sx  if vx is a symbol, print vx, breaking on hyphens (unless the
         symbol would normally be printed with surrounding vertical bar
         characters (|), in which case print as with ~fx); if vx is a
         string, print the characters in it, breaking on hyphens; else
         vx is a number, to be printed using the current print-base and
         print-radix
    ~    tilde space: print a space
    ~_x  print vx spaces
    ~
         tilde newline: skip following whitespace
    ~%   output a newline
    ~|   output a newline unless already on left margin
    ~~   print a tilde
    ~-   if close to rightmargin, output a hyphen and newline; else
         skip this char

  If x is a character, then vx is the value of #\\x under the current
  alist. Consider for example the discussion above for ~y, ``~yx
  pretty print vx'', applied to the following expression: (fmt \"HELLO
  ~y7\" (list (cons #\\7 'world)) *standard-co* state nil). Then in
  this example: #\\x is 7; and vx is the value of character #\\7 under
  the given alist, which is the symbol, WORLD. Thus, ACL2 will print
  HELLO WORLD. When we say ``format str under a+'' we mean: process
  the given string under an alist obtained by appending a to the
  current alist. The following example illustrates how this works.

    ACL2 !>(fms \"~@0\"
                (list (cons #\\0 (cons \"~x0 ~@1\" (list (cons #\\0  'abc))))
                      (cons #\\1 \"-- and now: ~x0 again~%\"))
                *standard-co* state nil)

    ABC -- and now: ABC again
    <state>
    ACL2 !>

  Note: ~p, ~q, ~P, and ~Q are also currently supported, but are
  deprecated. These are respectively the same as ~x, ~y, ~X, and ~Y,
  except that their arguments are expected to be terms, preferably
  untranslated (user-level) terms, that could be printed using infix
  notation in certain environments. Infix printing is not currently
  supported but may be if there is sufficient need for it.

  ACL2's formatting functions print to the indicated channel, keeping
  track of which column they are in. [Fmt1] can be used if the caller
  knows which column the channel is in (i.e., how many [characters]
  have been printed since the last newline). Otherwise, fmt or [fms]
  must be used, both of which output a newline so as to establish the
  column position at 0. Unlike Common Lisp's format routine, fmt and
  its relatives break the output into lines so that, by default, an
  attempt is made to avoid printing past column 77 (the value of
  constant *fmt-hard-right-margin-default*). See
  [set-fmt-hard-right-margin] for a discussion of how linebreaks are
  inserted and how to change the relevant default settings.

  The formatting functions scan the string from left to right, printing
  each successive character unless it is a tilde (~). Upon
  encountering tildes the formatters take action determined by the
  character or [characters] immediately following the tilde. The
  typical tilde-directive is a group of three successive [characters]
  from the string being printed. For example, ~x0 is a 3 character
  tilde-directive. The first character in a tilde-directive is always
  the tilde character itself. The next character is called the
  ``command'' character. The character after that is usually taken as
  the name of a ``format variable'' that is bound in the alist under
  which the string is being printed. Format variables are, by
  necessity, [characters]. The objects actually printed by a
  tilde-directive are the objects obtained by looking up the
  command's format variables in the alist. Typical format variable
  names are 0, 1, 2, ..., 9, a, b, c, etc., and if a tilde-directive
  uses the format variable 0, as in ~x0, then the character #\\0 must
  be bound in the alist. Some tilde commands take no arguments and
  others take more than one, so some directives are of length two and
  others are longer.

  It should be noted that this use of [characters] in the string to
  denote arguments is another break from Common Lisp's format
  routine. In Common Lisp, the directives refer implicitly to the
  ``next item to be printed.'' But in ACL2 the directives name each
  item explicitly with our format variables.

  The following text contains examples that can be evaluated. To make
  this process easier, we use a macro which is defined as part of
  ACL2 just for this [documentation]. The macro is named fmx and it
  takes up to eleven arguments, the first of which is a format
  string, str, and the others of which are taken as the values of
  format variables. The variables used are #\\0 through #\\9. The macro
  constructs an appropriate alist, a, and then evaluates (fmt str a
  *standard-co* state nil).

  Thus,

    (fmx \"Here is v0, ~x0, and here is v1, ~x1.\"
         (cons 'value 0)
         (cons 'value 1))

  is just an abbreviation for

    (fmt \"Here is v0, ~x0, and here is v1, ~x1.\"
         (list (cons #\\0 (cons 'value 0))
               (cons #\\1 (cons 'value 1)))
         *standard-co*
         state
         nil)

  which returns (mv 53 state) after printing the line

    Here is v0, (VALUE . 0), and here is v1, (VALUE . 1).

  We now devote special attention to three of the tilde-directives
  whose use is non-obvious.

  The Case Statement

  ~#x is essentially a ``case statement'' in the language of fmt. The
  proper form of the statement is

    ~#x~[case-0~/case-1~/ ... ~/case-k~],

  where each of the case-i is a format string. In the most common use,
  the variable x has an integer value, vx, between 0 and k,
  inclusive. The effect of formatting the directive is to format
  case-vx.

  For example

    (fmx \"Go ~#0~[North~/East~/South~/West~].~%\" 1)

  will print ``Go East.'' followed by a newline and will return

  (mv 0 state), while if you change the 1 above to 3 (the maximum legal
  value), it will print ``Go West.''

  In order to make it easier to print such phrases as ``there are seven
  cases'' requiring agreement between subject and verb based on the
  number of elements of a list, the case statement allows its
  variable to take a list as its value and selects case-0 if the list
  has length 1 and case-1 otherwise.

    (let ((cases '(a b c)))
      (fmx \"There ~#0~[is ~n1 case~/are ~n1 cases~].\"
           cases
           (length cases)))

  will print ``There are three cases.'' but if you change the

  '(a b c) above simply to '(a) it will print ``There is one case.''
  and if you change it to nil it will print ``There are zero cases.''

  Indirection

  Roughly speaking, ~@ will act as though the value of its argument is
  a format string and splice it into the current string at the
  current position. It is often used when the phrase to be printed
  must be computed. For example,

    (let ((ev 'DEFUN))
     (fmx \"~x0 is an event~@1.\"
          'foo
          (if (member-eq ev '(defun defstub encapsulate))
              \" that may introduce a function symbol\"
              \"\")))

  will print ``foo is an event that may introduce a function symbol,''
  but if the value of ev is changed from '[defun] to '[defthm], it
  prints ``foo is an event.'' The ~@ directive ``splices'' in the
  computed phrase (which might be empty). Of course, this particular
  example could be done with the case statement

    ~#1~[~/ that may introduce a function symbol~]

  where the value of #\\1 is appropriately computed to be 0 or 1.

  If the argument to ~@ is a pair, it is taken to be a format string
  [cons]ed onto an alist, i.e., (\"str\" . a), and the alist, a, is
  used to extend the current one before \"str\" is recursively
  processed. This feature of fmt can be used to pass around
  ``phrases'' that contain computed contextual information in a. The
  most typical use is as ``error messages.'' For example, suppose you
  are writing a function which does not have access to [state] and so
  cannot print an error message. It may nevertheless be necessary for
  it to signal an error to its caller, say by returning two results,
  the first of which is interpreted as an error message if non-nil.
  Our convention is to use a ~@ pair to represent such messages. For
  example, the error value might be produced by the code:

    (cons
      \"Error:  The instruction ~x0 is illegal when the stack is ~x1.~%\"
      (list (cons #\\0 (current-instruction st))
            (cons #\\1 (i-stack st))))

  If the current-instruction and i-stack (whatever they are) are '(popi
  3) and '(a b) when the [cons] above is evaluated, then it produces

    '(\"Error:  The instruction ~x0 is illegal when the stack is ~x1.~%\"
      (#\\0 POPI 3)
      (#\\1 A B))

  and if this pair is made the value of the fmt variable 0, then ~@0
  will print

    Error:  The instruction (POPI 3) is illegal when the stack is (A B).

  For example, evaluate

    (let
     ((pair
      '(\"Error:  The instruction ~x0 is illegal when the stack is ~x1.~%\"
        (#\\0 POPI 3)
        (#\\1 A B))))
     (fmx \"~@0\" pair)).

  Thus, even though the function that produced the ``error'' could not
  print it, it could specify exactly what error message and data are
  to be printed.

  This example raises another issue. Sometimes it is desirable to break
  lines in your format strings so as to make your source code more
  attractive. That is the purpose of the tilde-newline directive. The
  following code produces exactly the same output as described above.

    (let ((pair '(\"Error:  The instruction ~x0 ~
                  is illegal when the stack is ~
                  ~x1.~%\"
                  (#\\0 POPI 3)
                  (#\\1 A B))))
     (fmx \"~@0\" pair)).

  Finally, observe that when ~@0 extends the current alist, alist, with
  the one, a, in its argument, the bindings from a are added to the
  front of alist, overriding the current values of any shared
  variables. This ensures that the variable values seen by the
  recursively processed string, \"str\", are those from a, but if \"str\"
  uses variables not bound in a, their values are as specified in the
  original alist. Intuitively, variables bound in a are local to the
  processing of (\"str\" . a) but \"str\" may use ``global variables.''
  The example above illustrates this because when the ~@0 is
  processed, #\\0 is bound to the error message pair. But when the ~x0
  in the error string is processed, #\\0 is bound to the illegal
  instruction.

  Iteration

  The ~* directive is used to process each element of a list. For
  example,

    (let ((lst '(a b c d e f g h))) ; a true-list whose elements we exhibit
     (fmx \"~*0\"
          `(\"Whoa!\"          ; what to print if there's nothing to print
            \"~x*!\"           ; how to print the last element
            \"~x* and \"       ; how to print the 2nd to last element
            \"~x*, \"          ; how to print all other elements
            ,lst)))          ; the list of elements to print

  will print ``A, B, C, D, E, F, G and H!''. Try this example with
  other true list values of lst, such as '(a b), '(a), and nil. The
  tilde-directives ~&0 and ~v0, which take a true list argument and
  display its elements separated by commas and a final ``and'' or
  ``or,'' are implemented in terms of the more general ~*.

  The ~* directive allows the 5-tuple to specify in its final [cdr] an
  alist with which to extend the current one before processing the
  individual elements.

  We often use ~* to print a series of phrases, separated by suitable
  punctuation, whitespace and noise words. In such use, the ~*
  handles the separation of the phrases and each phrase is generally
  printed by ~@.

  Here is a complex example. In the [let*], below, we bind phrases to a
  list of ~@ pairs and then we create a ~* 5-tuple to print out the
  conjunction of the phrases with a parenthetical ``finally!'' if the
  series is longer than 3.

    (let* ((phrases
            (list (list \"simplifying with the replacement rules ~&0\"
                        (cons #\\0 '(rewrite-rule1
                                    rewrite-rule2
                                    rewrite-rule3)))
                  (list \"destructor elimination using ~x0\"
                        (cons #\\0 'elim-rule))
                  (list \"generalizing the terms ~&0\"
                        (cons #\\0 '((rev x) (app u v))))
                  (list \"inducting on ~x0\"
                        (cons #\\0 'I))))
           (5-tuple
            (list
             \"magic\"                            ; no phrases
             \"~@*\"                              ; last phrase
             \"~@*, and~#f~[~/ (finally!)~] \"    ; second to last phrase
             \"~@*, \"                            ; other phrases
             phrases                            ; the phrases themselves
             (cons #\\f
                   (if (>(length phrases) 3) 1 0))))) ;print ``finally''?
      (fmx \"We did it by ~*0.\" 5-tuple))

  This [let*] prints

    We did it by simplifying with the replacement rules REWRITE-RULE1,
    REWRITE-RULE2 and REWRITE-RULE3, destructor elimination using ELIM-
    RULE, generalizing the terms (REV X) and (APP U V), and (finally!)
    inducting on I.

  You might wish to try evaluating the [let*] after removing elements
  of phrases.

  Most of the output produced by ACL2 is produced via fmt statements.
  Thus, inspection of the source code will yield many examples. A
  complicated example is the code that explains the simplifier's
  work. See :[pc] simplify-clause-msg1. An ad hoc example is provided
  by the function fmt-doc-example, which takes two arguments: an
  arbitrary true list and [state]. To see how fmt-doc-example works,
  :[pe] fmt-doc-example.

    (fmt-doc-example '(a b c d e f g h i j k l m n o p) state)

  will produce the output

    Here is a true list:  (A B C D E F G H I J K L M N O P).  It has 16
    elements, the third of which is C.

    We could print each element in square brackets:
    ([A], [B], [C], [D], [E], [F], [G], [H], [I], [J], [K], [L], [M], [N],
    [almost there: O], [the end: P]).  And if we wished to itemize them
    into column 15 we could do it like this
    0123456789012345
        0 (zeroth) A
        1 (first)  B
        2 (second) C
        3 (third)  D
        4 (fourth) E
        5 (fifth)  F
        6 (sixth)  G
        7 (seventh)
                   H
        8 (eighth) I
        9 (ninth)  J
       10 (tenth)  K
       11 (eleventh)
                   L
       12 (twelfth)
                   M
       13 (thirteenth)
                   N
       14 (14th)   O
       15 (15th)   P
    End of example.

  and return (mv 15 state).

  Finally, we should remind the reader that fmt and its subfunctions,
  most importantly fmt0, are written entirely in ACL2. We make this
  comment for two reasons. First, it illustrates the fact that quite
  low level code can be efficiently written in the language. Second,
  it means that as a last resort for documentation purposes you can
  read the source code without changing languages.")
 (FMT!
  (IO ACL2-BUILT-INS)
  "(fmt! str alist co-channel state evisc) => state

  This function is nearly identical to fmt; see [fmt]. The only
  difference is that fmt may insert backslash (\\) characters when
  forced to print past the right margin in order to make the output a
  bit clearer in that case. Use fmt! instead if you want to be able
  to read the forms back in.")
 (FMT!-TO-STRING (POINTERS)
                 "See [printing-to-strings].")
 (FMT-TO-COMMENT-WINDOW
  (IO ACL2-BUILT-INS)
  "Print to the comment window

  See [cw] for an introduction to the comment window and the usual way
  to print it.

  Function fmt-to-comment-window is identical to fmt1 (see [fmt]),
  except that the channel is [*standard-co*] and the ACL2 [state] is
  neither an input nor an output. An analogous function,
  fmt-to-comment-window!, prints with [fmt!] instead of [fmt], in
  order to avoid insertion of backslash (\\) characters for margins;
  also see [cw!]. Note that even if you change the value of [ld]
  special standard-co (see [standard-co]), fmt-to-comment-window will
  print to [*standard-co*], which is the original value of
  [standard-co].

    General Form:
    (fmt-to-comment-window fmt-string alist col evisc-tuple)

  where these arguments are as desribed for [fmt1]; see [fmt].")
 (FMT-TO-STRING (POINTERS)
                "See [printing-to-strings].")
 (FMT1
  (IO ACL2-BUILT-INS)
  "(fmt1 str alist col co-channel state evisc) => (mv col state)

  See [fmt] for further explanation, including documentation of the
  tilde-directives.")
 (FMT1!
  (IO ACL2-BUILT-INS)
  "(fmt1! str alist col channel state evisc) => (mv col state)

  This function is nearly identical to fmt1; see [fmt1]. The only
  difference is that fmt1 may insert backslash (\\) characters when
  forced to print past the right margin in order to make the output a
  bit clearer in that case. Use fmt1! instead if you want to be able
  to read the forms back in.")
 (FMT1!-TO-STRING (POINTERS)
                  "See [printing-to-strings].")
 (FMT1-TO-STRING (POINTERS)
                 "See [printing-to-strings].")
 (FNCALL-TERM (POINTERS)
              "See [meta-extract].")
 (FORALL
  (DEFUN-SK)
  "Universal quantifier

  The symbol forall (in the ACL2 package) represents universal
  quantification in the context of a [defun-sk] form. See [defun-sk]
  and see [exists].

  See [quantifiers] for an example illustrating how the use of
  recursion, rather than explicit quantification with [defun-sk], may
  be preferable.")
 (FORCE
  (REWRITE LINEAR
           TYPE-PRESCRIPTION DEFINITION META)
  "Identity function used to force a hypothesis

  Force is the identity function: (force x) is equal to x. However, for
  rules of many classes (see [rule-classes]), a hypothesis of the
  form (force term) is given special treatment, as described below.
  This treatment takes place for rule classes :[rewrite], :[linear],
  :[type-prescription], :[definition], :[meta] (actually in that
  case, the result of evaluating the hypothesis metafunction call),
  and :[forward-chaining].

  When a hypothesis of a conditional rule (of one of the classes listed
  above) has the form (force hyp), it is logically equivalent to hyp
  but has a pragmatic effect. In particular, when the rule is
  considered, the needed instance of the hypothesis, hyp', may be
  assumed if the usual process fails to prove it or its negation. In
  that situation, if the rule is eventually applied, then a special
  case is generated, requiring the system to prove that hyp' is true
  in the current context. The proofs of all such ``forced
  assumptions'' are, by default, delayed until the successful
  completion of the main goal. See [forcing-round] and see
  [immediate-force-modep].

  Note that the only time that ACL2 gives special treatment to calls of
  force is when it is considering the hypotheses of a conditional
  rule, as discussed above. In particular, when the rewriter
  encounters a subterm of the goal currently being simplified, a call
  of force is not treated specially. For example, if you provide a
  :use hint (see [hints]) that replaces a goal G by the goal

    (implies (implies (and ... (force HYP) ...)
                      concl)
             G)

  then the rewriter will not give any special treatment to (force HYP).
  Instead, it will first rewrite HYP to, say, HYP'; and then, using
  the fact that force is the identity function, the rewriter will
  return HYP' as the rewritten value for (force HYP).

  Forcing is generally used on hypotheses that are always expected to
  be true, as is commonly the case for [guard]s of functions. All the
  power of the theorem prover is brought to bear on a forced
  hypothesis and no backtracking is possible. Forced goals can be
  attacked immediately (see [immediate-force-modep]) or in a
  subsequent forcing round (see [forcing-round]). Also see
  [case-split] for a related utility. If the
  :[executable-counterpart] of the function force is [disable]d, then
  no hypothesis is forced. For more on enabling and disabling
  forcing, see [enable-forcing] and see [disable-forcing].

  It sometimes happens that a conditional rule is not applied because
  some hypothesis, hyp, could not be relieved, even though the
  required instance of hyp, hyp', can be shown true in the context.
  This happens when insufficient resources are brought to bear on
  hyp' at the time we try to relieve it. A sometimes desirable
  alternative behavior is for the system to assume hyp', apply the
  rule, and to generate explicitly a special case to show that hyp'
  is true in the context. This is called ``forcing'' hyp. It can be
  arranged by restating the rule so that the offending hypothesis,
  hyp, is embedded in a call of force, as in (force hyp). By using
  the :[corollary] field of the [rule-classes] entry, a hypothesis
  can be forced without changing the statement of the theorem from
  which the rule is derived.

  Technically, force is just a function of one argument that returns
  that argument. It is generally [enable]d and hence evaporates
  during simplification. But its presence among the hypotheses of a
  conditional rule causes case splitting to occur if the hypothesis
  cannot be conventionally relieved.

  Since a forced hypothesis must be provable whenever the rule is
  otherwise applicable, forcing should be used only on hypotheses
  that are expected always to be true.

  A particularly common situation in which some hypotheses should be
  forced is in ``most general'' [type-prescription] lemmas. If a
  single lemma describes the ``expected'' type of a function, for all
  ``expected'' arguments, then it is probably a good idea to force
  the hypotheses of the lemma. Thus, every time a term involving the
  function arises, the term will be given the expected type and its
  arguments will be required to be of the expected type. In applying
  this advice it might be wise to avoid forcing those hypotheses that
  are in fact just type predicates on the arguments, since the
  routine that applies [type-prescription] lemmas has fairly thorough
  knowledge of the types of all terms.

  Force can have the additional benefit of causing the ACL2 typing
  mechanism to interact with the ACL2 rewriter to establish the
  hypotheses of [type-prescription] rules. To understand this remark,
  think of the ACL2 type reasoning system as a rather primitive
  rule-based theorem prover for questions about Common Lisp types,
  e.g., ``does this expression produce a [consp]?'' ``does this
  expression produce some kind of ACL2 number, e.g., an [integerp], a
  [rationalp], or a [complex-rationalp]?'' etc. It is driven by
  [type-prescription] rules. To relieve the hypotheses of such rules,
  the type system recursively invokes itself. This can be done for
  any hypothesis, whether it is ``type-like'' or not, since any
  proposition, p, can be phrased as the type-like question ``does p
  produce an object of type nil?'' However, as you might expect, the
  type system is not very good at establishing hypotheses that are
  not type-like, unless they happen to be assumed explicitly in the
  context in which the question is posed, e.g., ``If p produces a
  [consp] then does p produce nil?'' If type reasoning alone is
  insufficient to prove some instance of a hypothesis, then the
  instance will not be proved by the type system and a
  [type-prescription] rule with that hypothesis will be inapplicable
  in that case. But by embedding such hypotheses in force expressions
  you can effectively cause the type system to ``punt'' them to the
  rest of the theorem prover. Of course, as already noted, this
  should only be done on hypotheses that are ``always true.'' In
  particular, if rewriting is required to establish some hypothesis
  of a [type-prescription] rule, then the rule will be found
  inapplicable because the hypothesis will not be established by type
  reasoning alone.

  The ACL2 rewriter uses the type reasoning system as a subsystem. It
  is therefore possible that the type system will force a hypothesis
  that the rewriter could establish. Before a forced hypothesis is
  reported out of the rewriter, we try to establish it by rewriting.

  This makes the following surprising behavior possible: A
  [type-prescription] rule fails to apply because some true
  hypothesis is not being relieved. The user changes the rule so as
  to force the hypothesis. The system then applies the rule but
  reports no forcing. How can this happen? The type system ``punted''
  the forced hypothesis to the rewriter, which established it.

  Finally, we should mention that the rewriter is never willing to
  force when there is an [if] term present in the goal being
  simplified. Since [and] terms and [or] terms are merely
  abbreviations for [if] terms, they also prevent forcing. Note that
  [if] terms are ultimately eliminated using the ordinary flow of the
  proof (but see [set-case-split-limitations]), allowing force
  ultimately to function as intended. Moreover, forcing can be
  disabled, as described above; also see [disable-forcing].

  Function: <force>

    (defun force (x)
           (declare (xargs :guard t))
           x)


Subtopics

  [Disable-forcing]
      To disallow forced case-splits

  [Disable-immediate-force-modep]
      [force]d hypotheses are not attacked immediately

  [Enable-forcing]
      To allow forced case splits

  [Enable-immediate-force-modep]
      [force]d hypotheses are attacked immediately

  [Failed-forcing]
      How to deal with a proof [failure] in a forcing round

  [Forcing-round]
      A section of a proof dealing with [force]d assumptions

  [Immediate-force-modep]
      When executable counterpart is [enable]d, [force]d hypotheses are
      attacked immediately")
 (FORCED (POINTERS) "See [force].")
 (FORCING-ROUND
  (FORCE)
  "A section of a proof dealing with [force]d assumptions

  If ACL2 ``[force]s'' some hypothesis of some rule to be true, it is
  obliged later to prove the hypothesis. See [force]. ACL2 delays the
  consideration of [force]d hypotheses until the main goal has been
  proved. It then undertakes a new round of proofs in which the main
  goal is essentially the conjunction of all hypotheses [force]d in
  the preceding proof. Call this round of proofs the ``Forcing
  Round.'' Additional hypotheses may be [force]d by the proofs in the
  Forcing Round. The attempt to prove these hypotheses is delayed
  until the Forcing Round has been successfully completed. Then a new
  Forcing Round is undertaken to prove the recently [force]d
  hypotheses and this continues until no hypotheses are [force]d.
  Thus, there is a succession of Forcing Rounds.

  The Forcing Rounds are enumerated starting from 1. The Goals and
  Subgoals of a Forcing Round are printed with the round's number
  displayed in square brackets. Thus, \"[1]Subgoal 1.3\" means that the
  goal in question is Subgoal 1.3 of the 1st forcing round. To supply
  a hint for use in the proof of that subgoal, you should use the
  goal specifier \"[1]Subgoal 1.3\". See [goal-spec].

  When a round is successfully completed --- and for these purposes you
  may think of the proof of the main goal as being the 0th forcing
  round --- the system collects all of the assumptions [force]d by
  the just-completed round. Here, an assumption should be thought of
  as an implication, (implies context hyp), where context describes
  the context in which hyp was assumed true. Before undertaking the
  proofs of these assumptions, we try to ``clean them up'' in an
  effort to reduce the amount of work required. This is often
  possible because the [force]d assumptions are generated by the same
  rule being applied repeatedly in a given context.

  By delaying and collecting the forced assumptions until the
  completion of the ``main goal'' we gain two advantages. First, the
  user gets confirmation that the ``gist'' of the proof is complete
  and that all that remains are ``technical details.'' Second, by
  delaying the proofs of the [force]d assumptions ACL2 can undertake
  the proof of each assumption only once, no matter how many times it
  was [force]d in the main goal.

  In order to indicate which proof steps of the previous round were
  responsible for which [force]d assumptions, we print a sentence
  explaining the origins of each newly [force]d goal. For example,

    [1]Subgoal 1, below, will focus on
    (GOOD-INPUTP (XTRANS I)),
    which was forced in
     Subgoal 14, above,
      by applying (:REWRITE PRED-CRUNCHER) to
      (PRED (XTRANS I) I),
     and
     Subgoal 28, above,
      by applying (:REWRITE PRED-CRUNCHER) to
      (PRED (XTRANS I) I).

  In this entry, ``[1]Subgoal 1'' is the name of a goal which will be
  proved in the next forcing round. On the next line we display the
  [force]d hypothesis, call it x, which is (good-inputp (xtrans i))
  in this example. This term will be the conclusion of the new
  subgoal. Since the new subgoal will be printed in its entirety when
  its proof is undertaken, we do not here exhibit the context in
  which x was [force]d. The sentence then lists (possibly a
  succession of) a goal name from the just-completed round and some
  step in the proof of that goal that [force]d x. In the example
  above we see that Subgoals 14 and 28 of the just-completed proof
  [force]d (good-inputp (xtrans i)) by applying (:rewrite
  pred-cruncher) to the term (pred (xtrans i) i).

  If one were to inspect the theorem prover's description of the proof
  steps applied to Subgoals 14 and 28 one would find the word
  ``[force]d'' (or sometimes ``forcibly'') occurring in the
  commentary. Whenever you see that word in the output, you know you
  will get a subsequent forcing round to deal with the hypotheses
  [force]d. Similarly, if at the beginning of a forcing round a
  [rune] is blamed for causing a [force] in some subgoal, inspection
  of the commentary for that subgoal will reveal the word
  ``[force]d'' after the rule name blamed.

  Most [force]d hypotheses come from within the prover's simplifier.
  When the simplifier encounters a hypothesis of the form (force hyp)
  it first attempts to establish it by rewriting hyp to, say, hyp'.
  If the truth or falsity of hyp' is known, forcing is not required.
  Otherwise, the simplifier actually [force]s hyp'. That is, the x
  mentioned above is hyp', not hyp, when the [force]d subgoal was
  generated by the simplifier.

  Once the system has printed out the origins of the newly [force]d
  goals, it proceeds to the next forcing round, where those goals are
  individually displayed and attacked.

  At the beginning of a forcing round, the [enable]d structure defaults
  to the global [enable]d structure. For example, suppose some
  [rune], rune, is globally [enable]d. Suppose in some event you
  [disable] the [rune] at \"Goal\" and successfully prove the goal but
  [force] \"[1]Goal\". Then during the proof of \"[1]Goal\", [rune] is
  [enable]d ``again.'' The right way to think about this is that the
  [rune] is ``still'' [enable]d. That is, it is [enable]d globally
  and each forcing round resumes with the global [enable]d structure.")
 (FORMULA
  (HISTORY WORLD ACL2-BUILT-INS)
  "The formula of a name or [rune]

  The ACL2 system function, formula, returns the [term] associated with
  a given [rune] or symbolic name, returning nil if there is no such
  term. Note that a non-nil result will be an ACL2 ``translated''
  term (see [term]). Most ACL2 users probably will have no reason to
  know about this function. But here we document this function for
  those who write system-level tools, since they might find this
  interface to the ACL2 logical [world] to be useful.

  When ACL2 is given a :use or :by hint, it looks for the [term] stored
  in the ACL2 logical [world] that is associated with the name given
  in the hint, which is a symbol or a [rune]. (See (@see
  lemma-instance).) The utility used to find that term is formula,
  which ACL2 invokes as follows.

    (formula x t wrld)   ; for :use hints
    (formula x nil wrld) ; for :by hints

  The second argument can affect whether or not to use a ``normalized''
  version of the term associated with x. The value is t for :use
  [hints] because normalizing a term simplifies it, which is often
  desirable. But for a :by hint, the non-normalized version of the
  term is used in order to increase the chance that the necessary
  subsumption test will succeed. Even if the second argument is t,
  normalization might not take place. In the unlikely case that you
  really need to know the effect of supplying t, see the source code
  for formula.

  Here are some examples. Note that (w state) returns the current ACL2
  logical [world]. First let us submit a few [events].

    (defun f1 (x) (cons 3 x))
    (defun f2 (x y) (implies x y))
    (defthm one-rule
      (and (equal (* 2 y) (+ y y))
           (equal (* 3 y) (+ y y y))))
    (defthm two-rules
      t
      :rule-classes ((:rewrite :corollary (equal (* 2 y) (+ y y)))
                     (:rewrite :corollary (equal (* 3 y) (+ y y y)))))

  Then:

    ACL2 !>(formula 'f1 nil (w state))
    (EQUAL (F1 X) (CONS '3 X))
    ACL2 !>(formula 'f1 t (w state))
    (EQUAL (F1 X) (CONS '3 X))
    ACL2 !>(formula 'f2 nil (w state))
    (EQUAL (F2 X Y) (IMPLIES X Y))
    ACL2 !>(formula 'f2 t (w state))
    (EQUAL (F2 X Y)
           (IF X (IF Y 'T 'NIL) 'T))
    ACL2 !>(formula 'one-rule nil (w state))
    (IF (EQUAL (BINARY-* '2 Y) (BINARY-+ Y Y))
        (EQUAL (BINARY-* '3 Y)
               (BINARY-+ Y (BINARY-+ Y Y)))
        'NIL)
    ACL2 !>(equal (formula 'one-rule nil (w state)) (formula 'one-rule t (w state)))
    T
    ACL2 !>(formula 'two-rules nil (w state))
    'T
    ACL2 !>(formula 'two-rules t (w state))
    'T
    ACL2 !>(formula '(:rewrite two-rules . 1) nil (w state))
    (EQUAL (BINARY-* '2 Y) (BINARY-+ Y Y))
    ACL2 !>(formula '(:rewrite two-rules . 2) nil (w state))
    (EQUAL (BINARY-* '3 Y)
           (BINARY-+ Y (BINARY-+ Y Y)))
    ACL2 !>(formula 'no-such-rule nil (w state))
    NIL
    ACL2 !>")
 (FORWARD-CHAINING
  (RULE-CLASSES)
  "Make a rule to forward chain when a certain trigger arises

  See [rule-classes] for a general discussion of rule classes,
  including how they are used to build rules from formulas and a
  discussion of the various keywords in a rule class description.

    Examples:

    (defthm p-and-r-forward           ; When (p a) appears in a formula to be
     (implies (and (p x) (r x))       ; simplified, try to establish (p a) and
              (q (f x)))              ; (r a) and, if successful, add (q (f a))
     :rule-classes :forward-chaining) ; to the known assumptions.

    (defthm p-and-r-forward           ; as above with most defaults filled in
      (implies (and (p x) (r x))
               (q (f x)))
      :rule-classes ((:forward-chaining :trigger-terms ((p x))
                                        :corollary (implies (and (p x) (r x))
                                                            (q (f x)))
                                        :match-free :all)))

  To specify the triggering terms provide a non-empty list of terms as
  the value of the :trigger-terms field of the rule class object.

    General Form:
    Any theorem, provided an acceptable triggering term exists.

  The structure of this documentation is as follows. First we give a
  brief overview of forward chaining and contrast it to backchaining
  (rewriting). Then we lay out the syntactic restrictions on
  :forward-chaining rules. Then we give more details about the
  process and point to a tool to assist you in debugging your
  :forward-chaining rules.

  Overview and When to Use Forward Chaining

  Forward chaining is performed as part of the simplification process:
  before the goal is rewritten a context is established. The context
  tells the theorem prover what may be assumed during rewriting, in
  particular, to establish hypotheses of rewrite rules. Forward
  chaining is used to extend the context before rewriting begins. For
  example, the :forward-chaining rule (implies (p x) (p1 x)) would
  add (p1 A) to the context, where A is some term, if (p A) is
  already in the context.

  Forward chaining and backchaining are duals. If a rewrite rule
  requires that (p1 A) be established and (p A) is known, it could be
  done either by making (implies (p x) (p1 x)) a :forward-chaining
  rule or a :rewrite rule. Which should you choose?

  As a rule of thumb, if a conclusion like (p1 A) is expected to be
  widely needed, it is better to derive it via forward chaining
  because then it is available ``for free'' during the rewriting
  after paying the one-time cost of forward chaining. Alternatively,
  if (p1 A) is a rather special hypothesis of key importance to only
  a few rewrite rules, it is best to derive it only when needed. Thus
  forward chaining is pro-active and backward chaining (rewriting) is
  reactive.

  Syntactic Restrictions

  Forward chaining rules are generated from the corollary term (see
  [rule-classes]) as follows. First, every [let] expression is
  expanded away (hence, so is every [let*] and [lambda] expression),
  and trivial ``guard holders'' are removed; see [guard-holders]. If
  the resulting term has the form (implies hyp concl), then concl is
  treated as a conjunction, with one forward chaining rule with
  hypothesis hyp created for each conjunct. In the other case, where
  the corollary term is not an [implies], we process it as we process
  the conclusion in the first case.

  Note that unlike rewrite rules, a nested implication is not folded
  into a single implication. Consider for example the following term.

    (implies (p1 x)
             (implies (p2 x)
                      (p3 x)))

  Although this term is parsed for a rewrite rule as (implies (and (p1
  x) (p2 x)) (p3 x)), that is not the case when this term is parsed
  for a forward-chaining rule, in which case (p1 x) is treated as the
  hypothesis and (implies (p2 x) (p3 x)) is treated as the
  conclusion.

  The :trigger-terms field of a :forward-chaining rule class object
  should be a non-empty list of terms, if provided, and should have
  certain properties described below. If the :trigger-terms field is
  not provided, it defaults to the singleton list containing the
  ``atom'' of the first hypothesis of the formula. (The atom of (not
  x) is x; the atom of any other term is the term itself.) If there
  are no hypotheses and no :trigger-terms were provided, an error is
  caused.

  A triggering term is acceptable if it is not a variable, a quoted
  constant, a lambda application, a [let]- (or [let*]-) expression,
  or a [not]-expression, and every variable symbol in the conclusion
  of the theorem either occurs in the hypotheses or occurs in the
  trigger.

  More Details about Forward Chaining

  :Forward-chaining rules are used by the simplifier before it begins
  to rewrite the literals of the goal. (Forward chaining is thus
  carried out from scratch for each goal.) If any term in the goal is
  an instance of a trigger of some forward chaining rule, we try to
  establish the hypotheses of that forward chaining theorem (from the
  negation of the goal). To relieve a hypothesis we only use type
  reasoning, evaluation of ground terms, and presence among our known
  assumptions. We do not use rewriting. So-called free variables in
  hypotheses are treated specially; see [free-variables]. If all
  hypotheses are relieved, and certain heuristics approve of the
  newly derived conclusion, we add the instantiated conclusion to our
  known assumptions. Since this might introduce new terms into the
  assumptions, forward chaining is repeated. Heuristic approval of
  each new addition is necessary to avoid infinite looping as would
  happen with the rule (implies (p x) (p (f x))), which might
  otherwise forward chain from (p A) to (p (f A)) to (p (f (f A))),
  etc.

  Caution. Forward chaining does not actually add terms to the goals
  displayed during proof attempts. Instead, it extends an associated
  context, called ``assumptions'' in the preceding paragraph, that
  ACL2 builds from the goal currently being proved. (For insiders:
  forward chaining extends the [type-alist].) The context starts out
  with ``obvious'' consequences of the negation of the goal. For
  example, if the goal is

    (implies (and (p A) (q (f A)))
             (c A))

  then the context notes that (p A) and (q (f A)) are non-nil and (c A)
  is nil. Forward chaining is then used to expand the context. For
  example, if a forward chaining rule has (f x) as a trigger term and
  has body (implies (p x) (r (f x))), then the context is extended by
  binding (r (f A)) to non-nil, provided the heuristics approve of
  this extension. Note however that since (r (f A)) is put into the
  context, not the goal, you will not see it in the goal formula.
  Furthermore, the assumption added to the context is just the
  instantiation of the conclusion of the rule, with no simplification
  or rewriting applied. Thus, for example, if it contains an enabled
  non-recursive function symbol it is unlikely ever to match a
  (rewritten) term arising during subsequent simplification of the
  goal.

  However, forward-chaining does support the linear arithmetic
  reasoning package. For example, suppose that forward-chaining puts
  (< (f x) (g x)) into the context. Then this inequality also goes
  into the linear arithmetic database, together with suitable
  instances of linear lemmas whose trigger term is a call of g. See
  [linear].

  Debugging :forward-chaining rules can be difficult since their
  effects are not directly visible on the goal being simplified.
  Tools are available to help you discover what forward chaining has
  occurred see [forward-chaining-reports].


Subtopics

  [Case-split]
      Like force but immediately splits the top-level goal on the
      hypothesis

  [Forward-chaining-reports]
      To see reports about the forward chaining process")
 (FORWARD-CHAINING-REPORTS
  (FORWARD-CHAINING DEBUGGING)
  "To see reports about the forward chaining process

  Debugging forward-chaining rules can be hard because their effects
  are not directly visible on the goal. In this documentation we tell
  you how to get reports on the forward chaining activity occurring
  in your proof attempts. This documentation is written in several
  parts. The first part is an introduction for the first-time user of
  forward chaining reports. The next two parts describe how to read
  reports. The last part describes how to monitor forward chaining
  activity only for selected runes, etc. We recommend the new user of
  these reports read everything!

  A Quick Introduction to Forward Chaining Reports

  Caution: The reporting mechanism maintains some state, and if you
  have already used forward chaining reporting in a session, the
  directions below may not work as advertised! To return to the
  default forward chaining reporting state, execute this form at the
  top level:

    (reset-fc-reporting)

  You can get a report about all forward chaining activity in
  subsequent proofs by doing:

    (set-fc-criteria t)

  Options will be discussed later that allow you to monitor the
  activity caused by particular :forward-chaining rules or terms.

  Then do a proof that is expected to cause some forward chaining. In
  the proof output you will see lines like this:

    (Forward Chaining on behalf of PREPROCESS-CLAUSE:  (FC-Report 1))

  This is the only difference you should see in the proof output.

  After the proof attempt has terminated, you can execute:

    (fc-report k)

  for any k printed during the immediately preceding proof attempt.
  That will print a much longer report describing the activity that
  occurred during the kth use of forward chaining in that proof
  attempt.

  If you want to see these reports in real time (embedded in the proof
  output), do this before invoking the prover:

    (set-fc-report-on-the-fly t)

  Collecting the data used to generate these reports slows down the
  prover. If you no longer wish to see such reports, do

    (set-fc-criteria nil)

  How To Read FC Reports

  The report printed by (fc-report k) is of the form:

    Forward Chaining Report k:
    Caller: token
    Clause: (lit1 lit2 ... litn)
    Number of Rounds: m
    Contradictionp: bool
    Activations: (act1 act2 ...)

  This report means that the kth use of forward chaining in the most
  recent proof attempt was done on behalf of token (see below). The
  initial context (set of assumptions) consisted of the negations of
  the literals listed in the clause shown and the initial candidate
  trigger terms are all those appearing in that clause. This
  invocation of forward chaining proceeded to do m rounds of
  successive extensions of the initial context and ultimately either
  reached a contradiction (bool = T) or returned an extended context
  (bool = NIL). Note that reaching a contradiction from the negations
  of all the literals in a clause is ``good'' because it means the
  clause is true. The report concludes with the final status of all
  the forward chaining rules fired during the process. We explain how
  to read one of these activation reports in the next section.

  Forward chaining is done on behalf of many proof techniques in the
  system. Each is associated with a token. The main proof technique
  that uses forward chaining is SIMPLIFY-CLAUSE. This is the call of
  forward chaining that sets up the context used by the rewriter to
  relieve hypotheses during backchaining. Another common caller of
  forward chaining is PREPROCESS-CLAUSE, the first process in the
  ACL2 waterfall (see [hints-and-the-waterfall]). Forward chaining
  often proves ``near propositional'' goals (those depending just on
  boolean implications between basic predicates). Other tokens you
  may see include INDUCT, which uses forward chaining to set up a
  context for applying :[induction] rules, and the definitional
  principle (and related utilities such as [verify-termination] and
  [verify-guards]) which uses forward chaining during the
  construction of both measure conjectures and guard conjectures.
  When used this way, the token is defun-or-guard-verification.

  How to Read Activation Reports

  The forward chaining report concludes with a list of activation
  reports.

    Activations: (act1 act2 ...)

  Each acti is of the form:

    (rune
     (:TRIGGER inst-trig)
     ((:UNIFY-SUBST subst)
      (:DISPOSITION outcome-part1 outcome-part2 inst-term))
     ...)

  where the ... indicates that the rest of the report consists of more
  of those tuples listing a :UNIFY-SUBST and :DISPOSITION. We call
  each tuple a disposition of the activation and each disposition
  describes a substitution subst identifying the final instantiation
  of the rule and how the activation fared. Suppose there are n
  dispositions. (If the rule in question contains no free variables,
  n will be 1.)

  This activation report means that during the forward chaining process
  in question, the :[forward-chaining] [rune] rune was fired due to
  the presence in the evolving context of the trigger term inst-trig.
  (Note that inst-trig is an instantiation of the trigger term of the
  named rule. That is, the variable symbols you see in inst-trig are
  those of the clause printed in the forward chaining report.) The
  activation of rune by inst-trig proceeded to split n ways as
  different choices were made for the [free-variables] occuring among
  the hypotheses. Each of those n choices gave rise to a different
  substitution subst, and each succeeded or failed as described by
  the corresponding :DISPOSITION.

  The :DISPOSITION of an activation is described in three parts,
  outcome-part1, outcome-part2, and inst-term. Outcome-part1 is
  either SUCCESS or BLOCKED, meaning that the instance given by subst
  either succeeded in the sense that all of its instantiated
  hypotheses were found in the context, or failed because some
  instantiated hypothesis was not found.

  If outcome-part1 is SUCCESS then inst-term is the instantiated
  conclusion produced by the rule. Outcome-part2 is APPROVED if the
  instantiated conclusion was acceptable to our heuristics designed
  to prevent looping and not already known in the evolving context.
  Outcome-part2 is REJECTED if the instantiated conclusion was not
  approved by our heuristics. Outcome-part2 is REDUNDANT if the
  instantiated conclusion was approved by the heuristics but already
  known true in the current evolving context. If APPROVED, the truth
  of the instantiated conclusion is added to the evolving context.
  Otherwise, it is not.

  If outcome-part1 is BLOCKED then outcome-part2 is one of three
  possible things: FALSE, in which case inst-term is an instantiated
  hypothesis of the rule that is assumed false in the current
  context, UNRELIEVED-HYP, in which case inst-term is an instantiated
  hypothesis whose truthvalue is not determined by the context, or
  UNRELIEVED-HYP-FREE, in which case inst-term is an oddly
  instantiated hypothesis whose truthvalue is not determined by the
  context and which also contains free variables. In the last case,
  the ``odd'' instantiation was by the substitution subst but
  extended so that free variables in the hypothesis are renamed to
  start with the prefix UNBOUND-FREE- to draw your attention to them.

  Note: All of the terms printed in the report are instantiated with
  the relevant unifying substitution (possibly extended to bind free
  variables).

  Specifying the Tracking Criteria

  During a proof attempt, the forward chaining module stores
  information about the activations satisfying certain criteria. The
  criteria is a list of triples. Each triple consists of a forward
  chaining rune, an instantiated trigger term, and an instantiated
  conclusion to watch for. However, any or all of the components of
  such a triple may be t and that is given special significance.

  An activation satisfies a criteria if it satisfies at least one of
  the triples. An activation satisfies a triple if it satisfies all
  three of the components. Every activation satisfies the component
  t. An activation satisfies a rune if the activation describes a
  firing of the named rule. An activation satisfies an instantiated
  trigger term if the activation was created by that trigger being
  present in the context. An activation satisfies an instantiated
  conclusion if the activation could produce the instantiated
  conclusion (with the right choice of any free variables).

  Thus, the criteria is interpreted as a disjunction of conjunctions,
  making it possible to track a specific set of runes, triggers, and
  conclusions.

  For example, here is a triple that might appear in the criteria:

    ((:FORWARD-CHAINING ALISTP-FORWARD-TO-TRUE-LISTP)
     t
     t).

  This triple would cause every activation of the given rule to be
  tracked. However, the triple

    ((:FORWARD-CHAINING ALISTP-FORWARD-TO-TRUE-LISTP)
     (ALISTP (MAKE-BINDINGS VARS (TOP-N (OP1 INST) (STACK S))))
     t)

  would only track activations of that rule fired by the specific term
  shown as the second element of the triple. Futhermore

    (t
     (ALISTP (MAKE-BINDINGS VARS (TOP-N (OP1 INST) (STACK S))))
     t)

  would track any forward chaining rule triggered by that term, and

    (t
     t
     (TRUE-LISTP (MAKE-BINDINGS VARS (TOP-N (OP1 INST) (STACK S)))))

  would track any rule fired by any trigger that might lead to the
  specific term given as the third component above.

  Note: The condition on how an activation satisfies an instantiated
  conclusion is a little subtle. Consider the activation of the
  forward chaining rule

    (implies (and (symbol-listp x)
                  (equal (len x) (len y)))
             (true-listp (make-bindings x y)))

  triggered by (SYMBOL-LISTP VARS) arising in the current context. This
  activation could produce the specific conclusion shown in the last
  triple above, if it just happened that (TOP-N (OP1 INST) (STACK S))
  were chosen as the binding of the free variable y. Thus, the
  activation of this rule triggered by (SYMBOL-LISTP VARS) satisfies
  the last triple above.

  Observe that the triple

    (t t t)

  is satisfied by every activation of any rule by any trigger term
  producing any conclusion.

  The function set-fc-criteria sets the criteria describing which
  activations are to be tracked. For example, if you execute:

    (set-fc-criteria ((:FORWARD-CHAINING LEMMA1)
                      t t)
                     ((:FORWARD-CHAINING LEMMA2)
                      (ALISTP (BASIC-MAPPER A B))
                      t)
                     (t t (TRUE-LISTP (DLT D)))),

  the system would track all activations of the forward-chaining rule
  LEMMA1, plus those activations of forward-chaining rule LEMMA2
  triggered by the term given in the second triple, plus any
  activation of any rule that might derive (TRUE-LISTP (DLT D)).

  Because criteria generally mention variable symbols used in a
  specific conjecture, it is probably best to reconsider your
  criteria every time you want to track forward chaining.

  If the criteria is nil, then nothing is tracked. Setting the criteria
  to nil is the way you turn off tracking and reporting of forward
  chaining activity. You may do this either by (set-fc-criteria) or
  by (set-fc-criteria nil). (Technically the second form is an odd
  use of set-fc-criteria, which expects any supplied arguments to be
  triples; if the ``triple'' nil is the only one supplied, we take it
  to mean that the entire criteria should be nil.)

  To track every forward chaining activation you may set the criteria
  with either (set-fc-criteria (t t t)) or use the abbreviation
  (set-fc-criteria t).

  If, when you read a forward chaining report, you see no mention of an
  activation you have in mind, e.g., of a certain rune or deriving a
  certain conclusion, and you have set the criteria correctly, then
  the activation never happened. (This is akin to using :[brr] and
  :[monitor] to monitor the application of a rewrite rule and then
  seeing no interactive break.)

  For some relevant functions to help you manage criteria and when the
  full reports are printed see [fc-report], [show-fc-criteria],
  [set-fc-criteria], [reset-fc-reporting], and
  [set-fc-report-on-the-fly].


Subtopics

  [Fc-report]
      To report on the forward chaining activity in the most recent proof

  [Reset-fc-reporting]
      Reset the forward-chaining tracking state to its initial
      configuration

  [Set-fc-criteria]
      To set the tracking criteria for forward chaining reports

  [Set-fc-report-on-the-fly]
      To determine when forward-chaining reports are printed

  [Show-fc-criteria]
      Print the forward-chaining tracking criteria")
 (FOURTH
  (NTH ACL2-BUILT-INS)
  "Fourth member of the list

  See any Common Lisp documentation for details.")
 (FREE-VARIABLES
  (RULE-CLASSES REWRITE)
  "Free variables in rules

  As described elsewhere (see [rule-classes]), ACL2 rules are treated
  as implications for which there are zero or more hypotheses hj to
  prove. In particular, rules of class :[rewrite] may look like this:

    (implies (and h1 ... hn)
             (fn lhs rhs))

  Variables of hi are said to occur free in the above :rewrite rule if
  they do not occur in lhs or in any hj with j<i. (To be precise,
  here we are only discussing those variables that are not in the
  scope of a [let]/[let*]/lambda that binds them.) We also refer to
  these as the free variables of the rule. ACL2 may issue a warning
  or error when there are free variables in a rule, as described
  below. (Variables of rhs may be considered free if they do not
  occur in lhs or in any hj. But we do not consider those in this
  discussion.)

  In general, the free variables of rules are those variables occurring
  in their hypotheses (not [let]/[let*]/lambda-bound) that are not
  bound when the rule is applied. For rules of class :[linear] and
  :[forward-chaining], variables are bound by a trigger term. (See
  [rule-classes] for a discussion of the :trigger-terms field). For
  rules of class :[type-prescription], variables are bound by the
  :typed-term field.

  Let us discuss the method for relieving hypotheses of [rewrite] rules
  with free variables. Similar considerations apply to [linear] and
  [forward-chaining] rules, and [type-prescription] rules.

  See [free-variables-examples] for more examples of how this all
  works, including illustration of how the user can exercise some
  control over it. In particular, see
  [free-variables-examples-rewrite] for an explanation of output from
  the [break-rewrite] facility in the presence of rewriting failures
  involving free variables, as well as an example exploring ``binding
  hypotheses'' as described below.

  Note that the :match-free mechanism discussed below does not apply to
  [type-prescription] rules. See [free-variables-type-prescription]
  for a discussion of how to control free-variable matching for
  [type-prescription] rules.

  We begin with an example. Does the proof of the [thm] below succeed?

    (defstub p2 (x y) t)

    (defaxiom p2-trans
      (implies (and (p2 x y)
                    (p2 y z))
               (equal (p2 x z) t))
      :rule-classes ((:rewrite :match-free :all)))

    (thm (implies (and (p2 a c)
                       (p2 a b)
                       (p2 c d))
                  (p2 a d)))

  Consider what happens when the proof of the thm is attempted. The
  ACL2 rewriter attempts to apply rule p2-trans to the conclusion,
  (p2 a d). So, it binds variables x and z from the left-hand side of
  the conclusion of p2-trans to terms a and d, respectively, and then
  attempts to relieve the hypotheses of p2-trans. The first
  hypothesis of p2-trans, (p2 x y), is considered first. Variable y
  is free in that hypothesis, i.e., it has not yet been bound. Since
  x is bound to a, the rewriter looks through the context for a
  binding of y such that (p2 a y) is true, and it so happens that it
  first finds the term (p2 a b), thus binding y to b. Now it goes on
  to the next hypothesis, (p2 y z). At this point y and z have
  already been bound to b and d; but (p2 b d) cannot be proved.

  So, in order for the proof of the [thm] to succeed, the rewriter
  needs to backtrack and look for another way to instantiate the
  first hypothesis of p2-trans. Because :match-free :all has been
  specified, backtracking does take place. This time y is bound to c,
  and the subsequent instantiated hypothesis becomes (p2 c d), which
  is true. The application of rule (p2-trans) succeeds and the
  theorem is proved.

  If instead :match-free :all had been replaced by :match-free :once in
  rule p2-trans, then backtracking would not occur, and the proof of
  the [thm] would fail.

  Next we describe in detail the steps used by the rewriter in dealing
  with free variables.

  ACL2 uses the following sequence of steps to relieve a hypothesis
  with free variables, except that steps (1) and (3) are skipped for
  :forward-chaining rules and step (3) is skipped for
  :type-prescription rules. First, if the hypothesis is of the form
  (force hyp0) or (case-split hyp0), then replace it with hyp0.

      (1) Suppose the hypothesis has the form (equiv var term) where var is
      free and no variable of term is free, and either equiv is
      [equal] or else equiv is a known [equivalence] relation and
      term is a call of [double-rewrite]. We call this a ``binding
      hypothesis.'' Then bind var to the result of rewriting term in
      the current context.

      (2) Look for a binding of the free variables of the hypothesis so
      that the corresponding instance of the hypothesis is known to
      be true in the current context.

      (3) Search all [enable]d, hypothesis-free rewrite rules of the form
      (equiv lhs rhs), where lhs has no variables (other than those
      bound by [let], [let*], or lambda), rhs is known to be true in
      the current context, and equiv is typically equal but can be
      any equivalence relation appropriate for the current context
      (see [congruence]); then attempt to bind the free variables so
      that the instantiated hypothesis is lhs.

  For cases (2) and (3), the first instance found may ultimately fail
  because the remaining hypotheses are not all relieved under the
  extended bindings. In that case, should the attempt to relieve
  hypotheses fail, or should the search continue to find other
  instances for (2) or (3)? The answer depends on which of two
  options is in force for the so-called ``match-free'' of the rule.
  Below we discuss how to specify these two options as ``:once'' or
  ``:all'' (the default), respectively.

  Suppose that the original hypothesis is a call of [force] or
  [case-split], where forcing is enabled (see [enable-forcing]) .
  Also suppose that one of the following two cases applies: no
  instances are found for (2) and also none for (3), or else the
  ``match-free'' option for the rule is :all (as discussed below) and
  all attempts ultimately fail for (2) and (3) (because the remaining
  hypotheses are not all relieved). Then the current hypothesis is
  relieved but in the resulting split-off goals, all free variables
  are bound to unusual names that call attention to this odd
  situation.

  Is it better to specify :once or :all? We believe that :all is
  generally the better choice because of its greater power, provided
  the user does not introduce a large number of rules with free
  variables, which has been known to slow down the prover due to
  combinatorial explosion in the search (Steps (2) and (3) above).

  Either way, it is good practice to put the ``more substantial''
  hypotheses first, so that the most likely bindings of free
  variables will be found first (in the case of :all) or found at all
  (in the case of :once). For example, a rewrite rule like

    (implies (and (p1 x y)
                  (p2 x y))
             (equal (bar x) (bar-prime x)))

  may never succeed if p1 is nonrecursive and enabled, since we may
  well not find calls of p1 in the current context. If however p2 is
  disabled or recursive, then the above rule may apply if the two
  hypotheses are switched. For in that case, we can hope for a match
  of (p2 x y) in the current context that therefore binds x and y;
  then the rewriter's full power may be brought to bear to prove (p1
  x y) for that x and y.

  Moreover, the ordering of hypotheses can affect the efficiency of the
  rewriter. For example, the rule

    (implies (and (rationalp y)
                  (foo x y))
             (equal (bar x) (bar-prime x)))

  may well be sub-optimal. Presumably the intention is to rewrite (bar
  x) to (bar-prime x) in a context where (foo x y) is explicitly
  known to be true for some rational number y. But y will be bound
  first to the first term found in the current context that is known
  to represent a rational number. If the 100th such y that is found
  is the first one for which (foo x y) is known to be true, then
  wasted work will have been done on behalf of the first 99 such
  terms y --- unless :once has been specified, in which case the rule
  will simply fail after the first binding of y for which (rationalp
  y) is known to be true. Thus, a better form of the above rule is
  almost certainly the following.

    (implies (and (foo x y)
                  (rationalp y))
             (equal (bar x) (bar-prime x)))

  Specifying `once' or `all'.

  As noted above, the following discussion applies only to [rewrite],
  [linear], and [forward-chaining] rules. See
  [free-variables-type-prescription] for a discussion of analogous
  considerations for [type-prescription] rules.

  One method for specifying :once or :all for free-variable matching is
  to provide the :match-free field of the :rule-classes of the rule,
  for example, (:rewrite :match-free :all). See [rule-classes].
  However, there are global events that can be used to specify :once
  or :all; see [set-match-free-default] and see
  [add-match-free-override]. Here are some examples.

    (set-match-free-default :once)    ; future rules without a :match-free field
                                      ; are stored as :match-free :once (but this
                                      ; behavior is local to a book)
    (add-match-free-override :once t) ; existing rules are treated as
                                      ; :match-free :once regardless of their
                                      ; original :match-free fields
    (add-match-free-override :once (:rewrite foo) (:rewrite bar . 2))
                                      ; the two indicated rules are treated as
                                      ; :match-free :once regardless of their
                                      ; original :match-free fields

  Some history. Before Version 2.7 the ACL2 rewriter performed Step (2)
  above first. More significantly, it always acted as though :once
  had been specified. That is, if Step (2) did not apply, then the
  rewriter took the first binding it found using either Steps (1) or
  (3), in that order, and proceeded to relieve the remaining
  hypotheses without trying any other bindings of the free variables
  of that hypothesis.


Subtopics

  [Add-match-free-override]
      Set :match-free value to :once or :all in existing rules

  [Free-variables-examples]
      Examples pertaining to free variables in rules

  [Free-variables-type-prescription]
      Matching for free variable in [type-prescription] rules

  [Set-match-free-default]
      Provide default for :match-free in future rules

  [Set-match-free-error]
      Control error vs. warning when :match-free is missing")
 (FREE-VARIABLES-EXAMPLES
  (FREE-VARIABLES)
  "Examples pertaining to free variables in rules

  The examples in the two sub-topics of this topic illustrate the
  handling of free variables in rules of class :[rewrite] (see
  [free-variables-examples-rewrite]) and of class :[forward-chaining]
  (see [free-variables-examples-forward-chaining]), respectively.
  These implicitly illustrate [free-variables] handling in rules of
  class :[linear] as well. Also see [free-variables] and see
  [rule-classes].


Subtopics

  [Free-variables-examples-forward-chaining]
      Examples pertaining to free variables in [forward-chaining] rules

  [Free-variables-examples-rewrite]
      Examples pertaining to free variables in [rewrite] rules")
 (FREE-VARIABLES-EXAMPLES-FORWARD-CHAINING
  (FREE-VARIABLES-EXAMPLES)
  "Examples pertaining to free variables in [forward-chaining] rules

  The following examples illustrate ACL2's handling of free variables
  in [forward-chaining] rules, as well as user control over how such
  free variables are handled. See [free-variables] for a background
  discussion.

    ; First let us introduce a transitive operation, op, and prove a
    ; forward-chaining rule stating the transitivity of op.

    (encapsulate
     (((op * *) => *))
     (local (defun op (x y) (< x y)))
     (defthm transitivity-of-op
       (implies (and (op x y) (op y z)) (op x z))
       :rule-classes :forward-chaining))

    ; The following theorem is proved by forward chaining, using the above rule.

    (thm
     (implies (and (op u v) (op v w) (op v a))
              (op u w)))

    ; The proof of the theorem just above succeeds because the term (op u v)
    ; triggers the application of forward-chaining rule transitivity-of-op,
    ; binding x to u and y to v.  Free variable z of that rule is bound to both w
    ; and to a, resulting in the addition of both (op u w) and (op u a) to the
    ; context.  However, (op v a) happens to be at the front of the context, so
    ; if only one free-variable binding had been allowed, then z would have only
    ; been bound to a, not to w, as we now illustrate.

    (add-match-free-override :once (:forward-chaining transitivity-of-op))

    (thm ; FAILS!
     (implies (and (op u v) (op v w) (op v a))
              (op u w)))

    :ubt! 1

    ; Starting over, this time we prove transitivity-of-op as a :match-free :once
    ; forward-chaining rule.  Note that the presence of :match-free eliminates
    ; the free-variables warning that we got the first time.

    (encapsulate
     (((op * *) => *))
     (local (defun op (x y) (< x y)))
     (defthm transitivity-of-op
       (implies (and (op x y) (op y z)) (op x z))
       :rule-classes ((:forward-chaining :match-free :once))))

    (thm ; FAILS!
     (implies (and (op u v) (op v w) (op v a))
              (op u w)))

    ; Notice that if we swap the order of the last two hypotheses the theorem
    ; goes through, because this time (op v w) is first in the context.

    (thm ; SUCCEEDS!
     (implies (and (op u v) (op v a) (op v w))
              (op u w)))

    :u

    ; Now let's try setting the default to :once.

    (set-match-free-default :once)

    ; We still get a free-variables warning when we admit this forward-chaining rule.

    (encapsulate
     (((op * *) => *))
     (local (defun op (x y) (< x y)))
     (defthm transitivity-of-op
       (implies (and (op x y) (op y z)) (op x z))
       :rule-classes ((:forward-chaining))))

    ; This theorem fails--as it should.

    (thm ; FAILS!
     (implies (and (op u v) (op v w) (op v a))
              (op u w)))

    ; But if we convert this rule (or here, all possible rules) to :all rules,
    ; then the proof succeeds.

    (add-match-free-override :all t)

    (thm ; SUCCEEDS!
     (implies (and (op u v) (op v w) (op v a))
              (op u w)))

    ; Now let's test a relatively slow :all case (the next thm below).

    :ubt! 1

    (encapsulate
     (((op1 *) => *)
      ((op3 * * *) => *))
     (local (defun op1 (x) (declare (ignore x)) t))
     (local (defun op3 (x0 x1 x2)
              (declare (ignore x0 x1 x2))
              t))
     (defthm op1-op3-property
       (implies (and (op1 x0) (op1 x1) (op1 x2))
                (op3 x0 x1 x2))
       :rule-classes ((:forward-chaining :match-free :all))))

    ; The following succeeds, but takes a little time (about a second in one run).

    (thm (implies
          (and (op1 a0) (op1 a1) (op1 a2) (op1 a3) (op1 a4) (op1 a5)
               (op1 a6) (op1 a7) (op1 a8) (op1 a9) (op1 a10) (op1 a11)
               (op1 a12) (op1 a13) (op1 a14) (op1 a15) (op1 a16)
               (op1 a17) (op1 a18) (op1 a19) (op1 a20))
          (op3 a5 a6 a0)))

    (add-match-free-override :once t)

    ; The same theorem now fails because of the add-match-free-override, but is
    ; more than an order of magnitude faster.

    (thm (implies
          (and (op1 a0) (op1 a1) (op1 a2) (op1 a3) (op1 a4) (op1 a5)
               (op1 a6) (op1 a7) (op1 a8) (op1 a9) (op1 a10) (op1 a11)
               (op1 a12) (op1 a13) (op1 a14) (op1 a15) (op1 a16)
               (op1 a17) (op1 a18) (op1 a19) (op1 a20))
          (op3 a5 a6 a0)))

    ; A slight variant succeeds in a negligible amount of time (still with the
    ; :once override above).

    (thm (implies
          (and (op1 a0) (op1 a1) (op1 a2) (op1 a3) (op1 a4) (op1 a5)
               (op1 a6) (op1 a7) (op1 a8) (op1 a9) (op1 a10) (op1 a11)
               (op1 a12) (op1 a13) (op1 a14) (op1 a15) (op1 a16)
               (op1 a17) (op1 a18) (op1 a19) (op1 a20))
          (op3 a5 a20 a20)))

    ; Reality check: This shouldn't give a free-variables warning, and everything
    ; should work great since there are no free variables with this trigger term.

    :ubt! 1

    (encapsulate
     (((op1 *) => *)
      ((op7 * * * * * * *) => *))
     (local (defun op1 (x)
              (declare (ignore x))
              t))
     (local (defun op7 (x0 x1 x2 x3 x4 x5 x6)
              (declare (ignore x0 x1 x2 x3 x4 x5 x6))
              t))
     (defthm op1-op7-property
       (implies (and (op1 x0) (op1 x1) (op1 x2)
                     (op1 x3) (op1 x4) (op1 x5) (op1 x6))
                (op7 x0 x1 x2 x3 x4 x5 x6))
       :rule-classes ((:forward-chaining
                       :trigger-terms ((op7 x0 x1 x2 x3 x4 x5 x6))))))

    ; The following then succeeds, and very quickly.

    (thm (implies (and (op1 a0) (op1 a1) (op1 a2)
                       (op1 a3) (op1 a4) (op1 a5) (op1 a6))
                  (op7 a4 a6 a5 a6 a6 a6 a6)))")
 (FREE-VARIABLES-EXAMPLES-REWRITE
  (FREE-VARIABLES-EXAMPLES)
  "Examples pertaining to free variables in [rewrite] rules

  The following examples illustrate ACL2's handling of free variables
  in [rewrite] rules, as well as user control over how such free
  variables are handled. See [free-variables] for a background
  discussion.

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
    ;;; Example 1
    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

    (defstub p2 (x y) t) ; introduce unconstrained function

    ; Get warning because of free variable.  This would be an error if you had
    ; first executed (set-match-free-error t) in order to force yourself to
    ; specify :match-free (illustrated later, below).
    (defaxiom p2-trans
      (implies (and (p2 x y)
                    (p2 y z))
               (p2 x z)))

    ; Succeeds.
    (thm (implies (and (p2 a c)
                       (p2 a b)
                       (p2 c d))
                  (p2 a d)))

    ; The following causes an error because p2-trans is not a rune.
    (add-match-free-override :once p2-trans)

    ; After the following, the rewrite rule p2-trans will only allow one
    ; attempt per hypothesis to bind free variables.
    (add-match-free-override :once (:rewrite p2-trans))

    ; Now this same theorem fails to be proved.  Here's why.  The
    ; context for proving (p2 a d) happens to include the hypotheses in
    ; reverse order.  So when the first hypothesis of p2-trans, namely
    ; (p2 x y), is relieved, where x is bound to a (as we are attempting
    ; to rewrite the current literal (p2 a d)), we find (p2 a b) in the
    ; context before (p2 a c) and hence y is bound to b.  The
    ; instantiated second hypothesis of p2-trans is thus (p2 b d), and
    ; the proof fails.  Before the add-match-free-override form above,
    ; the proof succeeded because the rewriter was allowed to backtrack
    ; and find the other binding for the first hypothesis of p2-trans,
    ; namely, y bound to c.  Then the instantiated second hypothesis of
    ; p2-trans is (p2 c d), which is known to be true in the current
    ; context.
    (thm (implies (and (p2 a c)
                       (p2 a b)
                       (p2 c d))
                  (p2 a d)))

    ; Return to original behavior for binding free variables.
    (add-match-free-override :all t)

    ; Succeeds once again.
    (thm (implies (and (p2 a c)
                       (p2 a b)
                       (p2 c d))
                  (p2 a d)))

    (u) ; undo (add-match-free-override :all t)

    ; This is an error, since no further arguments should appear after
    ; :clear.
    (add-match-free-override :clear t)

    ; Return all rules to original behavior for binding free variables,
    ; regardless of which previous add-match-free-override forms have
    ; been executed.
    (add-match-free-override :clear)

    ; This succeeds just as it did originally.
    (thm (implies (and (p2 a c)
                       (p2 a b)
                       (p2 c d))
                  (p2 a d)))

    (ubt! 'p2-trans) ; back to the start, except retain the defstub

    ; Require that :match-free be specified for :linear and :rewrite rules with
    ; free variables.
    (set-match-free-error t)

    ; Fails because :match-free is missing.
    (defaxiom p2-trans
      (implies (and (p2 x y)
                    (p2 y z))
               (p2 x z)))

    ; Fails because :match-free must be followed by :once or :all.
    (defaxiom p2-trans
      (implies (and (p2 x y)
                    (p2 y z))
               (p2 x z))
      :rule-classes ((:rewrite :match-free nil)))

    ; Succeeds, this time with no warning at all.
    (defaxiom p2-trans
      (implies (and (p2 x y)
                    (p2 y z))
               (p2 x z))
      :rule-classes ((:rewrite :match-free :once)))

    ; Fails because we only bind once (see earlier long comment).
    (thm (implies (and (p2 a c)
                       (p2 a b)
                       (p2 c d))
                  (p2 a d)))

    ; Treat p2-trans as though `:match-free :all' had been specified.
    (add-match-free-override :all (:rewrite p2-trans))

    ; Succeeds since more than one binding is allowed for p2-trans.
    (thm (implies (and (p2 a c)
                       (p2 a b)
                       (p2 c d))
                  (p2 a d)))

    (u)
    (u)

    ; Specify that future :linear and :rewrite rules with free variables
    ; that do not have :match-free specified are treated as though
    ; `:match-free :once' were specified.
    (set-match-free-default :once)

    ; Succeeds without error since `:match-free' is specified, as described
    ; above.  But there is a warning, since :match-free is not specified for this
    ; :rewrite rule.
    (defaxiom p2-trans
      (implies (and (p2 x y)
                    (p2 y z))
               (p2 x z)))

    ; Fails since only single bindings are allowed for p2-trans.
    (thm (implies (and (p2 a c)
                       (p2 a b)
                       (p2 c d))
                  (p2 a d)))

    ; Treat p2-trans as though `:match-free :all' had been specified.
    (add-match-free-override :all t)

    ; Succeeds.
    (thm (implies (and (p2 a c)
                       (p2 a b)
                       (p2 c d))
                  (p2 a d)))

    ; Test searching of ground units, i.e. rewrite rules without variables on the
    ; left side of the conclusion, for use in relieving hypotheses with free
    ; variables.  This is a very contrived example.

    (ubt! 1) ; back to the start

    (encapsulate
     (((p1 *) => *)
      ((p2 * *) => *)
      ((p3 *) => *)
      ((a) => *)
      ((b) => *))
     (local (defun p1 (x) x))
     (local (defun p2 (x y) (list x y)))
     (local (defun p3 (x) x))
     (local (defun a () 0))
     (local (defun b () 0)))

    ; Allow default of :match-free :all (form may be omitted).
    (set-match-free-error nil)

    (defaxiom ax1
      (implies (and (p2 x y)
                    (p1 y))
               (p3 x)))

    (defaxiom p2-a-b
      (p2 (a) (b)))

    (defaxiom p2-a-a
      (p2 (a) (a)))

    (defaxiom p1-b
      (p1 (b)))

    ; Succeeds; see long comment below on next attempt to prove this
    ; theorem.
    (thm (implies (p2 (a) y)
                  (p3 (a))))

    ; Now ax1 will only relieve hypothesis (p2 x y) for one binding of y:
    (add-match-free-override :once t)

    ; Fails when ax1 attempts to rewrite the conclusion to true, because
    ; the most recent ground unit for hypothesis (p2 x y) with x bound
    ; to (a) is rule p2-a-a, which binds y to (a).  If more than one ground
    ; unit could be used then we would backtrack and apply rule p2-a-b,
    ; which binds y to (b) and hence hypothesis (p1 y) of ax1 is
    ; relieved by rule p1-b.
    (thm (implies (p2 (a) y)
                  (p3 (a))))

    ; Return rules to original :match-free behavior.
    (add-match-free-override :clear)

    ; Succeeds once again.
    (thm (implies (p2 (a) y)
                  (p3 (a))))

    ; Just for kicks, change the behavior of a built-in rule irrelevant
    ; to the proof at hand.
    (add-match-free-override :once (:rewrite string<-l-trichotomy))

    ; Still succeeds.
    (thm (implies (p2 (a) y)
                  (p3 (a))))

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
    ;;; Example 2
    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  The next example illustrates the use of the [break-rewrite] facility
  to get information about handling of free variables by the
  rewriter. Explanation is given after this (edited) transcript.
  Input begins on lines with a prompt (search for ``ACL2''); the rest
  is output.

    ACL2 !>(encapsulate
            ((p1 (u x) t)
             (bad (x) t)
             (p2 (x y z) t)
             (bar (x y) t)
             (foo (x y) t)
             (poo (x y) t)
             (prop (u) t))

            (local (defun p1 (u x) (declare (ignore u x)) nil))
            (local (defun bad (x) (declare (ignore x)) nil))
            (local (defun p2 (x y z) (declare (ignore x y z)) nil))
            (local (defun bar (x y) (declare (ignore x y)) nil))
            (local (defun foo (x y) (declare (ignore x y)) nil))
            (local (defun poo (x y) (declare (ignore x y)) nil))
            (local (defun prop (u) (declare (ignore u)) t))

            (defthm foo-poo
              (implies (syntaxp (equal y 'y3))
                       (equal (foo x y)
                              (poo x y))))

            (defthm lemma-1
              (implies (and (p1 u x)
                            (bad x)
                            (p2 x y z)
                            (bar x y)
                            (equal x x) ; admittedly silly!
                            (foo x y))
                       (prop u))
              :rule-classes ((:rewrite :match-free :all))))

    ; [[ output omitted ]]

    Summary
    Form:  ( ENCAPSULATE ((P1 ...) ...) ...)
    Rules: NIL
    Warnings:  Subsume and Non-rec
    Time:  0.08 seconds (prove: 0.00, print: 0.01, other: 0.06)
     T
    ACL2 !>:brr t
    The monitored runes are:
    NIL
     T
    ACL2 !>:monitor (:rewrite lemma-1) t
    (((:REWRITE LEMMA-1) 'T))
    ACL2 !>(thm (implies (and (p1 u0 x1)
                              (bad x1)
                              (bad x3)
                              (bar x3 y1)
                              (bar x3 y3)
                              (p1 u0 x2)
                              (p1 u0 x3)
                              (p2 x3 y1 z1)
                              (p2 x3 y3 z1))
                         (prop u0)))

    (1 Breaking (:REWRITE LEMMA-1) on (PROP U0):
    1 ACL2 >:eval

    1x (:REWRITE LEMMA-1) failed because :HYP 1 contains free variables.
    The following display summarizes the attempts to relieve hypotheses
    by binding free variables; see :DOC free-variables.

        [1] X : X1
    Failed because :HYP 3 contains free variables Y and Z, for which no
    suitable bindings were found.
        [1] X : X2
    Failed because :HYP 2 rewrote to (BAD X2).
        [1] X : X3
            [3] Z : Z1
                Y : Y1
    Failed because :HYP 6 rewrote to (FOO X3 Y1).
            [3] Z : Z1
                Y : Y3
    Failed because :HYP 6 rewrote to (POO X3 Y3).

    1 ACL2 >:unify-subst
         U : U0
    1 ACL2 >

  The :eval command above asks the rewriter to attempt to apply the
  rewrite rule lemma-1 to the term (prop u0), shown just above the
  line with :eval. As we can see at the end, the variable u in the
  conclusion of lemma-1 is being bound to the variable u0 in the
  conjecture. The first hypothesis of lemma-1 is (p1 u x), so the
  rewriter looks for some x for which (p1 u0 x) is known to be true.
  It finds x1, and then goes on to consider the second hypothesis,
  (bad x). Since the theorem we are proving has (bad x1) in the
  hypothesis and x is currently bound to x1, the rewriter is
  satisfied and moves on to the third hypothesis of lemma-1, (p2 x y
  z). However, x is bound to x1 and there are no instances of y and z
  for which (p2 x1 y z) is known in the current context. All of the
  above analysis is summarized in the first part of the output from
  :eval above:

        [1] X : X1
    Failed because :HYP 3 contains free variables Y and Z, for which no
    suitable bindings were found.

  Thus, the binding of x to x1 on behalf of the first hypothesis has
  failed.

  The rewriter now backs up to look for other values of x that satisfy
  the first hypothesis, and finds x2 because our current theorem has
  a hypothesis of (p1 u0 x2). But this time, the second hypothesis of
  lemma-1, (bad x), is not known to be true for x; that is, (bad x2)
  does not rewrite to t; in fact, it rewrites to itself. That
  explains the next part of the output from :eval above:

        [1] X : X2
    Failed because :HYP 2 rewrote to (BAD X2).

  The rewriter now backs up again to look for other values of x that
  satisfy the first hypothesis, and finds x3 because our current
  theorem has a hypothesis of (p1 u0 x3). This time, the second
  hypothesis of lemma-1 is not a problem, and moreover, the rewriter
  is able to bind y and z to y1 and z1, respectively, in order to
  satisfy the third hypothesis, (p2 x y z): that is, (p2 x2 y1 z1) is
  known in the current context. That explains more of the above
  output from :eval:

    [1] X : X3
        [3] Z : Z1
            Y : Y1

  Unfortunately, the sixth hypothesis, (foo x y), rewrites to itself
  under the above bindings:

    Failed because :HYP 6 rewrote to (FOO X3 Y1).

  So the rewriter looks for other bindings to satisfy the third
  hypothesis and finds these.

    [3] Z : Z1
        Y : Y3

  This time, the sixth hypothesis can be rewritten under the above
  bindings, from (foo x3 y3) to (poo x3 y3) by lemma foo-poo, but
  still not to t.

    Failed because :HYP 6 rewrote to (POO X3 Y3).

  There are no more free variable bindings to try, so this concludes
  the output from :eval.

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
    ;;; Example 3
    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  The next pair of examples illustrates so-called ``binding
  hypotheses'' (see [free-variables]) and explores some of their
  subtleties. The first shows binding hypotheses in action on a
  simple example. The second shows how binding hypotheses interact
  with equivalence relations and explains the role of
  [double-rewrite].

  Our first example sets up a theory with two user-supplied rewrite
  rules, one of which has a binding hypothesis. Below we explain how
  that binding hypothesis contributes to the proof.

    ; Define some unary functions.
    (defun f (x) (declare (ignore x)) t)
    (defun g (x) x)
    (defun h (x) x)
    (defun k (x) x)

    ; Prove some simple lemmas.  Note the binding hypothesis in g-rewrite.
    (defthm f-k-h
      (f (k (h x))))
    (defthm g-rewrite
           (implies (and (equal y (k x)) ; binding hypothesis
                         (f y))
                    (equal (g x) y)))

    ; Restrict to a theory that includes the above lemmas but avoids the above
    ; definitions.
    (in-theory (union-theories (theory 'minimal-theory)
                               '(f-k-h g-rewrite)))

    ; Prove a theorem.
    (thm (equal (g (h a)) (k (h a))))

  Let us look at how ACL2 uses the above binding hypothesis in the
  proof of the preceding thm form. The rewriter considers the term (g
  (h a)) and finds a match with the left-hand side of the rule
  g-rewrite, binding x to (h a). The first hypothesis binds y to the
  result of rewriting (k x) in the current context, where the
  variable x is bound to the term (h a); thus y is bound to (k (h
  a)). The second hypothesis, (f y), is then rewritten under this
  binding, and the result is t by application of the rewrite rule
  f-k-h. The rule g-rewrite is then applied under the
  already-mentioned binding of x to (h a). This rule application
  triggers a recursive rewrite of the right-hand side of g-rewrite,
  which is y, in a context where y is bound (as discussed above) to
  (k (h a)). The result of this rewrite is that same term, (k (h a)).
  The original call of equal then trivially rewrites to t.

  We move on now to our second example, which is similar but involves a
  user-defined equivalence relation. You may find it helpful to
  review :equivalence rules; see [equivalence].

  Recall that when a hypothesis is a call of an equivalence relation
  other than equal, the second argument must be a call of
  [double-rewrite] in order for the hypothesis to be treated as a
  binding hypothesis. That is indeed the case below; an explanation
  follows.

    ; Define an equivalence relation.
    (defun my-equiv (x y) (equal x y))
    (defequiv my-equiv) ; introduces rule MY-EQUIV-IS-AN-EQUIVALENCE

    ; Define some unary functions
    (defun f (x) (declare (ignore x)) t)
    (defun g (x) x)
    (defun h1 (x) x)
    (defun h2 (x) x)

    ; Prove some simple lemmas.  Note the binding hypothesis in lemma-3.
    (defthm lemma-1
      (my-equiv (h1 x) (h2 x)))
    (defthm lemma-2
      (f (h2 x)))
    (defthm lemma-3
           (implies (and (my-equiv y (double-rewrite x)) ; binding hypothesis
                         (f y))
                    (equal (g x) y)))

    ; Restrict to a theory that includes the above lemmas but avoids the above
    ; definitions.
    (in-theory (union-theories (theory 'minimal-theory)
                               '(lemma-1 lemma-2 lemma-3
                                         my-equiv-is-an-equivalence)))

    ; Prove a theorem.
    (thm (equal (g (h1 a)) (h2 a)))

  The proof succeeds much as in the first example, but the following
  observation is key: when ACL2 binds y upon considering the first
  hypothesis of lemma-3, it rewrites the term (double-rewrite x) in a
  context where it need only preserve the equivalence relation
  my-equiv. At this point, x is bound by applying lemma-3 to the term
  (g (h1 a)); so, x is bound to (h1 a). The rule lemma-1 then applies
  to rewrite this occurrence of x to (h2 a), but only because it
  suffices to preserve my-equiv. Thus y is ultimately bound to (h2
  a), and the proof succeeds as one would expect.

  If we tweak the above example slightly by disabling the user's
  [equivalence] [rune], then the proof of the [thm] form fails
  because the above rewrite of (double-rewrite x) is done in a
  context where it no longer suffices to preserve my-equiv as we dive
  into the second argument of my-equiv in the first hypothesis of
  lemma-3; so, lemma-1 does not apply this time.

    (in-theory (union-theories (theory 'minimal-theory)
                               '(lemma-1 lemma-2 lemma-3)))

    ; Proof fails in this case!
    (thm (equal (g (h1 a)) (h2 a)))")
 (FREE-VARIABLES-TYPE-PRESCRIPTION
  (FREE-VARIABLES)
  "Matching for free variable in [type-prescription] rules

  We assume familiarity with the issue of dealing with free variables
  in hypotheses; see [free-variables].

  By default, starting with Version 4.3, ACL2 attempts all possible
  matches for free variables. Consider the following example.

    (defstub f1 (x) t)
    (defstub f2 (x y) t)
    (defstub f3 (y) t)

    (defaxiom f1-prop
      (implies (and (f2 x y) ; <-- y is free in this hypothesis
                    (f3 y))
               (f1 x))       ; <-- (f1 x) is the type-term (type is `non-nil')
      :rule-classes :type-prescription)

    ; Succeeds:
    (thm (implies (and (f2 a b)
                       (f3 b))
                  (f1 a)))

    ; The following fails unless we try more than one match for free variables in
    ; hypotheses.
    (thm (implies (and (f2 a b)
                       (f2 a c)
                       (f2 a d)
                       (f3 b))
                  (f1 a)))

  There may be times when you want to match only the first free
  variable. In that case, you can write a function of two arguments,
  the type-prescription [rune] being applied and the current ACL2
  world, that prohibits multiple matching for those times. Your
  function is then `attached' to the built-in constrained function,
  oncep-ts. The following examples are intended to explain how this
  works.

  First, let us disallow all mutliple matching of free variables (i.e.,
  implement the behavior often referred to as ``:match-free :once'';
  see [free-variables]).

    (defun oncep-tp-always (rune wrld)
      (declare (ignore rune wrld)
               (xargs :mode :logic :guard t))
      t)

    (defattach oncep-tp oncep-tp-always)

  The second thm form above will now fail, because only one
  free-variable match is permitted for the first hypothesis of rule
  f1-prop above.

  Now suppose that instead, we want to disallow multiple matches for
  free variables in hypotheses of type-prescription rules except for
  the rule f1-prop above. With the following events, the second thm
  form above once again succeeds.

    (defun oncep-tp-always-except-f1-prop (rune wrld)
      (declare (ignore wrld)
               (xargs :mode :logic :guard (and (consp rune)
                                               (consp (cdr rune))
                                               (symbolp (cadr rune)))))
      (not (eq (base-symbol rune) 'f1-prop)))

    (defattach oncep-tp oncep-tp-always-except-f1-prop)

  In general, your [defattach] event will attach a function symbol to
  oncep-tp. The [guard] of that function symbol must be implied by
  the guard of oncep-tp:

    ACL2 !>:args oncep-tp

    Function         ONCEP-TP
    Formals:         (RUNE WRLD)
    Signature:       (ONCEP-TP * *)
                     => *
    Guard:           (AND (PLIST-WORLDP WRLD)
                          (CONSP RUNE)
                          (CONSP (CDR RUNE))
                          (SYMBOLP (CADR RUNE)))
    Guards Verified: T
    Defun-Mode:      :logic
    Type:            built-in (or unrestricted)

     ONCEP-TP
    ACL2 !>")
 (FREE_VARIABLES_IN_TOP-LEVEL_INPUT
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Free Variables in Top-Level Input

    ACL2 !>(equal (app (app a b) c)
                  (app a (app b c))))

    ACL2 Error in TOP-LEVEL:  Global variables, such as C, B, and A, are
    not allowed. See :DOC ASSIGN and :DOC @.

  ACL2 does not allow ``global variables'' in top-level input. There is
  no ``top-level binding environment'' to give meaning to these
  variables.

  Thus, expressions involving no variables can generally be evaluated,

    ACL2 !>(equal (app (app '(1 2) '(3 4)) '(5 6))
                  (app '(1 2) (app '(3 4) '(5 6))))
    (1 2 3 4 5 6)

  but expressions containing variables cannot.

  There is an exception to this rule. References to ``single-threaded
  objects'' may appear in top-level forms. See [stobj] [{ICON}]. A
  single-threaded object is an ACL2 object, usually containing many
  fields, whose use is syntactically restricted so that it may be
  given as input only to certain functions and must be returned as
  output by certain functions. These restrictions allow single-
  threaded objects to be efficiently manipulated. For example, only a
  single copy of the object actually exists, even though from a
  logical perspective one might expect the object to be ``copied on
  write.''

  The most commonly used single-threaded object in ACL2 is the ACL2
  system state, whose current value is always held in the variable
  [state] [{ICON}].

  ACL2 provides a way for you to use state to save values of
  computations at the top-level and refer to them later. See [assign]
  [{ICON}] and [@] [{ICON}].")
 (FREQUENTLY-ASKED-QUESTIONS-BY-NEWCOMERS
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Some questions newcomers frequently ask

  This FAQ is for people who've read through all the other sections of
  the tutorial introduction to the theorem prover (see
  [introduction-to-the-theorem-prover] and all the links from it that
  are not marked with the little warning sign (``[{ICON}]''). Do not
  expect to understand our answers if you haven't taken the time to
  read through the tutorial. In the answers below you will see more
  links into the hypertext reference manual. While such links were
  marked ``[{ICON}]'' in the tutorial, they are not marked that way
  here. When you enter the reference manual be prepared to explore
  and assemble a mini-course on the topic of interest, not a quick
  fix.

  Q. How do I find something in the ACL2 documentation? A. Try going to
  the Search link on the ACL2 home page.

  Q. How does the theorem prover work? A. We really don't think you
  need to know much about the inner workings of the prover to become
  an effective user. That doesn't mean the system is
  self-explanatory! It means that stuff you need to learn is not how
  the theorem prover works but how to interact with it! That is what
  [introduction-to-the-theorem-prover] is about. However, if you want
  the most basic overview of the prover, see
  [architecture-of-the-prover].

  Q. How do I define a new function? A. See [defun].

  Q. How do I define a new predicate? A. See [defun].

  Q. How do I define a new relation? A. See [defun].

  Q. How do I define a function or predicate that takes a varying
  number of arguments? A. You can't. However, see [defmacro] to learn
  how to define a macro that takes a varying number of arguments and
  expands into an arbitrary term that you compute.

  Q. How do I define a macro that is sensitive to the state? A. You
  can't. However, advanced users should consider [make-event].

  Q. How do I define mutually recursive functions? A. See
  [mutual-recursion]. However, you should realize that when two
  functions, say f and g, are mutually recursive, properties of f
  generally have to be stated simultaneously with properties of g,
  since inductive proofs about one function require inductive
  hypotheses about the other. Furthermore, ACL2 does not know how to
  do inductions for mutually recursive functions and must be told.
  See [mutual-recursion-proof-example].

  Q. How do I declare the type signature of a function? A. You can't.
  ACL2 is a syntactically untyped language and all functions are
  defined on all objects in the ACL2 universe. We recommend that the
  new user get used to this and only then explore the use of ACL2 to
  express and enforce a type regime. In ACL2, the guard of a function
  is akin to the type signature of a function in typed languages.
  However, ACL2 guards may be arbitrary terms, not just type
  conditions, they only concern the inputs to the function (not its
  result), and do not affect the axiom defining the function -- all
  functions are defined on every combination of objects. You may, of
  course, prove theorems that establish that every function called in
  a definition or theorem is supplied with input satisfying its
  guards (which necessarily involves describe the outputs too). These
  formulas are called guard conjectures and the process of proving
  them is called guard verification. Since guards are arbitrary ACL2
  formulas, the ``type regimes'' one tends to enforce in ACL2 can be
  much for flexible and expressive than those in most programming
  languages. However, that expressibility also means guard
  verification can be challenging (indeed undecidable). On the other
  hand, if one limits oneself to simple type-like guards, lemmas can
  be proved that make most guard verification fully automatic and one
  can configure ACL2 to do guard verification automatically at
  defun-time. One may also delay guard verification until ``the
  right'' lemmas have been proved. By doing guard verification one
  can make functions execute faster by allowing the code to avoid
  runtime checks. This is especially valuable to industrial users who
  have large models used both in verification and as simulation
  engines for designed artifacts. In addition, guard verification can
  give you the assurance that you are using your functions within
  their intended domains and hence is a form of functional
  specification and verification. However, all these advantages
  aside, it is remarkably easy to drift away from the simplest type
  regimes and write a guard that raises deep mathematical problems.
  New users should not try to confront these problems until they are
  comfortable with the theorem prover and with lemma development.
  Therefore, we strongly recommend that you forget about types and
  guards and get used to reasoning about total functions. When you do
  decide to learn about them, be prepared for a complex story
  involving specification, execution efficiency, and proof
  management. See [guard].

  Q. How do I tell defun what measure to use? A. See [xargs],
  specifically :measure.

  Q. I specified a measure that always returns a natural number but
  ACL2 is acting like it's not a natural number. A. There are two
  likely problems. The most likely one is that your measure isn't
  really always a natural! Suppose the formals of your defun are x
  and y and your measure is (m x y). Suppose the recursive calls of
  your function are protected by tests that insure that x and y are
  naturals. Then you might assume x and y are naturals in the
  measure. But ACL2 has to prove (o-p (m x y)), where [o-p] is the
  predicate that recognizes ordinals (and naturals are ordinals).
  Note that the theorem doesn't have any hypotheses! You might
  intuitively think that your measure has to be an ordinal just under
  the conditions that lead to recursive calls. That's not what ACL2
  enforces. It has to be an ordinal, always. So you must change your
  specified measure. For example, consider wrapping [nfix] around it
  or around its uses of x and y to coerce those quantities to
  naturals. The second most likely explanation is that your measure
  returns a natural, always, but ACL2 doesn't know that and it takes
  induction to prove. This might happen if m involves some recursive
  functions. In this case, prove (natp (m x y)) before your defun.
  Perhaps you should consider making the natp lemma a
  :[type-prescription] lemma to make ACL2's typing algorithm aware of
  it.

  Q. How do I tell defun what well-founded relation to use? A. See
  [xargs], specifically :well-founded-relation.

  Q. How do I show that a relation is well-founded? A. Prove a theorem
  establishing that there is an order preserving embedding into the
  ordinals and store it with :rule-classes :[well-founded-relation].

  Q. What is an ordinal? What does it mean to be well-founded? A.
  Ordinals are an extension of the natural numbers used to insure
  that a process can't go on forever. Like naturals, they can be
  added, multiplied, and exponentiated. There is a sense of one
  ordinal being less than another. Unlike the naturals, each of which
  is finite, the ordinals include infinite objects. Now imagine
  ``standing'' on an ordinal and ``stepping'' to a smaller one. Like
  the naturals, this ``walk down the ordinals'' can't go on forever,
  even if you start on an infinite ordinal. That is because the
  ordinals are well-founded. See [o-p] for more information about
  ordinals in ACL2 and about well-foundedness. See [ordinals] for a
  deeper discussion and a discussion of books that can help configure
  ACL2 to reason about ordinals.

  Q. How can provide hints for the termination proofs in defun? A. See
  [xargs], specifically :hints (for the termination proofs) and
  :guard-hints (for the guard verification proofs).

  Q. How do I define a constant (something like a global variable)? A.
  See [defconst]. But remember that as an applicative programming
  language, ACL2 does not have global variables! You can define a
  symbol to have a fixed value and use the symbol sort of like a
  global variable in function definitions: you may refer to the value
  of the symbol in your functions without passing the variable in as
  formal parameter. But you may not ever change the value of the
  symbol!

  Q. How do I save the value of a top-level computation for future use?
  A. See [assign] and see [@].

  Q. How do I introduce new syntactic form or abbreviation? A. See
  [defmacro].

  Q. How can create and modify an array? A. ACL2 is a functional
  language, so it is impossible to destructively modify an existing
  object; technically, all ``updates'' to objects must be implemented
  by ``copy-on-write'' semantics. That said, ACL2 provides support
  for [arrays], provided you use them in a restricted way. They give
  you constant-time access and change under the use restrictions.

  Q. How do I read from or write to a file? How do I do IO? A. To
  manipulate files, your function must have [state] as an argument,
  so you should read about the restrictions that imposes. For
  input/output facilities, see [io].

  Q. How do I define a structure that can be destructively modified? A.
  ACL2 is an applicative programming language. You can't modify
  objects arbitrarily! You basically have to ``copy on write,'' which
  means you construct new objects from old ones, making the changes
  you want in the new one. If the car of some object is 1 at one
  moment and 2 later, then the basic logical axiom (car x) = (car x)
  is violated! However, if the only reference to the old object,
  e.g., x, was to pass it to the code that copied and ``changed'' it,
  then ACL2 can re-use the old object to produce the new one and the
  axioms would not object. Such syntactic restrictions can make x a
  modifiable structure but they will impose a heavy burden on you as
  a programmer: if pass such an x to a function and the function
  modifies it, then you must pass x only to that function and you
  must return the modified value and use it henceforth. Such objects
  are said to be single threaded. See [defstobj].

  Q. How do I write a universal quantifier? An existential quantifier?
  How can I say ``for all'' or ``there exists''? A You can't
  literally write quantifiers. But ACL2 has the power of full first
  order logic with quantification. See [quantifiers].

  Q. How do I introduce an undefined or uninterpreted function symbol?
  Can I constrain it to have certain properties? A. See
  [encapsulate].

  Q. How can I hide a lemma? I want to prove a lemma temporarily to use
  in another proof but I don't want the lemma around thereafter. A.
  One way to get a similar effect is to prove the lemma and then
  disable it with an (in-theory (disable ...)) event; see
  [in-theory]. Another way is to put the lemma and the theorem that
  needs it into an [encapsulate] and wrap a [local] around the lemma.

  Q. What is an event? A. An event is a command that adds information
  to the ACL2 database (the ``logical world''), like defun or defthm.
  See [events].

  Q. How do I say that I do not want a rewrite rule generated from a
  theorem? A. The command

    (defthm name formula
            :rule-classes nil)

  will attempt to prove formula and, if successful, give formula the
  name name, which you may use in hints as a theorem, but it will
  build no rules from the formula.

  Q. How do I say that I want a formula to be stored as a rewrite rule?
  A. The command

    (defthm name formula)

  will attempt to prove formula and, if successful, it will give
  formula the name name and generate a rewrite rule from it, with the
  runic name (:rewrite name)]. It could happen that formula generates
  more than one rewrite rule, e.g., this happens if the conclusion is
  an AND. In this case, each conjunctive branch through the
  conclusion generates a rule named (:rewrite name . i), for
  i=1,2,... For more details, see [rewrite].

  Q. How do I say that I want a formula to be stored as a rewrite rule
  and some other kinds of rules? A. The command

    (defthm name formula
            :rule-classes (:class1 ... classk))

  will attempt to prove formula and, if successful, it will give
  formula the name name and generate a rule of each :classi
  specified. Each :classi should either be a keyword, like :REWRITE
  or :GENERALIZE, naming a rule class (see [rule-classes]), or else
  should be a list that starts with a rule class and then lists the
  relevant modifiers. Be sure to include :REWRITE among the rule
  classes if you want the formula to generate a rewrite rule. It
  doesn't do that automatically if you explicitly specify
  :rule-classes!

  Q. How do I rearrange the shape of a formula before generating a rule
  from it? A. See [rule-classes] and read about the :corollary
  modifier.

  Q. What is a type-prescription? A. ACL2 has an algorithm for
  determining the type of object returned by a term, where a type is
  one of the Common Lisp primitive datatypes such as natural,
  integer, Boolean, cons, true-listp, etc. Rules provided by you can
  influence this algorithm. See [type-prescription].

  Q. How do rewrite rules work? A. Re-read the tutorial sections:
  [introduction-to-rewrite-rules-part-1] and
  [introduction-to-rewrite-rules-part-2].

  Q. How do I see what's in the database? A. You can't look at the
  entire database with user-friendly tools. You can print the command
  that introduced a particular name, print the entire sequence of
  user commands, print the commands in the region between two
  commands, print all the rewrite rules that apply to a given term or
  function symbol, and many other options. See [history]. If you have
  loaded a book from another user, you might wish to read the source
  file. For example, the source file for (include-book
  \"arithmetic-5/top\" :dir :system) is the file named
  arithmetic-5/top.lisp on the acl2-sources/books/ directory where
  ever your ACL2 sources are installed. Often, books are
  well-documented by comments by their authors. Some books have
  Readme or README files on the same directory.

  Q. How do I undo a command? A. See [history], especially see [u]
  (``undo'') and see [ubt] (``undo back through''). Q. What rewrite
  rules match a given term? A. See [pl].

  Q. What were those questions to ask when looking at key checkpoints?
  A. See [introduction-to-key-checkpoints].

  Q. How do I figure out why a rewrite rule won't fire? A. If you
  activate rewrite rule monitoring (see [brr]) and then install a
  monitor (see [monitor]) on the rule in question, ACL2 will enter an
  interactive break whenever the pattern of the rule is matched
  against a target in a proof. So after installing the monitor,
  re-try the proof and then interact with the rewriter via break
  commands (see [brr-commands]). Like all trace and break packages,
  you have to know what you're doing to use the break rewrite
  facility, so read the material in the reference manual. If no
  interactive break happens after you've installed the monitor on
  your rule and re-tried the proof, it means no suitable target ever
  arose. Don't forget to turn off monitoring when you're done as it
  slows down the system.

  Q. Why is a proof taking so long? A. Unexpectedly poor performance on
  simple problems is usually a sign of cyclic rewriting or
  combinatoric explosion. See [dmr] and see
  [accumulated-persistence].

  Q. How do I tell ACL2 what induction to do for a particular formula?
  A. When issuing the defthm command for the formula, supply an
  :induct hint:

    (defthm name
            formula
            :hints ((\"Goal\" :induct (f x1 ... xn))))

  where f is a function that recurs the way you want the induction to
  unfold and x1 ... xn are the relevant variables in formula. You
  usually have to define f appropriately for each formula that needs
  an induct hint, though sometimes you can re-use an earlier f or one
  of the functions in the formula itself. It doesn't matter what
  value (f x1 ... xn) returns. All that matters is how it recurs. The
  termination analysis for f justifies the induction done. See
  [hints], especially the section on :induct hints; also see
  [induction].

  Q. ACL2 doesn't know simple arithmetic that can simplify the term (+
  1 -1 x). A. You should load an arithmetic book whenever you're
  dealing with an arithmetic problem. The simplest arithmetic book is
  typically loaded with the event (include-book
  \"arithmetic/top-with-meta\" :dir :system). If you're using floor and
  mod or non-linear arithmetic like (* x y) you should use
  (include-book \"arithmetic-5/top\" :dir :system). See also the
  discussion of arithmetic books under the ``Lemma Libraries and
  Utilities'' link of the ACL2 home page, and see [community-books].

  Q. ACL2 is not using an arithmetic lemma that I proved. A. Lemmas
  concluding with arithmetic inequalities, like

    (implies (member e x)
             (< (len (delete e x)) (len x)))

  are not good rewrite rules because they rarely match targets because
  of intervening arithmetic operators. For example, the above
  conclusion doesn't match (< (LEN (DELETE E X)) (+ 1 (LEN X))). You
  should store such lemmas as :linear rules by using the command:

    (defthm len-delete
      (implies (member e x)
               (< (len (delete e x)) (len x)))
      :rule-classes :linear)

  See [linear].

  Q. What is a linear rule? A. See [linear].

  Q. How do I make ACL2 treat a relation as an equality? A. We assume
  you mean to treat the relation as an equivalence, i.e., replace one
  term by another when they are equivalent under your relation. See
  [equivalence], see [congruence], and see [refinement].

  Q. One of my rewrite rules has a hypothesis that doesn't rewrite to
  true. What do I do? A. Prove a rewrite rule that establishes that
  hypothesis under the relevant assumptions from the context of the
  intended target. Alternatively, undo the rule and restate it with a
  [force] around the problematic hypothesis, making ACL2 assume the
  hypothesis when the rule is applied and raising the truth of the
  hypothesis as an explicit subgoal of the proof. See also
  [case-split]. Of course, you should always state the strongest
  rewrite rules you can think of, eliminating hypotheses or shifting
  them to the right-hand side inside of IFs; see
  [strong-rewrite-rules].

  Q. How do I make ACL2 ``guess'' the right instantiation of a free
  variable? A. You can provide a :restrict hint that names the
  problematic lemma and provides an instantiation of the free
  variable. See [hints], specifically :restrict. You could
  alternatively give a hint that :uses the rule and provides the
  appropriate instantiation in full. See [hints], specifically :use.
  Recall that ACL2 guesses free variable instantiations by matching
  the problematic hypothesis to the assumptions in the context of the
  target. If the appropriate assumption is present but ACL2 is
  finding another one, try undoing the problematic rule and proving
  it again, specifying the :match-free :all modifier of the :rewrite
  or :linear rule class. See [rule-classes]. Alternatively, undo and
  prove the problematic rule again and use a [bind-free] form to
  compute the appropriate instantiation.

  Q. How can I make ACL2 do a case split to prove a certain subgoal? A.
  See [hints], specifically :cases.

  Q. How can I prevent ACL2 from using a rewrite rule? A. See [hints],
  specifically :in-theory (disable ...). If the use of the rule is
  problematic in only one subgoal and the lemma is needed in other
  subgoals, disable the lemma only in the problematic subgoal by
  specifying the subgoal name (e.g., \"Subgoal 1/3.2.1\") as the goal
  specifier in the hint. If the rule isn't needed anywhere in the
  proof, you could use the specifier \"Goal\". If you don't think the
  rule will ever be needed for a while, you could globally disable it
  with the event (in-theory (disable ...)) (see [in-theory]) executed
  before the first problematic proof. If the rule has never been used
  or must always be disabled, undo it and prove it again with
  :[rule-classes] nil.

  Q. How can I prevent ACL2 from running a definition on constants? I
  tried disabling the function but that didn't work. A. If you have a
  function named f then disabling f will disable the definitional
  axiom about f. But ACL2 has another kind of rule about f, telling
  it how to evaluate f. The [rune] of this rule is
  (:executable-counterpart f). Try disabling that, as in the :[hints]
  ((... :in-theory (disable (:executable-counterpart f)) ...c[)).

  Q. How can I make ACL2 use a rule in a proof? A. See [hints],
  specifically :use.

  Q. How can I make ACL2 expand a function call in a proof? A. You can
  give an :See [expand] hint.

  Q. ACL2 sometimes aborts the proof attempt before showing me all of
  the subgoals. How can I make it just keep going instead of aborting
  early? A. See [otf-flg], which stands for Onward Thru the Fog FLaG.

  Q. How can I compute when I want a rule to fire? A. See [syntaxp].

  Q. How can I add pragmatic advice to a lemma after it has been
  proved? For example, how can add a forced hypothesis, a backchain
  limit, or a syntaxp test? A. You can't. You can undo the lemma,
  restate it appropriately, and prove it again. This produces the
  cleanest database. Alternatively, you can prove the restated lemma
  under a new name -- a task that should be easy since the old
  version is in the database and will presumably make the proof
  trivial -- and then disable the old name.

  Q. How can I stop ACL2 from rewriting a term? A. If you need
  rewriting done but want to prevent some particular terms from being
  rewritten, see [hints], specifically :hands-off. Alternatively,
  consider embedding the problematic term in a [hide]. Users sometime
  develop special theories (see [theory]) containing just the rules
  they want and then use hints to switch to those theories on the
  appropriate subgoals.

  Q. Can I compute which subgoals a hint refers to? A. Yes, see
  [computed-hints]. This topic is for advanced users but knowing that
  it is possible might come in handy someday.

  Q. I want the rewriter to always use one theory and then switch to
  another so that it doesn't use my most complicated before until
  doing the simple things. A. This is possible but is something for
  the advanced user. It can be done using a form of [computed-hints].
  See [using-computed-hints-7].

  Q. Is there a way to attach the same hint to every defthm? A. See
  [default-hints].

  Q. How can I just tell ACL2 the proof steps? A. See [verify] and see
  [proof-checker].

  Q. How can I write my own simplifier? A. See [meta].

  Q. How can I add an axiom or just assume some lemma without proof? A.
  This is very dangerous but is a good strategy for exploring whether
  or not a certain set of lemmas (and their rules) is sufficient to
  prove your goal. See [defaxiom] and see [skip-proofs].

  Q. How can redefine a user-defined function? A. This is tricky. What
  if you've already proved theorems about the old definition and then
  wish to change it? There are several options. See
  [ld-redefinition-action] (and note specifically the discussion of
  updater function for it, set-ld-redefinition-action); also see
  [redef], see [redef!], see [redef+], and see [redef-].

  Q. How do I change a function from :program mode to :logic mode? A.
  See [verify-termination].

  Q. How do I change the guards on a function? A. You can't. Undo it
  and redefine it.

  Q. What is program mode? A. See [program].

  Q. What does the ACL2 prompt mean? A. See
  [introduction-to-a-few-system-considerations] or, specifically, see
  [prompt].

  Q. What is logic mode? A. See [logic].

  Q. How do I get into or out of :program mode? :Logic mode? A. See
  [program] and see [logic]. You can enter these modes temporarily
  for a particular [defun] by using (declare (xargs :mode :program))
  or (declare (xargs :mode :logic)) after the list of formal
  parameters to the definition.

  Q. How do I quit from ACL2? A. This varies depending on the interface
  you're using. See [introduction-to-a-few-system-considerations].

  Q. How do I load a file of definitions and theorems created by
  someone else? A. See [include-book].

  Q. How do I create my own book of definitions and theorems? A. See
  [books].

  Q. Where are the books referenced by :dir :system on my machine? A.
  If your ACL2 is installed on the directory dir/acl2-sources and you
  follow the standard installation instructions, then the books are
  typically the files under the directory dir/acl2-sources/books/.

  Q. How can I find out what books are available? A. Go to the ACL2
  home page, http://www.cs.utexas.edu/u/moore/acl2/ and look at the
  link labeled ``Lemma Libraries and Utilities.''

  Q. How do I produce my own book? A. See [books].

  Q. What is a decision procedure? What decision procedures does ACL2
  have? A. A decision procedure is an algorithm that given enough
  time and space can determine, for all the formulas in a certain
  syntactic class of formulas, whether the formula is a theorem or
  not. The most well-known decision procedure is for propositional
  calculus: by testing a formula under all the combinations Boolean
  assignments to the variables, one can decide if a propositional
  formula is a theorem. The syntactic class consists of all formulas
  you can write using just variables, constants, and compositions of
  the functions and, or, not, implies, iff, and if. There are, of
  course, an exponential number of different assignments so the
  algorithm can be slow. ACL2 contains a propositional decision
  procedure based on symbolic normalization that can be faster than
  trying all the combinations of truthvalues -- but is not guaranteed
  to be faster. ACL2 also contains an optional [bdd] procedure. ACL2
  also contains a decision procedure for rational arithmetic
  involving variables, rational constants, addition, multiplication
  by rational constants, equality, and the various versions of
  arithmetic inequality (<, <=, >=, and >). It can be extended with
  :[linear] lemmas. ACL2 is complete for equality over uninterpreted
  (e.g., undefined and unconstrained) function symbols using an
  algorithm based on transitive closure of equivalence classes under
  functional substitutivity. Finally, you can make ACL2 use other
  decision procedures, even ones implemented outside of ACL2; see
  [clause-processor].

  Q. ACL2 has the change of variable trick (destructor elimination)
  that it does to get rid of (CAR X) and (CDR X) by replacing x by
  (CONS A B). Is there a way to make ACL2 do that for other terms? A.
  Yes. See [elim].

  Q. How can I prevent destructor elimination? A. See [hints],
  specifically :do-not '(eliminate-destructors).

  Q. How can I prevent cross-fertilization? A. See [hints],
  specifically :do-not '(fertilize).

  Q. How can I prevent generalization? A. See [hints], specifically
  :do-not '(generalize).

  Q. How can I make ACL2 impose a restriction on a new variable
  introduced by destructor elimination or generalization? A. See
  [generalize].

  Q. What rule classes are there? A. See [rule-classes].

  Q. What is a theory? A. See [theories].

  Q. How are hints inherited by the children of a subgoal? A. See
  [hints-and-the-waterfall].

  Q. How do I use ACL2 under Emacs? A. See [emacs].

  Q. How do I use ACL2 under Eclipse? A. See [ACL2-Sedan].

  Q. How do I interrupt the prover? A. The keyboard sequence for
  interrupting a running process depends your operating system, host
  Common Lisp, and user interface (e.g., Emacs, Eclipse, etc.). But
  perhaps a few examples will help you discover what you need to
  know. If your host Common Lisp is GCL or Allegro and you are typing
  directly to the Common Lisp process, then you can interrupt a
  computation by typing ``ctrl-c'' (hold down the Control key and hit
  the ``c'' key once). But other Lisps may require some other control
  sequence. If you are typing to an Emacs process which is running
  the GCL or Allegro Common Lisp process in a shell buffer, you
  should type ctrl-c ctrl-c -- that is, you have to type the
  previously mentioned sequence twice in succession. If you are
  running the ACL2 Sedan, you can use the Interrupt Session button on
  the tool bar. The environment you enter when you interrupt depends
  on various factors and basically you should endeavor to get back to
  the top level ACL2 command loop, perhaps by typing some kind of
  Lisp depenent ``abort'' command like A or :q, or :abort!. You can
  usually determine what environment you're in by paying attention to
  the prompt.

  Q. What is the ACL2 loop? A. That is the name given to the
  interactive environment ACL2 provides, a ``read-eval-print loop''
  in which the user submits successive commands by typing ACL2
  expressions and keyword commands. See
  [introduction-to-a-few-system-considerations].

  Q. What is raw lisp? A. That is our name for the host Common Lisp in
  which ACL2 is implemented. See
  [introduction-to-a-few-system-considerations]. There is an ACL2
  mode named raw mode which is different from ``raw lisp.'' See
  [set-raw-mode].

  Q. Can I get a tree-like view of a proof? A. See [proof-tree] for an
  Emacs utility that displays proof trees and allows you to navigate
  through a proof from the proof tree. The ACL2 Sedan also supports
  proof trees and you should see the ACL2s documention on that topic.

  Q. I used the earlier Boyer-Moore theorem prover, Nqthm. How is ACL2
  different? A. See [nqthm-to-ACL2].

  If you are reading this as part of the tutorial introduction to the
  theorem prover, use your browser's Back Button now to return to
  [introduction-to-the-theorem-prover].")
 (FULL-BOOK-NAME
  (BOOKS-REFERENCE)
  "Book naming conventions assumed by ACL2

  For this discussion we assume that the resident operating system is
  Unix (trademark of AT&T), but analogous remarks apply to other
  operating systems supported by ACL2; see [pathname].

  ACL2 defines a ``full book name'' to be an ``absolute filename
  string,'' that may be divided into contiguous sections: a
  ``directory string'', a ``familiar name'' and an ``extension''. See
  [pathname] for the definitions of ``absolute,'' ``filename
  string,'' and other notions pertaining to naming files. Below we
  exhibit the three sections of one such string:

    \"/usr/home/smith/project/arith.lisp\"

    \"/usr/home/smith/project/\"           ; directory string
                            \"arith\"      ; familiar name
                                 \".lisp\" ; extension

  The sections are marked by the rightmost slash and rightmost dot, as
  shown below.

    \"/usr/home/smith/project/arith.lisp\"
                            |     |
                            slash dot
                            |     |
    \"/usr/home/smith/project/\"           ; directory string
                            \"arith\"      ; familiar name
                                 \".lisp\" ; extension

  The directory string includes (and terminates with) the rightmost
  slash. The extension includes (and starts with) the rightmost dot.
  The dot must be strictly to the right of the slash so that the
  familiar name is well-defined and nonempty.

  If you are using ACL2 on a system in which file names do not have
  this form, please contact the authors and we'll see what we can do
  about generalizing ACL2's conventions.

  We conclude with a remark about a representation of full book names
  that is used in [certificate] files and [make-event] expansions.
  When the system books directory is a prefix of a full book name,
  ACL2 may choose to write a full book name as (:system . \"suffix\"),
  where \"suffix\" is the result of removing the system books directory
  from the front of the full book name. Here is an example.

    ; full book name:
    \"/Users/smith/acl2/acl2/books/std/portcullis.lisp\"

    ; alternate representation
    ; (where \"/Users/smith/acl2/acl2/books/\" is the system books directory):
    (:SYSTEM . \"std/portcullis.lisp\")

  Conversely, in some contexts ACL2 will convert :system . \"suffix\" to
  an absolute pathname. Generally \"suffix\" will be a relative
  pathname, such as \"dir/filename.lisp\"; in that case, the system
  books directory will be concatenated with \"suffix\" to form a
  corresponding full book name. However, if \"suffix\" is an absolute
  pathname, such as \"/u/smith/foo.lisp\", then the corresponding full
  book name is simply that absolute pathname; essentially, the
  :system prefix is dropped.")
 (FUNCTION-THEORY
  (THEORIES THEORY-FUNCTIONS)
  "Function symbol rules as of logical name

    Examples:
    (function-theory :here)
    (function-theory 'lemma3)

  See [logical-name].

    General Form:
    (function-theory logical-name)

  Returns the theory containing all the :[definition] [rune]s, whether
  [enable]d or not, that existed immediately after [logical-name] was
  introduced. See the documentation for [theories], [logical-name]
  and [executable-counterpart-theory].

  You may experience a fencepost problem in deciding which logical name
  to use. [Deflabel] can always be used to mark unambiguously for
  future reference a particular point in the development of your
  theory. The order of [events] in the vicinity of an [encapsulate]
  is confusing. See [encapsulate].

  This ``function'' is actually a macro that expands to a term
  mentioning the single free variable [world]. When theory
  expressions are evaluated by [in-theory] or the :[in-theory] hint,
  [world] is bound to the current ACL2 [world].")
 (FUNCTIONAL-INSTANTIATION
  (ENCAPSULATE)
  "An analogue in ACL2 of higher-order logical reasoning. Functional
  instantiation allows you to prove theorems ``by analogy'' with
  previous theorems. See [hints] and see [lemma-instance].


Subtopics

  [Functional-instantiation-example]
      A small proof demonstrating functional instantiation

  [Functional-instantiation-in-ACL2r]
      Additional requirements for :functional-instance hints in ACL2(r)

  [Lemma-instance]
      An object denoting an instance of a theorem")
 (FUNCTIONAL-INSTANTIATION-EXAMPLE
  (FUNCTIONAL-INSTANTIATION TUTORIAL5-MISCELLANEOUS-EXAMPLES)
  "A small proof demonstrating functional instantiation

  The example below demonstrates the use of functional instantiation,
  that is, the use of a generic result in proving a result about
  specific functions. In this example we constrain a function to be
  associative and commutative, with an identity or ``root,'' on a
  given domain. Next, we define a corresponding function that applies
  the constrained associative-commutative function to successive
  elements of a list. We then prove that the latter function gives
  the same value when we first reverse the elements of the list.
  Finally, we use functional instantiation to derive the
  corresponding result for the function that multiplies successive
  elements of a list.

  The details of the proof (such as the [in-theory] event and
  particulars of the lemmas) are not the point here. Rather, the
  point is to demonstrate the interaction of [encapsulate] [events]
  and :functional-instance [lemma-instance]s. Of course, if you are
  interested in details then you may find it helpful to run these
  [events] through ACL2.

  Also see [constraint] for more about :functional-instance and see
  [lemma-instance] for general information about the use of
  previously-proved lemmas.

    (in-package \"ACL2\")

    (encapsulate
     (((ac-fn * *) => *)
      ((ac-fn-domain *) => *)
      ((ac-fn-root) => *))
     (local (defun ac-fn (x y) (+ x y)))
     (local (defun ac-fn-root () 0))
     (local (defun ac-fn-domain (x) (acl2-numberp x)))
     (defthm ac-fn-comm
       (equal (ac-fn x y)
              (ac-fn y x)))
     (defthm ac-fn-assoc
       (equal (ac-fn (ac-fn x y) z)
              (ac-fn x (ac-fn y z))))
     (defthm ac-fn-id
       (implies (ac-fn-domain x)
                (equal (ac-fn (ac-fn-root) x)
                       x)))
     (defthm ac-fn-closed
       (and (ac-fn-domain (ac-fn x y))
            (ac-fn-domain (ac-fn-root)))))

    ;;;;;;;;;;;;;;;;;;;;;;;
    ; End of encapsulate. ;
    ;;;;;;;;;;;;;;;;;;;;;;;

    ; Define a ``fold'' function that iteratively applies ac-fn over a list.
    (defun ac-fn-list (x)
      (if (atom x)
          (ac-fn-root)
        (ac-fn (car x)
               (ac-fn-list (cdr x)))))

    ; Recognize lists all of whose elements are in the intended domain.
    (defun ac-fn-domain-list (x)
      (if (atom x)
          t
        (and (ac-fn-domain (car x))
             (ac-fn-domain-list (cdr x)))))

    ; Define a list reverse function.
    (defun rev (x)
      (if (atom x)
          nil
        (append (rev (cdr x))
                (list (car x)))))

    ; The following is needed for proving ac-fn-list-append, which is
    ; needed for proving ac-fn-list-rev.
    (defthm ac-fn-list-closed
       (ac-fn-domain (ac-fn-list x)))

    ; Needed for proving ac-fn-list-rev:
    (defthm ac-fn-list-append
      (implies (and (ac-fn-domain-list x)
                    (ac-fn-domain-list y))
               (equal (ac-fn-list (append x y))
                      (ac-fn (ac-fn-list x)
                             (ac-fn-list y)))))

    ; Needed for proving ac-fn-list-rev:
    (defthm ac-fn-domain-list-rev
      (equal (ac-fn-domain-list (rev x))
             (ac-fn-domain-list x)))

    ; The following is a good idea because without it, the proof attempt
    ; for ac-fn-list-rev (see just below) fails with the term (HIDE
    ; (AC-FN-LIST NIL)).  It is often a good idea to disable
    ; executable-counterparts of functions that call constrained
    ; functions.
    (in-theory (disable (:executable-counterpart ac-fn-list)))

    (defthm ac-fn-list-rev
      (implies (ac-fn-domain-list x)
               (equal (ac-fn-list (rev x))
                      (ac-fn-list x))))

    ; Our goal now is to apply functional instantiation to ac-fn-list-rev
    ; in order to prove the corresponding theorem, times-list-rev, based
    ; on * instead of ac-fn.

    (defun times-list (x)
      (if (atom x)
          1
        (* (car x)
           (times-list (cdr x)))))

    (defun number-listp (x)
      (if (atom x)
          t
        (and (acl2-numberp (car x))
             (number-listp (cdr x)))))

    ; The following relies on the following built-in rules for * (whose
    ; statements correspond directly to their names): commutativity-of-*,
    ; associativity-of-*, and unicity-of-1.

    (defthm times-list-rev
      (implies (number-listp x)
               (equal (times-list (rev x))
                      (times-list x)))
      :hints ((\"Goal\"
               :use
               ((:functional-instance
                 ac-fn-list-rev
                 ;; Instantiate the generic functions:
                 (ac-fn *)
                 (ac-fn-root (lambda () 1))
                 (ac-fn-domain acl2-numberp)
                 ;; Instantiate the other relevant functions:
                 (ac-fn-list times-list)
                 (ac-fn-domain-list number-listp))))))")
 (FUNCTIONAL-INSTANTIATION-IN-ACL2R
  (FUNCTIONAL-INSTANTIATION)
  "Additional requirements for :functional-instance hints in ACL2(r)

  This documentation topic relates to ACL2(r), the modification of ACL2
  that supports the real numbers (see [real]).

  See [hints] and see [lemma-instance] for a discussion of :use hints
  that employ the :functional-instance keyword. Here, we document
  additional requirements for such hints that applies to ACL2(r). We
  assume familiarity with lemma instances; see [lemma-instance].

  (1) When functionally instantiating a non-classical formula, it is
  illegal to use pseudo-lambda expressions in a lemma instance.

  (2) A classical function symbol must be bound either to a classical
  function symbol or to a lambda (or, if allowed, pseudo-lambda)
  expression with a classical body. Similarly, a non-classical
  function symbol must be bound either to a non-classical function
  symbol or to a lambda (or, if allowed, pseudo-lambda) expression
  with a non-classical body.")
 (FUNCTIONS_FOR_MANIPULATING_THESE_OBJECTS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Functions for Manipulating these Objects

  [{IMAGE}]

  Consider a typical ``stack'' of control frames.

  {IMAGE}

  Suppose the model required that we express the idea of ``the most
  recent frame whose return program counter points into MAIN.''

  The natural expression of this notion involves

  function application --- ``fetch the return-pc of this frame''

  case analysis --- ``if the pc is MAIN, then ...''

  iteration or recursion --- ``pop this frame off and repeat.''

  The designers of ACL2 have taken the position that a programming
  language is the natural language in which to define such notions,
  provided the language has a mathematical foundation so that models
  can be analyzed and properties derived logically.

  Common Lisp is the language supported by ACL2. To be precise, a small
  applicative subset of Common Lisp is the language supported by
  ACL2.

  [{IMAGE}]")
 (FURTHER-INFORMATION-ON-REWRITING
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "A grab bag of advice and information on rewriting

  In the following paragraphs we give some links to advanced topics,
  marked with ``[{ICON}]''. If you are reading this topic as part of
  the tutorial on the theorem prover, do not follow these links upon
  your first reading. Just take note of the existence of the
  facilities and ideas mentioned.

  [Arithmetic]: If your goal theorem involves even trivial arithmetic,
  such as adding or subtracting 1, we recommend that you do

    (include-book \"arithmetic/top-with-meta\" :dir :system)

  which loads into ACL2 all the rules in one of the so-called ACL2
  ``community books''. (Books are certified files of definitions,
  lemmas, etc., usually prepared by other ACL2 users and explicitly
  shared with the community. The ACL2 installation instructions
  suggest downloading the community books.) The book \"top-with-meta\"
  is the most elementary and most widely used arithmetic book. Other
  community books include \"arithmetic-5/top\" and various hardware and
  floating-point arithmetic books.

  Rules Concluding with Arithmetic Inequalities: If you are tempted to
  create a rewrite rule with an arithmetic inequality as its
  conclusion or left-hand side, think again. Inequalities such as

    (<= (len (delete e x)) (len x))

  make poor left-hand sides for rewrite rules. For example, the
  inequality above does not match the target

    (<= (LEN (DELETE E X)) (+ 1 (LEN X)))

  even though it is sufficient to prove the target (given some simple
  arithmetic). We recommend that if you have a theorem that
  establishes an arithmetic inequality, you make it a linear rule.
  See [linear] [{ICON}].

  Rearranging Formulas Before Making Rules: It is possible to rearrange
  the propositional structure of a proved formula before processing
  it as a rule. This allows you to state a theorem one way ``for
  publication'' and rearrange it to be stored as a more effective
  rule. See [introduction-to-the-database] (a tutorial topic you'll
  come to later) and its discussion of the concept of corollary.
  Also, see the discussion of corollary in [rule-classes] [{ICON}].

  Rewriting with New Equivalence Relations: You may introduce new
  equivalence relations, like ``set-equal'' or ``is-a-permutation''
  and cause the rewriter to replace equivalents by equivalents in
  suitable contexts, where you use congruence rules to inform ACL2 of
  where these more relaxed notions of equivalence may be used; see
  [equivalence] [{ICON}] and see [congruence] [{ICON}].

  Pragmatic Advice to Control Rules: You may attach various pragmas to
  a rule that allow you rather fine heuristic control over whether
  and how the rule is applied. For example, you may mark a hypothesis
  to be forced (see [force] [{ICON}]) meaning that the rule is to be
  applied even if that hypothesis is not relieved -- but if the proof
  is successful the system will turn its attention to all forced
  subgoals. You may similarly mark a hypothesis so as to cause a case
  split, allowing the relief of the hypothesis on one branch and
  spawning another branch explicitly denying the hypothesis; see
  [case-split] [{ICON}]. You may add a bogus hypothesis that looks at
  the intended application of the rule and decides whether to apply
  the rule or not, performing an arbitrary computation on the
  syntactic context of the application; see [syntaxp] [{ICON}]. By
  providing a :match-free modifier to the :rewrite rule declaration
  in your rule-classes, you may tell ACL2 to try all or only the
  first free variable value it guesses (see [rule-classes] [{ICON}]).
  You may provide a bogus hypothesis that computes from the syntactic
  environment the values to guess for the free variables in a rule;
  see [bind-free] [{ICON}]. You may mark a term so that the rewriter
  does not dive into it; see [hide] [{ICON}].

  Programming Your Own Rewriter: If you cannot find a way to use
  rewrite rules to make the transformations you desire, you might
  investigate the use of metafunctions. A metafunction is just a
  little theorem prover of your own design. It takes as input a list
  structure representing a term and returns a list structure
  representing a term. If you can prove that the meaning of the input
  and output terms are equivalent, you can extend the ACL2 simplifier
  to call your metafunction. See [meta] [{ICON}].

  The Order in which Targets are Rewritten: The rewriter sweeps through
  terms ``inside-out'' otherwise known as ``left-most innermost
  first''. Thus, before trying to apply rewrite rules to (f a1 ...
  an), rules are applied to the ai. This has the good effect of
  normalizing the ai.

  This fact might help you understand why sometimes your rules ``don't
  seem to fire.'' For example, suppose you have a rule for rewriting
  (len (rev x)) to (len x) and suppose you wish to prove a theorem
  about (LEN (REV (CONS A B))). Suppose rev is defined in terms of
  append, as shown in [programming-knowledge-taken-for-granted]. Then
  you might see a checkpoint in which the (LEN (REV ...)) above has
  been simplified to (LEN (APPEND (REV B) (LIST A))) instead of to
  (LEN (CONS A B)). Why wasn't your rule about (len (rev x)) applied?
  The reason is that (REV (CONS A B)) rewrote to (APPEND (REV B)
  (LIST A)) before rules were applied to (LEN (REV ...)). You need a
  rule about (len (append x y)), as you will see from the checkpoint.

  The Order in which Rules are Tried: The rewriter tries the most
  recently proved rules first. For example, suppose f, g, and h are
  functions defined so that the following two theorems are provable
  and suppose you executed the following two events in the order
  shown:

    (defthm rule1 (equal (f (g x)) (h 1 x)))
    (defthm rule2 (equal (f (g x)) (h 2 X)))

  Then if rewrite rules are applied to (F (G A)), the result will be (H
  2 A), because the latter rule, rule2, is applied first. It is
  generally best not to have conflicting rules or, at least, to
  understand how such conflicts are resolved. The system will warn
  you when you propose a rule that conflicts with an existing one.

  If you were reading this topic as part of the tutorial introduction
  to the theorem prover, use your browser's Back Button now to return
  to [introduction-to-rewrite-rules-part-2].")
 (FUTURE-WORK-RELATED-TO-THE-TAU-SYSTEM
  (INTRODUCTION-TO-THE-TAU-SYSTEM)
  "Some tau system problems that we hope someone will address

  The tau system is inexpressive compared to modern polymorphic type
  systems --- something that may be unavoidable in an untyped
  first-order language. However, we believe its effectiveness could
  be greatly increased by the development of some additional tools.
  We also believe that most of these tools could be provided by ACL2
  users creating certified community books that exploit the basic
  tools already provided. It is likely the initial attempts to create
  such books will show the inadequacy of some of the current
  algorithms and data structures in the tau system and might point
  the way to improvements.

  As implementors of ACL2 our preference is to support the improvement
  of the core algorithms and data structures and provide customizable
  hooks allowing users to exploit them by developing effective and
  convenient interfaces. However, we want the further elaboration and
  optimization of the tau system to be based on user experience not
  just speculation.

  Some tools we think might help are listed below. We invite volunteers
  and further suggestions.

  A tau-centric signature notation for use in function definitions,
  exploited by a macro replacing defun so that input-output
  relationships phrased in tau terms are proved as :tau-system rules
  immediately after functions are introduced:

  We have, for example, experimented with a book defining a macro that
  allows the definition of the function ap (append) accompanied by a
  signature rule. Subsequent defsig events can add other signatures
  in the same notation.

    (defsig ap (true-listp * true-listp ==> true-listp) (x y)
       (if (consp x)
           (cons (car x) (ap (cdr x) y))
           y))

    (defsig ap (integer-listp * integer-listp ==> integer-listp))

  This experimental book provides succinct syntax for all tau
  signatures. For example, that book parses the signature

    (NATP (/= 3 5 7) (< 16) * TRUE-LISTP ==> BOOLEANP * INTEGER-LISTP * NATP)

  to be the signature of a function with two inputs and three outputs.
  The first input must be a natural number, different from 3, 5, and
  7, and less than 16. The second input must be a true list. The
  first output is a boolean, the second a list of integers, and the
  third a natural.

  To express this signature for function fn as a formula requires
  significantly more typing by the user:

    (IMPLIES (AND (NATP X)
                  (NOT (EQUAL X 3))
                  (NOT (EQUAL X 5))
                  (NOT (EQUAL X 7))
                  (< X 16)
                  (TRUE-LISTP Y))
             (AND (BOOLEANP (MV-NTH 0 (FN X Y)))
                  (INTEGER-LISP (MV-NTH 1 (FN X Y)))
                  (NATP (MV-NTH 2 (FN X Y)))))

  We suspect that the provision of some succinct tau-centric notation
  (not necessarily the one above) for signatures at definition-time
  will mean users get more benefit from the tau system.

  Some tau inference mechanisms: This phrase suggests two different
  improvements. One is to implement a mechanism that adds or
  completes signatures for function definitions by exploiting
  knowledge of commonly used recursive schemas and the signatures of
  the subroutines in the body. For example, the definition of ap
  above rather obviously has the signature

    (integer-listp * integer-listp ==> integer-listp)

  and many others just based on the two recursive schemas that (a)
  collect certain elements from lists and (b) check that all elements
  have a certain property.

  The other ``tau inference'' improvement is to implement a mechanism
  for inferring relations between user-defined Booleans, perhaps by
  exploiting example generation, testing, and knowledge of recursive
  schemas. For example, it is fairly obvious that [symbol-alistp]
  implies [alistp]. Making the user state these relations invites
  omissions that render the tau system very unpredictable.

  A tau assistant: It would be useful to have a way to find out what
  tau rules are missing. Given a term that the user believes should
  ``obviously'' have some tau (``type'') what rules might be added to
  make the tau algorithm compute that expected tau? For example, if
  (g x) is known to satisfy P and (f x) is known to satisfy R when
  its argument satisfies S:

    g : T ==> P
    f : S ==> R

  then if the user asserts that (f (g x)) ``ought'' to have tau R, one
  plausible suggestion is the simple tau rule that (P x) implies (S
  x). Such assistance --- while still confronting an undecidable
  problem --- might be easier to implement within the tau framework
  than more generally in ACL2. (Many users have wanted such an
  assistant to suggest lemmas for the rewriter.)")
 (GAG-MODE
  (PROVER-OUTPUT)
  "Verbosity of proof output

  Please see [set-gag-mode] for an explanation of gag-mode, which can
  take any of the following values:

    (gag-mode) ; generally evaluates to t, nil, or :goals")
 (GC$
  (MISCELLANEOUS ACL2-BUILT-INS)
  "Invoke the garbage collector

  This function is provided so that the user can call the garbage
  collector of the host Lisp from inside the ACL2 loop. Specifically,
  a call of gc$ is translated into a call of a function below on the
  same arguments.

    Allegro CL:            excl:gc
    CCL                    ccl::gc
    CLISP                  ext:gc
    CMU Common Lisp        system::gc
    GCL                    si::gbc [default argument list: (t)]
    LispWorks              hcl::gc-generation [default argument list:
                                               (7) for 64-bit OS, else (3)]
    SBCL                   sb-ext:gc

  The arguments, if any, are as documented in the underlying Common
  Lisp. It is up to the user to pass in the right arguments, although
  we may do some rudimentary checks.

  Also see [gc-verbose].

  Evaluation of a call of this macro always returns nil.

  To include gc$ in a book, one can use value-triple:

    (value-triple (gc$))


Subtopics

  [Gc-verbose]
      Control printing from the garbage collector")
 (GC-STRATEGY
  (MISCELLANEOUS ACL2-BUILT-INS)
  "The garbage collection strategy

  The form (gc-strategy state) provides the value the current garbage
  collection strategy if that notion is supported by the underlying
  host lisp (currently, CCL only). The logical story is that
  gc-strategy reads its value from the oracle field of the ACL2
  [state]. The return value is thus a triple of the form (mv erp val
  state), where erp will always be nil in practice, and logically,
  val is the top of the acl2-oracle field of the state (see
  [read-ACL2-oracle]) and the returned state has the updated (popped)
  acl2-oracle.

  For more information, see [set-gc-strategy].")
 (GC-VERBOSE
  (GC$)
  "Control printing from the garbage collector

    General Form:
    (gc-verbose arg &optional arg2)

  Garbage collection (gc) is performed by every Lisp implementation;
  see [gc$]. However, different ACL2 builds might see more or fewer
  messages. This macro is intended to provide an interface for
  controlling the verbosity, which is off if the (first) argument
  evaluates to nil and otherwise is on. The second (optional)
  argument is currently ignored except when the host Common Lisp
  implementation is CCL, where it specifies verbosity for EGC.

  The above functionality is only supported for the following host
  Common Lisp implementations: CCL, CMUCL, and GCL. Otherwise, the
  only effect of this macro is to print a notice that it is not
  supported. You are welcome to contact the ACL2 developers if you
  would like to help in adding such support for another host Common
  Lisp.

  Evaluation of a call of this macro always returns nil.")
 (GCL
  (MISCELLANEOUS)
  "Tips on building and using ACL2 based on Gnu Common Lisp

  See the installation instructions for basic information about
  building ACL2 on top of GCL, including information about where to
  fetch GCL. Here, we provide some tips that may be useful.

  1. You can place forms to evaluate at start-up into file init.lsp in
  the directory where you are starting ACL2 (GCL), or into file
  acl2-init.lsp in your home directory. For example, in order to
  evaluate both of the lisp forms mentioned in 2 below, you could put
  them both into init.lsp in the current directory or in
  ~/acl2-init.lsp (either way, without (lp) or :q):

    (setq si::*optimize-maximum-pages* nil)
    (si::allocate 'cons 75000 t)

  Note that if you want to put ACL2 patches in this file, you should
  precede them with (in-package \"ACL2\").

  2. Suppose you run out of space, for example with an error like this:

    Error: The storage for CONS is exhausted.
      Currently, 59470 pages are allocated.
      Use ALLOCATE to expand the space.

  The following suggestion from Camm Maguire will minimize the heap
  size, at the cost of more garbage collection time.

    :q   ; exit the ACL2 loop
    (setq si::*optimize-maximum-pages* nil)
    (lp) ; re-enter the ACL2 loop

  A second thing to try, suggested by several people, is to preallocate
  more pages before the run, e.g.:

    :q   ; exit the ACL2 loop
    (si::allocate 'cons 75000 t)
    (lp) ; re-enter the ACL2 loop

  Also see [reset-kill-ring] for a suggestion on how to free up space.

  3. Windows users have seen this error:

    cc1.exe: unrecognized option `-fno-zero-initialized-in-bss'

  Camm Maguire suggests that a solution may be to evaluate the
  following in GCL before building ACL2.

    (in-package 'compiler)
    (let* ((x `-fno-zero-initialized-in-bss')
           (i (search x *cc*)))
            (setq *cc* (concatenate 'string
                                    (subseq *cc* 0 i)
                                    (subseq *cc* (+ i (length x))))))

  4. It is possible to profile using ACL2 built on GCL. See file
  save-gprof.lsp in the ACL2 source directory.

  5. Some versions of GCL may have garbage-collector bugs that, on rare
  occasions, cause ACL2 (when built on GCL) to break. If you run into
  this, a solution may be to execute the following:

    :q
    (si::sgc-on nil)
    (lp)

  Alternatively, put (si::sgc-on nil) in your ~/acl2-init.lsp file.

  A full regression test and found that this decreased performance by
  about 10%. But even with that, GCL is probably one of the faster
  Common Lisp implementations for ACL2 on Linux. Performance figures
  may often be found by following the ``Recent changes'' link on the
  ACL2 home page.

  6. GCL operations on numbers can sometimes be sped up, perhaps by up
  to two orders of magnitude, by suitable [declare] forms (also see
  [type-spec]). The following example, developed with Warren Hunt and
  Serita Nelesen, illustrates the use of such declarations.

    ; File iplus.lisp:
    ; Operations on naturals together with positive infinity (represented as -1).

    ; After (ld \"iplus.lisp\"), escape to raw Lisp with :q and then eavluate
    ; (disassemble 'big-test).  You should see lots of arithmetic operations
    ; in C code, but no calls of C functions CMPmake_fixnum or number_plus.

    (in-package \"ACL2\")

    (defmacro i-max ()
      (expt 2 (1- 28)))

    (defmacro i+ (x y)
      `(the (signed-byte 28)
            (let ((x ,x)
                  (y ,y))
              (declare (type (signed-byte 28) x y))
              (cond ((or (< x 0)
                         (< y 0))
                     -1)
                    (t (let ((result
                              (the (signed-byte 29) (+ x y))))
                         (declare (type (signed-byte 29) result))
                         (cond ((>= result (i-max)) -1)
                               (t (the (signed-byte 28) result)))))))))

    (defmacro imin (x y)
      `(the (signed-byte 28)
            (let ((x ,x)
                  (y ,y))
              (declare (type (signed-byte 28) x y))
              (cond ((< x 0)
                     (cond ((< y 0) -1)
                           (t y)))
                    ((< y 0)
                     x)
                    (t
                     (the (signed-byte 28) (min x y)))))))

    (defun big-test (x y z)
      (declare (type (signed-byte 28) x y z))
      (imin (i+ x y)
            (i+ y (imin x z))))")
 (GCS (POINTERS)
      "See [get-command-sequence].")
 (GENERALIZE
  (RULE-CLASSES)
  "Make a rule to restrict generalizations

  See [rule-classes] for a general discussion of rule classes,
  including how they are used to build rules from formulas and a
  discussion of the various keywords in a rule class description.

    Example:
    (defthm integer-listp-rev
      (implies (integer-listp x)
               (integer-listp (rev x)))
      :rule-classes :generalize)

    General Form:
    any theorem

  To use a :generalize rule, the system waits until it has decided to
  generalize some term, term, by replacing it with some new variable
  v. If any :generalize formula can be instantiated so that some
  non-variable subterm becomes term, then that instance of the
  formula is added as a hypothesis. Thus for the example above, if
  the term (rev x2) is generalized to the variable rv during a proof,
  then the following is added as a hypothesis when generalizing to a
  new goal.

    (implies (integer-listp x2)
             (integer-listp rv))

  At the moment, the best description of how ACL2 :generalize rules are
  used may be found in the discussion of ``Generalize Rules,'' page
  248 of A Computational Logic Handbook, or ``Generalization,'' page
  132 of ``Computer-Aided Reasoning: An Approach.'' Also see
  [introduction-to-the-theorem-prover] for detailed tutorial on using
  ACL2 to prove theorems, which includes some discussion of
  generalization.")
 (GENERALIZED-BOOLEANS
  (COMMON-LISP)
  "Potential soundness issues related to ACL2 predicates

  The discussion below outlines a potential source of unsoundness in
  ACL2. Although to our knowledge there is no existing Lisp
  implementation in which this problem can arise, nevertheless we
  feel compelled to explain this situation.

  Consider for example the question: What is the value of (equal 3 3)?
  According to the ACL2 axioms, it's t. And as far as we know, based
  on considerable testing, the value is t in every Common Lisp
  implementation. However, according the Common Lisp draft proposed
  ANSI standard, any non-nil value could result. Thus for example,
  (equal 3 3) is allowed by the standard to be 17.

  The Common Lisp standard specifies (or soon will) that a number of
  Common Lisp functions that one might expect to return Boolean
  values may, in fact, return arbitrary values. Examples of such
  functions are [equal], [rationalp], and [<]; a much more complete
  list is given below. Indeed, we dare to say that every Common Lisp
  function that one may believe returns only Booleans is,
  nevertheless, not specified by the standard to have that property,
  with the exceptions of the functions not and null. The standard
  refers to such arbitrary values as ``generalized Booleans,'' but in
  fact this terminology makes no restriction on those values. Rather,
  it merely specifies that they are to be viewed, in an informal
  sense, as being either nil or not nil.

  This situation is problematic for ACL2, which axiomatizes these
  functions to return Booleans. The problem is that because (for
  efficiency and simplicity) ACL2 makes very direct use of compiled
  Common Lisp functions to support the execution of its functions,
  there is in principle a potential for unsoundness due to these
  ``generalized Booleans.'' For example, ACL2's [equal] function is
  defined to be Common Lisp's equal. Hence if in Common Lisp the form
  (equal 3 3) were to evaluate to 17, then in ACL2 we could prove
  (using the :[executable-counterpart] of [equal]) (equal (equal 3 3)
  17). However, ACL2 can also prove (equal (equal x x) t), and these
  two terms together are contradictory, since they imply
  (instantiating x in the second term by 3) that (equal 3 3) is both
  equal to 17 and to t.

  To make matters worse, the standard allows (equal 3 3) to evaluate to
  different non-nil values every time. That is: equal need not even
  be a function!

  Fortunately, no existing Lisp implementation takes advantage of the
  flexibility to have (most of) its predicates return generalized
  Booleans, as far as we know. We may implement appropriate
  safeguards in future releases of ACL2, in analogy to (indeed,
  probably extending) the existing safeguards by way of guards (see
  [guard]). For now, we'll sleep a bit better knowing that we have
  been up-front about this potential problem.

  The following list of functions contains all those that are defined
  in Common Lisp to return generalized Booleans but are assumed by
  ACL2 to return Booleans. In addition, the functions [ACL2-numberp]
  and [complex-rationalp] are directly defined in terms of respective
  Common Lisp functions numberp and complexp.

    /=
    <
    =
    alpha-char-p
    atom
    char-equal
    char<
    char<=
    char>
    char>=
    characterp
    consp
    digit-char-p
    endp
    eq
    eql
    equal
    evenp
    integerp
    keywordp
    listp
    logbitp
    logtest
    lower-case-p
    minusp
    oddp
    plusp
    rationalp
    standard-char-p
    string-equal
    string<
    string<=
    string>
    string>=
    stringp
    subsetp
    symbolp
    upper-case-p
    zerop")
 (GENERALIZING-KEY-CHECKPOINTS
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Getting rid of unnecessary specificity

  Suppose MEMBER determines whether its first argument is a member of
  its second, and SUBSETP determines whether every element of its
  first argument is a member of its second. Suppose that you're
  trying to prove some Main Theorem and are told the formula below is
  a key checkpoint. What should you do?

    Key Checkpoint:
    (IMPLIES (AND (CONSP A)
                  (INTEGERP (CAR A))
                  (MEMBER (CAR A) B)
                  (SUBSETP (CDR A) B)
                  (NOT (SUBSETP (CDR A) (APPEND B C))))
             (MEMBER (CAR A) C))

  The key observation is that the third hypothesis implies the negation
  of the fourth. Writing it in the contrapositive:

    (IMPLIES (AND ...
                  (SUBSETP (CDR A) B)
                  ...)
             (SUBSETP (CDR A) (APPEND B C)))

  In fact, that is more complicated than it needs to be. A ``correct''
  response to the key checkpoint above is to prove

    (defthm subsetp-append
      (implies (subsetp a b)
               (subsetp a (append b c)))).

  A still better response is to prove this:

    (defthm subsetp-append-2
      (implies (or (subsetp a b)
                   (subsetp a c))
               (subsetp a (append b c)))).

  This version is better because it handles both of the possibilities
  regarding whether a is a subset of the arguments of the append.

  It would be nice if we could think of a ``strong'' version, one in
  which (SUBSETP a (APPEND b c)) is rewritten to some clearly simpler
  term, but nothing comes to mind.

  In any case, if you cannot see any obvious simplification of the
  individual terms in the Key Checkpoint, you should ask yourself
  whether there are connections beween the various propositional
  parts (as here, with the third and fourth hypotheses). It is a good
  heuristic to look for relations between parts with the same
  top-level function symbol (as here, with SUBSETP). It is also a
  good heuristic to throw out parts of the formula that seem
  disconnected (as here, with the terms involving (CAR A)).

  This discussion suggests several ``modes'' of looking at key
  checkpoints and the idea of trying the modes in sequence:

  (1) look for simplifiable combinations of function symbols within
  propositional components,

  (2) look for relations between propositional components, and

  (3) throw out irrelevant or weakly connected components.

  In all cases you are bringing to bear your intuitions about the
  semantics of the terms. That is, you're not just slinging symbols.
  You should be looking out for obvious truths about individual parts
  of the checkpoints... truths that are obvious to you but not to
  ACL2!

  Ultimately the three ``modes'' are the same and we do not really
  recommend adhering to the given sequence. You're just looking for
  simpler theorems that, in combination, imply the checkpoint.
  Keeping the ``modes'' in mind may help focus your attention so you
  consider all the plausible possibilities. After a little experience
  you'll find yourself looking for all these things simultaneously as
  part ``cleaning up'' the checkpoints.

  When your main goal theorems are harder than these, your main concern
  will be looking at a Key Checkpoint and asking yourself ``why is
  this true?'' But you don't want to do that until you've cleaned it
  up ``locally'' as much as possible and sometimes -- more often than
  you might think -- local considerations can prove many of your
  checkpoints.

  If you have been working your way through the tutorial introduction
  to the theorem prover, use your browser's Back Button now to return
  to [introduction-to-key-checkpoints].")
 (GET-CHECK-INVARIANT-RISK (POINTERS)
                           "See [set-check-invariant-risk].")
 (GET-COMMAND-SEQUENCE
  (HISTORY)
  "Return list of [command]s that are between two [command] descriptors

    Examples:
    (get-command-sequence 4 12)
    :gcs 4 12 ; same as above
    (get-command-sequence 4 :x)
    :gcs 4 :x ; same as above

  See [pcs] for a utility that prints abbreviated information about the
  [command]s that are between two command descriptors. The utility
  get-command-sequence --- or simply gcs, so that you can just type
  :gcs at the prompt --- has the same syntax but instead of printing,
  it simply returns the corresponding list of commands. More
  precisely, it returns an [error-triple] (mv erp val state) such
  that if erp is not nil, then val is the desired list of commands.")
 (GET-EVENT-DATA
  (SYSTEM-UTILITIES PROVER-OUTPUT)
  "Obtain data stored after at the conclusion of an event

  Warning: This is a low-level system utility that may change somewhat
  over time. For more details, see the ACL2 source code.

  Evaluation of the form (get-event-data key state) returns the value
  of key in an association list, namely, in the value of [state]
  global variable last-event-data (see [programming-with-state]).
  That alist contains certain information stored at the conclusion of
  the immediately preceding event. For each key the corresponding
  value, VAL, is as follows.

    * ABORT-CAUSES: VAL is a list of reasons why the proof aborted. In
      particular, if the value INTERRUPT is in the list, then the
      proof was interrupted (typically with Control-C).
    * FORM: VAL is the ``context'' for the event, printed in the summary,
      [warnings], and [errors].
    * HINT-EVENTS: VAL is as in the corresponding field of the event
      summary.
    * NAMEX: VAL is 0, a single name, or a list of names; see comments in
      ACL2 source function access-event-tuple-namex.
    * PROVER-STEPS-COUNTED: VAL is as in the corresponding field of the
      event summary.
    * RULES: VAL is as in the corresponding field of the event summary.
    * SPLITTER-RULES: VAL represents the corresponding field of the event
      summary, as the list (case-split immed-forced if-intro).
    * TIME: VAL represents the corresponding field of the event summary, as
      the list (prove print proof-tree other).
    * WARNINGS: VAL is as in the corresponding field of the event summary.")
 (GET-INTERNAL-TIME
  (PROGRAMMING ACL2-BUILT-INS)
  "Runtime vs. realtime in ACL2 timings

  The ACL2 system provides utilities that deal with elapsed time. The
  most visible of these is in the time summaries printed when
  completing evaluation of [events]. For others, see
  [with-prover-time-limit], see [read-run-time], see [time-tracker],
  see [time-tracker-tau], and see [pstack].

  By default, these utilities all use an underlying notion of run time
  provided by the host Common Lisp implementation: specifically, the
  Common Lisp function get-internal-run-time. However, Common Lisp
  also provides the function get-internal-real-time, which returns
  the real time (wall clock time). While the latter is specified to
  measure elapsed time, the former is left to the implementation,
  which might well only measure time spent in the Lisp process.
  Consider the following example, which is a bit arcane but basically
  sleeps for 2 seconds.

    (defttag t) ; to allow sys-call
    (make-event
     (prog2$ (sys-call \"sleep\" '(\"2\"))
             (value '(value-triple nil))))

  A typical time summary might be as follows, drastically
  under-reporting the elapsed time.

    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)

  However, you can instruct ACL2 to switch to using elapsed time (real
  time), in summaries and elsewhere, by evaluating the following
  form.

    (assign get-internal-time-as-realtime t)

  To return to using runtime:

    (assign get-internal-time-as-realtime nil)

  While the above example is rather silly, the issue becomes
  significant in time summaries for proofs that call out to external
  tools (see [sys-call] and see [clause-processor]).

  Note that a function get-internal-time is defined in raw Lisp but is
  not available inside the ACL2 loop. However, the expression
  (read-run-time state) provides an interface to this function that
  is available inside the ACL2 loop; see [read-run-time].

  We are open to changing the default to elapsed wall-clock time
  (realtime), and may do so in future ACL2 releases.

  Implementation note (GCL only): If the host Lisp is Gnu Common Lisp,
  then get-internal-run-time has a multiple value return, and the
  first two values (runtime and child runtime) are added together to
  produce a result for get-internal-time.")
 (GET-OUTPUT-STREAM-STRING$ (POINTERS)
                            "See [io].")
 (GET-WORMHOLE-STATUS
  (WORMHOLE)
  "Make a wormhole's status visible outside the wormhole

  General Form: (get-wormhole-status name state)

  Name should be the name of a wormhole (see [wormhole]). This function
  returns an [error-triple] of the form (mv nil s state), where s is
  the status of the named wormhole. The status is obtained by reading
  the oracle in the ACL2 [state].

  This function makes the status of a wormhole visible outside the
  wormhole. But since this function takes [state] and modifies it,
  the function may only be used in contexts in which you may change
  [state]. Otherwise, the wormhole status may stay in the wormhole.
  See [wormhole-eval] and [wormhole].")
 (GETENV$
  (PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "Read an environment variable

  (Getenv$ str state), where str is a string, reads the value of
  environment variable str, returning a value of nil if none is found
  or if the read fails. The logical story is that getenv$ reads its
  value from the oracle field of the ACL2 [state]. The return value
  is thus a triple of the form (mv erp val state), where erp will
  always be nil in practice, and logically, val is the top of the
  acl2-oracle field of the state (see [read-ACL2-oracle]) and the
  returned state has the updated (popped) acl2-oracle.

    Example:
    (getenv$ \"PWD\" state) ==> (mv nil \"/u/joe/work\" state)

  Also see [setenv$].

  Function: <getenv$>

    (defun getenv$ (str state)
           (declare (xargs :stobjs state
                           :guard (stringp str)))
           (declare (ignore str))
           (read-acl2-oracle state))")
 (GETPROP
  (WORLD ACL2-BUILT-INS)
  "Access fast property lists

    General form:
    (getprop symb key default world-name world-alist)

  See community book books/misc/getprop.lisp for an example that
  illustrates the use of ACL2 utilities [getprop] and putprop to take
  advantage of under-the-hood Lisp (hashed) property lists. Also see
  [getpropc] for a convenient abbreviation.

  Macro: <getprop>

    (defmacro
        getprop
        (symb key default world-name world-alist)
        (if (equal world-name ''current-acl2-world)
            (cons 'fgetprop
                  (cons symb
                        (cons key
                              (cons default (cons world-alist 'nil)))))
            (cons 'sgetprop
                  (cons symb
                        (cons key
                              (cons default
                                    (cons world-name
                                          (cons world-alist 'nil))))))))")
 (GETPROPC
  (WORLD ACL2-BUILT-INS)
  "Access fast property lists

    General form:
    (getpropc symb key &optional default world-alist)

  where default is nil if omitted, and world-alist is (w state) if
  omitted. This is a convenient abbreviation for the common case in
  which [getprop] is used for system programming, with
  'current-acl2-world as the (implicit, for getpropc) world-name.

  Macro: <getpropc>

    (defmacro
     getpropc
     (symb key &optional default (wrld '(w state)))
     (cons
          'getprop
          (cons symb
                (cons key
                      (cons default
                            (cons (cons 'quote
                                        (cons 'current-acl2-world 'nil))
                                  (cons wrld 'nil)))))))")
 (GETTING-STARTED (POINTERS)
                  "See [ACL2-tutorial].")
 (GIT-QUICK-START
  (ABOUT-ACL2)
  "Git quick start guide

  Each of the two topics [github-commit-code-using-push] and
  [github-commit-code-using-pull-requests] presents a minimal guide
  to using the Github repository for ACL2+Books. That {repository |
  https://github.com/acl2/acl2} exists on the web and contains the
  ``bleeding edge'' ACL2 source code and [community-books], available
  between ACL2 releases (see [release-notes]). Those who are familiar
  with older version control systems, or perhaps with no version
  control systems, might find this guide to be helpful. For
  additional information, including the use of branches and links to
  more information about git, see {the wiki page for git tips |
  https://github.com/acl2/acl2/wiki/ACL2-repo-git-tips},
  [books-certification], and the Internet in general. However, both
  of the above-mentioned guides are intended to be sufficient for you
  to obtain the latest ACL2 source code and community-books, and
  optionally, for you to contribute to the [community-books].

  Select the guide that is right for you based upon the headings below.


For non-contributors:

See sections (A) and (B) in [github-commit-code-using-push].


For infrequent contributors:

For those only planning on contributing a few times per year (or
less), see [github-commit-code-using-pull-requests].


For frequent contributors:

For those contributing on a monthly or weekly basis, see
[github-commit-code-using-push].


Subtopics

  [Github-commit-code-using-pull-requests]
      How to commit code to the books using pull requests

  [Github-commit-code-using-push]
      How to commit code to the books using direct push access")
 (GITHUB-COMMIT-CODE-USING-PULL-REQUESTS
  (GIT-QUICK-START)
  "How to commit code to the books using pull requests

  This guide is written for contributors who will probably only commit
  to the repository a few times a year. If you find yourself
  committing more often, you should see
  [github-commit-code-using-push].

A nice result of using pull requests is that all changes will be
peer-reviewed before being committed. Also, we sometimes call this
method theFork and Pullmethod.


(A) GETTING STARTED

   1. Go to {https://github.com/acl2/acl2 | https://github.com/acl2/acl2}
      and click on the fork button on the top-right. Fork the
      repository into your github space. This will create a new
      repository at https://github.com/<your-github-username>/acl2.
   2. In your working space on your computer, create a clone of your github
      repository and cd into it:

          git clone https://github.com/<your-github-username>/acl2
          cd acl2

   3. Add the Community ACL2 repository as a git remote:

          git remote add upstream https://github.com/acl2/acl2


(B) UPDATING

  The following commands will update your local repository to match the
  latest contents of the ACL2 Community github repository (on the
  web).

    git fetch --all
    git merge remotes/upstream/master


(C) CONTRIBUTING


Change and Test

   1. Before beginning your edits, update, as in (B) above:

          git fetch --all
          git merge remotes/upstream/master

   2. Build an executable.

          (time nice make LISP=<your_lisp>) >& make.log

   3. Make book changes. If you are creating any new books, tell git that
      you intend to add them (but the local repository on the web
      won't change until the commit step below is executed).

          git add file1 file2 ...

   4. Run a regression.

          (time nice make -j 8 regression-fresh) >& make-regression.log

      Note that the -j 8 option specifies the use of 8 hardware threads;
      feel free to omit it or use a more suitable number (especially
      if your computer has other than 8 hardware threads).
   5. Look for failures, as indicated by ** in the log.

          fgrep -a '**' make-regression.log

   6. If there were failures, then go back to Step 1 above to make
      appropriate changes and re-test, but you can replace the 'make'
      step by replacing regression-fresh with regression, since
      'make' is clever enough to avoid recertifying more than is
      necessary. For example:

          (time nice make -j 8 regression) >& make-regression-finish-1.log


Update, and Iterate If Necessary

  Update again as in (B) above:

    git fetch --all
    git merge remotes/upstream/master

      The merge may fail if there have been remote updates, that is updates
      in the repository on the web. In that case, commit your changes
      locally and then try the merge again. You might want to use the
      -F option instead of -m; see the next section for more on those
      options.

        git commit -a -m '<some message, with descriptive first line>'
        git merge remotes/upstream/master

      If the second command (the git merge) prompts you for a message, the
      empty message should suffice as a reasonable default (in emacs
      -- if vi tries to come up, just type :q and <RETURN>.

  You can now go on to the next step (Contribute Your Changes). But
  ideally: If the output indicates that anything has changed, then go
  back to ``Change and Test'' above. Of course, you can skip the
  build if no ACL2 sources have changed, and you can skip making book
  changes if you are still happy with your changes.


Contribute Your Changes

  The following commands will update your github repository on the web.
  The -m ... option is a log message whose first line should be a
  summary of your changes and other lines may give more details. You
  are welcome to replace the -m ... option by -F <filename>, where
  <filename> is the name of a file that contains your log message.

    git commit -a -m '<some message, with descriptive first line>'
    git push

You now need to create apull request, where you request that changes from your github repository be
accepted into the Community ACL2 repository. To achieve this:
   1. Goto https://github.com/<your-github-username>/acl2.
   2. Click the Pull request button (you can search for it with your
      browser).
   3. In the drop-down box labeled \"base\" (next to the box labeled \"base
      fork\"), change the value from \"master\" to \"testing\".
   4. Click Create pull request.
   5. Put some explanation about what's in the changes in the comments
      section. It's helpful if you quote (possibly abbreviated)
      versions of your commit log messages here, as that way the
      descriptions are easily read when clicking on the Community
      Repository commits tab, which goes to {
      https://github.com/acl2/acl2/commits/master |
      https://github.com/acl2/acl2/commits/master}.
   6. Click Create pull request.

At this point, the Community ACL2 repository maintainers will be
notified, check that things seem to be in order, and then adopt your
changes.")
 (GITHUB-COMMIT-CODE-USING-PUSH
  (GIT-QUICK-START)
  "How to commit code to the books using direct push access

  This guide is written for two groups of people:

    * Users of the ACL2 System and Books who do not plan to contribute to
      the books, and
    * Contributors who commit to the repository on a monthly or weekly
      basis. In this case, a contributor will typically begin with
      the [github-commit-code-using-pull-requests] method, and after
      they are familiar with the process and community, they will
      move to this method.


(A) GETTING STARTED

  Start by obtaining an up-to-date copy of the web-based github
  repository. Here, we show how to put it into into a directory
  called ACL2 (but name it whatever you like).

    mkdir ACL2
    cd ACL2
    git clone https://github.com/acl2/acl2 .


(B) UPDATING

  The following commands will update your directory to match the latest
  contents of the github repository (on the web).

    git fetch --all
    git merge remotes/origin/master


(C) CONTRIBUTING (optional)

  To join the {github project | https://github.com/acl2/acl2/}, please
  send email to one of the following individuals.

    * Jared Davis (jared.c.davis@gmail.com)
    * David Rager (ragerdl@gmail.com)
    * Sol Swords (sswords@gmail.com)

  After you have joined the project, you can proceed as follows when
  you are ready to contribute.


Change and Test

   1. Update as in (B) above:

          git fetch --all
          git merge remotes/origin/master

   2. Build an executable.

          (time nice make LISP=<your_lisp>) >& make.log

   3. Make book changes. If you are creating any new books, tell git that
      you intend to add them (but the repository on the web won't
      change until the last step below is executed).

          git add file1 file2 ...

   4. Run a regression.

          (time nice make -j 8 regression-fresh) >& make-regression.log

   5. Look for failures, as indicated by ** in the log.

          fgrep -a '**' make-regression.log

   6. If there were failures, then go back to Step 1 above to make
      appropriate changes and re-test, but you can replace the 'make'
      step by replacing regression-fresh with regression, since
      'make' is clever enough to avoid recertifying more than is
      necessary. For example:

          (time nice make -j 8 regression) >& make-regression-finish-1.log

      Note that the -j 8 option specifies the use of 8 hardware threads;
      feel free to omit it or use a more suitable number (especially
      if your computer has other than 8 hardware threads).


Update, and Iterate If Necessary

  Update again as in (B) above:

    git fetch --all
    git merge remotes/origin/master

      The merge may fail if there have been remote updates, that is updates
      in the repository on the web. In that case, commit your changes
      locally and then try the merge again. You might want to use the
      -F option instead of -m; see the next section for more on those
      options.

        git commit -a -m '<some message, with descriptive first line>'
        git merge remotes/origin/master

      If the second command prompts you for a message, the empty message
      should suffice as a reasonable default. (In emacs, if vi tries
      to come up, just type :q and <RETURN>.

  You can now go on to the next step (Contribute Your Changes). But
  ideally: If the output indicates that anything has changed, then go
  back to ``Change and Test'' above. Of course, you can skip the
  build if no ACL2 sources have changed, and you can skip making book
  changes if you are still happy with your changes.


Contribute Your Changes

  The following commands will update the github repository on the web.
  The -m ... option is a log message whose first line should be a
  summary of your changes and other lines may give more details. You
  are welcome to replace the -m ... option by -F <filename>, where
  <filename> is the name of a file that contains your log message.

    git commit -a -m '<some message, with descriptive first line>'
    git push")
 (GOAL-SPEC
  (HINTS)
  "To indicate where a hint is to be used

    Examples:
    \"Goal\"
    \"goal\"
    \"Subgoal *1/3''\"
    \"subgoal *1/3''\"
    \"[2]Subgoal *1/3''\"

  When [hints] are given to the theorem prover, a goal-spec is provided
  to specify the goal to which the [hints] are to be applied. The
  [hints] provided are carried along innocuously until the named goal
  arises. When it arises, the [hints] are ``activated'' for that goal
  and its descendents.

  A legal goal specification may be extracted from the theorem prover's
  output. Certain lines clearly label formulas, as in

    Subgoal *1/3.2'
    (IMPLIES ... ...)

  and these lines all give rise to goal specifications. In general,
  these lines all start either with ``Goal'' or ``Subgoal'' or else
  with those words preceded by a number in square brackets, as in

    [1]Subgoal *1/3.2'
    (IMPLIES ... ...).

  A goal specification may be obtained by deleting any surrounding
  whitespace from such a line and embedding the text in string
  quotation marks. Thus

    \"[1]Subgoal *1/3.2'\"

  is the goal specifier for the goal above.

  As noted, a hint is applied to a goal when the hint's goal
  specification matches the name ACL2 assigns to the goal. The
  matching algorithm is case-insensitive. Thus, alternative goal
  specifications for the goal above are \"[1]subgoal *1/3.2'\" and
  \"[1]SUBGOAL *1/3.2'\". The matching algorithm does not tolerate
  non-case discrepancies. Thus, \"[1]Subgoal*1/3.2'\" and \" [1]Subgoal
  *1/3.2'\" are unacceptable.

  Sometimes a formula is given two names, e.g.,

    Subgoal *1/14.2'
    (IMPLIES ...
             ...)
    Name the formula above *1.1.

  It is the first name (the one that starts with ``Goal'' or
  ``Subgoal'') and not the second which constitutes a legal
  goal-spec. Roughly speaking, when the system prints the line
  containing the goal specification, it activates any [hints] that
  are attached to that goal-spec. Consider the example above. Suppose
  Subgoal *1/14.2' could be proved by using a certain lemma instance.
  Then the appropriate entry in the [hints] would be:

    (\"Subgoal *1/14.2'\" :use ...)

  This might surprise you because the system appears to do nothing to
  *1/14.2' besides push it for a subsequent induction. But actually
  between the time the system printed the goal-spec line and the time
  it decides to push the goal, you can think of the system as trying
  everything it has. So a use hint activated when Subgoal *1/14.2'
  arises is just what you want.

  But what if you want to give an :induct hint? By the time induction
  is tried, the formula has been given the name *1.1. Well, this is
  one you just have to remember:

    (\"Subgoal *1/14.2'\" :induct ...).

  When the above hint is activated the :induct directive short-circuits
  the rest of the processing and sends immediately the formula into
  the pool of goals to prove by induction. The induct hint is
  attached to the formula in the pool and when the time comes to turn
  our attention to that goal, the induct advice is followed.

  We conclude by emphasizing a point made above, that a hint is applied
  to a goal when the hint's goal specification matches the name ACL2
  assigns to the goal. If there is no such match, then the hint is
  ignored. Consider the following example.

    (thm (equal (append (append x y) z) (append x y z))
         :hints ((\"Subgoal *1/\" :in-theory nil)))

  Normally, :in-theory hints are inherited by subgoals (see
  [hints-and-the-waterfall]), so you might expect that the empty
  theory is used in Subgoal *1/2 and Subgoal *1/1. But in fact, since
  there is no subgoal printed that is labeled Subgoal *1/, the above
  :in-theory hint is ignored. The above example is in contrast to the
  following, where the hint makes the proof fail, because there
  really is a Subgoal *1/ in the proof this time.

    (thm (implies (and (not (endp x)) (not (endp (cdr x))))
                  (equal (append (append x y) z) (append x y z)))
         :hints ((\"Subgoal *1/\" :in-theory nil)))


Subtopics

  [Clause-identifier]
      The internal form of a [goal-spec]")
 (GOOD-ATOM-LISTP
  (ATOM LISTS ACL2-BUILT-INS)
  "Recognizer for a true list of ``good'' [atom]s

  The predicate good-atom-listp tests whether its argument is a
  [true-listp] of ``good'' [atom]s, i.e., where each element is a
  number, a symbol, a character, or a string.

  Also see [atom-listp].

  Function: <good-atom-listp>

    (defun good-atom-listp (lst)
           (declare (xargs :guard t))
           (cond ((atom lst) (eq lst nil))
                 (t (and (or (acl2-numberp (car lst))
                             (symbolp (car lst))
                             (characterp (car lst))
                             (stringp (car lst)))
                         (good-atom-listp (cdr lst))))))")
 (GOOD-BYE
  (BASICS ACL2-BUILT-INS)
  "Quit entirely out of Lisp

    Examples:
    ACL2 !>(good-bye)
    ; [ACL2 is exited]

    ACL2 !>(good-bye 3)
    ; [ACL2 is exited with Unix exit status 3]

  Note: Your entire session will disappear forever when you evaluate
  (good-bye).

  The command (good-bye) quits not only out of the ACL2 [command] loop,
  but in fact quits entirely out of the underlying Lisp. Thus, there
  is no going back! You will not be able to re-enter the [command]
  loop after typing (good-bye)! All your work will be lost!!!

  This command may not work in some underlying Common Lisp
  implementations. In such cases, there is no harm in trying; ACL2
  will let you know how to proceed if it cannot exit.

  In some systems, typing control-d at the top-level ACL2 prompt
  (control-c control-d if inside emacs) will call this function.

  If you give good-bye an argument, it should be a natural number, and
  it indicates the Unix (Linux) exit status.

  If you merely want to exit the ACL2 [command] loop, use :q instead
  (see [q]).


Subtopics

  [Exit]
      Quit entirely out of Lisp

  [Quit]
      Quit entirely out of Lisp")
 (GRANULARITY
  (PARALLEL-PROGRAMMING)
  "Limit the amount of parallelism

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].

  Some function calls are on arguments whose evaluation time is long
  enough to warrant parallel execution, while others are not. A
  granularity form can be used to make appropriate restrictions on
  the use of parallelism.

  For example, consider the Fibonacci function. Experiments have
  suggested that execution time can be reduced if whenever the
  argument is less than 27, a serial version of the Fibonacci
  function is called. One way to utilize this information is to write
  two definitions of the Fibonacci function, one serial and one
  parallel.

    (defun fib (x)
      (declare (xargs :guard (natp x)))
      (cond ((or (zp x) (<= x 0)) 0)
            ((= x 1) 1)
            (t (binary-+ (fib (- x 1))
                         (fib (- x 2))))))

    (defun pfib (x)
      (declare (xargs :guard (natp x)))
      (cond ((or (zp x) (<= x 0)) 0)
            ((= x 1) 1)
            ((< x 27) (binary-+ (fib (- x 1))
                                (fib (- x 2))))
            (t (pargs (binary-+ (pfib (- x 1))
                                (pfib (- x 2)))))))

  We realize quickly that writing both of these function definitions is
  cumbersome and redundant. This problem can be avoided by using a
  granularity declaration with a parallelism primitive. This form
  ensures that a call is parallelized only if resources are available
  and the granularity form evaluates to a non-nil value at the time
  of the call. Below is a definition of the Fibonacci function using
  a granularity form.

    (defun pfib (x)
      (declare (xargs :guard (natp x)))
      (cond ((or (zp x) (<= x 0)) 0)
            ((= x 1) 1)
            (t (pargs (declare (granularity (>= x 27)))
                      (binary-+ (pfib (- x 1))
                                (pfib (- x 2)))))))

  A granularity form can reference an extra formal parameter that
  describes the call depth of the function the user is parallelizing.
  Consider for example the following parallel mergesort function,
  based on Davis's Ordered Sets library. It splits the data into
  symmetric chunks for computation, so we increment the depth
  argument during the recursive call on both the car and cdr.

    (include-book \"finite-set-theory/osets/sets\" :dir :system)
    (defun set::pmergesort-exec (x depth)
      (declare (xargs :mode :program))
      (cond ((endp x) nil)
            ((endp (cdr x)) (set::insert (car x) nil))
            (t (mv-let (part1 part2)
                       (set::split-list x nil nil)
                       (pargs
                        (declare (granularity (< depth 2)))
                        (set::union (set::pmergesort-exec part1
                                                            (1+ depth))
                                     (set::pmergesort-exec part2
                                                            (1+ depth))))))))

  A less intrusive method (i.e., not requiring an extra formal
  parameter like the depth argument just above), which however can be
  less efficient, involves analyzing the data itself for structural
  properties. For example:

    (defun some-depth-exceeds (x n)
      (declare (xargs :guard (natp n)))
      (if (atom x)
          nil
        (if (zp n)
            t
          (or (some-depth-exceeds (car x) (1- n))
              (some-depth-exceeds (cdr x) (1- n))))))

    (defun valid-tip (x)
      (declare (xargs :guard t))
      (or (eq x 'A)
          (eq x 'T)
          (eq x 'C)
          (eq x 'G)))

    (defun pvalid-tree (x)
      (declare (xargs :guard t))
      (if (atom x)
          (valid-tip x)
        (pand (declare (granularity (some-depth-exceeds x 3)))
              (pvalid-tree (car x))
              (pvalid-tree (cdr x)))))

  If you experiment with calls of pvalid-tree, you are likely to find
  that the ``speedup'' it provides over a corresponding serial
  version is, in fact, a slowdown! The problem is likely that
  some-depth-exceeds is an expensive function to run repeatedly.
  Instead of the approach above, it is often handy to add an extra
  formal parameter in order to allow for more efficient granularity
  forms, as we have done above in the definition of
  SET::pmergesort-exec.")
 (GROUND-ZERO
  (THEORIES THEORY-FUNCTIONS)
  "[enable]d rules in the [startup] theory

  ACL2 concludes its initialization (boot-strapping) procedure by
  defining the theory ground-zero; see [theories]. In fact, this
  theory is just the theory defined by (current-theory :here) at the
  conclusion of initialization; see [current-theory].

  Note that by evaluating the event

    (in-theory (current-theory 'ground-zero))

  you can restore the current theory to its value at the time you
  started up ACL2.")
 (GTHM
  (HISTORY GUARD)
  "The [guard] theorem for a given function symbol

    Example Forms:
    :gthm FN
    (gthm 'FN) ; equivalent to the above

  where FN is a function symbol. This shows the [guard] theorem for FN;
  see [lemma-instance]. More precisely, evaluation of a call of this
  macro --- pronounced ``gee-thumb'' --- returns an [error-triple]
  whose value component is the user-level (untranslated) version of
  that guard theorem. Also see [lemma-instance] for discussion of a
  way to give this theorem as a :guard-theorem prover hint.

  Technical note: a corresponding evaluation that provides a
  (translated) [termp] is: (guard-theorem 'FN (w state) state).")
 (GUARD
  (PROGRAMMING XARGS)
  "Restricting the domain of a function

  The ACL2 system provides a mechanism for restricting a function to a
  particular domain. Such restrictions are called ``guards.'' A
  definition's guard has no effect on the logical axiom added when
  that definition is accepted by ACL2, and novices are often best
  served by avoiding guards. However, guards can be useful as a
  specification device or for increasing execution efficiency. To
  make such a restriction, use the :guard keyword (see [xargs]) or,
  especially if you want the host Lisp compiler to use this
  information, use type declarations (see [declare]; also see [xargs]
  for a discussion of the :split-types keyword). The general issue of
  guards and guard verification is discussed in the topics listed
  below.

  To begin further discussion of guards, see [guard-introduction]. That
  section directs the reader to further sections for more details. To
  see just a summary of some [command]s related to guards, see
  [guard-quick-reference]. For a discussion of the use of proof to
  verify the absence of guard violations, see [verify-guards].


Subtopics

  [Ec-call]
      Execute a call in the ACL2 logic instead of raw Lisp

  [Extra-info]
      Sources of measure or guard proof obligations

  [Gthm]
      The [guard] theorem for a given function symbol

  [Guard-debug]
      Generate markers to indicate sources of [guard] proof obligations

  [Guard-evaluation-examples-log]
      Log showing combinations of [defun-mode]s and [guard]-checking

  [Guard-evaluation-examples-script]
      A script to show combinations of [defun-mode]s and [guard]-checking

  [Guard-evaluation-table]
      A table that shows combinations of [defun-mode]s and
      [guard]-checking

  [Guard-example]
      A brief transcript illustrating [guard]s in ACL2

  [Guard-holders]
      Remove trivial calls from a [term]

  [Guard-introduction]
      Introduction to [guard]s in ACL2

  [Guard-miscellany]
      Miscellaneous remarks about guards

  [Guard-obligation]
      The guard proof obligation

  [Guard-quick-reference]
      Brief summary of guard checking and guard verification

  [Guard-theorem]
      Use a previously-proved [guard] theorem

  [Guard-theorem-example]
      How to use a previously-proved [guard] theorem

  [Guards-and-evaluation]
      The relationship between guards and evaluation

  [Guards-for-specification]
      Guards as a specification device

  [Mbe]
      Attach code for execution

  [Non-exec]
      Mark code as non-executable

  [Print-gv]
      Print a form whose evaluation caused a guard violation

  [Set-check-invariant-risk]
      Potential slowdown for [program]-mode updates to [stobj]s or
      [arrays]

  [Set-guard-checking]
      Control checking [guard]s during execution of top-level forms

  [Set-guard-msg]
      Specify what is printed when a [guard] is violated

  [Set-print-gv-defaults]
      Set default keyword values for [print-gv]

  [Set-verify-guards-eagerness]
      The eagerness with which [guard] verification is tried.

  [The]
      The is a special form that can be used to optimize the execution
      efficiency of [guard]-verified ACL2 definitions, or (less
      frequently) to carry out a low-level run-time type checks.
      (Advanced)

  [Verify-guards]
      Verify the [guard]s of a function

  [Verify-guards-formula]
      View the guard proof obligation, without proving it

  [With-guard-checking]
      Suppressing or enable guard-checking for a form

  [With-guard-checking-error-triple]
      Suppressing or enable guard-checking for a form")
 (GUARD-DEBUG
  (GUARD DEBUGGING)
  "Generate markers to indicate sources of [guard] proof obligations

  ACL2 guard verification (see [guard]) is often best avoided by
  beginning users of ACL2. When guard verification is employed, it
  can generate numerous goals, some of which may not be theorems if
  the definition being processed has bugs. It can be difficult to
  find such bugs. This [documentation] topic explains a capability
  provided by ACL2 to help find such bugs.

  For a similar utility appropriate for proving [measure] conjectures
  (that is, for termination proofs), see [measure-debug].

  We begin with the following example. Although it is contrived and a
  bit simplistic, it illustrates how the guard-debug utility works.

    (defun length-repeat (x)
      (length (append x x)))
    (verify-guards length-repeat :guard-debug t)

  The output produces two top-level key checkpoints, as follows.

    Subgoal 2
    (IMPLIES (EXTRA-INFO '(:GUARD (:BODY LENGTH-REPEAT))
                         '(APPEND X X))
             (TRUE-LISTP X))

    Subgoal 1
    (IMPLIES (AND (EXTRA-INFO '(:GUARD (:BODY LENGTH-REPEAT))
                              '(LENGTH (APPEND X X)))
                  (NOT (TRUE-LISTP (APPEND X X))))
             (STRINGP (APPEND X X)))

  The upper subgoal (numbered 2) says that the body of the definition
  of length-repeat contains a call (APPEND X X), which is the source
  of the goal. In this case, that makes sense: the [guard] for a call
  (append arg1 arg2) is (true-listp arg1), which in this case is
  (TRUE-LISTP X). The lower subgoal (numbered 1) says that the same
  definition contains the call (LENGTH (APPEND X X)), which generates
  the proof obligation that if (APPEND X X) does not satisfy
  true-listp, then it must satisfy stringp. That proof obligation
  comes directly from the [guard] for [length].

  Of course, the example above is a bit obvious. But for large
  definitional bodies such information can be very helpful. Note that
  guard-debug can be specified not only in [verify-guards] events but
  also in [xargs] [declare] forms of [defun] events.

  We now describe the guard-debug utility in some detail.

  (Extra-info x y) always returns t by definition. However, if [guard]
  verification takes place with a non-nil setting of guard-debug (see
  below), then the goals generated for guard verification can include
  hypotheses that are calls of extra-info. Typically, such a
  hypothesis is of the following form:

    (extra-info '(:guard (:body F))
                '(G ARG1 ... ARGk))

  The above form indicates that the goal in which it occurs was
  generated to verify that the [guard] of the function F is satisfied
  by the arguments ARG1 through ARGk, where the term (G ARG1 ...
  ARGk) occurs in the body of the function F whose guard verification
  is in progress. If however the above call of G occurs in the guard
  of F instead of the body of F, then :body is replaced by :guard
  above:

    (extra-info '(:guard (:guard F))
                '(G ARG1 ... ARGk))

  If the same proof obligation (goal clause) arises from more than one
  occurrence of the same call, then a single goal will be generated,
  which has several extra-info hypotheses added to show the multiple
  sources of that proof obligation.

  All rules (see [rune]) associated with extra-info are [disable]d by
  default, so that hypotheses of the form described above are not
  simplified to t. These hypotheses are intended to ride along for
  free: you can generally expect the proof to have the same structure
  whether or not the :guard-debug option is supplied, though on rare
  occasions the proofs may diverge.

  It remains to explain the notion of a guard-debug setting of t, that
  is, to explain how to obtain the additional hypotheses described
  above. If guards are being verified during processing of a [defun]
  event (whether or not inside a call of [mutual-recursion]), then
  one specifies :guard-debug t in an [xargs] declaration of a
  [declare] form; see [xargs]. If however the guard verification is
  on behalf of a [verify-guards] call, whether for a definition or a
  theorem, then one specifies the keyword argument :guard-debug t.

  Also see [print-gv] for a utility for debugging guard violations, in
  contrast to the above guard-debug mechanism, which is for debugging
  failed proofs arising from guard verification.")
 (GUARD-EVALUATION-EXAMPLES-LOG
  (GUARD)
  "Log showing combinations of [defun-mode]s and [guard]-checking

  See [guard-evaluation-examples-script] for a script that shows the
  interaction of [defun-mode]s with the value set by
  [set-guard-checking]. Here, we present a log resulting from running
  this script.

  See [set-guard-checking] for discussion of the interaction between
  [defun-mode]s and [guard]-checking that is illustrated by this
  script. Also see [guard-evaluation-table] for a succinct table,
  with associated discussion, that covers in detail the interactions
  illustrated here.

    ACL2 !>(defun fact (x)
             (declare (xargs :guard (integerp x)
                             :mode :program))
             (if (posp x)
                 (* x (fact (1- x)))
               1))

    Summary
    Form:  ( DEFUN FACT ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     FACT
    ACL2 !>(trace$ fact)
     ((FACT))
    ACL2 !>:set-guard-checking t

    Guard-checking-on already has value T.

    ACL2 !>(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (FACT 2)
        3> (FACT 1)
          4> (FACT 0)
          <4 (FACT 1)
        <3 (FACT 1)
      <2 (FACT 2)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 !>(fact t)
    1> (ACL2_*1*_ACL2::FACT T)

    ACL2 Error in TOP-LEVEL:  The guard for the :program function symbol
    FACT, which is (INTEGERP X), is violated by the arguments in the call
    (FACT T).  See :DOC trace for a useful debugging utility.  See :DOC
    set-guard-checking for information about suppressing this check with
    (set-guard-checking :none), as recommended for new users.

    ACL2 !>:set-guard-checking :all

    Leaving guard checking on, but changing value to :ALL.

    ACL2 !>(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (ACL2_*1*_ACL2::FACT 1)
        3> (ACL2_*1*_ACL2::FACT 0)
        <3 (ACL2_*1*_ACL2::FACT 1)
      <2 (ACL2_*1*_ACL2::FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 !>(fact t)
    1> (ACL2_*1*_ACL2::FACT T)

    ACL2 Error in TOP-LEVEL:  The guard for the :program function symbol
    FACT, which is (INTEGERP X), is violated by the arguments in the call
    (FACT T).  See :DOC trace for a useful debugging utility.  See :DOC
    set-guard-checking for information about suppressing this check with
    (set-guard-checking :none), as recommended for new users.

    ACL2 !>:set-guard-checking :none

    Turning off guard checking entirely.  To allow execution in raw Lisp
    for functions with guards other than T, while continuing to mask guard
    violations, :SET-GUARD-CHECKING NIL.  See :DOC set-guard-checking.

    ACL2 >(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (ACL2_*1*_ACL2::FACT 1)
        3> (ACL2_*1*_ACL2::FACT 0)
        <3 (ACL2_*1*_ACL2::FACT 1)
      <2 (ACL2_*1*_ACL2::FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 >(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 >:set-guard-checking nil

    Masking guard violations but still checking guards except for self-
    recursive calls.  To avoid guard checking entirely, :SET-GUARD-CHECKING
    :NONE.  See :DOC set-guard-checking.

    ACL2 >(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (FACT 2)
        3> (FACT 1)
          4> (FACT 0)
          <4 (FACT 1)
        <3 (FACT 1)
      <2 (FACT 2)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 >(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
      2> (FACT T)
      <2 (FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 >:u

              0:x(EXIT-BOOT-STRAP-MODE)
    ACL2 >(defun fact (x)
             (declare (xargs :guard t
                             :mode :program))
             (if (posp x)
                 (* x (fact (1- x)))
               1))

    Summary
    Form:  ( DEFUN FACT ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     FACT
    ACL2 >(trace$ fact)
     ((FACT))
    ACL2 >:set-guard-checking t

    Turning guard checking on, value T.

    ACL2 !>(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (FACT 2)
        3> (FACT 1)
          4> (FACT 0)
          <4 (FACT 1)
        <3 (FACT 1)
      <2 (FACT 2)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 !>(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
      2> (FACT T)
      <2 (FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 !>:set-guard-checking :all

    Leaving guard checking on, but changing value to :ALL.

    ACL2 !>(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (ACL2_*1*_ACL2::FACT 1)
        3> (ACL2_*1*_ACL2::FACT 0)
        <3 (ACL2_*1*_ACL2::FACT 1)
      <2 (ACL2_*1*_ACL2::FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 !>(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 !>:set-guard-checking :none

    Turning off guard checking entirely.  To allow execution in raw Lisp
    for functions with guards other than T, while continuing to mask guard
    violations, :SET-GUARD-CHECKING NIL.  See :DOC set-guard-checking.

    ACL2 >(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (ACL2_*1*_ACL2::FACT 1)
        3> (ACL2_*1*_ACL2::FACT 0)
        <3 (ACL2_*1*_ACL2::FACT 1)
      <2 (ACL2_*1*_ACL2::FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 >(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 >:set-guard-checking nil

    Masking guard violations but still checking guards except for self-
    recursive calls.  To avoid guard checking entirely, :SET-GUARD-CHECKING
    :NONE.  See :DOC set-guard-checking.

    ACL2 >(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (FACT 2)
        3> (FACT 1)
          4> (FACT 0)
          <4 (FACT 1)
        <3 (FACT 1)
      <2 (FACT 2)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 >(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
      2> (FACT T)
      <2 (FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 >:u

              0:x(EXIT-BOOT-STRAP-MODE)
    ACL2 >(defun fact (x)
             (declare (xargs :guard (integerp x)
                             :verify-guards nil
                             :mode :logic))
             (if (posp x)
                 (* x (fact (1- x)))
               1))

    For the admission of FACT we will use the relation O< (which is known
    to be well-founded on the domain recognized by O-P) and the measure
    (ACL2-COUNT X).  The non-trivial part of the measure conjecture is

    [[output omitted here]]

    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     FACT
    ACL2 >(trace$ fact)
     ((FACT))
    ACL2 >:set-guard-checking t

    Turning guard checking on, value T.

    ACL2 !>(fact 2)
    [[Comment added to the log:
      Normally you would get a message about guard-checking being
      inhibited on recursive calls.  However, when a function is
      traced the guard-checking is done on recursive calls unless
      the guards have been verified (see :DOC verify-guards).
    ]]
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (ACL2_*1*_ACL2::FACT 1)
        3> (ACL2_*1*_ACL2::FACT 0)
        <3 (ACL2_*1*_ACL2::FACT 1)
      <2 (ACL2_*1*_ACL2::FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 !>(fact t)
    1> (ACL2_*1*_ACL2::FACT T)

    ACL2 Error in TOP-LEVEL:  The guard for the function symbol FACT, which
    is (INTEGERP X), is violated by the arguments in the call (FACT T).
    See :DOC trace for a useful debugging utility.  See :DOC set-guard-
    checking for information about suppressing this check with (set-guard-
    checking :none), as recommended for new users.

    ACL2 !>:set-guard-checking :all

    Leaving guard checking on, but changing value to :ALL.

    ACL2 !>(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (ACL2_*1*_ACL2::FACT 1)
        3> (ACL2_*1*_ACL2::FACT 0)
        <3 (ACL2_*1*_ACL2::FACT 1)
      <2 (ACL2_*1*_ACL2::FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 !>(fact t)
    1> (ACL2_*1*_ACL2::FACT T)

    ACL2 Error in TOP-LEVEL:  The guard for the function symbol FACT, which
    is (INTEGERP X), is violated by the arguments in the call (FACT T).
    See :DOC trace for a useful debugging utility.  See :DOC set-guard-
    checking for information about suppressing this check with (set-guard-
    checking :none), as recommended for new users.

    ACL2 !>:set-guard-checking :none

    Turning off guard checking entirely.  To allow execution in raw Lisp
    for functions with guards other than T, while continuing to mask guard
    violations, :SET-GUARD-CHECKING NIL.  See :DOC set-guard-checking.

    ACL2 >(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (ACL2_*1*_ACL2::FACT 1)
        3> (ACL2_*1*_ACL2::FACT 0)
        <3 (ACL2_*1*_ACL2::FACT 1)
      <2 (ACL2_*1*_ACL2::FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 >(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 >:set-guard-checking nil

    Masking guard violations but still checking guards except for self-
    recursive calls.  To avoid guard checking entirely, :SET-GUARD-CHECKING
    :NONE.  See :DOC set-guard-checking.

    ACL2 >(fact 2)
    [[Comment added to the log:
      In spite of the warning above, guards are checked here on
      self-recursive calls, because the function is traced.
    ]]
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (ACL2_*1*_ACL2::FACT 1)
        3> (ACL2_*1*_ACL2::FACT 0)
        <3 (ACL2_*1*_ACL2::FACT 1)
      <2 (ACL2_*1*_ACL2::FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 >(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 >(verify-guards fact)

    Computing the guard conjecture for FACT....

    The guard conjecture for FACT is trivial to prove, given the :compound-
    recognizer rule POSP-COMPOUND-RECOGNIZER, primitive type reasoning
    and the :type-prescription rule FACT.  FACT is compliant with Common
    Lisp.

    Summary
    Form:  ( VERIFY-GUARDS FACT)
    Rules: ((:COMPOUND-RECOGNIZER POSP-COMPOUND-RECOGNIZER)
            (:FAKE-RUNE-FOR-TYPE-SET NIL)
            (:TYPE-PRESCRIPTION FACT))
    Warnings:  None
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
     FACT
    ACL2 >(trace$ fact)
     ((FACT))
    ACL2 >:set-guard-checking t

    Turning guard checking on, value T.

    ACL2 !>(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (FACT 2)
        3> (FACT 1)
          4> (FACT 0)
          <4 (FACT 1)
        <3 (FACT 1)
      <2 (FACT 2)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 !>(fact t)
    1> (ACL2_*1*_ACL2::FACT T)

    ACL2 Error in TOP-LEVEL:  The guard for the function symbol FACT, which
    is (INTEGERP X), is violated by the arguments in the call (FACT T).
    See :DOC trace for a useful debugging utility.  See :DOC set-guard-
    checking for information about suppressing this check with (set-guard-
    checking :none), as recommended for new users.

    ACL2 !>:set-guard-checking :all

    Leaving guard checking on, but changing value to :ALL.

    ACL2 !>(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (FACT 2)
        3> (FACT 1)
          4> (FACT 0)
          <4 (FACT 1)
        <3 (FACT 1)
      <2 (FACT 2)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 !>(fact t)
    1> (ACL2_*1*_ACL2::FACT T)

    ACL2 Error in TOP-LEVEL:  The guard for the function symbol FACT, which
    is (INTEGERP X), is violated by the arguments in the call (FACT T).
    See :DOC trace for a useful debugging utility.  See :DOC set-guard-
    checking for information about suppressing this check with (set-guard-
    checking :none), as recommended for new users.

    ACL2 !>:set-guard-checking :none

    Turning off guard checking entirely.  To allow execution in raw Lisp
    for functions with guards other than T, while continuing to mask guard
    violations, :SET-GUARD-CHECKING NIL.  See :DOC set-guard-checking.

    ACL2 >(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (ACL2_*1*_ACL2::FACT 1)
        3> (ACL2_*1*_ACL2::FACT 0)
        <3 (ACL2_*1*_ACL2::FACT 1)
      <2 (ACL2_*1*_ACL2::FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 >(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 >:set-guard-checking nil

    Masking guard violations but still checking guards except for self-
    recursive calls.  To avoid guard checking entirely, :SET-GUARD-CHECKING
    :NONE.  See :DOC set-guard-checking.

    ACL2 >(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (FACT 2)
        3> (FACT 1)
          4> (FACT 0)
          <4 (FACT 1)
        <3 (FACT 1)
      <2 (FACT 2)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 >(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 >:u
     L        1:x(DEFUN FACT (X) ...)
    ACL2 >:u
              0:x(EXIT-BOOT-STRAP-MODE)
    ACL2 >(defun fact (x)
             (declare (xargs :guard (integerp x)
                             :mode :logic))
             (if (posp x)
                 (* x (fact (1- x)))
               1))

    For the admission of FACT we will use the relation O< (which is known
    to be well-founded on the domain recognized by O-P) and the measure
    (ACL2-COUNT X).  The non-trivial part of the measure conjecture is

    [[output omitted here]]

    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     FACT
    ACL2 >(trace$ fact)
     ((FACT))
    ACL2 >:set-guard-checking t

    Turning guard checking on, value T.

    ACL2 !>(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (FACT 2)
        3> (FACT 1)
          4> (FACT 0)
          <4 (FACT 1)
        <3 (FACT 1)
      <2 (FACT 2)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 !>(fact t)
    1> (ACL2_*1*_ACL2::FACT T)

    ACL2 Error in TOP-LEVEL:  The guard for the function symbol FACT, which
    is (INTEGERP X), is violated by the arguments in the call (FACT T).
    See :DOC trace for a useful debugging utility.  See :DOC set-guard-
    checking for information about suppressing this check with (set-guard-
    checking :none), as recommended for new users.

    ACL2 !>:set-guard-checking :all

    Leaving guard checking on, but changing value to :ALL.

    ACL2 !>(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (FACT 2)
        3> (FACT 1)
          4> (FACT 0)
          <4 (FACT 1)
        <3 (FACT 1)
      <2 (FACT 2)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 !>(fact t)
    1> (ACL2_*1*_ACL2::FACT T)

    ACL2 Error in TOP-LEVEL:  The guard for the function symbol FACT, which
    is (INTEGERP X), is violated by the arguments in the call (FACT T).
    See :DOC trace for a useful debugging utility.  See :DOC set-guard-
    checking for information about suppressing this check with (set-guard-
    checking :none), as recommended for new users.

    ACL2 !>:set-guard-checking :none

    Turning off guard checking entirely.  To allow execution in raw Lisp
    for functions with guards other than T, while continuing to mask guard
    violations, :SET-GUARD-CHECKING NIL.  See :DOC set-guard-checking.

    ACL2 >(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (ACL2_*1*_ACL2::FACT 1)
        3> (ACL2_*1*_ACL2::FACT 0)
        <3 (ACL2_*1*_ACL2::FACT 1)
      <2 (ACL2_*1*_ACL2::FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 >(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 >:set-guard-checking nil

    Masking guard violations but still checking guards except for self-
    recursive calls.  To avoid guard checking entirely, :SET-GUARD-CHECKING
    :NONE.  See :DOC set-guard-checking.

    ACL2 >(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (FACT 2)
        3> (FACT 1)
          4> (FACT 0)
          <4 (FACT 1)
        <3 (FACT 1)
      <2 (FACT 2)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 >(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 >:u
              0:x(EXIT-BOOT-STRAP-MODE)
    ACL2 >(defun fact (x)
             (declare (xargs :guard t
                             :verify-guards nil
                             :mode :logic))
             (if (posp x)
                 (* x (fact (1- x)))
               1))

    For the admission of FACT we will use the relation O< (which is known
    to be well-founded on the domain recognized by O-P) and the measure
    (ACL2-COUNT X).  The non-trivial part of the measure conjecture is

    [[output omitted here]]

    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     FACT
    ACL2 >(trace$ fact)
     ((FACT))
    ACL2 >:set-guard-checking t

    Turning guard checking on, value T.

    ACL2 !>(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (ACL2_*1*_ACL2::FACT 1)
        3> (ACL2_*1*_ACL2::FACT 0)
        <3 (ACL2_*1*_ACL2::FACT 1)
      <2 (ACL2_*1*_ACL2::FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 !>(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 !>:set-guard-checking :all

    Leaving guard checking on, but changing value to :ALL.

    ACL2 !>(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (ACL2_*1*_ACL2::FACT 1)
        3> (ACL2_*1*_ACL2::FACT 0)
        <3 (ACL2_*1*_ACL2::FACT 1)
      <2 (ACL2_*1*_ACL2::FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 !>(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 !>:set-guard-checking :none

    Turning off guard checking entirely.  To allow execution in raw Lisp
    for functions with guards other than T, while continuing to mask guard
    violations, :SET-GUARD-CHECKING NIL.  See :DOC set-guard-checking.

    ACL2 >(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (ACL2_*1*_ACL2::FACT 1)
        3> (ACL2_*1*_ACL2::FACT 0)
        <3 (ACL2_*1*_ACL2::FACT 1)
      <2 (ACL2_*1*_ACL2::FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 >(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 >:set-guard-checking nil

    Masking guard violations but still checking guards except for self-
    recursive calls.  To avoid guard checking entirely, :SET-GUARD-CHECKING
    :NONE.  See :DOC set-guard-checking.

    ACL2 >(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (ACL2_*1*_ACL2::FACT 1)
        3> (ACL2_*1*_ACL2::FACT 0)
        <3 (ACL2_*1*_ACL2::FACT 1)
      <2 (ACL2_*1*_ACL2::FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 >(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 >(verify-guards fact)

    Computing the guard conjecture for FACT....

    The guard conjecture for FACT is trivial to prove, given the :compound-
    recognizer rule POSP-COMPOUND-RECOGNIZER and the :type-prescription
    rule FACT.  FACT is compliant with Common Lisp.

    Summary
    Form:  ( VERIFY-GUARDS FACT)
    Rules: ((:COMPOUND-RECOGNIZER POSP-COMPOUND-RECOGNIZER)
            (:TYPE-PRESCRIPTION FACT))
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     FACT

    [[Note added to log: No need to trace fact again after verify-guards.]]

    ACL2 >:set-guard-checking t

    Turning guard checking on, value T.

    ACL2 !>(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (FACT 2)
        3> (FACT 1)
          4> (FACT 0)
          <4 (FACT 1)
        <3 (FACT 1)
      <2 (FACT 2)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 !>(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
      2> (FACT T)
      <2 (FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 !>:set-guard-checking :all

    Leaving guard checking on, but changing value to :ALL.

    ACL2 !>(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (FACT 2)
        3> (FACT 1)
          4> (FACT 0)
          <4 (FACT 1)
        <3 (FACT 1)
      <2 (FACT 2)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 !>(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
      2> (FACT T)
      <2 (FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 !>:set-guard-checking :none

    Turning off guard checking entirely.  To allow execution in raw Lisp
    for functions with guards other than T, while continuing to mask guard
    violations, :SET-GUARD-CHECKING NIL.  See :DOC set-guard-checking.

    ACL2 >(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (FACT 2)
        3> (FACT 1)
          4> (FACT 0)
          <4 (FACT 1)
        <3 (FACT 1)
      <2 (FACT 2)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 >(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
      2> (FACT T)
      <2 (FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 >:set-guard-checking nil

    Masking guard violations but still checking guards except for self-
    recursive calls.  To avoid guard checking entirely, :SET-GUARD-CHECKING
    :NONE.  See :DOC set-guard-checking.

    ACL2 >(fact 2)
    1> (ACL2_*1*_ACL2::FACT 2)
      2> (FACT 2)
        3> (FACT 1)
          4> (FACT 0)
          <4 (FACT 1)
        <3 (FACT 1)
      <2 (FACT 2)
    <1 (ACL2_*1*_ACL2::FACT 2)
    2
    ACL2 >(fact t)
    1> (ACL2_*1*_ACL2::FACT T)
      2> (FACT T)
      <2 (FACT 1)
    <1 (ACL2_*1*_ACL2::FACT 1)
    1
    ACL2 >")
 (GUARD-EVALUATION-EXAMPLES-SCRIPT
  (GUARD)
  "A script to show combinations of [defun-mode]s and [guard]-checking

  Below is a script that illustrates the combination of [defun-mode]s
  --- :[program] mode, :[logic] mode without [guard]s verified, and
  :[logic] mode with [guard]s verified --- with values from
  [set-guard-checking] --- t (the default), :all, :none, and nil. (It
  does not illustrate the value :nowarn, which is the same as t
  except for inhibiting a warning.) The script also illustrates cases
  where the guard is not, or is, t.

  See [guard-evaluation-examples-log] for result of running this
  script. Before presenting the script below, we give some
  instructions in case you want to run it yourself.

  See [set-guard-checking] for discussion of the interaction between
  [defun-mode]s and [guard]-checking that is illustrated by this
  script. Also see [guard-evaluation-table] for a succinct table,
  with associated discussion, that covers in detail the interactions
  illustrated here.

  The script mentions the running of ``Tracing Code''. The code is the
  following sequence of commands.

    (trace$ fact)
    :set-guard-checking t
    (fact 2)
    (fact t)
    :set-guard-checking :all
    (fact 2)
    (fact t)
    :set-guard-checking :none
    (fact 2)
    (fact t)
    :set-guard-checking nil
    (fact 2)
    (fact t)

  If you want to run the script yourself, you may find it handy to use
  the following Emacs keyboard macro for running the tracing code in
  2-window mode, with the cursor in the window with the script and
  ACL2 running in the other window.

    (fset 'step-guard-script
       [?C-a ?C-  ?C-e ?M-w ?C-a ?C-n
        ?C-x ?o ?M-> ?C-y return ?C-x ?o])

    ; Put it on a key (if you have defined the indicated keymap by using
    ; emacs/emacs-acl2.el):
    (define-key ctl-t-keymap \"r\" 'step-guard-script)

  The script follows.

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
    ;;; Program mode
    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

    (defun fact (x)
             (declare (xargs :guard (integerp x)
                             :mode :program))
             (if (posp x)
                 (* x (fact (1- x)))
               1))

    ; Run the Tracing Code here.  It shows execution in raw Lisp in the t and nil
    ; cases of :set-guard-checking, but not in the :all or :none cases.  We get a
    ; guard violation for argument t in the case :set-guard-checking t.

    :u

    (defun fact (x)
             (declare (xargs :guard t
                             :mode :program))
             (if (posp x)
                 (* x (fact (1- x)))
               1))

    ; Run the Tracing Code here.  It should give the same results as above,
    ; except that we no longer get a guard violation in the case
    ; :set-guard-checking t.

    :u

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
    ;;; Logic mode, guard other than t
    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

    (defun fact (x)
             (declare (xargs :guard (integerp x)
                             :verify-guards nil
                             :mode :logic))
             (if (posp x)
                 (* x (fact (1- x)))
               1))

    ; Run the Tracing Code here.  It should give guard violations for (fact t)
    ; with guard-checking set to t or :all.  It should never run in raw Lisp,
    ; because we have not verified guards.  In the t case, we can get a warning
    ; about avoiding the guard check on recursive calls, but only if we do not
    ; trace the function, fact.

    (verify-guards fact)

    ; Run the Tracing Code here.  The results should be as described just above,
    ; except that now we go into raw Lisp for (fact 2) with guard-checking other
    ; than :none.

    :u
    :u

    ; The following definition is the same as above, except that guards are
    ; verified.

    (defun fact (x)
             (declare (xargs :guard (integerp x)
                             :mode :logic))
             (if (posp x)
                 (* x (fact (1- x)))
               1))

    ; Run the Tracing Code here.  We should get the same traces as in the
    ; immediately preceding case, since guards had been verified in both cases.

    :u

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
    ;;; Logic mode, guard t
    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

    (defun fact (x)
             (declare (xargs :guard t
                             :verify-guards nil
                             :mode :logic))
             (if (posp x)
                 (* x (fact (1- x)))
               1))

    ; Run the Tracing Code here.  We should never go in to raw Lisp, because
    ; guards have not been verified.  We will see the same traces for (fact 2) as
    ; with the (integerp x) guard above with :verify-guards nil specified, except
    ; that even without tracing, there is no warning for :set-guard-checking t
    ; about recursive calls.  And, there are no guard violations for (fact t), of
    ; course, since posp (necessarily, if we are to verify guards) has a guard of
    ; t.

    (verify-guards fact)

    ; Run the Tracing Code here.  You shouldn't see any surprises.  Note however
    ; that if we back up to the start (using :u :u) and then define fact as just
    ; above but without :verify-guards nil, then the :none setting will allow us
    ; to go into raw Lisp: although :none generally avoids execution of raw Lisp
    ; counterparts, it allows this when the guard is T and guards have been
    ; verified.")
 (GUARD-EVALUATION-TABLE
  (GUARD)
  "A table that shows combinations of [defun-mode]s and [guard]-checking

  See [set-guard-checking] for an introduction to the topic discussed
  here. Also see [guard] for a general discussion of guards, and see
  [guard-evaluation-examples-script] for a script that illustrates
  combinations presented below.

  Note: The default setting for guard-checking (that is, the initial
  value for (@ guard-checking-on)) is T.

  The table below illustrates the interaction of the [defun-mode] with
  the value supplied to [set-guard-checking]. The first row considers
  functions defined in :[program] mode; the other two consider
  functions defined in :[logic] mode. The columns correspond to four
  values of state global 'guard-checking-on, as supplied to
  [set-guard-checking]. (A fifth value, :nowarn, is similar to t but
  suppresses warnings encountered with t (as explained in those
  warning messages), and is not considered here.) During proofs,
  [certify-book], and [include-book], 'guard-checking-on is set to
  nil regardless of how this variable has been set in the top-level
  loop (see the ``Essay on Guard Checking'' in source file
  other-events.lisp if you are interested in a rationale).

  Below this table, we make some comments about its entries, ordered by
  row and then by column. For example, when we refer to ``b2'' we are
  discussing the execution of a :[logic] mode function whose guards
  have not been verified, after having executed :[set-guard-checking]
  :all.

      guard-checking-on:  (1)t      (2):all   (3):none   (4)nil

    (a) :program             a1        a2        a3        a4
    (b) guards not verified  b1        b2        b3        b4
    (c) guards verified      c1        c2        c3        c4

  a1. Check the [guard] upon entry, then use the raw Lisp code if the
  guard checks (else cause an error). This is a common setting when
  one wants a little guard checking but also wants the efficiency of
  raw Lisp. But note that you can get raw Lisp errors. For example,
  if you make the definition (defun foo (x) (car x)) in :[program]
  mode and execute :[set-guard-checking] t, and then execute (foo 3),
  you will likely get an error from the call (car 3) made in raw
  Lisp.

  a2. For built-in (predefined) functions, see a1 instead. Otherwise:
  Check the [guard], without exception. Thus, we never run the raw
  Lisp code in this case. This can be useful when testing :[program]
  mode functions, but you may want to run :[comp] t or at least
  :[comp] :exec in this case, so that the execution is done using
  compiled code.

  a3. For built-in (predefined) functions, see a4 instead. Otherwise:
  Do not check the [guard]. For :[program] mode functions, we never
  run the raw Lisp code in this case; so if you care about
  efficiency, see the comment in a2 above about :[comp]. This
  combination is useful if you are using ACL2 as a programming
  language and do not want to prove theorems about your functions or
  suffer [guard] violations. In this case, you can forget about any
  connection between ACL2 and Common Lisp.

  a4. Run the raw Lisp code without checking [guard]s at all. Thus, for
  :[program] mode functions, the nil setting is often preferable to
  the :none setting because you get the efficiency of raw Lisp
  execution. However, with nil you can therefore get hard Lisp errors
  as in a1 above.

  b1. Guards are checked at the top-level, though not at self-recursive
  calls. We never run the raw Lisp code in this case; guards would
  need to be verified first.

  b2. Unlike the t setting, guards are checked even on self-recursive
  calls. But like the t setting, we do not run the raw Lisp code. Use
  this setting if you want guards checked on each recursive call in
  spite of the cost of doing so.

  b3, b4. Execution avoids the raw Lisp code and never checks guards.
  The nil and :none settings behave the same in this case (i.e., for
  :[logic] mode functions whose guards have not been verified),
  except that recursive calls are never inlined for :none and tracing
  (see [trace]) will show recursive calls for :none but not for nil.

  c1, c2. Guards are checked. If the checks pass, evaluation takes
  place using the raw Lisp code. If the checks fail, we get a guard
  violation. Either way, we do not execute ``in the logic''; we only
  execute using the raw Lisp code. Note that t and :all behave the
  same in this case, (i.e. for :[logic] mode functions whose [guard]s
  have been verified).

  c3, c4. For the :none and nil settings, :[logic] mode functions whose
  guards have been verified will never cause guard violations.
  However, with nil and for built-in functions in :logic mode, guards
  are still checked: if the check succeeds, then evaluation is done
  using the raw Lisp code, and if not, it is done by the ``logic''
  code, including self-recursive calls (though unlike the t case, we
  will not see a warning about this). But with :none for user-defined
  functions, no guard checking is done, and the only time the raw
  Lisp code will be executed is when the guard is t and guards are
  verified at the time the executable counterpart of the function is
  defined (i.e., when the function is admitted unless it is later
  defined again and compiled using :[comp]). Thus, if you use :none
  and you want a function (foo x) with guard (g x) to execute using
  raw Lisp code, you can write a ``wrapper''function with a guard of
  t:

    (defun foo-wrap (x)
      (declare (xargs :guard t))
      (if (g x)
          (foo x)
        'do-not-case))

  If you want the speed of executing raw Lisp code and you have
  non-trivial guards on functions that you want to call at the
  top-level, use nil rather than :none.")
 (GUARD-EXAMPLE
  (TUTORIAL5-MISCELLANEOUS-EXAMPLES GUARD)
  "A brief transcript illustrating [guard]s in ACL2

  This note addresses the question: what is the use of [guard]s in
  ACL2? Although we recommend that beginners try to avoid [guard]s
  for a while, we hope that the summary here is reasonably
  self-contained and will provide a reasonable introduction to guards
  in ACL2. For a more systematic discussion, see [guard]. For a
  summary of that topic, see [guard-quick-reference].

  Before we get into the issue of [guard]s, let us note that there are
  two important ``modes'':

  [defun-mode] --- ``Does this [defun] add an axiom (`:logic mode') or
  not (`:program mode')?'' (See [defun-mode].) Only :[logic] mode
  functions can have their ``[guard]s verified'' via mechanized
  proof; see [verify-guards].

  [set-guard-checking] --- ``Should runtime [guard] violations signal
  an error (:all, and usually with t or :nowarn) or go undetected
  (nil, :none)? Equivalently, are expressions evaluated in Common
  Lisp or in the logic?'' (See [set-guard-checking].)

  Prompt examples

  Here some examples of the relation between the ACL2 [prompt] and the
  ``modes'' discussed above. Also see [default-print-prompt]. The
  first examples all have ld-skip-proofsp nil; that is, proofs are
  not skipped.

    ACL2 !>    ; logic mode with guard checking on
    ACL2 >     ; logic mode with guard checking off
    ACL2 p!>   ; program mode with guard checking on
    ACL2 p>    ; program mode with guard checking off

  Here are some examples with [default-defun-mode] of :[logic].

    ACL2 >     ; guard checking off, ld-skip-proofsp nil
    ACL2 s>    ; guard checking off, ld-skip-proofsp t
    ACL2 !>    ; guard checking on, ld-skip-proofsp nil
    ACL2 !s>   ; guard checking on, ld-skip-proofsp t

  Sample session

    ACL2 !>(+ 'abc 3)

    ACL2 Error in TOP-LEVEL: The guard for the function symbol
    BINARY-+, which is (AND (ACL2-NUMBERP X) (ACL2-NUMBERP Y)),
    is violated by the arguments in the call (+ 'ABC 3).

    ACL2 !>:set-guard-checking nil
    ;;;; verbose output omitted here
    ACL2 >(+ 'abc 3)
    3
    ACL2 >(< 'abc 3)
    T
    ACL2 >(< 3 'abc)
    NIL
    ACL2 >(< -3 'abc)
    T
    ACL2 >:set-guard-checking t

    Turning guard checking on, value T.

    ACL2 !>(defun sum-list (x)
            (declare (xargs :guard (integer-listp x)
                            :verify-guards nil))
            (cond ((endp x) 0)
                  (t (+ (car x) (sum-list (cdr x))))))

    The admission of SUM-LIST is trivial, using the relation
    O< (which is known to be well-founded on the domain
    recognized by O-P) and the measure (ACL2-COUNT X).
    We observe that the type of SUM-LIST is described by the
    theorem (ACL2-NUMBERP (SUM-LIST X)).  We used primitive type
    reasoning.

    Summary
    Form:  ( DEFUN SUM-LIST ...)
    Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))
    Warnings:  None
    Time:  0.03 seconds
       (prove: 0.00, print: 0.00, proof tree: 0.00, other: 0.03)
     SUM-LIST
    ACL2 !>(sum-list '(1 2 3))

    ACL2 Warning [Guards] in TOP-LEVEL:  Guard-checking will be inhibited
    on recursive calls of the executable counterpart (i.e., in the ACL2
    logic) of SUM-LIST.  To check guards on all recursive calls:
      (set-guard-checking :all)
    To leave behavior unchanged except for inhibiting this message:
      (set-guard-checking :nowarn)

    6
    ACL2 !>(sum-list '(1 2 abc 3))

    ACL2 Error in TOP-LEVEL: The guard for the function symbol
    BINARY-+, which is (AND (ACL2-NUMBERP X) (ACL2-NUMBERP Y)),
    is violated by the arguments in the call (+ 'ABC 3).

    ACL2 !>:set-guard-checking nil
    ;;;; verbose output omitted here
    ACL2 >(sum-list '(1 2 abc 3))
    6
    ACL2 >(defthm sum-list-append
           (equal (sum-list (append a b))
                  (+ (sum-list a) (sum-list b))))

    << Starting proof tree logging >>

    Name the formula above *1.

    Perhaps we can prove *1 by induction.  Three induction
    schemes are suggested by this conjecture.  Subsumption
    reduces that number to two.  However, one of these is flawed
    and so we are left with one viable candidate.

    ...

    That completes the proof of *1.

    Q.E.D.

  Guard verification vs. defun

          Declare Form                        Guards Verified?

      (declare (xargs :mode :program ...))          no
      (declare (xargs :guard g))                    yes
      (declare (xargs :guard g :verify-guards nil)) no
      (declare (xargs ...<no :guard>...))           no

    ACL2 >:pe sum-list
     l        8  (DEFUN SUM-LIST (X)
                  (DECLARE (XARGS :GUARD (INTEGER-LISTP X)
                                  :VERIFY-GUARDS NIL))
                  (COND ((ENDP X) 0)
                        (T (+ (CAR X) (SUM-LIST (CDR X))))))
    ACL2 >(verify-guards sum-list)
    The non-trivial part of the guard conjecture for SUM-LIST,
    given the :type-prescription rule SUM-LIST, is

    Goal
    (AND (IMPLIES (AND (INTEGER-LISTP X) (NOT (CONSP X)))
                  (EQUAL X NIL))
         (IMPLIES (AND (INTEGER-LISTP X) (NOT (ENDP X)))
                  (INTEGER-LISTP (CDR X)))
         (IMPLIES (AND (INTEGER-LISTP X) (NOT (ENDP X)))
                  (ACL2-NUMBERP (CAR X)))).

    ...

    ACL2 >:pe sum-list
     lv       8  (DEFUN SUM-LIST (X)
                  (DECLARE (XARGS :GUARD (INTEGER-LISTP X)
                                  :VERIFY-GUARDS NIL))
    ACL2 >:set-guard-checking t

    Turning guard checking on, value T.

    ACL2 !>(sum-list '(1 2 abc 3))

    ACL2 Error in TOP-LEVEL: The guard for the function symbol
    SUM-LIST, which is (INTEGER-LISTP X), is violated by the
    arguments in the call (SUM-LIST '(1 2 ABC ...)).  See :DOC trace for a useful
    debugging utility.  See :DOC set-guard-checking for information about
    suppressing this check with (set-guard-checking :none), as recommended for
    new users.

    ACL2 !>:set-guard-checking nil
    ;;;; verbose output omitted here
    ACL2 >(sum-list '(1 2 abc 3))
    6
    ACL2 >:comp sum-list
    Compiling gazonk0.lsp.
    End of Pass 1.
    End of Pass 2.
    Finished compiling gazonk0.lsp.
    Loading gazonk0.o
    start address -T 1bbf0b4 Finished loading gazonk0.o
    Compiling gazonk0.lsp.
    End of Pass 1.
    End of Pass 2.
    Finished compiling gazonk0.lsp.
    Loading gazonk0.o
    start address -T 1bc4408 Finished loading gazonk0.o
     SUM-LIST
    ACL2 >:q

    Exiting the ACL2 read-eval-print loop.
    ACL2>(trace sum-list)
    (SUM-LIST)

    ACL2>(lp)

    ACL2 Version 1.8.  Level 1.  Cbd \"/slocal/src/acl2/v1-9/\".
    Type :help for help.
    ACL2 >(sum-list '(1 2 abc 3))
    6
    ACL2 >(sum-list '(1 2 3))
      1> (SUM-LIST (1 2 3))>
        2> (SUM-LIST (2 3))>
          3> (SUM-LIST (3))>
            4> (SUM-LIST NIL)>
            <4 (SUM-LIST 0)>
          <3 (SUM-LIST 3)>
        <2 (SUM-LIST 5)>
      <1 (SUM-LIST 6)>
    6
    ACL2 >:pe sum-list-append
              9  (DEFTHM SUM-LIST-APPEND
                         (EQUAL (SUM-LIST (APPEND A B))
                                (+ (SUM-LIST A) (SUM-LIST B))))
    ACL2 >(verify-guards sum-list-append)

    The non-trivial part of the guard conjecture for
    SUM-LIST-APPEND, given the :type-prescription rule SUM-LIST,
    is

    Goal
    (AND (TRUE-LISTP A)
         (INTEGER-LISTP (APPEND A B))
         (INTEGER-LISTP A)
         (INTEGER-LISTP B)).

    ...

    ****** FAILED ******* See :DOC failure ****** FAILED ******
    ACL2 >(defthm common-lisp-sum-list-append
             (if (and (integer-listp a)
                      (integer-listp b))
                 (equal (sum-list (append a b))
                        (+ (sum-list a) (sum-list b)))
                 t)
             :rule-classes nil)

    << Starting proof tree logging >>

    By the simple :rewrite rule SUM-LIST-APPEND we reduce the
    conjecture to

    Goal'
    (IMPLIES (AND (INTEGER-LISTP A)
                  (INTEGER-LISTP B))
             (EQUAL (+ (SUM-LIST A) (SUM-LIST B))
                    (+ (SUM-LIST A) (SUM-LIST B)))).

    But we reduce the conjecture to T, by primitive type
    reasoning.

    Q.E.D.
    ;;;; summary omitted here
    ACL2 >(verify-guards common-lisp-sum-list-append)

    The non-trivial part of the guard conjecture for
    COMMON-LISP-SUM-LIST-APPEND, given the :type-prescription
    rule SUM-LIST, is

    Goal
    (AND (IMPLIES (AND (INTEGER-LISTP A)
                       (INTEGER-LISTP B))
                  (TRUE-LISTP A))
         (IMPLIES (AND (INTEGER-LISTP A)
                       (INTEGER-LISTP B))
                  (INTEGER-LISTP (APPEND A B)))).

    ...

    Q.E.D.

    That completes the proof of the guard theorem for
    COMMON-LISP-SUM-LIST-APPEND.  COMMON-LISP-SUM-LIST-APPEND
    is compliant with Common Lisp.
    ;;;; Summary omitted here.
    ACL2 >(defthm foo (consp (mv x y)))

    ...

    Q.E.D.

    ACL2 >(verify-guards foo)

    ACL2 Error in (VERIFY-GUARDS FOO): The number of values we
    need to return is 1 but the number of values returned by the
    call (MV X Y) is 2.

    > (CONSP (MV X Y))

    ACL2 Error in (VERIFY-GUARDS FOO): The guards for FOO cannot
    be verified because the theorem has the wrong syntactic
    form.  See :DOC verify-guards.")
 (GUARD-HINTS (POINTERS)
              "See [xargs] for keyword :guard-hints.")
 (GUARD-HOLDERS
  (RULE-CLASSES TERM GUARD)
  "Remove trivial calls from a [term]

  For many [rule-classes], the process of converting terms to rules
  includes the removal of certain trivial calls from the term. In all
  such cases, the resulting term is provably equivalent to the input
  term. A common example is to replace the term (prog2$ term1 term2)
  by the term term2. But (prog2$ term1 term2) is really an
  abbreviation for (i.e., macroexpands to) the term (return-last
  'progn term1 term2); so a more accurate explanation, at the level
  of proper ACL2 [term]s, is that the call of function [return-last]
  is replaced by its last argument. ACL2 identifies certain such
  transformations, from a term to a trivial simplification of it such
  that the input and output are provably equal. We historically have
  refered to the process of making such replacements as ``removing
  guard holders.'' (For a discussion of the connection to guards, see
  the ``Essay on the Removal of Guard Holders'' in the ACL2 sources.)

  As of this writing, the process of removing guard-holders includes
  the transformations below. That process is also applied to each
  argument of a function call and to the bodies of [lambda]
  expressions (see [term]).

    (return-last term0 term1 term2)  ==>  term2

    (mv-list term0 ... termk)        ==>  termk

    ; For replacing a term (the type term) by term:
    ((lambda (y) (the-check guard x y))
     val)                            ==>  val

  Because of how [mbe] and [ec-call] are defined in terms of
  [return-last], the expressions (mbe :logic l :exec e) and (ec-call
  (f t1 ... tk)) are effective transformed by removing guard holders
  into l and (f t1 ... tk), respectively.")
 (GUARD-INTRODUCTION
  (GUARD)
  "Introduction to [guard]s in ACL2

  Most users can probably profit by avoiding dealing with guards most
  of the time. If they seem to get in the way, they can be ``turned
  off'' using the command :[set-guard-checking] nil; for more about
  this, see [set-guard-checking]. For more about guards in general,
  see [guard].

  The guard on a function symbol is a formula about the formals of the
  function. To see the guard on a function, use the keyword command
  :[args]. See [args]. To specify the guard on a function at
  defun-time, use the :[guard] xarg (See [xargs]) or type
  declarations (see [declare]). The latter may be preferable if you
  want the host Lisp compiler to use this information.

  Guards can be seen as having either of two roles: (a) they are a
  specification device allowing you to characterize the kinds of
  inputs a function ``should'' have, or (b) they are an efficiency
  device allowing logically defined functions to be executed directly
  in Common Lisp. Briefly: If the guards of a function definition are
  ``verified'' (see [verify-guards]), then the evaluation of a call
  of that function on arguments satisfying its guard will have the
  following property:

      All subsequent function calls during that evaluation will be on
      arguments satisfying the guard of the called function.

  The consequence of this fact for (a) is that your specification
  function is well-formed, in the sense that the values returned by
  this function on appropriate arguments only depend on the
  restrictions of the called functions to their intended domains. The
  consequence of this fact for (b) is that in the ACL2 system, when a
  function whose guards have been verified is called on arguments
  that satisfy its guard, then the raw lisp function defined by this
  function's [defun] event is used to evaluate the call. Note however
  that even when the user-supplied [defun] is not used, ACL2 uses a
  corresponding ``executable counterpart'' that generally performs,
  we expect, nearly as well as the raw lisp function. See [comp] to
  see how [compilation] can speed up both kinds of execution.

  Let us turn next to the issue of the relationship between guards and
  evaluation. See [guards-and-evaluation].")
 (GUARD-MISCELLANY
  (GUARD)
  "Miscellaneous remarks about guards

  The discussion of guards concludes here with a few miscellaneous
  remarks. (Presumably you found this documentation by following a
  link; see [guards-for-specification].) For further information
  related to guards other than what you find under ``[guard],'' see
  any of the following documentation topics: [guard-example],
  [set-verify-guards-eagerness], [set-guard-checking],
  [verify-guards], and (for a discussion of keyword :split-types)
  [xargs].

  [Defun] can be made to try to verify the guards on a function. This
  is controlled by the ``[defun-mode]'' of the [defun]; see
  [defun-mode]. The [defun-mode] is either as specified with the
  :mode xarg of the [defun] or else defaults to the default
  [defun-mode]. See [default-defun-mode]. If the [defun-mode] of the
  [defun] is :[logic] and either a [guard] is specified explicitly or
  :[verify-guards] t is specified in the [xargs], then we attempt to
  verify the guards of the function. Otherwise we do not. (But see
  [set-verify-guards-eagerness] for how to modify this behavior.)

  It is sometimes impossible for the system to verify the guards of a
  recursive function at definition time. For example, the guard
  conjectures might require the invention and proof of some
  inductively derived property of the function (as often happens when
  the value of a recursive call is fed to a guarded subroutine). So
  sometimes it is necessary to define the function using
  :verify-guards nil then to state and prove key theorems about the
  function, and only then have the system attempt guard verification.
  Post-[defun] guard verification is achieved via the event
  [verify-guards]. See [verify-guards].

  It should be emphasized that guard verification affects only two
  things: how fast ACL2 can evaluate the function and whether the
  function is executed correctly by raw Common Lisp, without guard
  violations. Since ACL2 does not use the raw Common Lisp definition
  of a function to evaluate its calls unless that function's guards
  have been verified, the latter effect is felt only if you run
  functions in raw Common Lisp rather than via ACL2's command loop.

  Guard verification does not otherwise affect the theorem prover or
  the semantics of a definition. If you are not planning on running
  your function on ``big'' inputs and you don't care if your function
  runs correctly in raw Common Lisp (e.g., you have formalized some
  abstract mathematical property and just happened to use ACL2 as
  your language), there is no need to suffer through guard
  verification. Often users start by not doing guard verification and
  address that problem later. Sometimes you are driven to it, even in
  mathematical projects, because you find that you want to run your
  functions particularly fast or in raw Common Lisp.

  If [certify-book] is used to compile a file, and the file contains
  functions with unverified guard conjectures, then you will be
  warned that the compiled file cannot be loaded into raw Common Lisp
  with the expectation that the functions will run correctly. This is
  just the same point we have been making: ACL2 and Common Lisp agree
  only on the restricted domains specified by our guards. When guards
  are violated, Common Lisp can do anything. When you call a compiled
  function on arguments violating its guards, the chances are only
  increased that Common Lisp will go berserk, because compiled
  functions generally check fewer things at runtime and tend to be
  more fragile than interpreted ones.

  Finally, we note that ACL2 collects up [guard]s from [declare] forms
  in order of appearance. So for example, the [declare] form

    (declare (xargs :guard (foo x))
             (type string x)

  will generate the guard (and (foo x) (stringp x)), while the form

    (declare (type string x)
             (xargs :guard (foo x))

  will generate the guard (and (stringp x) (foo x)). The only exception
  to this rule is the case that :guard and :stobjs are both specified
  in which case all :stobjs declarations will be treated as through
  they precede all :guard and type declarations.")
 (GUARD-MSG-TABLE (POINTERS)
                  "See [set-guard-msg].")
 (GUARD-OBLIGATION
  (GUARD)
  "The guard proof obligation

  See [verify-guards], and see [guard] for a discussion of guards. Also
  see [verify-guards-formula] for a utility provided for viewing the
  guard proof obligation, without proof. Guard-obligation is a lower
  level function for use in system programs, not typically
  appropriate for most ACL2 users. If you simply want to see the
  guard proof obligations, see [verify-guards-formula]. Also see
  [lemma-instance] for a discussion of a utility, guard-theorem, that
  provides an unsimplified version of the guard proof obligation, and
  see [gthm] for a corresponding user-level utility.

    Example Form:
    (guard-obligation 'foo nil 'top-level state)
    (guard-obligation '(if (consp x) (foo (car x)) t) nil 'my-function state)

    General Forms:
    (guard-obligation name guard-debug ctx state)
    (guard-obligation term guard-debug ctx state)

  where the first argument is either the name of a function or theorem
  or is a non-variable term that may be in untranslated form;
  guard-debug is typically nil but may be t (see [guard-debug]); ctx
  is a context (typically, a symbol used in error and warning
  messages); and [state] references the ACL2 [state].

  If you want to obtain the formula but you don't care about the
  so-called ``tag tree'':

    (mv-let (erp val state)
            (guard-obligation x guard-debug 'top-level state)
            (if erp
               ( .. code for handling error case, e.g., name is undefined .. )
              (let ((cl-set (cadr val))) ; to be proved for guard verification
                ( .. code using cl-set, which is a list of clauses,
                     implicitly conjoined, each of which is viewed as
                     a disjunction .. ))))

  The form (guard-obligation x guard-debug ctx state) evaluates to a
  triple (mv erp val state), where erp is nil unless there is an
  error, and [state] is the ACL2 state. Suppose erp is nil. Then val
  is the keyword :redundant if the corresponding [verify-guards]
  event would be redundant; see [redundant-events]. Otherwise, val is
  a tuple (list* names cl-set ttree), where: names is (cons :term xt)
  if x is not a variable, where xt is the translated form of x; and
  otherwise is a list containing x along with, if x is defined in a
  mutual-recursion, any other functions defined in the same
  [mutual-recursion] nest; cl-set is a list of lists of terms, viewed
  as a conjunction of clauses (each viewed (as a disjunction); and
  ttree is an assumption-free tag-tree that justifies cl-set. (The
  notion of ``tag-tree'' may probably be ignored except for system
  developers.)

  Guard-obligation is typically used for function names or non-variable
  terms, but as for [verify-guards], it may also be applied to
  theorem names.

  See the source code for [verify-guards-formula] for an example of how
  to use guard-obligation.")
 (GUARD-QUICK-REFERENCE
  (GUARD)
  "Brief summary of guard checking and guard verification

  For a careful introduction to guards, see [guard].

  I. GUARD CHECKING DURING EXECUTION

  Effect

  Guards on definitions are checked at execution time (except for
  guards on subsidiary calls of recursive or mutually recursive
  functions).

  When does it happen

  By default, guards are checked for all forms submitted at the top
  level.

  To disable
  :set-guard-checking nil ; skip raw Lisp if there is a guard
  violation :set-guard-checking :none ; skip guard checking entirely

  To (re-)enable
  :set-guard-checking t

  See [set-guard-checking] for more options.

  II. GUARD VERIFICATION

  Effect

  A proof is attempted of the obligations arising from the guards of
  subsidiary functions in a [defun], [defthm], or [defaxiom] event.
  In the case of a defun, the guard itself is also verified (under an
  implicit guard of t).

  When does it happen

  Only names of defined functions, [defthm]s, and [defaxiom]s are
  subject to guard verification. Guard verification may occur when
  functions are defined (using [defun]), but it requires an explicit
  call of [verify-guards] in order to verify guards for [defthm]s and
  [defaxiom]s. Constrained functions (see [encapsulate]) may not have
  their guards verified.

  (verify-guards foo ...)
  causes guard verification for the [defun], [defthm], or [defaxiom]
  named by foo, if it has not already been successfully done. The
  default [defun-mode] (see [default-defun-mode]) must be :[logic],
  or else this event is ignored.

  (defun foo ...)
  causes guard verification of foo if and only if the following two
  conditions are both met. First, foo is processed in :[logic] mode
  (either by setting mode :[logic] globally, or by including :mode
  :logic in the [xargs] declaration). Second, at least one of the
  following sub-conditions is met. Also see [xargs], and see
  [set-verify-guards-eagerness] for how to change this behavior.

      1. The [xargs] declaration specifies a :[guard].

      2. There is at least one type declaration (see [declare]).

      3. The [xargs] declaration specifies :[stobj]s.

      4. The [xargs] declaration specifies :[verify-guards] t.

  (verify-termination foo ...)
  causes guard verification of foo if foo is a function currently
  defined in :[program] mode and the criteria for guard verification
  of a [defun] form are met, as discussed above. The default
  [defun-mode] (see [default-defun-mode]) must be :[logic], or else
  this event is ignored.")
 (GUARD-THEOREM
  (LEMMA-INSTANCE GUARD HINTS)
  "Use a previously-proved [guard] theorem

  See [lemma-instance] for a discussion of :guard-theorem lemma
  instances, and see [gthm] for a related user-level query utility.
  Also see [guard-theorem-example] for a simple example of the use of
  a [guard] theorem in [hints].")
 (GUARD-THEOREM-EXAMPLE
  (LEMMA-INSTANCE GUARD HINTS)
  "How to use a previously-proved [guard] theorem

  See [lemma-instance] for a discussion of :guard-theorem lemma
  instances, and see [gthm] for a related user-level query utility.
  In this topic, we illustrate the use of such lemma instances to
  take advantage of a [guard] theorem already proved for an existing
  definition, when attempting to admit a new definition.

  The following example is contrived but should get the idea across.
  Suppose that the event displayed just below was previously
  executed, for example when including a book. The [mbe] call
  generates a guard proof obligation, but there is only one thing to
  know about that for this example: without the local lemma shown,
  the guard proof fails for f1.

    (encapsulate
      ()
      (local (defthm append-revappend
               (equal (append (revappend x y) z)
                      (revappend x (append y z)))))

      (defun f1 (x y)
        (declare (xargs :guard (and (true-listp x)
                                    (true-listp y))))
        (mbe :logic (append (reverse x) y)
             :exec (revappend x y))))

  Now suppose that later, we wish to admit a function with the same
  guard and body. Since the lemma append-revappend above is [local],
  guard verification will likely fail. However, we can tell the
  prover to use the guard theorem already proved for f1, as follows;
  then the guard verification proof succeeds.

    (defun f2 (x y)
      (declare (xargs :guard (and (true-listp x)
                                  (true-listp y))
                      :guard-hints ((\"Goal\" :use ((:guard-theorem f1))))))
      (mbe :logic (append (reverse x) y)
           :exec (revappend x y)))

  See [termination-theorem-example] for an example use of the analogous
  lemma instance type, :termination-theorem. That topic also includes
  discussion of the use of event names in prover output.")
 (GUARDS (POINTERS) "See [guard].")
 (GUARDS-AND-EVALUATION
  (GUARD)
  "The relationship between guards and evaluation

  The guard has no effect on the logical axiom added by the definition
  of a function. It does, however, have consequences for how calls of
  that function are evaluated in ACL2. We begin by explaining those
  consequences, when ACL2 is in its default ``mode,'' i.e., as
  originally brought up. In subsequent discussion we'll consider
  other ways that guards can interact with evaluation.

  For more about guards in general, see [guard]. For in-depth
  discussion of the interaction between the [defun-mode] and guard
  checking, see [set-guard-checking], see [guard-evaluation-table],
  see [guard-evaluation-examples-script], and see
  [guard-evaluation-examples-log]. Also see [generalized-booleans]
  for discussion about a subtle issue in the evaluation of certain
  Common Lisp functions.

  Guards and evaluation I: the default

  Consider the following very simple definition.

    (defun foo (x) (cons 1 (cdr x)))

  First consider how raw Common Lisp behaves when evaluating calls of
  this function. To evaluate (foo x) for some expression x, first x
  is evaluated to some value v, and then (cons 1 (cdr x)) is
  evaluated with x bound to v. For example, if v is (cons 'a 3), then
  Common Lisp computes (cons 1 3). But if (for example) v is a
  number, e.g., 7, then there is no way to predict what Common Lisp
  might do. Some implementations would cause ``sensible'' errors,
  others might return nonsense, still others might crash the host
  machine. The results tend toward the catastrophic if the call of
  foo in question is in compiled code.

  Now by default, ACL2 evaluates calls of foo exactly as Common Lisp
  does, except that it uses guards to check the ``legality'' of each
  function call. So for example, since (cdr x) has a guard of (or
  (consp x) (equal x nil)), the call (foo 7) would cause a ``guard
  violation,'' as illustrated below.

    ACL2 !>(foo 7)

    ACL2 Error in TOP-LEVEL:  The guard for the function symbol CDR, which
    is (OR (CONSP X) (EQUAL X NIL)), is violated by the arguments in the
    call (CDR 7).

    ACL2 !>

  Thus, the relation between evaluation in ACL2 and evaluation in
  Common Lisp is that the two produce the very same results, provided
  there is no guard violation.

  Guards and evaluation II: :[set-guard-checking].

  The ACL2 logic is a logic of total functions. That is, every
  application of a function defined has a completely specified
  result. See the [documentation] for each individual primitive for
  the specification of what it returns when its guard is violated;
  for example, see [cdr].

  The presence of guards thus introduces a choice in the sense of
  evaluation. When you type a form for evaluation do you mean for
  guards to be checked or not? Put another way, do you mean for the
  form to be evaluated in Common Lisp (if possible) or in the ACL2
  logic? Note: If Common Lisp delivers an answer, it will be the same
  as in the logic, but it might be erroneous to execute the form in
  Common Lisp. For example, the ACL2 logic definition of [cdr]
  implies that the [cdr] of an [atom] is nil; see [cdr]. So: should
  (cdr 7) cause a guard violation error or return nil?

  The top-level ACL2 loop has a variable which controls which sense of
  execution is provided. By default, ``guard checking'' is on, by
  which we mean that guards are checked at runtime, in the sense
  already described. To allow execution to proceed in the logic when
  there is a guard violation, do :[set-guard-checking] nil; or
  evaluate :[set-guard-checking] :none to skip guard checking
  entirely. To turn ``guard checking'' back on, execute the top-level
  form :[set-guard-checking] t. The status of guard checking
  reflected in the [prompt]; guard-checking is ``on'' when the
  [prompt] contains an exclamation mark (also see
  [default-print-prompt]). For example,

    ACL2 !>

  means guard checking is on and

    ACL2 >

  means guard checking is off. The exclamation mark can be thought of
  as ``barring'' certain computations. The absence of the mark
  suggests the absence of error messages or unbarred access to the
  logical axioms. Thus, for example

    ACL2 !>(car 'abc)

  will signal an error, while

    ACL2 >(car 'abc)

  will return nil. To return to our previous example: with guard
  checking off, (foo 7) evaluates to (cons 1 nil). Also see
  [set-guard-checking].

  Guards and evaluation III: guard verification

  Consider the defininition of foo given above, but modified so that a
  reasonable guard of (consp x) is specified, as shown below.

    (defun foo (x)
      (declare (xargs :guard (consp x)))
      (cons 1 (cdr x)))

  We say ``reasonable guard'' above because if x is such that (consp x)
  holds, then the call of [cdr] in the evaluation of (foo x) will not
  cause a guard violation. Thus, it ``should'' be legal to evaluate
  (foo x), for any such x, simply by evaluating this form in raw
  Common Lisp.

  The [verify-guards] event has been provided for this purpose. Details
  may be found elsewhere; see [verify-guards]. Briefly, for any
  defined function fn, the event (verify-guards fn) attempts to check
  the condition discussed above, that whenever fn is called on
  arguments that satisfy its guard, the evaluation of this call will
  proceed without any guard violation. (Moreover, the guard itself
  should be evaluable without any guard violation.) If this check is
  successful, then future calls of this sort will be evaluated in raw
  Common Lisp.

  Returning to our example above, the (verify-guards foo) will succeed
  because the guard (consp x) of foo implies the guard generated from
  the call (cdr x) in the body of the definition, namely, (or (consp
  x) (equal x nil)) (see [cdr]). Then the evaluation of (foo (cons 'a
  3)) will take place in raw Common Lisp, because (cons 'a 3)
  satisfies the guard of foo.

  This ability to dive into raw Common Lisp hinges on the proof that
  the guards you attach to your own functions are sufficient to
  ensure that the guards encountered in the body are satisfied. This
  is called ``guard verification.'' Once a function has had its
  guards verified, then ACL2 can evaluate the function somewhat
  faster (but see ``Guards and evaluation V: efficiency issues''
  below). Perhaps more importantly, ACL2 can also guarantee that the
  function will be evaluated correctly by any implementation of
  Common Lisp (provided the guard of the function is satisfied on the
  input). That is, if you have verified the guards of a system of
  functions and you have determined that they work as you wish in
  your host ACL2 (perhaps by proving it, perhaps by testing), then
  they will work identically in any Common Lisp.

  There is a subtlety to our treatment of evaluation of calls of
  functions whose guards have been verified. If the function's guard
  is not satisfied by such a call, then no further attempt is made to
  evaluate any call of that function in raw lisp during the course of
  evaluation of that call. This is obvious if guard checking is on,
  because an error is signalled the first time its guard is violated;
  but in fact it is also true when guard checking is off. See
  [guard-example] for an example.

  Guards and evaluation IV: functions having :program mode

  Strictly speaking, functions in :[program] mode (see [defun-mode]) do
  not have definitions in the ACL2 logic. So what does it mean to
  evaluate calls of such functions in ACL2? In general we treat
  :[program] functions much as we treat :[logic] functions whose
  guards have been verified, except that when no error occurs then
  the corresponding raw Lisp function is always called. (We say ``in
  general'' because there are exceptions, discussed in the ``Aside''
  just below.) Note that when the guard of a function in :[logic]
  mode is violated, there is still a value that the ACL2 logic proves
  is equal to the given call. But the same cannot be said for a
  function in :[program] mode. Nevertheless, for the sake of
  convenience we go ahead and evaluate the corresponding raw Lisp
  function except in the situation where the guard is violated and
  guard-checking is on, aside from the following:

  Aside. There are exceptions to the use of raw Lisp, discussed just
  above, to evaluate calls of :[program] mode functions. The primary
  one is that after :[set-guard-checking] :none, evaluation of
  user-defined :[program] mode function calls is done in the ACL2
  logic, not in raw Lisp. The more obscure exception is that during
  expansion of macros and [make-event] forms, and during evaluation
  of [defconst] forms, ACL2 enters a ``safe mode'' in which this
  escape to raw Lisp is prevented. The following example illustrates
  how the user can experiment directly with safe mode, though it is
  preferred to use :[set-guard-checking] :none if you are happy to
  skip all guard checking and evaluate forms in the logic.

    ACL2 !>(defun foo (x)
             (declare (xargs :mode :program :guard t))
             (car x))

    Summary
    Form:  ( DEFUN FOO ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     FOO
    ACL2 !>(foo 3)
    Error: Attempt to take the car of 3 which is not listp.
      [condition type: SIMPLE-ERROR]

    Restart actions (select using :continue):
     0: Return to Top Level (an \"abort\" restart).
     1: Abort entirely from this process.
    [1] ACL2(2): :pop
    ACL2 !>(assign safe-mode t)
     T
    ACL2 !>(foo 3)

    ACL2 Error in TOP-LEVEL:  The guard for the function symbol CAR, which
    is (OR (CONSP X) (EQUAL X NIL)), is violated by the arguments in the
    call (CAR 3).  See :DOC trace for a useful debugging utility.  See
    :DOC set-guard-checking for information about suppressing this check
    with (set-guard-checking :none), as recommended for new users.

    ACL2 !>(assign safe-mode nil)
     NIL
    ACL2 !>(foo 3)
    Error: Attempt to take the car of 3 which is not listp.
      [condition type: SIMPLE-ERROR]

    Restart actions (select using :continue):
     0: Return to Top Level (an \"abort\" restart).
     1: Abort entirely from this process.
    [1] ACL2(2):

  The other exception occurs after [set-guard-checking] can be called
  with a value of :all; see [set-guard-checking]. End of aside.

  Thus, as with :[logic] functions: when a guard has been satisfied on
  a call of a function with :[program] mode, no subsidiary guard
  checking will be done.

  Notice that by treating functions in :[program] mode like functions
  whose guards have been verified, we are using raw lisp to compute
  their values when their guards are met. We do not check guards any
  further once raw lisp is invoked. This can lead to hard lisp errors
  if the guards are not appropriate, as illustrated below.

    ACL2 >:program
    ACL2 p>(defun foo (x)
            (declare (xargs :guard t))
            (cons 1 (cdr x)))

    Summary
    Form:  ( DEFUN FOO ...)
    Rules: NIL
    Warnings:  None
    Time:  0.02 seconds (prove: 0.00, print: 0.00, proof tree: 0.00, other: 0.02)
     FOO
    ACL2 p>(foo 3)

    Error: 3 is not of type LIST.
    Fast links are on: do (use-fast-links nil) for debugging
    Error signalled by CDR.
    Broken at COND.  Type :H for Help.
    ACL2>>

  See [defun-mode-caveat].

  However, here is a way to get ACL2 to do run-time guard checking for
  user-defined :[program] mode functions. With this method, ACL2 will
  evaluate calls of user-defined :program mode functions in a manner
  that follows their ACL2 definitions. Simply execute the following
  in the ACL2 loop to put ACL2 into a ``safe mode.''

    (f-put-global 'safe-mode t state)

  Let us revisit the example above, using safe mode. Notice that the
  guard of [cdr] is now being checked, because the executable
  counterpart of foo is being called even though the [guard] is t.

    ACL2 !>(f-put-global 'safe-mode t state)
    <state>
    ACL2 !>:program
    ACL2 p!>(defun foo (x)
              (declare (xargs :guard t))
              (cons 1 (cdr x)))

    Summary
    Form:  ( DEFUN FOO ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     FOO
    ACL2 p!>(foo 3)

    ACL2 Error in TOP-LEVEL:  The guard for the function symbol CDR, which
    is (OR (CONSP X) (EQUAL X NIL)), is violated by the arguments in the
    call (CDR 3).  See :DOC trace for a useful debugging utility.  See
    :DOC set-guard-checking for information about suppressing this check
    with (set-guard-checking :none), as recommended for new users.

    ACL2 p!>

  If we go back into ``unsafe'' mode, then we once again see a raw Lisp
  error, as we now illustrate.

    ACL2 p!>(f-put-global 'safe-mode nil state)
    <state>
    ACL2 p!>(foo 3)

    Error: 3 is not of type LIST.
    Fast links are on: do (si::use-fast-links nil) for debugging
    Error signalled by CDR.
    Broken at COND.  Type :H for Help.
    ACL2>>

  Guards and evaluation V: efficiency issues

  We have seen that by verifying the guards for a :[logic] function, we
  arrange that raw lisp is used for evaluation of calls of such
  functions when the arguments satisfy its guard.

  This has several apparent advantages over the checking of guards as
  we go. First, the savings is magnified as your system of functions
  gets deeper: the guard is checked upon the top-level entry to your
  system and then raw Common Lisp does all the computing. Second, if
  the raw Common Lisp is compiled (see [compilation]), enormous
  speed-ups are possible. Third, if your Common Lisp or its compiler
  does such optimizations as tail-recursion removal, raw Common Lisp
  may be able to compute your functions on input much ``bigger'' than
  ACL2 can.

  The first of these advantages is quite important if you have
  complicated guards. However, the other two advantages are probably
  not very important, as we now explain.

  When a function is defined in :[logic] mode, its [defun] is executed
  in raw Common Lisp. (We might call this the ``primary'' raw lisp
  definition of the function.) However, a corresponding ``logic
  definition'' is also executed. The ``logic definition'' is a
  [defun] in raw lisp that checks guards at runtime and escapes to
  the primary raw lisp definition if the guard holds of the arguments
  and the function has already had its guards verified. Otherwise the
  logic definition executes the body of the function by calling the
  logic definitions of each subroutine. Now it is true that
  [compilation] generally speeds up execution enormously. However,
  the :[comp] command (see [comp]) compiles both of the raw lisp
  definitions associated with a :[logic] function. Also, we have
  attempted to arrange that for every tail recursion removal done on
  the actual [defun], a corresponding tail recursion removal is done
  on the ``logic definition.''

  We believe that in most cases, the logic definition executes almost
  as fast as the primary raw lisp definition, at least if the
  evaluation of the guards is fast. So, the main advantage of guard
  verification is probably that it lets you know that the function
  may be executed safely in raw lisp, returning the value predicted
  by the ACL2 logic, whenever its arguments satisfy its guard. We
  envision the development of systems of applicative lisp functions
  that have been developed and reasoned about using ACL2 but which
  are intended for evaluation in raw Common Lisp (perhaps with only a
  small ``core'' of ACL2 loaded), so this advantage of guard
  verification is important.

  Nevertheless, guard verification might be important for optimal
  efficiency when the functions make use of type declarations. For
  example, at this writing, the GCL implementation of Common Lisp can
  often take great advantage of [declare] forms that assign small
  integer types to formal parameters. Note that while type
  declarations contributed to the guard by default, they can be
  proved from the guard instead; see [xargs] for a discussion of the
  :split-types keyword.

  To continue the discussion of guards, see [guards-for-specification]
  to read about the use of guards as a specification device.")
 (GUARDS-FOR-SPECIFICATION
  (GUARD)
  "Guards as a specification device

  A use of guard verification that has nothing to do with efficiency is
  as a way to gain confidence in specifications. This use has the
  feel of ``types'' in many traditional [programming] languages,
  though guards allow much greater expressiveness than most systems
  of types (and unfortunately, as a result they are not syntactically
  checkable).

  For more discussion of guards in general, see [guard].

  Suppose you have written a collection of function definitions that
  are intended to specify the behavior of some system. Perhaps
  certain functions are only intended to be called on certain sorts
  of inputs, so you attach guards to those functions in order to
  ``enforce'' that requirement. And then, you verify the guards for
  all those functions.

  Then what have you gained, other than somewhat increased efficiency
  of execution (as explained above), which quite possibly isn't your
  main concern? You have gained the confidence that when evaluating
  any call of a (specification) function whose arguments satisfy that
  function's guard, all subsequent function calls during the course
  of evaluation will have this same property, that the arguments
  satisfy the guard of the calling function.

  The rest of this topic addresses those who wish to understand
  [guard]s from a proof-theoretic perspective instead of (or in
  addition to) the evaluation perspective given above. In logical
  terms, we can say that the equality of the original call with the
  returned value is provable from weakened versions of the
  definitions, where each definitional axiom is replaced by an
  implication whose antecedent is the requirement that the arguments
  satisfy the guard and whose consequent is the original axiom. For
  example,

    (defun foo (x)
      (declare (xargs :guard (consp x)))
      (cons 1 (cdr x)))

  originally generates the axiom

    (equal (foo x)
           (cons 1 (cdr x)))

  but in fact, when evaluation involves no guard violation then the
  following weaker axiom suffices in the justification of the
  evaluation.

    (implies (consp x)
             (equal (foo x)
                    (cons 1 (cdr x))))

  So for example, suppose we evaluate (foo '(a b c)) and get '(1 b c).
  Then of course the equality of these two terms is provable from the
  original axiom. The point here is that it's even provable from the
  weaker axiom.

  If you are following links to read this documentation as a hypertext
  style document, then please see [guard-miscellany]. This concludes
  our discussion of guards with miscellaneous remarks, and also
  contains pointers to related topics.")
 (GUARDS_IN_ACL2
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Guards

  Common Lisp functions are partial; they are not defined for all
  possible inputs. But ACL2 functions are total. Roughly speaking,
  the logical function of a given name in ACL2 is a completion of the
  Common Lisp function of the same name obtained by adding some
  arbitrary but ``natural'' values on arguments outside the
  ``intended domain'' of the Common Lisp function.

  ACL2 requires that every ACL2 function symbol have a ``guard,'' which
  may be thought of as a predicate on the formals of the function
  describing the intended domain. The guard on the primitive function
  [car] [{ICON}], for example, is (or (consp x) (equal x nil)), which
  requires the argument to be either an ordered pair or nil. We will
  discuss later how to specify a guard for a defined function; when
  one is not specified, the guard is t which is just to say all
  arguments are allowed.

  But guards are entirely extra-logical: they are not involved in the
  axioms defining functions. If you put a guard on a defined
  function, the defining axiom added to the logic defines the
  function on all arguments, not just on the guarded domain.

  So what is the purpose of guards?

  The key to the utility of guards is that we provide a mechanism,
  called ``guard verification,'' for checking that all the guards in
  a formula are true. See [verify-guards]. This mechanism will
  attempt to prove that all the guards encountered in the evaluation
  of a guarded function are true every time they are encountered.

  For a thorough discussion of guards, see the paper [km97] in the ACL2
  [bibliography].")
 (GUESSING_THE_TYPE_OF_A_NEWLY_ADMITTED_FUNCTION
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Guessing the Type of a Newly Admitted Function

  When a function is admitted to the logic, ACL2 tries to ``guess''
  what type of object it returns. This guess is codified as a term
  that expresses a property of the value of the function. For app the
  term is

    (OR (CONSP (APP X Y))
        (EQUAL (APP X Y) Y))

  which says that app returns either a cons or its second argument.
  This formula is added to ACL2's rule base as a [type-prescription]
  [{ICON}] rule. Later we will discuss how rules are used by the ACL2
  theorem prover. The point here is just that when you add a
  definition, the database of rules is updated, not just by the
  addition of the definitional axiom, but by several new rules.

  You should now return to [the Walking Tour].")
 (GUIDING_THE_ACL2_THEOREM_PROVER
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Guiding the ACL2 Theorem Prover

  [{IMAGE}]

  Now that you have seen the theorem prover in action you might be
  curious as to how you guide it.

  {IMAGE}

  Look at the picture above. It is meant to suggest that Q is an
  important lemma needed for the proof of P. Note that to lead the
  prover to the proof of P the user first proves Q. In a way, the
  formulation and proof of Q is a hint to the prover about how to
  prove P.

  The user usually doesn't think of Q or recognize the need to prove it
  separately until he or she sees the theorem prover fail to prove P
  without it ``knowing'' Q.

  The way the user typically discovers the need for Q is to look at
  failed proofs.

  [{IMAGE}]")
 (HANDS-OFF (POINTERS)
            "See [hints] for keyword :hands-off.")
 (HARD-ERROR
  (ERRORS ACL2-BUILT-INS)
  "Print an error message and stop execution

  (Hard-error ctx str alist) causes evaluation to halt with a short
  message using the ``context'' ctx. An error message is first
  printed using the string str and alist alist that are of the same
  kind as expected by [fmt]. See [fmt]. Also see [er] for a macro
  that provides a unified way of signaling errors.

  Hard-error has a guard of t. Also see [illegal] for a similar
  capability which however has a guard of nil that supports static
  checking using [guard] verification, rather than using dynamic
  (run-time) checking. This distinction is illustrated elsewhere: see
  [prog2$] for examples.

  Semantically, hard-error ignores its arguments and always returns
  nil. But if a call (hard-error ctx str alist) is encountered during
  evaluation, then the string str is printed using the association
  list alist (as in [fmt]), after which evaluation halts immediately.
  Here is a trivial, contrived example.

    ACL2 !>(cons 3 (hard-error 'my-context
                                \"Printing 4: ~n0\"
                                (list (cons #\\0 4))))

    HARD ACL2 ERROR in MY-CONTEXT:  Printing 4: four

    ACL2 Error in TOP-LEVEL:  Evaluation aborted.

    ACL2 !>

  Technical note for raw Lisp programmers only. It is possible to cause
  hard errors to signal actual raw Lisp errors, simply by evaluating
  the following form in raw Lisp: (setq *hard-error-is-error* t).
  Indeed, any non-nil value for *hard-error-is-error* will cause
  hard-error or [illegal] --- or indeed (er hard ...), (er hard!
  ...), or (er hard? ...) --- to produce a Lisp error whose
  condition, when printed with format directive ~a, is the same error
  message that ACL2 would otherwise print. Below is a sample log,
  closely based on an example provided by Jared Davis.

    ACL2 !>(defun f (x)
             (er hard 'f \"F got bad input ~x0.~%\" x))

    Since F is non-recursive, its admission is trivial.  We observe that
    the type of F is described by the theorem (EQUAL (F X) NIL).  We used
    the :type-prescription rule ILLEGAL.

    Summary
    Form:  ( DEFUN F ...)
    Rules: ((:TYPE-PRESCRIPTION ILLEGAL))
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     F
    ACL2 !>:q

    Exiting the ACL2 read-eval-print loop.  To re-enter, execute (LP).
    ? (defun run-f ()
        (let ((*hard-error-is-error* t))
          (handler-case
           (f 3)
           (error (condition)
                  (format t \"Got the following error: ~a~%\" condition)))))
    RUN-F
    ? (run-f)
    Got the following error: HARD ACL2 ERROR in F:  F got bad input 3.

    NIL
    ?

  Function: <hard-error>

    (defun hard-error (ctx str alist)
           (declare (xargs :guard t))
           (declare (ignore ctx str alist))
           nil)")
 (HEADER
  (ARRAYS ACL2-BUILT-INS)
  "Return the header of a 1- or 2-dimensional array

    Example Form:
    (header 'delta1 a)

    General Form:
    (header name alist)

  where name is arbitrary and alist is a 1- or 2-dimensional array.
  This function returns the header of the array alist. The function
  operates in virtually constant time if alist is the semantic value
  of name. See [arrays].

  Function: <header>

    (defun
         header (name l)
         (declare (xargs :guard (or (array1p name l) (array2p name l))))
         (prog2$ name (assoc-eq :header l)))")
 (HEY_WAIT!__IS_ACL2_TYPED_OR_UNTYPED{Q}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Hey Wait! Is ACL2 Typed or Untyped?

  The example

    ACL2 !>(app 7 27)

    ACL2 Error in TOP-LEVEL:  The guard for the function symbol ENDP, which
    is (OR (CONSP X) (EQUAL X NIL)), is violated by the arguments in the
    call (ENDP 7).

  illustrates the fact that while ACL2 is an untyped language the ACL2
  evaluator can be configured so as to check ``types'' at runtime. We
  should not say ``types'' here but ``guards.'' Click [here] for a
  discussion of guards.

  The guard on [endp] [{ICON}] requires its argument to be a true list.
  Since 7 is not a true list, and since ACL2 is checking guards in
  this example, an error is signaled by ACL2. How do you know ACL2 is
  checking guards? Because the prompt tells us (click [here]) with
  its ``!''.")
 (HIDDEN-DEATH-PACKAGE
  (PACKAGES DEFPKG)
  "Handling [defpkg] [events] that are [local]

  This documentation topic explains a little bit about certain errors
  users may see when attempting to evaluate a [defpkg] event. In
  brief, if you see an error that refers you to this topic, you are
  probably trying to admit a [defpkg] event, and you should change
  the name of the package to be introduced by that event.

  Recall that defpkg events introduce axioms, for example as follows.

    ACL2 !>(defpkg \"PKG0\" '(a b))

    Summary
    Form:  ( DEFPKG \"PKG0\" ...)
    Rules: NIL
    Warnings:  None
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
     \"PKG0\"
    ACL2 !>:pr! \"PKG0\"

    Rune:       (:REWRITE PKG0-PACKAGE)
    Status:     Enabled
    Lhs:        (SYMBOL-PACKAGE-NAME (INTERN-IN-PACKAGE-OF-SYMBOL X Y))
    Rhs:        \"PKG0\"
    Hyps:       (AND (STRINGP X)
                     (NOT (MEMBER-SYMBOL-NAME X '(A B)))
                     (SYMBOLP Y)
                     (EQUAL (SYMBOL-PACKAGE-NAME Y) \"PKG0\"))
    Equiv:      EQUAL
    Backchain-limit-lst:    NIL
    Subclass:   BACKCHAIN
    Loop-stopper: NIL
    ACL2 !>

  Now, a [defpkg] event may be executed underneath an [encapsulate] or
  [include-book] form that is marked [local]. In that case, traces of
  the added axiom will disappear after the surrounding [encapsulate]
  or [include-book] form is admitted. This can cause inconsistencies.
  (You can take our word for it, or you can look at the example shown
  in the ``Essay on Hidden Packages'' in source file axioms.lisp.)

  In order to prevent unsoundness, then, ACL2 maintains the following
  invariant. Let us say that a defpkg event is ``hidden'' if it is in
  support of the current logical [world] but is not present in that
  world as an event, because it is [local] as indicated above. We
  maintain the invariant that all [defpkg] [events], even if
  ``hidden'', are tracked under-the-hood in the current logical
  [world]. Sometimes this property causes [defpkg] events to be
  written to the [portcullis] of a book's [certificate] (see
  [books]). At any rate, if you then try to define the package in a
  manner inconsistent with the earlier such definition, that is, with
  a different imports list, you will see an error because of the
  above-mentioned tracking.

  (By the way, this topic's name comes from Holly Bell, who heard
  \"hidden death package\" instead of \"hidden defpkg\". The description
  seemed to fit. Thanks, Holly!)")
 (HIDDEN-DEFPKG
      (PACKAGES DEFPKG)
      "Handling defpkg events that are local

  See [hidden-death-package]")
 (HIDE
  (REWRITE)
  "Hide a term from the rewriter

  Hide is actually the [identity] function: (hide x) = x for all x.
  However, terms of the form (hide x) are ignored by the ACL2
  rewriter, except when explicit :expand [hints] are given for such
  terms (see [hints]) or when rewrite rules explicitly about hide are
  available. An :expand hint that removes all calls of hide is:

    :expand ((:free (x) (hide x)))

  The above hint can be particularly useful when ACL2's equality
  heuristics apply hide to an equality after substituting it into the
  rest of the goal, if that goal (or a subgoal of it) fails to be
  proved.

  Hide terms are also ignored by the induction heuristics.

  Sometimes the ACL2 simplifier inserts hide terms into a proof attempt
  out of the blue, as it were. Why and what can you do about it?
  Suppose you have a constrained function, say constrained-fn, and
  you define another function, say another-fn, in terms of it, as in:

    (defun another-fn (x y z)
      (if (big-hairy-test x y z)
          (constrained-fn x y z)
          t))

  Suppose the term (another-fn 'a 'b 'c) arises in a proof. Since the
  arguments are all constants, ACL2 will try to reduce such a term to
  a constant by executing the definition of another-fn. However,
  after a possibly extensive computation (because of big-hairy-test)
  the execution fails because of the unevaluable call of
  constrained-fn. To avoid subsequent attempts to evaluate the term,
  ACL2 embeds it in a hide expression, i.e., rewrites it to (hide
  (another-fn 'a 'b 'c)).

  You might think this rarely occurs since all the arguments of
  another-fn must be constants. You would be right except for one
  special case: if another-fn takes no arguments, i.e., is a constant
  function, then every call of it fits this case. Thus, if you define
  a function of no arguments in terms of a constrained function, you
  will often see (another-fn) rewrite to (hide (another-fn)).

  We do not hide the term if the executable counterpart of the function
  is disabled -- because we do not try to evaluate it in the first
  place. Thus, to prevent the insertion of a hide term into the proof
  attempt, you can globally disable the executable counterpart of the
  offending defined function, e.g.,

    (in-theory (disable (:executable-counterpart another-fn))).

  It is conceivable that you cannot afford to do this: perhaps some
  calls of the offending function must be computed while others
  cannot be. One way to handle this situation is to leave the
  executable counterpart enabled, so that hide terms are introduced
  on the calls that cannot be computed, but prove explicit :[rewrite]
  rules for each of those hide terms. For example, suppose that in
  the proof of some theorem, thm, it is necessary to leave the
  executable counterpart of another-fn enabled but that the call
  (another-fn 1 2 3) arises in the proof and cannot be computed. Thus
  the proof attempt will introduce the term (hide (another-fn 1 2
  3)). Suppose that you can show that (another-fn 1 2 3) is
  (constrained-fn 1 2 3) and that such a step is necessary to the
  proof. Unfortunately, proving the rewrite rule

    (defthm thm-helper
      (equal (another-fn 1 2 3) (constrained-fn 1 2 3)))

  would not help the proof of thm because the target term is hidden
  inside the hide. However,

    (defthm thm-helper
      (equal (hide (another-fn 1 2 3)) (constrained-fn 1 2 3)))

  would be applied in the proof of thm and is the rule you should
  prove.

  Now to prove thm-helper you need to use the two ``tricks'' which have
  already been discussed. First, to eliminate the hide term in the
  proof of thm-helper you should include the hint :expand (hide
  (another-fn 1 2 3)). Second, to prevent the hide term from being
  reintroduced when the system tries and fails to evaluate
  (another-fn 1 2 3) you should include the hint :in-theory (disable
  (:executable-counterpart another-fn)). Thus, thm-helper will
  actually be:

    (defthm thm-helper
      (equal (hide (another-fn 1 2 3)) (constrained-fn 1 2 3))
      :hints
      ((\"Goal\" :expand (hide (another-fn 1 2 3))
               :in-theory (disable (:executable-counterpart another-fn)))))

  See [eviscerate-hide-terms] for how to affect the printing of hide
  terms.

  Function: <hide>

    (defun hide (x)
           (declare (xargs :guard t))
           x)")
 (HINTS
  (MISCELLANEOUS)
  "Advice to the theorem proving process

    Examples:
    The following :hints value is nonsensical.  Nevertheless, it
    illustrates all of the available hint keywords except the
    ``custom keywords'' (see [custom-keyword-hints]) definable
    by the user.

    :hints ((\"Goal\"
             :do-not-induct t
             :do-not '(generalize fertilize)
             :expand ((assoc x a)
                      :lambdas
                      (:free (y) (:with member (member y z))))
             :restrict ((<-trans ((x x) (y (foo x)))))
             :hands-off (length binary-append)
             :in-theory (set-difference-theories
                          (current-theory :here)
                          '(assoc))
             :induct (and (nth n a) (nth n b))
             :use ((:instance assoc-of-append
                              (x a) (y b) (z c))
                   (:functional-instance
                     (:instance p-f (x a) (y b))
                     (p consp)
                     (f assoc)))
             :bdd (:vars (c a0 b0 a1 b1) :prove nil :bdd-constructors (cons))
             :clause-processor (:function cl-proc :hint (my-hint clause))
             :instructions (:x :prove)
             :cases ((true-listp a) (consp a))
             :by (:instance rev-rev (x (cdr z)))
             :nonlinearp t
             :backchain-limit-rw 3
             :reorder (4 7 2)
             :case-split-limitations (20 10)
             :no-op t
             :no-thanks t
             :error (\"Bad value ~x0.\" 123)
             :or (hint-kwd-alist-1 ... hint-kwd-alist-k)
             :rw-cache-state nil
             :backtrack (my-computed-hint clause processor clause-list)))

  A very common hint is the :use hint, which in general takes as its
  value a list of ``lemma instances'' (see [lemma-instance]) but
  which allows a single lemma name as a special case. Here are two
  examples, one using a single lemma name and one using a lemma
  instance:

    ; Attach :use hint to the top-level goal, which is named \"Goal\":
    :hints ((\"Goal\" :use lemma23))

    ; Equivalent to the above: use the trivial instance (i.e., with the empty
    ; substitution of lemma23:
    :hints ((\"Goal\" :use ((:instance lemma23))))

    ; Attach :use hint to the named subgoal, where the indicated lemma is used
    ; with the substitution that maps x to 17 and y to (foo z):
    :hints ((\"[1]Subgoal *1/1.2'\" :use ((:instance lemma23
                                                     (x 17)
                                                     (y (foo z))))))

    ; Equivalent to the above: ACL2 allows you to omit the outer parentheses if
    ; there is only one lemma used.
    :hints ((\"[1]Subgoal *1/1.2'\" :use (:instance lemma23
                                                    (x 17)
                                                    (y (foo z)))))

  ACL2 also provides ``custom keyword'' hints (see
  [custom-keyword-hints]) and even more general ``computed hints''
  for the advanced user (see [computed-hints]).

  Only the first hint applicable to a goal, as specified in the
  user-supplied list of :hints followed by the default hints (see
  [default-hints-table]), will be applied to that goal. For an
  advanced exception, see [override-hints]. For a detailed discussion
  of how hints fit into the ACL2 waterfall, see
  [hints-and-the-waterfall]. For examples of the sophisticated use of
  hints, primarily for experts, see community book
  books/hints/basic-tests.lisp.

  Background: Hints are allowed in all [events] that use the theorem
  prover. During [defun] [events] there are two different uses of the
  theorem prover: one to prove termination and another to verify the
  [guard]s. To pass a hint to the theorem prover during termination
  proofs, use the :hints keyword in the [defun]'s [xargs]
  declaration. To pass a hint to the theorem prover during the
  [guard] verification portion of admitting a [defun], use the
  :guard-hints keyword in the [defun]'s [xargs] declaration. The
  [verify-guards] event and the [defthm] event also use the theorem
  prover. To pass hints to them, use the :hints keyword argument to
  the event.

    General Form of Common :hints:
      ((goal-spec :key1 val1 ... :keyn valn)
       ...
       (goal-spec :key1 val1 ... :keyn valn))

  where [goal-spec] is as described elsewhere (see [goal-spec]) and the
  keys and their respective values are shown below with their
  interpretations. We also provide ``computed hints'' but discuss
  them separately; see [computed-hints]. The hint keywords below are
  considered in alphabetical order.

    :backchain-limit-rw

        Value is a natural number or nil, indicating the level of
        backchaining for [rewrite], [meta], and [linear] rules. This
        overrides, for the current goal and (as with :[in-theory]
        hints) descendent goals, the default [backchain-limit] (see
        [set-backchain-limit]).

    :backtrack

        This is an advanced hint. You can probably accomplish its effect by
        the use of ordinary computed hints; see [computed-hints]. But
        if you are an expert, read on. (See [hints-and-the-waterfall]
        for some relevant background.)

        Value is a computed hint, which is an expression that evaluates
        either to nil --- indicating that the :backtrack hint is to
        have no effect --- or to a non-empty alternating list of
        :keyi :vali pairs, as expected for a hint. However, unlike
        ordinary computed hints, :backtrack hints are evaluated after
        a goal has been processed to yield zero or more subgoals, not
        before. Moreover, variables PROCESSOR and CLAUSE-LIST are
        allowed, but variable STABLE-UNDER-SIMPLIFICATIONP is not. We
        explain in more detail below, but first consider the
        following simple example. First we define a standard list
        reversal function:

          (defun rev (x)
            (if (consp x)
                (append (rev (cdr x)) (cons (car x) nil))
              nil))

        Now we prove:

          (thm (true-listp (rev x)))

        The successful proof includes the following output.

          Subgoal *1/1'
          (IMPLIES
            (AND (CONSP X)
                 (TRUE-LISTP (REV (CDR X))))
            (TRUE-LISTP (APPEND (REV (CDR X)) (LIST (CAR X))))).

          The destructor terms (CAR X) and (CDR X) can be
          eliminated by using CAR-CDR-ELIM to replace X
          by (CONS X1 X2), (CAR X) by X1 and (CDR X) by
          X2.  This produces the following goal.

          Subgoal *1/1''
          (IMPLIES (AND (CONSP (CONS X1 X2))
                        (TRUE-LISTP (REV X2)))
                   (TRUE-LISTP (APPEND (REV X2) (LIST X1)))).

        But suppose that we attach a :backtrack hint to the goal above at
        which destructor elimination was applied:

          (thm (true-listp (rev x))
               :hints ((\"Subgoal *1/1'\"
                        :backtrack
                        (quote (:do-not '(eliminate-destructors))))))

        Then when ACL2 applies destructor elimination as displayed above,
        this time the :backtrack hint applies, evaluating to (:do-not
        '(eliminate-destructors)). Since this list is not nil, the
        prover decides not to keep the new subgoal, and instead
        supplies this :do-not hint before attacking the goal again.
        In this example, ACL2 happens to use a technique later in its
        ``waterfall'' arsenal than destructor elimination, namely,
        generalization:

          Subgoal *1/1'
          (IMPLIES
            (AND (CONSP X)
                 (TRUE-LISTP (REV (CDR X))))
            (TRUE-LISTP (APPEND (REV (CDR X)) (LIST (CAR X))))).

          [Note:  A hint was supplied for our processing
          of the goal above, because of a :backtrack hint
          that is preventing destructor elimination.
          Thanks!]

          We generalize this conjecture, replacing
          (REV (CDR X)) by RV.  This produces

          Subgoal *1/1''
          (IMPLIES (AND (CONSP X) (TRUE-LISTP RV))
                   (TRUE-LISTP (APPEND RV (LIST (CAR X))))).

        We now provide a careful explanation of how :backtrack hints work,
        but we suggest that you keep the example above in mind. If
        ``:backtrack form'' is part of the hint that has been
        selected for a goal, then form is evaluated when one of
        ACL2's clause processors successfully applies to the current
        goal to produce a list of subgoals. This evaluation takes
        place in an environment just like that for any computed hint
        (see [computed-hints]), with the following exceptions. First,
        the variable STABLE-UNDER-SIMPLIFICATIONP is not allowed to
        occur free in form, but instead the following new variables
        are allowed to occur free and are bound for this evaluation
        as follows: PROCESSOR is bound to the processor in the list
        *preprocess-clause-ledge* that has applied to the goal, and
        CLAUSE-LIST is bound to the list of clauses (each a list of
        literals that is implicitly disjoined) returned by that
        clause processor. Second, the variables HIST and PSPV are
        bound to the history and pspv returned by the clause
        processor, not the ones that were passed to the clause
        processor. If this evaluation returns an error, then the
        proof aborts, as for any computed hint whose evaluation
        returns an error. If this evaluation returns nil, then the
        :backtrack hint has no effect, and the goal is replaced by
        the list of goals (the value of CLAUSE-LIST described above),
        as usual. Otherwise, the clause processor is deemed to have
        failed, and the goal clause is tried again starting at the
        top of the waterfall after selecting the hint returned by the
        above evaluation. That hint will normally be an alternating
        list of hint keywords and their values, but if it is a custom
        keyword hint (see [custom-keyword-hints]), then it will be
        handled in the usual manner but with the first three
        variables above bound to the symbol :OMITTED. Of course, if
        the new hint includes a value for :BACKTRACK then this
        process can loop; care should be taken to keep that from
        happening.

        A final note about :BACKTRACK hints: since these are a form of
        computed hints, [override-hints] (if any) are applied to
        their evaluation result just as with any computed hint. That
        is, the backtrack hint is successively modified with each
        override-hint, to produce a final hint that is actually used
        (or, ignored if that final hint is nil). See
        [override-hints].

    :[bdd]

        This hint indicates that ACL2's built-in ordered binary decision
        diagrams (BDDs) with rewriting are to be used to prove or
        simplify the goal. See [bdd] for an introduction to the ACL2
        BDD algorithm.

        Value is a list of even length, such that every other element,
        starting with the first, is one of the keywords :vars,
        :bdd-constructors, :prove, or :literal. Each keyword that is
        supplied should be followed by a value of the appropriate
        form, as shown below; for others, a default is used. Although
        :vars must always be supplied, we expect that most users will
        be content with the defaults used for the other values.

            :vars --- A list of ACL2 variables, which are to be treated as
            Boolean variables. The prover must be able to check,
            using trivial reasoning (see [type-set]), that each of
            these variables is Boolean in the context of the current
            goal. Note that the prover will use very simple
            heuristics to order any variables that do not occur in
            :vars (so that they are ``greater than'' the variables
            that do occur in :vars), and these heuristics are often
            far from optimal. In addition, any variables not listed
            may fail to be assumed Boolean by the prover, which is
            likely to seriously impede the effectiveness of ACL2's
            BDD algorithm. Thus, users are encouraged not to rely on
            the default order, but to supply a list of variables
            instead. Finally, it is allowed to use a value of t for
            vars. This means the same as a nil value, except that the
            BDD algorithm is directed to fail unless it can guarantee
            that all variables in the input term are known to be
            Boolean (in a sense discussed elsewhere; see
            [bdd-algorithm]).

            :literal --- An indication of which part of the current goal should
            receive BDD processing. Possible values are:

              :all     treat entire goal as a single literal (the default)
              :conc    process the conclusion
              n        process the hypothesis with index n (1, 2, ...)

            :bdd-constructors --- When supplied, this value should be a list of
            function symbols in the current ACL2 [world]; it is
            (cons) by default, unless :bdd-constructors has a value
            in the [ACL2-defaults-table] by default, in which case
            that value is the default. We expect that most users will
            be content with the default. See [bdd-algorithm] for
            information about how this value is used.

            :prove --- When supplied, this value should be t or nil; it is t by
            default. When the goal is not proved and this value is t,
            the entire proof will abort. Use the value nil if you are
            happy to the proof to go on with the simplified term.

    :by

        Value is a [lemma-instance], nil, or a new event name. If the value
        is a [lemma-instance] (see [lemma-instance]), then it
        indicates that the goal (when viewed as a clause) is either
        equal to the proposition denoted by the instance, or is
        subsumed by that proposition when both are viewed as clauses.
        To view a formula as a clause, union together the negations
        of the hypotheses and add the conclusion. For example,

          (IMPLIES (AND (h1 t1) (h2 t2)) (c t1))

        may be viewed as the clause

          {~(h1 t1) ~(h2 t2) (c t1)}.

        Clause c1 is ``subsumed'' by clause c2 iff some instance of c2 is a
        subset of c1. For example, the clause above is subsumed by
        {~(h1 x) (c x)}, which when viewed as a formula is (implies
        (h1 x) (c x)).

        Note that if the value is the name of a function symbol introduced by
        [defun], then the original form of the body of that
        definition is used. This behavior differs from that provided
        by a :use hint, which uses the so-called ``normalized'' body,
        for which ACL2 has propagated IF tests upward and potentially
        simplified with [type-set] reasoning and the expansion of
        calls of a few built-in functions.

        If the value is nil or a new name, the prover does not even attempt
        to prove the goal to which this hint is attached. Instead the
        goal is given a ``bye'', i.e., it is skipped and the proof
        attempt continues as though the goal had been proved. If the
        prover terminates without error then it reports that the
        proof would have succeeded had the indicated goals been
        proved and it prints an appropriate [defthm] form to define
        each of the :by names. The ``name'' nil means ``make up a
        name.'' Here is an example (admittedly contrived for
        illustration purposes).

          ACL2 !>(thm (equal (append (append x y) z)
                             (append x y z))
                      :hints ((\"Subgoal *1/2'\" :by nil)))

          Name the formula above *1.

          [[... output omitted here ...]]

          [Note:  A hint was supplied for our processing of the goal below.
          Thanks!]

          Subgoal *1/2'
          (IMPLIES (AND (CONSP X)
                        (EQUAL (APPEND (APPEND (CDR X) Y) Z)
                               (APPEND (CDR X) Y Z)))
                   (EQUAL (APPEND (APPEND X Y) Z)
                          (APPEND X Y Z))).

          But we have been asked to pretend that this goal is subsumed by the
          yet-to-be-proved |THM Subgoal *1/2'|.

          Subgoal *1/1
          [[... proof goes on; further output omitted here ...]]

        The system does not attempt to check the uniqueness of the :by names
        (supplied or made up), since by the time those goals are
        proved the namespace will be cluttered still further.
        Therefore, the final list of ``appropriate'' [defthm] forms
        may be impossible to admit without some renaming by the user.
        If you must invent new names, remember to substitute the new
        ones for the old ones in the :by hints themselves.

    :[case-split-limitations]

        Value is the same as for [set-case-split-limitations]. The simplifier
        will behave as though the value had instead been supplied to
        set-case-split-limitations; see [set-case-split-limitations].
        This behavior will persist through subgoals unless overridden
        by another :CASE-SPLIT-LIMITATIONS hint.

    :cases

        Value is a non-empty list of terms. For each term in the list, a new
        goal is created from the current goal by assuming that term;
        and also, in essence, one additional new goal is created by
        assuming all the terms in the list false. We say ``in
        essence'' because if the disjunction of the terms supplied is
        a tautology, then that final goal will be a tautology and
        hence will in fact never actually be created.

    :[clause-processor]

        Value specifies the application of a user-defined simplifier to the
        current goal. See [clause-processor], which provides
        necessary background and hint syntax. Also see
        [define-trusted-clause-processor] for a discussion of
        ``trusted clause-processors'': goal-level simplifiers that
        may be external to ACL2 and do not need to be proved correct
        in ACL2.

        You can see all current :clause-processor rules by issuing the
        command (print-clause-processor-rules), and you can see the
        names of all trusted clause-processors by issuing the command
        (table trusted-clause-processor-table).

    :do-not

        Value is a term having at most the single free variable [world],
        which when evaluated (with [world] bound to the current ACL2
        logical [world]) produces a list of symbols that is a subset
        of the list

          (preprocess ;propositional logic, simple rules
           simplify   ;as above plus rewriting, linear arithmetic
           eliminate-destructors
           fertilize  ;use of equalities
           generalize
           eliminate-irrelevance).

        The hint indicates that the ``processes'' named should not be used at
        or below the goal in question. Thus, to prevent
        generalization and fertilization, say, include the hint

          :do-not '(generalize fertilize)

        If value is a single symbol, as in

          :do-not generalize,

        it is taken to be '(value).

      See also [do-not-hint] for a way to automatically provide :do-not
      hints across several theorems.
    :do-not-induct

        Value is t, :otf-flg-override, :otf, name or nil, indicating whether
        [induction] is permitted under the specified goal. If value
        is t or :otf-flg-override, then the attempt to apply
        [induction] to the indicated goal or any subgoal under the
        indicated goal will immediately cause the theorem prover to
        report [failure], except that if :otf-flg t is specified (see
        [otf-flg]) and value is t, then the proof will continue until
        the time at which the goal pushed for induction is finally
        considered. The latter behavior is also what occurs if value
        is :otf. Thus, any non-nil value requires the indicated goal
        to be proved entirely by simplification, destructor
        elimination, and the other ``waterfall'' processes.
        [Induction] to prove the indicated goal (or any subgoal) is
        not permitted. See however the :induct hint below. If value
        is a symbol other than t, :otf-flg-override, :otf or nil, the
        theorem prover will give a ``bye'' to any subgoal that would
        otherwise be attacked with induction. This will cause the
        theorem prover to fail eventually but will collect the
        necessary subgoals. If value is nil, this hint means
        [induction] is permitted. Since that is the default, there is
        no reason to use the value nil. Note that a :do-not-induct
        hint is ignored for any goal on which an :induct hint is
        supplied. For an advanced example of the use of value :otf
        with [override-hints], see community book
        books/hints/basic-tests.lisp.

    :error

        Value is typically a ``fmt message'' to be printed by the [fmt]
        tilde-directive ~@ but may be any object. The effect of this
        hint is to cause an error when the hint is translated. There
        is no reason to include an :ERROR hint in any user-typein,
        since it will only cause an error when the form is evaluated.
        :ERROR hints are useful in the definition of functions that
        generate custom keyword hints ([custom-keyword-hints]) and
        computed hints ([computed-hints]). For example, if you wish
        to define a custom keyword hint :my-hint val and you wish the
        hint to signal an error if there is something inappropriate
        about val in the context of the hint, use the following code
        to generate the hint

          (list :ERROR (cons \"Your specified value, ~x0, is inappropriate\"
                             (list (cons #0 val))))

        which is equivalent to

          (list :ERROR (msg \"Your specified value, ~x0, is inappropriate\"
                            val))

        which, if val has the value 123, would evaluate to the hint

          (:ERROR (\"Your specified value, ~x0, is inappropriate\" (#0 . 123))).

        Note that any time an :ERROR keyword is produced during hint
        processing, including iterations of the expansions of custom
        keyword hints or of [override-hints], an error will occur.

    :expand

        Value is a true list of terms, each of which is of one of the forms
        (let ((v1 t1)...) b) or (fn t1 ... tn), where fn is a defined
        function symbol with formals v1, ..., vn, and body b. Such a
        term is said to be ``expandable:'' it can be replaced by the
        result of substituting the ti's for the vi's in b. The terms
        listed in the :expand hint are expanded when they are
        encountered by the simplifier while working on the specified
        goal or any of its subgoals. We permit value to be a single
        such term instead of a singleton list. Remarks: (1) Allowed
        are ``terms'' of the form (:free (var1 var2 ... varn)
        pattern) where the indicated variables are distinct and
        pattern is a term. Such ``terms'' indicate that we consider
        the indicated variables to be instantiatable, in the
        following sense: whenever the simplifier encounters a term
        that can be obtained from pattern by instantiating the
        variables (var1 var2 ... varn), then it expands that term.
        (2) Also allowed are ``terms'' of the form (:with name term),
        where name is a function symbol, a macro name that denotes a
        function symbol (see [macro-aliases-table]), or a [rune]. The
        corresponding rule of class :rewrite, which is often a
        [definition] rule but need not be, is then used in place of
        the current body for the function symbol of term; see
        [show-bodies] and see [set-body]. If the rule is of the form
        (implies hyp (equiv lhs rhs)), then after matching lhs to the
        current term in a context that is maintaining equivalence
        relation equiv, ACL2 will replace the current term with (if
        hyp rhs (hide term)), or just rhs if the rule is just (equal
        lhs rhs). (3) A combination of both :free and :with, as
        described above, is legal. (4) The term :LAMBDAS is treated
        specially. It denotes the list of all lambda applications
        (i.e., [let] expressions) encountered during the proof.
        Conceptually, this use of :LAMBDAS tells ACL2 to treat lambda
        applications as a notation for substitutions, rather than as
        function calls whose opening is subject to the ACL2
        rewriter's heuristics (specifically, not allowing lambda
        applications to open when they introduce ``too many'' if
        terms).

    :hands-off

        Value is a true list of function symbols or lambda expressions,
        indicating that under the specified goal applications of
        these functions are not to be rewritten. Note however that
        subterms will still be rewritten; see [hide] if that is not
        what is intended. (The community book
        books/clause-processors/autohide.lisp from Jared Davis may
        also be helpful in that case.) Value may also be a single
        function symbol or lambda expression instead of a list.

    :[in-theory]

        Value is a ``theory expression,'' i.e., a term having at most the
        single free variable [world] which when evaluated (with
        [world] bound to the current ACL2 logical world (see
        [world])) will produce a theory to use as the current theory
        for the goal specified. See [theories].

        Note that an :[in-theory] hint will always be evaluated relative to
        the current ACL2 logical [world], not relative to the theory
        of a previous goal. Consider the following example.

          (defthm prop
            (p (f (g x)))
            :hints ((\"Goal\"      :in-theory (disable f))
                    (\"Subgoal 3\" :in-theory (enable  g))))

        Consider in particular the theory in effect at Subgoal 3. This call
        of the [enable] macro enables g relative to the
        [current-theory] of the current logical [world], not relative
        to the theory produced by the hint at Goal. Thus, the
        [disable] of f on behalf of the hint at Goal will be lost at
        Subgoal 3, and f will be enabled at Subgoal 3 if was enabled
        globally when prop was submitted.

    :induct

        Value is either t or a term containing at least one recursively
        defined function symbol; if t, this hint indicates that the
        system should proceed to apply its induction heuristic to the
        specified goal produced (without trying simplification,
        etc.); if value is a term other than t, then not only should
        the system apply induction immediately, but it should analyze
        value rather than the goal to generate its [induction]
        scheme. Merging and the other [induction] heuristics are
        applied. Thus, if value contains several mergeable
        [induction]s, the ``best'' will be created and chosen. E.g.,
        the :induct hint

          (and (nth i a) (nth j a))

        suggests simultaneous [induction] on i, j, and a.

        If both an :induct and a :do-not-induct hint are supplied for a given
        goal then the indicated [induction] is applied to the goal
        and the :do-not-induct hint is inherited by all subgoals
        generated.

    :[instructions]

        Value is a list of [proof-checker] instructions; see [instructions].
        Unlike other hint keywords described here, this one is
        actually a custom keyword hint (see [custom-keyword-hints])
        that generates a suitable :[clause-processor] hint.

    :no-op

        Value is any object and is irrelevant. This hint does nothing. But
        empty hints, such as (\"Goal\"), are illegal and there are
        occasions, especially when writing custom keyword hints (see
        [custom-keyword-hints]) and computed hints (see
        [computed-hints]) where it is convenient to be able to
        generate a non-empty no-op hint. The standard idiom is
        (\"Goal\" :NO-OP T) but the T is completely ignored. Unlike
        other hint keywords, multiple occurrences of the keyword
        :NO-OP are tolerated.

    :no-thanks

        Value is any object. This hint does nothing, except that if value is
        non-nil then the usual ``[Note: A hint was supplied...
        Thanks!]'' is not printed.

    :nonlinearp

        Value is t or nil, indicating whether [non-linear-arithmetic] is
        active. The default value is nil. See
        [non-linear-arithmetic].

    :or

        Value is a list (kwd-val-listp-1 ... kwd-val-listp-k), where each
        kwd-val-listp-i is a list satisfying [keyword-value-listp],
        i.e., an alternating list of keywords and values. This hint
        causes an attempt to prove the specified goal using hints
        kwd-val-listp-i in sequence (first kwd-val-listp-1, then
        kwd-val-listp-2, and so on), until the first of these
        succeeds. If none succeeds, then the prover proceeds after
        heuristically choosing the ``best'' result, taking into
        account the goals pushed in each case for proof by induction.

        The following (contrived but illustrative example illustrates how :or
        hints work.

          ACL2 !>(thm (f x)
                      :hints
                      ((\"Goal\"
                        :expand ((nth x 3))
                        :or ((:in-theory (disable car-cons))
                             (:use cdr-cons :in-theory (enable append)))
                        :do-not '(generalize))))

          [Note:  A hint was supplied for our processing of the goal above.
          Thanks!]

          The :OR hint for Goal gives rise to two disjunctive branches.  Proving
          any one of these branches would suffice to prove Goal.  We explore
          them in turn, describing their derivations as we go.

          ---
          Subgoal D2
          ( same formula as Goal ).

          The first disjunctive branch (of 2) for Goal can be created by applying
          the hint:
          (\"Subgoal D2\" :EXPAND ((NTH X 3))
                        :IN-THEORY (DISABLE CAR-CONS)
                        :DO-NOT '(GENERALIZE)).

          [Note:  A hint was supplied for our processing of the goal above.
          Thanks!]

          Normally we would attempt to prove this formula by induction.  However,
          we prefer in this instance to focus on the original input conjecture
          rather than this simplified special case.  We therefore abandon our
          previous work on this conjecture and reassign the name *1 to the original
          conjecture.  (See :DOC otf-flg.)  [Note:  Thanks again for the hint.]

          ---
          Subgoal D1
          ( same formula as Goal ).

          The second disjunctive branch (of 2) for Goal can be created by applying
          the hint:
          (\"Subgoal D1\" :EXPAND ((NTH X 3))
                        :USE CDR-CONS
                        :IN-THEORY (ENABLE APPEND)
                        :DO-NOT '(GENERALIZE)).

          [Note:  A hint was supplied for our processing of the goal above.
          Thanks!]

          ACL2 Warning [Use] in ( THM ...):  It is unusual to :USE an enabled
          :REWRITE or :DEFINITION rule, so you may want to consider disabling
          (:REWRITE CDR-CONS).

          We augment the goal with the hypothesis provided by the :USE hint.
          The hypothesis can be obtained from CDR-CONS.  We are left with the
          following subgoal.

          Subgoal D1'
          (IMPLIES (EQUAL (CDR (CONS X Y)) Y)
                   (F X)).

          By the simple :rewrite rule CDR-CONS we reduce the conjecture to

          Subgoal D1''
          (F X).

        ... and so on. This example illustrates how ACL2 processes :or hints
        in general. For each i from 1 to k, a so-called
        ``disjunctive'' subgoal is created by splicing
        kwd-val-listp-i into the other hint values (if any) supplied
        for the given goal, in order. A corresponding subgoal is
        created for each i, numbered in the usual manner (hence,
        counting down) except that the ``D'' is prefixed to each
        resulting goal.

    :reorder

        Value is a list of positive integers without duplicates,
        corresponding to the numbering of subgoals generated for the
        [goal-spec] \"G\", say \"G.k\" down to \"G.1\". Those subgoals are
        reordered so that if value is (n1 n2 ... nk), then the goal
        now numbered \"G.k\" will be the goal originally numbered
        \"G.n1\"; the goal now numbered \"G.k-1\" will be the goal
        formerly numbered \"G.n2\"; and so on, down the list of ni,
        after which the goals not yet printed are printed in their
        original order. Note that reordering for subgoals of a goal
        to be proved by induction, such as *1, is not supported.

    :restrict

        Warning: This is a sophisticated hint, suggested by Bishop Brock,
        that is intended for advanced users. In particular, :restrict
        hints are ignored by the preprocessor, so you might find it
        useful to give the hint :do-not '(preprocess) when using any
        :restrict hints, at least if the rules in question are
        abbreviations (see [simple]).

        Value is an association list. Its members are of the form (x subst1
        subst2 ...), where: x is either (1) a [rune] whose [car] is
        :[rewrite] or :[definition] or (2) an event name
        corresponding to one or more such [rune]s; and (subst1 subst2
        ...) is a non-empty list of substitutions, i.e., of
        association lists pairing variables with terms. First
        consider the case that x is a :[rewrite] or :[definition]
        [rune]. Recall that without this hint, the rule named x is
        used by matching its left-hand side (call it lhs) against the
        term currently being considered by the rewriter, that is, by
        attempting to find a substitution s such that the
        instantiation of lhs using s is equal to that term. If
        however the :restrict hint contains (x subst1 subst2 ...),
        then this behavior will be modified by restricting s so that
        it must extend subst1; and if there is no such s, then s is
        restricted so that it must extend subst2; and so on, until
        the list of substitutions is exhausted. If no such s is
        found, then the rewrite or definition rule named x is not
        applied to that term. Finally, if x is an event name
        corresponding to one or more :[rewrite] or :[definition]
        [rune]s (that is, x is the ``base symbol'' of such [rune]s;
        see [rune]), say [rune]s r1, ... rn, then the meaning is the
        same except that (x subst1 subst2 ...) is replaced by (ri
        subst1 subst2 ...) for each i. Once this replacement is
        complete, the hint may not contain two members whose [car] is
        the same [rune].

        Note that the substitutions in :restrict hints refer to the variables
        actually appearing in the goals, not to the variables
        appearing in the rule being restricted.

        Here is an example, supplied by Bishop Brock. Suppose that the
        database includes the following rewrite rule, which is
        probably kept [disable]d. (We ignore the question of how to
        prove this rule.)

          cancel-<-*$free:
          (implies (and (rationalp x)
                        (rationalp y)
                        (rationalp z))
                   (equal (< y z)
                          (if (< x 0)
                              (> (* x y) (* x z))
                            (if (> x 0)
                                (< (* x y) (* x z))
                              (hide (< y z))))))

        Then ACL2 can prove the following theorem (unless other rules get in
        the way), essentially by multiplying both sides by x.

          (thm
            (implies (and (rationalp x)
                          (< 1 x))
                     (< (/ x) 1))
            :hints
            ((\"Goal\"
              :in-theory (enable cancel-<-*$free)
              :restrict ((cancel-<-*$free ((x x) (y (/ x)) (z 1)))))))

        The :restrict hint above says that the variables x, y, and z in the
        rewrite rule cancel-<-*$free above should be instantiated
        respectively by x, (/ x), and 1. Thus (< y z) becomes (< (/
        x) 1), and this inequality is replaced by the corresponding
        instance of the right-hand-side of cancel-<-*$free. Since the
        current conjecture assumes (< 1 x), that instance of the
        right-hand side simplifies to

          (< (* x (/ x)) (* x 1))

        which in turn simplifies to (< 1 x), a hypothesis in the present
        theorem.

    :rw-cache-state

        Value is an element of the list constant *legal-rw-cache-states*:
        :atom (the default), nil, t, or :disabled. This hint applies
        to the indicated goal and all its descendents, to set the
        so-called ``rw-cache-state'' to the indicated value; see
        [set-rw-cache-state].

    :use

        Examples of :USE hints are shown near the top of this documentation
        topic.

        Value is a [lemma-instance] or a true list of [lemma-instance]s,
        indicating that the propositions denoted by the instances be
        added as hypotheses to the specified goal. See
        [lemma-instance]. Note that :use makes the given instances
        available as ordinary hypotheses of the formula to be proved.
        The :instance form of a [lemma-instance] permits you to
        instantiate the free variables of previously proved theorems
        any way you wish; but it is up to you to provide the
        appropriate instantiations because once the instances are
        added as hypotheses their variables are no longer
        instantiable. These new hypotheses participate fully in all
        subsequent rewriting, etc. If the goal in question is in fact
        an instance of a previously proved theorem, you may wish to
        use :by below. Note that [theories] may be helpful when
        employing :use hints; see [minimal-theory].

        Note that if the value is the name of a function symbol introduced by
        [defun], then the ``normalized'' body of that definition is
        used, for which ACL2 has propagated IF tests upward. This
        behavior differs from that provided by a :by hint, where the
        original body of the definition is used.


Subtopics

  [Computed-hints]
      Computing advice to the theorem proving process

  [Custom-keyword-hints]
      User-defined hints

  [Default-hints]
      A list of hints added to every proof attempt

  [Do-not]
      Instruct the theorem prover not to do certain things.

  [Goal-spec]
      To indicate where a hint is to be used

  [Guard-theorem]
      Use a previously-proved [guard] theorem

  [Guard-theorem-example]
      How to use a previously-proved [guard] theorem

  [Hints-and-the-waterfall]
      How [hints] fit into the ACL2 proof waterfall

  [Lemma-instance]
      An object denoting an instance of a theorem

  [Override-hints]
      A list of hints given priority in every proof attempt

  [Termination-theorem]
      Use a previously-proved measure theorem

  [Termination-theorem-example]
      How to use a previously-proved measure theorem

  [Using-computed-hints]
      How to use computed hints")
 (HINTS-AND-THE-WATERFALL
  (HINTS)
  "How [hints] fit into the ACL2 proof waterfall

  Below we describe the flow of an ACL2 proof attempt, with special
  attention to how [hints] are applied during a proof. For most ACL2
  users, only one point is important to take away from this
  [documentation] topic: you may specify hints during a proof (see
  [hints]; perhaps also see [computed-hints] and see
  [default-hints]), and they can be expected to behave intuitively.
  See [the-method] for a summary of how to interact with the ACL2
  prover; see [introduction-to-the-theorem-prover] for a more
  detailed tutorial; and see [hints] for an introduction to ACL2
  hints, including detailed [documentation] for specific hint types.

  The remainder of this topic serves as a reference in case one needs a
  deeper understanding of the workings of ACL2's handling of hints.
  Also, for examples of the sophisticated use of hints, primarily for
  experts, see community book books/hints/basic-tests.lisp.

  First, we describe the ACL2 ``waterfall'', which handles each goal
  either by replacing it with a list (possibly empty) of child goals,
  or else by putting the goal into a ``pool'' for later proof by
  induction. Then, we describe how hints are handled by the
  waterfall.

  The Waterfall.

  Each goal considered by the ACL2 prover passes through a series of
  proof processes, called the ``waterfall processes'', as stored in
  the constant *preprocess-clause-ledge*. The top process applies
  top-level hints, including :use hints; the next is a lightweight
  ``preprocess'' simplifier for ``simple'' rules (see [simple]); the
  next is the main ACL2 simplifier; and finally ACL2 attempts (in
  this order) destructor elimination, fertilization (heuristic use of
  equalities), generalization, and elimination of irrelevance. See
  [architecture-of-the-prover] for more information on these
  processes. Each process may ``hit'', creating zero or more child
  goals that are each then handled at the top of the waterfall; or it
  may ``miss'', in which case the next process in the above sequence
  is considered. If all processes miss, then a ``push'' process
  defers the goal until it is later considered for proof by
  induction. When all goals have been thus handled, the goal most
  recently pushed for proof by induction is considered, and the
  process repeats.

  We next describe the two additional ways in which control can be
  returned to the top of the waterfall.

  When the simplification process is attempted unsuccessfully for a
  goal, the goal is deemed to have ``settled down''. In this case,
  and if no ancestor of the goal has settled down, then the
  ``settled-down'' process is deemed to have ``hit'' on the goal, the
  effect being that the goal makes a new pass through all the
  waterfall processes. (Other processes can then notice that settling
  down has occurred and modify their heuristics accordingly.) For
  example, if \"Goal\" simplifies to \"Subgoal 2\" (among others), and
  \"Subgoal 2\" simplifies to \"Subgoal 2.3\" (among others), which in
  turn is not further simplified, then the ``settled-down'' process
  hits on \"Subgoal 2.3\" but not on any of its children, their
  children, and so on.

  When simplification has missed (and thus the goal has settled down),
  the next proof process is normally destructor elimination. However,
  if a computed hint is suitable (in a sense described below; also
  see [computed-hints], especially the discussion of
  stable-under-simplificationp), then that hint is selected as
  control is returned to the top of the waterfall. A subtlety is that
  in this case, if the most recent hit had been from settling down,
  then the prover ``changes its mind'' and considers that the goal
  has not yet settled down after all as it continues through the
  waterfall.

  Each time a goal is considered at the top of the waterfall, then
  before passing through the proof processes as described above, ACL2
  searches for a relevant hint to select unless it has already been
  provided a hint in the ``stable-under-simplificationp'' case
  mentioned above. We turn now to a more thorough discussion of how
  hints are selected and applied.

  The handling of hints.

  In the discussion below we will ignore forcing rounds, as each
  forcing round is simply treated as a new proof attempt that uses
  the list of hints provided at the start of the proof.

  When the theorem prover is called by [thm] or [events] such as
  [defthm], [defun], and [verify-guards], it gathers up the hints
  that have been supplied, often provided as a :[hints] argument, but
  for example using a :guard-hints argument for [guard] verification
  proofs. (ACL2(r) users (see [real]) may also employ :std-hints.) It
  then appends these to the front of the list of default hints (see
  [default-hints]). The resulting list becomes the initial value of
  the list of ``pending hints'', one of two critical lists maintained
  by the theorem prover to manage hints. The other critical list is a
  list of ``hint settings''; the two lists are maintained as follows.

  When a goal is first considered, a hint is selected from the list of
  pending hints if any is found to apply, as described below. If a
  hint is selected, then it takes effect and is removed from the
  pending hints. Except: if the selected hint is a computed hint with
  value t specified for :computed-hint-replacement, then it is not
  removed; and if that value is a list of hints, then that list is
  appended to the front of the list of pending hints after the
  selected hint is removed (also see [computed-hints]). The selected
  hint is also used to update the hint settings, as described below.

  The list of hint settings associates hint keywords with values. It is
  passed from the current goal to its children (and hence the
  children's children, and so on), though modified by hints selected
  from pending hints, as described below. This list is maintained so
  that when a goal is pushed for proof by induction, the hint
  settings are applied at the start of the proof by induction. Note
  that the list of hint settings is not re-applied to descendents of
  a goal in the current waterfall; a hint is applied only when it is
  selected (and also perhaps later as just described, through the
  stored hint settings at the start of a proof by induction). For
  example, if the hint selected for \"Subgoal 3\" includes :in-theory
  (enable foo), then the hint settings are correspondingly updated
  when processing \"Subgoal 3\", and they persist at subgoals such as
  \"Subgoal 3.2\" and \"Subgoal 3.2.1\" (unless overriden by hints on
  those goals); but the theory specifying foo is not re-installed at
  every such subgoal.

  When a hint is selected, the list of hint settings is updated so that
  for each keyword :kwd and associated value val from the hint, :kwd
  is associated with val in the hint settings, discarding any
  previous association of :kwd with a value in the hint settings.
  Except, certain ``top-level'' hints are never saved in the hint
  settings: :use, :cases, :by, :bdd, :or, and :clause-processor.

  For example, suppose that we specify the following hints, with no
  default hints.

    ((\"Goal\" :expand ((bar x y)))
     (\"Subgoal 3\" :in-theory (enable foo)))

  These hints then become the initial list of pending hints. When the
  proof attempt begins, the prover encounters the top-level goal
  (\"Goal\") and pulls the \"Goal\" hint from the pending hints, so that
  the list of hint settings contains a value only for keyword
  :expand. This hint setting will remain for all children of the
  top-level goal as well, and their children, and so on, and will be
  inherited by induction --- in other words, it will remain
  throughout the entire proof. Now consider what happens when the
  proof reaches \"Subgoal 3\". At this point there is only one pending
  hint, which is in fact attached to that subgoal. Therefore, this
  hint is pulled from the pending hints (leaving that list empty),
  and the hint settings are extended by associating the :in-theory
  keyword with the theory represented by (enable foo). That theory is
  immediately installed until the prover finishes addressing \"Subgoal
  3\", its children, their children, and so on; and until that
  completion is reached, the :in-theory keyword remains associated
  with the (enable foo) in the hint settings, although of course
  there is no re-installation of the theory at any ensuing child
  goal. When finally \"Subgoal 3\" and its descendents have been
  completed and the prover is about to consider \"Subgoal 2\", the
  :in-theory association is removed from the hint settings and the
  global theory is re-installed. However, the list of pending hints
  remains empty.

  It remains to describe how a hint is selected for a goal. When a goal
  is first considered (hence at the top of the waterfall), the list
  of pending hints is scanned, in order, until one of the hints is
  suitable for the goal. An explicit hint (goal-name :kwd1 val1 ...
  :kwdn valn) is suitable if goal-name is the name of the current
  goal and there is at least one keyword. A computed hint is suitable
  if it evaluates to a non-nil value. As indicated earlier in this
  documentation topic, an exception occurs when a computed hint is
  selected after simplification fails (the
  ``stable-under-simplificationp'' case): in that case, the goal
  returns to the top of the waterfall with that hint as the selected
  hint, and no additional search for a hint to select is made at that
  time.

  The following slightly tricky example illustrates handling of hints.

    ACL2 !>(set-default-hints '((\"Goal\" :do-not '(preprocess))))
     ((\"Goal\" :DO-NOT '(PREPROCESS)))
    ACL2 !>(thm (equal (append (append x y) z) (append x y z))
                :hints ((\"Goal\" :in-theory (disable car-cons))))

    ACL2 Warning [Hints] in ( THM ...):  The goal-spec \"Goal\" is explicitly
    associated with more than one hint.  All but the first of these hints
    may be ignored.  If you intended to give all of these hints, combine
    them into a single hint of the form (\"Goal\" :kwd1 val1 :kwd2 val2 ...).
    See :DOC hints-and-the-waterfall.

    [Note:  A hint was supplied for our processing of the goal above.
    Thanks!]

    [Note:  A hint was supplied for our processing of the goal above.
    Thanks!]

    Name the formula above *1.

  The warning above is printed because \"Goal\" is associated with two
  pending hints: one given by the [set-default-hints] call and one
  supplied by the :[hints] keyword of the [thm] form. The :in-theory
  hint is selected because user-supplied hints are ahead of default
  hints in the list of pending hints; we then get the first ``Note''
  above. The goal progresses through the waterfall without any proof
  process applying to the goal; in particular, it cannot be further
  simplified. After the simplification process, a ``settled-down''
  process applies, as discussed above, immediately causing another
  trip through the waterfall. Since the :in-theory hint was earlier
  removed from the list of pending hints when it was applied, the
  default (:do-not) hint is now the only pending hint. That hint is
  applied, resulting in the second ``Note'' above.

  Again, more examples may be found in the community book
  books/hints/basic-tests.lisp. A particularly tricky but informative
  example in that book is the one related to nonlinearp-default-hint.

  Also see [override-hints] for an advanced feature that allows
  modification of the hint selected for a goal.")
 (HISTORY
  (ACL2)
  "Functions that display or change history

  ACL2 keeps track of the [command]s that you have executed that have
  extended the logic or the rule database, as by the definition of
  macros, functions, etc. Using the facilities in this section you
  can review the sequence of [command]s executed so far. For example,
  you can ask to see the most recently executed [command], or the
  [command] 10 before that, or the [command] that introduced a given
  function symbol. You can also undo back through some previous
  [command], restoring the logical [world] to what it was before the
  given [command].

  The annotations printed in the margin in response to some of these
  commands (including `P', `L', `V', `D', `d', 'M', and 'm') are
  explained in the documentation for :[pc].

  Several technical terms are used in the documentation of the history
  [command]s. You must understand these terms to use the [command]s.
  These terms are documented via :[doc] entries of their own. See
  [command], see [events], see [command-descriptor], and see
  [logical-name].


Subtopics

  [Command]
      Forms you type at the top-level, but...

  [Command-descriptor]
      An object describing a particular [command] typed by the user

  [Enter-boot-strap-mode]
      The first millisecond of the Big Bang

  [Exit-boot-strap-mode]
      The end of pre-history

  [Extend-pe-table]
      Replace [events] displayed by [history] commands

  [Formula]
      The formula of a name or [rune]

  [Get-command-sequence]
      Return list of [command]s that are between two [command] descriptors

  [Gthm]
      The [guard] theorem for a given function symbol

  [Oops]
      Undo a :u or :[ubt]

  [Pbt]
      Print the [command]s back through a [command] descriptor

  [Pc]
      Print the [command] described by a [command] descriptor

  [Pcb]
      Print the [command] block described by a [command] descriptor

  [Pcb!]
      Print in full the [command] block described by a [command]
      descriptor

  [Pcs]
      Print the sequence of [command]s between two [command] descriptors

  [Pe]
      Print the events named by a logical name

  [Pe!]
      Print events as with [pe] but ignoring the [pe-table]

  [Pf]
      Print the formula corresponding to the given name

  [Pl]
      Print the rules for the given name or term

  [Pl2]
      Print rule(s) for the given form

  [Pr]
      Print the rules stored by the event with the given name

  [Pr!]
      Print rules stored by the command with a given command descriptor

  [Puff]
      Replace a compound [command] by its immediate subevents

  [Puff*]
      Replace a compound [command] by its subevents

  [Reset-kill-ring]
      Save memory by resetting and perhaps resizing the kill ring used by
      [oops]

  [Reset-prehistory]
      Reset the prehistory

  [Tau-database]
      To see the tau database as a (very large) object

  [Tthm]
      The [measure] (termination) theorem for a given function symbol

  [U]
      Undo last [command], without a query

  [Ubt]
      Undo the [command]s back through a [command] descriptor

  [Ubt!]
      Undo [command]s, without a query or an error

  [Ubt-prehistory]
      Undo the [command]s back through the last [reset-prehistory] event

  [Ubt?]
      Undo [command]s, with queries as appropriate

  [Ubu]
      Undo the [command]s back up to (not including) a [command]
      descriptor

  [Ubu!]
      Undo [command]s, without a query or an error

  [Ubu?]
      Undo [command]s, with queries as appropriate")
 (HONS
  (PROGRAMMING HONS-AND-MEMOIZATION ACL2-BUILT-INS)
  "(hons x y) returns a [normed] object equal to (cons x y).

  In the logic, hons is just [cons]; we leave it enabled and would
  think it odd to ever prove a theorem about it.

  Under the hood, hons does whatever is necessary to ensure that its
  result is [normed].

  What might this involve?

  Since the car and cdr of any normed cons must be normed, we need to
  [hons-copy] x and y. This requires little work if x and y are
  already normed, but can be expensive if x or y contain large,
  un-normed cons structures.

  After that, we need to check whether any normed cons equal to (x . y)
  already exists. If so, we return it; otherwise, we need to
  construct a new cons for (x . y) and install it as the normed
  version of (x . y).

  Generally speaking, these extra operations make hons much slower than
  cons, even when given normed arguments.

  Function: <hons>

    (defun hons (x y)
           (declare (xargs :guard t))
           (cons x y))


Subtopics

  [Hons-clear]
      ([hons-clear] gc) is a drastic garbage collection mechanism that
      clears out the underlying Hons Space.

  [Hons-clear!]
      A version of [hons-clear] for [parallel] execution

  [Hons-copy]
      ([hons-copy] x) returns a [normed] object that is equal to X.

  [Hons-copy-persistent]
      ([hons-copy-persistent] x) returns a [normed] object that is equal
      to X and which will be re-normed after any calls to
      [hons-clear].

  [Hons-equal]
      ([hons-equal] x y) is a recursive equality check that optimizes when
      parts of its arguments are [normed].

  [Hons-equal-lite]
      ([hons-equal-lite] x y) is a non-recursive equality check that
      optimizes if its arguments are [normed].

  [Hons-note]
      Notes about [hons], especially pertaining to expensive resizing
      operations

  [Hons-resize]
      ([hons-resize] ...) can be used to manually adjust the sizes of the
      hash tables that govern which ACL2 Objects are considered
      [normed].

  [Hons-summary]
      ([hons-summary]) prints basic information about the sizes of the
      tables in the current Hons Space.

  [Hons-wash]
      ([hons-wash]) is like [gc$] but can also garbage collect [normed]
      objects (CCL and GCL Only).

  [Hons-wash!]
      A version of [hons-wash] for [parallel] execution

  [Normed]
      Normed objects are ACL2 Objects that are \"canonical\" or \"unique\" in
      a certain sense.")
 (HONS-ACONS
  (FAST-ALISTS ACL2-BUILT-INS)
  "(hons-acons key val alist) is the main way to create or extend
  [fast-alists].

  Logically, hons-acons is like [acons] except that its guard does not
  require [alistp]; we leave it enabled and would think it odd to
  ever prove a theorem about it.

  Under the hood, two things are done differently. First, the key is
  copied with [hons-copy]; this lets us use EQL-based hash tables
  instead of EQUAL-based hash tables for better performance. Second,
  assuming there is a valid hash table associated with this alist, we
  destructively update the hash table by binding key to val. The hash
  table will no longer be associated with alist, but will instead be
  associated with the new alist returned by hons-acons.

  Hash Table Creation

  A new hash table is created by hons-acons whenever alist is an atom.
  Unlike ordinary acons, we do not require that alist be nil, and in
  fact you may wish to use a non-nil value for one of two reasons.

  1. As a size hint

  By default, the new hash table will be given a quite modest default
  capacity of 60 elements. As more elements are added, the table may
  need to be resized to accommodate them, and this resizing has some
  runtime cost.

  When a natural number is used as a fast alist's name, we interpret it
  as a size hint. For example, (hons-acons 'foo 'bar 1000) instructs
  us to use 1000 as the initial size for this hash table and binds
  'foo to 'bar. The resulting table should not need to be resized
  until more than 1000 elements are added. We ignore size hints that
  request fewer than 60 elements.

  Because of hash collisions, hash tables typically need to have a
  larger size than the actual number of elements they contain. The
  hash tables for fast alists are told to grow when they reach 70%
  full. So, an easy rule of thumb might be: multiply the expected
  number of elements you need by 1.5 to keep your hash tables about
  2/3 full.

  2. As an alist name

  We also frequently use a symbol for alist, and think of this symbol
  as the name of the new alist. We have found that naming alists can
  be valuable for two reasons:

  First, the name can be helpful in identifying fast alists that should
  have been freed, see [fast-alist-summary].

  Second, names can sometimes be used to avoid a subtle and insidious
  table-stealing phenomenon that occurs when using fast-alists that
  are themselves normed; see [hons-acons!].

  At the moment, there is no way to simultaneously name a fast alist
  and also give it a size hint. We may eventually allow strings to
  include embedded name and size components, but for now we have not
  implemented this capability.

  Function: <hons-acons>

    (defun hons-acons (key val alist)
           (declare (xargs :guard t))
           (cons (cons key val) alist))")
 (HONS-ACONS!
  (FAST-ALISTS ACL2-BUILT-INS)
  "(hons-acons! key val alist) is an alternative to [hons-acons] that
  produces [normed], fast alists.

  Logically, hons-acons! is like [acons] except that its guard does not
  require [alistp]; we leave it enabled and would think it odd to
  ever prove a theorem about it.

  Ordinarily, [fast-alists] are constructed with [hons-acons] instead
  of hons-acons!. In such alists, the keys are honsed, but the conses
  that make up the \"spine\" of the alist itself are ordinary conses.
  In other words, it is basically correct to say:

    (hons-acons key val alist) == (cons (cons (hons-copy key) val) alist)

  In contrast, when hons-acons! is used, the conses making up the alist
  itself are also normed. That is,

    (hons-acons! key val alist) == (hons (hons key val) alist)

  Generally, you should not use hons-acons! unless you really know what
  you're doing.

  Drawback 1. hons-acons! requires you to [hons-copy] all of the values
  that are being stored in the fast alist. If you are storing large
  values, this may be expensive.

  Drawback 2. It can be more difficult to maintain the proper
  discipline when using hons-acons!. For instance, consider the
  following:

    (let ((al1 (hons-acons 1 'one (hons-acons 2 'two nil)))
          (al2 (hons-acons 1 'one (hons-acons 2 'two nil))))
       ...)

  Here, both al1 and al2 are valid fast alists and they can be extended
  independently without any trouble. But if these alists had instead
  been constructed with hons-acons!, then since both al1 and al2 are
  equal, normed conses, they will literally be [eq] and hence will
  refer to precisely the same hash table. In other words, hons-acons!
  makes it relatively easy to inadvertently steal the hash table
  associated with some other fast alist. This problem can be
  alleviated somewhat by uniquely naming alists; see the discussion
  in [hons-acons] for details.

  Despite these drawbacks, hons-acons! is the typical way to generate a
  fast alist that is normed (but also, for example, see
  [fast-alist-fork!]). It is not adequate to [hons-copy] a fast alist
  that was generated by ordinary [hons-acons] calls, because this
  would produce an EQUAL-but-not-EQ object, and this new object would
  not be associated with the fast alist's hash table.

  Function: <hons-acons!>

    (defun hons-acons! (key val alist)
           (declare (xargs :guard t))
           (cons (cons key val) alist))")
 (HONS-AND-MEMOIZATION
  (ACL2)
  "Hash cons, function memoization, and applicative hash tables

  This topic describes the hash cons, function memoization, and
  applicative hash tables features available in ACL2, sometimes
  called the ``[hons-enabled]'' features.

  Bob Boyer and Warren Hunt, and later Jared Davis and Sol Swords, have
  developed a canonical representation for ACL2 data objects and a
  function memoization mechanism to facilitate reuse of previously
  computed results. This facility includes procedures to read and
  print ACL2 expressions in such a way that repetition of some ACL2
  objects is eliminated, thereby permitting a kind of on-the-fly file
  compression. The implementation does not alter the semantics of
  ACL2 except to add a handful of definitions.

  We historically gave the name ``ACL2(h)'' to the experimental
  extension of the ACL2 system including hash cons, function
  memoization, and fast association lists (applicative hash tables).
  These features, which we call the ``[hons-enabled]'' features, are
  now present in ACL2. The hons-enabled features are optimized for
  Clozure Common Lisp (CCL) and to some extent, GNU Common Lisp (GCL
  ANSI); but they are also supported in every ACL2 build.

  Power users who want to take advantage of the [hons-enabled] features
  of ACL2 might find it helpful to consult the document
  centaur/README.html in the ACL2 community books.

  Much of the documentation for the remainder of this topic is taken
  from the paper ``Function Memoization and Unique Object
  Representation for ACL2 Functions'' by Robert S. Boyer and Warren
  A. Hunt, Jr., which has appeared in the Sixth International
  Workshop on the ACL2 Theorem Prover and Its Applications, ACM
  Digital Library, 2006.

  In the implementation of the ACL2 logic, ACL2 data objects are
  represented by Common Lisp objects of the same type, and the ACL2
  pairing operation is internally implemented by the Common Lisp
  [cons] function. In Common Lisp, cons is guaranteed to provide a
  new pair, distinct from any previously created pair. We have
  defined a new ACL2 function [hons] that is logically identical to
  the ACL2 cons function, but whose implementation usually reuses an
  existing pair if its components are identical to the components of
  an existing pair. A record of ACL2 HONS objects is kept, and when
  an ACL2 function calls hons ACL2 searches for an existing identical
  pair before allocating a new pair; this operation been called
  ``hash consing''.

  It appears that hash consing was first conceived by A. P. Ershov in
  1957, to speed up the recognition of common subexpressions. Ershov
  showed how to collapse trees to minimal DAGs by traversing trees
  bottom up, and he used hashing to eliminate the re-evaluation of
  common subexpressions. In his 1973 PhD dissertation L. Peter
  Deutsch describes a program verifier that uses hash cons to
  represent terms and his rewriter operated on hash consed terms.
  Later, Eiichi Goto implemented a Lisp system with a built-in hash
  consing operation: his h-CONS cells were rewrite protected and free
  of duplicate copies, and Goto used this hash consing operation to
  facilitate the implementation of a symbolic algebra system he
  developed.

  Memoizing functions also has a long history. In 1967, Donald Michie
  proposed using memoized functions to improve the performance of
  machine learning. Rote learning was improved by a learning function
  not forgetting what it had previously learned; this information was
  stored as memoized function values.

  The use of hash consing has appeared many times. For instance, Henry
  Baker used hash consing to improve the performance of the
  well-known Boyer rewriting benchmark. Baker used both hash consing
  and function memoization to improve the speed of the Takeuchi
  function, exactly in the spirit of our implementation, but without
  the automated, system-wide integration we report here.

  The ACL2 implementation permits memoization of user-defined
  functions. During execution a user may enable or disable function
  memoization on an individual function basis, may clear memoization
  tables, and may even keep a stack of memoization tables. This
  facility takes advantage of our implementation where we keep one
  copy of each distinct ACL2 data object. Due to the functional
  nature of ACL2, it is sufficient to have at most one copy of any
  data structure; thus, a user may arrange to keep data
  canonicalized. This implementation extends to the entire ACL2
  system the benefits enjoyed by BDDs: canonicalization, memoization,
  and fast equality check.

  We have defined various algorithms using these features, and we have
  observed, in some cases, substantial performance increases. For
  instance, we have implemented unordered set intersection and union
  operations that operate in time roughly linear in the size of the
  sets. Without using arrays, we defined a canonical representation
  for Boolean functions using ACL2 objects. We have investigated the
  performance of rewriting and tree consensus algorithms to good
  effect, and we believe function memoization offers interesting
  opportunities to simplify algorithm definition while simultaneously
  providing performance improvements.

  We recommend that users focus at first on the logical definitions of
  [hons] and other primitives rather than their underlying Common
  Lisp implementations. Integrated with this memoization system is a
  performance monitoring system, which can provide real-time feedback
  on the operation and usefulness of [hons] and function memoization.
  For a more detailed description of these tools, please see the ACL2
  2006 workshop paper mentioned above.

  The Fibonacci function is a small example that demonstrates the
  utility of function memoization. The following definition exhibits
  a runtime that is exponential in its input argument.

    (defun fib (x)
      (declare (xargs :guard (natp x)))
      (mbe
       :logic
       (cond ((zp x) 0)
             ((= x 1) 1)
             (t (+ (fib (- x 1)) (fib (- x 2)))))
       :exec
       (if (< x 2)
           x
         (+ (fib (- x 1)) (fib (- x 2))))))

  Below we show how the ACL2 [time$] utility can measure the time to
  execute a call to the fib function (with some editing to avoid
  noise from the underlying Common Lisp implementation). [Memoize] is
  actually an ACL2 macro that expands to a call of the ACL2 function
  used to identify a function for memoization; see [memoize]. This
  function also accepts a well-formed term that must be true in order
  for the system to memoize a call of the memoized function; to
  ensure that an instance of the term is safe for evaluation in
  Common Lisp, a check is performed that if the [guard] of the
  memoized function is satisfied, then this instance will execute
  without error.

    ACL2 !>(time$ (fib 40))
    ; (EV-REC *RETURN-LAST-ARG3* ...) took
    ; 0.99 seconds realtime, 0.98 seconds runtime
    ; (1,296 bytes allocated).
    102334155
    ACL2 !>(memoize 'fib)

    Summary
    Form:  ( TABLE MEMOIZE-TABLE ...)
    Rules: NIL
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)

    Summary
    Form:  ( PROGN (TABLE MEMOIZE-TABLE ...) ...)
    Rules: NIL
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
     FIB
    ACL2 !>(time$ (fib 40))
    ; (EV-REC *RETURN-LAST-ARG3* ...) took
    ; 0.00 seconds realtime, 0.00 seconds runtime
    ; (2,864 bytes allocated).
    102334155
    ACL2 !>(time$ (fib 100))
    ; (EV-REC *RETURN-LAST-ARG3* ...) took
    ; 0.00 seconds realtime, 0.00 seconds runtime
    ; (7,024 bytes allocated).
    354224848179261915075
    ACL2 !>(unmemoize 'fib)

  We see that once the function fib is identified as a function for
  which function calls should be memoized, the execution times are
  substantially reduced. Finally, we can prevent fib from being
  further memoized; in fact, [unmemoize] erases the previously
  memoized values.

  The implementation of hash consing, memoization, and applicative hash
  tables involves several facets: canonical representation of ACL2
  data, function memoization, and the use of Lisp hash tables to
  improve the performance of association list operations. We discuss
  each of these in turn, and we mention some subtle
  interrelationships. Although it is not necessary to understand the
  discussion in this section, it may permit some users to better use
  this implementation. This discussion may be confusing for some ACL2
  users as it makes references to Lisp implementation features.

  The ACL2 system is actually implemented as a Lisp program that is
  layered on top of a Common Lisp system implementation. ACL2 data
  constants are implemented with their corresponding counterparts in
  Common Lisp; that is, ACL2 cons pairs, strings, characters,
  numbers, and symbols are implemented with their specific Common
  Lisp counterparts. This choice permits a number of ACL2 primitive
  functions to be implemented with their corresponding Common Lisp
  functions, but there are indeed differences. ACL2 is a logic, and
  as such, it does not specify anything to do with physical storage
  or execution performance. When ACL2 is used, the knowledgeable user
  can write functions to facilitate the reuse of some previously
  computed values.

  Recall the three mechanisms under discussion: hash consing, function
  memoization, and fast association list operations. The function
  memoization mechanism takes advantage of the canonical
  representation of data objects provided by the [hons] operation as
  does the fast association list operation mechanism. Each time hons
  is invoked, its arguments are themselves converted, if necessary,
  to uniquely represented objects.

  The ACL2 universe is recursively closed under the cons pairing
  operation and the atoms. Hash consing ([hons]) is logically
  identical to cons, but a set of tables is used to record each hons
  pair. When a hons pair is requested, the implementation checks, in
  the current set of tables, whether the requested pair already
  exists. If not, a new pair is created and a record of that pair is
  made; otherwise, a reference to the previously created pair is
  returned. Thus, any data object created with hons has a unique
  representation, as does every subcomponent. We also arrange for
  strings to have a unique representation --- only one copy of each
  different string is kept --- and when any previously unseen string
  is an argument to hons, we add the string to a unique table of
  strings. A system-wide benefit of having a canonical representation
  for data is that equality comparisons between any two data objects
  can be done in constant time.

  The definition of [hons] in no way changes the operation of cons ---
  hons creates a cons pair. When asked to create a hons, the
  implementation checks to see if there is a cons with the same [car]
  and [cdr] as the hons being requested. Thus, the only difference
  between the results of a hons call and a corresponding cons call is
  a notation in some invisible (to the ACL2 logic) tables where we
  record which cons elements are also hons elements. Since a hons is
  nothing but a cons, the operation of car and cdr is unchanged. In
  fact, the implementation is designed so that at any time it is safe
  to clear the table identifying which cons elements are also
  considered hons elements.

  User-defined functions with defined and verified guards can be
  memoized. When a function is memoized, a user-supplied condition
  restricts the domain when memoization is attempted. When the
  condition is satisfied, memoization is attempted (assuming that
  memoization for the function is presently enabled); otherwise, the
  function is just evaluated. Each memoized function has a hash table
  that is used to keep track of a unique list of function arguments
  paired with their values. If appropriate, for each function the
  corresponding table is checked to see if a previous call with
  exactly the same arguments already exists in the table: if so, then
  the associated value is returned; if not, then the function is
  evaluated and a new key-value pair is added to the table of
  memoized values so that some future call will benefit from the
  memoization. With ACL2 user functions memoization can be
  dynamically enabled and disabled. There is an ACL2 function that
  clears a specific memoization table. And finally, just as with the
  hons table, a stack of these function memoization tables is
  maintained; that is, it is possible to memoize a function, use it a
  bit, set the memoized values aside, start a new table, use it, and
  then return to the original table.

  We next discuss the fast lookup operation for association lists. When
  a pair is added to an association list using the functions
  [hons-acons] or [hons-acons!], the system also records the
  key-value pair in an associated hash table. As long as a user only
  used these two functions when placing key-value pairs on an
  association list, the key-value pairs in the corresponding hash
  table will be synchronized with the key-value pairs in the
  association list. Later, if [hons-get] is used to look up a key,
  then instead of performing a linear search of the association list
  we consult the associated hash table. If a user does not strictly
  follow this discipline, then a linear search may be required. In
  some sense, these association lists are much like ACL2 arrays, but
  without the burden of explicitly naming the arrays. The ACL2 array
  [compress1] function is analogous to the functions
  [fast-alist-clean] and [fast-alist-clean!]. There are user-level
  ACL2 functions that allow the associated hash tables to be cleared
  and removed.

  As mentioned above, the [hons-enabled] features are optimized for CCL
  and GCL. See [ccl-updates] for easy instructions for obtaining the
  latest version of CCL.

  REFERENCES

  Baker, Henry G., The Boyer Benchmark at Warp Speed. ACM Lisp Pointers
  V,3 (Jul-Sep 1992), pages 13-14.

  Baker, Henry G., A Tachy 'TAK'. ACM Lisp Pointers Volume 3,
  July-September, 1992, pages 22-23.

  Robert S. Boyer and Warren A. Hunt, Jr., Function Memoization and
  Unique Object Representation for ACL2 Functions, in the Sixth
  International Workshop on the ACL2 Theorem Prover and Its
  Applications, ACM Digital Library, 2006.

  L.P. Deutsch. An Interactive Program Verifier. Tech. Rept. CSL-73-1,
  Xerox Palo Alto Research Center, May, 1973.

  A. P. Ershov. On Programming of Arithmetic Operations. In the
  Communications of the ACM, Volume 118, Number 3, August, 1958,
  pages 427-430.

  Eiichi Goto, Monocopy and Associative Algorithms in Extended Lisp,
  TR-74-03, University of Toyko, 1974.

  Richard P. Gabriel. Performance and Evaluation of Lisp Systems. MIT
  Press, 1985.

  Donald Michie. Memo functions: a Language Feature with Rote Learning
  Properties. Technical Report MIP-R-29, Department of Artificial
  Intelligence, University of Edinburgh, Scotland, 1967.

  Donald Michie. Memo Functions and Machine Learning. In Nature,
  Volumne 218, 1968, pages 19-22.


Subtopics

  [Ccl-updates]
      Updating Clozure Common Lisp (CCL)

  [Fast-alists]
      Alists with hidden hash tables for faster execution

  [Hons]
      ([hons] x y) returns a [normed] object equal to ([cons] x y).

  [Hons-enabled]
      Hash cons, function memoization, and applicative hash tables

  [Memoize]
      Turn on memoization for a specified function

  [Number-subtrees]
      ([number-subtrees] x) returns the number of distinct subtrees of X,
      in the sense of [equal]

  [Unmemoize]
      Turn off memoization for the specified function

  [With-stolen-alist]
      ([with-stolen-alist] name form) ensures that name is a fast alist at
      the start of the execution of form. At the end of execution, it
      ensures that name is a fast alist if and only if it was
      originally. That is, if name was not a fast alist originally,
      its hash table link is freed, and if it was a fast alist
      originally but its table was modified during the execution of
      form, that table is restored. Note that any extended table
      created from the original fast alist during form must be
      manually freed.")
 (HONS-ASSOC-EQUAL
  (FAST-ALISTS ACL2-BUILT-INS)
  "(hons-assoc-equal key alist) is not fast; it serves as the logical
  definition for [hons-get].

  The definition of hons-assoc-equal is similar to that of
  [assoc-equal], except that (1) it does not require [alistp] as a
  guard, and (2) it \"skips over\" any non-conses when its alist
  argument is malformed.

  We typically leave hons-get enabled and reason about hons-assoc-equal
  instead. One benefit of this approach is that it avoids certain
  \"false\" discipline warnings that might arise from execution during
  theorem proving.

  Function: <hons-assoc-equal>

    (defun hons-assoc-equal (key alist)
           (declare (xargs :guard t))
           (cond ((atom alist) nil)
                 ((and (consp (car alist))
                       (hons-equal key (caar alist)))
                  (car alist))
                 (t (hons-assoc-equal key (cdr alist)))))")
 (HONS-CLEAR
  (HONS ACL2-BUILT-INS)
  "(hons-clear gc) is a drastic garbage collection mechanism that clears
  out the underlying Hons Space.

  Logically, hons-clear just returns nil; we leave it enabled and would
  think it odd to ever prove a theorem about it.

  Under the hood, hons-clear brutally (1) clears all the tables that
  govern which conses are [normed], then (2) optionally garbage
  collects, per the gc argument, then finally (3) re-norms the keys
  of [fast-alists] and persistently normed conses; see
  [hons-copy-persistent].

  Notes.

    * The hash tables making up the Hons Space retain their sizes after
      being cleared. If you want to shrink them, see [hons-resize].
    * CCL and GCL users might prefer [hons-wash], which is relatively
      efficient and allows for the garbage collection of normed
      conses without impacting their normed status.
    * It is not recommended to interrupt this function. Doing so may cause
      persistently normed conses and fast alist keys to become
      un-normed, which might lead to less efficient re-norming and/or
      violations of the fast-alist discipline.
    * (For ACL2(p) users only; see [parallelism]) If parallel execution is
      enabled (see (@see set-parallel-execution)), as it is by
      default in ACL2(p), then hons-clear may be a no-op (other than
      to print a warning), in order to avoid thread-unsafe behavior.
      (However, In CCL you are unlikely to see this restriction
      unless you are running more than one thread.) To get around
      this restriction, you can instead use [hons-clear!], which
      however requires a [trust-tag].

  Function: <hons-clear>

    (defun hons-clear (gc)
           (declare (xargs :guard t))
           (declare (ignore gc))
           nil)")
 (HONS-CLEAR!
  (HONS ACL2-BUILT-INS)
  "A version of [hons-clear] for [parallel] execution

  This function is only of interest to ACL2(p) users; see
  [parallelism], because for ACL2 it suffices to use [hons-clear].
  However, if parallel execution is enabled (see (@see
  set-parallel-execution)), as it is by default in ACL2(p), then
  hons-clear may be a no-op (other than to print a warning), in order
  to avoid thread-unsafe behavior. If you are not concerned about
  thread safety, for example when you want to call hons-clear
  directly in the top-level loop, you can use hons-clear!, which does
  not check for parallelism violations. However, hons-clear! requires
  a trust tag; see [defttag].")
 (HONS-COPY
  (HONS ACL2-BUILT-INS)
  "(hons-copy x) returns a [normed] object that is equal to X.

  In the logic, hons-copy is just the identity function; we leave it
  enabled and would think it odd to ever prove a theorem about it.

  Under the hood, hons-copy does whatever is necessary to produce a
  [normed] version of X.

  What might this involve?

  If X is a symbol, character, or number, then it is already normed and
  nothing is done.

  If X is a string, we check if any normed version of X already exists.
  If so, we return the already-normed version; otherwise, we install
  X as the normed version for all strings that are [equal] to X.

  If X is a cons, we must determine if there is a normed version of X,
  or recursively construct and install one. Norming large cons trees
  can become expensive, but there are a couple of cheap cases. In
  particular, if X is already normed, or if large subtrees of X are
  already normed, then not much needs to be done. The slowest case is
  norming some large ACL2 cons structure that has no subtrees which
  are already normed.

  Note that running hons-copy on an object that was created with [cons]
  is often slower than just using [hons] directly when constructing
  the object.

  Function: <hons-copy>

    (defun hons-copy (x)
           (declare (xargs :guard t))
           x)")
 (HONS-COPY-PERSISTENT
  (HONS ACL2-BUILT-INS)
  "(hons-copy-persistent x) returns a [normed] object that is equal to X
  and which will be re-normed after any calls to [hons-clear].

  Logically hons-copy-persistent is the identity; we leave it enabled
  and would think it odd to ever prove a theorem about it.

  Under the hood, hons-copy-persistent is virtually identical to
  [hons-copy].

  The only difference is that when [hons-clear] is used, any
  persistently normed conses are automatically re-normed, and this
  re-norming can be carried out more efficiently than, say, an
  ordinary [hons-copy].

  Function: <hons-copy-persistent>

    (defun hons-copy-persistent (x)
           (declare (xargs :guard t))
           x)")
 (HONS-ENABLED
  (HONS-AND-MEMOIZATION)
  "Hash cons, function memoization, and applicative hash tables

  ACL2 supports hash cons, function memoization, and applicative hash
  tables; see [hons-and-memoization]. These are sometimes called the
  ``hons-enabled features'' of ACL2.")
 (HONS-EQUAL
  (HONS EQUAL ACL2-BUILT-INS)
  "(hons-equal x y) is a recursive equality check that optimizes when
  parts of its arguments are [normed].

  In the logic, hons-equal is just [equal]; we leave it enabled and
  would think it odd to ever prove a theorem about it.

  Under the hood, when hons-equal encounters two arguments that are
  both normed, it becomes a mere [eql] check, and hence avoids the
  overhead of recursively checking large cons structures for
  equality.

  Note. If hons-equal is given arguments that do not contain many
  normed objects, it can actually be much slower than [equal]! This
  is because it checks to see whether its arguments are normed at
  each recursive step, and so you are repeatedly paying the price of
  such checks. Also see [hons-equal-lite], which only checks at the
  top level whether its arguments are normed.

  Function: <hons-equal>

    (defun hons-equal (x y)
           (declare (xargs :guard t))
           (equal x y))


Subtopics

  [Hons-equal-lite]
      ([hons-equal-lite] x y) is a non-recursive equality check that
      optimizes if its arguments are [normed].")
 (HONS-EQUAL-LITE
  (HONS HONS-EQUAL)
  "(hons-equal-lite x y) is a non-recursive equality check that
  optimizes if its arguments are [normed].

  In the logic, hons-equal-lite is just [equal]; we leave it enabled
  and would think it odd to ever prove a theorem about it.

  Under the hood, hons-equal-lite checks whether its arguments are
  normed, and if so it effectively becomes a [eql] check. Otherwise,
  it immediately calls [equal] to determine if its arguments are
  equal.

  The idea here is to strike a useful balance between equal and
  [hons-equal]. If both arguments happen to be normed, we get to use
  a very fast equality comparison. Otherwise, we just get out of the
  way and let equal do its work, without the extra overhead of
  recursively checking whether the subtrees of x and y are normed.

  Function: <hons-equal-lite>

    (defun hons-equal-lite (x y)
           (declare (xargs :guard t))
           (equal x y))")
 (HONS-GET
  (FAST-ALISTS ACL2-BUILT-INS)
  "(hons-get key alist) is the efficient lookup operation for
  [fast-alists].

  Logically, hons-get is just an alias for [hons-assoc-equal]; we
  typically leave it enabled and prefer to reason about
  hons-assoc-equal instead. One benefit of this approach is that it
  helps to avoids \"false\" discipline warnings that might arise from
  execution during theorem proving.

  Under the hood, when alist is a fast alist that is associated with a
  valid hash table, hons-get first norms key using [hons-copy], then
  becomes a gethash operation on the hidden hash table.

  Function: <hons-get>

    (defun hons-get (key alist)
           (declare (xargs :guard t))
           (hons-assoc-equal key alist))")
 (HONS-NOTE
  (HONS)
  "Notes about [hons], especially pertaining to expensive resizing
  operations

  Certain ``Hons-Notes'' are printed to the terminal to report
  implementation-level information about the management of [hons]
  structures. Some of these may be low-level and of interest mainly
  to system developers. But below we discuss what users can learn
  from a particular hons-note, ``ADDR-LIMIT reached''. In short: If
  you are seeing a lot of such hons-notes, then you may be using a
  lot of memory. (Maybe you can reduce that memory; for certain BDD
  operations, for example (as defined in community books
  books/centaur/ubdds/), variable ordering can make a big
  difference.)

  By way of background:

      The ADDR-HT is the main hash table that lets us look up [normed]
      conses, i.e., [hons]es. It is an ordinary Common Lisp hash
      table, so when it starts to get too full the Lisp will grow it.
      It can get really big. (It has been seen to take more than 10
      GB of memory just for the hash table's array, not to mention
      the actual conses!)

      Hons-Notes may be printed when the ADDR-HT is getting really full.
      This growth can be expensive and can lead to memory problems.
      Think about what it takes to resize a hash table:

      (1) allocate a new, bigger array
      (2) rehash elements, copying them into the new array
      (3) free the old array

      Until you reach step (3) and a garbage collection takes place, you
      have to have enough memory to have both the old and new arrays
      allocated. If the old array was 10 GB and we want to allocate a
      new one that's 15 GB, this can get pretty bad. Also, rehashing
      the elements is expensive time-wise when there are lots of
      elements.

      Since resizing a hash table is expensive, we want to avoid it.
      There's a [hons-resize] command for this. You may want your
      books to start with something like the following.

        (value-triple (set-max-mem (* 30 (expt 2 30))))      ; 30 GB heap
        (value-triple (hons-resize :addr-ht #u_100_000_000)) ; 100M honses

      Basically, if you roughly know how many honses your book will need,
      you can just get them up front and then never to resize.

  The Hons-Notes about ``ADDR-LIMIT reached'' are basically there to
  warn you that the ADDR-HT is being resized. This can help you
  realize that your [hons-resize] command had too small of an ADDR-HT
  size, or might suggest that your book should have a [hons-resize]
  command. There are also commands like ([hons-summary]),
  [set-max-mem], and defined in community book
  books/centaur/misc/memory-mgmt-logic.lisp, (hons-analyze-memory
  nil). These can show you how many honses you currently have, how
  much space they are taking, and that sort of thing. (A nice trick
  is to call [hons-summary] at the end of a book, to get an idea of
  how many honses you should ask for in your [hons-resize] command).")
 (HONS-RESIZE
  (HONS ACL2-BUILT-INS)
  "(hons-resize ...) can be used to manually adjust the sizes of the
  hash tables that govern which ACL2 Objects are considered [normed].

  General form:

    (hons-resize [:str-ht size]
                 [:nil-ht size]
                 [:cdr-ht size]
                 [:cdr-ht-eql size]
                 [:addr-ht size]
                 [:other-ht size]
                 [:sbits size]
                 [:fal-ht size]
                 [:persist-ht size])

  Example:

    (hons-resize :str-ht 100000
                 :addr-ht (expt 2 27))

  Logically, hons-resize just returns nil; we leave it enabled and
  would think it odd to ever prove a theorem about it.

  Under the hood, hons-resize can be used to change the sizes of
  certain hash tables in the Hons Space.

  All arguments are optional. The size given to each argument should
  either be nil (the default) or a natural number. A natural number
  indicates the newly desired size for the hash table, whereas nil
  means \"don't resize this table.\" Any non-natural argument is
  regarded as nil.

  You may wish to call this function for two reasons.

  1. Improving Performance by Resizing Up

  Since the hash tables in the Hons Space automatically grow as new
  objects are normed, hons-resize is unnecessary. But automatic
  growth can be slow because it is incremental: a particular hash
  table might be grown dozens of times over the course of your
  application. Using hons-resize to pick a more appropriate initial
  size may help to reduce this overhead.

  2. Reducing Memory Usage by Resizing Down

  Resizing can also be used to shrink the hash tables. This might
  possibly be useful immediately after a [hons-clear] to free up
  memory taken by the hash tables themselves. (Of course, the tables
  will grow again as you create new normed objects.)

  Advice for using hons-resize.

  Note that hash tables that are already close to the desired size, or
  which have too many elements to fit into the desired size, will not
  actually be resized. This makes resizing relatively \"safe.\"

  Note that the [hons-summary] function can be used to see how large
  and how full your hash tables are. This may be useful in deciding
  what sizes you want to give to hons-resize.

  Note that hons-resize operates by (1) allocating new hash tables,
  then (2) copying everything from the old hash table into the new
  table. Because of this, for best performance you should ideally
  call it when the hash tables involved are minimally populated,
  i.e., at the start of your application, or soon after a
  [hons-clear].")
 (HONS-SHRINK-ALIST
      (FAST-ALIST-FORK ACL2-BUILT-INS)
      "Deprecated feature

  Deprecated. Alias for [fast-alist-fork].")
 (HONS-SHRINK-ALIST!
      (FAST-ALIST-FORK! ACL2-BUILT-INS)
      "Deprecated feature

  Deprecated. Alias for [fast-alist-fork!].")
 (HONS-SUMMARY
  (HONS ACL2-BUILT-INS)
  "(hons-summary) prints basic information about the sizes of the tables
  in the current Hons Space.

  Logically, hons-summary just returns nil; we leave it enabled and
  would think it odd to ever prove a theorem about it.

  Under the hood, this function gathers and prints some basic
  information about the sizes of the tables in the Hons Space.

  This information may be useful for deciding if you want to garbage
  collect using functions such as [hons-clear] or [hons-wash]. It may
  also be useful for determining good initial sizes for the Hons
  Space hash tables for your particular computation; see
  [hons-resize]. For information about [fast-alists], see
  [fast-alist-summary].

  Function: <hons-summary>

    (defun hons-summary
           nil (declare (xargs :guard t))
           nil)")
 (HONS-WASH
  (HONS ACL2-BUILT-INS)
  "(hons-wash) is like [gc$] but can also garbage collect [normed]
  objects (CCL and GCL Only).

  Logically, hons-wash just returns nil; we leave it enabled and would
  think it odd to ever prove a theorem about it.

  Under the hood, in CCL and GCL, hons-wash runs a garbage collection
  after taking special measures to allow normed conses to be
  collected. In Lisps other than CCL, hons-wash does nothing. This is
  because the efficient implementation of hons-wash is specific to
  the \"static honsing\" scheme which requires CCL-specific features.

  Why is this function needed? Ordinarily, it is not possible to
  garbage collect any normed conses. This is because the Hons Space
  includes pointers to any normed conses, and hence Lisp's garbage
  collector thinks these objects are live. To correct for this,
  hons-wash (1) clears out these pointers, (2) runs a garbage
  collection, then (3) re-norms any previously-normed conses which
  have survived the garbage collection.

  Notes.

    * It is not recommended to interrupt this function. Doing so may cause
      persistently normed conses and fast alist keys to become
      un-normed, which might lead to less efficient re-norming and/or
      violations of the fast-alist discipline.
    * (For ACL2(p) users only; see [parallelism]) If parallel execution is
      enabled (see (@see set-parallel-execution)), as it is by
      default in ACL2(p), then hons-wash may be a no-op (other than
      to print a warning), in order to avoid thread-unsafe behavior.
      (However, In CCL you are unlikely to see this restriction
      unless you are running more than one thread.) To get around
      this restriction, you can instead use [hons-wash!], which
      however requires a [trust-tag].

  Function: <hons-wash>

    (defun hons-wash nil (declare (xargs :guard t))
           nil)")
 (HONS-WASH!
  (HONS ACL2-BUILT-INS)
  "A version of [hons-wash] for [parallel] execution

  This function is only of interest to ACL2(p) users; see
  [parallelism], because for ACL2 it suffices to use [hons-wash].
  However, if parallel execution is enabled (see (@see
  set-parallel-execution)), as it is by default in ACL2(p), then
  hons-wash may be a no-op (other than to print a warning), in order
  to avoid thread-unsafe behavior. If you are not concerned about
  thread safety, for example when you want to call hons-wash directly
  in the top-level loop, you can use hons-wash!, which does not check
  for parallelism violations. However, hons-wash! requires a trust
  tag; see [defttag].")
 (HOW_LONG_DOES_IT_TAKE_TO_BECOME_AN_EFFECTIVE_USER{Q}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "How Long Does It Take to Become an Effective User?

  [{IMAGE}]

  We expect that a talented undergraduate majoring in computer science
  (or perhaps mathematics) will probably take several weeks to become
  an effective ACL2 user. The time will depend, of course, on that
  student's familiarity with logic (or formal methods) and Lisp
  programming, as well as willingness to read and study the ACL2
  User's Manual.

  Of course, it is critical to do some projects in order to gain
  proficiency. (Hence access to an ACL2 implementation is also a
  requirement, for example by downloading and installing following
  links from the ACL2 home page.) But it is critical to start with
  ``toy'' projects before tackling a ``grand challenge.''

  [{IMAGE}]")
 (HOW_TO_FIND_OUT_ABOUT_ACL2_FUNCTIONS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "How To Find Out about ACL2 Functions

  [{IMAGE}]

  Most ACL2 primitives are documented. Here is the definition of app
  again, with the documented topics highlighted. [{ICON}] All of the
  links below lead into the ACL2 User's Manual. So follow these links
  if you wish, but use your Back Button to return here!

    ([defun] app (x y)
      ([cond] (([endp] x) y)
            (t ([cons] ([car] x)
                     (app ([cdr] x) y)))))

  By following the link on [endp] [{ICON}] we see that it is a Common
  Lisp function and is defined to be the same as [atom] [{ICON}],
  which recognizes non-conses. But endp has a guard. Since we are
  ignorning guards for now, we'll ignore the guard issue on endp.

  So this definition reads ``to app x and y: if x is an atom, return y;
  otherwise, app (cdr x) and y and then cons (car x) onto that.''

  [{IMAGE}]")
 (HOW_TO_FIND_OUT_ABOUT_ACL2_FUNCTIONS_{CONT}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "How To Find Out about ACL2 Functions (cont)

  [{IMAGE}]

  You can always use the Index [{ICON}] icon below to find the
  documentation of functions. Try it. Click on the Index icon below.
  Then use the Find command of your browser to find ``endp'' in that
  document and follow the link. But remember to come back here.

  The ACL2 documentation is also available in Emacs, via the ACL2-Doc
  browser (see [ACL2-Doc]) [{ICON}], allowing you to explore the
  hyperlinked documentation in the comfort of a text editor that can
  also interact with ACL2.

  In addition, runtime images of ACL2 have the hyperlinked text as a
  large ACL2 data structure that can be explored with ACL2's :doc
  command. If you have ACL2 running, try the command :doc endp.

  Another way to find out about ACL2 functions, if you have an ACL2
  image available, is to use the command :[args] [{ICON}] which
  prints the formals, type, and guard of a function symbol.

  Of course, the ACL2 documentation can also be printed out as a very
  long book but we do not recommend that! See the ACL2 Home Page to
  download the Postscript.

  Now let's continue with app.

  [{IMAGE}]")
 (I-AM-HERE
  (LD)
  "A convenient marker for use with [rebuild] or [ld]

    Example Input File for Rebuild:
    (defun fn1 (x y) ...)
    (defthm lemma1 ...)
    (defthm lemma2 ...)
    (i-am-here)
    The following lemma won't go through.  I started
    typing the hint but realized I need to prove a
    lemma first.  See the failed proof attempt in foo.bar.
    I'm going to quit for the night now and resume tomorrow
    from home.

    (defthm lemma3 ...
      :hints ((\"Goal\" :use (:instance ???
    ...

  By putting an (i-am-here) form at the ``frontier'' of an evolving
  file of [command]s, you can use [rebuild] to load the file up to
  the (i-am-here). I-am-here simply returns an [error-triple] that
  indicates an error, and any form that ``causes an error'' will do
  the same job. Note that the text of the file after the (i-am-here)
  need not be machine readable.")
 (I-CLOSE
  (REAL)
  "ACL2(r) test for whether two numbers are infinitesimally close

  (I-close x y) is true if and only if x-y is an infinitesimal number.
  This predicate is only defined in ACL2(r) (see [real]).")
 (I-LARGE
  (REAL)
  "ACL2(r) recognizer for infinitely large numbers

  (I-large x) is true if and only if x is non-zero and 1/x is an
  infinitesimal number. This predicate is only defined in ACL2(r)
  (see [real]).")
 (I-LIMITED
  (REAL)
  "ACL2(r) recognizer for limited numbers

  (I-limited x) is true if and only if x is a number that is not
  infinitely large. This predicate is only defined in ACL2(r) (see
  [real]).")
 (I-SMALL
  (REAL)
  "ACL2(r) recognizer for infinitesimal numbers

  (I-small x) is true if and only if x is an infinitesimal number
  (possibly 0). This predicate is only defined in ACL2(r) (see
  [real]).")
 (IDENTITY
  (BASICS ACL2-BUILT-INS)
  "The identity function

  (Identity x) equals x; what else can we say?

  Identity is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <identity>

    (defun identity (x)
           (declare (xargs :guard t))
           x)")
 (IF
  (BASICS ACL2-BUILT-INS)
  "If-then-else function

  (if x y z) is equal to y if x is any value other than nil, and is
  equal to z if x is nil.

  Only one of y, z is evaluated when (if x y z) is evaluated.

  If has a [guard] of t.

  If is part of Common Lisp. See any Common Lisp documentation for more
  information.")
 (IF*
  (BDD)
  "For conditional rewriting with BDDs

  The function IF* is defined to be [if], but it is used in a special
  way by ACL2's [bdd] package.

  Function: <if*>

    (defun if* (x y z) (if x y z))

  As explained elsewhere (see [bdd-algorithm]), ACL2's [bdd] algorithm
  gives special treatment to [term]s of the form (IF* TEST TBR FBR).
  In such cases, the algorithm simplifies TEST first, and the result
  of that simplification must be a constant (normally t or nil, but
  any non-nil explicit value is treated like t here). Otherwise, the
  algorithm aborts.

  Thus, IF* may be used to implement a sort of conditional rewriting
  for ACL2's [bdd] package, even though this package only nominally
  supports unconditional rewriting. The following contrived example
  should make this point clear.

  Suppose that we want to prove that (nthcdr (length x) (append x y))
  is equal to y, but that we would be happy to prove this only for
  lists having length 4. We can state such a theorem as follows.

    (let ((x (list x0 x1 x2 x3)))
      (equal (nthcdr (length x) (append x y))
             y))

  If we want to prove this formula with a :[bdd] hint, then we need to
  have appropriate rewrite rules around. First, note that LENGTH is
  defined as follows (try :[pe] [length]):

    (length x)
     =
    (if (stringp x)
        (len (coerce x 'list))
        (len x))

  Since [bdd]-based rewriting is merely very simple unconditional
  rewriting (see [bdd-algorithm]), we expect to have to prove a rule
  reducing [stringp] of a [cons]:

    (defthm stringp-cons
      (equal (stringp (cons x y))
             nil))

  Now we need a rule to compute the LEN of X, because the definition of
  LEN is recursive and hence not used by the [bdd] package.

    (defthm len-cons
      (equal (len (cons a x))
             (1+ (len x))))

  We imagine this rule simplifying (LEN (LIST X0 X1 X2 X3)) in terms of
  (LEN (LIST X1 X2 X3)), and so on, and then finally (LEN nil) should
  be computed by execution (see [bdd-algorithm]).

  We also need to imagine simplifying (APPEND X Y), where still X is
  bound to (LIST X0 X1 X2 X3). The following two rules suffice for
  this purpose (but are needed, since [append], actually
  [binary-append], is recursive).

    (defthm append-cons
      (equal (append (cons a x) y)
             (cons a (append x y))))

    (defthm append-nil
      (equal (append nil x)
             x))

  Finally, we imagine needing to simplify calls of [nthcdr], where the
  first argument is a number (initially, the length of (LIST X0 X1 X2
  X3), which is 4). The second lemma below is the traditional way to
  accomplish that goal (when not using BDDs), by proving a
  conditional rewrite rule. (The first lemma is only proved in order
  to assist in the proof of the second lemma.)

    (defthm fold-constants-in-+
      (implies (and (syntaxp (quotep x))
                    (syntaxp (quotep y)))
               (equal (+ x y z)
                      (+ (+ x y) z))))

    (defthm nthcdr-add1-conditional
      (implies (not (zp (1+ n)))
               (equal (nthcdr (1+ n) x)
                      (nthcdr n (cdr x)))))

  The problem with this rule is that its hypothesis makes it a
  conditional [rewrite] rule, and conditional rewrite rules are not
  used by the [bdd] package. (See [bdd-algorithm] for a discussion of
  ``BDD rules.'') (Note that the hypothesis cannot simply be removed;
  the resulting formula would be false for n = -1 and x = '(a), for
  example.) We can solve this problem by using IF*, as follows;
  comments follow.

    (defthm nthcdr-add1
      (equal (nthcdr (+ 1 n) x)
             (if* (zp (1+ n))
                  x
                  (nthcdr n (cdr x)))))

  How is nthcdr-add1 applied by the [bdd] package? Suppose that the
  [bdd] computation encounters a [term] of the form (NTHCDR (+ 1 N)
  X). Then the [bdd] package will apply the [rewrite] rule
  nthcdr-add1. The first thing it will do when attempting to simplify
  the right hand side of that rule is to attempt to simplify the term
  (ZP (1+ N)). If N is an explicit number (which is the case in the
  scenario we envision), this test will reduce (assuming the
  executable counterparts of [zp] and [binary-+] are [enable]d) to t
  or to nil. In fact, the lemmas above (not including the lemma
  nthcdr-add1-conditional) suffice to prove our goal:

    (thm (let ((x (list x0 x1 x2 x3)))
           (equal (nthcdr (length x) (append x y))
                  y))
         :hints ((\"Goal\" :bdd (:vars nil))))

  If we execute the following form that disables the definition and
  executable counterpart of the function [zp]

    (in-theory (disable zp (zp)))

  before attempting the proof of the theorem above, we can see more
  clearly the point of using IF*. In this case, the prover makes the
  following report.

    ACL2 Error in ( THM ...):  Unable to resolve test of IF* for term

    (IF* (ZP (+ 1 N)) X (NTHCDR N (CDR X)))

    under the bindings

    ((X (CONS X0 (CONS X1 (CONS X2 #)))) (N '3))

    -- use SHOW-BDD to see a backtrace.

  If we follow the advice above, we can see rather clearly what
  happened. See [show-bdd].

    ACL2 !>(show-bdd)

    BDD computation on Goal yielded 21 nodes.
    ------------------------------

    BDD computation was aborted on Goal, and hence there is no
    falsifying assignment that can be constructed.  Here is a backtrace
    of calls, starting with the top-level call and ending with the one
    that led to the abort.  See :DOC show-bdd.

    (LET ((X (LIST X0 X1 X2 X3)))
         (EQUAL (NTHCDR (LENGTH X) (APPEND X Y)) Y))
      alist: ((Y Y) (X3 X3) (X2 X2) (X1 X1) (X0 X0))

    (NTHCDR (LENGTH X) (APPEND X Y))
      alist: ((X (LIST X0 X1 X2 X3)) (Y Y))

    (IF* (ZP (+ 1 N)) X (NTHCDR N (CDR X)))
      alist: ((X (LIST* X0 X1 X2 X3 Y)) (N 3))
    ACL2 !>

  Each of these term-alist pairs led to the next, and the test of the
  last one, namely (ZP (+ 1 N)) where N is bound to 3, was not
  simplified to t or to nil.

  What would have happened if we had used [if] in place of IF* in the
  rule nthcdr-add1? In that case, if ZP and its executable
  counterpart were disabled then we would be put into an infinite
  loop! For, each time a term of the form (NTHCDR k V) is encountered
  by the BDD package (where k is an explicit number), it will be
  rewritten in terms of (NTHCDR k-1 (CDR V)). We would prefer that if
  for some reason the term (ZP (+ 1 N)) cannot be decided to be t or
  to be nil, then the BDD computation should simply abort.

  Even if there were no infinite loop, this kind of use of IF* is
  useful in order to provide feedback of the form shown above
  whenever the test of an IF term fails to simplify to t or to nil.")
 (IF-INTRO (POINTERS) "See [splitter].")
 (IFF
  (BASICS ACL2-BUILT-INS)
  "Logical ``if and only if''

  Iff is the ACL2 biconditional, ``if and only if''. (iff P Q) means
  that either P and Q are both false (i.e., nil) or both true (i.e.,
  not nil).

  Function: <iff>

    (defun iff (p q)
           (declare (xargs :guard t))
           (if p (if q t nil) (if q nil t)))")
 (IFIX
  (NUMBERS ACL2-BUILT-INS)
  "Coerce to an integer

  Ifix simply returns any integer argument unchanged, returning 0 on a
  non-integer argument. Also see [nfix], see [rfix], see [realfix]
  and see [fix] for analogous functions that coerce to a natural
  number, a rational number, a real, and a number, respectively.

  Ifix has a [guard] of t.

  Function: <ifix>

    (defun ifix (x)
           (declare (xargs :guard t))
           (if (integerp x) x 0))")
 (IGNORABLE (POINTERS) "See [declare].")
 (IGNORE (POINTERS) "See [declare].")
 (IGNORED-ATTACHMENT
  (DEFATTACH)
  "Why attachments are sometimes not used

  Attachments provide a way to execute constrained functions. But in
  some cases, ACL2 will not permit such execution. We discuss this
  issue briefly here. For more information about attachments, see
  [defattach].

  We illustrate this issue with the following example, discussed below.

    (encapsulate
     ()
     (defstub foo () t)
     (defn foo-impl-1 () t)
     (defattach foo foo-impl-1)
     (defn foo-impl-2 () nil)
     (local (defattach foo foo-impl-2))
     (defmacro mac () (foo)) ; nil in the first pass, t in the second pass
     (defun bar () (mac))    ; nil in the first pass, t in the second pass
     (defthm bar-is-nil
       (equal (bar) nil))
     )

  Here, a non-executable function foo is introduced with no
  constraints, and is provided two contradictory implementations,
  foo-impl-1 and foo-impl-2. A function, bar, is defined using a
  macro, mac, whose expansion depends on which of foo-impl-1 or
  foo-impl-2 is attached to foo. If ACL2 were to allow this, then as
  indicated by the comments above, (bar) would be defined to be nil
  on the first pass of the [encapsulate] form, where foo is attached
  to foo-impl-2; but (bar) would be defined to be t on the second
  pass, where foo is attached to foo-impl-1 because the second
  [defattach] call is [local]. Thus, after execution of the
  encapsulate form, (bar) would be provably equal to t even though
  there would be a theorem, bar-is-nil --- proved during the first
  pass of the encapsulate --- saying that (bar) is nil!

  Fortunately, ACL2 does not permit this to happen. The example above
  produces the following output.

    ACL2 !>>(DEFUN BAR NIL (MAC))

    ACL2 Error in ( DEFUN BAR ...):  In the attempt to macroexpand the
    form (MAC), evaluation of the macro body caused the following error:

    ACL2 cannot ev the call of undefined function FOO on argument list:

    NIL

    Note that because of logical considerations, attachments (including
    FOO-IMPL-2) must not be called in this context.

  We see, then, the importance of disallowing evaluation using
  attachments during macroexpansion. ACL2 is careful to avoid
  attachments in situations, like this one, where using attachments
  could be unsound.

  We conclude with an example illustrating how [make-event] can be used
  to work around the refusal of ACL2 to use attachments during
  macroexpansion. The idea is that [make-event] expansions are
  stored, and this avoids the issue of [local] attachments. In
  particular, for the example below, the second [defattach] affects
  the body of f2 even though that [defattach] is [local], because the
  expansion of the corresponding [make-event] is saved during the
  first pass of [certify-book], when full admissibility checks are
  done. Then even after including the book, the definition of f2 will
  be based on the second ([local]) [defattach] form below.

    (in-package \"ACL2\")

    (defun body-1 (name formals body)
      (declare (ignore name))
      `(if (consp ,(car formals))
           ,body
         nil))

    (defun body-2 (name formals body)
      (declare (ignore name))
      `(if (acl2-numberp ,(car formals))
           ,body
         t))

    (defmacro defun+ (name formals body)
      `(make-event
        (if (foo) ; attachable stub
            '(defun ,name ,formals ,(body-1 name formals body))
          '(defun ,name ,formals ,(body-2 name formals body)))))

    ;;; (defun+ f1 (x y) (cons x y)) ; fails because foo has no attachment

    (defstub foo () t)
    (defn foo-true () t)
    (defn foo-false () nil)

    (defattach foo foo-true)

    (defun+ f1 (x y) (cons x y))

    (local (defattach foo foo-false))

    (defun+ f2 (x y) (cons x y))

    (assert-event (equal (f1 3 t) nil))

    (assert-event (equal (f2 3 t) (cons 3 t)))")
 (ILLEGAL
  (ERRORS ACL2-BUILT-INS)
  "Print an error message and stop execution

  (Illegal ctx str alist) causes evaluation to halt with a short
  message using the ``context'' ctx. An error message is first
  printed using the string str and alist alist that are of the same
  kind as expected by [fmt]. See [fmt], and see [prog2$] for an
  example of how to use a related function, [hard-error] (see
  [hard-error]). Also see [er] for a macro that provides a unified
  way of signaling errors.

  The difference between illegal and [hard-error] is that the former
  has a guard of nil while the latter has a [guard] of t. Thus, you
  may want to use illegal rather than hard-error when you intend to
  do [guard] verification at some point, and you expect the guard to
  guarantee that the illegal call is never executed. See [prog2$] for
  an example.

  Technical note for raw Lisp programmers only: It is possible to cause
  hard errors to signal actual raw Lisp errors. See [hard-error].

  Function: <illegal>

    (defun illegal (ctx str alist)
           (declare (xargs :guard (hard-error ctx str alist)))
           (hard-error ctx str alist))")
 (IMAGPART
  (NUMBERS ACL2-BUILT-INS)
  "Imaginary part of a complex number

  Completion Axiom (completion-of-imagpart):

    (equal (imagpart x)
           (if (acl2-numberp x)
               (imagpart x)
             0))

  [Guard] for (imagpart x):

    (acl2-numberp x)")
 (IMMED-FORCED (POINTERS)
               "See [splitter].")
 (IMMEDIATE-FORCE-MODEP
  (FORCE)
  "When executable counterpart is [enable]d, [force]d hypotheses are
  attacked immediately

  Also see [disable-immediate-force-modep] and see
  [enable-immediate-force-modep].

  This function symbol is defined simply to provide a [rune] which can
  be [enable]d and [disable]d. Enabling

    (:executable-counterpart immediate-force-modep)

  causes ACL2 to attack [force]d hypotheses immediately instead of
  delaying them to the next forcing round.

    Example Hints
    :in-theory (disable (:executable-counterpart immediate-force-modep))
               ; delay forced hyps to forcing round
    :in-theory (enable (:executable-counterpart immediate-force-modep))
               ; split on forced hyps immediately

  See [force] for background information. When a [force]d hypothesis
  cannot be established a record is made of that fact and the proof
  continues. When the proof succeeds a ``forcing round'' is
  undertaken in which the system attempts to prove each of the
  [force]d hypotheses explicitly. However, if the [rune]
  (:executable-counterpart immediate-force-modep) is [enable]d at the
  time the hypothesis is [force]d, then ACL2 does not delay the
  attempt to prove that hypothesis but undertakes the attempt more or
  less immediately.")
 (IMPLIES
  (BASICS ACL2-BUILT-INS)
  "Logical implication

  Implies is the ACL2 implication function. (implies P Q) means that
  either P is false (i.e., nil) or Q is true (i.e., not nil).

  Function: <implies>

    (defun implies (p q)
           (declare (xargs :guard t))
           (if p (if q t nil) t))")
 (IMPROPER-CONSP
  (LISTS ACL2-BUILT-INS)
  "Recognizer for improper (non-null-terminated) non-empty lists

  Improper-consp is the function that checks whether its argument is a
  non-empty list that ends in other than nil. See [proper-consp] and
  also see [true-listp].

  Function: <improper-consp>

    (defun improper-consp (x)
           (declare (xargs :guard t))
           (and (consp x) (not (true-listp x))))")
 (IN-ARITHMETIC-THEORY
  (EVENTS)
  "Designate theory for some rewriting done for non-linear arithmetic

  We assume familiarity with [theories]; in particular, see [in-theory]
  for the normal way to set the current theory. Here, we discuss an
  analogous event that pertains only to non-linear arithmetic (see
  [non-linear-arithmetic]).

    Example:
    (in-arithmetic-theory '(lemma1 lemma2))

    General Form:
    (in-arithmetic-theory term)

  where term is a term that when evaluated will produce a theory (see
  [theories]). Except for the variable [world], term must contain no
  free variables. Term is evaluated with the variable [world] bound
  to the current [world] to obtain a theory and the corresponding
  runic theory (see [theories]) is then used by non-linear arithmetic
  (see [non-linear-arithmetic]).

  Warning: If term involves macros such as [enable] and [disable] you
  will probably not get what you expect! Those macros are defined
  relative to the [current-theory]. But in this context you might
  wish they were defined in terms of the
  ``CURRENT-ARITHMETIC-THEORY'' which is not actually a defined
  function. We do not anticipate that users will repeatedly modify
  the arithmetic theory. We expect term most often to be a constant
  list of runes and so have not provided ``arithmetic theory
  manipulation functions'' analogous to [current-theory] and
  [enable].

  See [non-linear-arithmetic].")
 (IN-PACKAGE
  (PACKAGES ACL2-BUILT-INS)
  "Select current package

    Example:
    (in-package \"MY-PKG\")

    General Form:
    (in-package str)

  where str is a string that names an existing ACL2 package, i.e., one
  of the initial packages such as \"KEYWORD\" or \"ACL2\" or a package
  introduced with [defpkg]. For a complete list of the known packages
  created with [defpkg], evaluate

    (strip-cars (known-package-alist state)).

  See [defpkg]. An ACL2 book (see [books]) must contain a single
  in-package form, which must be the first form in that book.")
 (IN-TAU-INTERVALP
  (TAU-SYSTEM ACL2-BUILT-INS)
  "Boolean membership in a tau interval

    General Form:
    (in-tau-intervalp e x)

  Here, x should be an interval (see [tau-intervalp]). This function
  returns t or nil indicating whether e, which is generally but not
  necessarily a number, is an element of interval x. By that is meant
  that e satisfies the domain predicate of the interval and lies
  between the two bounds.

  Suppose x is an interval with the components dom, lo-rel, lo, hi-rel
  and hi. Suppose (<? rel u v) means (< u v) when rel is true and (<=
  u v) otherwise, with appropriate treatment of infinities.

  Then for e to be in interval x, it must be the case that e satisfies
  the domain predicate dom (where where dom=nil means there is no
  restriction on the domain) and (<? lo-rel lo e) and (<? hi-rel e
  hi). [Note: ``Appropriate treatment of infinities'' is slightly
  awkward if both infinities are represented by the same object, nil.
  However, this is handled by coercing e to a number after checking
  that it is in the domain. By this trick, ``<?'' is presented with
  at most one ``infinity'' and it is always negative when in the
  first argument and positive when in the second.]

  Note that every element in an INTEGERP interval is contained in the
  analogous RATIONALP interval (i.e., the interval obtained by just
  replacing the domain INTEGERP by RATIONALP). That is because every
  integer is a rational. Similarly, every rational is an ACL2 number.

  Note that an interval in which the relations are weak and the bounds
  are equal rationals is the ``unit'' or ``identity'' interval
  containing exactly that rational.

  Note that an interval in which the relations are strong and the
  bounds are equal rationals is empty: it contains no objects.

  Note that the interval (make-tau-interval nil nil nil nil nil) is the
  ``universal interval:'' it contains all ACL2 objects. It contains
  all numbers because they statisfy the non-existent domain
  restriction and lie between minus infinity and plus infinity. It
  contains all non-numbers because the interval contains 0 and ACL2's
  inequalities coerce non-numbers to 0. The universal interval is
  useful if you are defining a bounder (see [bounders]) for a
  function and do not wish to address a certain case: return the
  universal interval.

  Recall that [make-tau-interval] constructs intervals. Using
  make-tau-interval we give several self-explanatory examples of
  in-tau-intervalp:

    (in-tau-intervalp 3 (make-tau-interval 'INTEGERP nil 0 nil 10))           = t
    (in-tau-intervalp 3 (make-tau-interval 'RATIONALP nil 0 nil 10))          = t
    (in-tau-intervalp 3 (make-tau-interval NIL nil 0 nil 10))                 = t

    (in-tau-intervalp -3 (make-tau-interval 'INTEGERP nil 0 nil 10))          = nil
    (in-tau-intervalp 30 (make-tau-interval 'INTEGERP nil 0 nil 10))          = nil

    (in-tau-intervalp 3/5 (make-tau-interval 'INTEGERP nil 0 nil 10))         = nil
    (in-tau-intervalp 3/5 (make-tau-interval 'RATIONALP nil 0 nil 10))        = t

    (in-tau-intervalp #c(3 5) (make-tau-interval 'RATIONALP nil 0 nil 10))    = nil
    (in-tau-intervalp #c(3 5) (make-tau-interval 'ACL2-NUMBERP nil 0 nil 10)) = t

    (in-tau-intervalp 'ABC (make-tau-interval NIL nil 0 nil 10))              = t")
 (IN-THEORY
  (EVENTS THEORIES)
  "Designate ``current'' theory (enabling its rules)

    Example:
    (in-theory (set-difference-theories
                 (universal-theory :here)
                 '(flatten (:executable-counterpart flatten))))

    General Form:
    (in-theory term)

  where term is a term that when evaluated will produce a theory (see
  [theories]).

  Except for the variable [world], term must contain no free variables.
  Term is evaluated with the variable [world] bound to the current
  [world] to obtain a theory and the corresponding runic theory (see
  [theories]) is then made the current theory. Thus, immediately
  after the in-theory, a rule is [enable]d iff its rule name is a
  member of the runic interpretation (see [theories]) of some member
  of the value of term. See [theory-functions] for a list of the
  commonly used theory manipulation functions.

  Note that it is often useful to surround in-theory [events] with
  local, that is, to use (local (in-theory ...)). This use of [local]
  in [encapsulate] events and [books] will prevent the effect of this
  theory change from being exported outside the context of that
  encapsulate or book.

  Also see [hints] for a discussion of the :in-theory hint, including
  some explanation of the important point that an :in-theory hint
  will always be evaluated relative to the current ACL2 logical
  [world], not relative to the theory of a previous goal.

  [In-theory] returns an [error-triple]. When the return is without
  error, the value is of the form (mv nil (:NUMBER-OF-ENABLED-RUNES
  k) state) where k is the length of the new current theory. This
  value of k is what is printed when an in-theory event evaluates
  without error at the top level.")
 (INCLUDE-BOOK
  (BOOKS-REFERENCE BOOKS-TOUR EVENTS)
  "Load the [events] in a file

    Examples:
    (include-book \"my-arith\")
    (include-book \"/home/smith/my-arith\")
    (include-book \"/../../my-arith\")

    General Form:
    (include-book file :load-compiled-file action
                       :uncertified-okp t/nil/:ignore-certs  ; [default t]
                       :defaxioms-okp t/nil                  ; [default t]
                       :skip-proofs-okp t/nil                ; [default t]
                       :ttags ttags                          ; [default nil]
                       :dir directory)

  where file is a book name. See [books] for general information, see
  [book-name] for information about book names, and see [pathname]
  for information about file names. Action is one of t, nil,
  :default, :warn, or :comp; these values are explained below, and
  the default is :default. The three -okp keyword arguments, which
  default to t, determine whether errors or warnings are generated
  under certain conditions explained below; when the argument is t,
  warnings are generated. The dir argument, if supplied, is a keyword
  that represents an absolute pathname for a directory (see
  [pathname]), to be used instead of the current book directory (see
  [cbd]) for resolving the given file argument to an absolute
  pathname. In particular, by default :dir :system resolves file
  using the books/ directory of your ACL2 installation, unless your
  ACL2 executable was built somewhere other than where it currently
  resides; please see the ``Books Directory'' below. To define other
  keywords that can be used for dir, see [add-include-book-dir]. If
  the book has no [certificate], if its [certificate] is invalid or
  if the certificate was produced by a different [version] of ACL2, a
  warning is printed and the book is included anyway; see
  [certificate]. This can lead to serious errors, perhaps mitigated
  by the presence of a .port file from an earlier certification; see
  [uncertified-books]. If the portcullis of the [certificate] (see
  [portcullis]) cannot be raised in the host logical [world], an
  error is caused and no change occurs to the logic. Otherwise, the
  non-[local] [events] in file are assumed. Then the [keep] of the
  [certificate] is checked to ensure that the correct files were
  read; see [keep]. A warning is printed if uncertified [books] were
  included. Even if no warning is printed, include-book places a
  burden on you; see [certificate].

  If you use [guard]s, please note include-book is executed as though
  (set-guard-checking nil) has been evaluated; see
  [set-guard-checking]. If you want guards checked, please see [ld]
  and/or see [rebuild].

  The value of :load-compiled-file controls whether a compiled file for
  the given file is loaded by include-book. Note that this keyword
  applies only to the given file, not to any included sub-books. In
  order to skip loading all compiled files, for the given file as
  well as all included sub-books --- for example, to avoid Lisp
  errors such as ``Wrong FASL version'' --- use (set-compiler-enabled
  nil state); see [compilation]. Otherwise, if keyword argument
  :load-compiled-file is missing or its value is the keyword
  :default, then it is treated as :warn. If its value is nil, no
  attempt is made to load the compiled file for the book provided. In
  order to load the compiled file, it must be more recent than the
  book's [certificate] (except in raw mode, where it must be more
  recent than the book itself; see [set-raw-mode]). For non-nil
  values of :load-compiled-file that do not result in a loaded
  compiled file, ACL2 proceeds as follows. Note that a load of a
  compiled file or expansion file aborts partway through whenever an
  [include-book] form is encountered for which no suitable compiled
  or expansion file can be loaded. For much more detail, see
  [book-compiled-file].

      t: Cause an error if the compiled file is not loaded. This same
      requirement is imposed on every [include-book] form evaluated
      during the course of evaluation of the present include-book
      form, except that for those subsidiary include-books that do
      not themselves specify :load-compiled-file t, it suffices to
      load the expansion file (see [book-compiled-file]).

      :warn: An attempt is made to load the compiled file, and a warning is
      printed if that load fails to run to completion.

      :comp: A compiled file is loaded as with value t, except that if a
      suitable ``expansion file'' exists but the compiled file does
      not, then the compiled file is first created. See
      [book-compiled-file].

  The three -okp arguments, :uncertified-okp, defaxioms-okp, and
  skip-proofs-okp, determine the system's behavior when the book or
  any sub-book is found to be uncertified, when the book or any
  sub-book is found to contain [defaxiom] events, and when the book
  or any sub-book is found to contain [skip-proofs] events,
  respectively. All three default to t, which means it is ``ok'' for
  the condition to arise. In this case, a warning is printed but the
  processing to load the book is allowed to proceed. When one of
  these arguments is nil and the corresponding condition arises, an
  error is signaled and processing is aborted. Exceptions:
  :uncertified-okp t is ignored if the include-book is being
  performed on behalf of a [certify-book], and :uncertified-okp
  :ignore-certs is an advanced option explained later in this topic.

  The keyword argument :ttags may normally be omitted. A few
  constructs, used for example if you are building your own system
  based on ACL2, may require it. See [defttag] for an explanation of
  this argument.

  Include-book is similar in spirit to [encapsulate] in that it is a
  single event that ``contains'' other [events], in this case the
  [events] listed in the file named. Include-book processes the
  non-[local] event forms in the file, assuming that each is
  admissible. [Local] [events] in the file are ignored. You may use
  include-book to load several [books], creating the logical [world]
  that contains the definitions and theorems of all of them.

  If any non-[local] event of the book attempts to define a [name] that
  has already been defined --- and the book's definition is not
  syntactically identical to the existing definition --- the attempt
  to include the book fails, an error message is printed, and no
  change to the logical [world] occurs. See [redundant-events] for
  the details.

  When a book is included, the default [defun-mode] (see
  [default-defun-mode]) for the first event is always :[logic]. That
  is, the default [defun-mode] ``outside'' the book --- in the
  environment in which include-book was called --- is irrelevant to
  the book. [Events] that change the [defun-mode] are permitted
  within a book (provided they are not in [local] forms). However,
  such changes within a book are not exported, i.e., at the
  conclusion of an include-book, the ``outside'' default [defun-mode]
  is always the same as it was before the include-book.

  Unlike every other event in ACL2, include-book puts a burden on you.
  Used improperly, include-book can be unsound in the sense that it
  can create an inconsistent extension of a consistent logical
  [world]. A certification mechanism is available to help you carry
  this burden --- but it must be understood up front that even
  certification is no guarantee against inconsistency here. The
  fundamental problem is one of file system security. See
  [certificate] for a discussion of the security issues.

  At the beginning of execution of an include-book form, even before
  executing [portcullis] [command]s, the value of
  [ACL2-defaults-table] is restored to the value it had at startup.
  After execution of an include-book form, the value of
  [ACL2-defaults-table] is restored to what it was immediately before
  that include-book form was executed. See [ACL2-defaults-table].

  An advanced option is :uncertified-okp :ignore-certs. This tells ACL2
  to ignore all [certificate] files while including the book and its
  sub-books, thus treating all these books as uncertified. This
  option may be useful when writing a .acl2x file for the first
  ``run'' of a ``two-runs approach'' to certification; see
  [set-write-ACL2x]. Note however that ordinary certification (the
  second ``run'') will then fail unless care is taken to avoid
  :uncertified-okp :ignore-certs during that second certification
  run. Finally (and speaking in general, not particularly about a
  [certify-book] context), we emphasize that the option
  :uncertified-okp :ignore-certs applies when including all
  sub-books, not only for the current book. In particular, a
  subsidiary include-book call specifying :uncertified-okp nil will
  fail, because the superior :ignore-certs value causes the
  subsidiary book to be treated as uncertified, which conflicts with
  the requirement of :uncertified-okp nil.

  Books Directory. We refer to the ``books directory'' of an executable
  image as the full pathname string of the directory associated with
  include-book keyword option :dir :system for that image. By
  default, it is the books/ subdirectory of the directory where the
  sources reside and the executable image is thus built (except for
  ACL2(r) --- see [real] ---, where it is books/nonstd/). If those
  books reside elsewhere, the environment variable ACL2_SYSTEM_BOOKS
  can be set to the books/ directory under which they reside (a
  Unix-style pathname, typically ending in books/ or books, is
  permissible). In most cases, your ACL2 executable is a small script
  in which you can set this environment variable just above the line
  on which the actual ACL2 image is invoked, for example:

    export ACL2_SYSTEM_BOOKS
    ACL2_SYSTEM_BOOKS=/home/acl2/4-0/acl2-sources/books

  If you follow suggestions in the installation instructions, these
  books will be the ACL2 community books; see [community-books].

  This concludes the guided tour through [books]. See [set-compile-fns]
  for a subtle point about the interaction between include-book and
  on-the-fly [compilation]. See [certify-book] for a discussion of
  how to certify a book.")
 (INCOMPATIBLE
  (THEORIES)
  "Declaring that two rules should not both be [enable]d

    Example:
    (theory-invariant (incompatible (:rewrite left-to-right)
                                    (:rewrite right-to-left)))

    General Form:
    (incompatible rune1 rune2)

  where rune1 and rune2 are two specific [rune]s. The arguments are not
  evaluated. Invariant is just a macro that expands into a term that
  checks that not both [rune]s are enabled. See [theory-invariant].")
 (INDUCT (POINTERS)
         "See [hints] for keyword :induct.")
 (INDUCTION
  (RULE-CLASSES)
  "Make a rule that suggests a certain induction

    Example:
    (defthm recursion-by-sub2-induction-rule
      t
      :rule-classes ((:induction :pattern (* 1/2 i)
                                 :condition (and (integerp i) (>= i 0))
                                 :scheme (recursion-by-sub2 i))))

  In ACL2, as in Nqthm, the functions in a conjecture ``suggest'' the
  inductions considered by the system. Because every recursive
  function must be admitted with a justification in terms of a
  measure that decreases in a well-founded way on a given set of
  ``controlling'' arguments, every recursive function suggests a dual
  induction scheme that ``unwinds'' the function from a given
  application.

  For example, since [append] (actually [binary-append], but we'll
  ignore the distinction here) decomposes its first argument by
  successive [cdr]s as long as it is a non-nil true list, the
  induction scheme suggested by (append x y) has a base case
  supposing x to be either not a true list or to be nil and then has
  an induction step in which the induction hypothesis is obtained by
  replacing x by (cdr x). This substitution decreases the same
  measure used to justify the definition of [append]. Observe that an
  induction scheme is suggested by a recursive function application
  only if the controlling actuals are distinct variables, a condition
  that is sufficient to ensure that the ``substitution'' used to
  create the induction hypothesis is indeed a substitution and that
  it drives down a certain measure. In particular, (append (foo x) y)
  does not suggest an induction unwinding [append] because the
  induction scheme suggested by (append x y) requires that we
  substitute (cdr x) for x and we cannot do that if x is not a
  variable symbol.

  Once ACL2 has collected together all the suggested induction schemes
  it massages them in various ways, combining some to simultaneously
  unwind certain cliques of functions and vetoing others because they
  ``flaw'' others. We do not further discuss the induction heuristics
  here; the interested reader should see Chapter XIV of A
  Computational Logic (Boyer and Moore, Academic Press, 1979) which
  represents a fairly complete description of the induction
  heuristics of ACL2.

  However, unlike Nqthm, ACL2 provides a means by which the user can
  elaborate the rules under which function applications suggest
  induction schemes. Such rules are called :induction rules. The
  definitional principle automatically creates an :induction rule,
  named (:induction fn), for each admitted recursive function, fn. It
  is this rule that links applications of fn to the induction scheme
  it suggests. Disabling (:induction fn) will prevent fn from
  suggesting the induction scheme derived from its recursive
  definition. It is possible for the user to create additional
  :induction rules by using the :induction rule class in [defthm].

  Technically we are ``overloading'' [defthm] by using it in the
  creation of :induction rules because no theorem need be proved to
  set up the heuristic link represented by an :induction rule.
  However, since [defthm] is generally used to create rules and
  rule-class objects are generally used to specify the exact form of
  each rule, we maintain that convention and introduce the notion of
  an :induction rule. An :induction rule can be created from any
  lemma whatsoever.

    General Form of an :induction Lemma or Corollary:
    T

    General Form of an :induction rule-class:
    (:induction :pattern pat-term
                :condition cond-term
                :scheme scheme-term)

  where pat-term, cond-term, and scheme-term are all terms, pat-term is
  the application of a function symbol, fn, scheme-term is the
  application of a function symbol, rec-fn, that suggests an
  induction, and, finally, every free variable of cond-term and
  scheme-term is a free variable of pat-term. We actually check that
  rec-fn is either recursively defined --- so that it suggests the
  induction that is intrinsic to its recursion --- or else that
  another :induction rule has been proved linking a call of rec-fn as
  the :pattern to some scheme.

  The induction rule created is used as follows. When an instance of
  the :pattern term occurs in a conjecture to be proved by induction
  and the corresponding instance of the :condition term is known to
  be non-nil (by type reasoning alone), the corresponding instance of
  the :scheme term is created and the rule ``suggests'' the
  induction, if any, suggested by that term. (Analysis of that term
  may further involve induction rules, though the applied rule is
  removed from consideration during that further analysis, in order
  to avoid looping.) If rec-fn is recursive, then the suggestion is
  the one that unwinds that recursion.

  Consider, for example, the example given above,

    (:induction :pattern (* 1/2 i)
                :condition (and (integerp i) (>= i 0))
                :scheme (recursion-by-sub2 i)).

  In this example, we imagine that recursion-by-sub2 is the function:

    (defun recursion-by-sub2 (i)
      (if (and (integerp i)
               (< 1 i))
          (recursion-by-sub2 (- i 2))
          t))

  Observe that this function recursively decomposes its integer
  argument by subtracting 2 from it repeatedly and stops when the
  argument is 1 or less. The value of the function is irrelevant; it
  is its induction scheme that concerns us. The induction scheme
  suggested by (recursion-by-sub2 i) is

    (and (implies (not (and (integerp i) (< 1 i)))   ; base case
                  (:p i))
         (implies (and (and (integerp i) (< 1 i))    ; induction step
                       (:p (- i 2)))
                  (:p i)))

  We can think of the base case as covering two situations. The first
  is when i is not an integer. The second is when the integer i is 0
  or 1. In the base case we must prove (:p i) without further help.
  The induction step deals with those integer i greater than 1, and
  inductively assumes the conjecture for i-2 while proving it for i.
  Let us call this scheme ``induction on i by twos.''

  Suppose the above :induction rule has been added. Then an occurrence
  of, say, (* 1/2 k) in a conjecture to be proved by induction would
  suggest, via this rule, an induction on k by twos, provided k was
  known to be a nonnegative integer. This is because the induction
  rule's :pattern is matched in the conjecture, its :condition is
  satisfied, and the :scheme suggested by the rule is that derived
  from (recursion-by-sub2 k), which is induction on k by twos.
  Similarly, the term (* 1/2 (length l)) would suggest no induction
  via this rule, even though the rule ``fires'' because it creates
  the :scheme (recursion-by-sub2 (length l)) which suggests no
  inductions unwinding recursion-by-sub2 (since the controlling
  argument of recursion-by-sub2 in this :scheme is not a variable
  symbol).

  Continuing this example one step further illustrates the utility of
  :induction rules. We could define the function recursion-by-cddr
  that suggests the induction scheme decomposing its [consp] argument
  two [cdr]s at a time. We could then add the :induction rule linking
  (* 1/2 (length x)) to (recursion-by-cddr x) and arrange for (* 1/2
  (length l)) to suggest induction on l by [cddr].

  Observe that :induction rules require no proofs to be done. Such a
  rule is merely a heuristic link between the :pattern term, which
  may occur in conjectures to be proved by induction, and the :scheme
  term, from which an induction scheme may be derived. Hence, when an
  :induction rule-class is specified in a [defthm] event, the theorem
  proved is irrelevant. The easiest theorem to prove is, of course,
  t. Thus, we suggest that when an :induction rule is to be created,
  the following form be used:

    (defthm name T
      :rule-classes ((:induction :pattern pat-term
                                 :condition cond-term
                                 :scheme scheme-term)))

  The name of the rule created is (:induction name). When that rune is
  disabled the heuristic link between pat-term and scheme-term is
  broken.")
 (INITIALIZE-EVENT-USER
  (PROVER-OUTPUT)
  "User-supplied code to initiate [events]

  This utility is intended for system hackers, not standard ACL2 users.

  See [finalize-event-user] to see how to supply code to be run at the
  end of [events]. We assume familiarity with finalize-event-user;
  here we focus on how to supply code for the beginning as well as
  the end of events.

  As with [finalize-event-user], you attach your own function of
  argument list (ctx qbody state) to initialize-event-user. (See
  [finalize-event-user] for discussion of ctx and body.) The
  attachment should return state and have a trivial guard, requiring
  (implicitly) only that state satisfies state-p unless you use trust
  tags to avoid that requirement. For example:

    (defattach initialize-event-user initialize-event-user-test)

  Why would you want to do this? Presumably you are building a system
  on top of ACL2 and you want to track your own data. For example,
  suppose you want to save the time in some [state] global variable,
  my-time. You could do the following.

    (defun my-init (ctx body state)
      (declare (xargs :stobjs state
                      :guard-hints
                      ((\"Goal\" :in-theory (enable read-run-time))))
               (ignore ctx body))
      (mv-let (seconds state)
              (read-run-time state)
              (f-put-global 'start-time seconds state)))

    (defun my-final (ctx body state)
      (declare (xargs :stobjs state
                      :guard-hints
                      ((\"Goal\" :in-theory (enable read-run-time))))
               (ignore ctx body))
      (mv-let (seconds state)
              (read-run-time state)
              (prog2$ (if (boundp-global 'start-time state)
                          (cw \"Time: ~x0 seconds~%\"
                              (- seconds (fix (@ start-time))))
                        (cw \"BIG SURPRISE!~%\"))
                      (f-put-global 'end-time seconds state))))

    (defattach initialize-event-user my-init)
    (defattach finalize-event-user my-final)

  Here is an abbreviated log, showing the time being printed at the
  end.

    ACL2 !>(thm (equal (append (append x y) x y x y x y x y)
                       (append x y x y x y x y x y)))

    *1 (the initial Goal, a key checkpoint) is pushed for proof by induction.
    ....
    ACL2 Error in ( THM ...):  See :DOC failure.

    ******** FAILED ********
    Time: 869/100 seconds
    ACL2 !>")
 (INLINE (POINTERS)
         "See [defun-inline].")
 (INSTRUCTIONS
  (PROOF-CHECKER)
  "Instructions to the proof checker

  See [proof-checker] for an introduction to the interactive
  ``proof-checker'' goal manager, which supports much more direct
  control of the proof process than is available by direct calls to
  the prover (as are normally made using [defthm] or [thm]). In
  brief, typical use is to evaluate the form (verify SOME-GOAL),
  where SOME-GOAL is a formula (i.e., term) that you would like to
  prove. Various commands (instructions) are available at the
  resulting prompt; see [proof-checker-commands]. When the proof is
  completed, suitable invocation of the exit command will print out a
  form containing an :instructions field that provides the
  instructions that you gave interactively, so that this form can be
  evaluated non-interactively.

  Thus, also see [defthm] for the role of :instructions in place of
  :[hints]. As illustrated by the following example, the value
  associated with :instructions is a list of [proof-checker]
  commands.

    Example:
    (defthm associativity-of-append
            (equal (append (append x y) z)
                   (append x (append y z)))
            :instructions
            (:induct (:dv 1) (:dv 1) :x :up :x (:dv 2) := (:drop 2)
             :top (:dv 2) :x :top :s :bash))

  See [proof-checker-commands] for a list of supported proof-checker
  instructions and links to their documentation.

  Below, we describe a capability for supplying :instructions as
  :[hints].

  The most basic utilities for directing the discharge of a proof
  obligation are :[hints] and (less commonly) :instructions.
  Individual instructions may call the prover with :hints; in that
  sense, prover hints may occur inside instructions. We now describe
  how, on the other hand, instructions may occur inside hints.

  ACL2 supports :instructions as a hints keyword. The following example
  forms the basis for our running example. This example does not
  actually need hints, but imagine that the inductive step --- which
  is \"Subgoal *1/2\" --- was difficult. You could submit that goal to
  [verify], do an interactive proof, submit (exit t) to obtain the
  list of :instructions, and then paste in those instructions. When
  you submit the resulting event, you might see the following. Below
  we'll explain the hint processing.

    ACL2 !>(thm (equal (append (append x y) z)
                       (append x (append y z)))
                :hints ((\"Subgoal *1/2\"
                         :instructions
                         (:promote (:dv 1) (:dv 1) :x :up :x (:dv 2) :=
                          (:drop 2) :top (:dv 2) :x :top :s))))

    Name the formula above *1.

    Perhaps we can prove *1 by induction.  Three induction schemes are
    suggested by this conjecture.  Subsumption reduces that number to two.
    However, one of these is flawed and so we are left with one viable
    candidate.

    We will induct according to a scheme suggested by (BINARY-APPEND X Y).
    This suggestion was produced using the :induction rule BINARY-APPEND.
    If we let (:P X Y Z) denote *1 above then the induction scheme we'll
    use is
    (AND (IMPLIES (AND (NOT (ENDP X)) (:P (CDR X) Y Z))
                  (:P X Y Z))
         (IMPLIES (ENDP X) (:P X Y Z))).
    This induction is justified by the same argument used to admit BINARY-APPEND.
    When applied to the goal at hand the above induction scheme produces
    two nontautological subgoals.

    [Note:  A hint was supplied for our processing of the goal below.
    Thanks!]

    Subgoal *1/2
    (IMPLIES (AND (NOT (ENDP X))
                  (EQUAL (APPEND (APPEND (CDR X) Y) Z)
                         (APPEND (CDR X) Y Z)))
             (EQUAL (APPEND (APPEND X Y) Z)
                    (APPEND X Y Z))).

    But the trusted :CLAUSE-PROCESSOR function PROOF-CHECKER-CL-PROC replaces
    this goal by T.

    Subgoal *1/1
    (IMPLIES (ENDP X)
             (EQUAL (APPEND (APPEND X Y) Z)
                    (APPEND X Y Z))).

    By the simple :definition ENDP we reduce the conjecture to

    Subgoal *1/1'
    (IMPLIES (NOT (CONSP X))
             (EQUAL (APPEND (APPEND X Y) Z)
                    (APPEND X Y Z))).

    But simplification reduces this to T, using the :definition BINARY-APPEND
    and primitive type reasoning.

    That completes the proof of *1.

    Q.E.D.

    Summary
    Form:  ( THM ...)
    Rules: ((:DEFINITION BINARY-APPEND)
            (:DEFINITION ENDP)
            (:DEFINITION NOT)
            (:FAKE-RUNE-FOR-TYPE-SET NIL)
            (:INDUCTION BINARY-APPEND))
    Time:  0.02 seconds (prove: 0.01, print: 0.01, other: 0.00)

    Proof succeeded.
    ACL2 !>

  To understand how the :instructions supplied above were processed,
  observe proof-checker instruction interpreter may be viewed as a
  ``clause-processor'': a function that takes an input goal and
  returns a list of goals (which can be the empty list). Such a
  function has the property that if all goals in that returned list
  are theorems, then so is the input goal. This view of the
  proof-checker instruction interpreter as a clause-processor leads
  to the following crucial observation.

  IMPORTANT!. Each call of the proof-checker instruction interpreter is
  treated as a standalone clause-processor that is insensitive to the
  surrounding prover environment. In particular:

    * The proof-checker's theory is not sensitive to :in-theory [hints]
      already processed in the surrounding proof. Indeed, the current
      theory for which proof-checker commands are processed is just
      the current theory of the ACL2 logical [world], i.e., the value
      of (current-theory :here). Moreover, references to
      (current-theory :here) in a proof-checker in-theory command,
      even implicit references such as provided by [enable] and
      [disable] expressions, are also references to the current
      theory of the ACL2 logical [world].
    * The [rune]s used during an :instructions hint are not tracked beyond
      that hint, hence may not show up in the summary of the overall
      proof. Again, think of the :instructions hint as a
      [clause-processor] call, which has some effect not tracked by
      the surrounding proof other than for the child goals that it
      returns.

  We continue now with our discussion of the proof-checker instruction
  interpreter as a clause-processor.

  In the example above, the input goal (\"Subgoal *1/2\") was processed
  by the proof-checker instruction interpreter. The result was the
  empty goal stack, therefore proving the goal, as reported in the
  output, which we repeat here.

    [Note:  A hint was supplied for our processing of the goal below.
    Thanks!]

    Subgoal *1/2
    (IMPLIES (AND (NOT (ENDP X))
                  (EQUAL (APPEND (APPEND (CDR X) Y) Z)
                         (APPEND (CDR X) Y Z)))
             (EQUAL (APPEND (APPEND X Y) Z)
                    (APPEND X Y Z))).

    But the trusted :CLAUSE-PROCESSOR function PROOF-CHECKER-CL-PROC replaces
    this goal by T.

  Remark. This brief remark can probably be ignored, but we include it
  for completeness. The :CLAUSE-PROCESSOR message above may be
  surprising, since the hint attached to \"Subgoal *1/2\" is an
  :instructions hint, not a :clause-processor hint. But :instructions
  is actually a custom keyword hint (see [custom-keyword-hints]), and
  may be thought of as a macro that expands to a :[clause-processor]
  hint, one that specifies proof-checker-cl-proc as the
  clause-processor function. The keen observer may notice that the
  clause-processor is referred to as ``trusted'' in the above output.
  Normally one needs a trust tag (see [defttag]) to install a trusted
  clause-processor, but that is not the case for the built-in
  clause-processor, proof-checker-cl-proc. Finally, we note that
  :instructions [hints] are ``spliced'' into the hints as follows:
  the appropriate :[clause-processor] hint replaces the :instructions
  hint, and the other hints remain intact. It may seems surprising
  that one can thus, for example, use :instructions and :in-theory
  together; but although the :in-theory hint will have no effect on
  execution of the :instructions (see first bullet above), the
  :in-theory hint will apply in the usual manner to any child goals
  (see [hints-and-the-waterfall]). End of Remark.

  Now consider the case that the supplied instructions do not prove the
  goal. That is, suppose that the execution of those instructions
  results in a non-empty goal stack. In that case, the resulting
  goals become children of the input goals. The following edited log
  provides an illustration using a modification of the above example,
  this time with a single instruction that splits into two cases.

    ACL2 !>(thm (equal (append (append x y) z)
                       (append x (append y z)))
                :hints ((\"Subgoal *1/2\"
                         :instructions
                         ((:casesplit (equal x y))))))

    [[ ... output omitted ... ]]

    Subgoal *1/2
    (IMPLIES (AND (NOT (ENDP X))
                  (EQUAL (APPEND (APPEND (CDR X) Y) Z)
                         (APPEND (CDR X) Y Z)))
             (EQUAL (APPEND (APPEND X Y) Z)
                    (APPEND X Y Z))).

    We now apply the trusted :CLAUSE-PROCESSOR function PROOF-CHECKER-CL-PROC
    to produce two new subgoals.

    Subgoal *1/2.2

    [[ ... output omitted ... ]]

    Subgoal *1/2.1

    [[ ... output omitted ... ]]

  We have seen that an :instructions hint may produce zero or more
  subgoals. There may be times where you wish to insist that it
  produce zero subgoals, i.e., that it prove the desired goal. The
  proof-checker `finish' command works nicely for this purpose. For
  example, the following form is successfully admitted, but if you
  delete some of the commands (for example, the :s command at the
  end), you will see an informative error message.

    (thm (equal (append (append x y) z)
                (append x (append y z)))
         :hints ((\"Subgoal *1/2\"
                  :instructions
                  ((finish :promote (:dv 1) (:dv 1) :x :up :x (:dv 2) :=
                           (:drop 2) :top (:dv 2) :x :top :s)))))

  If an :instructions hint of the form ((finish ...)) fails to prove
  the goal, the clause-processor is deemed to have caused an error.
  Indeed, any ``failure'' of a supplied proof-checker instruction
  will be deemed to cause an error. In this case, you should see an
  error message such as the following:

    Saving proof-checker error state; see :DOC instructions.  To retrieve:

    (RETRIEVE :ERROR1)

  In this case, you can evaluate the indicated [retrieve] command in
  the ACL2 read-eval-print loop, to get to the point of failure.

  You may have noticed that there is no output from the proof-checker
  in the examples above. This default behavior prevents confusion
  that could arise from use of proof-checker commands that call the
  theorem prover such as prove, bash, split, and induct. These
  commands produce output for what amounts to a fresh proof attempt,
  which could confuse attempts to understand the surrounding proof
  log. You can override the default behavior by providing a command
  of the form

     (comment inhibit-output-lst VAL)

  where VAL is either the keyword :SAME (indicating that no change
  should be made to which output is inhibited) or else is a legal
  value for inhibited output; see [set-inhibit-output-lst]. The
  following two variants of the immediately preceding THM form will
  each produce output from the proof-checker commands, assuming in
  the first variant that output hasn't already been inhibited.

    (thm (equal (append (append x y) z)
                       (append x (append y z)))
                :hints ((\"Subgoal *1/2\"
                         :instructions
                         ((comment inhibit-output-lst :same)
                          (:casesplit (equal x y))))))

    (thm (equal (append (append x y) z)
                       (append x (append y z)))
                :hints ((\"Subgoal *1/2\"
                         :instructions
                         ((comment inhibit-output-lst (proof-tree))
                          (:casesplit (equal x y))))))

  Note that such a comment instruction must be provided explicitly
  (i.e., not by way of a proof-checker [macro-command]) as the first
  instruction, in order to have the effect on inhibited output that
  is described above.

  The following contrived example gives a sense of how one might want
  to use :instructions within :[hints]. If you submit the following
  theorem

    (thm (implies (true-listp x)
                  (equal (reverse (reverse x)) x)))

  then you will see the following checkpoint printed with the summary.

    Subgoal *1/3''
    (IMPLIES (AND (CONSP X)
                  (EQUAL (REVAPPEND (REVAPPEND (CDR X) NIL) NIL)
                         (CDR X))
                  (TRUE-LISTP (CDR X)))
             (EQUAL (REVAPPEND (REVAPPEND (CDR X) (LIST (CAR X)))
                               NIL)
                    X))

  This suggests proving the following theorem. Here we state it using
  [defthmd], so that it is immediately disabled. Normally disabling
  would be unnecessary, but for our contrived example it is useful to
  imagine disabling it, say because we are following a methodology
  that tends to keep [rewrite] rules disabled.

    (defthmd revappend-revappend
      (equal (revappend (revappend x y) z)
             (revappend y (append x z))))

  We might then enter the [proof-checker] to prove the original theorem
  interactively, as follows.

    ACL2 !>(verify (implies (true-listp x)
                            (equal (reverse (reverse x)) x)))
    ->: bash
    ***** Now entering the theorem prover *****
    Goal'

    ([ A key checkpoint:

    Goal'
    (IMPLIES (TRUE-LISTP X)
             (EQUAL (REVAPPEND (REVAPPEND X NIL) NIL)
                    X))

    Goal' is subsumed by a goal yet to be proved.

    ])

    Q.E.D.

    Creating one new goal:  (MAIN . 1).

    The proof of the current goal, MAIN, has been completed.  However,
    the following subgoals remain to be proved:
      (MAIN . 1).
    Now proving (MAIN . 1).
    ->: th ; show current goal (\"th\" for \"theorem\")
    *** Top-level hypotheses:
    1. (TRUE-LISTP X)

    The current subterm is:
    (EQUAL (REVAPPEND (REVAPPEND X NIL) NIL)
           X)
    ->: p ; show current subterm only
    (EQUAL (REVAPPEND (REVAPPEND X NIL) NIL)
           X)
    ->: 1 ; dive to first argument
    ->: p
    (REVAPPEND (REVAPPEND X NIL) NIL)
    ->: sr ; show-rewrites

    1. REVAPPEND-REVAPPEND (disabled)
      New term: (REVAPPEND NIL (APPEND X NIL))
      Hypotheses: <none>
      Equiv: EQUAL

    2. REVAPPEND
      New term: (AND (CONSP (REVAPPEND X NIL))
                     (REVAPPEND (CDR (REVAPPEND X NIL))
                                (LIST (CAR (REVAPPEND X NIL)))))
      Hypotheses: <none>
      Equiv: EQUAL
    ->: (r 1) ; rewrite with rule #1 above
    Rewriting with REVAPPEND-REVAPPEND.
    ->: p
    (REVAPPEND NIL (APPEND X NIL))
    ->: top ; move to the top of the conclusion, making it the current subterm
    ->: p
    (EQUAL (REVAPPEND NIL (APPEND X NIL)) X)
    ->: prove ; finish the proof
    ***** Now entering the theorem prover *****

    Q.E.D.

    *!*!*!*!*!*!* All goals have been proved! *!*!*!*!*!*!*
    You may wish to exit.
    ->: (exit t) ; the argument, t, causes :instructions to be printed
    (DEFTHM T
            (IMPLIES (TRUE-LISTP X)
                     (EQUAL (REVERSE (REVERSE X)) X))
            :INSTRUCTIONS (:BASH (:DV 1)
                                 (:REWRITE REVAPPEND-REVAPPEND)
                                 :TOP :PROVE))
     NIL
    ACL2 !>(thm
            (IMPLIES (TRUE-LISTP X)
                     (EQUAL (REVERSE (REVERSE X)) X))
            :hints ((\"Goal\"
                     :INSTRUCTIONS ; copy what was printed above:
                     (:BASH (:DV 1)
                            (:REWRITE REVAPPEND-REVAPPEND)
                            :TOP :PROVE))))
    Goal'

    Q.E.D.

    Q.E.D.

    Q.E.D.

    Summary
    Form:  ( THM ...)
    Rules: NIL
    Hint-events: ((:CLAUSE-PROCESSOR PROOF-CHECKER-CL-PROC))
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

    Proof succeeded.
    ACL2 !>

  Finally we present an even more contrived example, based on the one
  above. This example illustrates that there is actually no limit
  imposed on the nesting of :instructions within :[hints] within
  :instructions, and so on. Notice the indication of nesting levels:
  ``1>'' to ``<1'' for output from nesting level 1, and ``2>'' to
  ``<2'' for output from nesting level 2.

    (thm (implies (true-listp x)
                  (equal (reverse (reverse x)) x))
         :hints ((\"Goal\"
                  :instructions
                  ((comment inhibit-output-lst :same)
                   (:prove
                    :hints ((\"Goal\" :in-theory (disable append))
                            (\"Subgoal *1/3''\"
                             :instructions
                             ((comment inhibit-output-lst :same)
                              :bash
                              (:dv 1)
                              (:rewrite revappend-revappend)))))))))

  Here is an edited version of the resulting log.

    [Note:  A hint was supplied for our processing of the goal above.
    Thanks!]

    [[1> Executing proof-checker instructions]]

    ->: (COMMENT INHIBIT-OUTPUT-LST :SAME)
    ->: (:PROVE
             :HINTS
             ((\"Goal\" :IN-THEORY (DISABLE APPEND))
              (\"Subgoal *1/3''\" :INSTRUCTIONS ((COMMENT INHIBIT-OUTPUT-LST :SAME)
                                               :BASH (:DV 1)
                                               (:REWRITE REVAPPEND-REVAPPEND)))))
    ***** Now entering the theorem prover *****

    [[ ... output omitted ... ]]

    [Note:  A hint was supplied for our processing of the goal below.
    Thanks!]

    Subgoal *1/3''
    (IMPLIES (AND (CONSP X)
                  (EQUAL (REVAPPEND (REVAPPEND (CDR X) NIL) NIL)
                         (CDR X))
                  (TRUE-LISTP (CDR X)))
             (EQUAL (REVAPPEND (REVAPPEND (CDR X) (LIST (CAR X)))
                               NIL)
                    X)).

    [[2> Executing proof-checker instructions]]

    ->: (COMMENT INHIBIT-OUTPUT-LST :SAME)
    ->: :BASH
    ***** Now entering the theorem prover *****

    [Note:  A hint was supplied for our processing of the goal above.
    Thanks!]

    But we have been asked to pretend that this goal is subsumed by the
    yet-to-be-proved |PROOF-CHECKER Goal|.

    Q.E.D.

    Creating one new goal:  (MAIN . 1).

    The proof of the current goal, MAIN, has been completed.  However,
    the following subgoals remain to be proved:
      (MAIN . 1).
    Now proving (MAIN . 1).
    ->: (:DV 1)
    ->: (:REWRITE REVAPPEND-REVAPPEND)
    Rewriting with REVAPPEND-REVAPPEND.

    [[<2 Completed proof-checker instructions]]

    We now apply the trusted :CLAUSE-PROCESSOR function PROOF-CHECKER-CL-PROC
    to produce one new subgoal.

    Subgoal *1/3'''

    [[ ... output omitted ... ]]

    [[<1 Completed proof-checker instructions]]

  The nesting levels are independent of whether or not output is
  enabled; for example, if the first (comment ...) form below is
  omitted, then we will see only the output bracketed by ``2>'' to
  ``<2''. Note also that these levels are part of the error states
  saved for access by [retrieve] (as indicated above); for example, a
  failure at level 1 would be associated with symbol :ERROR1 as
  indicated above, while a failure at level 2 would be associated
  with symbol :ERROR2.")
 (INT=
  (NUMBERS ACL2-BUILT-INS)
  "Test equality of two integers

  (int= x y) is logically equivalent to (equal x y).

  Unlike [equal], int= requires its arguments to be numbers (or else
  causes a [guard] violation; see [guard]). Generally, int= is
  executed more efficiently than [equal] or [=] on integers.

  Macro: <int=>

    (defmacro int= (i j)
              (list 'eql
                    (if (integerp i)
                        i (list 'the 'integer i))
                    (if (integerp j)
                        j (list 'the 'integer j))))")
 (INTEGER-LENGTH
  (NUMBERS ACL2-BUILT-INS)
  "Number of bits in two's complement integer representation

  For non-negative integers, (integer-length i) is the minimum number
  of bits needed to represent the integer. Any integer can be
  represented as a signed two's complement field with a minimum of (+
  (integer-length i) 1) bits.

  The [guard] for integer-length requires its argument to be an
  integer. Integer-length is defined in Common Lisp. See any Common
  Lisp documentation for more information.

  Function: <integer-length>

    (defun integer-length (i)
           (declare (xargs :guard (integerp i)))
           (if (zip i)
               0
               (if (= i -1)
                   0 (+ 1 (integer-length (floor i 2))))))")
 (INTEGER-LISTP
  (NUMBERS LISTS ACL2-BUILT-INS)
  "Recognizer for a true list of integers

  The predicate integer-listp tests whether its argument is a true list
  of integers.

  Function: <integer-listp>

    (defun integer-listp (l)
           (declare (xargs :guard t))
           (cond ((atom l) (eq l nil))
                 (t (and (integerp (car l))
                         (integer-listp (cdr l))))))")
 (INTEGER-RANGE-P
  (NUMBERS ACL2-BUILT-INS)
  "Recognizer for integers between two bounds.

  The predicate (integer-range-p lower upper x) tests whether x is an
  integer greater than or equal to lower and less than upper.

  Function: <integer-range-p>

    (defun integer-range-p (lower upper x)
           (declare (xargs :guard (and (integerp lower)
                                       (integerp upper))))
           (and (integerp x)
                (<= lower x)
                (< x upper)))")
 (INTEGERP
  (NUMBERS ACL2-BUILT-INS)
  "Recognizer for whole numbers

  (integerp x) is true if and only if x is an integer.")
 (INTERESTING-APPLICATIONS
  (ACL2-TUTORIAL)
  "Some industrial examples of ACL2 use

  ACL2 is an interactive system in which you can model digital
  artifacts and guide the system to mathematical proofs about the
  behavior of those models. It has been used at such places as AMD,
  Centaur, IBM, and Rockwell Collins to verify interesting properties
  of commercial designs. It has been used to verify properties of
  models of microprocessors, microcode, the Sun Java Virtual Machine,
  operating system kernels, other verifiers, and interesting
  algorithms.

  Here we list just a few of the industrially-relevant results obtained
  with ACL2. Reading the list may help you decide you want to learn
  how to use ACL2. If you do decide you want to learn more, we
  recommend that you take [The Tours] after you leave this page.

  ACL2 was used at Motorola Government Systems to certify several
  microcode programs for the Motorola CAP digital signal processor,
  including a comparator sort program that is particularly subtle. In
  the same project, ACL2 was used to model the CAP at both the
  pipelined architectural level and the instruction set level. The
  architectural model was bit- and cycle-accurate: it could be used
  to predict every bit of memory on every cycle. The models were
  proved equivalent under certain hypotheses, the most important
  being a predicate that analyzed the microcode for certain pipeline
  hazards. This predicate defined what the hazards were,
  syntactically, and the equivalence of the two models established
  the correctness of this syntactic characterization of hazards.
  Because ACL2 is a functional programming language, the ACL2 models
  and the hazard predicate could be executed. ACL2 executed microcode
  interpretr several times faster than the hardware simulator could
  execute it -- with assurance that the answers were equivalent. In
  addition, the ACL2 hazard predicate was executed on over fifty
  microcode programs written by Motorola engineers and extracted from
  the ROM mechanically. Hazards were found in some of these. (See,
  for example, Bishop Brock and Warren. A. Hunt, Jr. ``Formal
  analysis of the motorola CAP DSP.'' In Industrial-Strength Formal
  Methods. Springer-Verlag, 1999.)

  ACL2 was used at Advanced Micro Devices (AMD) to verify the
  compliance of the AMD Athon's (TM) elementary floating point
  operations with their IEEE 754 specifications. This followed
  ground-breaking work in 1995 when ACL2 was used to prove the
  correctness of the microcode for floating-point division on the AMD
  K5. The AMD Athlon work proved addition, subtraction,
  multiplication, division, and square root compliant with the IEEE
  standard. Bugs were found in RTL designs. These bugs had survived
  undetected in hundreds of millions of tests but were uncovered by
  ACL2 proof attempts. The RTL in the fabricated Athlon FPU has been
  mechanically verified by ACL2. Similar ACL2 proofs have been
  carried out for every major AMD FPU design fabricated since the
  Athlon. (See for example, David Russinoff. ``A mechanically checked
  proof of correctness of the AMD5K86 floating-point square root
  microcode''. Formal Methods in System Design Special Issue on
  Arithmetic Circuits, 1997.)

  ACL2 was used at IBM to verify the floating point divide and square
  root on the IBM Power 4. (See Jun Sawada. ``Formal verification of
  divide and square root algorithms using series calculation''. In
  Proceedings of the ACL2 Workshop 2002, Grenoble, April 2002.)

  ACL2 was used to verify floating-point addition/subtraction
  instructions for the media unit from Centaur Technology's 64-bit,
  X86-compatible microprocessor. This unit implements over one
  hundred instructions, with the most complex being floating-point
  addition/subtraction. The media unit can add/subtract four pairs of
  floating-point numbers every clock cycle with an industry-leading
  two-cycle latency. The media unit was modeled by translating its
  Verilog design into an HDL deeply embedded in the ACL2 logic. The
  proofs used a combination of AIG- and BDD-based symbolic
  simulation, case splitting, and theorem proving. (See Warren A.
  Hunt, Jr. and Sol Swords. ``Centaur Technology Media Unit
  Verification''. In CAV '09: Proceedings of the 21st International
  Conference on Computer Aided Verification, pages 353--367, Berlin,
  Heidelberg, 2009. Springer-Verlag.)

  Rockwell Collins used ACL2 to prove information flow properties about
  its Advanced Architecture MicroProcessor 7 Government Version
  (AAMP7G), a Multiple Independent Levels of Security (MILS) device
  for use in cryptographic applications. The AAMP7G provides MILS
  capability via a verified secure hardware-based separation kernel.
  The AAMP7G's design was proved to achieve MILS using ACL2, in
  accordance with the standards set by EAL-7 of the Common Criteria
  and Rockwell Collins has received National Security Agency (NSA)
  certification for the device based on this work. (See Matthew M.
  Wilding, David A. Greve, Raymond J. Richards, and David S. Hardin.
  ``Formal Verification of Partition Management for the AAMP7G
  Microprocessor''. In Design and Verification of Microprocessor
  Systems for High-Assurance Applications, David S. Hardin, ed.,
  pages 175--191, Springer US, 2010.)

  Key properties of the Sun Java Virtual Machine and its bytecode
  verifier were verified in ACL2. Among the properties proved were
  that certain invariants are maintained by class loading and that
  the bytecode verifier insures that execution is safe. In addition,
  various JVM bytecode programs have been verified using this model
  of the JVM. (See Hanbing Liu. Formal Specification and Verification
  of a JVM and its Bytecode Verifier. PhD thesis, University of Texas
  at Austin, 2006.)

  The Boyer-Moore fast string searching algorithm was verified with
  ACL2, including a model of the JVM bytecode for the search
  algorithm itself (but not the preprocessing). (See J S. Moore and
  Matt Martinez. ``A mechanically checked proof of the correctness of
  the Boyer-Moore fast string searching algorithm.'' In Engineering
  Methods and Tools for Software Safety and Security pages 267--284.
  IOS Press, 2009.)

  ACL2 was used to verify the fidelity between an ACL2-like theorem
  prover and a simple (``trusted by inspection'') proof checker,
  thereby establishing (up to the soundness of ACL2) the soundness of
  the ACL2-like theorem prover. This project was only part of a much
  larger project in which the resulting ACL2 proof script was then
  hand-massaged into a script suitable for the ACL2-like theorem
  prover to process, generating a formal proof of its fidelity that
  has been checked by the trusted proof checker. (See Jared Davis.
  Milawa: A Self-Verifying Theorem Prover. Ph.D. Thesis, University
  of Texas at Austin, December, 2009.)

  These are but a few of the interesting projects carried out with
  ACL2. Many of the authors mentioned above have versions of the
  papers on their web pages. In addition, see {Books and Papers about
  ACL2 and its Applications |
  http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html}.
  Also, see the presentations in each of the {ACL2 Workshops |
  http://www.cs.utexas.edu/users/moore/acl2/workshops.html}.")
 (INTERFACING-TOOLS
  (TOP ACL2)
  "Libraries and tools for doing basic [file i/o], using raw [Common
  Lisp libraries], working with the [operating system], and
  interfacing with [other programs].


Subtopics

  [Command-line]
      Handling of command-line arguments when ACL2 is invoked

  [Defttag]
      Introduce a trust tag (ttag)

  [Io]
      Input/output facilities in ACL2

  [Save-exec]
      Save an executable image and a wrapper script

  [Sys-call]
      Make a system call to the host operating system")
 (INTERN
  (SYMBOLP PACKAGES ACL2-BUILT-INS)
  "Create a new symbol in a given package

  (intern symbol-name symbol-package-name) returns a symbol with the
  given [symbol-name] and the given [symbol-package-name]. We
  restrict Common Lisp's intern so that the second argument is either
  the symbol *main-lisp-package-name*, the value of that constant, or
  is one of \"ACL2\", \"ACL2-INPUT-CHANNEL\", \"ACL2-OUTPUT-CHANNEL\", or
  \"KEYWORD\". To avoid that restriction, see [intern$].

  In ACL2 intern is actually implemented as a macro that expands to a
  call of a similar function whose second argument is a symbol.
  Invoke :pe intern to see the definition, or see
  [intern-in-package-of-symbol].

  To see why is intern so restricted consider (intern \"X\" \"P\"). In
  particular, is it a symbol and if so, what is its
  [symbol-package-name]? One is tempted to say ``yes, it is a symbol
  in the package \"P\".'' But if package \"P\" has not yet been defined,
  that would be premature because the imports to the package are
  unknown. For example, if \"P\" were introduced with

    (defpkg \"P\" '(LISP::X))

  then in Common Lisp (symbol-package-name (intern \"X\" \"P\")) returns
  \"LISP\".

  The obvious restriction on intern is that its second argument be the
  name of a package known to ACL2. We cannot express such a
  restriction (except, for example, by limiting it to those packages
  known at some fixed time, as we do). Instead, we provide
  [intern-in-package-of-symbol] which requires a ``witness symbol''
  for the package instead of the package. The witness symbol is any
  symbol (expressible in ACL2) and uniquely specifies a package
  necessarily known to ACL2.")
 (INTERN$
  (SYMBOLP PACKAGES ACL2-BUILT-INS)
  "Create a new symbol in a given package

  Intern$ is a macro that behaves the same as the macro [intern],
  except for weakening the restriction to a fixed set of package
  names so that any package name other than \"\" is legal. See
  [intern]. Note that if you evaluate a call (intern$ x y) for which
  there is no package with name y that is known to ACL2, you will get
  an error.

  (Intern$ x y) expands to:

    (intern-in-package-of-symbol x (pkg-witness y))

  See [intern-in-package-of-symbol] and see [pkg-witness].")
 (INTERN-IN-PACKAGE-OF-SYMBOL
  (SYMBOLP PACKAGES ACL2-BUILT-INS)
  "Create a symbol with a given name

  Completion Axiom (completion-of-intern-in-package-of-symbol):

    (equal (intern-in-package-of-symbol x y)
           (if (and (stringp x)
                    (symbolp y))
               (intern-in-package-of-symbol x y)
             nil))

  [Guard] for (intern-in-package-of-symbol x y):

    (and (stringp x) (symbolp y))

  Intuitively, (intern-in-package-of-symbol x y) creates a symbol with
  [symbol-name] x [intern]ed in the package containing y. More
  precisely, suppose x is a string, y is a symbol with
  [symbol-package-name] pkg and that the [defpkg] event creating pkg
  had the list of symbols imports as the value of its second
  argument. Then (intern-in-package-of-symbol x y) returns a symbol,
  ans, the [symbol-name] of ans is x, and the [symbol-package-name]
  of ans is pkg, unless x is the [symbol-name] of some member of
  imports with [symbol-package-name] ipkg, in which case the
  [symbol-package-name] of ans is ipkg. Because [defpkg] requires
  that there be no duplications among the [symbol-name]s of the
  imports, intern-in-package-of-symbol is uniquely defined.

  For example, suppose \"MY-PKG\" was created by

    (defpkg \"MY-PKG\" '(ACL2::ABC LISP::CAR)).

  Let w be 'my-pkg::witness. Observe that

    (symbolp w) is t                     ; w is a symbol
    (symbol-name w) is \"WITNESS\"         ; w's name is \"WITNESS\"
    (symbol-package-name w) is \"MY-PKG\"  ; w is in the package \"MY-PKG\"

  The construction of w illustrates one way to obtain a symbol in a
  given package: write it down as a constant using the double-colon
  notation.

  But another way to obtain a symbol in a given package is to create it
  with intern-in-package-of-symbol.

    (intern-in-package-of-symbol \"XYZ\" w) is MY-PKG::XYZ

    (intern-in-package-of-symbol \"ABC\" w) is ACL2::ABC

    (intern-in-package-of-symbol \"CAR\" w) is LISP::CAR

    (intern-in-package-of-symbol \"car\" w) is MY-PKG::|car|")
 (INTERSECTION$
  (LISTS ACL2-BUILT-INS)
  "Elements of one list that are not elements of another

    General Forms:
    (intersection$ l1 l2 ... lk)
    (intersection$ l1 l2 ... lk :test 'eql) ; same as above
    (intersection$ l1 l2 ... lk :test 'eq)    ; same, but eq is equality test
    (intersection$ l1 l2 ... lk :test 'equal) ; same, but equal is equality test

  (Intersection$ x y) equals a list that contains the members of x that
  are also members of y. More precisely, the resulting list is the
  result of deleting from x those members that that are not members
  of y. The optional keyword, :TEST, has no effect logically, but
  provides the test (default [eql]) used for comparing members of the
  two lists.

  Intersection$ need not take exactly two arguments, though it must
  take at least one argument: (intersection$ x) is x, (intersection$
  x y z ... :test test) is (intersection$ x (intersection$ y z ...
  :test test) :test test), and if :TEST is not supplied, then
  (intersection$ x y z ...) is (intersection$ x (intersection$ y z
  ...)). For the discussion below we restrict ourselves, then, to the
  cases (intersection$ x y) and (intersection$ x y :test test).

  The [guard] for a call of intersection$ (in the two cases just above)
  depends on the test. In all cases, both arguments must satisfy
  [true-listp]. If the test is [eql], then one of the arguments must
  satisfy [eqlable-listp]. If the test is [eq], then one of the
  arguments must satisfy [symbol-listp].

  See [equality-variants] for a discussion of the relation between
  intersection$ and its variants:

      (intersection-eq x lst) is equivalent to (intersection$ x lst :test
      'eq);

      (intersection-equal x lst) is equivalent to (intersection$ x lst
      :test 'equal).

  In particular, reasoning about any of these primitives reduces to
  reasoning about the function intersection-equal.

  Note that intersection-eq can take any positive number of arguments,
  in analogy to intersection$; indeed, (intersection-eq ...) expands
  to (intersection$ ... :test 'eq). However, intersection-equal is a
  function, not a macro, and takes exactly two arguments.

  Intersection$ is similar to the Common Lisp primitive intersection.
  However, Common Lisp does not specify the order of elements in the
  result of a call of intersection.

  Function: <intersection-equal>

    (defun
         intersection-equal (l1 l2)
         (declare (xargs :guard (and (true-listp l1) (true-listp l2))))
         (cond ((endp l1) nil)
               ((member-equal (car l1) l2)
                (cons (car l1)
                      (intersection-equal (cdr l1) l2)))
               (t (intersection-equal (cdr l1) l2))))")
 (INTERSECTION-EQ (POINTERS)
                  "See [intersection$].")
 (INTERSECTION-EQUAL (POINTERS)
                     "See [intersection$].")
 (INTERSECTION-THEORIES
  (THEORIES THEORY-FUNCTIONS)
  "Intersect two [theories]

    Example:
    (intersection-theories (current-theory :here)
                           (theory 'arith-patch))

    General Form:
    (intersection-theories th1 th2)

  where th1 and th2 are theories (see [theories]). To each of the
  arguments there corresponds a runic theory. This function returns
  the intersection of those two runic [theories], represented as a
  list and ordered chronologically.

  This ``function'' is actually a macro that expands to a term
  mentioning the single free variable [world]. When theory
  expressions are evaluated by [in-theory] or the :[in-theory] hint,
  [world] is bound to the current ACL2 [world].")
 (INTERSECTP
  (LISTS ACL2-BUILT-INS)
  "Test whether two lists intersect

    General Forms:
    (intersectp l1 l2)
    (intersectp l1 l2 :test 'eql)   ; same as above (eql as equality test)
    (intersectp l1 l2 :test 'eq)    ; same, but eq is equality test
    (intersectp l1 l2 :test 'equal) ; same, but equal is equality test

  (Intersectp l1 l2) returns t if l1 and l2 have a [member] in common,
  else it returns nil. The optional keyword, :TEST, has no effect
  logically, but provides the test (default [eql]) used for comparing
  members of the two lists.

  The [guard] for a call of intersectp depends on the test. In all
  cases, both arguments must satisfy [true-listp]. If the test is
  [eql], then one of the arguments must satisfy [eqlable-listp]. If
  the test is [eq], then one of the arguments must satisfy
  [symbol-listp].

  See [equality-variants] for a discussion of the relation between
  intersectp and its variants:

      (intersectp-eq x lst) is equivalent to (intersectp x lst :test 'eq);

      (intersectp-equal x lst) is equivalent to (intersectp x lst :test
      'equal).

  In particular, reasoning about any of these primitives reduces to
  reasoning about the function intersectp-equal.

  Function: <intersectp-equal>

    (defun intersectp-equal (x y)
           (declare (xargs :guard (and (true-listp x) (true-listp y))))
           (cond ((endp x) nil)
                 ((member-equal (car x) y) t)
                 (t (intersectp-equal (cdr x) y))))")
 (INTERSECTP-EQ (POINTERS)
                "See [intersectp].")
 (INTERSECTP-EQUAL (POINTERS)
                   "See [intersectp].")
 (INTRODUCTION-TO-A-FEW-SYSTEM-CONSIDERATIONS
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "The mechanics of interaction with the theorem prover

  ACL2 is implemented in Common Lisp. There are many different Common
  Lisps and they differ in details relating to interacting with the
  system. We sometimes refer to the host Common Lisp as ``raw Lisp.''
  The new user is advised not to operate in raw Lisp as it is
  possible to, say, redefine ACL2 system faclities like defthm.

  Most people use Emacs (see [Emacs] [{ICON}]) or the ACL2 Sedan
  (Eclipse) interface (see [ACL2-Sedan] [{ICON}]). They provide
  protection against certain common mistakes, e.g., trying to edit a
  block of input text after the operating system has buffered it up
  and sent it to the Lisp reader which is parsing it as you type.
  More on this below. In addition, the Sedan provides helpful syntax
  checking and a disciplined approach to the stack of lemmas
  generated by The Method. But the variety of interfaces to the
  variety of Lisps mean that there is great variation in what one
  must type to interact with ACL2.

  The best example is perhaps trying to interrupt a running proof. If
  your host Common Lisp is GCL or Allegro and you are typing directly
  to the Common Lisp process, then you can interrupt a computation by
  typing ``ctrl-c'' (hold down the Control key and hit the ``c'' key
  once). But other Lisps may require some other control sequence. If
  you are typing to an Emacs process which is running the GCL or
  Allegro Common Lisp process in a shell buffer, you should type
  ctrl-c ctrl-c. If you are running the ACL2 Sedan, you can use the
  Interrupt Session button on the tool bar. The environment you enter
  when you interrupt depends on various factors and basically you
  should endeavor to get back to the top level ACL2 command loop,
  perhaps by typing some kind of Lisp depenent ``abort'' command like
  A or :q, or :abort!. You can usually determine what environment
  you're in by paying attention to the prompt, which we discuss
  below.

  The ACL2 ``interactive loop'' is called [lp] ([{ICON}]) and is
  generally invoked automatically from your Common Lisp when you
  start up the ACL2 process. LP is just a special case of an ACL2
  function called [ld] [{ICON}], which the user can call from within
  the ACL2 interactive loop to enter the loop recursively. New users
  don't have to know this except that it helps explain why some
  commands have the string ``-ld-'' in their names!

  ACL2 presents itself as a ``read-eval-print'' loop: you're repeatedly
  prompted for some type-in, which is read, evaluated, and may cause
  some printing. The prompt tells you something about ACL2's state.
  In the standard environment, the prompt is

    ACL2 !>

  The ``ACL2'' tells you that the symbols you use in your command are
  those defined in the standard ACL2 namespace (or, in the jargon of
  Lisp, the ``current package,'' see [current-package] [{ICON}]). You
  could create a new namespace (see [defpkg] [{ICON}]) and set the
  current package to it (see [in-package] [{ICON}]). The next part of
  the prompt above (``!''), the exclamation mark) tells you that
  before ACL2 evaluates your type-in it will check to see whether
  [guard]s ([{ICON}]) are respected, i.e., whether the functions used
  in your command are being supplied arguments in their ``expected
  domains.'' If evaluation is allowed by the guards, it proceeds
  exactly according to the ACL2 axioms; if evaluation is not allowed,
  an error is signaled. ACL2 event commands check their arguments
  thoroughly at run-time, regardless of Lisp's notion of ``expected
  domains.''

  If the exclamation mark is missing from the prompt,

    ACL2 >

  then evaluation occurs strictly according to the ACL2 axioms, without
  regard for any declared guards.

  You can switch between these two prompts by typing

    ACL2 !>:set-guard-checking nil

  to turn guard checking off and

    ACL2 >:set-guard-checking t

  to turn it on. Try typing (car 7) to each prompt.

  If there is a ``p'' in the prompt,

    ACL2 p!>

  with or without the exclamation mark:

    ACL2 p>

  it means you are in :[program] ([{ICON}]) mode rather than :[logic]
  ([{ICON}]) mode. In :program mode, defun just defines Common Lisp
  programs that you can evaluation but it adds no axioms and you
  cannot use such defined functions in theorems or invoke defthm.
  :Program mode is often used to prototype a model.

  Most commands are just typical parenthesized Lisp expressions, like

    ACL2 !>(defthm rev-rev
             (implies (true-listp x)
                      (equal (rev (rev x)) x)))

  but some are typed as keywords followed by a certain number of
  arguments.

  For example, to undo the last event you may type

    ACL2 !>:u

  or to undo back through the introduction of rev you may type

    ACL2 !>:ubt rev

  The first is equivalent to evaluating (u) and the second is
  equivalent to evaluating (ubt 'rev). See [keyword-commands]
  [{ICON}]. So if you see a sentence like ``to turn on the break
  rewrite facility, execute :brr t,'' we mean type

    ACL2 !>:brr t

  or equivalently

    ACL2 !>(brr t)

  If you see a prompt that doesn't look like those above you are
  probably not typing commands to the standard ACL2 read-eval-print
  loop! If you've somehow called LD recursively, the prompt ``gets
  deeper,'' e.g.,

    ACL2 !>>

  and you can pop out one level with :[q] [{ICON}] (for ``quit'') or
  pop to the outermost ACL2 loop with :abort! [{ICON}]. If you are in
  the outermost call of the ACL2 interactive loop and you type :q,
  you pop out into raw lisp. The prompt there is generally different
  from the ACL2 prompt but that is outside our our control and varies
  from Lisp to Lisp. We have arranged for many (but not all) Lisps to
  use a raw lisp prompt involving the string \"[RAW LISP]\". To get
  back into the ACL2 interactive loop from raw lisp, evaluate (LP).

  If you see a prompt that looks like an ACL2 prompt but has a number
  in front of it, e.g.,

    1 ACL2 >

  then you're talking to the break rewrite facility (and you are 1
  level deep in the example above). Presumably at earlier time in
  this session you enabled that facility, with :brr t, installed a
  monitor on some rule, invoked the prover, entered the break, and
  forgot. Everything you have done (e.g., lemmas you might have
  proved with defthm) inside that break will be lost when you exit
  the break.

  Since the break rewrite facility is ``ours'' we can tell you how to
  exit it! To exit our breaks and return to the top-level ACL2 loop,
  execute :abort!.

  If you discover you've been working in a brr break, exit, turn off
  the break facility wih :brr nil, and redo whatever defuns and
  defthms you did while in that break.

  Users of the Emacs interface may occasionally type commands directly
  in the *shell* buffer running ACL2. This can be ``dangerous'' for
  two reasons. One is that if you type an event, like a defun or
  defthm, directly to the shell, it will not be recorded in your
  ``script'' buffer and you may forget it in your final script. The
  other is that if you attempt to edit a multi-line command on any
  but the most recent line, e.g., to correct the spelling of defthm
  below after you've typed the ``(implies (true-listp x)'' you will
  confuse the Lisp parser because it has already read ``(defth
  rev-rev''.

    ACL2 !>(defth rev-rev
             (implies (true-listp x)

  This usually provokes the raw Lisp to enter a low level error break
  from which you must abort, possibly reenter the ACL2 loop, and
  re-type the corrected command from scratch.

  Another common mistake when using interfaces other than the ACL2
  Sedan is to type an ill-formed ACL2 expression containing dots or
  commas, which also often provokes a break into the raw Lisp's error
  handler.

  The fundamental lesson is that you should pay attention to the prompt
  and learn what the different prompts mean -- or use the ACL2 Sedan.

  If you have been working your way through the tutorial introduction
  to the theorem prover, use your browser's Back Button now to return
  to [introduction-to-the-theorem-prover].")
 (INTRODUCTION-TO-HINTS
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "How to provide hints to the theorem prover

  We assume you've read [introduction-to-rewrite-rules-part-1],
  [introduction-to-key-checkpoints], and
  [introduction-to-the-database].

  You may give the theorem prover a hint that is specific to a
  particular subgoal generated during a proof attempt. Of course, you
  learn the name of the subgoal by inspecting the key checkpoints or
  other proof output. You are not expected to anticipate the need for
  hints at specific subgoals; instead, you usually deduce that a hint
  is required because the subgoals is not proved but you see that
  existing rules and context make it provable.

  The most common hint is to enable and/or disable a particular rule on
  some particular subgoal.

    (defthm name
            formula
            :hints ((\"Subgoal *1/3.2''\" :in-theory (disable nth-nthcdr))))

  The hint above tells the rewriter that just before it begins to work
  on Subgoal *1/3.2'' it should switch to a local theory in which all
  of the rules generated from the event nth-nthcdr are disabled. That
  local theory remains the one in use for all descendent subgoals
  generated from the one named, until and unless one of those
  descendent subgoals has an :in-theory hint associated with it.
  There are many kinds of hints besides :in-theory and in general,
  after each subgoal name, you can give various forms of advice and
  list various adjustments you wish to make to the context in which
  the prover is operating when it begins addressing the subgoal
  named.

  The top-level goal is always named Goal. Thus

    (defthm name
            formula
            :hints ((\"Goal\" ...hints1...)
                    (\"Subgoal *1/3.2''\" ...hints2...)))

  has the effect of using hints1 for the top-level goal and all of its
  children throughout the entire proof, except for Subgoal *1/3.2''
  and its children, where hints2 is used instead.

  There are a few hints which ``take effect'' exactly on the subgoal to
  which they are attached and are not inherited by their descendents.

  Here is an incomplete list of some of the more common hints; we note
  the ones that do not pass on their effects to their descendents. We
  recommend that you not follow the advanced links (marked
  ``[{ICON}]'') below until you have read the entire tutorial.

  See [in-theory] [{ICON}] for how to enable and/or disable rules. The
  new theory is computed by a ``theory expression'' (see [theories]
  [{ICON}]) such as (disable nth-nthcdr) and typically makes
  adjustments such as additions or deletions to the global current
  theory. All the relevant new theories are computed before the proof
  begins. Thus, in

    (defthm name
            formula
            :hints ((\"Goal\" :in-theory (disable rule1))
                    (\"Subgoal *1/3.2''\" (disable rule2))))

  the theory mentioned for Goal is the global current theory minus
  rule1, while the theory mentioned for its descendent, Subgoal
  *1/3.2'', is the global current theory minus rule2. In particular,
  if both rule1 and rule2 are enabled in the global current theory,
  then rule1 is enabled during the processing of Subgoal *1/3.2''
  because it was not removed explicitly there.

  See [use] [{ICON}] for how to force the theorem prover to take note
  of particular instances of particular theorems; in particular, the
  instances are created and added as hypotheses to the subgoal in
  question. The hint is not inherited by the descendents of the
  subgoal (since the formula being proved has been modified by the
  hint). If the rule you are using (with a :use hint) is an enabled
  rewrite rule, it might interfere with the added hypothesis -- by
  rewriting itself to T -- and thus often you will both :use ... and
  :in-theory (disable ...).

  See [expand] [{ICON}] for how to tell the theorem prover to expand
  one or more function calls whenever encountered.

  See [cases] [{ICON}] for how to force the theorem prover to do a case
  split to prove the subgoal under each of an exhaustive list of
  cases given in the hint. This hint takes action specifically at the
  named subgoal and is not passed down to its children.

  See [induct] [{ICON}] for how to tell the theorem prover to go
  immediately into induction for the subgoal in question, and to use
  the induction scheme suggested by the hint rather than the one
  suggested by the terms in the subgoal itself. This hint is not
  inherited by its descendents.

  See [hints] [{ICON}] for a complete list of all hints, and see
  [hints-and-the-waterfall] [{ICON}] for a more thorough description
  of how the effects of hints at a subgoal are inherited by the
  descendents.

  If you are reading this as part of the tutorial introduction to the
  theorem prover, use your browser's Back Button now to return to
  [introduction-to-the-theorem-prover].")
 (INTRODUCTION-TO-KEY-CHECKPOINTS
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "What questions to ask at key checkpoints

  We assume you've read about rewrite rules; see
  [introduction-to-rewrite-rules-part-1].

  When a proof attempt fails, ACL2 prints some key checkpoints. These
  are formulas that we think you should look at. There are two kinds
  printed: key checkpoints before an induction, and key checkpoints
  under a top-level induction. (Key checkpoints under deeper
  inductions and checkpoints that aren't considered ``key'' may exist
  in the proof attempt, but ACL2 doesn't print them at the end of
  failed proofs because you shouldn't be distracted by them.)

  Below is a list of questions to ask yourself about the key
  checkpoints. Initially, we recommend just picking one key
  checkpoint before an induction (perhaps the simplest looking one)
  and asking these questions. These questions may lead you to look at
  other key checkpoints. As you gain more experience you'll elaborate
  and generalize this advice.

  (1) Do you believe this formula is a theorem? If you don't think it
  is, it's pointless to try to prove it! You should reconsider your
  top-level formula in light of the special case suggested by this
  key checkpoint.

  (2) Can it be simplified? Is there some combination of function
  symbols in it that could be eliminated or simplified by exploiting
  some simpler fact? By a ``simpler fact'' we mean a theorem about a
  few of the symbols in this formula. For an example of this see
  [dealing-with-key-combinations-of-function-symbols]. Don't think
  about the deep question ``how can I prove the checkpoint?'' until
  you've got it into its simplest form.

  (3) Is the simpler fact already in the database? If there is some
  simpler fact that would help clean up the checkpoint but you
  believe the simpler fact is already in the database, you can use
  :[pl] [{ICON}], :[pc] [{ICON}], :[pbt] [{ICON}], and other history
  commands to inspect the database; (see [history] [{ICON}]). But if
  you find the allegedly relevant simpler fact in the database, you
  must ask: why wasn't it used? There are four principal reasons:

  (3a) it is disabled -- so enable it; you'll learn how when you read
  the coming sections on [introduction-to-the-database] and
  [introduction-to-hints].

  (3b) its left-hand side doesn't match the target -- so improve the
  rule by generalizing its left-hand side or prove a new rule for
  this situation; if you decide to remove the old rule from the
  database, see undo commands in [history] [{ICON}].

  (3c) it is an IFF rule but the target doesn't occur propositionally
  -- so see if you you can strengthen the rule to an EQUAL rule or
  weaken the context of the target by changing the conjecture to use
  the target propositionally; if you decide to remove the old rule
  from the database, see undo commands in [history] [{ICON}].

  (3d) the hypotheses of the rule cannot be relieved for this
  occurrence of the target; this can be caused by the rule's
  hypotheses being too strong (requiring more than they should), or
  by the hypotheses of the current conjecture being too weak (you
  forgot some key hypothesis), or by ACL2 not having the rules it
  needs to prove that the conjecture's hypotheses really do imply the
  rule's. Tools are available (:see [brr] [{ICON}]) help you figure
  out why the rule failed, so use them and improve the rule, or the
  current conjecture, or the database as appropriate.

  (4) If the simpler fact is not already known, prove it. This means
  you must create a new defthm event with appropriate rule-classes to
  store your new theorem so that it will be used. See
  [dealing-with-key-combinations-of-function-symbols]. Then you must
  start using The Method recursively to prove your new lemma.

  (5) Otherwise, is this formula something you'd prove by induction? If
  you can't simplify it, it may be because you ``need this fact to
  prove this fact,'' in which case, induction is the right thing to
  do. But first, remember that in order for a formulas to be provable
  by induction, it must be very general. Why must it be general?
  Because in an inductive proof, the main thing you have to work with
  is the induction hypothesis, which is an instance of the theorem
  you're proving. If the theorem is not general enough, you won't be
  able to assume an instance that will help you. ACL2 may try
  induction even on formulas that are not general enough. Don't
  assume that the formula is ripe for induction just because ACL2
  found an induction to do! Before you ``approve'' a formula for
  induction, ask whether it is perhaps a special case of some more
  general theorem. See [generalizing-key-checkpoints] now and then
  come back here. If you found a generalization, you should probably
  be proving that formula instead of this one. So formulate the
  appropriate defthm and use The Method recursively to prove it.

  (6) If the formula is right for induction, did ACL2 do an induction
  for it? You can answer that without looking at the proof. Just see
  if there are any key checkpoints after induction. If not, why
  didn't ACL2 induct? Perhaps you told ACL2 not to induct! Perhaps no
  term in the conjecture suggests an appropriate induction? You could
  remedy this by extending ACL2's induction analysis by adding to the
  database. Or you could just tell ACL2 what induction to do for this
  formula. You'll learn about both later (when you read coming
  sections of the tutorial).

  (7) If ACL2 did do an induction, was it the right one? You can find
  the induction scheme used by reading the first induction message in
  the output log after you submitted the conjecture to ACL2. But most
  often you will realize the ``wrong'' induction was done just by
  looking at the post-induction key checkpoints, keeping in mind that
  each is supposed to be a natural special case of the theorem you're
  proving. Is the case analysis inappropriate? Are induction
  hypotheses missing? If so, you should look at the induction scheme.
  If you determine the wrong induction was done, extend ACL2's
  induction analysis or tell it which induction to do, which you'll
  learn about in the coming sections of the tutorial. For more advice
  about looking at post-induction key checkpoints, see
  [post-induction-key-checkpoints] now and then come back here.

  (8) If the post-induction key checkpoints seems plausible, then
  repeat the questions above for each one of them, perhaps starting
  with the simplest.

  In any case, after successfully taking whatever action you've decided
  on, e.g., proving some new lemma and adding it as a rule:

  Start over trying to prove your main conjecture. This is important!
  Do not just scroll back to the key checkpoints generated the last
  time you tried to prove it. Instead, re-generate them in the
  context of your new, improved database and hints.

  You will be following this general outline almost all of the time
  that you're interacting with ACL2. You will not often be asking
  ``Why is ACL2 making me think about this subgoal? What did ACL2 do
  to get here? How does ACL2 work?''

  Two other ideas are helpful to keep in mind.

  Is a key checkpoint unexpectedly complicated? Pay special attention
  to the case where the complication seems to be the introduction of
  low-level details you thought you'd dealt with or by the
  introduction of symbols you didn't expect to see in this proof.
  These can be signs that you ought to disable some rules in the
  database (e.g., a definition of a complicated function about which
  you've proved all the necessary lemmas or some lemma that
  transforms the problem as was appropriate for some other proof).

  Does the theorem prover just hang up, printing nothing? If this
  happens, you must interrupt it. How you interrupt the prover is
  dependent on which Common Lisp and which interface you're using.
  But most Common Lisps treat control-c as a console interrupt. If
  you're in Emacs running ACL2 as a shell process, you must type
  control-c control-c. If you're in ACL2s, hit the Interrupt Session
  button. Interrupting ACL2 can leave you in an interactive loop
  similar in appearance but different from ACL2's top-level! So pay
  careful attention to the prompt and see [breaks] [{ICON}].

  Once you've regained control from the ``runaway'' theorem prover,
  there are several tools you can use to find out what it is doing in
  real-time. Generally speaking, when the theorem prover goes silent
  for a very long time it is either in some kind of rewrite loop
  caused by rules that cause it to flip back and forth between
  various supposedly normal forms, or else it has split the problem
  into a huge number of cases and suffering a combinatoric explosion.
  See [dmr] [{ICON}] and, perhaps, see [accumulated-persistence]
  [{ICON}].

  If you are reading this as part of the tutorial introduction to the
  theorem prover, use your browser's Back Button now to return to
  [introduction-to-the-theorem-prover].")
 (INTRODUCTION-TO-REWRITE-RULES-PART-1
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Introduction to ACL2's notion of rewrite rules

  Rewrite rules make ACL2 replace one term by another. This is done by
  the rewriter, which is part of ACL2's simplifier. The rewriter
  sweeps through the goal formula trying all the rewrite rules it
  knows. Here's an example. Just pretend that you have made a rewrite
  rule from the formula below.

    (implies (and (natp i)
                  (< i (len a)))
             (equal (put i v (append a b))
                    (append (put i v a) b)))

  Then every time the rewriter sees a target term that matches

    (put i v (append a b))

  it considers the rule, with the variables i, v, a, and b of the rule
  bound to whatever terms matched them in the target, say the terms
  i, v, a, and b. To consider the rule, the rewriter first tries to
  establish (``relieve'') the hypotheses. In particular, it rewrites:

    (natp i)           ; hyp 1

  and

    (< i (len a)). ; hyp 2

  If both hyptheses rewrite to true, then the rule fires and replaces
  the target by:

    (append (put i v a) b).

  In short, rewrite rules direct ACL2 to rearrange the terms in the
  goal formulas.

  We are more precise later, but for now we turn to the question of how
  do you make a rewrite rule from a formula? The answer is, you prove
  the formula with the defthm command. Recall that

    (defthm name
            formula
            ...)

  commands ACL2 to try to prove formula and, if successful, build it
  into the database as a rule according to your specification in the
  rule-classes argument of the ... part of the command.

  To make it easy for you to generate rewrite rules, defthm has a
  simple heuristic: if you don't tell it what kind of rule to
  generate from formula, it generates a rewrite rule! Thus, if this
  command

    (defthm name
            formula)

  is successful, ACL2 will have a new rewrite rule in the database,
  even though you did not explicitly tell it to add a rule.

  A common mistake for new users is to forget that the above command
  adds a rewrite rule. This often results in a tangle of rules that
  lead nowhere or to infinite rewriting that you will have to
  interrupt. It is also good to remember that the command only adds a
  rule. It does not magically make ACL2 aware of all the mathematical
  consequences of the formula: it just makes a rewrite rule.

  When you prove a theorem with defthm you are programming ACL2. Being
  careless in your statement of lemmas is tantamount to being
  careless in your programming.

  ACL2 can generate rewrite rules from formulas that look like this:

    (IMPLIES (AND hyp1 ... hypk)
             (eqv lhs rhs))

  where eqv is either EQUAL or IFF, and lhs is not a variable symbol,
  not a constant, and not a call of the function IF, and not a call
  of an abbreviation (``macro'') that expands to any of these. So
  illegal lhs include X, 0, (IF X Y Y), and (OR p q). The last is
  illegal because OR is just an abbreviation for a certain
  IF-expression.

  Technical Note: This tutorial introduction to the theorem prover
  takes liberties with the truth! We are trying to give you a useful
  predictive model of the system without burdening you with all the
  details, which are discussed in the ACL2 User's Manual. For
  example, using directives in the rule-classes you can rearrange the
  proved formula into the form you want your rule to take, and you
  can make ACL2 take advantage of equivalence relations eqv other
  than just EQUAL and IFF. But we'll ignore these fine points for
  now.

  We call the hyp terms the hypotheses of the rule. We call lhs the
  left-hand side of the rule, and we call rhs the right-hand side of
  the rule. If the conclusion of the rule is an EQUAL term we call it
  an equality rule. Otherwise, it is a propositional equivalence
  rule. If there are no hypotheses, k=0, we say the rule is an
  unconditional rewrite rule; otherwise it is conditional.

  ACL2 allows several special cases of the shapes above. See
  [special-cases-for-rewrite-rules], but come back here and continue.

  A rewrite rule makes ACL2 seek out occurrences of terms that match
  the left-hand side of the rule and replace those occurrences using
  the right-hand side, provided all the hypotheses rewrite to true in
  the context of the application of the rule.

  That is, the left-hand side is treated as a pattern that triggers the
  rule. The hypotheses are conditions that have to be proved in order
  for the rule to fire. The right-hand side is the replacement and is
  put into the formula where the pattern occurred.

  Now for some clarifications. ACL2 only considers enabled rules. And
  ACL2 will use a propositional rule to replace a target only if the
  target occurs in a propositional place in the formula. Generally
  that means it occurs in the argument of a propositional connective,
  like AND, OR, NOT, IMPLIES, and IFF, or in the test of an IF. When
  we say that the left-hand side of the rule must match the target we
  mean that we can instantiate the variables in the rule to make the
  left-hand side identical to the target. To relieve or establish the
  hypotheses of the rule, ACL2 just applies other rewrite rules to
  try to prove the instantiated hypotheses from the assumptions
  governing the occurrence of the target. When ACL2 replaces the
  target, it replaces it with the instantiated right-hand side of the
  rule and then applies rewrite rules to that.

  If a hypothesis has variables that do not occur in the left-hand side
  of the rule, then the pattern matching process won't find values
  for those variables. We call those free variables. They must be
  instantiated before ACL2 can relieve that hypothesis. To
  instantiate them, ACL2 has to guess values that would make the
  hypothesis true in this context, i.e., true given the assumptions
  of the goal theorem. So if you're trying to prove

    (IMPLIES (AND (TRUE-LISTP A)
                  (MEMBER (CAR P) A)
                  (MEMBER (CDR P) A))
             ...)

  and the target you're rewriting is in the ``...'' part of the
  formula, the rewriter knows that (TRUE-LISTP A) (MEMBER (CAR P) A)
  and (MEMBER (CDR P) A) are true. So if a rewrite rule is considered
  and the rule has (member e x) as a hypothesis, where e is a free
  variable but x was bound to A in the pattern matching, then it will
  guess that e must be (CAR P) or (CDR P), even though there are many
  other possibilities that would make (MEMBER e A) true. Of course,
  whatever guess it makes must also satisfy all the other hypotheses
  that mention e in the rule. It simply isn't very imaginative at
  guessing!

  The most predictable rewrite rules have no free variables. You can
  add pragmatic advice to help ACL2 with free variables, telling it
  to try all the possibilities it finds, to try just the first, or
  even to compute a ``creative'' guess.

  It is possible to make the rewriting process loop forever, e.g., by
  rewriting alpha to beta with one set of rules and rewriting beta to
  alpha with another. Even a single rule can make the process loop;
  we'll show you an example of that later in the tutorial. ACL2 can
  handle commutativity rules without looping. It uses (equal (+ x y)
  (+ y x)) to replace (+ B A) by (+ A B), but not vice versa. (It is
  sensitive to alphabetic ordering when dealing with permutative
  rules.)

  Logically equivalent formulas can generate radically different
  rewrite rules! Rearranging the propositional structure of the
  formula or swapping the left and right sides of an equality --
  while having no effect on the mathematical meaning of a formula --
  can have a drastic impact on the pragmatic meaning as a rule. To
  see an illustration of this, see
  [equivalent-formulas-different-rewrite-rules].

  Developing an effective set of rewrite rules is key to success at
  using ACL2. We'll look more at this later in the tutorial.

  If you are working your way through the tutorial for the theorem
  prover, use your browser's Back Button now to return to
  [introduction-to-the-theorem-prover]. If you are reading just about
  how to make effective rewrite rules, go on to
  [introduction-to-rewrite-rules-part-2].")
 (INTRODUCTION-TO-REWRITE-RULES-PART-2
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "How to arrange rewrite rules

  You should design your rewrite rules to canonicalize the terms in
  your problem, that is, your rules should drive terms into some
  normal form so that different but equivalent terms are rewritten
  into the preferred shape, making equivalent terms identical. You
  are very familiar with this idea from algebra, where you learned to
  normalize polynomials. Thus, when you see (2x + 6)(3x - 9) you
  automaticaly normalize it, by ``multiplying out and collecting like
  terms,'' to get (6x^2 - 54). This normalization strategy allows you
  to recognize equivalent terms presented differently, such as 6(x^2
  - 9).

  The ACL2 user is responsible for making up the rules. (Standard
  ``books'' -- files of ACL2 definitions and theorems -- can often
  provide rules for some sets of functions, e.g., arithmetic.) This
  is a heavy burden on you but it means you are in charge of your own
  normal forms. For example, if you use the function nthcdr, which
  returns the nth cdr of a list, you might see both (cdr (nthcdr i
  x)) and (nthcdr i (cdr x)). These two expressions are equivalent
  but not identical. You will want to decide which you want to see
  and prove the rewrite rule that converts the other to that
  preferred form.

  Most good users develop an implicit ordering on terms and rewrite
  ``heavy'' terms to ``lighter'' ones. This insures that there are no
  loops in their rewrite rules. But this ordering changes according
  to the user and the problem.

  Generally, the lightest terms are primitives such as IF, EQUAL,
  arithmetic, etc. Functions defined without explicit recursion tend
  to be ignored because they are just expanded away (but see below).
  Recursively defined functions tend to be heavier than any other
  recursive function used in their definitions, so, for example, if
  rev is defined in terms of append, rev is heavier than append. But
  the size and subtlety of recursively defined functions also affects
  their place in the ordering.

  But rewrite rules are surprisingly subtle. Recall that a rewrite rule
  can be made from a formula of this form:

    (IMPLIES (AND hyp1 ... hypk)
             (eqv lhs rhs))

  where eqv is either EQUAL or IFF, and lhs is a call of a function
  other than IF. In such a rule, lhs is the pattern responsible for
  triggering the rule, the hypi are conditions which must be
  satisfied by the context of the target being rewritten, and rhs is
  the replacement. The replacement only happens if the rule is
  enabled, the pattern matches, the conditions are satisfied, and (in
  the case of an IFF rule) the target occurs propositionally. There
  are other heuristic restrictions that we won't discuss here.

  So how should you phrase a theorem in order to make it an effective
  rule?

  General Principles:

  * Strengthen the Formula: The fewer hypotheses a formula has the
  better the rewrite rule formed from it. The more general the
  left-hand side the better the rule. The fewer free variables in the
  hypothesis, the better. The idea is to form a rule that fires
  predictably. Later in this tutorial you'll get some practice
  formulating strong rules.

  * Choosing the Conclusion: If a lemma is an implication, you have to
  choose what the conclusion will be. (You'll also have to ``orient''
  that conclusion by choosing a left-hand side and a right-hand side,
  but we discuss that below). You can swap the conclusion and any
  hypothesis by negating both, producing a different conclusion.
  There are generally two (possibly conflicting) heuristics for
  deciding which part of the formula should be the conclusion:

  Choosing the Conclusion Heuristic 1: Can you make the conclusion be
  an EQUAL or IFF expression that has a ``heavy term'' on one side?
  That will make a rule that replaces the heavy term with a lighter
  one. We discuss this situation more below.

  Choosing the Conclusion Heuristic 2: Can you make the conclusion be a
  non-propositional term that contains all the variables mentioned in
  the hypotheses? By ``non-propositional'' we mean a term that is not
  just the propositional combination (e.g., with AND or OR) of other
  terms but instead some call of some ``heavy'' function? If your
  conclusion contains all the variables mentioned in the hypotheses,
  matching it will instantiate all the variables in the hypotheses.
  That way ACL2 will not have to guess instantiations of unbound
  variables when it tries to relieve the hypotheses. It is not very
  good at guessing.

  * Orienting the Conclusion: If the conclusion is an EQUAL or an IFF,
  you have to decide which is the left-hand side and which is the
  right. If the conclusion is (NOT lhs), then the left-hand side is
  lhs and the right-hand side is NIL. If the conclusion is not an
  EQUAL, an IFF, or a NOT then the conclusion itself will be the
  left-hand side and the right-hand side will be T. If your lemma was
  created by looking at Key Checkpoints while using The Method, the
  left-hand side should match some term in that checkpoint.

  Remember, the left-hand side is the ``trigger'' that will make the
  rule fire. It is the pattern that ACL2 will be looking for.

  * Pay attention to the free variables: Look at the variables that
  occur in the pattern (the left-hand side) and compare them to the
  variables that occur in the hypotheses. Does some hypothesis
  contain a variable, say v, that is not in the pattern? We call v a
  free variable because it will not be assigned a value (``bound'')
  by the process of pattern matching. ACL2 will have to guess a value
  for v. If some hypothesis contains v as a free variable, ask
  whether more than one hypothesis contains v? ACL2 uses the first
  hypothesis containing a free v to guide its guess for v. To
  ``guess'' a value for v, ACL2 uses that hypothesis as a pattern and
  tries to match it against the assumptions in the checkpoint formula
  being proved. This means that key hypothesis must be in normal
  form, to match the rewritten assumptions of the goal. It also means
  that you should reorder the hypotheses to put the most unusual
  hypothesis containing a free v first in the list of conjuncts. For
  example, if v is free in two hypotheses, (natp v) and (member
  (nthcdr v a) b), then we recommend putting the member term first.
  There are likely to be many terms in the goal satisfying the natp
  hypothesis -- or none if natp has expanded to an integer inequality
  -- while there are likely to be few terms satisfying the member
  hypothesis, especially if a and b are bound by the left-hand side
  of the rule.

  Here are some (possibly conflicting) heuristics for choosing the
  left-hand side:

  Choose a Left-Hand Side that Occurs in a Key Checkpoint: If you use
  the Method you will tend to do this anyway, because you'll see
  terms in the Key Checkpoints that you want to get rid of. But many
  moderately experienced users ``look ahead'' to how the proof will
  go and formulate a few anticipatory rules with the idea of guiding
  ACL2 down the preferred path to the proof. When you do that, you
  risk choosing left-hand sides that won't actually arise in the
  problem. So when you formulate anticipatory rules, pay special
  attention to the functions and terms you put in the left-hand
  sides. The next few paragraphs deal with specific cases.

  Avoid Non-Recursive Functions in the Left-Hand Side: If the left-hand
  side contains a call of a defined function whose definition is not
  recursive, then it will almost never match any target in the
  formula being rewritten unless the function is disabled. Suppose
  for example you have defined SQ so that (SQ x) is (* x x). Suppose
  you considered choosing a left-hand side like (+ (SQ x) (SQ y)).
  Suppose you hoped it would hit the target (+ (SQ A) (SQ B)) in some
  formula. But when ACL2 simplifies the formula, it will first
  rewrite that target to

    (+ (* A A) (* B B))

  by expanding the definition of SQ, since it could do so without
  introducing any recursive calls. But now the target won't match
  your rule. By choosing a left-hand side that occurs in a Key
  Checkpoint (and is not one of a handful of abbreviations ACL2 uses
  in its output like AND, NOT), you'll avoid this problem since SQ
  will have already been expanded before the Key Checkpoint is
  printed.

  Disable Non-Recursive Functions: If you insist on a left-hand side
  that contains calls of non-recursive functions, remember to disable
  those non-recursive functions after you've proved all the rules you
  want about them. By disabling SQ you can prevent ACL2 from
  expanding the definition as it did above. Sometimes you will define
  a function non-recursively to formalize some concept that is common
  in your application and you will want to create a sort of algebra
  of rules about the function. By all means do so, so you can conduct
  your formal reasoning in terms of the concepts you're informally
  manipulating. But after proving the required laws, disable the
  non-recursive concept so that ACL2 just uses your laws and not the
  messy definition.

  Choose a Left-Hand Side Already in Simplest Form: This is a
  generalization of the advice above. If any rule will rewrite your
  left-hand side, it will prevent your rule from matching any target.
  For example, if you write a left-hand side like (foo (car (cons x
  y))) then it would never match any target! The reason is that even
  if (FOO (CAR (CONS A B))) did occur in some goal formula, before
  ACL2 would try your rule about foo it will use the obvious rule
  about CAR and CONS to transform your imagined target to (FOO A).
  Thus, your rule would not match. So you have to keep in mind all
  your other rules when you choose a left-hand side (and when you
  choose the hypotheses to guide free variable selection). If you
  always choose a pattern that matches a term in a Key Checkpoint,
  you avoid this problem. Also see [community-books] example
  books/demos/knuth-bendix-problem-1.lisp.

  Make Sure the Left-Hand Side is ``Heavier'' than the Right: Sometimes
  this is obvious, as when you choose (REV (REV x)) for the left-hand
  side and x for the right. But what do you about (REV (APPEND x y))
  versus (APPEND (REV y) (REV x))? Most of the time we choose to
  drive the heaviest function (in this case REV) down toward the
  variables, lifting the lighter function (APPEND) up so that we can
  reason about the lighter function's interaction with the
  surrounding ``matrix'' of the formula. So we'd rewrite (REV (APPEND
  x y)) to (APPEND (REV y) (REV x)), not vice versa.

  Alternative Ways to Talk About the Same Thing: If your problem and
  specification use two different ways to talk about the same thing,
  choose one form and rewrite the other into that form. For example,
  the ACL2 built-in nth returns the nth element of a list, and the
  built-in function nthcdr returns the nth cdr of a list. They are
  defined independently. But (nth n x) is the same thing as (car
  (nthcdr n x)). Since nth can be expressed in terms of nthcdr but
  not vice versa, it is clear we should prove (equal (nth n x) (car
  (nthcdr n x))) as a rewrite rule if both nth and nthcdr are
  involved in the problem.

  Don't Let Computational Efficiency Dictate the Terms: If you have two
  functions that are equivalent (perhaps one was defined to be
  computationally more efficient), prove their equivalence as a
  rewrite rule that eliminates the more complicated function. An
  extreme example would be a model that uses a sophisticated data
  structure (like a balanced binary tree, red-black tree, ordered
  array, or hash table) to implement something simple like an
  association of keys to values. By proving the equivalence as stated
  you can eliminate the messy function early and do the bulk of your
  reasoning in terms of its simple specification.

  The best ACL2 users become very good at keeping all these things in
  mind when designing their rewrite rules. Practice makes perfect.
  Don't be afraid during your learning of ACL2 to undo the rules you
  first invented and try to make better ones.

  Finally, be patient! There will be times when you think to yourself
  ``Why should I spend my time thinking of rules that guide ACL2? I
  know the proof!'' There are two reasons. First, you may ``know''
  the proof but you may well be wrong and part-way through this whole
  exercise you may realize that you're missing a major hypothesis or
  special case that breaks your whole conception of the problem. The
  proof is in the details. Second, most of the time the library of
  rules you develop in this process will be used over and over again
  on variants of the main problem in the months and years ahead. This
  is sometimes called the proof maintenance problem. Theorems don't
  suffer bit rot! But the artifacts you're modeling change and you
  will need to prove new versions of old theorems. A good general
  purpose library makes this much easier.

  We now recommend that you practice inventing strong rules; see
  [strong-rewrite-rules].

  For advice on handling specific kinds of formulas and definitions,
  see [specific-kinds-of-formulas-as-rewrite-rules].

  For more information about the rewriter works and how rules are
  created, see [further-information-on-rewriting].

  If you are working your way through the tutorial introduction to the
  theorem prover, use your browser's Back Button to return to
  [introduction-to-the-theorem-prover].")
 (INTRODUCTION-TO-THE-DATABASE
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "How to update the database

  We assume you've read [introduction-to-rewrite-rules-part-1] and
  [introduction-to-key-checkpoints].

  The theorem prover's heuristics are influenced by the database of
  rules and the enabled/disabled status of the rules. You can think
  of the database as a global hint, potentially affecting all parts
  of a proof attempt.

  However, in addition to the ``global hint,'' it is possible to give
  local hints that affect the theorem prover's behavior on specific
  subgoals. We discuss the database here and discuss local hints
  later in the tutorial.

  The theorem prover's ``database'' is called the ACL2 world. You
  change the world by issuing commands called events. The most common
  events are defun for defining new functions (and predicates) and
  defthm for proving new theorems. Both add rules to the database.
  Here are some commonly used events.

  We recommend that upon the first reading of this tutorial you do not
  follow the links shown below! The links take you into the hypertext
  reference manual, where it is easy to get lost unless you're
  looking for detail about one specific feature.

  See [defun] [{ICON}] to define a new function or predicate symbol.
  Definitional axioms are just a kind of rewrite rule, but defun may
  also add rules affecting the determination of the type of a term
  and rules affecting the induction analysis. When you issue a defun
  command you will always supply the name of the function or
  predicate, the list of formal parameters, v1,...vn, and the body:

    (defun name (v1 ... vn)
       body)

  If the event is accepted, a definitional axiom is added to the world,
  (name v1...vn)=body, stored as a special kind of unconditional
  rewrite rule. However, the defun event may require theorems to be
  proved. Specifically, measure theorems must be proved to establish
  that recursively defined functions always terminate, by proving
  that an ordinal measure of the formal parameters decreases in a
  well-founded way in every recursive call. In addition, if guards
  are being used to declare the expected domain of the newly defined
  function, guard theorems might be proved to establish that all
  functions stay within their expected domains. In any case, you may
  provide additional information to the defun event, coded as part of
  the declaration that Common Lisp allows:

    (defun name (v1 ... vn)
       (declare (xargs ...))
       body)

  The xargs (``extra arguments to defun'') entry may specify, among
  other things, the measure to use in the termination proof, hints
  for use by the prover during the termination proof, the guard of
  the new function, and hints for use by the prover during the guard
  verification step.

  See [defthm] [{ICON}] to prove a theorem and to add it as a rule of
  one or more specified rule-classes. When you issue a defthm command
  you always specify a name for the theorem you're trying to prove
  and a formula stating the theorem. You may optionally supply some
  local hints as we describe later in the tutorial. You may also
  optionally supply some rule classes indicating how you want your
  formula stored as a rule, after it is proved. We discuss the defthm
  rule classes below.

  See [in-theory] [{ICON}] to enable or disable rules. Rules have names
  derived from the names you give to functions and theorems, e.g.,
  (:REWRITE LEFT-IDENTITY-OF-FOO . 2) for the second rewrite rule you
  created from the theorem named LEFT-IDENTITY-OF-FOO. Rule names are
  called runes. A theory is just a set (list) of runes. The current
  theory is the list of enabled runes and the in-theory event can add
  runes to or delete runes from the current theory.

  See [include-book] [{ICON}] to change the world by loading a
  certified file of other events. The most common use of include-book
  is to load ``community books'' -- books written by other ACL2 users
  who have released them for distribution to the community. The most
  common books loaded are probably the arithmetic books:

    ; * for the most elementary arithmetic, needed for any problem
    ;   that involves even simple addition and multiplication like
    ; (+ x (* 2 y) -3):

        (include-book \"arithmetic/top-with-meta\" :dir :system)

    ; * for more complicated arithmetic involving non-linear terms like
    ; (* x y), (expt x (+ i j)), and floor and mod

        (include-book \"arithmetic-5/top\" :dir :system)

  But for a complete list of system books, see [books] [{ICON}].

  See [certify-book] [{ICON}] to certify a file of events for reuse
  later.

  See [defconst] [{ICON}] to define a new constant, allowing you to
  write a symbol, e.g., *weekdays* in place of some object, e.g.,
  '(MON TUE WED THU FRI) in formulas.

  See [defmacro] [{ICON}] to define a new syntactic abbreviation. The
  macro facility in Lisp is quite powerful, allowing you to compute
  the form to which some type-in expands. For example, the primitive
  macro COND is defined so that (COND ((P X) 1)((Q X) 2)(T 3))
  expands to (IF (P X) 1 (IF (Q X) 2 3)).

  See [defstobj] [{ICON}] to introduce a single-threaded object that
  your functions may modify ``destructively'' provided they follow
  strict syntactic rules.

  See [events] [{ICON}] for a complete list of the ACL2 events. There
  are events to allow mutually recursive definitions, to introduce
  some new function symbols constrained to satisfy given axioms, to
  allow the temporary introduction of a ``local'' event to help prove
  some goal theorem and then disappear, to provide the power of
  first-order quantification and a choice operator, and many other
  features.

  There are also commands that allow you to inspect the world, e.g., to
  print the command that introduced a given name, to show all the
  commands back to a certain one, undo the last command or more
  generally roll-back to an earlier command. See [history] [{ICON}].

  The Defthm Rule-Classes

  We've already discussed the key role that rules play in controlling
  the behavior of the system. New rules are introduced primiarily
  with the defthm event, though defun and other events may introduce
  rules.

  To prove formula and generate, say a :rewrite rule and a :generalize
  rule from it, you would write

    (defthm name
            formula
            :rule-classes (:rewrite :generalize))

  If you wanted to rearrange the shape of the formula before generating
  the :rewrite rule you could provide a :corollary modifier to the
  :rewrite rule class:

    (defthm name
            formula
            :rule-classes ((:rewrite :corollary ...)
                           :generalize)).

  There are many classes of rules, affecting different parts of the
  system. Each class is denoted by a keyword, e.g., :REWRITE,
  :LINEAR, etc. You are responsible for specifying the class(es) of
  rules to be generated from a given formula and several different
  rules (possibly of different classes) may be derived from a single
  formula. Each class admits optional modifiers that allow you finer
  control over each rule. Each class admits the :corollary modifier
  with which you can rearrange the formula before a rule of that
  class is generated. This allows you to state a theorem in its most
  elegant form for publication purposes but store it as a rule with
  the most appropriate hypotheses and conclusion. Other modifiers
  tend to be specific to certain rule classes, but for example,
  :rewrite rule modifiers include an optional limit on the depth of
  backchaining and options for handling free variables.

  We give some links below to other classes of rules. However, we
  recommend that you not follow these links upon your first reading
  of this tutorial!

  See [rewrite] [{ICON}] for a description of how to create a rewrite
  rule.

  See [linear] [{ICON}] for a description of how to store theorems
  concluding with arithmetic inequalities. The trouble with storing

    (<= (len (delete e x)) (len x))

  as a rewrite rule is that it only matches instances of that
  inequality and thus fails to match

    (<= (LEN (DELETE E X)) (+ 1 (LEN X)))

  ACL2 contains an extensible linear arithmetic decision procedure and
  by storing inequalities as :linear rules you can make that decision
  procedure aware of the basic inequalities between non-primitive
  numerically valued terms.

  See [equivalence] [{ICON}], see [congruence] [{ICON}], and see
  [refinement] [{ICON}] to learn how to introduce a new equivalence
  relation to the rewriter. For example, suppose you define set-equal
  so that it returns t precisely if its two arguments are lists
  containing the same elements, regardless of order or number of
  occurrences. Note that under this sense of ``equivalence'', (rev x)
  is the identity function and append is commutative, for example.

    (set-equal (rev x) x)

    (set-equal (append x y) (append y x))

  You can make ACL2 use these two theorems as :rewrite rules to replace
  instances of (REV x) and (APPEND x y) by set-equal terms, even
  though the results are not actually EQUAL. This is possible
  provided the target occurs in a context admitting set-equal as a
  congruence relation. For example, the :congruence rule:

    (implies (set-equal a b)
             (iff (member e a)
                  (member e b)))

  gives the rewriter permission to use the above set-equal rules as
  rewrite rules in the second argument of any member expression being
  used in a propositional way.

  See [elim] [{ICON}] for a description of how to make the system adopt
  a ``change of variable'' tactic that can trade in destructor
  functions for constructor functions. In analogy with how ACL2
  eliminates (CAR X) and (CDR X) by replacing X with (CONS A B), you
  can make it eliminate other destructors. For example, the community
  book \"arithmetic-5/top\" provides an elim rule that eliminates
  (floor x y) and (mod x y) by replacing x by (+ r (* y q)), so that
  the floor expression becomes q and the mod expression becomes r.
  When introducing your own elim rules you will probably also need to
  introduce generalize rules (see below) so that the new variables
  are appropriately constrained.

  See [generalize] [{ICON}] for a description of how you can make ACL2
  restrict the new variables it introduces when generalizing. ACL2
  will sometimes replace a term by a new variable and with generalize
  rules you can insure that the new variable symbol has certain
  properties of the term it replaces.

  See [induction] [{ICON}] for a description of how to tailor the
  inductions suggested by a term. Most of the time when ACL2 chooses
  the ``wrong'' induction, the easiest fix is with a local :induct
  hint (see below). But if the same problem arises repeatedly in
  several theorems, you might want to ``educate'' ACL2's induction
  heuristic.

  For a complete list of rule-classes, See [rule-classes] [{ICON}].

  If you are reading this as part of the tutorial introduction to the
  theorem prover, use your browser's Back Button now to return to
  [introduction-to-the-theorem-prover].")
 (INTRODUCTION-TO-THE-TAU-SYSTEM
  (TAU-SYSTEM)
  "A decision procedure for runtime types

  This doc topic is the main source of information about the tau system
  and discusses the general idea behind the procedure and how to
  exploit it.

  A ``Type-Checker'' for an Untyped Language

  Because ACL2 is an untyped language it is impossible to type check
  it. All functions are total. An n-ary function may be applied to
  any combination of n ACL2 objects. The syntax of ACL2 stipulates
  that (fn a1...an) is a well-formed term if fn is a function symbol
  of n arguments and the ai are well-formed terms. No mention is made
  of the ``types'' of terms. That is what is meant by saying ACL2 is
  an untyped language.

  Nevertheless, the system provides a variety of monadic Boolean
  function symbols, like [natp], [integerp], [alistp], etc., that
  recognize different ``types'' of objects at runtime. Users
  typically define many more such recognizers for domain-specific
  ``types.'' Because of the prevalence of such ``types,'' ACL2 must
  frequently reason about the inclusion of one ``type'' in another.
  It must also reason about the consequences of functions being
  defined so as to produce objects of certain ``types'' when given
  arguments of certain other ``types.''

  Because the word ``type'' in computer science tends to imply
  syntactic or semantic restrictions on functions, we avoid using
  that word henceforth. Instead, we just reason about monadic Boolean
  predicates. You may wish to think of ``tau'' as synonymous with
  ``type'' but without any suggestion of syntactic or semantic
  restrictions.

  Design Philosophy

  The following basic principles were kept in mind when developing tau
  checker and may help you exploit it.

  (1) The tau system is supposed to be a lightweight, fast, and helpful
  decision procedure for an elementary subset of the logic focused on
  monadic predicates and function signatures.

  (2) Most subgoals produced by the theorem prover are not in any
  decidable subset of the logic! Thus, decision procedures fail to
  prove the vast majority of the formulas they see and will be net
  time-sinks if tried too often no matter how fast they are.

  Tau reasoning is used by the prover as part of preprocess-clause, one
  of the first proof techniques the system tries. The tau system
  filters out ``obvious'' subgoals. The tau system is only tried when
  subgoals first enter the waterfall and when they are stable under
  simplification.

  (3) The tau system is ``benign'' in the sense that the only way it
  contributes to a proof is to eliminate (prove!) subgoals. It does
  not rewrite, simplify, or change formulas. Tau reasoning is not
  used by the rewriter. The tau system either eliminates a subgoal by
  proving it or leaves it unchanged.

  (4) It is impossible to infer automatically the relations between
  arbitrary recursively defined predicates and functions. Thus, the
  tau system's knowledge of tau relationships and function signatures
  is gleaned from theorems stated by the user and proved by the
  system.

  (5) Users wishing to build effective ``type-checkers'' for their
  models must learn how rules affect the tau system's behavior. There
  are two main forms of tau rules: those that reveal
  inclusion/exclusion relations between named tau predicates, e.g.,
  that 16-bit naturals are also 32-bit naturals,

    (implies (n16p x) (n32p x)),

  and signatures for all relevant functions, e.g., writing a 32-bit
  natural to a legal slot in a register file produces a register
  file:

    (implies (and (natp n)
                  (< n 16)
                  (n32p val)
                  (register-filep regs))
             (register-filep (update-nth n val regs))).

  For a complete description of acceptable forms see :[tau-system].

  (6) The tau system is ``greedy'' in its efforts to augment its
  database. Its database is potentially augmented when rules of any
  :rule-class (see :[rule-classes]) are proved. For example, if you
  make a :[rewrite] or :[type-prescription] rule which expresses a
  relationship between one tau and another (e.g., that (P x) implies
  (Q x)), ACL2 will build it into the tau database. The rule-class
  :[tau-system] can be used to add a rule to the tau database without
  adding any other kind of rule.

  (7) Greediness is forced into the design by benignity: the tau system
  may ``know'' some fact that the rewriter does not, and because tau
  reasoning is not used in rewriting, that missing fact must be
  conveyed to the rewriter through some other class of rule, e.g., a
  :[rewrite] or :[type-prescription] or :[forward-chaining] rule. By
  making the tau system greedy, we allow the user to program the
  rewriter and the tau system simultaneously while keeping them
  separate. However, this means you must keep in mind the effects of
  a rule on both the rewriter and the tau system and use
  :[tau-system] rules explicitly when you want to ``talk'' just to
  the tau system.

  (8) Tau rules are built into the database with as much preprocessing
  as possible (e.g., the system transitively closes
  inclusion/exclusion relationships at rule-storage time) so the
  checker can be fast.

  (9) For speed, tau does not track dependencies and is not sensitive
  to the enabled/disabled status (see [enable] and [disable]) of
  rules, other than [executable-counterpart] rules. Once a fact has
  been built into the tau database, the only way to prevent that fact
  from being used is by disabling the entire tau system, by disabling
  (:[executable-counterpart] tau-system). If any tau reasoning is
  used in a proof, the rune (:[executable-counterpart] tau-system) is
  reported in the summary. For a complete list of all the runes in
  the tau database, evaluate (global-val 'tau-runes (w state)). Any
  of these associated theorems could have been used.

  These design criteria are not always achieved! For example, the tau
  system's ``greediness'' can be turned off (see
  [set-tau-auto-mode]), the tau database can be regenerated from
  scratch to ignore disabled rules (see [regenerate-tau-database]),
  and disabling the [executable-counterpart] of a tau predicate
  symbol will prevent the tau system from trying to run the predicate
  on constants. The tau system's benignity can be frustrating since
  it might ``know'' something the rewriter does not. More
  problematically, the tau system is not always ``fast'' and not
  always ``benign!'' The typical way tau reasoning can slow a proof
  down is by evaulating expensive tau predicates on constants. The
  typical way tau reasoning can hurt a previously successful proof is
  by proving some subgoals (!) and thus causing the remaining
  subgoals to have different [clause-identifier]s, thus making
  explicit hints no longer applicable. We deal with such problems in
  [dealing-with-tau-problems].

  Technical Details

  The tau system consists of both a database and an algorithm for using
  the database. The database contains theorems that match certain
  schemas allowing them to be stored in the tau database. Roughly
  speaking the schemas encode ``inclusion'' and ``exclusion''
  relations, e.g., that natp implies integerp and that integerp
  implies not consp, and they encode ``signatures'' of functions,
  e.g., theorems that relate the output of a function to the input,
  provided only tau predicates are involved.

  By ``tau predicates'' we mean the application of a monadic
  Boolean-valued function symbol, the equality of something to a
  quoted constant, an arithmetic ordering relation between something
  and a rational constant, or the logical negation of such a term.
  Here are some examples of tau predicates:

    (natp i)
    (not (consp x))
    (equal y 'MONDAY)
    (not (eql 23 k))
    (< 8 max)
    (<= max 24)

  Synonyms for [equal] include [=], [eq], and [eql]. Note that negated
  equalites are also allowed. The arithmetic ordering relations that
  may be used are [<], [<=], [>=], and [>]. One of the arguments to
  every arithmetic ordering relation must be an integer or rational
  constant for the term to be treated as a tau predicate.

  A ``tau'' is a data object representing a set of signed (positive or
  negative) tau predicates whose meaning is the conjunction of the
  literals in the set.

  When we say that a term ``has'' a given tau we mean the term
  satisfies all of the recognizers in that tau.

  The tau algorithm is a decision procedure for the logical theory
  described (only) by the rules in the database. The algorithm takes
  a term and a list of assumptions mapping subterms (typically
  variable symbols) to tau, and returns the tau of the given term.

  When the system is called upon to decide whether a term satisfies a
  given monadic predicate, it computes the tau of the term and asks
  whether the predicate is in that set. More generally, to determine
  if a term satisfies a tau, s, we compute a tau, r, for the term and
  ask whether s is a subset of r. To determine whether a constant, c,
  satisfies tau s we apply each of the literals in s to c. Evaluation
  might, of course, be time-consuming for complex user-defined
  predicates.

  The tau database contains rules derived from definitions and theorems
  stated by the user. See :[tau-system] for a description of the
  acceptable forms of tau rules.

  To shut off the greedy augmentation of the tau database, see
  [set-tau-auto-mode]. This may be of use to users who wish to
  tightly control the rules in the tau database. To add a rule to the
  tau database without adding any other kind of rule, use the rule
  class :[tau-system].

  There are some slight complexities in the design related to how we
  handle events with both :tau-system corollaries and corollaries of
  other :rule-classes, see [set-tau-auto-mode].

  To prevent tau reasoning from being used, disable the
  :[executable-counterpart] of tau-system, i.e., execute

    (in-theory (disable (:executable-counterpart tau-system)))

  or, equivalently,

    (in-theory (disable (tau-system)))

  To prevent tau from being used in the proof of a particular subgoal,
  locally disable the :[executable-counterpart] of tau-system with a
  local :in-theory hint (see [hints]).

  The event command [tau-status] is a macro that can be used to toggle
  both whether tau reasoning is globally enabled and whether the tau
  database is augmented greedily. For example, the event

    (tau-status :system nil :auto-mode nil)

  prevents the tau system from being used in proofs and prevents the
  augmentation of the tau database by rules other than those
  explicitly labeled :[tau-system].

  To see what the tau system ``knows'' about a given function symbol
  see [tau-data]. To see the entire tau database, see [tau-database].
  To regenerate the tau database using only the runes listed in the
  current enabled theory, see [regenerate-tau-database].


Subtopics

  [Dealing-with-tau-problems]
      Some advice on dealing with problems caused by the tau system

  [Future-work-related-to-the-tau-system]
      Some tau system problems that we hope someone will address

  [Regenerate-tau-database]
      Regenerate the tau database relative to the current enabled theory")
 (INTRODUCTION-TO-THE-THEOREM-PROVER
  (ACL2-TUTORIAL)
  "How the theorem prover works -- level 0

  Software is complex, and ACL2 is a piece of software that is used to
  analyze software -- adding another layer of complexity.
  Furthermore, instead of being limited to static analysis for
  certain fixed properties, ACL2 allows you -- indeed, forces you --
  to formalize the problem and the questions. It ``knows'' nothing
  inherent about your problem before you start to interact with it.
  But it can be used to help answer the most complicated questions
  you can ask about software.

  All this is to say that it is not the kind of tool that you just
  install and then start to use effectively. So OK, you've installed
  it or confirmed that you can invoke it. Good for you. Now you have
  to learn how to use it! Your success ultimately comes down to your
  understanding of your problem domain and your appropriate
  exploitation of ACL2's strengths and avoidance of its weaknesses.
  So put aside the idea of sitting down and interacting with it.
  Instead, learn about it.

  We assume you know some of the [industrial applications] of ACL2.
  Realizing that such things can be done may sustain you during the
  long learning curve! We also assume you have taken both the [Flying
  Tour] and the [Walking Tour]. The tours give you a good overview of
  the whole system where this tutorial focuses on how to use the
  prover itself.

  If you haven't visited these links, please do so now.

  This tutorial will take you several hours -- maybe several days -- to
  work through. Do not breeze through it as you might a blog. Think
  your way through it. Remember what you read. Do not take short
  cuts. If you start to use ACL2 before you really know how, it will
  only frustrate you.

  We recommend that you read this tutorial with an HTML browser so that
  you can see which links you've followed and which you have not. To
  give you a sense of what is in store, here is a map of this
  document. But don't navigate through it from here! Read it
  linearly, following the links when the text directs you to.

    [introduction-to-the-theorem-prover]
        [introduction-to-rewrite-rules-part-1]
            [special-cases-for-rewrite-rules]
            [equivalent-formulas-different-rewrite-rules]
        [introduction-to-key-checkpoints]
            [dealing-with-key-combinations-of-function-symbols]
            [generalizing-key-checkpoints]
            [post-induction-key-checkpoints]
        [introduction-to-rewrite-rules-part-2]
            [strong-rewrite-rules]
                [practice-formulating-strong-rules]
                    [practice-formulating-strong-rules-1]
                    [practice-formulating-strong-rules-2]
                    [practice-formulating-strong-rules-3]
                    [practice-formulating-strong-rules-4]
                    [practice-formulating-strong-rules-5]
                    [practice-formulating-strong-rules-6]
            [specific-kinds-of-formulas-as-rewrite-rules]
            [further-information-on-rewriting]
        [introduction-to-the-database]
        [introduction-to-hints]
        [introduction-to-a-few-system-considerations]
        [introductory-challenges]
            [introductory-challenge-problem-1]
            [introductory-challenge-problem-2]
            [introductory-challenge-problem-3]
            (there are others but at least do a few)
        [frequently-asked-questions-by-newcomers]

  If any of the links above are marked as ``visited'' by your browser,
  use your browser's tools menu to mark all links as unvisited. As
  you can see, we really think you'll get the most out of this
  document if you take it seriously. As you read, you will see some
  links to ``advanced'' topics. These are marked with a tiny warning
  sign, ``[{ICON}]''. They lead out of this linear tutorial and into
  ACL2's hypertext reference manual. We recommend that you not visit
  any of these advanced links until you have read the entire tutorial
  at least once.

  After you finish this tutorial material, we recommend that you look
  at the ACL2 Demos, at the ``Demos'' link of the {ACL2 home page |
  http://www.cs.utexas.edu/users/moore/acl2}.

  Most users of ACL2 have bought the book

  Computer-Aided Reasoning: An Approach, Kaufmann, Manolios, and Moore,
  Kluwer Academic Publishers, June, 2000

  which is available {in paperback |
  http://www.lulu.com/content/1746161} from Lulu for approximately
  $20 (as of 2010). That book contains hundreds of exercises in
  programming, proof, and using The Method described here to prove
  theorems. Solutions to the exercises are online, as are {appendices
  |
  http://link.springer.com/content/pdf/bbm%3A978-1-4615-4449-4%2F1.pdf}
  that focus on some practical usage aspects. See this { web page
  about the book |
  http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html#Books},
  which also includes information about its companion (also available
  on Lulu) describing applications of ACL2, some of which are from
  industry.

  Using ACL2 is akin to having a partner in the theorem proving
  enterprise. It will do some of the work and you will do some of the
  work. It can't really be any other way because theorem proving is
  undecidable. You bring a quirkly, error-prone, creative insight to
  the problem, and ACL2 brings accuracy, logic, and perserverance.

  Here we describe a ``model'' of how the system works and introduce
  some of the ideas and terminology you'll use repeatedly when
  interacting with it.

  This article is about the theorem prover itself, not the programming
  language and not the logic. We assume you know enough about the
  ACL2 programming language that you can define simple functions, run
  them, and read and write ACL2 constants and terms. For some
  examples of what we'll take for granted about ACL2 programming, see
  [programming-knowledge-taken-for-granted].

  We also assume you know enough about logic to understand, for
  example, the words we use to talk about formulas and proofs. To see
  some examples of what we'll take for granted about your knowledge
  of logic terminology, see [logic-knowledge-taken-for-granted].

  When you give the theorem prover a goal formula to prove, it tries to
  prove it by breaking it down into subgoals, each of which must be
  proved in order to prove the original goal. This breaking apart of
  the goal is done by various proof techniques built into ACL2.
  Different proof techniques break the formula apart in different
  ways. For example, the simplifier rips apart the propositional
  structure to isolate the various cases and applies rewrite rules to
  simplify the subterms of the formula, while the induction engine
  will attempt to break the goal into some base cases and some
  induction steps.

  The theorem prover's behavior is affected by a database of rules
  derived from axioms, definitions, and previously proved theorems.
  The database also records the enabled status of each rule; only
  enabled rules are seen by the prover and you can set the status of
  a rule. There are many other user-settable switches and parameters
  affecting the behavior of the prover; you'll learn about some of
  them later.

  You guide the theorem prover most of the time simply by identifying
  lemmas for it to prove. (A lemma is just a theorem that you think
  is useful in the proofs of other theorems.)

  Why does this guide the theorem prover? Because every time you get
  the system to prove a theorem, it turns the theorem into a rule
  (unless you tell it not to) and stores the rule in the database.
  That changes how the prover behaves subsequently. But you determine
  the kind of rule ACL2 stores.

  To learn to ``drive'' the theorem prover you have to learn how
  various rules affect the system's behavior and how it turns proved
  formulas into rules. But before we discuss this, we discuss a more
  mathematical activity: how do you figure out the lemmas ACL2 will
  need in order for it to prove interesting theorems? ACL2 can often
  help you in this activity, if you use it in the right way.

  Here is the way we recommend you use ACL2.

  The Method.

  (1) you present ACL2 with the goal conjecture to prove

  (2) typically, it fails to prove it (or you abort its attempt), but
  it prints some Key Checkpoints

  (3) you look at the Key Checkpoints and decide that you know a fact
  that will help; this tutorial will present some helpful questions
  to keep in mind

  (4) you formalize your knowledge as a formula, along with directions
  for how ACL2 should turn the formula into a rule; this tutorial
  will tell you about the most commonly used rule, the rewrite rule

  (5) you recursively apply The Method to get ACL2 to prove your
  formula and to store it as the kind of rule you specified

  (6) go to step (1)

  Caveat: This approach simply won't work on some theorems! Basically,
  this is a ``troubleshooting'' approach, where you're letting ACL2
  determine the basic strategy and you're just helping with the
  subgoals. But for some theorems, ACL2's approach will be misguided
  and no amount of troubleshooting will salvage its strategy. You'll
  have a sense that this is happening when it happens because the
  formulas ACL2 presents to you will raise issues that feel
  irrelevant to you. The basic truth is that if you think a formula
  is always true there are usually strong intuitive reasons behind
  your belief. If you were asked to defend your belief, you'd start
  to explain your reasons and with training you can turn that into a
  proof. So when ACL2's formulas present you with things you haven't
  thought of either (a) you'll have an ``Ah ha!'' moment when you
  realize you hadn't considered that case or (b) you'll realize that
  ACL2's approach is different from your intuitive ``proof.''

  But, surprisingly often, the troubleshooting approach to finding
  proofs works quite well, especially as you rein in your
  expectations and develop a sense of what ACL2 can handle on its
  own. Of course, if you can decompose the proof into a couple of
  main lemmas before you start, so much the better: write down your
  sequence of lemmas, thinking about the rules you want them to
  generate, and get ACL2 to prove each of them before giving it the
  main theorem. This proof planning approach will gradually become an
  integral part of your use of The Method.

  The only mechanized help we can offer with The Method, aside from the
  theorem prover itself, are tools to help you manage the stack of
  subgoals it generates when, in step (5) you recursively apply The
  Method to a lemma. There are both Emacs and Eclipse tools
  available.

  To use The Method you have to read the Key Checkpoints printed at the
  very end of failed proof attempts, just after the line that reads:

    The key checkpoint goals, below, may help you to debug this failure.

  Most users do not read the output from successful proofs and do not
  read the output during a proof -- they just let it stream by as a
  sort of gestalt meter on the theorem prover's progress or lack
  thereof. For example, you'll be able to tell it is in a loop and
  needs to be interrupted.

  You will respond to most Key Checkpoints by formulating new lemmas
  for the system to prove and store as rules designed by you to alter
  ACL2's behavior so that it proves the Key Checkpoints. You will
  give each lemma a name and write some formula to express the
  mathematical idea. You'll command ACL2 to prove it by typing:

    (defthm name
            formula
            ...)

  In the ``...'' you may provide two other kinds of information: hints
  for how to prove formula and directives, called rule-classes, for
  how to convert formula into a rule after it has proved formula.
  Note that you are in charge of determining what kind of rule ACL2
  generates! There are over a dozen different types of rules with
  many opportunities to specialize each type. But the most common
  kind of rule you'll want to generate is a rewrite rule.

  We recommend that you read the following topics in the following
  order, without skipping anything except links into the ACL2 User's
  Manual, which are marked by the little warning sign, ``[{ICON}]''.

  (1) See [introduction-to-rewrite-rules-part-1] to read about the use
  and design of rewrite rules.

  (2) See [introduction-to-key-checkpoints] to see how to use The
  Method to help you design rules.

  (3) See [introduction-to-rewrite-rules-part-2] for general guidance
  on how to turn formulas into effective rules.

  (4) See [introduction-to-the-database] to see how to issue commands
  that build different kinds of rules and that affect the enabled
  status of existing rules.

  (5) See [introduction-to-hints] to see how to give the prover hints
  for how to prove specific theorems or even subgoals of specific
  proof attempts.

  (6) See [introduction-to-a-few-system-considerations] for a few words
  about system aspects of interacting with ACL2.

  (7) See [introductory-challenges] for a graduated sequence of good
  challenge problems for the new user to tackle. Do not skip this
  section! It is here that you really learn how to use ACL2 -- by
  using it.

  (8) See [frequently-asked-questions-by-newcomers] for a list of
  questions that new users frequently ask, answered mainly by
  providing links into the ACL2 User's Manual. We recommend that you
  skim through these questions and remember that you can find the
  answers here later. We are very interested in receiving suggestions
  for how to improve this FAQ and this tutorial. See the ACL2 home
  page, specifically the link ``Mailing Lists''.

  Please read all of the material cited above (skipping only the ACL2
  User's Manual links (``[{ICON}]'')) before you try to use ACL2 on
  problems of your own.

  By this point you should have read, at least, the following topics
  from this tutorial introduction to the theorem prover:

    [introduction-to-the-theorem-prover]
        [introduction-to-rewrite-rules-part-1]
            [special-cases-for-rewrite-rules]
            [equivalent-formulas-different-rewrite-rules]
        [introduction-to-key-checkpoints]
            [dealing-with-key-combinations-of-function-symbols]
            [generalizing-key-checkpoints]
            [post-induction-key-checkpoints]
        [introduction-to-rewrite-rules-part-2]
            [strong-rewrite-rules]
                [practice-formulating-strong-rules]
                    [practice-formulating-strong-rules-1]
                    [practice-formulating-strong-rules-2]
                    [practice-formulating-strong-rules-3]
                    [practice-formulating-strong-rules-4]
                    [practice-formulating-strong-rules-5]
                    [practice-formulating-strong-rules-6]
            [specific-kinds-of-formulas-as-rewrite-rules]
            [further-information-on-rewriting]
        [introduction-to-the-database]
        [introduction-to-hints]
        [introduction-to-a-few-system-considerations]
        [introductory-challenges]
            [introductory-challenge-problem-1]
            [introductory-challenge-problem-2]
            [introductory-challenge-problem-3]
            (there are others but at least do a few)
        [frequently-asked-questions-by-newcomers]

  We also recommend that you look at the ACL2 Demos mentioned in the
  [ACL2-tutorial].

  Most users of ACL2 have bought the book

  Computer-Aided Reasoning: An Approach, Kaufmann, Manolios, and Moore,
  Kluwer Academic Publishers, June, 2000

  which is {available in paperback from Lulu |
  http://www.lulu.com/content/1746161} for approximately $20 (as of
  2010). That book contains hundreds of exercises in programming,
  proof, and using The Method to prove theorems. Solutions to the
  exercises are online. See also this { web page about the book |
  http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html#Books},
  which also includes information about its companion (also available
  on Lulu) describing applications of ACL2, some of which are from
  industry.

  Thank you for spending the time to get acquainted with the basics of
  the ACL2 theorem prover. Don't hesitate to send further questions
  to the ACL2 Help address on the ``Mailing Lists'' link of the ACL2
  home page.

  End of Tutorial Introduction to the Theorem Prover

  Below is a list of all of the topics cited on this page.


Subtopics

  [Architecture-of-the-prover]
      A simple overview of how the prover works

  [Dealing-with-key-combinations-of-function-symbols]
      How to get rid of key combinations of function symbols

  [Equivalent-formulas-different-rewrite-rules]
      Logically equivalent formulas can generate radically different rules

  [Example-induction-scheme-binary-trees]
      Induction on binary trees

  [Example-induction-scheme-down-by-2]
      Induction downwards 2 steps at a time

  [Example-induction-scheme-nat-recursion]
      Induction on natural numbers

  [Example-induction-scheme-on-lists]
      Induction on lists

  [Example-induction-scheme-on-several-variables]
      Induction on several variables

  [Example-induction-scheme-upwards]
      Induction upwards

  [Example-induction-scheme-with-accumulators]
      Induction scheme with accumulators

  [Example-induction-scheme-with-multiple-induction-steps]
      Induction scheme with more than one induction step

  [Example-inductions]
      Some examples of induction schemes in ACL2

  [Frequently-asked-questions-by-newcomers]
      Some questions newcomers frequently ask

  [Further-information-on-rewriting]
      A grab bag of advice and information on rewriting

  [Generalizing-key-checkpoints]
      Getting rid of unnecessary specificity

  [Introduction-to-a-few-system-considerations]
      The mechanics of interaction with the theorem prover

  [Introduction-to-hints]
      How to provide hints to the theorem prover

  [Introduction-to-key-checkpoints]
      What questions to ask at key checkpoints

  [Introduction-to-rewrite-rules-part-1]
      Introduction to ACL2's notion of rewrite rules

  [Introduction-to-rewrite-rules-part-2]
      How to arrange rewrite rules

  [Introduction-to-the-database]
      How to update the database

  [Introductory-challenge-problem-1]
      Challenge problem 1 for the new user of ACL2

  [Introductory-challenge-problem-1-answer]
      Answer to challenge problem 1 for the new user of ACL2

  [Introductory-challenge-problem-2]
      Challenge problem 2 for the new user of ACL2

  [Introductory-challenge-problem-2-answer]
      Answer to challenge problem 2 for the new user of ACL2

  [Introductory-challenge-problem-3]
      Challenge problem 3 for the new user of ACL2

  [Introductory-challenge-problem-3-answer]
      Answer to challenge problem 3 for the new user of ACL2

  [Introductory-challenge-problem-4]
      Challenge problem 4 for the new user of ACL2

  [Introductory-challenge-problem-4-answer]
      Answer to challenge problem 4 for the new user of ACL2

  [Introductory-challenges]
      Challenge problems for the new ACL2 user

  [Logic-knowledge-taken-for-granted]
      Background knowledge in ACL2 logic for theorem prover tutorial

  [Logic-knowledge-taken-for-granted-base-case]
      A brief explanation of base cases

  [Logic-knowledge-taken-for-granted-equals-for-equals]
      Substitution of equals for equals

  [Logic-knowledge-taken-for-granted-evaluation]
      Evaluation during proofs

  [Logic-knowledge-taken-for-granted-inductive-proof]
      A brief explanation of induction

  [Logic-knowledge-taken-for-granted-instance]
      A brief explanation of substitution instances

  [Logic-knowledge-taken-for-granted-propositional-calculus]
      A brief explanation of propositional calculus

  [Logic-knowledge-taken-for-granted-q1-answer]
      The inductive step of the rev-rev proof -- Answer to Question 1

  [Logic-knowledge-taken-for-granted-q2-answer]
      The inductive step of the rev-rev proof -- Answer to Question 2

  [Logic-knowledge-taken-for-granted-q3-answer]
      The inductive step of the rev-rev proof -- Answer to Question 2

  [Logic-knowledge-taken-for-granted-rewriting]
      A brief explanation of rewriting from the logical perspective

  [Logic-knowledge-taken-for-granted-rewriting-repeatedly]
      Further information on expanding definitions via rewriting

  [Post-induction-key-checkpoints]
      Reading post-induction key checkpoints

  [Practice-formulating-strong-rules]
      A few simple checkpoints suggesting strong rules

  [Practice-formulating-strong-rules-1]
      Rules suggested by ([TRUE-LISTP] ([APPEND] (FOO A) (BAR B)))

  [Practice-formulating-strong-rules-2]
      Rules suggested by ([TRUE-LISTP] (REV (FOO A)))

  [Practice-formulating-strong-rules-3]
      Rules suggested by ([MEMBER] (FOO A) ([APPEND] (BAR B) (MUM C)))

  [Practice-formulating-strong-rules-4]
      Rules suggested by ([SUBSETP] ([APPEND] (FOO A) (BAR B)) (MUM C))

  [Practice-formulating-strong-rules-5]
      Rules suggested by ([SUBSETP] (FOO A) ([APPEND] (BAR B) (MUM C)))

  [Practice-formulating-strong-rules-6]
      Rules suggested by ([MEMBER] (FOO A) (NATS-BELOW (BAR B)))

  [Programming-knowledge-taken-for-granted]
      Background knowledge in ACL2 programming for theorem prover tutorial

  [Special-cases-for-rewrite-rules]
      Convenient short forms for rewrite rule formulas

  [Specific-kinds-of-formulas-as-rewrite-rules]
      Advice about how to handle commonly occurring formulas as rewrite
      rules

  [Strong-rewrite-rules]
      Formulating good rewrite rules")
 (INTRODUCTORY-CHALLENGE-PROBLEM-1
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Challenge problem 1 for the new user of ACL2

  Start in a fresh ACL2, either by restarting your ACL2 image from
  scratch or executing

    :ubt! 1

  which will undo everything since the first user event.

  Then define this function:

    (defun rev (x)
      (if (endp x)
          nil
          (append (rev (cdr x)) (list (car x)))))

  Then use The Method to prove:

    (defthm triple-rev
      (equal (rev (rev (rev x))) (rev x)))

  When you've solved this problem, compare your answer to ours; see
  [introductory-challenge-problem-1-answer].

  Then, use your browser's Back Button to return to
  [introductory-challenges].")
 (INTRODUCTORY-CHALLENGE-PROBLEM-1-ANSWER
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Answer to challenge problem 1 for the new user of ACL2

  This answer is in the form of an ACL2 script sufficient to lead ACL2
  to a proof.

    (defun rev (x)
      (if (endp x)
          nil
          (append (rev (cdr x)) (list (car x)))))

    ; Trying triple-rev at this point produces a key checkpoint containing
    ; (REV (APPEND (REV (CDR X)) (LIST (CAR X)))), which suggests:

    (defthm rev-append
      (equal (rev (append a b))
             (append (rev b) (rev a))))

    ; And now triple-rev succeeds.

    (defthm triple-rev
      (equal (rev (rev (rev x))) (rev x)))

    ; An alternative, and more elegant, solution is to prove the rev-rev
    ; instead of rev-append:

    ; (defthm rev-rev
    ;   (implies (true-listp x)
    ;            (equal (rev (rev x)) x)))

    ; Rev-rev is also discoverable by The Method because it is
    ; suggested by the statement of triple-rev itself: rev-rev
    ; simplifies a simpler composition of the functions in triple-rev.

    ; Both solutions produce lemmas likely to be of use in future proofs
    ; about rev.

  Use your browser's Back Button now to return to
  [introductory-challenge-problem-1].")
 (INTRODUCTORY-CHALLENGE-PROBLEM-2
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Challenge problem 2 for the new user of ACL2

  Start in a fresh ACL2, either by restarting your ACL2 image from
  scratch or executing :ubt! 1.

  Use The Method to prove

    (defthm subsetp-reflexive
      (subsetp x x))

  When you've solved this problem, compare your answer to ours; see
  [introductory-challenge-problem-2-answer].

  Then, use your browser's Back Button to return to
  [introductory-challenges].")
 (INTRODUCTORY-CHALLENGE-PROBLEM-2-ANSWER
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Answer to challenge problem 2 for the new user of ACL2

  This answer is in the form of a script sufficient to lead ACL2 to a
  proof.

    ; Trying subsetp-reflexive at this point produces the key checkpoint:

    ; (IMPLIES (AND (CONSP X)
    ;               (SUBSETP (CDR X) (CDR X)))
    ;          (SUBSETP (CDR X) X))

    ; which suggests the generalization:

    (defthm subsetp-cdr
      (implies (subsetp a (cdr b))
               (subsetp a b)))

    ; And now subsetp-reflexive succeeds.

    (defthm subsetp-reflexive
      (subsetp x x))

    ; A weaker version of the lemma, namely the one in which we
    ; add the hypothesis that b is a cons, is also sufficient.

    ;    (defthm subsetp-cdr-weak
    ;      (implies (and (consp b)
    ;                    (subsetp a (cdr b)))
    ;               (subsetp a b)))

    ; But the (consp b) hypothesis is not really necessary in
    ; ACL2's type-free logic because (cdr b) is nil if b is
    ; not a cons.  For the reasons explained in the tutorial, we
    ; prefer the strong version.

  Use your browser's Back Button now to return to
  [introductory-challenge-problem-2].")
 (INTRODUCTORY-CHALLENGE-PROBLEM-3
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Challenge problem 3 for the new user of ACL2

  Start in a fresh ACL2, either by restarting your ACL2 image from
  scratch or executing :ubt! 1.

  Define the following functions and use The Method to prove the
  theorem at the bottom:

    (defun rev (x)
      (if (endp x)
          nil
          (append (rev (cdr x)) (list (car x)))))

    (defun dupsp (x)  ; does x contain duplicate elements?
      (if (endp x)
          nil
          (if (member (car x) (cdr x))
              t
              (dupsp (cdr x)))))

    (defthm dupsp-rev
      (equal (dupsp (rev x)) (dupsp x)))

  When you've solved this problem, compare your answer to ours; see
  [introductory-challenge-problem-3-answer].

  Then, use your browser's Back Button to return to
  [introductory-challenges].")
 (INTRODUCTORY-CHALLENGE-PROBLEM-3-ANSWER
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Answer to challenge problem 3 for the new user of ACL2

  This answer is in the form of a script sufficient to lead ACL2 to a
  proof.

    ; Trying dupsp-rev at this point produces the key checkpoint:

    ; (IMPLIES (AND (CONSP X)
    ;               (NOT (MEMBER (CAR X) (CDR X)))
    ;               (EQUAL (DUPSP (REV (CDR X)))
    ;                      (DUPSP (CDR X))))
    ;          (EQUAL (DUPSP (APPEND (REV (CDR X)) (LIST (CAR X))))
    ;                 (DUPSP (CDR X))))

    ; which suggests the lemma

    ; (defthm dupsp-append
    ;   (implies (not (member e x))
    ;            (equal (dupsp (append x (list e)))
    ;                   (dupsp x))))

    ; However, attempting to prove that, produces a key checkpoint
    ; containing (MEMBER (CAR X) (APPEND (CDR X) (LIST E))).
    ; So we prove the lemma:

    (defthm member-append
      (iff (member e (append a b))
           (or (member e a)
               (member e b))))

    ; Note that we had to use iff instead of equal since
    ; member is not a Boolean function.

    ; Having proved this lemma, we return to dupsp-append and succeed:

    (defthm dupsp-append
      (implies (not (member e x))
               (equal (dupsp (append x (list e)))
                      (dupsp x))))

    ; So now we return to dups-rev, expecting success.  But it fails
    ; with the same key checkpoint:

    ; (IMPLIES (AND (CONSP X)
    ;               (NOT (MEMBER (CAR X) (CDR X)))
    ;               (EQUAL (DUPSP (REV (CDR X)))
    ;                      (DUPSP (CDR X))))
    ;          (EQUAL (DUPSP (APPEND (REV (CDR X)) (LIST (CAR X))))
    ;                 (DUPSP (CDR X))))

    ; Why wasn't our dupsp-append lemma applied?  We have two choices here:
    ; (1) Think.  (2) Use tools.

    ; Think: When an enabled rewrite rule doesn't fire even though the
    ; left-hand side matches the target, the hypothesis couldn't be
    ; relieved.  The dups-append rule has the hypothesis (not
    ; (member e x)) and after the match with the left-hand side, e
    ; is (CAR X) and x is (REV (CDR X)).  So the system
    ; couldn't rewrite (NOT (MEMBER (CAR X) (REV (CDR X)))) to true,
    ; even though it knows that (NOT (MEMBER (CAR X) (CDR X))) from
    ; the second hypothesis of the checkpoint.  Obviously, we need to
    ; prove member-rev below.

    ; Use tools:  We could enable the ``break rewrite'' facility, with

    ; ACL2 !>:brr t

    ; and then install an unconditional monitor on the rewrite rule
    ; dupsp-append, whose rune is (:REWRITE DUPSP-APPEND), with:

    ; :monitor (:rewrite dupsp-append) t

    ; Then we could re-try our main theorem, dupsp-rev.  At the resulting
    ; interactive break we type :eval to evaluate the attempt to relieve the
    ; hypotheses of the rule.

    ; (1 Breaking (:REWRITE DUPSP-APPEND) on
    ; (DUPSP (BINARY-APPEND (REV #) (CONS # #))):
    ; 1 ACL2 >:eval

    ; 1x (:REWRITE DUPSP-APPEND) failed because :HYP 1 rewrote to
    ; (NOT (MEMBER (CAR X) (REV #))).

    ; Note that the report above shows that hypothesis 1 of the rule
    ; did not rewrite to T but instead rewrote to an expression
    ; involving (member ... (rev ...)).  Thus, we're led to the
    ; same conclusion that Thinking produced.  To get out of the
    ; interactive break we type:

    ; 1 ACL2 >:a!
    ; Abort to ACL2 top-level

    ; and then turn off the break rewrite tool since we won't need it
    ; again right now, with:

    ; ACL2 !>:brr nil

    ; In either case, by thinking or using tools, we decide to prove:

    (defthm member-rev
      (iff (member e (rev x))
           (member e x)))

    ; which succeeds.  Now when we try to prove dups-rev, it succeeds.

    (defthm dupsp-rev
      (equal (dupsp (rev x))
             (dupsp x)))

  Use your browser's Back Button now to return to
  [introductory-challenge-problem-3].")
 (INTRODUCTORY-CHALLENGE-PROBLEM-4
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Challenge problem 4 for the new user of ACL2

  Start in a fresh ACL2, either by restarting your ACL2 image from
  scratch or executing :ubt! 1.

  This problem is much more open ended than the preceding ones. The
  challenge is to define a function that collects exactly one copy of
  each element of a list and to prove that it returns a subset of the
  list with no duplications.

  Hint: We recommend that you read this hint to align your function
  names with our solution, to make comparisons easier. Our answer is
  shown in see [introductory-challenge-problem-4-answer]. In that
  page you'll see a definition of a function collect-once and the
  proofs of two theorems:

    (defthm main-theorem-1-about-collect-once
      (subsetp (collect-once x) x))

    (defthm main-theorem-2-about-collect-once
      (not (dupsp (collect-once x))))

  The function dupsp is as defined in see
  [introductory-challenge-problem-3]. This is quite easy.

  Then, we define a tail-recursive version of the method based on the
  pseudo-code:

    a = nil;
    while (x not empty) {
     a = if (member (car x) a) then a else (cons (car x) a);
     x = (cdr x);
     }
    return a;

  We formalize this with the function while-loop-version, where
  (while-loop-version x nil) is the ``semantics'' of the code above.
  I.e., the function while-loop-version captures the while loop in
  the pseudo-code above and returns the final value of a, and it
  should be invoked with the initial value of a being nil.

  We prove (while-loop-version x nil) returns a subset of x that
  contains no duplications. Furthermore, we do it two ways: first
  ``indirectly'' by relating while-loop-version to collect-once, and
  second (``directly'') without using collect-once. Both of these
  proofs are much harder than the collect-once approach, involving
  about a dozen lemmas each.

  Compare your solutions to ours at see
  [introductory-challenge-problem-4-answer].

  Then, use your browser's Back Button to return to
  [introductory-challenges].")
 (INTRODUCTORY-CHALLENGE-PROBLEM-4-ANSWER
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Answer to challenge problem 4 for the new user of ACL2

  This answer is in the form of a script sufficient to lead ACL2 to a
  proof, with a brief prologue.

  We wish to collect one copy of each element in x. We'll actually
  define the method two ways, primitive recursively and
  tail-recursively, the latter method being analogous to the program:

    a = nil;
    while (x not empty) {
      a = if (member (car x) a) then a else (cons (car x) a);
      x = (cdr x);
      }
    return a;

  We'll prove the two ``equivalent'' and we'll prove that they return a
  subset of x that contains no duplications.

  This page is organized into four sections. (A) We will start by
  proving that the primitive recursive version correct: it returns a
  subset of its argument that is duplication free. This will be
  straightforward. (B) Then we'll define the while-loop version and
  we will prove it ``equivalent'' to the primitive recursive version.
  This will be challenging primarily because the two methods collect
  their answers in different orders; even stating the relationship
  between the two is interesting. Proving it will involve a few
  lemmas. But once we prove their ``equivalence'' the correctness of
  the while-loop version will be straightforward from the correctness
  of the primitive recursive version. (C) We will disable the rules
  we prove about the while-loop version and prove it correct
  directly, without exploiting the primitive recursive version. This
  requires leading the theorem prover more carefully because
  reasoning about tail-recursive functions that accumulate results is
  sometimes delicate. (D) Lessons learned -- a narrative that
  summarizes what we learn from these examples.

  We follow The Method, which, recall, involves us in recursive
  attempts to prove lemmas. We use a notation to indicate our
  sequence of proof attempts. Here is an example (although in actual
  use we print things across multiple lines). The number in bracket
  indicates our ``stack depth''. The ``key term'' is some term from a
  Key Checkpoint in the failed proof which is responsible for our
  subsequent action. Sometimes instead of a Key Term we just give an
  English explanation of what we're thinking.

    [0] (defthm main ...)     Failed!    Key Term: ...
    [1] (defthm lemma-1 ...)  Succeeded!
    [0] (defthm main ...)     Failed!    Key Term: ...
    [1] (defthm lemma-2 ...)  Failed!    Key Term: ...
    [2] (defthm lemma-2a ...) Succeeded!
    [2] (defthm lemma-2b ...) Succeeded!
    [1] (defthm lemma-2 ...)  Succeeded!
    [0] (defthm main ...)     Succeeded!

  The rest of this page is just a re-playable script.

    ; -----------------------------------------------------------------
    ; Section A:  The Primitive Recursive Version and Its Correctness

    ; The property of having duplications is defined as:

    (defun dupsp (x)
      (if (endp x)
          nil
          (if (member (car x) (cdr x))
              t
              (dupsp (cdr x)))))

    ; The primitive recursive method of collecting one copy of each element is:

    (defun collect-once (x)
      (if (endp x)
          nil
          (if (member (car x) (cdr x))
              (collect-once (cdr x))
              (cons (car x) (collect-once (cdr x))))))

    ; [0]
    (defthm main-theorem-1-about-collect-once
      (subsetp (collect-once x) x))
    ; Succeeded!

    ; [0]
    ; (defthm main-theorem-2-about-collect-once
    ;   (not (dupsp (collect-once x))))
    ; Failed!
    ; Key Term:  (MEMBER (CAR X) (COLLECT-ONCE (CDR X)))

    ; [1]
    (defthm member-collect-once
      (iff (member e (collect-once a))
           (member e a)))
    ; Succeeded!

    ; [0]
    (defthm main-theorem-2-about-collect-once
      (not (dupsp (collect-once x))))
    ; Succeeded!

    ; That was really easy!

    ;-----------------------------------------------------------------
    ; Section B:  The While-Loop Version and Its Correctness --
    ;  presented in two parts:  its equivalence to the primitive recursive
    ;  version and then its correctness proved via that equivalence

    ; The tail-recursive, or while-loop version, is defined as follows.  The
    ; function below is the loop itself and it ought to be called with a = nil to
    ; implement the initialization of a in the pseudo-code above.

    (defun while-loop-version (x a)
      (if (endp x)
          a
          (while-loop-version (cdr x)
                              (if (member (car x) a)
                                  a
                                  (cons (car x) a)))))

    ; We wish to prove that the two are equivalent.  But they are actually
    ; very different.  For example,

    ; (collect-once '(2 4 1 3 1 2 3 4))           = (1 2 3 4)
    ; (while-loop-version '(2 4 1 3 1 2 3 4) nil) = (3 1 4 2)

    ; Things get a little more complicated if a is non-nil:
    ; (while-loop-version '(2 4 1 3 1 2 3 4) '(2 2 4 4)) = (3 1 2 2 4 4)

    ; Several observations help explain what is happening.  (1) Collect-once
    ; collects the last occurrence of each element, in the order of their last
    ; occurrences.  So, for example, since the last occurrence of 2 preceeds the
    ; last occurrence of 3 in '(2 4 1 3 1 2 3 4)), then the collected 2 preceeds
    ; the collected 3 in the answer.  But while-loop-version collects the first
    ; occurrence of each element, in the reverse order of that occurrence.  So it
    ; adds 2 to its accumulator first and adds 3 last, making 3 preceed 2 in the
    ; answer.

    ; (2) The while-loop-version does not collect anything already in a and indeed
    ; just adds stuff to the front of a, returning everything initially in a plus
    ; one occurrence of everything in x not in a.

    ; To state the relationship that holds between these two we have to define two
    ; other functions.

    ; This is our familiar list reverse function...
    (defun rev (x)
      (if (endp x)
          nil
          (append (rev (cdr x))
                  (list (car x)))))

    ; And this function ``removes'' from x all the elements in y, i.e., copies x
    ; while dropping the elements of y.

    (defun list-minus (x y)
      (if (endp x)
          nil
          (if (member (car x) y)
              (list-minus (cdr x) y)
              (cons (car x) (list-minus (cdr x) y)))))

    ; The specific equivalence we're really interested in is
    ; (equal (while-loop-version x nil)
    ;        (collect-once (rev x)))

    ; But we will not be able to prove that by induction because it has the
    ; constant nil where we need a variable, a, in order to admit an appropriate
    ; inductive instance.  So we will attack the most general problem.  What is
    ; (while-loop-version x a) equal to, in terms of collect-once?

    ; The most general relationship between the two collection functions is:

    ; (equal (while-loop-version x a)
    ;        (append (collect-once (list-minus (rev x) a)) a))

    ; This formula bears thinking about!  If you're like us, you won't believe it
    ; until it is proved!

    ; [0]
    ; (defthm general-equivalence
    ;   (equal (while-loop-version x a)
    ;          (append (collect-once (list-minus (rev x) a)) a)))
    ; Failed!
    ; Key term in checkpoint:
    ; (LIST-MINUS (APPEND (REV (CDR X)) (LIST (CAR X))) A)

    ; [1]
    (defthm list-minus-append
      (equal (list-minus (append a b) c)
             (append (list-minus a c)
                     (list-minus b c))))
    ; Succeeded!

    ; [0]
    ; (defthm general-equivalence
    ;   (equal (while-loop-version x a)
    ;          (append (collect-once (list-minus (rev x) a)) a)))
    ; Failed!
    ; Key term in checkpoint:
    ; (COLLECT-ONCE (APPEND (LIST-MINUS (REV (CDR X)) A) (LIST (CAR X))))

    ; [1]
    ; (defthm collect-once-append
    ;   (equal (collect-once (append a b))
    ;          (append (list-minus (collect-once a) b)
    ;                  (collect-once b))))
    ; Failed!
    ; Key term:
    ; (MEMBER (CAR A) (APPEND (CDR A) B))

    ; [2]
    (defthm member-append
      (iff (member e (append a b))
           (or (member e a)
               (member e b))))
    ; Succeeded!

    ; [1]
    (defthm collect-once-append
      (equal (collect-once (append a b))
             (append (list-minus (collect-once a)
                                 b)
                     (collect-once b))))
    ; Succeeded!

    ; [0]
    ; (defthm general-equivalence
    ;   (equal (while-loop-version x a)
    ;          (append (collect-once (list-minus (rev x) a)) a)))
    ; Failed!
    ; Key term:
    ; (APPEND (APPEND (LIST-MINUS (COLLECT-ONCE (LIST-MINUS (REV (CDR X)) A))

    ; [1]
    (defthm assoc-append
      (equal (append (append a b) c)
             (append a (append b c))))
    ; Succeeded!

    ; [0]
    ; (defthm general-equivalence
    ;   (equal (while-loop-version x a)
    ;          (append (collect-once (list-minus (rev x) a)) a)))
    ; Failed!
    ; Key term:
    ; (LIST-MINUS (COLLECT-ONCE (LIST-MINUS (REV (CDR X)) A)) ...)

    ; This key term makes us think of the lemma to move the LIST-MINUS inside the
    ; COLLECT-ONCE.  But when that's done, we will have two LIST-MINUS terms
    ; nestled together and we will want to combine them into one.  Call these two
    ; lemmas (a) and (b).

    ; [1] (a)
    ; (defthm list-minus-collect-once
    ;   (equal (list-minus (collect-once x) a)
    ;          (collect-once (list-minus x a))))
    ; Failed!
    ; Key term:
    ; (MEMBER (CAR X) (LIST-MINUS (CDR X) A))

    ; [2] (A pretty fact)
    (defthm member-list-minus
      (iff (member e (list-minus x a))
           (and (member e x)
                (not (member e a)))))
    ; Succeeded!

    ; [1] (a)
    (defthm list-minus-collect-once
      (equal (list-minus (collect-once x) a)
             (collect-once (list-minus x a))))
    ; Succeeded!

    ; [1] (b)
    (defthm list-minus-list-minus
      (equal (list-minus (list-minus x a) b)
             (list-minus x (append b a))))
    ; Succeeded!

    ; [0]
    (defthm general-equivalence
      (equal (while-loop-version x a)
             (append (collect-once (list-minus (rev x) a)) a)))
    ; Succeeded!

    ; That completes the proof of the ``equivalence'' of the two methods.

    ; Now we prove (1) that the result of while-loop-version is a subset, and (2)
    ; that it contains no duplications.  We prove the two conjuncts separately.

    ; [0]
    (defthm main-theorem-1-about-while-loop
      (subsetp (while-loop-version x nil) x))
    ; Succeeded!

    ; But the theorem prover works harder to do the proof above than one might have
    ; expected because it doesn't turn into an instance of
    ; main-theorem-1-about-collect-once because of the presence of the rev term.
    ; However, we're content that ACL2 managed to do the proof on its own.

    ; [0]
    (defthm main-theorem-2-about-while-loop
      (not (dupsp (while-loop-version x nil))))

    ; So we see that the proof of correctness of while-loop-version isn't hard,
    ; after we establish the relationship with the primitive recursive version.
    ; But finding and proving the relationship is fairly challenging.

    ; -----------------------------------------------------------------
    ; Section C:  A Direct Proof of the Correctness of the While-Loop Version

    ; Some would consider the proof in Section B ``indirect'' because we first showed
    ; how while-loop-version could be expressed as a collect-once and then proved
    ; our main theorems about while-loop-version, which means those main proofs
    ; were conducted in terms of collect-once, not while-loop-version.

    ; It is interesting to compare this proof with the ``direct'' one in which
    ; we don't use collect-once at all and reason only about while-loop-version.

    ; So to do that comparison, let's disable all the lemmas we've proved about
    ; while-loop-version and try to prove the two main theorems above about
    ; while-loop-version.

    (in-theory (disable general-equivalence
                        main-theorem-1-about-while-loop
                        main-theorem-2-about-while-loop))

    ; [0]
    ; (defthm main-theorem-1-about-while-loop-redux
    ;   (subsetp (while-loop-version x nil) x))
    ; Failed!  [Well, the truth is below...]

    ; We don't even submit this event above because we recognize that it is not
    ; general enough to permit proof by induction.  We need to deal with the nil in
    ; the second argument of while-loop-version.  Experience with induction tells
    ; us this should be a variable, so we can assume an appropriate inductive
    ; instance.  Therefore, we adopt this subgoal immediately:

    ; [1]
    ; (defthm main-lemma-1-about-while-loop-version
    ;   (subsetp (while-loop-version x a) (append x a)))
    ; Failed!
    ; Key Term:  Does the wrong induction.

    ; [1]
    ; (defthm main-lemma-1-about-while-loop-version
    ;   (subsetp (while-loop-version x a) (append x a))
    ;   :hints ((\"Goal\" :induct (while-loop-version x a))))
    ; Failed!  Two key terms are suggested
    ; Key term: (IMPLIES (AND ... (SUBSETP (WHILE-LOOP-VERSION (CDR X) A) (APPEND (CDR X) A)))
    ;                    (SUBSETP (WHILE-LOOP-VERSION (CDR X) A) (CONS ... (APPEND (CDR X) A))))
    ; Key term: (SUBSETP A A)
    ; So we'll prove both before trying again.
    ; [2]
    (defthm subsetp-cons
      (implies (subsetp a b)
               (subsetp a (cons e b))))
    ; Succeeded!

    ; [2]
    (defthm subsetp-reflexive
      (subsetp a a))
    ; Succeeded!

    ; [1]
    ; (defthm main-lemma-1-about-while-loop-version
    ;   (subsetp (while-loop-version x a) (append x a))
    ;   :hints ((\"Goal\" :induct (while-loop-version x a))))
    ; Failed!
    ; Key Term:
    ; (IMPLIES (AND ...
    ;               (SUBSETP (WHILE-LOOP-VERSION (CDR X) (CONS (CAR X) A))
    ;                        (APPEND (CDR X) (CONS (CAR X) A))))
    ;          (SUBSETP (WHILE-LOOP-VERSION (CDR X) (CONS (CAR X) A))
    ;                   (CONS (CAR X) (APPEND (CDR X) A))))

    ; We'd be done if we could rewrite the
    ; (APPEND (CDR X) (CONS (CAR X) A))
    ; to
    ; (CONS (CAR X) (APPEND (CDR X) A))
    ; These two terms are not equal!  But they are ``set-equal'' and this kind of
    ; rewriting is possible using user-defined equivalences and congruence rules.
    ; But the new user should not dive into congruences yet.  So we will do this
    ; with ordinary lemmas:

    ; The plan then is to prove
    ; (iff (subsetp a (append b (cons e c)))
    ;      (subsetp a (cons e (append b c))))

    ; Consider the first half of this bi-implication:
    ; (implies (subsetp a (append b (cons e c)))            ; hyp1
    ;          (subsetp a (cons e (append b c))))           ; concl
    ; Notice that if we knew
    ; (subsetp (append b (cons e c)) (cons e (append b c))) ; hyp2
    ; then we could use hyp1 and hyp2 together with the transitivity of
    ; subsetp to get concl.

    ; The proof in the other direction is comparable but requires the
    ; (subsetp (cons e (append b c)) (append b (cons e c)))

    ; Thus, our plan is prove
    ; (a) transitivity of subsetp
    ; (b) (subsetp (append b (cons e c)) (cons e (append b c)))
    ; (c) (subsetp (cons e (append b c)) (append b (cons e c)))

    ; in order to prove
    ; (d) (iff (subsetp a (append b (cons e c)))
    ;         (subsetp a (cons e (append b c))))

    ; [2] (a)
    (defthm trans-subsetp
      (implies (and (subsetp a b)
                    (subsetp b c))
               (subsetp a c)))
    ; Succeeded!

    ; [2] (b)
    (defthm append-cons-v-cons-append-1
      (subsetp (append b (cons e c))
               (cons e (append b c))))
    ; Succeeded!

    ; [2] (c)
    (defthm append-cons-v-cons-append-2
      (subsetp (cons e (append b c))
               (append b (cons e c))))
    ; Succeeded!

    ; [2] (d)
    (defthm subsetp-append-cons-cons-append
      (iff (subsetp a (append b (cons e c)))
           (subsetp a (cons e (append b c)))))
    ; Succeeded!

    ; [1]
    (defthm main-lemma-1-about-while-loop-version
      (subsetp (while-loop-version x a) (append x a))
      :hints ((\"Goal\" :induct (while-loop-version x a))))
    ; Succeeded!

    ; [0]
    ; (defthm main-theorem-1-about-while-loop-version
    ;   (subsetp (while-loop-version x nil) x))
    ; Failed!  [But the truth is below...]

    ; But we don't submit this because we don't expect it to be proved
    ; from the main lemma just proved:  they don't match!  But
    ; note that if we instantiated the main lemma, replacing a by nil,
    ; we get:

    ; (subsetp (while-loop-version x nil) (append x nil))

    ; and we could simplify the (append x nil) to x in this context, with
    ; another congruence rule -- if we were using them.  So let's prove
    ; first that we can simplify (append x nil) inside a subsetp:

    ; [1]
    (defthm subsetp-append-nil
      (iff (subsetp x (append y nil))
           (subsetp x y)))
    ; Succeeded!

    ; and then just tell ACL2 how to use the lemma to get the main theorem.  Note
    ; that we give a hint to instantiate main-lemma-1... but we also disable
    ; main-lemma-1... because otherwise it will rewrite itself away!  Once the
    ; instance of main-lemma-1... is sitting around as a hypothesis,
    ; subsetp-append-nil will rewrite the (append x nil) to x for us and finish the
    ; proof.

    ; [0]
    (defthm main-theorem-1-about-while-loop-version
      (subsetp (while-loop-version x nil) x)
      :hints ((\"Goal\"
               :use (:instance main-lemma-1-about-while-loop-version
                               (x x)
                               (a nil))
               :in-theory (disable main-lemma-1-about-while-loop-version))))
    ; Succeeded!

    ; Recall that the main-theorem-1... just proved is just half of what we want.
    ; We also want:

    ; [0]
    ; (defthm main-theorem-2-about-while-loop-version
    ;   (not (dupsp (while-loop-version x nil))))
    ; Failed!  [But the truth is below...]

    ; But, again, we don't submit that because the nil makes it not general enough for
    ; induction.  Instead we go immediately to:

    ; [1]
    (defthm main-lemma-2-about-while-loop-version
      (implies (not (dupsp a))
               (not (dupsp (while-loop-version x a)))))
    ; Succeeded!

    ; This time we know our main-lemma-2... will match (there's no (append x nil)
    ; in there to mess things up) and so we can complete the proof with:

    ; [0]
    (defthm main-theorem-2-about-while-loop-version
      (not (dupsp (while-loop-version x nil))))
    ; Succeeded!

    ;-----------------------------------------------------------------
    ; Section D:  Lessons Learned

    ; The most obvious lesson is that it is easier to reason about the primitive
    ; recursive collect-once than about the while-loop-version.  Thus, if your only
    ; need is for a function that collects one occurrence of each element of a list
    ; and you don't care about the order in which you collect them and you don't
    ; need it to be very sparing of stack space when it executes, then use the
    ; primitive recursive definition and don't even think about while loops!

    ; So why might you be driven to while-loop-version?  One possibility is that
    ; the list you wish to process is very long and the primitive recursive version
    ; would produce a stack overflow.  In ACL2, that would mean the list would have
    ; to be several thousand long.  Is your application really so demanding?

    ; Another possibility is that you are modeling in Lisp a while loop expressed
    ; in some other programming language.  In that case, the fidelity of your model to
    ; the artifact being modeled is important and you should use while-loop-version.

    ; Another possibility is that for some reason order matters and you really are
    ; interested in collecting the first occurrence rather than the last.  Of
    ; course this is most likely to be relevant in more interesting applications
    ; where the occurrences are somehow distinguishable.

    ; If you are forced to deal with the while-loop-version the question is do you
    ; do an indirect proof as in Section B or a direct proof as in Section C?
    ; The indirect proof involved 10 theorems and the direct proof involved 11.
    ; That is not a significant difference.

    ; But our sense is that the indirect proof is easier to find, once you figure
    ; out the basic shape of the relation between while-loop-version collect-once.
    ; In particular, we had to give the theorem prover two hints in the direct
    ; proof (versus no hints in the indirect proof).  One of our hints was about
    ; what induction to do and the other was about how to use a previously proved
    ; instance of a lemma involving an accumulator.  Furthermore, we had to think
    ; carefully about the use of the transitivity of subsetp and we had to hack our
    ; way around rewriting (append a (cons e b)) to (cons e (append a b)) in a
    ; subsetp-expression.

    ; Some of these ``set'' problems could have been handled a lot more elegantly by
    ; defining set-equal as an equivalence relation and proving the congruence
    ; rules to allow the rewriting of set-equal terms to set-equal terms inside
    ; certain expressions like subsetp and member.  However, that involves a lot of
    ; overhead in the form of congruence rules showing that set-equality is
    ; maintained by replacement of set-equals by set-equals in various argument
    ; positions of the various functions.  See :doc congruence.  In general, we
    ; find congruence-based reasoning extremely neat and powerful when the
    ; appropriate infrastructure has been built up.  But because the infrastructure
    ; is ``heavy'' we tend not to invest in it for small projects.

    ; In summary, different users might take home different lessons about whether a
    ; direct or indirect proof is better here.  This is in part due to the
    ; complexity of the functional relationship between collect-once and
    ; while-loop-version, which additionall involved append, list-minus, and rev.
    ; Had the relationship been simpler, the indirect proof would have been
    ; preferred.

    ; An undeniable lesson, however, is that it is helpful to know both styles of
    ; proof and to be able to explore both as needed in your applications.

  Use your browser's Back Button now to return to
  [introductory-challenge-problem-4].")
 (INTRODUCTORY-CHALLENGES
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Challenge problems for the new ACL2 user

  Do each of the problems. In each case, start with a fresh ACL2 (or
  undo all effects of previous events with :ubt! 1). This may require
  that you ``re-discover'' the same lemma more than once in different
  problems, but recognizing the need for something you used in some
  previous project is part of the training.

  We recommend that you follow The Method and consult the documentation
  as needed -- but that you not look at our answers until you're well
  and truly baffled!

  See [introductory-challenge-problem-1] (Answer:
  [introductory-challenge-problem-1-answer])

  See [introductory-challenge-problem-2] (Answer:
  [introductory-challenge-problem-2-answer])

  See [introductory-challenge-problem-3] (Answer:
  [introductory-challenge-problem-3-answer])

  See [introductory-challenge-problem-4] (Answer:
  [introductory-challenge-problem-4-answer])

  In addition to these explicit challenge problems designed for
  beginners, the ACL2 documentation has many example solutions to
  problems (not always phrased in the question/answer format here).
  If you are looking for other examples, you should consider

  [annotated-ACL2-scripts] (Answer: the answers are given in the
  examples)

  When you've done the problems and compared your solutions to ours,
  use your browser's Back Button now to return to
  [introduction-to-the-theorem-prover].")
 (INVARIANT-RISK
  (SET-CHECK-INVARIANT-RISK)
  "Potential slowdown for [program]-mode updates to [stobj]s or [arrays]

  You may see a warning like this:

    ACL2 Warning [Invariant-risk] in MY-FUNCTION:  Invariant-risk has been
    detected for a call of function MY-FUNCTION (as possibly leading to
    an ill-guarded call of UPDATE-FLD); see :DOC invariant-risk.

  Such warnings are harmless, except that they may indicate some
  slowdown (probably very slight) that you might not have expected.
  For an explanation, see [program-wrapper]. If you simply want to
  avoid such warnings, evaluate either one of the following forms.

    (set-check-invariant-risk t)
    (set-inhibit-warnings \"invariant-risk\")

  Evaluate (get-check-invariant-risk state) to see the current setting
  for invariant-risk checking. For details, including more options
  for modifying this setting, see [set-check-invariant-risk].")
 (INVISIBLE-FNS-TABLE
  (LOOP-STOPPER)
  "Functions that are invisible to the [loop-stopper] algorithm

    Examples:
    ACL2 !>(invisible-fns-table (w state))
    ((binary-+ unary--)
     (binary-* unary-/)
     (unary-- unary--)
     (unary-/ unary-/))

  Among other things, the setting above has the effect of making
  [unary--] ``invisible'' for the purposes of applying permutative
  :[rewrite] rules to [binary-+] trees. Also see [add-invisible-fns]
  and see [remove-invisible-fns], which manage macro aliases (see
  [macro-aliases-table]), as well as see [set-invisible-fns-table].

  See [table] for a general discussion of tables.

  The ``invisible functions [table]'' is an alist with elements of the
  following form, where fn is a function symbol and the ufni are
  unary function symbols in the current ACL2 [world], and k is at
  least 1.

    (fn ufn1 ufn2 ... ufnk)

  This [table] thus associates with certain function symbols, e.g., fn
  above, a set of unary functions, e.g., the ufni above. The ufni
  associated with fn in the invisible functions table are said to be
  ``invisible with respect to fn.'' If fn is not the [car] of any
  pair in the alist, then no function is invisible for it. Thus for
  example, setting the invisible functions alist to nil completely
  eliminates the consideration of invisibility.

  The notion of invisibility is involved in the use of the
  :[loop-stopper] field of :[rewrite] rules to prevent the indefinite
  application of permutative rewrite rules. Roughly speaking, if
  rewrite rules are being used to permute arg and (ufni arg) inside
  of a nest of fn calls, and ufni is invisible with respect to fn,
  then arg and (ufni arg) are considered to have the same ``weight''
  and will be permuted so as to end up as adjacent tips in the fn
  nest. See [loop-stopper].")
 (IO
  (INTERFACING-TOOLS STATE PROGRAMMING)
  "Input/output facilities in ACL2

    Example:
    (mv-let
      (channel state)
      (open-input-channel \"foo.lisp\" :object state)
      (mv-let (eofp obj state)
              (read-object channel state)
              (.
                .
                 (let ((state (close-input-channel channel state)))
                       (mv final-ans state))..)))

  Also see [std/io] and [file-reading-example].

  For advanced ways to control printing, see [print-control].

  For a discussion of formatted printing, see [fmt].

  To control ACL2 abbreviation (``evisceration'') of objects before
  printing them, see [set-evisc-tuple], see [without-evisc], and see
  [set-iprint].

  To redirect output to a file, see [output-to-file].

  ACL2 supports input and output facilities equivalent to a subset of
  those found in Common Lisp. ACL2 does not support random access to
  files or bidirectional streams. In Common Lisp, input and output
  are to or from objects of type stream. In ACL2, input and output
  are to or from objects called ``channels,'' which are actually
  symbols. Although a channel is a symbol, one may think of it
  intuitively as corresponding to a Common Lisp stream. Channels are
  in one of two ACL2 packages, \"ACL2-INPUT-CHANNEL\" and
  \"ACL2-OUTPUT-CHANNEL\". When one ``opens'' a file one gets back a
  channel whose [symbol-name] is the file name passed to ``open,''
  postfixed with -n, where n is a counter that is incremented every
  time an open or close occurs.

  There are three channels which are open from the beginning and which
  cannot be closed:

    acl2-input-channel::standard-character-input-0
    acl2-input-channel::standard-object-input-0
    acl2-input-channel::standard-character-output-0

  All three of these are really Common Lisp's *standard-input* or
  *standard-output*, appropriately.

  For convenience, three global variables are bound to these rather
  tedious channel names:

    *standard-ci*
    *standard-oi*
    *standard-co*

  Common Lisp permits one to open a stream for several different kinds
  of io, e.g. character or byte. ACL2 permits an additional type
  called ``object''. In ACL2 an ``io-type'' is a keyword, either
  :character, :byte, or :object. When one opens a file, one specifies
  a type, which determines the kind of io operations that can be done
  on the channel returned. The types :character and :byte are
  familiar. Type :object is an abstraction not found in Common Lisp.
  An :object file is a file of Lisp objects. One uses read-object to
  read from :object files and print-object$ (or print-object$-ser) to
  print to :object files. (The reading and printing are really done
  with the Common Lisp read and print functions. For those familiar
  with read, we note that the recursive-p argument is nil.) The
  function read-object-suppress is logically the same as read-object
  except that read-object-suppress throws away the second returned
  value, i.e. the value that would normally be read, simply returning
  (mv eof state); under the hood, read-object-suppress avoids errors,
  for example those caused by encountering symbols in packages
  unknown to ACL2.

  File-names are strings. ACL2 does not support the Common Lisp type
  [pathname]. However, for the file-name argument of the
  output-related functions listed below, ACL2 supports a special
  value, :STRING. For this value, the channel connects (by way of a
  Common Lisp output string stream) to a string rather than to a
  file: as characters are written to the channel they can be
  retrieved by using get-output-stream-string$.

  Here are the names, formals and output descriptions of the ACL2 io
  functions.

    Input Functions:
      (open-input-channel (file-name io-type state) (mv channel state))
      (open-input-channel-p (channel io-type state) boolean)
      (close-input-channel (channel state) state)
      (read-char$ (channel state) (mv char/nil state)) ; nil for EOF
      (peek-char$ (channel state) boolean)
      (read-byte$ (channel state) (mv byte/nil state)) ; nil for EOF
      (read-object (channel state) (mv eof-read-flg obj-read state))
      (read-object-suppress (channel state) (mv eof-read-flg state))
      (read-file-into-string (filename state) string/nil)

    Output Functions:
      (open-output-channel  (file-name io-type state) (mv channel state))
      (open-output-channel! (file-name io-type state) (mv channel state))
      (open-output-channel-p (channel io-type state) boolean)
      (close-output-channel (channel state) state)
      (princ$ (obj channel state) state)
      (write-byte$ (byte channel state) state)
      (print-object$ (obj channel state) state)
      (print-object$-ser (obj serialize-character channel state) state)
      (fms  (string alist channel state evisc-tuple) state)
      (fms! (string alist channel state evisc-tuple) state)
      (fmt  (string alist channel state evisc-tuple) (mv col state))
      (fmt! (string alist channel state evisc-tuple) (mv col state))
      (fmt1 (string alist col channel state evisc-tuple) (mv col state))
      (fmt1! (string alist col channel state evisc-tuple) (mv col state))
      (cw (string arg0 arg1 ... argn) nil)
      (get-output-stream-string$ (channel state
                                  &optional (close-p 't)
                                            (ctx ''get-output-stream-string$))
                                 (mv erp string state))

  Note that open-output-channel and open-output-channel! will attempt
  to create directories as needed. For example, the following can
  succeed in writing to the indicated file by creating subdirectory
  \"dir4\" if that directory does not already exist.

    (mv-let
      (channel state)
      (open-output-channel \"dir4/foo4\" :object state)
      (pprogn (fms \"Here: ~x0\"
                   (list (cons #\\0 (make-list 10)))
                   channel state nil)
              (close-output-channel channel state)))

  The ``formatting'' functions are particularly useful; see [fmt] and
  see [cw]. In particular, [cw] prints to a ``comment window'' and
  does not involve the ACL2 [state], so many may find it easier to
  use than [fmt] and its variants. The functions [fms!], [fmt!], and
  [fmt1!] are the same as their respective functions without the
  ``!,'' except that the ``!'' functions are guaranteed to print
  forms that can be read back in (at a slight readability cost).

  When one enters ACL2 with (lp), input and output are taken from
  [*standard-oi*] to [*standard-co*]. Because these are synonyms for
  *standard-input* and *standard-output*, one can drive ACL2 io off
  of arbitrary Common Lisp streams, bound to *standard-input* and
  *standard-output* before entry to ACL2.

  The macro get-output-stream-string$ returns the string accumulated
  into the given channel. By default, a call of this macro closes the
  supplied output channel. However, a third argument is optional
  (default t), and if it evaluates to nil then the channel remains
  open. The fourth argument is an optional context, which generally
  evaluates to a symbol, for error reporting. The following example
  illustrates.

    ACL2 !>
    (mv-let
       (channel state)
       (open-output-channel :string :object state)
       (pprogn (print-object$-ser 17 nil channel state)
               (print-object$-ser '(a b (c d)) nil channel state)
               (er-let*
                 ((str1 (get-output-stream-string$
                         channel state
                         nil))) ; keep the channel open
                 (pprogn (print-object$-ser 23 nil channel state)
                         (print-object$-ser '((e f)) nil channel state)
                         (er-let* ; close the channel
                           ((str2 (get-output-stream-string$ channel state)))
                           (value (cons str1 str2)))))))
     (\"
    17
    (A B (C D))\" . \"
    23
    ((E F))\")
    ACL2 !>

  Also see [printing-to-strings] for a discussion of formatted printing
  functions such as fmt-to-string that do not take a channel or
  [state] argument and return a string.

  By default, symbols are printed in upper case when vertical bars are
  not required, as specified by Common Lisp. See [set-print-case] for
  how to get ACL2 to print symbols in lower case.

  By default, numbers are printed in radix 10 (base 10). See
  [set-print-base-radix] for how to get ACL2 to print numbers in
  radix 2, 8, or 16.

  To see the [guard] of an IO function, or indeed any function, see
  [args] or call the function guard; but some built-in functions
  (including some IO functions) will print the result using the
  variable STATE-STATE. While that is logically correct, if you want
  to execute the guard then you should replace that variable by STATE
  and also replace each built-in function symbol of the form xxx-p1
  by corresponding function symbol xxx-p. Consider the following
  example.

    ACL2 !>:args princ$

    Function         PRINC$
    Formals:         (X CHANNEL STATE-STATE)
    Signature:       (PRINC$ * * STATE)
                     => STATE
    Guard:           (AND (OR (ACL2-NUMBERP X)
                              (CHARACTERP X)
                              (STRINGP X)
                              (SYMBOLP X))
                          (STATE-P1 STATE-STATE)
                          (SYMBOLP CHANNEL)
                          (OPEN-OUTPUT-CHANNEL-P1 CHANNEL
                                                  :CHARACTER STATE-STATE))
    Guards Verified: T
    Defun-Mode:      :logic
    Type:            (CONSP (PRINC$ X CHANNEL STATE-STATE))
    Documentation available via :DOC
     PRINC$
    ACL2 !>(untranslate (guard 'princ$ nil (w state)) t (w state))
    (AND (OR (ACL2-NUMBERP X)
             (CHARACTERP X)
             (STRINGP X)
             (SYMBOLP X))
         (STATE-P1 STATE-STATE)
         (SYMBOLP CHANNEL)
         (OPEN-OUTPUT-CHANNEL-P1 CHANNEL
                                 :CHARACTER STATE-STATE))
    ACL2 !>

  If you want to execute the guard for [princ$], then according to the
  suggestion above, you should consider the guard for (princ$ x
  channel state) to be as follows.

    (AND (OR (ACL2-NUMBERP X)
             (CHARACTERP X)
             (STRINGP X)
             (SYMBOLP X))
         (STATE-P STATE)
         (SYMBOLP CHANNEL)
         (OPEN-OUTPUT-CHANNEL-P CHANNEL :CHARACTER STATE))

  For example, we can check the guard for a given value and channel as
  follows.

    ACL2 !>(let ((x 3) (channel *standard-co*))
             (AND (OR (ACL2-NUMBERP X)
                      (CHARACTERP X)
                      (STRINGP X)
                      (SYMBOLP X))
                  (STATE-P STATE)
                  (SYMBOLP CHANNEL)
                  (OPEN-OUTPUT-CHANNEL-P CHANNEL :CHARACTER STATE)))
    T
    ACL2 !>

  Comment for advanced users: Function [open-output-channel!] is
  identical as a function to open-output-channel, except that the
  former may be called even during [make-event] expansion and
  [clause-processor] [hints], but requires that there is an active
  trust tag (see [defttag]).

  Finally, we note that the [std/io] library contains useful file io
  functions whose definitions illustrate some of the features
  described above.


Subtopics

  [*standard-ci*]
      An ACL2 character-based analogue of CLTL's *standard-input*

  [*standard-co*]
      The ACL2 analogue of CLTL's *standard-output*

  [*standard-oi*]
      An ACL2 object-based analogue of CLTL's *standard-input*

  [Character-encoding]
      How bytes are parsed into characters

  [Cw]
      Print to the comment window

  [Cw!]
      Print to the comment window

  [Evisc-tuple]
      Control suppression of details when printing

  [Eviscerate-hide-terms]
      To print ([hide] ...) as <hidden>

  [Fms]
      ([fms] str alist co-channel state evisc) => state

  [Fms!]
      ([fms!] str alist co-channel state evisc) => state

  [Fmt]
      Formatted printing

  [Fmt!]
      ([fmt!] str alist co-channel state evisc) => state

  [Fmt-to-comment-window]
      Print to the comment window

  [Fmt1]
      ([fmt1] str alist col co-channel state evisc) => ([mv] col state)

  [Fmt1!]
      ([fmt1!] str alist col channel state evisc) => ([mv] col state)

  [Msg]
      Construct a ``message'' suitable for the ~@ directive of [fmt]

  [Observation]
      Print an observation

  [Open-output-channel!]
      When trust tags are needed to open output channels

  [Output-to-file]
      Redirecting output to a file

  [Princ$]
      Print an atom

  [Print-base-p]
      Recognizer for print bases that are understood by functions such as
      [explode-nonnegative-integer] and [explode-atom].

  [Print-control]
      Advanced controls of ACL2 printing

  [Printing-to-strings]
      Printing to strings instead of files or standard output

  [Proofs-co]
      The proofs character output channel

  [Read-file-into-string]
      The contents of a file as a string

  [Serialize]
      Routines for saving ACL2 objects to files, and later restoring them

  [Set-evisc-tuple]
      Control suppression of details when printing

  [Set-fmt-hard-right-margin]
      Set the right margin for formatted output

  [Set-fmt-soft-right-margin]
      Set the soft right margin for formatted output

  [Set-iprint]
      Control whether abbreviated output can be read back in

  [Set-print-base]
      Control radix in which numbers are printed

  [Set-print-base-radix]
      Control radix in which numbers are printed and printing of the radix

  [Set-print-case]
      Control whether symbols are printed in upper case or in lower case

  [Set-print-radix]
      Control printing of the radix for numbers

  [Standard-co]
      The character output channel to which [ld] prints

  [Standard-oi]
      The standard object input ``channel''

  [Without-evisc]
      Print output in full

  [Wof]
      Direct standard output and proofs output to a file")
 (IPRINT (POINTERS) "See [set-iprint].")
 (IPRINTING (POINTERS)
            "See [set-iprint].")
 (IRRELEVANT-FORMALS
  (PROGRAMMING)
  "Formals that are used but only insignificantly

  Let fn be a function of n arguments. Let x be the ith formal of fn.
  We say x is ``irrelevant in fn'' if x does not occur in either the
  [guard] or the measure for fn, and the value of (fn a1...ai...an)
  is independent of ai.

  The easiest way to define a function with an irrelevant formal is
  simply not to use the formal in the body of the function. Such
  formals are said to be ``ignored'' by Common Lisp and a special
  declaration is provided to allow ignored formals. ACL2 makes a
  distinction between ignored and irrelevant formals. Note however
  that if a variable is [declare]d ignored or ignorable, then it will
  not be reported as irrelevant.

  An example of an irrelevant formal is x in the definition of fact
  below.

    (defun fact (i x)
      (declare (xargs :guard (and (integerp i) (<= 0 i))))
      (if (zerop i) 1 (* i (fact (1- i) (cons i x))))).

  Observe that x is only used in recursive calls of fact; it never
  ``gets out'' into the result. ACL2 can detect some irrelevant
  formals by a closure analysis on how the formals are used. For
  example, if the ith formal is only used in the ith argument
  position of recursive calls, then it is irrelevant. This is how x
  is used above.

  It is possible for a formal to appear only in recursive calls but
  still be relevant. For example, x is not irrelevant below, even
  though it only appears in the recursive call.

    (defun fn (i x) (if (zerop i) 0 (fn x (1- i))))

  The key observation above is that while x only appears in a recursive
  call, it appears in an argument position, namely i's, that is
  relevant. (The function above can be admitted with a :measure of (+
  (nfix i) (nfix x)).)

  Establishing that a formal is irrelevant, in the sense defined above,
  can be an arbitrarily hard problem because it requires theorem
  proving. For example, is x irrelevant below?

    (defun test (i j k x) (if (p i j k) 0 x))

  Note that the value of (test i j k x) is independent of x --- thus
  making x irrelevant --- precisely if (p i j k) is a theorem. ACL2's
  syntactic analysis of a definition does not guarantee to notice all
  irrelevant formals.

  We regard the presence of irrelevant formals as an indication that
  something is wrong with the definition. We cause an error on such
  definitions and suggest that you recode the definition so as to
  eliminate the irrelevant formals. If you must have an irrelevant
  formal, one way to ``trick'' ACL2 into accepting the definition,
  without slowing down the execution of your function, is to use the
  formal in an irrelevant way in the [guard]. For example, to admit
  fact, above, with its irrelevant x one might use

    (defun fact (i x)
      (declare (xargs :guard (and (integerp i) (<= 0 i) (equal x x))))
      (if (zerop i) 0 (* i (fact (1- i) (cons i x)))))

  For those who really want to turn off this feature, we have provided
  a way to use the [ACL2-defaults-table] for this purpose; see
  [set-irrelevant-formals-ok].")
 (KEEP
  (BOOKS-TOUR)
  "How we know if [include-book] read the correct files

  The certificate (see [certificate] for general information) of a
  certified file is divided into two parts, a [portcullis] and a
  keep. These names come from castle lore. The keep is the strongest
  and usually tallest tower of a castle from which the entire
  courtyard can be surveyed by the defenders. The keep of a book is a
  list of file names and check sums used after the book has been
  included, to determine if the files read were (up to check sum)
  those certified.

  Once the [portcullis] is open, [include-book] can enter the book and
  read the event forms therein. The non-[local] event forms are in
  fact executed, extending the host theory. That may read in other
  [books]. When that has been finished, the keep of the [certificate]
  is inspected. The keep is a list of the book names which are
  included (hereditarily through all sub-books) in the certified book
  (including the certified book itself) together with the check sums
  of the objects in those [books] at the time of certification. We
  compare the check sums of the [books] just included to the check
  sums of the [books] stored in the keep. If differences are found
  then we know that the book or one of its sub-books has been changed
  since certification.

  See [include-book] to continue the guided tour through [books].")
 (KEYWORD (POINTERS) "See [keywordp].")
 (KEYWORD-COMMANDS
  (LD)
  "How keyword commands like :u and :pbt are processed

    Examples:
    user type-in                 form evaluated
    :pc 5                        (ACL2::PC '5)
    :pcs app rev                 (ACL2::PCS 'app 'rev)
    :length (1 2 3)              (ACL2::LENGTH '(1 2 3))
    :quit                        (ACL2::QUIT) ; Note: avoid optional argument

  When a keyword, :key, is read as a command, ACL2 determines whether
  the symbol with the same name in the \"ACL2\" package, acl2::key, is
  a function or simple macro of n arguments. If so, ACL2 reads n more
  objects, obj1, ..., objn, and then acts as though it had read the
  following form (for a given key):

    (ACL2::key 'obj1 ... 'objn)

  Thus, by using the keyword command hack you avoid typing the
  parentheses, the \"ACL2\" package name, and the quotation marks.

  See [ld-keyword-aliases] for how to customize this behavior.

  Note the generality of this hack. Any function or macro in the \"ACL2\"
  package can be so invoked, not just ``commands.'' Indeed, there is
  no such thing as a distinguished class of commands. Users may take
  advantage of the keyword command hack by defining functions and
  macros in the \"ACL2\" package.

  The one caveat is that when the keyword hack is used to invoke a
  macro, only the required arguments for that macro are read before
  calling that macro: none of the &optional, &rest, &body, or &key
  arguments are read for that call. The macro is thus called with
  only its required arguments. The following log illustrates this
  caveat.

    ACL2 !>:set-iprint t

    ACL2 Query (:SET-IPRINT):  Action  (T, NIL, RESET, RESET-ENABLE, SAME,
    Q or ?):
    ACL2 Observation in SET-IPRINT:  Iprinting has been enabled.
    ACL2 !>

  What happened? First, the command :set-iprint was read. Since the
  macro [set-iprint] has no required arguments, the ACL2 evaluator
  was then called on the form (set-iprint), that is, calling the
  macro on no arguments. Set-iprint is defined to query the ACL2 user
  when its first argument is omitted. The log shows that query, which
  is set up to read the next form from the input stream. That form
  was available immediately: the form t that had been supplied by the
  user. So the query returned immediately and the set-iprint call was
  completed.")
 (KEYWORD-VALUE-LISTP
  (KEYWORDP LISTS ACL2-BUILT-INS)
  "Recognizer for true lists whose even-position elements are keywords

  (keyword-value-listp l) is true if and only if l is a list of even
  length of the form (k1 a1 k2 a2 ... kn an), where each ki is a
  keyword.

  Function: <keyword-value-listp>

    (defun keyword-value-listp (l)
           (declare (xargs :guard t))
           (cond ((atom l) (null l))
                 (t (and (keywordp (car l))
                         (consp (cdr l))
                         (keyword-value-listp (cddr l))))))


Subtopics

  [Assoc-keyword]
      Look up key in a [keyword-value-listp]")
 (KEYWORDP
  (SYMBOLS ACL2-BUILT-INS)
  "Recognizer for keywords

  (Keywordp x) is true if and only if x is a keyword, i.e., a symbol in
  the \"KEYWORD\" package. Such symbols are typically printed using a
  colon (:) followed by the [symbol-name] of the symbol.

  Keywordp has a [guard] of t.

  Keywordp is a Common Lisp function. See any Common Lisp documentation
  for more information. The following log may be illuminating.

    ACL2 !>(intern \"ABC\" \"KEYWORD\")
    :ABC
    ACL2 !>(symbol-name ':ABC)
    \"ABC\"
    ACL2 !>(symbol-package-name ':ABC)
    \"KEYWORD\"
    ACL2 !>

  Function: <keywordp>

    (defun keywordp (x)
           (declare (xargs :guard t))
           (and (symbolp x)
                (equal (symbol-package-name x)
                       \"KEYWORD\")))


Subtopics

  [Keyword-value-listp]
      Recognizer for true lists whose even-position elements are keywords")
 (KWOTE
  (TERM ACL2-BUILT-INS)
  "Quote an arbitrary object

  For any object x, (kwote x) returns the two-element list whose
  elements are the symbol quote and the given x, respectively. The
  guard of (kwote x) is t.

  Function: <kwote>

    (defun kwote (x)
           (declare (xargs :guard t))
           (mbe :logic (list 'quote x)
                :exec (cond ((eq x nil) *nil*)
                            ((eq x t) *t*)
                            ((eql x 0) *0*)
                            ((eql x 1) *1*)
                            ((eql x -1) *-1*)
                            (t (list 'quote x)))))")
 (KWOTE-LST
  (TERM ACL2-BUILT-INS)
  "Quote an arbitrary true list of objects

  The function kwote-lst applies the function kwote to each element of
  a given list. The guard of (kwote-lst lst) is (true-listp lst).

  Function: <kwote-lst>

    (defun kwote-lst (lst)
           (declare (xargs :guard (true-listp lst)))
           (cond ((endp lst) nil)
                 (t (cons (kwote (car lst))
                          (kwote-lst (cdr lst))))))")
 (LAMBDA (POINTERS) "See [term].")
 (LAST
  (LISTS ACL2-BUILT-INS)
  "The last [cons] (not element) of a list

  (Last l) is the last [cons] of a list. Here are examples.

    ACL2 !>(last '(a b . c))
    (B . C)
    ACL2 !>(last '(a b c))
    (C)

  (Last l) has a [guard] of (listp l); thus, l need not be a
  [true-listp].

  Last is a Common Lisp function. See any Common Lisp documentation for
  more information. Unlike Common Lisp, we do not allow an optional
  second argument for last.

  Function: <last>

    (defun last (l)
           (declare (xargs :guard (listp l)))
           (if (atom (cdr l)) l (last (cdr l))))")
 (LAST-PROVER-STEPS
  (SET-PROVER-STEP-LIMIT WITH-PROVER-STEP-LIMIT
                         PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "The number of prover steps most recently taken

  For discussions of prover step limits, See [set-prover-step-limit]
  and see [with-prover-step-limit]. The value of the form
  (last-prover-steps state) indicates the number of prover steps
  taken, in the sense described below, for the most recent context in
  which an event summary would normally be printed. Note that the
  value of (last-prover-steps state) is updated for all [events], and
  for all other forms such as calls of [thm] or [certify-book], that
  would print a summary --- regardless of whether or not such output
  is inhibited (see [set-inhibit-output-lst] and see
  [set-inhibited-summary-types]). In particular, the value is updated
  (typically to nil) for [table] [events], even when no summary is
  printed; for example, the value is updated to nil for table events
  such as ([logic]), ([program]), and even calls of
  [set-prover-step-limit].

  The value of (last-prover-steps state) is determined as follows,
  based on the most recent summary context (as described above):

      nil, if no prover steps were taken; else,

      the (positive) number of steps taken, if the number of steps did not
      exceed the starting limit; else,

      the negative of the starting limit.

  We conclude with a remark for advanced users who wish to invoke
  last-prover-steps in the development of utilities that track prover
  steps. Suppose that you want to write a utility that takes some
  action based on the number of prover steps performed by the first
  defun event that is generated, among others, for example the number
  of prover steps taken to admit f1 in the following example.

    (progn (defun f1 ...)
           (defun f2 ...))

  A solution is to record the steps taken by the first [defun] before
  executing subsequent events, as follows (see [make-event]).

    (progn (defun f1 ...)
           (make-event (pprogn (f-put-global 'my-step-count
                                             (last-prover-steps state)
                                             state)
                               (value '(value-triple nil))))
           (defun f2 ...))")
 (LD
  (MISCELLANEOUS)
  "The ACL2 read-eval-print loop, file loader, and [command] processor

    Examples:
    (LD \"foo.lisp\")              ; read and evaluate each form in file
                                 ; \"foo.lisp\", in order
    (LD \"foo.lisp\" :ld-pre-eval-print t)
                                 ; as above, but print each form to standard
                                 ; character output just before it is evaluated

    General Form:
    (LD standard-oi                  ; open obj in channel, stringp file name
                                     ; to open and close, or list of forms
                                     ; Optional keyword arguments:
        :dir                ...      ; use this add-include-book-dir directory
        :standard-co        ...      ; open char out or file to open and close
        :proofs-co          ...      ; open char out or file to open and close
        :current-package    ...      ; known package name
        :ld-skip-proofsp    ...      ; nil, 'include-book, or t
                                     ;   (see [ld-skip-proofsp])
        :ld-redefinition-action ...  ; nil or '(:a . :b)
        :ld-prompt          ...      ; nil, t, or some prompt printer fn
        :ld-missing-input-ok ...     ; nil, t, :warn, or warning message
        :ld-pre-eval-filter ...      ; :all, :query, or some new name
        :ld-pre-eval-print  ...      ; nil, t, or :never
        :ld-post-eval-print ...      ; nil, t, or :command-conventions
        :ld-evisc-tuple     ...      ; nil or '(alist nil nil level length)
        :ld-error-triples   ...      ; nil or t
        :ld-error-action    ...      ; :return!, :return, :continue, :error,
                                     ;   or (:exit N)
        :ld-query-control-alist ...  ; alist supplying default responses
        :ld-verbose         ...)     ; nil or t

  Ld is the top-level ACL2 read-eval-print loop. (When you call [lp], a
  little initialization is done in raw Common Lisp and then ld is
  called.) Ld is also a general-purpose ACL2 file loader and a
  [command] interpreter. Ld is actually a macro that expands to a
  function call involving [state]. Ld returns an ``error triple'' (mv
  erp val state) as explained below. (For much more on error triples,
  see [programming-with-state].)

  See [rebuild] for a variant of ld that skips proofs. See
  [output-to-file] for examples showing how to redirect output to a
  file.

  The arguments to ld, except for :dir, all happen to be global
  variables in [state] (see [state] and see
  [programming-with-state]). For example, '[current-package] and
  '[ld-verbose] are global variables, which may be accessed via (@
  current-package) and (@ ld-verbose). When ld is called, it
  ``binds'' these variables. By ``binds'' we actually mean the
  variables are globally set but restored to their old values on
  exit. Because ld provides the illusion of [state] global variables
  being bound, they are called ``ld specials'' (after the Lisp
  convention of calling a variable ``special'' if it is referenced
  freely after having been bound).

  Note that all arguments but the first are passed via keyword. Any
  variable not explicitly given a value in a call retains its
  pre-call value, with the exception of :[ld-error-action], which
  generally defaults to :return! if not explicitly specified.

  Just as an example to drive the point home: If [current-package] is
  \"ACL2\" and you typed

    (ld *standard-oi* :current-package \"MY-PKG\")

  you would find yourself in (an inner) read-eval-print loop in which
  the [current-package] was \"MY-PKG\". You could operate there as long
  as you wished, changing the current package at will. But when you
  typed :[q] you would return to the outer read-eval-print loop where
  the current package would still be \"ACL2\".

  Roughly speaking, ld repeatedly reads a form from [standard-oi],
  evaluates it, and prints its result to [standard-co]. It does this
  until the form is :[q] or evaluates to an error triple whose value
  component is :[q], or until the input channel or list is emptied.
  However, ld has many bells and whistles controlled by the ld
  specials. Each such special is documented individually. For
  example, see the documentation for [standard-oi],
  [current-package], [ld-pre-eval-print], etc.

  A more precise description of ld is as follows. In the description
  below we use the ld specials as variables, e.g., we say ``a form is
  read from [standard-oi].'' By this usage we refer to the current
  value of the named [state] global variable, e.g., we mean ``a form
  is read from the current value of '[standard-oi].'' This
  technicality has an important implication: If while interacting
  with ld you change the value of one of the ld specials, e.g.,
  '[standard-oi], you will change the behavior of ld, e.g.,
  subsequent input will be taken from the new value.

  Three ld specials are treated as channels: [standard-oi] is treated
  as an object input channel and is the source of forms evaluated by
  ld; [standard-co] and [proofs-co] are treated as character output
  channels and various flavors of output are printed to them.
  However, the supplied values of these specials need not actually be
  channels; several special cases are recognized.

  If the supplied value of one of these is in fact an open channel of
  the appropriate type, that channel is used and is not closed by ld.
  If the supplied value of one of these specials is a string, the
  string is treated as a file name in (essentially) Unix syntax (see
  [pathname]) and a channel of the appropriate type is opened to/from
  that file. Any channel opened by ld during the binding of the ld
  specials is automatically closed by ld upon termination. If
  [standard-co] and [proofs-co] are equal strings, only one channel
  to that file is opened and is used for both.

  As a special convenience, when [standard-oi] is a string and the :dir
  argument provided and not nil, we look up :dir in the table of
  directories maintained by [add-include-book-dir], and prepend this
  directory to [standard-oi] to create the filename. (In this case,
  however, we require that standard-oi is a relative pathname, not an
  absolute pathname.) For example, one can write (ld
  \"arithmetic/top-with-meta.lisp\" :dir :system) to ld that particular
  community books library. (Of course, you should almost always load
  books like arithmetic/top-with-meta using [include-book] instead of
  ld.) If :dir is not specified, then a relative pathname is resolved
  using the connected book directory; see [cbd].

  Several other alternatives are allowed for [standard-oi]. If
  [standard-oi] is a true list then it is taken as the list of forms
  to be processed. If [standard-oi] is a list ending in an open
  channel, then ld processes the forms in the list and then reads and
  processes the forms from the channel. Analogously, if [standard-oi]
  is a list ending a string, an object input channel from the named
  file is opened and ld processes the forms in the list followed by
  the forms in the file. That channel is closed upon termination of
  ld.

  In the cases that a string is to be converted to an object input
  channel --- that is, when [standard-oi] is a string or is a list
  ending in a string --- an error occurs by default if the conversion
  fails, presumably because the file named by the string does not
  exist. However, if keyword argument :ld-missing-input-ok is t, then
  ld immediately returns without error in this case, but without
  reading or executing any forms, as though standard-oi is nil and
  keyword arguments :ld-verbose and ld-prompt both have value nil.
  The other legal values for :ld-missing-input-ok are nil, which
  gives the default behavior, and :warn, which behaves the same as t
  except that a warning is printed, which contains the same
  information as would be printed for the default error described
  above.

  The remaining ld specials are handled more simply and generally have
  to be bound to one of a finite number of tokens described in the
  :[doc] entries for each ld special. Should any ld special be
  supplied an inappropriate value, an error message is printed.

  Next, if [ld-verbose] is t, ld prints the message ``ACL2 loading
  name'' where name names the file or channel from which forms are
  being read. At the conclusion of ld, it will print ``Finished
  loading name'' if [ld-verbose] is t.

  Finally, ld repeatedly executes the ACL2 read-eval-print step, which
  may be described as follows. A [prompt] is printed to [standard-co]
  if [ld-prompt] is non-nil. The format of the [prompt] is determined
  by [ld-prompt]. If it is t, the default ACL2 [prompt] is used. If
  it is any other non-nil value then it is treated as an ACL2
  function that will print the desired [prompt]. See [ld-prompt]. In
  the exceptional case where ld's input is coming from the terminal
  (*standard-oi*) but its output is going to a different sink (i.e.,
  [standard-co] is not [*standard-co*]), we also print the [prompt]
  to the terminal.

  Ld then reads a form from [standard-oi]. If the object read is a
  keyword, ld constructs a ``keyword command form'' by possibly
  reading several more objects. See [keyword-commands]. This
  construction process is sensitive to the value of
  [ld-keyword-aliases]. See [ld-keyword-aliases]. Otherwise, the
  object read is treated as the command form.

  Ld next decides whether to evaluate or skip this form, depending on
  [ld-pre-eval-filter]. Initially, the filter must be either :all,
  :query, or a new name. If it is :all, it means all forms are
  evaluated. If it is :query, it means each form that is read is
  displayed and the user is queried. Otherwise, the filter is a name
  and each form that is read is evaluated as long as the name remains
  new, but if the name is ever introduced then no more forms are read
  and ld terminates. See [ld-pre-eval-filter].

  If the form is to be evaluated, then ld first prints the form to
  [standard-co], if [ld-pre-eval-print] is t. With this feature, ld
  can process an input file or form list and construct a script of
  the session that appears as though each form was typed in. See
  [ld-pre-eval-print].

  Ld then evaluates the form, with [state] bound to the current
  [state]. The result is some list of (multiple) values. If a [state]
  is among the values, then ld uses that [state] as the subsequent
  current [state].

  Depending on [ld-error-triples], ld may interpret the result as an
  ``error.'' See [ld-error-triples]. We first discuss ld's behavior
  if no error signal is detected (either because none was sent or
  because ld is ignoring them because [ld-error-triples] is nil).

  In the case of a non-erroneous result, ld does two things: First, if
  the logical [world] in the now current [state] is different than
  the [world] before execution of the form, ld adds to the [world] a
  ``[command] landmark'' containing the form evaluated. See
  [command-descriptor]. Second, ld prints the result to
  [standard-co], but only if [ld-post-eval-print] is not nil. The
  result is printed as a list of (multiple) values unless
  [ld-post-eval-print] is :command-conventions, [ld-error-triples] is
  t, and the result is an [error-triple], i.e., of the form (mv * *
  state). In that case, only the non-erroneous ``value'' component of
  the result is printed. See [ld-post-eval-print].

  Whenever ld prints anything (whether the input form, a query, or some
  results) it ``eviscerates'' it if ld-evisc-tuple is non-nil.
  Essentially, evisceration is a generalization of Common Lisp's use
  of *print-level* and *print-length* to hide large substructures.
  See [evisc-tuple] and also see [set-iprint].

  We now return to the case of a form whose evaluation signals an
  error. In this case, ld first restores the ACL2 logical [world] to
  what it was just before the erroneous form was evaluated. Thus, a
  form that partially changes the [world] (i.e., begins to store
  properties) and then signals an error, has no effect on the
  [world]. You may see this happen on [command]s that execute several
  [events] (e.g., an [encapsulate] or a [progn] of several [defuns]):
  even though the output makes it appear that the initial [events]
  were executed, if an error is signalled by a later event the entire
  block of [events] is discarded.

  After rolling back, ld takes an action determined by
  [ld-error-action]. If the action is :continue, ld merely iterates
  the read-eval-print step. Note that nothing suggestive of the value
  of the ``erroneous'' form is printed. If the action is :return, ld
  terminates normally; similarly if the action is :return!, but a
  special value is returned that can cause superior ld commands to
  terminate; see [ld-error-action] for details. If the action is
  :error, ld terminates signalling an error to its caller. If its
  caller is in fact another instance of ld and that instance is
  watching out for error signals, the entire [world] created by the
  inner ld will be discarded by the outer ld if the inner ld
  terminates with an error. Note that if the action is (:exit N),
  then there is no rolling back, because ACL2 quits immediately with
  exit status N.

  Ld returns an error triple, (mv erp val state). Erp is t or nil
  indicating whether an error is being signalled. If no error is
  signalled, val is the ``reason'' ld terminated and is one of :exit
  (meaning :[q] was read), :eof (meaning the input source was
  exhausted), :error (meaning an error occurred but has been
  suppressed), :filter (meaning the [ld-pre-eval-filter] terminated
  ld), or a cons pair whose first component is the symbol :STOP-LD,
  which typically indicates that an error occurred while the value of
  variable '[ld-error-action] was :RETURN!. See [ld-error-action] for
  details of this last case.


Subtopics

  [A!]
      To return to the top-level of ACL2's command loop

  [Abort!]
      To return to the top-level of ACL2's command loop

  [Calling-ld-in-bad-contexts]
      Errors caused by calling [ld] in inappropriate contexts

  [Current-package]
      The package used for reading and printing

  [Default-print-prompt]
      The default [prompt] printed by [ld]

  [I-am-here]
      A convenient marker for use with [rebuild] or [ld]

  [Keyword-commands]
      How keyword commands like :u and :pbt are processed

  [Ld-error-action]
      Determines [ld]'s response to an error

  [Ld-error-triples]
      Determines whether a form caused an error during [ld]

  [Ld-evisc-tuple]
      Determines whether [ld] suppresses details when printing

  [Ld-keyword-aliases]
      Abbreviation of some keyword commands

  [Ld-missing-input-ok]
      Determines which forms [ld] evaluates

  [Ld-post-eval-print]
      Determines whether and how [ld] prints the result of evaluation

  [Ld-pre-eval-filter]
      Determines which forms [ld] evaluates

  [Ld-pre-eval-print]
      Determines whether [ld] prints the forms to be eval'd

  [Ld-prompt]
      Determines the [prompt] printed by [ld]

  [Ld-query-control-alist]
      How to default answers to queries

  [Ld-redefinition-action]
      To allow redefinition without undoing

  [Ld-skip-proofsp]
      How carefully ACL2 processes your [command]s

  [Ld-verbose]
      Determines whether [ld] prints ``ACL2 Loading ...''

  [Lp]
      The Common Lisp entry to ACL2

  [P!]
      To pop up (at least) one level of ACL2's command loop

  [Prompt]
      The prompt printed by [ld]

  [Rebuild]
      A convenient way to reconstruct your old [state]

  [Redef]
      A common way to set [ld-redefinition-action]

  [Redef!]
      A common way to set [ld-redefinition-action]

  [Redef+]
      System hacker's redefinition [command]

  [Redef-]
      Turn off system hacker's redefinition [command]

  [Reset-ld-specials]
      Restores initial settings of the [ld] specials

  [Wormhole]
      [ld] without [state] --- a short-cut to a parallel universe")
 (LD-ERROR-ACTION
  (LD)
  "Determines [ld]'s response to an error

  Ld-error-action is an [ld] special (see [ld]). The accessor is
  (ld-error-action state) and the updater is (set-ld-error-action val
  state). Ld-error-action must be :continue, :return, :return!,
  :error, or (:exit N) for some natural number N. The initial value
  of ld-error-action is :continue, which means that the top-level
  ACL2 [command] loop (see [lp]) will not exit when an error is
  caused by user-typein. But the default value for ld-error-action on
  calls of [ld] is :return!, with one exception: in the case that the
  value of [ld] special ld-error-action is (:exit N), the default
  remains that value.

  The general-purpose ACL2 read-eval-print loop, [ld], reads forms from
  [standard-oi], evaluates them and prints the result to
  [standard-co]. Note that the ACL2 top-level loop (see [lp]) results
  from an invocation of [ld].

  However, there are various flags that control [ld]'s behavior and
  ld-error-action is one of them. Suppose that [ld-error-triples] is
  t and a form evaluates to an [error-triple] (mv erp val state). If
  the ``error component'', erp, is non-nil, then an error is said to
  have occurred. If an error occurs, [ld]'s action depends on
  ld-error-action. If it is :continue, [ld] just continues processing
  the forms in [standard-oi]. If it is :return or :return!, [ld]
  stops and returns as though it had emptied the channel. If it is
  :error, [ld] stops and returns, signalling an error to its caller
  by returning an error triple with non-nil error component, and
  reverting the logical [world] to its value just before that call of
  [ld]. If it is (:exit N), then ACL2 quits with exit status N.

  To see this effect of :ERROR for ld-error-action, consider the
  following example.

    (ld '((defun f (x) x) (defun bad (x)) (defun g (x) x)))

  When the [defun] of bad fails (because its body is missing),
  evaluation of the ld call stops; thus, the [defun] of g is not
  evaluated. The definition of f will be removed from the logical
  [world] before the call of ld returns.

  However, by default each user call of ld is made with a
  ld-error-action of :RETURN! (not :ERROR). In the common case that
  all nested calls of ld inside the ACL2 loop are made this way, an
  error will not roll back the logical [world]. However, it will
  still halt evaluation of forms for the current call of ld and any
  parent calls of ld (other than the call made on behalf of lp that
  entered the ACL2 loop in the first place), as though there were no
  more forms to evaluate.

  We have already discussed the behavior of ld when an error occurs.
  But there is another case when ld can stop processing more forms:
  when ld-error-action is not :CONTINUE, [ld-error-triples] is t, and
  evaluation of a form returns an error triple (mv nil val state),
  where nil is the error component and whose ``value component'', val
  is a [cons] pair whose [car] is the symbol :STOP-LD. Let val be the
  pair (:STOP-LD . x). Then the call of ld returns the error triple
  (mv nil (:STOP-LD n . x) state), where n is the value of [state]
  global variable 'ld-level at the time of termination. The following
  example illustrates how this works.

    (ld '((defun f1 (x) x)
          (ld '((defun f2 (x) x)
                (mv nil '(:STOP-LD my-error more-info) state)
                (defun g2 (x) x)))
          (defun g1 (x) x)))

  The outer call of ld returns the value

    (:STOP-LD 2 3 MY-ERROR MORE-INFO)

  and leaves us in a world the includes definitions for f1 and f2, but
  no definition for g1 or g2 since neither of their two defun forms
  was evaluated. The value of [state] global 'ld-level is incremented
  from 1 to 2 when the outer ld is entered and then again to 3 when
  the inner ld is entered. When the inner ld escounters the error
  triple (mv nil (:STOP-LD my-error more-info) state), it sees
  :STOP-LD in the car of the value component and pushes the current
  value of 'ld-level, 3, onto the [cdr] of that value, to return the
  value triple (mv nil (:STOP-LD my-error 3 more-info) state). The
  outer of ld then sees this value and returns (mv nil (:STOP-LD
  my-error 2 3 more-info) state), since its current value of
  'ld-level is 2 after the inner ld exits.

  That concludes our discussion of how these special :STOP-LD values
  are handled; but how are they created? While they can be created
  directly by evaluation results as suggested in the example above,
  that is not the standard way. Rather, ld returns an error triple
  (mv nil (:STOP-LD n) state), where n is the value of variable
  ld-level at the time of termination, when the following conditions
  hold: an error occurs, ld-error-action is RETURN! (which is the
  default), and [ld-error-triples] is t (the default). The following
  example, which is a bit similar to the preceding one, illustrates
  both creation and handling of the special :STOP-LD values.

    (ld '((defun f1 (x) x)
          (ld '((defun f2 (x) x)
                (ld '((defun f3 (x) x)
                      (defun bad (x)) ; ERROR -- missing the body
                      (defun g3 (x) x)))
                (defun g2 (x) x)))
          (defun g1 (x) x)))

  The result is that f1, f2, and f3 are defined, but none of g1, g2, or
  g3 is defined. Let's see why. The innermost call of [ld] has a
  default :ld-error-action of :RETURN! (as do the other calls). So
  when the definition of bad fails, then the innermost ld returns (mv
  nil (:STOP-LD 4) state). The middle ld sees this value, and since
  its :ld-error-action is not :CONTINUE (because it has the default
  value of :RETURN!), it returns before considering the definition of
  g2, with value (mv nil (:STOP-LD 3 4) state). The topmost call of
  ld similarly sees the :STOP-LD; stops evaluation of forms, without
  defining g1; and returns (mv nil (:STOP-LD 2 3 4) state).")
 (LD-ERROR-TRIPLES
  (LD)
  "Determines whether a form caused an error during [ld]

  Ld-error-triples is an [ld] special (see [ld]). The accessor is
  (ld-error-triples state) and the updater is (set-ld-error-triples
  val state). Ld-error-triples must be either t or nil. The initial
  value of ld-error-triples is t.

  The general-purpose ACL2 read-eval-print loop, [ld], reads forms from
  [standard-oi], evaluates them and prints the result to
  [standard-co]. Note that the ACL2 top-level loop (see [lp]) results
  from an invocation of [ld].

  However, there are various flags that control [ld]'s behavior and
  ld-error-triples is one of them. If this variable has the value t
  then when a form evaluates to an [error-triple] (mv erp val state)
  such that erp is non-nil, then an error is deemed to have occurred.
  When an error occurs in evaluating a form, [ld] rolls back the ACL2
  [world] to the configuration it had at the conclusion of the last
  error-free form. Then [ld] takes the action determined by
  [ld-error-action].")
 (LD-EVISC-TUPLE
  (LD)
  "Determines whether [ld] suppresses details when printing

  Ld-evisc-tuple is an [ld] special (see [ld]). The accessor is
  (ld-evisc-tuple state) and an updater is (set-ld-evisc-tuple val
  state), although the use of [set-evisc-tuple] is preferred for
  updating. Ld-evisc-tuple must be either nil, which is its initial
  value, or a legal evisc-tuple: see [set-evisc-tuple].

  The general-purpose ACL2 read-eval-print loop, [ld], reads forms from
  [standard-oi], evaluates them and prints the result to
  [standard-co]. Note that the ACL2 top-level loop (see [lp]) results
  from an invocation of [ld].

  However, there are various flags that control [ld]'s behavior and
  ld-evisc-tuple is one of them. [Ld] may print the forms it is
  evaluating and/or the results of evaluation. Depending on the value
  of ld-evisc-tuple [ld] may ``eviscerate'' objects before printing
  them. See [set-evisc-tuple] for a discussion of evisceration and of
  how other evisc-tuples affect the printing of error messages and
  warnings, as well as other output not from ld.")
 (LD-KEYWORD-ALIASES
  (LD)
  "Abbreviation of some keyword commands

    Examples:
    (set-ld-keyword-aliases '((:q 0 q-fn)
                              (:e 0 exit-acl2-macro))
                            state)
    (ld-keyword-aliases state) ; current value of the ld-keyword-aliases table

  Ld-keyword-aliases is the name of a ACL2 table (see [table]) and also
  the name of a function of state that returns the value of this
  table. That value must be an alist, each element of which is of the
  form (:keyword n fn), where :keyword is a keyword, n is a
  nonnegative integer, and fn is a function symbol of arity n, a
  macro symbol, or a lambda expression of arity n. When keyword is
  typed as an [ld] command, n more forms are read, x1, ..., xn, and
  the form (fn 'x1 ... 'xn) is then evaluated. The initial value of
  the ld-keyword-aliases [table] is nil.

  ACL2 provides functions to modify the ld-keyword-aliases table, as
  follows.

      (Set-ld-keyword-aliases val state): sets the table to val, which must
      be a legal alist as described above. This is an event that may
      go into a book (see [events]), but its effect will be [local]
      to that book.

      Set-ld-keyword-aliases! is the same as set-ld-keyword-aliases, except
      that its effect is not [local]. Indeed, the form
      (set-ld-keyword-aliases val state) is equivalent to the form
      (local (set-ld-keyword-aliases! val state).

      (Add-ld-keyword-alias key val state): modifies the table by binding
      the keyword key to val, which must be a legal value as
      described above. This is an event that may go into a book (see
      [events]), but its effect will be [local] to that book.

      Add-ld-keyword-alias! is the same as add-ld-keyword-alias, except
      that its effect is not [local]. Indeed, the form
      (add-ld-keyword-alias key val state) is equivalent to the form
      (local (add-ld-keyword-alias! key val state).

  Consider the first example above:

    (set-ld-keyword-aliases '((:q 0 q-fn)
                              (:e 0 exit-acl2-macro))
                            state)

  With this event, :[q] is redefined to have the effect of executing
  (q-fn), so for example if you have defined q-fn with

    (defmacro q-fn ()
      '(er soft 'q \"You un-bound :q and now we have a soft error.\"))

  then :[q] will cause an error, and if you have defined

    (defmacro exit-acl2-macro () '(exit-ld state))

  then :e will cause the effect (it so happens) that :[q] normally has.
  If you prefer :e to :[q] for exiting the ACL2 loop, you might even
  want to put such definitions of q-fn and exit-acl2-macro together
  with the set-ld-keyword-aliases form above into your
  \"acl2-customization.lsp\" file; see [ACL2-customization].

  The general-purpose ACL2 read-eval-print loop, [ld], reads forms from
  [standard-oi], evaluates them and prints the result to
  [standard-co]. Note that the ACL2 top-level loop (see [lp]) results
  from an invocation of [ld].

  However, there are various flags that control [ld]'s behavior and
  ld-keyword-aliases is one of them. Ld-keyword-aliases affects how
  keyword commands are parsed. Generally speaking, [ld]'s command
  interpreter reads ``:fn x1 ... xn'' as ``(fn 'x1 ... 'xn)'' when
  :fn is a keyword and fn is the name of an n-ary function; see
  [keyword-commands]. But this parse is overridden, as described
  above, for the keywords bound in the ld-keyword-aliases [table].")
 (LD-MISSING-INPUT-OK
  (LD)
  "Determines which forms [ld] evaluates

  ld-missing-input-ok is an [ld] special (see [ld]). The accessor is
  (ld-missing-input-ok state) and the updater is
  (set-ld-missing-input-ok val state). ld-missing-input-ok must be
  either nil, t, or :warn. The initial value of ld-missing-input-ok
  is nil.

  The general-purpose ACL2 read-eval-print loop, [ld], is controlled by
  various flags that control its behavior, and ld-missing-input-ok is
  one of them. In brief, the first argument of ld can indicate a file
  from which to read input. If the file does not exist, it is an
  error by default, but ld becomes essentially a no-op if t or :warn
  is supplied for :ld-missing-input-ok, where :warn prints a warning.
  Also see [ld].")
 (LD-POST-EVAL-PRINT
  (LD)
  "Determines whether and how [ld] prints the result of evaluation

  Ld-post-eval-print is an [ld] special (see [ld]). The accessor is
  (ld-post-eval-print state) and the updater is
  (set-ld-post-eval-print val state). Ld-post-eval-print must be
  either t, nil, or :command-conventions. The initial value of
  ld-post-eval-print is :command-conventions.

  The general-purpose ACL2 read-eval-print loop, [ld], reads forms from
  [standard-oi], evaluates them and prints the result to
  [standard-co]. Note that the ACL2 top-level loop (see [lp]) results
  from an invocation of [ld].

  However, there are various flags that control [ld]'s behavior and
  ld-post-eval-print is one of them. If this global variable is t,
  [ld] prints the result. In the case of a form that produces a
  multiple value, [ld] prints the list containing all the values
  (which, logically speaking, is what the form returned). If
  ld-post-eval-print is nil, [ld] does not print the values. This is
  most useful when [ld] is used to load a previously processed file.

  Finally, if ld-post-eval-print is :command-conventions and also
  ld-error-triples is t, then [ld] prints the result but treats
  ``error triples'' specially. An ``error triple'' (see
  [error-triple]) is a result, (mv erp val state), that consists of
  two ordinary values and [state]. Many ACL2 functions use such
  triples to signal errors. The convention is that if erp (the first
  value) is nil, then the function is returning val (the second
  value) as its conventional single result and possibly
  side-effecting [state] (as with some output). If erp is not nil,
  then an error has been caused, val is irrelevant and the error
  message has been printed in the returned [state]. Example ACL2
  functions that follow this convention include [defun] and
  [in-package]. If such ``error producing'' functions are evaluated
  while ld-post-eval-print is set to t, then you would see them
  producing lists of length 3. This is disconcerting to users
  accustomed to Common Lisp (where these functions produce single
  results but sometimes cause errors or side-effect [state]). For
  more information about error triples, see [programming-with-state].

  When ld-post-eval-print is :command-conventions and a form produces
  an error triple (mv erp val state) as its value, [ld] prints
  nothing if erp is non-nil and otherwise [ld] prints just val.
  Because it is a misrepresentation to suggest that just one result
  was returned, [ld] prints the value of the global variable
  'triple-print-prefix before printing val. 'triple-print-prefix is
  initially \" \", which means that when non-erroneous error triples
  are being abbreviated to val, val appears one space off the left
  margin instead of on the margin.

  In addition, when ld-post-eval-print is :command-conventions and the
  value component of an error triple is the keyword :invisible then
  [ld] prints nothing. This is the way certain commands (e.g., :[pc])
  appear to return no value.

  By printing nothing when an error has been signalled, [ld] makes it
  appear that the error (whose message has already appeared in
  [state]) has ``thrown'' the computation back to load without
  returning a value. By printing just val otherwise, we suppress the
  fact that [state] has possibly been changed.")
 (LD-PRE-EVAL-FILTER
  (LD)
  "Determines which forms [ld] evaluates

  Ld-pre-eval-filter is an [ld] special (see [ld]). The accessor is
  (ld-pre-eval-filter state) and the updater is
  (set-ld-pre-eval-filter val state). Ld-pre-eval-filter must be
  either :all, :query, or a new name that could be defined (e.g., by
  [defun] or [defconst]). The initial value of ld-pre-eval-filter is
  :all.

  The general-purpose ACL2 read-eval-print loop, [ld], reads forms from
  [standard-oi], evaluates them and prints the result to
  [standard-co]. Note that the ACL2 top-level loop (see [lp]) results
  from an invocation of [ld].

  However, there are various flags that control [ld]'s behavior and
  ld-pre-eval-filter is one of them. If the filter is :all, then
  every form read is evaluated. If the filter is :query, then after a
  form is read it is printed to [standard-co] and the user is asked
  if the form is to be evaluated or skipped. If the filter is a new
  name, then all forms are evaluated until that name is introduced,
  at which time [ld] terminates normally.

  The :all filter is, of course, the normal one. :Query is useful if
  you want to replay selected the [command]s in some file. The new
  name filter is used if you wish to replay all the [command]s in a
  file up through the introduction of the given one.")
 (LD-PRE-EVAL-PRINT
  (LD)
  "Determines whether [ld] prints the forms to be eval'd

  Ld-pre-eval-print is an [ld] special (see [ld]). The accessor is
  (ld-pre-eval-print state) and the updater is (set-ld-pre-eval-print
  val state). Ld-pre-eval-print must be either t, nil, or :never. The
  initial value of ld-pre-eval-print is nil.

  The general-purpose ACL2 read-eval-print loop, [ld], reads forms from
  [standard-oi], evaluates them and prints the result to
  [standard-co]. Note that the ACL2 top-level loop (see [lp]) results
  from an invocation of [ld].

  However, there are various flags that control [ld]'s behavior and
  ld-pre-eval-print is one of them. If this global variable is t,
  then before evaluating the form just read from [standard-oi], [ld]
  prints the form to [standard-co]. If the variable is nil, no such
  printing occurs. The t option is useful if you are reading from a
  file of [command]s and wish to assemble a complete script of the
  session in [standard-co].

  The value :never of ld-pre-eval-print is rarely used. During the
  evaluation of [encapsulate] and of [certify-book] forms, subsidiary
  events are normally printed, even if ld-pre-eval-print is nil. Thus
  for example, when the user submits an [encapsulate] form, all
  subsidiary events are generally printed even in the default
  situation where ld-pre-eval-print is nil. But occasionally one may
  want to suppress such printing. In that case, ld-pre-eval-print
  should be set to :never. As described elsewhere (see
  [set-inhibit-output-lst]), another way to suppress such printing is
  to execute (set-inhibit-output-lst lst) where lst evaluates to a
  list including 'prove and 'event.")
 (LD-PROMPT
  (LD)
  "Determines the [prompt] printed by [ld]

  Ld-prompt is an [ld] special (see [ld]). The accessor is (ld-prompt
  state) and the updater is (set-ld-prompt val state). Ld-prompt must
  be either nil, t, or a function symbol that, when given an open
  output character channel and [state], prints the desired [prompt]
  to the channel and returns two values: the number of [characters]
  printed and the [state]. The initial value of ld-prompt is t.

  The general-purpose ACL2 read-eval-print loop, [ld], reads forms from
  [standard-oi], evaluates them and prints the result to
  [standard-co]. Note that the ACL2 top-level loop (see [lp]) results
  from an invocation of [ld].

  However, there are various flags that control [ld]'s behavior and
  ld-prompt is one of them. Ld-prompt determines whether [ld] prints
  a [prompt] before reading the next form from [standard-oi]. If
  ld-prompt is nil, [ld] prints no [prompt]. If ld-prompt is t, the
  default [prompt] printer is used, which displays information that
  includes the current package, default [defun-mode], [guard]
  checking status (on or off), and [ld-skip-proofsp]; see
  [default-print-prompt].

  If ld-prompt is neither nil nor t, then it should be a function name,
  fn, such that (fn channel state) will print the desired [prompt] to
  channel in [state] and return (mv col state), where col is the
  number of [characters] output (on the last line output). You may
  define your own [prompt] printing function.

  If you supply an inappropriate [prompt] function, i.e., one that
  causes an error or does not return the correct number and type of
  results, the following odd [prompt] will be printed instead:

    Bad Prompt
    See :DOC ld-prompt>

  which will lead you to this message. You should either call [ld]
  appropriately next time or assign an appropriate value to
  ld-prompt.")
 (LD-QUERY-CONTROL-ALIST
  (LD)
  "How to default answers to queries

  Ld-query-control-alist is an [ld] special (see [ld]). The accessor is
  (ld-query-control-alist state) and the updater is
  (set-ld-query-control-alist val state). Roughly speaking,
  ld-query-control-alist is either nil (meaning all queries should be
  interactive), t (meaning all should default to the first accepted
  response), or an alist that pairs query ids to keyword responses.
  The alist may end in either t or nil, indicating the default value
  for all ids not listed explicitly. Formally, the
  ld-query-control-alist must satisfy ld-query-control-alistp. The
  initial ld-query-control-alist is nil, which means all queries are
  handled interactively.

  When an ACL2 query is raised, a unique identifying symbol is printed
  in parentheses after the word ``Query''. This symbol, called the
  ``query id,'' can be used in conjunction with
  ld-query-control-alist to prevent the query from being handled
  interactively. By ``handled interactively'' we mean that the query
  is printed to [*standard-co*] and a response is read from
  [*standard-oi*]. The alist can be used to obtain a ``default
  value'' for each query id. If this value is nil, then the query is
  handled interactively. In all other cases, the system handles the
  query without interaction (although text may be printed to
  [standard-co] to make it appear that an interaction has occurred;
  see below). If the default value is t, the system acts as though
  the user responded to the query by typing the first response listed
  among the acceptable responses. If the default value is neither nil
  nor t, then it must be a keyword and one of the acceptable
  responses. In that case, the system acts as though the user
  responded with the given keyword.

  Next, we discuss how the ld-query-control-alist assigns a default
  value to each query id. It assigns each id the first value paired
  with the id in the alist, or, if no such pair appears in the alist,
  it assigns the final [cdr] of the alist as the value. Thus, nil
  assigns all ids nil. T assigns all ids t. '((:filter . nil)
  (:sysdef . :n) . t) assigns nil to the :filter query, :n to the
  :sysdef query, and t to all others.

  It remains only to discuss how the system prints text when the
  default value is not nil, i.e., when the query is handled without
  interaction. In fact, it is allowed to pair a query id with a
  singleton list containing a keyword, rather than a keyword, and
  this indicates that no printing is to be done. Thus for the example
  above, :sysdef queries would be handled noninteractively, with
  printing done to simulate the interaction. But if we change the
  example so that :sysdef is paired with (:n), i.e., if
  ld-query-control-alist is '((:filter . nil) (:sysdef :n) . t), then
  no such printing would take place for sysdef queries. Instead, the
  default value of :n would be assigned ``quietly''.")
 (LD-REDEFINITION-ACTION
  (LD)
  "To allow redefinition without undoing

  Ld-redefinition-action is an [ld] special (see [ld]). The accessor is
  (ld-redefinition-action state) and the updater is
  (set-ld-redefinition-action val state).

  WARNING! If ld-redefinition-action is non-nil then ACL2 is liable to
  be made unsafe or unsound either by ill-considered definitions, or
  because redefining a macro or inlined function called in the body
  of a function, g, may not cause the new definition to be called by
  g. The keyword command :[redef] will set ld-redefinition-action to
  a convenient setting allowing unsound redefinition. See below.

  When ld-redefinition-action is nil, redefinition is prohibited. In
  that case, an error message is printed upon any attempt to
  introduce a name that is already in use. There is one exception to
  this rule. It is permitted to redefine a function symbol in
  :[program] mode to be a function symbol in :[logic] mode provided
  the formals and body remain the same. This is the standard way a
  function ``comes into'' logical existence.

  Throughout the rest of this discussion we exclude from our meaning of
  ``redefinition'' the case in which a function in :[program] mode is
  identically redefined in :[logic] mode. At one time, ACL2 freely
  permitted the [signature]-preserving redefinition of :[program]
  mode functions but it no longer does. See [redefining-programs].

  When ld-redefinition-action is non-nil, you are allowed to redefine a
  name that is already in use. The system may be rendered unsound by
  such an act. It is important to understand how dangerous
  redefinition is. Suppose fn is a function symbol that is called
  from within some other function, say g. Suppose fn is redefined so
  that its arity changes. Then the definition of g is rendered
  syntactically ill-formed by the redefinition. This can be
  devastating since the entire ACL2 system assumes that terms in its
  database are well-formed. For example, if ACL2 executes g by
  running the corresponding function in raw Common Lisp the
  redefinition of fn may cause raw lisp to break in irreparable ways.
  As Lisp programmers we live with this all the time by following the
  simple rule: after changing the syntax of a function don't run any
  function that calls it via its old syntax. This rule also works in
  the context of the evaluation of ACL2 functions, but it is harder
  to follow in the context of ACL2 deductions, since it is hard to
  know whether the database contains a path leading the theorem
  prover from facts about one function to facts about another.
  Finally, of course, even if the database is still syntactically
  well-formed there is no assurance that all the rules stored in it
  are valid. For example, theorems proved about g survive the
  redefinition of fn but may have crucially depended on the
  properties of the old fn. In summary, we repeat the warning: all
  bets are off if you set ld-redefinition-action to non-nil.

  ACL2 provides some enforcement of the concern above, by disabling
  [certify-book] if any [world]-changing [events] exist in the
  certification [world] that were executed with a non-nil value of
  'ld-redefinition-action. (This value is checked at the end of each
  top-level command, but the value does not change during evaluation
  of embedded event forms; see [embedded-event-form].)

  If at any point in a session you wish to see the list of all names
  that have been redefined, see [redefined-names].

  That said, we'll give you enough rope to hang yourself. When
  ld-redefinition-action is non-nil, it must be a pair, (a . b). The
  value of a determines how the system interacts with you when a
  redefinition is submitted. The value of b allows you to specify how
  the property list of the redefined name is to be ``renewed'' before
  the redefinition.

  There are several dimensions to the space of possibilities controlled
  by part a: Do you want to be queried each time you redefine a name,
  so you can confirm your intention? (We sometimes make typing
  mistakes or simply forget we have used that name already.) Do you
  want to see a warning stating that the name has been redefined? Do
  you want ACL2 system functions given special protection from
  possible redefinition? Below are the choices for part a:

      :query --- every attempt to redefine a name will produce a query. The
      query will allow you to abort the redefinition or proceed. It
      will will also allow you to specify the part b for this
      redefinition. :Query is the recommended setting for users who
      wish to dabble in redefinition.

      :warn --- any user-defined function may be redefined but a
      post-redefinition warning is printed. The attempt to redefine a
      system name produces a query. If you are prototyping and
      testing a big system in ACL2 this is probably the desired
      setting for part a.

      :doit --- any user-defined function may be redefined silently
      (without query or warning) but when an attempt is made to
      redefine a system function, a query is made. This setting is
      recommended when you start making massive changes to your
      prototyped system (and tire of even the warning messages issued
      by :warn).

  In support of our own ACL2 systems [programming] there are two other
  settings. We suggest ordinary users not use them.

      :warn! --- every attempt to redefine a name produces a warning but no
      query. Since ACL2 system functions can be redefined this way,
      this setting should be used by the only-slightly-less-than
      supremely confident ACL2 system hacker.

      :doit! --- this setting allows any name to be redefined silently
      (without query or warnings). ACL2 system functions are fair
      game. This setting is reserved for the supremely confident ACL2
      system hacker. (Actually, this setting is used when we are
      loading massively modified versions of the ACL2 source files.)

  Part b of ld-redefinition-action tells the system how to ``renew''
  the property list of the name being redefined. There are two
  choices:

      :erase --- erase all properties stored under the name, or

      :overwrite --- preserve existing properties and let the redefining
      overwrite them.

  It should be stressed that neither of these b settings is guaranteed
  to result in an entirely satisfactory state of affairs after the
  redefinition. Roughly speaking, :erase returns the property list of
  the name to the state it was in when the name was first introduced.
  Lemmas, type information, etc., stored under that name are lost. Is
  that what you wanted? Sometimes it is, as when the old definition
  is ``completely wrong.'' But other times the old definition was
  ``almost right'' in the sense that some of the work done with it is
  still (intended to be) valid. In that case, :overwrite might be the
  correct b setting. For example if fn was a function and is being
  re-[defun]'d with the same [signature], then the properties stored
  by the new [defun] should overwrite those stored by the old [defun]
  but the properties stored by [defthm]s will be preserved.

  In addition, neither setting will cause ACL2 to erase properties
  stored under other symbols! Thus, if FOO names a rewrite rule which
  rewrites a term beginning with the function symbol BAR and you then
  redefine FOO to rewrite a term beginning with the function symbol
  BAZ, then the old version of FOO is still available (because the
  rule itself was added to the rewrite rules for BAR, whose property
  list was not cleared by redefining FOO).

  The b setting is only used as the default action when no query is
  made. If you choose a setting for part a that produces a query then
  you will have the opportunity, for each redefinition, to specify
  whether the property list is to be erased or overwritten.

  The keyword command :[redef] sets ld-redefinition-action to the pair
  (:query . :overwrite). Since the resulting query will give you the
  chance to specify :erase instead of :overwrite, this setting is
  quite convenient. But when you are engaged in heavy-duty
  prototyping, you may wish to use a setting such as :warn or even
  :doit. For that you will have to invoke a form such as:

    (set-ld-redefinition-action '(:doit . :overwrite) state) .

  [Encapsulate] causes somewhat odd interaction with the user if
  redefinition occurs within the encapsulation because the
  [encapsulate]d event list is processed several times. For example,
  if the redefinition action causes a query and a non-local
  definition is actually a redefinition, then the query will be posed
  twice, once during each pass. C'est la vie.

  Finally, it should be stressed again that redefinition is dangerous
  because not all of the rules about a name are stored on the
  property list of the name. Thus, redefinition can render ill-formed
  terms stored elsewhere in the database or can preserve now-invalid
  rules. See [redundant-events], in particular the section ``Note
  About Unfortunate Redundancies,'' for more discussion of potential
  pitfalls of redefinition.")
 (LD-SKIP-PROOFSP
  (LD)
  "How carefully ACL2 processes your [command]s

    Examples:
    ACL2 !>(set-ld-skip-proofsp t state)
     T
    ACL2 !s>(set-ld-skip-proofsp nil state)
     NIL
    ACL2 !>(set-ld-skip-proofsp 'include-book state)
     INCLUDE-BOOK
    ACL2 !s>

  A global variable in the ACL2 [state], called 'ld-skip-proofsp,
  determines the thoroughness with which ACL2 processes your
  [command]s. This variable may take on one of three values: t, nil
  or '[include-book]. When ld-skip-proofsp is non-nil, the system
  assumes that which ought to be proved and is thus unsound. The form
  (set-ld-skip-proofsp flg state) is the general-purpose way of
  setting ld-skip-proofsp. This global variable is an ``[ld]
  special,'' which is to say, you may call [ld] in such a way as to
  ``bind'' this variable for the dynamic extent of the [ld].

  When ld-skip-proofsp is non-nil, the default [prompt] displays the
  character s. Thus, the [prompt]

    ACL2 !s>

  means that the default [defun-mode] is :[logic] (otherwise the
  character p, for :[program], would also be printed; see
  [default-print-prompt]) but ``proofs are being skipped.''

  Observe that there are two legal non-nil values, t and
  '[include-book]. When ld-skip-proofsp is t, ACL2 skips all proof
  obligations but otherwise performs all other required analysis of
  input [events]. When ld-skip-proofsp is '[include-book], ACL2 skips
  not only proof obligations but all analysis except that required to
  compute the effect of successfully executed [events]. To explain
  the distinction, let us consider one particular event, say a
  [defun]. Very roughly speaking, a [defun] event normally involves a
  check of the syntactic well-formedness of the submitted definition,
  the generation and proof of the termination conditions, and the
  computation and storage of various rules such as a :[definition]
  rule and some :[type-prescription] rules. By ``normally'' above we
  mean when ld-skip-proofsp is nil. How does a [defun] behave when
  ld-skip-proofsp is non-nil?

  If ld-skip-proofsp is t, then [defun] performs the syntactic
  well-formedness checks and computes and stores the various rules,
  but it does not actually carry out the termination proofs. If
  ld-skip-proofsp is '[include-book], [defun] does not do the
  syntactic well-formedness check nor does it carry out the
  termination proof. Instead, it merely computes and stores the rules
  under the assumption that the checks and proofs would all succeed.
  Observe that a setting of '[include-book] is ``stronger'' than a
  setting of t in the sense that '[include-book] causes [defun] to
  assume even more about the admissibility of the event than t does.

  As one might infer from the choice of name, the [include-book] event
  sets ld-skip-proofsp to '[include-book] when processing the
  [events] in a book being loaded. Thus, [include-book] does the
  miminal work necessary to carry out the effects of every event in
  the book. The syntactic checks and proof obligations were,
  presumably, successfully carried out when the book was certified.

  A non-nil value for ld-skip-proofsp also affects the system's output
  messages. Event summaries (the paragraphs that begin ``Summary''
  and display the event forms, rules used, etc.) are not printed when
  ld-skip-proofsp is non-nil. Warnings and observations are printed
  when ld-skip-proofsp is t but are not printed when it is
  '[include-book].

  Intuitively, ld-skip-proofsp t means skip just the proofs and
  otherwise do all the work normally required for an event; while
  ld-skip-proofsp '[include-book] is ``stronger'' and means do as
  little as possible to process [events]. In accordance with this
  intuition, [local] [events] are processed when ld-skip-proofsp is t
  but are skipped when ld-skip-proofsp is '[include-book].

  The ACL2 system itself uses only two settings, nil and
  '[include-book], the latter being used only when executing the
  [events] inside of a book being included. The ld-skip-proofsp
  setting of t is provided as a convenience to the user. For example,
  suppose one has a file of [events]. By loading it with [ld] with
  ld-skip-proofsp set to t, the [events] can all be checked for
  syntactic correctness and assumed without proof. This is a
  convenient way to recover a state lost by a system crash or to
  experiment with a modification of an [events] file.

  The foregoing discussion is actually based on a lie. ld-skip-proofsp
  is allowed two other values, 'initialize-acl2 and
  'include-book-with-locals. The first causes behavior similar to t
  but skips [local] [events] and avoids some error checks that would
  otherwise prevent ACL2 from properly booting. The second is
  identical to '[include-book] but also executes [local] [events].
  These additional values are not intended for use by the user, but
  no barriers to their use have been erected.

  We close by reminding the user that ACL2 is potentially unsound if
  ld-skip-proofsp is ever set by the user. We provide access to it
  simply to allow experimentation and rapid reconstruction of lost or
  modified logical [world]s.")
 (LD-VERBOSE
  (LD)
  "Determines whether [ld] prints ``ACL2 Loading ...''

  Ld-verbose is an [ld] special (see [ld]). The accessor is (ld-verbose
  state) and the updater is (set-ld-verbose val state). Ld-verbose
  must be t, nil or a string or [consp] suitable for [fmt] printing
  via the ~@ command. The initial value of ld-verbose is a [fmt]
  message that prints the ACL2 version number, [ld] level and
  connected book directory.

  Note: Ld-verbose has no effect on proofs. See [set-gag-mode] and see
  [set-inhibit-output-lst] for how to control the size of proof
  output.

  Before processing the forms in [standard-oi], [ld] may print a
  header. The printing of this header is controlled by ld-verbose. If
  ld-verbose is nil, no header is printed. If it is t, [ld] prints
  the message

    ACL2 loading <file>

  where <file> is the input channel supplied to [ld]. A similar message
  is printed when [ld] completes. If ld-verbose is neither t nor nil
  then it is presumably a header and is printed with the ~@ [fmt]
  directive before [ld] begins to read and process forms. In this
  case the ~@ [fmt] directive is interpreted in an environment in
  which #\\v is the ACL2 version string, #\\l is the level of the
  current recursion in [ld] and/or [wormhole], and #\\c is the
  connected book directory (cbd).")
 (LEMMA-INSTANCE
  (HINTS FUNCTIONAL-INSTANTIATION)
  "An object denoting an instance of a theorem

  Lemma instances are the objects one provides via :use and :by [hints]
  (see [hints]) to bring to the theorem prover's attention some
  previously proved or easily provable fact. A typical use of the
  :use hint is given below. The value specified is a list of five
  lemma instances.

    :use (reverse-reverse
          (:type-prescription app)
          (:instance assoc-of-app
                     (x a) (y b) (z c))
          (:functional-instance p-f
                                (p consp) (f flatten))
          (:instance (:theorem (equal x x))
                     (x (flatten a))))

  Observe that an event name can be a lemma instance. The :use hint
  allows a single lemma instance to be provided in lieu of a list, as
  in:

    :use reverse-reverse

  or

    :use (:instance assoc-of-app (x a) (y b) (z c))

  A lemma instance denotes a formula which is either known to be a
  theorem or which must be proved to be a theorem before it can be
  used. To use a lemma instance in a particular subgoal, the theorem
  prover adds the formula as a hypothesis to the subgoal before the
  normal theorem proving heuristics are applied.

  A lemma instance, or lmi, is of one of the following five forms:

  (1) name, where name names a previously proved theorem, axiom, or
  definition and denotes the formula (theorem) of that name.

  (2) rune, where rune is a [rune] (see [rune]) denoting the
  :[corollary] justifying the rule named by the [rune].

  (3) (:theorem term), where term is any term alleged to be a theorem.
  Such a lemma instance denotes the formula term. But before using
  such a lemma instance the system will undertake to prove term.

  (4) (:instance lmi (v1 t1) ... (vn tn)), where lmi is recursively a
  lemma instance, the vi's are distinct variables, and the ti's are
  terms. Such a lemma instance denotes the formula obtained by
  instantiating the formula F denoted by lmi, normally by replacing
  each vi by ti in F and requiring that each vi must be bound in F.
  There are two exceptions. If the keyword :extra-bindings-ok is
  inserted immediately after the lemma instance in order to remove
  that requirement, as follows, then that requirement is ignored:
  (:instance lmi :extra-bindings-ok (v1 t1) ... (vn tn)). Otherwise,
  if one or more variables vi do not occur in F, but for each such vi
  exactly one variable v with the same [symbol-name] as vi occurs in
  F and no other vj with the same symbol-name as v is bound in the
  substitution, then the pair (vi ti) is replaced by the pair (v ti)
  in the substitution.

  (5) (:functional-instance lmi (f1 g1) ... (fn gn)), where lmi is
  recursively a lemma instance and each fi is an ``instantiable''
  function symbol of arity ni and gi is a function symbol, a macro
  alias for a function symbol gi' (see [macro-aliases-table]) in
  which case we treat gi as gi', or a pseudo-lambda expression of
  arity ni. An instantiable function symbol is any defined or
  constrained function symbol except the primitives [not], [member],
  [implies], and [o<], and a few others, as listed by the constant
  *non-instantiable-primitives*. These are built-in in such a way
  that we cannot recover the [constraint]s on them. (Special case: a
  function introduced in the :partial-theory of a dependent
  clause-processor is not instantiable; see
  [define-trusted-clause-processor].) A pseudo-lambda expression is
  an expression of the form (lambda (v1 ... vn) body) where the vi
  are distinct variable symbols and body is any term. No a priori
  relation is imposed between the vi and the variables of body, i.e.,
  body may ignore some vi's and may contain ``free'' variables.
  However, we do not permit v to occur freely in body if the
  functional substitution is to be applied to any formula (lmi or the
  [constraint]s to be satisfied) in a way that inserts v into the
  scope of a binding of v by [let] or [mv-let] (or, [lambda]). If you
  happen to violate this restriction, an informative error message
  will be printed. That message will list for you the potentially
  illegal choices for v in the context in which the functional
  substitution is offered. A :functional-instance lemma instance
  denotes the formula obtained by functionally instantiating the
  formula denoted by lmi, replacing fi by gi. However, before such a
  lemma instance can be used, the system will generate proof
  obligations arising from the replacement of the fi's by the gi's in
  constraints that ``support'' the lemma to be functionally
  instantiated; see [constraint]. One might expect that if the same
  instantiated constraint were generated on behalf of several events,
  then each of those instances would have to be proved. However, for
  the sake of efficiency, ACL2 stores the fact that such an
  instantiated constraint has been proved and avoids it in future
  events.

  See [functional-instantiation-example] for an example of the use of
  :functional-instance (so-called ``functional instantiation'').

  Note that ACL2(r) (see [real]) imposes additional requirements for
  functional instantiation. See [functional-instantiation-in-ACL2r].

  (6) (:termination-theorem name) or (:termination-theorem! name),
  where name is a function symbol in [logic] mode. Such a lemma
  instance denotes the termination theorem previously proved for
  name. If no such theorem exists --- for example, if the definition
  of name is not recursive --- then the lemma instance is illegal in
  the case of :termination-theorem, but denotes T in the case of
  :termination-theorem!. If name is defined as part of a
  mutually-recursive clique of definitions (see [mutual-recursion]),
  then the lemma instance refers to the termination theorem proved
  for the entire clique. See [termination-theorem-example] and see
  [tthm].

  (7) (:guard-theorem name), where name is a [guard]-verified function
  symbol (hence, in particular, is in [logic] mode). Such a lemma
  instance denotes the guard theorem previously proved for name. If
  name is defined as part of a mutually-recursive clique of
  definitions (see [mutual-recursion]), then the lemma instance
  refers to the guard theorem proved for the entire clique. See
  [guard-theorem-example] and see [gthm].

  Obscure case for [definition]s. If the lemma instance refers to a
  :definition [rune], then it refers to the [corollary] formula of
  that rune, which can be a simplified (``normalized'') form of the
  original formula. However, if the hint is a :by hint and the lemma
  instance is based on a name (i.e., a symbol), rather than a rune,
  then the formula is the original formula of the event, as shown by
  :[pe], rather than the normalized version, as shown by :[pf]. This
  is as one would expect: If you supply the name of an event, you
  expect it to refer to the original event. For :use hints we use the
  simplified (normalized) form instead, which is reasonable since one
  would expect simplification during the proof that re-traces the
  normalization done at the time the rule was created.

  We conclude with remarks on (6) and (7). The termination or guard
  theorem actually used is an unsimplified version of what was
  originally proved for the indicated function. That is: while in
  general, the termination or guard theorem is simplified before
  being given to the prover, nevertheless the unsimplified theorem is
  what is actually used for these lemma instances. See
  [guard-obligation] for how to obtain the simplified guard theorem.
  Moreover, the :[measure-debug] and :[guard-debug] keywords for
  [xargs] are ignored when generating the termination or guard
  theorem. You can see the termination or guard theorem for an
  existing function symbol FN by evaluating the form
  (termination-theorem 'FN (w state)) or (guard-theorem 'FN (w state)
  state), respectively. In the former case, failure is indicated by a
  result of the form (FAILED . msg), where msg is a message suitable
  for [fmt]; see [msg].

  Why do we avoid simplification (as described in the preceding
  paragraph)? The reason is that it could in principle strengthen the
  theorems, which is sound when admitting the original function but
  not for lemma instances. Future work might try to allow
  simplification at lemma-instance time, by ensuring that
  simplification never strengthens the theorem. Alternatively,
  simplification might be checked for each usage to be
  equivalence-preserving by defining a suitable macro based on
  [make-event]. For now, by avoiding simplification we guarantee that
  the theorem we are using is truly a theorem. The theorem being used
  might not be exactly the theorem originally proved, for example
  because of the use of [case-split-limitations], which depends on
  the current logical [world]; but we expect the two theorems to be
  logically equivalent.


Subtopics

  [Guard-theorem]
      Use a previously-proved [guard] theorem

  [Guard-theorem-example]
      How to use a previously-proved [guard] theorem

  [Termination-theorem]
      Use a previously-proved measure theorem

  [Termination-theorem-example]
      How to use a previously-proved measure theorem")
 (LEN
  (LISTS ACL2-BUILT-INS)
  "Length of a list

  Len returns the length of a list.

  A Common Lisp function that is appropriate for both strings and
  proper lists is length; see [length]. The guard for len is t.

  (Low-level implementation note. ACL2 provides a highly-optimized
  implementation of len, which is tail-recursive and fixnum-aware,
  that differs from its simple ACL2 definition.)

  Function: <len>

    (defun len (x)
           (declare (xargs :guard t))
           (if (consp x) (+ 1 (len (cdr x))) 0))")
 (LENGTH
  (LISTS STRINGS ACL2-BUILT-INS)
  "Length of a string or proper list

  Length is the function for determining the length of a sequence. In
  ACL2, the argument is required to be either a [true-listp] or a
  string.

  For a similar function that is logically defined to be equal to zero
  on any atom, including any string, see [len].

  Length is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <length>

    (defun length (x)
           (declare (xargs :guard (if (true-listp x) t (stringp x))))
           (if (stringp x)
               (len (coerce x 'list))
               (len x)))")
 (LET
  (BASICS ACL2-BUILT-INS)
  "Binding of lexically scoped (local) variables


Introduction

  Example

    (let ((x (* x x))
          (y (* 2 x)))
     (list x y))

  If the form above is executed in an environment in which x has the
  value -2, then the result is '(4 -4).

  Let expressions bind variables so that their ``local'' values, the
  values they have when the ``body'' of the let is evaluated, are
  possibly different than their ``global'' values, the values they
  have in the context in which the let expression appears. In the let
  expression above, the local variables bound by the let are x and y.
  They are locally bound to the values delivered by the two forms (*
  x x) and (* 2 x), respectively, that appear in the ``bindings'' of
  the let. The body of the let is (list x y).

  Suppose that the let expression above occurs in a context in which x
  has the value -2. (The global value of y is irrelevant to this
  example.) For example, one might imagine that the let form above
  occurs as the body of some function, fn, with the formal parameter
  x and we are evaluating (fn -2).

  To evaluate the let above in a context in which x is -2, we first
  evaluate the two forms specifying the local values of the
  variables. Thus, (* x x) is evaluated and produces 4 (because x is
  -2) and (* 2 x) is evaluated and produces -4 (because x is -2).
  Then x and y are bound to these values and the body of the let is
  evaluated. Thus, when the body, (list x y) is evaluated, x is 4 and
  y is -4. Thus, the body produces '(4 -4).

  Note that the binding of y, which is written after the binding of x
  and which mentions x, nevertheless uses the global value of x, not
  the new local value. That is, the local variables of the let are
  bound ``in parallel'' rather than ``sequentially.'' In contrast, if
  the example let* form:

    (let* ((x (* x x))
           (y (* 2 x)))
     (list x y))

  is evaluated when the global value of x is -2, then the result is '(4
  8), because the local value of y is computed after x has been bound
  to 4. [Let*] binds its local variables ``sequentially.''

  General let forms

    (let ((var1 term1) ... (varn termn)) body)
    and
    (let ((var1 term1) ... (varn termn))
     (declare ...) ... (declare ...)
     body)

  where the vari are distinct variables, the termi are terms involving
  only variables bound in the environment containing the let, and
  body is a term involving only the vari plus the variables bound in
  the environment containing the let. Each vari must be used in body
  or else [declare]d ignored.

  A let form is evaluated by first evaluating each of the termi,
  obtaining for each a vali. Then, each vari is bound to the
  corresponding vali and body is evaluated.

  Actually, let forms are just abbreviations for certain uses of lambda
  notation. In particular

    (let ((var1 term1) ... (varn termn)) (declare ...) body)

  is equivalent to

    ((lambda (var1 ... varn)
       (declare ...)
       body)
     term1 ... termn).

  [Let*] forms are used when it is desired to bind the vari
  sequentially, i.e., when the local values of preceding varj are to
  be used in the computation of the local value for vari.

  General let* forms:

    (let* ((var1 term1) ... (varn termn)) body)
    and
    (let* ((var1 term1) ... (varn termn))
     (declare (ignore x1 ... xm))
     body)

  where the vari are variables (not necessarily distinct), the termi
  are terms involving only variables bound in the environment
  containing the [let*] and those varj such that j<i, and body is a
  term involving only the vari plus the variables bound in the
  environment containing the [let*]. Each vari must be used either in
  some subsequent termj or in body, except that in the second form
  above we make an exception when vari is among the xk, in which case
  vari must not be thus used. Note that [let*] does not permit the
  inclusion of any [declare] forms other than one as shown above. In
  the second general form above, every xk must be among the vari, and
  furthermore, xk may not equal vari and varj for distinct i, j.

  The first [let*] above is equivalent to

    (let ((var1 term1))
     ...
     (let ((varn termn)) body)...)

  Thus, the termi are evaluated successively and after each evaluation
  the corresponding vali is bound to the value of termi. The second
  [let*] is similarly expanded, except that each for each vari that
  is among the (x1 ... xm), the form (declare (ignore vari)) is
  inserted immediately after (vari termi).

  Each (vari termi) pair in a let or [let*] form is called a
  ``binding'' of vari and the vari are called the ``local variables''
  of the let or [let*]. The common use of let and [let*] is to save
  the values of certain expressions (the termi) so that they may be
  referenced several times in the body without suggesting their
  recomputation.

  Let is part of Common Lisp. See any Common Lisp documentation for
  more information.")
 (LET*
  (BASICS ACL2-BUILT-INS)
  "Binding of lexically scoped (local) variables

  Examples

    (let* ((x (* x x))
           (y (* 2 x)))
     (list x y))

    (let* ((x (* x x))
           (y (* 2 x))
           (x (* x y))
           (a (* x x)))
     (declare (ignore a))
     (list x y))

  If the forms above are executed in an environment in which x has the
  value -2, then the respective results are '(4 8) and '(32 8). See
  [let] for a discussion of both [let] and let*, or read on for a
  briefer discussion.

  The difference between [let] and let* is that the former binds its
  local variables in parallel while the latter binds them
  sequentially. Thus, in let*, the term evaluated to produce the
  local value of one of the locally bound variables is permitted to
  reference any locally bound variable occurring earlier in the
  binding list and the value so obtained is the newly computed local
  value of that variable. See [let].

  In ACL2 the only [declare] forms allowed for a let* form are ignore,
  ignorable, and type. See [declare]. Moreover, no variable declared
  ignored or ignorable may be bound more than once. A variable with a
  type declaration may be bound more than once, in which case the
  type declaration is treated by ACL2 as applying to each binding
  occurrence of that variable. It seems unclear from the Common Lisp
  spec whether the underlying Lisp implementation is expected to
  apply such a declaration to more than one binding occurrence,
  however, so performance in such cases may depend on the underlying
  Lisp.

  Let* is a Common Lisp macro. See any Common Lisp documentation for
  more information.")
 (LEXORDER
  (<< ACL2-BUILT-INS)
  "Total order on ACL2 objects

  Lexorder is a non-strict total order, a ``less than or equal,'' on
  ACL2 objects. Also see [alphorder], the restriction of lexorder to
  atoms; the notion of ``non-strict total order'' is defined there.

  Lexorder has a guard of t.

  For lexorder, an [atom] and a [cons] are ordered so that the [atom]
  comes first, and two [cons]es are ordered so that the one with the
  recursively smaller [car] comes first, with the [cdr]s being
  compared only if the [car]s are equal. Lexorder compares two atoms
  by using [alphorder].

  Function: <lexorder>

    (defun lexorder (x y)
           (declare (xargs :guard t))
           (cond ((atom x)
                  (cond ((atom y) (alphorder x y)) (t t)))
                 ((atom y) nil)
                 ((equal (car x) (car y))
                  (lexorder (cdr x) (cdr y)))
                 (t (lexorder (car x) (car y)))))")
 (LINEAR
  (RULE-CLASSES)
  "Make some arithmetic inequality rules

  See [rule-classes] for a general discussion of rule classes,
  including how they are used to build rules from formulas and a
  discussion of the various keywords in a rule class description.

    Example:
    (defthm length-member-leq-length       If inequality reasoning begins to
      (implies (and (eqlablep e)           consider how (length (member a b))
                    (true-listp x))        compares to any other term, add to
               (<= (length (member e x))   the set of known inequalities the fact
                   (length x)))            that it is no larger than (length b),
      :rule-classes :linear)               provided (eqlablep a) and
                                           (true-listp b) rewrite to t.

    General Form:
    (and ...
         (implies (and ...hi...)
                  (implies (and ...hk...)
                           (and ...
                                (rel lhs rhs)
                                ...)))
         ...)

  We process the :[corollary] formula of one :linear rule class object
  to create one or more :linear rules. The first step is to flatten
  the [and] and [implies] structure of the formula, transforming it
  into a conjunction of formulas, each of the form

    (implies (and h1 ... hn) (rel lhs rhs))

  where no hypothesis is a conjunction and rel is one of the inequality
  relations [<], [<=], [=], [/=], [>], or [>=]. If necessary, the
  hypothesis of such a conjunct may be vacuous. We create a :linear
  rule for each such conjunct, if possible, and otherwise cause an
  error. To create a :linear rule from a term (i.e., from a single
  such conjunct), we apply the following sequence of transformations.

   1. Remove [guard-holders] such as [prog2$] from the term to obtain
      (implies hyp concl), where hyp is t in the case of an
      unconditional rule.
   2. If concl is (not (not concl2)), replace concl by concl2.
   3. For the resulting concl, replace [=] and [/=] by [equal] and not
      equal, respectively.
   4. Finally, the resulting concl is processed (``linearized'') to attempt
      to create a corresponding polynomial or disjunction of two
      polynomials. This process includes the evaluation of ground
      subexpressions, for example replacing (* '3 '4) by '12, and
      employs techniques that include [type-set] reasoning.

  Each rule has one or more ``trigger terms'' which may be specified by
  the user using the :trigger-terms field of the rule class or which
  may be defaulted to values chosen by the system. We discuss the
  determination of trigger terms after discussing how linear rules
  are used.

  :Linear rules are used by an arithmetic decision procedure during
  rewriting. See [linear-arithmetic] and see [non-linear-arithmetic].
  Here we assume that the reader is familiar with the material
  described in [linear-arithmetic].

  Recall that we eliminate the unknowns of an inequality in term-order,
  largest unknowns first. (See [term-order].) In order to facilitate
  this strategy, we store the inequalities in ``linear pots''. For
  purposes of the present discussion, let us say that an inequality
  is ``about'' its largest unknown. Then, all of the inequalities
  about a particular unknown are stored in the same linear pot, and
  the pot is said to be ``labeled'' with that unknown. This storage
  layout groups all of the inequalities which are potential
  candidates for cancellation with each other into one place. It is
  also key to the efficient operation of :linear rules.

  If the arithmetic decision procedure has stabilized and not yielded a
  contradiction, we scan through the list of linear pots examining
  each label as we go. If the trigger term of some :linear rule can
  be instantiated to match the label, we so instantiate that rule and
  attempt to relieve the hypotheses with general-purpose rewriting.
  If we are successful, we rewrite each of the two terms being
  compared by the conclusion (which is an equality or inequality),
  under the substitution produced by the rule's instantation. We then
  add the resulting equality or inequality to our set of
  inequalities. This may let cancellation continue.

  Note: Problems may arise if you explicitly store a linear lemma under
  a trigger term that, when instantiated, is not the largest unknown
  in the instantiated concluding inequality. Suppose for example you
  store the linear rule (<= (fn i j) (/ i (* j j))) under the trigger
  term (fn i j). Then when the system ``needs'' an inequality about
  (fn a b), (i.e., because (fn a b) is the label of some linear pot,
  and hence the largest unknown in some inequality), it will appeal
  to the rule and deduce (<= (fn a b) (/ a (* b b))). However, the
  largest unknown in this inequality is (/ a (* b b)) and hence it
  will be stored in a linear pot labeled with (/ a (* b b)). The
  original, triggering inequality which is in a pot about (fn a b)
  will therefore not be cancelled against the new one. It is
  generally best to specify as a trigger term one of the ``maximal''
  terms of the polynomial, as described below.

  We now describe how the trigger terms are determined. Most of the
  time, the trigger terms are not specified by the user and are
  instead selected by the system. However, the user may specify the
  terms by including an explicit :trigger-terms field in the rule
  class, e.g.,

    General Form of a Linear Rule Class:
    (:LINEAR :COROLLARY formula
             :TRIGGER-TERMS (term1 ... termk))

  Each termi must be a term and must not be a variable, quoted
  constant, lambda application, let-expression or if-expression. In
  addition, each termi must be such that if all the variables in the
  term are instantiated and then the hypotheses of the corollary
  formula are relieved (possibly instantiating additional free
  variables), then all the variables in the concluding inequality are
  instantiated. We generate a linear rule for each conjuctive branch
  through the corollary and store each rule under each of the
  specified triggers. Thus, if the corollary formula contains several
  conjuncts, the variable restrictions on the termi must hold for
  each conjunct.

  If :trigger-terms is omitted the system computes a set of trigger
  terms. Each conjunct of the corollary formula may be given a unique
  set of triggers depending on the variables that occur in the
  conjunct and the addends that occur in the concluding inequality.
  In particular, the trigger terms for a conjunct is the list of all
  ``maximal addends'' in the concluding inequality.

  The ``addends'' of (+ x y) and (- x y) are the union of the addends
  of x and y. The addends of (- x) and (* n x), where n is a rational
  constant, is just {x}. The addends of an inequality are the union
  of the addends of the left- and right-hand sides. The addends of
  any other term, x, is {x}.

  A term is maximal for a conjunct (implies hyps concl) of the
  corollary if (a) the term is a non-variable, non-quote, non-lambda
  application, non-[let] and non-[if] expression, (b) the term
  contains enough variables so that when they are instantiated and
  the hypotheses are relieved (which may bind some free variables;
  see [free-variables]) then all the variables in concl are
  instantiated, and (c) no other addend is always ``bigger'' than the
  term, in the technical sense described below.

  The technical notion referenced above depends on the notion of
  fn-count, the number of function symbols in a term, and
  pseudo-fn-count, which is essentially the number of function
  symbols implicit in a constant (see [term-order], specifically the
  discussion of ``pseudo-function application count'' at the end). We
  say term1 is always bigger than term2 if all instances of term1
  have a larger fn-count (actually lexicographic order of fn-count
  and pseudo-fn-count) than the corresponding instances of term2.
  This is equivalent to saying that the fn-count of term1 is larger
  than that of term2 (by ``fn-count'' here we mean the lexicographic
  order of fn-count and pseudo-fn-count) and the variable bag for
  term2 is a subbag of that for term1. For example, (/ a (* b b)) is
  always bigger than (fn a b) because the first has two function
  applications and {a b} is a subbag of {a b b}, but (/ a (* b b)) is
  not always bigger than (fn a x).


Subtopics

  [Backchain-limit]
      Limiting the effort expended on relieving hypotheses

  [Bind-free]
      To bind free variables of a rewrite, definition, or linear rule

  [Case-split]
      Like force but immediately splits the top-level goal on the
      hypothesis

  [Force]
      Identity function used to force a hypothesis

  [Linear-arithmetic]
      A description of the linear arithmetic decision procedure

  [Non-linear-arithmetic]
      Non-linear Arithmetic

  [Syntaxp]
      Attach a heuristic filter on a rule")
 (LINEAR-ARITHMETIC
  (LINEAR)
  "A description of the linear arithmetic decision procedure

  We describe the procedure very roughly here. Fundamental to the
  procedure is the notion of a linear polynomial inequality. A
  ``linear polynomial'' is a sum of terms, each of which is the
  product of a rational constant and an ``unknown.'' The ``unknown''
  is permitted to be 1 simply to allow a term in the sum to be
  constant. Thus, an example linear polynomial is 3*x + 7*a + 2; here
  x and a are the (interesting) unknowns. However, the unknowns need
  not be variable symbols. For example, (length x) might be used as
  an unknown in a linear polynomial. Thus, another linear polynomial
  is 3*(length x) + 7*a. A ``linear polynomial inequality'' is an
  inequality (either [<] or [<=]) relation between two linear
  polynomials. Note that an equality may be considered as a pair of
  inequalities; e.q., 3*x + 7*a + 2 = 0 is the same as the
  conjunction of 3*x + 7*a + 2 <= 0 and 0 <= 3*x + 7*a + 2.

  Certain linear polynomial inequalities can be combined by
  cross-multiplication and addition to permit the deduction of a
  third inequality with fewer unknowns. If this deduced inequality is
  manifestly false, a contradiction has been deduced from the assumed
  inequalities.

  For example, suppose we have two assumptions

    p1:       3*x + 7*a <  4
    p2:               3 <  2*x

  and we wish to prove that, given p1 and p2, a < 0. As suggested
  above, we proceed by assuming the negation of our goal

    p3:               0 <= a.

  and looking for a contradiction.

  Our first step will be to eliminate the variable x. To that end, we
  cross-multiply based on the coefficients of x in the two
  inequalities. By multiplying p1 by 2 and p2 by 3, and then adding
  the respective sides, we deduce the intermediate result

    p4:  6*x + 14*a + 9 < 8 + 6*x

  which, after cancellation, is:

    p4:        14*a + 1 <  0.

  If we then cross-multiply and add p3 to p4, we get

    p5:               1 <= 0,

  a contradiction. Thus, we have proved that p1 and p2 imply the
  negation of p3.

  All of the unknowns of an inequality must be eliminated by
  cancellation in order to produce a constant inequality. We can
  choose to eliminate the unknowns in any order, but we eliminate
  them in term-order, largest unknowns first. (See [term-order].)
  That is, two polys are cancelled against each other only when they
  have the same largest unknown. For instance, in the above example
  we see that x is the largest unknown in each of p1 and p2, and a in
  p3 and p4.

  Now suppose that this procedure does not produce a contradiction but
  instead yields a set of nontrivial inequalities. A contradiction
  might still be deduced if we could add to the set some additional
  inequalities allowing further cancellations. That is where :linear
  lemmas come in. When the set of inequalities has stabilized under
  cross-multiplication and addition and no contradiction is produced,
  we search the database of :[linear] rules for rules about the
  unknowns that are candidates for cancellation (i.e., are the
  largest unknowns in their respective inequalities). See [linear]
  for a description of how :[linear] rules are used.

  See also [non-linear-arithmetic] for a description of an extension to
  the linear-arithmetic procedure described here.")
 (LIST
  (LISTS ACL2-BUILT-INS)
  "Build a list

  List is the macro for building a list of objects. For example, (list
  5 6 7) returns a list of length 3 whose elements are 5, 6, and 7
  respectively. Also see [list*].

  List is defined in Common Lisp. See any Common Lisp documentation for
  more information.

  Macro: <list>

    (defmacro list (&rest args)
              (list-macro args))

  Function: <list-macro>

    (defun list-macro (lst)
           (declare (xargs :guard t))
           (if (consp lst)
               (cons 'cons
                     (cons (car lst)
                           (cons (list-macro (cdr lst)) nil)))
               nil))")
 (LIST*
  (LISTS ACL2-BUILT-INS)
  "Build a list

  List* is the Common Lisp macro for building a list of objects from
  given elements and a tail. For example, (list* 5 6 '(7 8 9)) equals
  the list '(5 6 7 8 9). Also see [list].

  List* is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Macro: <list*>

    (defmacro list* (&rest args)
              (declare (xargs :guard (consp args)))
              (list*-macro args))

  Function: <list*-macro>

    (defun list*-macro (lst)
           (declare (xargs :guard (and (true-listp lst) (consp lst))))
           (if (endp (cdr lst))
               (car lst)
               (cons 'cons
                     (cons (car lst)
                           (cons (list*-macro (cdr lst)) nil)))))")
 (LISTP
  (LISTS CONSES ACL2-BUILT-INS)
  "Recognizer for (not necessarily proper) lists

  (listp x) is true when x is either a [cons] pair or is nil.

  Listp has no [guard], i.e., its [guard] is t.

  Listp is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <listp>

    (defun listp (x)
           (declare (xargs :guard t))
           (or (consp x) (equal x nil)))")
 (LISTS
  (PROGRAMMING)
  "Lists of objects, the classic Lisp data structure.


Subtopics

  [ACL2-number-listp]
      Recognizer for a true list of numbers

  [Add-to-set]
      Add a symbol to a list

  [Append]
      [concatenate] zero or more lists

  [Atom-listp]
      Recognizer for a true list of [atom]s

  [Boolean-listp]
      Recognizer for a true list of booleans

  [Butlast]
      All but a final segment of a list

  [Character-listp]
      Recognizer for a true list of characters

  [Concatenate]
      Concatenate lists or strings together

  [Count]
      Count the number of occurrences of an item in a string or true-list

  [Endp]
      Recognizer for empty lists

  [Eqlable-listp]
      Recognizer for a true list of objects each suitable for [eql]

  [Fix-true-list]
      Coerce to a true list

  [Good-atom-listp]
      Recognizer for a true list of ``good'' [atom]s

  [Improper-consp]
      Recognizer for improper (non-null-terminated) non-empty lists

  [Integer-listp]
      Recognizer for a true list of integers

  [Intersection$]
      Elements of one list that are not elements of another

  [Intersectp]
      Test whether two lists intersect

  [Keyword-value-listp]
      Recognizer for true lists whose even-position elements are keywords

  [Last]
      The last [cons] (not element) of a list

  [Len]
      Length of a list

  [Length]
      Length of a string or proper list

  [List]
      Build a list

  [List*]
      Build a list

  [Listp]
      Recognizer for (not necessarily proper) lists

  [Make-list]
      Make a list of a given size

  [Member]
      Membership predicate

  [Nat-listp]
      Recognizer for a true list of natural numbers

  [No-duplicatesp]
      Check for duplicates in a list

  [Nth]
      The nth element (zero-based) of a list

  [Nthcdr]
      Final segment of a list

  [Pairlis]
      See [pairlis$]

  [Pairlis$]
      Zipper together two lists

  [Position]
      Position of an item in a string or a list

  [Proper-consp]
      Recognizer for proper (null-terminated) non-empty lists

  [Rational-listp]
      Recognizer for a true list of rational numbers

  [Real-listp]
      ACL2(r) recognizer for a true list of real numbers

  [Remove]
      Remove all occurrences

  [Remove-duplicates]
      Remove duplicates from a string or a list

  [Remove1]
      Remove first occurrences, testing using [eql]

  [Revappend]
      Concatentate the [reverse] of one list to another

  [Reverse]
      Reverse a list or string

  [Search]
      Search for a string or list in another string or list

  [Set-difference$]
      Elements of one list that are not elements of another

  [Standard-char-listp]
      Recognizer for a true list of standard characters

  [String-listp]
      Recognizer for a true list of strings

  [Subseq]
      Subsequence of a string or list

  [Subsetp]
      Test if every [member] of one list is a [member] of the other

  [Substitute]
      Substitute into a string or a list, using [eql] as test

  [Symbol-listp]
      Recognizer for a true list of symbols

  [Take]
      Initial segment (first n elements) of a list

  [True-list-listp]
      Recognizer for true (proper) lists of true lists

  [True-listp]
      Recognizer for proper (null-terminated) lists

  [Union$]
      Elements of one list that are not elements of another

  [Update-nth]
      Modify a list by putting the given value at the given position")
 (LOCAL
  (EVENTS)
  "Hiding an event in an encapsulation or book

    Examples:
    (local (defthm hack1
             (implies (and (acl2-numberp x)
                           (acl2-numberp y)
                           (equal (* x y) 1))
                      (equal y (/ x)))))

    (local (defun double-naturals-induction (a b)
             (cond ((and (integerp a) (integerp b) (< 0 a) (< 0 b))
                    (double-naturals-induction (1- a) (1- b)))
                   (t (list a b)))))

    General Form:
    (local ev)

  where ev is an event form. If the current default [defun-mode] (see
  [default-defun-mode]) is :[logic] and [ld-skip-proofsp] is nil or
  t, then (local ev) is equivalent to ev. But if the current default
  [defun-mode] is :[program] or if [ld-skip-proofsp] is
  '[include-book], then (local ev) is a no-op. Thus, if such forms
  are in the event list of an [encapsulate] event or in a book, they
  are processed when the encapsulation or book is checked for
  admissibility in :[logic] mode but are skipped when extending the
  host [world]. Such [events] are thus considered ``local'' to the
  verification of the encapsulation or book. The non-local [events]
  are the ones ``exported'' by the encapsulation or book. See
  [encapsulate] for a thorough discussion. Also see
  [local-incompatibility] for a discussion of a commonly encountered
  problem with such event hiding: you can't make an event local if
  its presence is required to make sense of a non-local one.

  Note that [events] that change the default [defun-mode], and in fact
  any [events] that set the [ACL2-defaults-table], are disallowed
  inside the scope of local. See [embedded-event-form].")
 (LOCAL-INCOMPATIBILITY
  (MISCELLANEOUS)
  "When non-local [events] won't replay in isolation

  Sometimes a ``[local] incompatibility'' is reported while attempting
  to embed some [events], as in an [encapsulate] or [include-book].
  This is generally due to the use of a locally defined name in a
  non-local event or the failure to make a witnessing definition
  [local].

  [Local] incompatibilities may be detected while trying to execute the
  strictly non-local [events] of an embedding. For example,
  [encapsulate] operates by first executing all the [events] ([local]
  and non-local) with [ld-skip-proofsp] nil, to confirm that they are
  all admissible. Then it attempts merely to assume the non-local
  ones to create the desired theory, by executing the [events] with
  [ld-skip-proofsp] set to '[include-book]. Similarly, [include-book]
  assumes the non-local ones, with the understanding that a
  previously successful [certify-book] has performed the admissiblity
  check.

  How can a sequence of [events] admitted with [ld-skip-proofsp] nil
  fail when [ld-skip-proofsp] is '[include-book]? The key observation
  is that in the latter case only the non-local [events] are
  processed. The [local] ones are skipped and so the non-local ones
  must not depend upon them.

  Two typical mistakes are suggested by the detection of a [local]
  incompatibility: (1) a locally defined function or macro was used
  in a non-[local] event (and, in the case of [encapsulate], was not
  included among the [signature]s) and (2) the witnessing definition
  of a function that was included among the [signature]s of an
  [encapsulate] was not made [local].

  An example of mistake (1) would be to include among your
  [encapsulate]d [events] both (local (defun fn ...)) and (defthm
  lemma (implies (fn ...) ...)). Observe that fn is defined locally
  but a formula involving fn is defined non-locally. In this case,
  either the [defthm] should be made [local] or the [defun] should be
  made non-local.

  An example of mistake (2) would be to include (fn (x) t) among your
  [signature]s and then to write (defun fn (x) ...) in your [events],
  instead of (local (defun fn ...)).

  One subtle aspect of [encapsulate] is that if you constrain any
  member of a mutually recursive clique you must define the entire
  clique locally and then you must constrain those members of it you
  want axiomatized non-locally.

  Errors due to [local] incompatibility should never occur in the
  assumption of a fully certified book. Certification ensures against
  it. Therefore, if [include-book] reports an incompatibility, we
  assert that earlier in the processing of the [include-book] a
  warning was printed advising you that some book was uncertified. If
  this is not the case --- if [include-book] reports an
  incompatibility and there has been no prior warning about lack of
  certification --- please report it to us.

  When a [local] incompatibility is detected, we roll-back to the
  [world] in which we started the [encapsulate] or [include-book].
  That is, we discard the intermediate [world] created by trying to
  process the [events] skipping proofs. This is clean, but we realize
  it is very frustrating because the entire sequence of [events] must
  be processed from scratch. Assuming that the embedded [events]
  were, once upon a time, processed as top-level [command]s (after
  all, at some point you managed to create this sequence of
  [command]s so that the [local] and non-local ones together could
  survive a pass in which proofs were done), it stands to reason that
  we could define a predicate that would determine then, before you
  attempted to embed them, if [local] incompatibilities exist. We
  hope to do that, eventually.

  We conclude with a subtle example of [local] incompatibility. The
  problem is that in order for foo-type-prescription to be admitted
  using the specified :typed-term (foo x), the conclusion (my-natp
  (foo x)) depends on my-natp being a [compound-recognizer]. This is
  fine on the first pass of the [encapsulate], during which lemma
  my-natp-cr is admitted. But my-natp-cr is skipped on the second
  pass because it is marked [local], and this causes
  foo-type-prescription to fail on the second pass.

    (defun my-natp (x)
      (declare (xargs :guard t))
      (and (integerp x)
           (<= 0 x)))

    (defun foo (x)
      (nfix x))

    (encapsulate
     ()
     (local (defthm my-natp-cr
              (equal (my-natp x)
                     (and (integerp x)
                          (<= 0 x)))
              :rule-classes :compound-recognizer))
     (defthm foo-type-prescription
       (my-natp (foo x))
       :hints ((\"Goal\" :in-theory (enable foo)))
       :rule-classes ((:type-prescription :typed-term (foo x)))))")
 (LOGAND
  (NUMBERS ACL2-BUILT-INS)
  "Bitwise logical `and' of zero or more integers

  When integers are viewed in their two's complement representation,
  logand returns their bitwise logical `and'. In ACL2 logand is a
  macro that expands into calls of the binary function binary-logand,
  except that (logand) expands to -1 and (logand x) expands to x.

  The [guard] for binary-logand requires its arguments to be integers.
  Logand is defined in Common Lisp. See any Common Lisp documentation
  for more information.

  Macro: <logand>

    (defmacro logand (&rest args)
              (cond ((null args) -1)
                    ((null (cdr args)) (car args))
                    (t (xxxjoin 'binary-logand args))))

  Function: <binary-logand>

    (defun binary-logand (i j)
           (declare (xargs :guard (and (integerp i) (integerp j))))
           (cond ((zip i) 0)
                 ((zip j) 0)
                 ((eql i -1) j)
                 ((eql j -1) i)
                 (t (let ((x (* 2 (logand (floor i 2) (floor j 2)))))
                         (+ x
                            (cond ((evenp i) 0)
                                  ((evenp j) 0)
                                  (t 1)))))))")
 (LOGANDC1
  (NUMBERS ACL2-BUILT-INS)
  "Bitwise logical `and' of two ints, complementing the first

  When integers are viewed in their two's complement representation,
  logandc1 returns the bitwise logical `and' of the second with the
  bitwise logical `not' of the first.

  The [guard] for logandc1 requires its arguments to be integers.
  Logandc1 is defined in Common Lisp. See any Common Lisp
  documentation for more information.

  Function: <logandc1>

    (defun logandc1 (i j)
           (declare (xargs :guard (and (integerp i) (integerp j))))
           (logand (lognot i) j))")
 (LOGANDC2
  (NUMBERS ACL2-BUILT-INS)
  "Bitwise logical `and' of two ints, complementing the second

  When integers are viewed in their two's complement representation,
  logandc2 returns the bitwise logical `and' of the first with the
  bitwise logical `not' of the second.

  The [guard] for logandc2 requires its arguments to be integers.
  Logandc2 is defined in Common Lisp. See any Common Lisp
  documentation for more information.

  Function: <logandc2>

    (defun logandc2 (i j)
           (declare (xargs :guard (and (integerp i) (integerp j))))
           (logand i (lognot j)))")
 (LOGBITP
  (NUMBERS ACL2-BUILT-INS)
  "The ith bit of an integer

  For a nonnegative integer i and an integer j, (logbitp i j) is a
  Boolean, which is t if and only if the value of the ith bit is 1 in
  the two's complement representation of j.

  (Logbitp i j) has a [guard] that i is a nonnegative integer and j is
  an integer.

  Logbitp is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <logbitp>

    (defun logbitp (i j)
           (declare (xargs :guard (and (integerp j)
                                       (integerp i)
                                       (>= i 0))))
           (oddp (floor (ifix j) (expt 2 (nfix i)))))")
 (LOGCOUNT
  (NUMBERS ACL2-BUILT-INS)
  "Number of ``on'' bits in a two's complement number

  (Logcount x) is the number of ``on'' bits in the two's complement
  representation of x.

  (Logcount x) has a [guard] of (integerp x).

  Logcount is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <logcount>

    (defun
         logcount (x)
         (declare (xargs :guard (integerp x)))
         (cond ((zip x) 0)
               ((< x 0) (logcount (lognot x)))
               ((evenp x)
                (logcount (nonnegative-integer-quotient x 2)))
               (t (1+ (logcount (nonnegative-integer-quotient x 2))))))")
 (LOGEQV
  (NUMBERS ACL2-BUILT-INS)
  "Bitwise logical equivalence of zero or more integers

  When integers are viewed in their two's complement representation,
  logeqv returns their bitwise logical equivalence. In ACL2 logeqv is
  a macro that expands into calls of the binary function
  binary-logeqv, except that (logeqv) expands to -1 and (logeqv x)
  expands to x.

  The [guard] for binary-logeqv requires its arguments to be integers.
  Logeqv is defined in Common Lisp. See any Common Lisp documentation
  for more information.

  Macro: <logeqv>

    (defmacro logeqv (&rest args)
              (cond ((null args) -1)
                    ((null (cdr args)) (car args))
                    (t (xxxjoin 'binary-logeqv args))))

  Function: <binary-logeqv>

    (defun binary-logeqv (i j)
           (declare (xargs :guard (and (integerp i) (integerp j))))
           (logand (logorc1 i j) (logorc1 j i)))")
 (LOGIC
  (DEFUN-MODE)
  "To set the default [defun-mode] to :logic

    Example:
    ACL2 p!>:logic
    ACL2 !>

  Typing the keyword :logic sets the default [defun-mode] to :logic.

  Functions defined in :logic mode are logically defined. See
  [defun-mode].

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.

  See [defun-mode] for a discussion of the [defun-mode]s available and
  what their effects on the logic are. See [default-defun-mode] for a
  discussion of how the default [defun-mode] is used. This event is
  equivalent to (table acl2-defaults-table :defun-mode :logic), and
  hence is [local] to any [books] and [encapsulate] [events] in which
  it occurs. See [ACL2-defaults-table].

  Recall that the top-level form :logic is equivalent to (logic); see
  [keyword-commands]. Thus, to change the default [defun-mode] to
  :logic in a book, use (logic), which is an embedded event form,
  rather than :logic, which is not a legal form for [books]. See
  [embedded-event-form].")
 (LOGIC-KNOWLEDGE-TAKEN-FOR-GRANTED
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Background knowledge in ACL2 logic for theorem prover tutorial

  You might think that in order to use the theorem prover you have to
  know the mathematical logic supported by ACL2. But you need to know
  a lot less about it than you might think.

  Technically, a theorem is a formula that can be derived from axioms
  by using rules of inference. Thus, to do a proof you have to know
  (a) the syntax of formulas, (b) the axioms, and (c) the rules of
  inference. Traditionally, these things are spelled out in
  excruciating detail in treatments of mathematical logic -- and for
  good reason.

  The whole point of proving theorems is that it is a way to determine
  that a formula is ``always true'' (under some model of the axioms).
  By ``always true'' we actually mean what logicians mean when they
  say the formula is valid: true in the model, for all possible
  values of the variables. Here by ``model of the axioms'' we mean an
  understanding of the meaning of the various function symbols so
  that the axioms are true for all values of the variables. If the
  variables in your conjecture can take on an infinite number of
  values, proof is often the only way to determine that a conjecture
  is ``always true.'' So if proof is being used to determine that a
  questionable formula is always true the proof must be carried out
  flawlessly. Thus, the (a) syntax, (b) axioms, and (c) rules of
  inference must be described precisely and followed to the letter.

  But formal mathematical logic was invented to explain how people
  reason. To the extent that logic mimics human reasoning, proofs can
  be seen as just extremely carefully crafted arguments. Given that
  ACL2 is responsible for following the rules ``to the letter,'' your
  main job is ``explain'' the big leaps.

  To use the theorem prover you must understand (a) the syntax, because
  you must be able to write formulas flawlessly. But you don't have
  to know (b) the axioms and (c) the rules of inference at nearly the
  same level of precision, as long as you understand the basic
  structure and language of proofs.

  Below is part of a proof of a certain theorem. You ought to be able
  to understand the following. Since what we describe is a proof of
  one case of the formula, we hope that you're convinced that the
  formula holds for that case.

  Read this and follow the links to confirm that you understand what
  happens. Be sure to then use your browser's Back Button to return
  to this page and continue.

  An Annotated Proof of

    (implies (true-listp z)
             (equal (rev (rev z)) z))

  ``We will prove that reversing the reverse of a true-listp yields the
  original list. The formula stating this is above. We will prove it
  by [induction] on the list structure of z.

  The [base case] of the induction is:

    (implies (endp z)
             (implies (true-listp z)
                      (equal (rev (rev z)) z))).

  This formula is equivalent, by [propositional calculus], to

    (implies (and (endp z)
                  (true-listp z))
             (equal (rev (rev z)) z))

  [Rewriting] with the definition of endp produces:

    (implies (and (not (consp z))
                  (true-listp z))
             (equal (rev (rev z)) z))

  [Rewriting repeatedly] starting with the definition of true-listp
  produces:

    (implies (and (not (consp z))
                  (equal z nil))
             (equal (rev (rev z)) z))

  Then using the second hypothesis, just [substituting equals for
  equals], we get

    (implies (and (not (consp z))
                  (equal z nil))
             (equal (rev (rev nil)) nil))

  Since the conclusion involves no variables, we can [evaluate] it,
  getting

    (implies (and (not (consp z))
                  (equal z nil))
             T)

  But this is an [instance] of the [tautology] (implies p T). Thus, the
  base case is proved.''

  Now it is time for a little quiz. There are just three questions.

  Q1: The case above was the Base Case of an inductive proof of

    (implies (true-listp z)
             (equal (rev (rev z)) z))

  in which we did induction on the structure of the linear list z. What
  is the Induction Step? That is, what do you have to prove besides
  the Base Case to complete this inductive proof?

  Below are four commonly given answers; choose one. Then look [here]
  to find out if you're right.

    Induction Step -- Choice (i):
    (implies (not (endp z))
             (implies (true-listp z)
                      (equal (rev (rev z)) z)))

    Induction Step -- Choice (ii):
    (implies (true-listp (cdr z))
             (equal (rev (rev (cdr z))) (cdr z)))

    Induction Step -- Choice (iii):
    (implies (and (not (endp z))
                  (equal (rev (rev (cdr x))) (cdr x)))
             (implies (true-listp z)
                      (equal (rev (rev z)) z)))

    Induction Step -- Choice (iv):
    (implies (and (not (endp z))
                  (implies (true-listp (cdr z))
                           (equal (rev (rev (cdr z))) (cdr z))))
             (implies (true-listp z)
                      (equal (rev (rev z)) z)))

  Q2: To prove the Induction Step we must prove one or more of the
  goals below.

  Which combinations are sufficient to imply the Induction Step? Decide
  what is required and then look [here] to find out if you're right.
  To help you, the Induction Step is of the form:

    Induction Step:
    (implies (and c
                  (implies p' q'))
             (implies p q))

  and beside each candidate subgoal we show its structure in those
  terms.

    Subgoal (i):
    (implies (and (not (endp z))                        ; (implies (and c
                  (true-listp z))                       ;               p)
             (true-listp (cdr z)))                      ;          p')

    Subgoal (ii):
    (implies (and (not (endp z))                        ; (implies (and c
                  (true-listp z)                        ;               p
                  (equal (rev (rev (cdr z))) (cdr z)))  ;               q')
             (equal (rev (rev z)) z))                   ;          q)

    Subgoal (iii):
    (implies (and (not (endp z))                        ; (implies (and c
                  (equal (rev (rev (cdr z))) (cdr z)))  ;               q')
             (equal (rev (rev z)) z))                   ;          q)

    Subgoal (iv):
    (implies (and (not (endp z))                        ; (implies (and c
                  (true-listp (cdr z))                  ;               p'
                  (equal (rev (rev (cdr z))) (cdr z)))  ;               q')
             (equal (rev (rev z)) z))                   ;          q)

  Q3: Suppose you know the theorem

    Theorem:
    (implies (p (f x))
             (equal (g (h x))
                    x))

  and you wish to rewrite the target (g (h a)) to a in

    Goal Conjecture:
    (implies (and (q (f a))
                  (r a))
             (s (g (h a))))

  What must you prove to relieve the hypothesis of Theorem?

  After you've thought about it, look [here] for our answer.

  End of the Quiz

  If this page made sense, you're ready to read the introduction to the
  theorem prover.

  If you are reading this as part of the tutorial introduction to the
  theorem prover, use your browser's Back Button now to return to
  [introduction-to-the-theorem-prover].")
 (LOGIC-KNOWLEDGE-TAKEN-FOR-GRANTED-BASE-CASE
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "A brief explanation of base cases

  According to the sentence, the conjecture being proved is ``reversing
  the reverse of a true-listp yields the original list.'' The formula
  corresponding to this conjecture is:

    (implies (true-listp z)
             (equal (rev (rev z)) z)).

  We're also told that this is an inductive proof. Evidently we're
  doing an induction on the structure of the list z. Then the Base
  Case is the formula:

    (implies (endp z)
             (implies (true-listp z)
                      (equal (rev (rev z)) z))).

  Now use your browser's Back Button to return to the example proof in
  [logic-knowledge-taken-for-granted].")
 (LOGIC-KNOWLEDGE-TAKEN-FOR-GRANTED-EQUALS-FOR-EQUALS
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Substitution of equals for equals

  Anytime you have an equality hypothesis relating two terms, e.g.,

    (equal lhs rhs)

  it is legal to substitute one for the other anyplace else in the
  formula. Doing so does not change the truthvalue of the formula.

  You can use a negated equality this way provided it appears in the
  conclusion. For example, it is ok to transform

    (implies (true-listp x)
             (not (equal x 23)))

  to

    (implies (true-listp 23)
             (not (equal x 23)))

  by substitutions of equals for equals. That is because, by
  [propositional calculus], we could rearrange the formulas into
  their contrapositive forms:

    (implies (equal x 23)
             (not (true-listp x)))

  and

    (implies (equal x 23)
             (not (true-listp 23)))

  and see the equality as a hypothesis and the substitution of 23 for x
  as sensible.

  Sometimes people speak loosely and say ``substitution of equals for
  equals'' when they really mean ``substitutions of equivalents for
  equivalents.'' Equality, as tested by EQUAL, is only one example of
  an equivalence relation. The next most common is propositional
  equivalence, as tested by IFF. You can use propositional
  equivalence hypotheses to substitute one side for the other
  provided the target term occurs in a propositional place, as
  discussed at the bottom of [propositional calculus].

  Now use your browser's Back Button to return to the example proof in
  [logic-knowledge-taken-for-granted].")
 (LOGIC-KNOWLEDGE-TAKEN-FOR-GRANTED-EVALUATION
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Evaluation during proofs

  Any time you are proving a formula and see a subterm in the formula
  that contains no variables, you can just evaluate the subterm.

  This is familiar from algebra: It is not uncommon to rearrange a
  polynominal to collect all the constants and then add them up:

    (3x + 2 + 7y + 2)
    =
    (3x + 7y + (2 + 2))
    =
    (3x + 7y + 4).

  That last step is just evaluation.

  It happens often in ACL2 proofs because theorems involve constants
  and defined functions and when those constants ``drift into the
  maw'' of a function, the function call can be eliminated and
  replaced by a new constant. ACL2 does this automatically; you don't
  have to tell it. In fact, there are a few occasions where you might
  prefer it not evaluate and those are the ones you have to look out
  for! They'll be obvious when they happen because you'll see a
  mysterious constant crop up in the proof.

  Evaluation is legal because it is just the repeated use of
  unconditional rewriting to replace definitions by their
  instantiated bodies until no function calls remain.

  Now use your browser's Back Button to return to the example proof in
  [logic-knowledge-taken-for-granted].")
 (LOGIC-KNOWLEDGE-TAKEN-FOR-GRANTED-INDUCTIVE-PROOF
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "A brief explanation of induction

  We start by showing classical induction on the natural numbers in an
  ACL2 setting before turning to a more general treatment of
  induction.

  Classical Induction on Natural Numbers: Induction is familiar in the
  arithmetic setting. Let (p n) denote some formula involving the
  variable n (and perhaps some other variables which we don't
  exhibit). Then to prove (p n), for all n, by classical induction on
  the construction of the natural numbers, prove each of the
  following:

    Base Case:
    (implies (zp n) (p n))

    Induction Step:
    (implies (and (not (zp n))
                  (p (- n 1)))
             (p n))

  The Base Case establishes that p holds for 0. In fact, because of the
  definition of [zp] [{ICON}], it establishes that (p n) holds when n
  is 0 and it holds when n is not a natural number.

  The Induction Step establishes that if n is a natural number other
  than 0, and if p holds for n-1, then p holds for n. The hypothesis
  (p (- n 1)) above is called the induction hypothesis.

  Note that if the Base Case and Induction Step are valid, then we know
  (p n), for all n. You can convince yourself of this by picking any
  object and asking ``how do I know p holds for this object?'' For
  example, (p -7), (p 'abc), and (p 0) are all established by the
  Base Case. What about (p 1)? That follows from (p 0), given the
  Induction Step. Why? To prove (p 1) using the Induction Step, you
  have to establish (not (zp 1)), which is true, and (p (- 1 1)),
  which is (p 0), which is true by the Base Case. So (p 1) is true.
  Similar reasoning proves (p 2) from from (p 1), etc. Clearly, for
  every natural number other than 0 we could reason like this to show
  that p holds. Since the Base Case handled all the objects that are
  not natural numbers, and handled 0, we know (p n), for all n.

  There is a duality between recursion and induction that ACL2
  exploits. The fact that the Base and Induction steps above are
  sufficient to prove p for all objects is related to the fact that
  the following recursion defines a total, terminating function:

    (defun nat-recursion (n)
      (if (zp n)
          n
          (nat-recursion (- n 1))))

  When this function is admitted we have to prove that if (zp n) does
  not hold, then (- n 1) is smaller, in some sense, than n. This
  sense of ``smaller'' is determined by some measure of the
  arguments. That measure must return an ordinal ([ordinals]
  [{ICON}]), but the most common measures return natural numbers,
  which are among the ordinals. Furthermore, that measure should
  insure that the terms in the recursive calls are smaller than the
  formals, i.e., the measure of (- n 1) must be smaller than the
  measure of n, when the recursive branches are taken. This sense of
  ``smaller'' must be well-founded: it must be impossible to have an
  infinitely descending chain of smaller things. This is true of the
  less-than relation on the ordinals (see [o<] [{ICON}]).
  Well-foundedness means that eventually any recursion must ``bottom
  out'' because things can't keep getting smaller forever.

  The recursion in nat-recursion suggests the induction shown above:
  the Base Case is defined by the if branch that does not lead to a
  recursive call. The Induction Step is defined by the other branch.
  The induction hypothesis is defined by what we recur on, i.e., (- n
  1). The theorems proved when nat-recursion is introduced justify
  the classical induction scheme noted above.

  Every recursively defined ACL2 function suggests a legal induction
  and vice versa.

  Furthermore, every call of a recursively defined function on distinct
  variable symbols also suggests a legal induction: just take the
  induction suggested by the function's recursive definition after
  renaming the formal parameters to be the variables in the call.

  For example, it should be clear that (nat-recursion a) suggests a
  Base Case defined by (zp a), and induction step defined by (not (zp
  a)) and an induction hypothesis about (- a 1).

  Note that the term (fact n) suggests the same classical induction on
  natural numbers shown above, where fact is defined as follows (even
  though we've used the formal parameter k below).

    (defun fact (k)
      (if (zp k)
          1
          (* k (fact (- k 1)))))

  The induction suggested by a term like (fact n) is insensitive to the
  name of the formal parameter used in the defun.

  The induction suggested by a function or term is insensitive to the
  value returned by the function or term.

  It doesn't matter what the function returns in its ``base case''
  (e.g., 1 in fact) or what the function ``does'' to its recursive
  call (e.g., multiply by k in the defun of fact).

  All that matters is (i) how the if structure breaks down the cases on
  k, (ii) which branches lead to recursion, and (iii) what arguments
  are passed to the recursive calls. Those things determine (i) the
  case analysis of the induction scheme, (ii) which cases are Base
  Cases and which are Induction Steps, and (iii) what the induction
  hypotheses are.

  For a selection of common inductions schemes in ACL2 (e.g., on the
  structure of natural numbers, lists, and trees and on several
  variables at once, multiple base cases, multiple induction
  hypotheses, multiple induction steps, etc.) [check this link].

  Every legal ACL2 induction corresponds to an admissible recursive
  function and vice versa. Similarly, every legal ACL2 induction
  corresponds to a call of a recursively defined function on distinct
  variables.

  ACL2 chooses which induction to do by looking at the terms that occur
  in the conjecture. For many elementary theorems, ACL2 chooses the
  right induction by itself.

  You may occasionally need to tell it what induction to do. You do
  that by showing it a term that suggests the induction you want.
  We'll explain how you communicate this to ACL2 later. If you
  understand how recursive functions suggest inductions, then you
  know what you need to know to use ACL2.

  The main point of this discussion of induction is familiarize you
  with the basic terms: Base Case (of which there may be several),
  Induction Step (of which there may be several), Induction
  Hypothesis (of which there may be several in each Induction Step),
  measure and well-founded relation justifying an induction, and the
  induction suggested by a term or recursive function definition.
  Furthermore, every Induction Hypothesis is always an [instance] of
  the conjecture being proved: each induction hypothesis is obtained
  from the conjecture being proved by applying a substitution
  replacing variables by terms.

  If you are reviewing the material taken for granted about logic while
  working your way through the introduction to the theorem prover,
  please use your browser's Back Button to return to the example
  proof in [logic-knowledge-taken-for-granted].")
 (LOGIC-KNOWLEDGE-TAKEN-FOR-GRANTED-INSTANCE
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "A brief explanation of substitution instances

  Let p and q be terms or formulas (there is no difference in ACL2).
  Then we say p is an instance or substitution instance of q if and
  only if p can be obtained from q by uniformly replacing the
  variables of q by terms. Sometimes we call p the target and q the
  pattern because by choosing appropriate replacements we can make
  the pattern match many different targets.

  For example, the following target is an instance of the given
  pattern:

    target:      (APP (APP (REV A) (REV B)) (REV C))
    pattern:     (APP (APP   x       y    ) (REV z))

  The replacement or substitution used in this match of the pattern to
  the target is:

    variable in pattern          replacement term
    x                              (REV A)
    y                              (REV B)
    z                              C

  Such substitutions are usually written this way in ACL2:

    ((x  (REV A))
     (y  (REV B))
     (z  C)).

  Please use your browser's Back Button to return to the page that
  mentioned ``instance.''")
 (LOGIC-KNOWLEDGE-TAKEN-FOR-GRANTED-PROPOSITIONAL-CALCULUS
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "A brief explanation of propositional calculus

  It is impossible in this short introduction to teach you
  propositional calculus if you don't already know it!

  A typical use of propositional calculus is to observe that

    (implies (endp z)
             (implies (true-listp z)
                      (equal (rev (rev z)) z)))

  is equivalent to:

    (implies (and (endp z)
                  (true-listp z))
             (equal (rev (rev z)) z))

  If this is surprising and you know propositional calculus, then the
  problem might be our notation. We're exploiting the tautology

    (p ---> (q ---> r)) <---> ((p & q) ---> r)

  where ---> and <---> are meant to be the traditional arrows denoting
  logical implication and logical equivalence.

  If you don't know propositional calculus, we'll say just a few things
  to help ease your journey.

  A propositional formula, in ACL2, is any formula written entirely in
  terms of variable symbols, T, NIL, and the propositional functions
  AND, OR, NOT, IMPLIES, and IFF. The ``tautology'' above in
  traditional notation is this propositional formula in ACL2:

    (IFF (IMPLIES P (IMPLIES Q R))
         (IMPLIES (AND P Q) R)).

  If you have a formula like

    (implies hyp
             concl)

  then we say that formula is an implication, that hyp is the
  hypothesis, and that concl is the conclusion. If the hypothesis is
  an and expression, as in

    (implies (and hyp1
                  hyp2
                  ...)
             concl)

  then we call hyp1 is the first hypothesis, hyp2 is the second
  hypothesis, etc.

  If a term is of the form

    (and term1 term2 ...)

  we say it is a conjunction and that term1 is the first conjunct,
  term2 is the second conjunct, etc. We treat an or-term analogously
  but call it a disjunction and its arguments are disjuncts.

  A tautology is any propositional formula that can be proved by
  testing it under all combinations of Boolean assignments to its
  variables. We give an example of such a truth-table proof below,
  but hasten to add that ACL2 does not generally use truth tables to
  recognize tautologies. It primarily uses IF-normalization and BDDs
  to recognize tautologies, which can be seen as a mix of symbolic
  manipulation and case analysis.

  Many tautologies have names, but ACL2 doesn't refer to them by name
  because it derives them from first principles. We list a few here
  because we sometimes use the names in our documentation; more
  importantly, you should look at these formulas and convince
  yourself that they're always true for all Boolean values of the
  variables:

    Double Negation:
    (iff (not (not p)) p)

    DeMorgan:
    (iff (not (and p q))
         (or (not p) (not q)))

    Distributivity:
    (iff (and p (or q r))
         (or (and p q)
             (and p r)))

    Promotion:
    (iff (implies p (implies q r))
         (implies (and p q) r))

    Implicative Disjunction:
    (iff (implies p q)
         (or (not p) q))

    Contrapositive:
    (iff (implies p q)
         (implies (not q) (not p)))

    Generalized Contrapositive:
    (iff (implies (and p r) q)
         (implies (and p (not q)) (not r)))

  There are, of course, many others, even with these same names! For
  example, there is a dual version of DeMorgan showing how not
  distributes over or, a dual version of Distributivity for or over
  and, etc.

  Dealing with propositional calculus will not generally be a problem
  for you because it is decidable and ACL2 has procedures that decide
  propositional formulas. However, propositional calculus can lead to
  exponential explosion and can thus explain why ACL2 has ``gone out
  to lunch.'' In addition, sometimes if you are curious as to why
  ACL2 is working on a certain subgoal the reason can be traced back
  to propositional calculus.

  The most common example of this is that to prove a formula of the
  form

    (implies (implies p1 q1)
             (implies p2 q2))

  propositional calculus will convert it to

    (and (implies (and p2 (not p1)) q2)
         (implies (and p2 q1) q2))

  Many users are surprised that the first conjunct above does not have
  q1 as a hypothesis. If you ever stare at an ACL2 goal and say to
  yourself ``A hypothesis is missing!'' the chances are that
  propositional calculus is ``to blame.'' In particular, if you are
  trying to prove that (implies p1 q1) implies something, you must
  deal with the case that (implies p1 q1) is true because p1 is
  false. Think about it.

  Now we illustrate the truth table method for deciding tautologies,
  even though that is not what ACL2 generally uses. Consider the
  formula called Promotion above:

    (IFF (IMPLIES P (IMPLIES Q R))
         (IMPLIES (AND P Q) R))

  The formula above is a tautology. It contains three variables, P, Q,
  and R, and so there are 8 combinations of Boolean assignments to
  them. If we let

    formula1:  (IMPLIES P (IMPLIES Q R))
    formula2:  (IMPLIES (AND P Q) R)

  then we wish to test the formula (IFF formula1 formula2):

    P   Q   R       formula1   formula2   (IFF formula1 formula2)
    ---------
    T   T   T            T         T       T
    T   T   NIL          NIL       NIL     T
    T   NIL T            T         T       T
    T   NIL NIL          T         T       T
    NIL T   T            T         T       T
    NIL T   NIL          T         T       T
    NIL NIL T            T         T       T
    NIL NIL NIL          T         T       T

  So we see that the formula always returns T and is thus a tautology.

  Recall that in the original example at the top of this page we were
  trying to prove the formula

    (implies (endp z)
             (implies (true-listp z)
                      (equal (rev (rev z)) z)))

  This formula is an [instance] of

    (implies p (implies q r)).

  The substitution required by the match is

    sigma:
    ((p    (endp z))
     (q    (true-listp z))
     (r    (equal (rev (rev z)) z)))

  Since we know the tautology:

    (iff (implies p (implies q r))
         (implies (and p q) r)).

  is always true no matter what Boolean values p, q, and r have, then
  we know this instance of it (obtained by applying the substitution
  sigma above) is always true:

    (iff (implies (endp z)                            formula1'
                  (implies (true-listp z)
                           (equal (rev (rev z)) z)))
         (implies (and (endp z)                       formula2'
                       (true-listp z))
                  (equal (rev (rev z)) z))).

  Thus, if we're trying to prove formula1' it is permitted to try to to
  prove formula2' instead, because they return the same truthvalue.

  This sketch of propositional reasoning in ACL2 is a little suspect
  because we didn't address the possibility that the substitution
  might replace the propositional variables by non-propositional
  terms. But the tautology was verified only on Boolean values for
  those variables. This actually works out because in ACL2 all
  propositional testing is done against nil and any non-nil value,
  including t, is as good as another. However, the tautology allows
  us to replace one formula by the other only in contexts in which we
  just care about propositional truth, i.e., whether the formula is
  nil or not. When we prove a formula in ACL2 we are really
  establishing that it never returns nil, i.e., no matter what the
  values of the variables, the value of the formula is non-nil.

  A very simple example of this is with Double Negation.

    (iff (not (not p)) p)

  is a tautology. This means that if we were trying to prove

    (implies (not (not p)) ...)

  we could transform it to

    (implies p ...).

  But if we were trying to prove:

    (equal (not (not p)) p)

  we could not prove it by using Double Negation! The formula above
  claims that (not (not p)) and p have identical values. They do not!
  For example, (not (not 3)) is t, not 3. However, (not (not 3)) and
  t are propositionally equivalent (i.e., satisfy iff) because one is
  as good as the other in a test. That is what Double Negation says.

  As long as you only use propositional formulas in propositional
  places this aspect of ACL2 should not affect you.

  Now please use your browser's Back Button to return to the example
  proof in [logic-knowledge-taken-for-granted].")
 (LOGIC-KNOWLEDGE-TAKEN-FOR-GRANTED-Q1-ANSWER
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "The inductive step of the rev-rev proof -- Answer to Question 1

  The correct answer to Question 1 in
  [logic-knowledge-taken-for-granted] is Choice (iv).

  The Induction Step of the inductive proof of

    (implies (true-listp z)
             (equal (rev (rev z)) z))

  for an induction on the linear list z is:

    Induction Step:
    (implies (and (not (endp z))
                  (implies (true-listp (cdr z))
                           (equal (rev (rev (cdr z))) (cdr z))))
             (implies (true-listp z)
                      (equal (rev (rev z)) z)))

  The second hypothesis above is the the induction hypothesis. The
  conclusion above is the formula we are trying to prove. Each
  induction hypothesis is always an [instance] of the formula being
  proved, i.e., it is obtained from the formula being proved by
  uniformly replacing the variables in the formula with terms. Notice
  how the induction hypothesis above is the same as the induction
  conclusion, except that all the zs have been replaced by (cdr z).

  If you thought the right answer was

    Induction Step -- Choice (i):
    (implies (not (endp z))
             (implies (true-listp z)
                      (equal (rev (rev z)) z)))

  then perhaps you didn't understand that we're doing an inductive
  proof. Certainly if you prove the Base Case already discussed and
  you prove Choice (i) above, then you will have proved the goal
  conjecture, but you would have done it by simple case analysis:
  prove it when (endp z) and prove it when (not (endp z)). While
  logically valid, you probably can't prove Choice (i) directly
  because you have no induction hypothesis to work with.

  If you thought the right answer was:

    Induction Step -- Choice (ii):
    (implies (true-listp (cdr z))
             (equal (rev (rev (cdr z))) (cdr z)))

  then perhaps you misunderstand the difference between the Induction
  Step and the Induction Hypothesis. The Induction Step is the
  ``other half'' of the main proof, balancing the Base Case. The
  Induction Hypothesis is just a hypothesis you get to use during the
  Induction Step. The question Q1 asked what is the Induction Step.

  If you thought the right answer was:

    Induction Step -- Choice (iii):
    (implies (and (not (endp z))
                  (equal (rev (rev (cdr x))) (cdr x))) ; ``induction hyp''
             (implies (true-listp z)
                      (equal (rev (rev z)) z)))

  then you are making the most common mistake newcomers make to
  induction. You are giving yourself an ``induction hypothesis'' that
  is not an instance of the conjecture you're proving. This alleged
  induction hypothesis says that (rev (rev (cdr x))) is (cdr x),
  whereas the correct induction hypothesis says those two terms are
  equal if (true-listp (cdr x)). This alleged induction hypothesis is
  a stronger claim than we're trying to prove. It turns out that by
  making this mistake you can ``prove'' conjectures that are not
  always true! Remember: the induction hypothesis is always an
  instance of the conjecture you're proving, not just some piece of
  it. Of course, ACL2 ``knows'' this and will never make this
  mistake. But we remind you of it because there may be times when
  you intuit a different hypothesis and don't understand why ACL2
  doesn't use it.

  If this doesn't make sense, perhaps you should read about [induction]
  again.

  When you understand why Choice (iv) is the correct answer, use your
  browser's Back Button to return to
  [logic-knowledge-taken-for-granted] and go to question Q2.")
 (LOGIC-KNOWLEDGE-TAKEN-FOR-GRANTED-Q2-ANSWER
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "The inductive step of the rev-rev proof -- Answer to Question 2

  The correct answer to Question 2 in
  [logic-knowledge-taken-for-granted] is Subgoal (i) plus any one of
  the other other three. For your reference, the four choices were:

    Subgoal (i):
    (implies (and (not (endp z))
                  (true-listp z))
             (true-listp (cdr z)))

    Subgoal (ii):
    (implies (and (not (endp z))
                  (true-listp z)
                  (equal (rev (rev (cdr z))) (cdr z)))
             (equal (rev (rev z)) z))

    Subgoal (iii):
    (implies (and (not (endp z))
                  (equal (rev (rev (cdr z))) (cdr z)))
             (equal (rev (rev z)) z))

    Subgoal (iv):
    (implies (and (not (endp z))
                  (true-listp (cdr z))
                  (equal (rev (rev (cdr z))) (cdr z)))
             (equal (rev (rev z)) z))

  In particular, it is wrong to think the Induction Step of the proof
  of

    (implies (true-listp z)
             (equal (rev (rev z)) z))

  can be established by proving just Subgoal (ii), Subgoal (iii),
  Subgoal (iv), or combinations of those three. You must also prove
  Subgoal (i) or something like it!

  The Inductive Step for the conjecture above is

    Induction Step:
    (implies (and (not (endp z))
                  ; Induction Hypothesis:
                  (implies (true-listp (cdr z))
                           (equal (rev (rev (cdr z))) (cdr z))))
             ; Induction Conclusion:
             (implies (true-listp z)
                      (equal (rev (rev z)) z)))

  Note that the Inductive Hypothesis is an implication:

    (implies (true-listp (cdr z))
             (equal (rev (rev (cdr z))) (cdr z)))

  This hypothesis can be true two different ways. The ``normal'' way --
  the way everybody remembers -- is that (true-listp (cdr z)) is true
  and thus (equal (rev (rev (cdr z))) (cdr z)) is true. But the way
  many people forget is that (true-listp (cdr z)) is false. You must
  prove the Induction Step even in this ``forgetable'' case.

  In this case, the Induction Step simplifies to

    Induction Step:
    (implies (and (not (endp z))
                  (not (true-listp (cdr z))))
             (implies (true-listp z)
                      (equal (rev (rev z)) z)))

  By Promotion (see the list of tautologies in our discussion of
  [propositional calculus]) this is

    Induction Step':
    (implies (and (not (endp z))
                  (not (true-listp (cdr z)))
                  (true-listp z))
             (equal (rev (rev z)) z))

  Using the Contrapositive and rearranging the order of the hypotheses
  (see [propositional calculus] again), this is

    Induction Step'':
    (implies (and (not (endp z))
                  (true-listp z)
                  (not (equal (rev (rev z)) z)))
             (true-listp (cdr z)))

  Notice that Subgoal (i) implies Induction Step'':

    Subgoal (i):
    (implies (and (not (endp z))
                  (truelistp z))
             (truelistp (cdr z)))

  Every inductive proof of an implication raises a case like this. If
  we denote the conjecture (implies p q) as p ---> q, then the
  Induction Step will look like this:

      ( c  &  (p'  --->  q'))
    --->
      (p ---> q)

  where c is the test that determines the inductive step, (e.g., (not
  (endp z))) and p' and q' are inductive instances of p and q.
  Promotion produces

      ( c  & p & (p'  --->  q'))
    --->
      q

  It is then very common to prove that p implies p',

    (i):
    (c & p) ---> p'

  and then prove that q' implies q,

    (ii):
    (c & p & q') ---> q

  These correspond exactly to our choices Subgoal (i) and Subgoal (ii).

  It is sometimes helpful to remember this diagram:

    (c  &  (p'  --->  q')
            ^         |
            |         |
            |         v
     -->   (p   --->  q )

  When you understand why Subgoals (i) and (ii) are sufficient, use
  your browser's Back Button to return to
  [logic-knowledge-taken-for-granted] and go to question Q3.")
 (LOGIC-KNOWLEDGE-TAKEN-FOR-GRANTED-Q3-ANSWER
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "The inductive step of the rev-rev proof -- Answer to Question 2

  The correct answer to Question 3 in
  [logic-knowledge-taken-for-granted] is that you need to prove

    Subgoal to Relieve Hyp 1:
    (implies (and (q (f a))
                  (r a))
             (p (f a)))

  in order to use

    Theorem:
    (implies (p (f x))
             (equal (g (h x))
                    x))

  to rewrite the target (g (h a)) to a in

    Goal Conjecture:
    (implies (and (q (f a))
                  (r a))
             (s (g (h a))))

  If you don't see why, re-read the discussion of [rewriting] again.
  Forgetting about the need to relieve hypotheses is a common mistake
  in informal proofs. ACL2 won't forget to relieve them. But if you
  forget about the need to do it, you may be confused when ACL2
  doesn't see the ``proof'' you see!

  Now use your browser's Back Button to return to the end of quiz in
  [logic-knowledge-taken-for-granted].")
 (LOGIC-KNOWLEDGE-TAKEN-FOR-GRANTED-REWRITING
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "A brief explanation of rewriting from the logical perspective

  First we give two examples of rewriting. Then we give a rather
  detailed description. We recommend you read the description, even
  if you understand the two examples, just so that you learn our
  terminology.

  Example 1: Suppose your goal conjecture is:

    Goal Conjecture:
    (implies (and (endp z)
                  (true-listp z))
             (equal (rev (rev z)) z))

  Then you can use the following theorem (actually the definitional
  axiom introduced by the defun of endp):

    Definitional Axiom: endp
    (equal (endp x)
           (not (consp x))).

  to rewrite the Goal Conjecture to

    Rewritten Goal Conjecture:
    (implies (and (not (consp z))
                  (true-listp z))
             (equal (rev (rev z)) z))

  Note that in this example, rewriting replaced the call of endp by its
  body after instantiating its body with the actuals from the call.
  This is sometimes just called expanding the definition of endp.
  (The notions of formal, body, call, and actuals are discussed in
  [programming-knowledge-taken-for-granted].)

  Expanding a definition is an example of unconditional rewriting. All
  definitions in ACL2 are just bare equalities relating a call of the
  function on its formals to its body. Any time you use an equality
  theorem, whether a definitional equality or something more general
  like

    (equal (append (append x y) z)
           (append x (append y z)))

  to replace an instance of one side by the corresponding instance of
  the other in a goal conjecture, we call that unconditional
  rewriting with the equality.

  Example 2: Suppose your goal conjecture is:

    Goal Conjecture:
    (implies (and (subsetp a b)
                  (true-listp b)
                  (member e a))
             (< (len (rm e b)) (len b))).

  This conjecture may be read ``if a is a subset of the true-listp b
  and e is a member of a, then the result of removing e from b has a
  shorter length than b.''

  You can use the following theorem:

    Theorem:
    (implies (member u v)
             (equal (len (rm u v))
                    (- (len v) 1)))

  to rewrite the Goal Conjecture to

    Rewritten Goal Conjecture:
    (implies (and (subsetp a b)
                  (true-listp b)
                  (member e a))
             (< (- (len b) 1) (len b))).

  To do this you must know that the following subgoal is provable:

    Subgoal to Relieve Hyp 1:
    (implies (and (subsetp a b)
                  (true-listp b)
                  (member e a))
             (member e b)).

  This is an example of conditional rewriting. In order to use the
  Theorem we had to establish that its hypotheses are satisfied. That
  is called relieving the hypotheses and was done by proving the
  Subgoal to Relieve Hyp 1. Conditional rewriting is the most
  commonly used proof technique in ACL2.

  Unconditional rewriting is just a special case, where there are no
  hypotheses to relieve.

  Expanding a definition is just another special case, where there are
  no hypotheses to relieve and the pattern is easy to match because
  it is a call of a function on distinct variables.

  This page discusses rewriting from the logical perspective. It is
  important that you are familiar with the notions of a pattern term
  being an [instance] of a target term. We often say the pattern
  matches the target. These notions involve a corresponding
  substitution of terms for variables. All these notions are
  discussed in the link for ``[instance]'' above and we recommend you
  read it before continuing. Then use your browser's Back Button to
  come back here.

  You should also be aware of the terms introduced in our discussion of
  [propositional calculus].

  Rewriting is a fundamental rule of inference in our system. The rule
  allows you to use a theorem, i.e., an axiom, lemma, or definition,
  to replace one term by another in the goal conjecture you're trying
  to prove.

  Suppose you have a theorem that is of the form (or can be put into
  the form):

    Theorem:
    (implies (and hyp1
                  ...
                  hypk)
             (equal pattern
                    replacement))

  From the logical perspective we don't care how the theorem was
  actually written when it was proved. It might have no hypotheses
  (in which case the hypi could just be t), or it could have been
  written in a different but equivalent propositional style, (or (not
  hyp1) ...), or the equality could have been written the other way
  around, (equal replacement pattern). Such syntactic details don't
  matter. Just take a theorem and use propositional calculus to
  rearrange it equivalently into this form for the purposes of this
  one rewrite step.

  Suppose pattern is an instance of some target term, target that
  occurs in your goal conjecture. Let the corresponding substitution
  be sigma. If sigma does not contain a binding for every variable
  that occurs in Theorem, then extend sigma to sigma' by adding one
  binding for each such variable. (This is necessary only if pattern
  does not contain every variable in Theorem.)

  Let replacement' be the result of instantiating replacement with
  sigma'. Let hypi' be the result of instantiating hypi with sigma'.

  Then the Rewrite Rule of Inference tells us it is permitted to
  replace that occurrence of target in the goal by replacement' -- if
  you can prove each hypi' in this context. We make this last
  condition clear in a moment.

  The justification for this is that Theorem is true for all values of
  the variables. Hence, it is true for the values specified by
  sigma'. If the hypi' are true, then the target is really equal to
  replacement'. But it is always permitted to replace something by
  something it's equal to.

  Rewriting thus involves several steps:

  (1) Finding a target and a theorem to use to rewrite it to some more
  desirable replacement.

  (2) Instantiating pattern in the (rearranged) theorem to match
  target.

  (3) Extending sigma to sigma' to bind all the variables in Theorem.

  (4) Establishing that the sigma' instances of each of the hypi hold.
  This is called relieving the hypotheses of the theorem and is
  discussed in greater detail below.

  (5) Replacing the occurrence of target in the goal conjecture by the
  sigma' instance of replacement, provided all the hypotheses are
  relieved.

  Step (4) above, relieving the hypotheses, requires first identifying
  the ``context'' of the target in the goal conjecture. To do this,
  use propositional calculus to rearrange the goal conjecture so the
  occurrence of target is in the conclusion and let context be the
  hypothesis.

    Rearranged Conjecture:
    (implies context
             (... target ...))

  To relieve the hypotheses you must then prove each of the following
  subgoals:

    Subgoal to Relieve Hyp i:
    (implies context hypi').

  It is important to note that this description of rewriting with
  Theorem describes the process from a strictly logical perspective.
  The syntax of the theorem and the goal don't matter. You're free to
  use propositional calculus to rearrange them to put them into the
  appropriate forms to fit the descriptions given. Clearly, if you
  have a candidate Theorem in the ``wrong'' form and but it can be
  rearranged with propositional calculus into the ``right'' form,
  then that rearranged theorem is also a Theorem and can be used as
  described. But in the actual implementation of ACL2, the syntactic
  form of a proved Theorem affects how it is used by rewriting. If a
  proved theorem takes the form of an implication concluding with an
  equality, ACL2 treats the left-hand side of the equality as pattern
  and the right-hand side as replacement, unless you tell it
  otherwise. We'll discuss this later.

  Furthermore, being from the logical perspective this discussion of
  rewriting does not address (a) how you extend simga to sigma' --
  any extension will do provided it allows you to relieve the
  hypotheses. The ACL2 theorem prover uses certain heuristics which
  we'll discuss later, including methods by which you can guide the
  system in the selection.

  Crucially, it does not discuss whether it is a good idea to do a
  particular rewrite! For example, the definitional equality:

    (equal (len x)
           (if (endp x)
               0
               (+ 1 (len (cdr x)))))

  may be used repeatedly, endlessly, to replace (len a) by an ever
  growing sequence of terms:

    (len a)
    =
    (if (endp a)
        0
        (+ 1 (len (cdr a))))
    =
    (if (endp a)
        0
        (+ 1 (if (endp (cdr a))
                 0
                 (+ 1 (len (cdr (cdr a)))))))
    = ...

  The ACL2 implmentation of rewriting uses certain heuristics and the
  you can guide the system in its choices. We'll discuss this later.

  Now use your browser's Back Button to return to the example proof in
  [logic-knowledge-taken-for-granted].")
 (LOGIC-KNOWLEDGE-TAKEN-FOR-GRANTED-REWRITING-REPEATEDLY
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Further information on expanding definitions via rewriting

  We assume you've read about ``[instances]'' and picked up our basic
  terminology including the ideas of matching a pattern term to a
  target term, obtaining a substitution and how to instantiate a term
  with a substitution. We use these notions below without further
  citation.

  In addition, we assume you've read about ``[rewriting]'' where we
  introduced the idea of treating a theorem (axiom, definition, or
  lemma) as a conditional rewrite rule and replaced one term by an
  equivalent one provided we can relieve the hypotheses.

  Suppose you're trying to prove formula1 and you transform it to
  formula2 by rewriting. What happened?

    formula1:
    (implies (and (not (consp z))
                  (true-listp z))
             (equal (rev (rev z)) z))

    formula2:
    (implies (and (not (consp z))
                  (equal z nil))
             (equal (rev (rev z)) z))

  Evidently we replaced (true-listp z) by (equal z nil). But how did
  that happen? What really happened was the sequential application of
  several unconditional rewrites and the use of replacement of equals
  by equals.

  The definition of true-listp is:

    (defun true-listp (x)
      (if (consp x)
          (true-listp (cdr x))
          (equal x nil))).

  By rewriting once with the definition of true-listp, we transform
  formula1 to:

    formula1':
    (implies (and (not (consp z))
                  (if (consp z)
                      (true-listp (cdr z))
                      (equal z nil)))
             (equal (rev (rev z)) z)).

  Note how the call of true-listp has been replaced by the entire body
  of true-listp.

  Next, note that the first hypothesis above is that (consp z) is
  false. That is, (not (consp z)) is the same as (equal (consp z)
  nil). Thus, replacement of equals by equals means we can transform
  formula1' to

    formula1'':
    (implies (and (not (consp z))
                  (if nil
                      (true-listp (cdr z))
                      (equal z nil)))
             (equal (rev (rev z)) z)).

  (We will explore replacement of equals by equals later.)

  Furthermore, we know the basic axiom about if:

    Axiom if-nil:
    (if nil x y) = y.

  Rewriting with this particular axiom, using (if nil x y) as the
  pattern and y as the replacement, will transform formula1'' to

    formula2:
    (implies (and (not (consp z))
                  (equal z nil))
             (equal (rev (rev z)) z)).

  Often when we say we derived one formula from another by
  ``expansion'' and or by ``rewriting'' we take many rewrite steps,
  as here. We typically use hypotheses of the formula without noting
  ``replacement of equals by equals'' as when we replaced (consp z)
  by nil, and we typically omit to mention the use of basic axioms
  like if-nil above.

  Now use your browser's Back Button to return to the example proof in
  [logic-knowledge-taken-for-granted].")
 (LOGICAL-NAME
  (EVENTS WORLD)
  "A name created by a logical event

    Examples:
    assoc
    caddr
    +
    \"ACL2-USER\"
    \"arith\"
    \"project/task-1/arith.lisp\"
    :here

  A logical name is either a name introduced by some event, such as
  [defun], [defthm], or [include-book], or else is the keyword :here,
  which refers to the most recent such event. See [events]. Every
  logical name is either a symbol or a string. For the syntactic
  rules on names, see [name]. The symbols name functions, macros,
  constants, axioms, theorems, labels, and [theories]. The strings
  name packages or [books]. We permit the keyword symbol :here to be
  used as a logical name denoting the most recently completed event.

  The logical name introduced by an [include-book] is the full book
  name string for the book (see [full-book-name]). Thus, under the
  appropriate setting for the current book directory (see [cbd]) the
  event (include-book \"arith\") may introduce the logical name

    \"/usr/home/smith/project/task-1/arith.lisp\" .

  Under a different [cbd] setting, it may introduce a different logical
  name, perhaps

    \"/local/src/acl2/library/arith.lisp\" .

  It is possible that identical [include-book] events forms in a
  session introduce two different logical names because of the
  current book directory.

  A logical name that is a string is either a package name or a book
  name. If it is not a package name, we support various conventions
  to interpret it as a book name. If it does not end with the string
  \".lisp\" we extend it appropriately. Then, we search for any book
  name that has the given logical name as a terminal substring.
  Suppose (include-book \"arith\") is the only [include-book] so far
  and that \"/usr/home/smith/project/task-1/arith.lisp\" is the source
  file it processed. Then \"arith\", \"arith.lisp\" and
  \"task-1/arith.lisp\" are all logical names identifying that
  [include-book] event (unless they are package names). Now suppose a
  second (include-book \"arith\") is executed and processes
  \"/local/src/acl2/library/arith.lisp\". Then \"arith\" is no longer a
  logical name, because it is ambiguous. However, \"task-1/arith\" is a
  logical name for the first [include-book] and \"library/arith\" is a
  logical name for the second. Indeed, the first can be named by
  \"1/arith\" and the second by \"y/arith\".

  Logical names are used primarily in the theory manipulation
  functions, e.g., [universal-theory] and [current-theory] with which
  you may obtain some standard [theories] as of some point in the
  historical past. The reference points are the introductions of
  logical names, i.e., the past is determined by the [events] it
  contains. One might ask, ``Why not discuss the past with the much
  more flexible language of [command] descriptors?'' (See
  [command-descriptor].) The reason is that inside of such [events]
  as [encapsulate] or macro [command]s that expand to [progn]s of
  [events], [command] descriptors provide too coarse a grain.

  When logical names are used as referents in theory expressions used
  in [books], one must consider the possibility that the defining
  event within the book in question becomes redundant by the
  definition of the name prior to the assumption of the book. See
  [redundant-events].")
 (LOGIOR
  (NUMBERS ACL2-BUILT-INS)
  "Bitwise logical inclusive or of zero or more integers

  When integers are viewed in their two's complement representation,
  logior returns their bitwise logical inclusive or. In ACL2 logior
  is a macro that expands into calls of the binary function
  binary-logior, except that (logior) expands to 0 and (logior x)
  expands to x.

  The [guard] for binary-logior requires its arguments to be integers.
  Logior is defined in Common Lisp. See any Common Lisp documentation
  for more information.

  Macro: <logior>

    (defmacro logior (&rest args)
              (cond ((null args) 0)
                    ((null (cdr args)) (car args))
                    (t (xxxjoin 'binary-logior args))))

  Function: <binary-logior>

    (defun binary-logior (i j)
           (declare (xargs :guard (and (integerp i) (integerp j))))
           (lognot (logand (lognot i) (lognot j))))")
 (LOGNAND
  (NUMBERS ACL2-BUILT-INS)
  "Bitwise logical `nand' of two integers

  When integers are viewed in their two's complement representation,
  lognand returns their bitwise logical `nand'.

  The [guard] for lognand requires its arguments to be integers.
  Lognand is defined in Common Lisp. See any Common Lisp
  documentation for more information.

  Function: <lognand>

    (defun lognand (i j)
           (declare (xargs :guard (and (integerp i) (integerp j))))
           (lognot (logand i j)))")
 (LOGNOR
  (NUMBERS ACL2-BUILT-INS)
  "Bitwise logical `nor' of two integers

  When integers are viewed in their two's complement representation,
  lognor returns the bitwise logical `nor' of the first with the
  second.

  The [guard] for lognor requires its arguments to be integers. Lognor
  is defined in Common Lisp. See any Common Lisp documentation for
  more information.

  Function: <lognor>

    (defun lognor (i j)
           (declare (xargs :guard (and (integerp i) (integerp j))))
           (lognot (logior i j)))")
 (LOGNOT
  (NUMBERS ACL2-BUILT-INS)
  "Bitwise not of a two's complement number

  (lognot i) is the two's complement bitwise `not' of the integer i.

  Lognot is actually defined by coercing its argument to an integer
  (see [ifix]), negating the result, and then subtracting 1.

  The [guard] for lognot requires its argument to be an integer.

  Lognot is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <lognot>

    (defun lognot (i)
           (declare (xargs :guard (integerp i)))
           (+ (- (ifix i)) -1))")
 (LOGORC1
  (NUMBERS ACL2-BUILT-INS)
  "Bitwise logical inclusive or of two ints, complementing the first

  When integers are viewed in their two's complement representation,
  logorc1 returns the bitwise logical inclusive or of the second with
  the bitwise logical `not' of the first.

  The [guard] for logorc1 requires its arguments to be integers.
  Logorc1 is defined in Common Lisp. See any Common Lisp
  documentation for more information.

  Function: <logorc1>

    (defun logorc1 (i j)
           (declare (xargs :guard (and (integerp i) (integerp j))))
           (logior (lognot i) j))")
 (LOGORC2
  (NUMBERS ACL2-BUILT-INS)
  "Bitwise logical inclusive or of two ints, complementing the second

  When integers are viewed in their two's complement representation,
  logorc2 returns the bitwise logical inclusive or of the first with
  the bitwise logical `not' of the second.

  The [guard] for logorc2 requires its arguments to be integers.
  Logorc2 is defined in Common Lisp. See any Common Lisp
  documentation for more information.

  Function: <logorc2>

    (defun logorc2 (i j)
           (declare (xargs :guard (and (integerp i) (integerp j))))
           (logior i (lognot j)))")
 (LOGTEST
  (NUMBERS ACL2-BUILT-INS)
  "Test if two integers share a `1' bit

  When integers x and y are viewed in their two's complement
  representation, (logtest x y) is true if and only if there is some
  position for which both x and y have a `1' bit in that position.

  The [guard] for logtest requires its arguments to be integers.
  Logtest is defined in Common Lisp. See any Common Lisp
  documentation for more information.

  Function: <logtest>

    (defun logtest (x y)
           (declare (xargs :guard (and (integerp x) (integerp y))))
           (not (zerop (logand x y))))")
 (LOGXOR
  (NUMBERS ACL2-BUILT-INS)
  "Bitwise logical exclusive or of zero or more integers

  When integers are viewed in their two's complement representation,
  logxor returns their bitwise logical exclusive or. In ACL2 logxor
  is a macro that expands into calls of the binary function
  binary-logxor, except that (logxor) expands to 0 and (logxor x)
  expands to x.

  The [guard] for binary-logxor requires its arguments to be integers.
  Logxor is defined in Common Lisp. See any Common Lisp documentation
  for more information.

  Macro: <logxor>

    (defmacro logxor (&rest args)
              (cond ((null args) 0)
                    ((null (cdr args)) (car args))
                    (t (xxxjoin 'binary-logxor args))))

  Function: <binary-logxor>

    (defun binary-logxor (i j)
           (declare (xargs :guard (and (integerp i) (integerp j))))
           (lognot (logeqv i j)))")
 (LOOP-STOPPER
  (REWRITE)
  "Limit application of permutative rewrite rules

  See [rule-classes] for a discussion of the syntax of the
  :loop-stopper field of :[rewrite] rule-classes. Here we describe
  how that field is used, and also how that field is created when the
  user does not explicitly supply it.

  For example, the built-in :[rewrite] rule commutativity-of-+,

    (implies (and (acl2-numberp x)
                  (acl2-numberp y))
             (equal (+ x y) (+ y x))),

  creates a rewrite rule with a loop-stopper of ((x y binary-+)). This
  means, very roughly, that the term corresponding to y must be
  ``smaller'' than the term corresponding to x in order for this rule
  to apply. However, the presence of [binary-+] in the list means
  that certain functions that are ``invisible'' with respect to
  [binary-+] (by default, [unary--] is the only such function) are
  more or less ignored when making this ``smaller'' test. We are much
  more precise below.

  Our explanation of loop-stopping is in four parts. First we discuss
  ACL2's notion of ``term order.'' Next, we bring in the notion of
  ``invisibility'', and use it together with term order to define
  orderings on terms that are used in the loop-stopping algorithm.
  Third, we describe that algorithm. These topics all assume that we
  have in hand the :loop-stopper field of a given rewrite rule; the
  fourth and final topic describes how that field is calculated when
  it is not supplied by the user.

  ACL2 must sometimes decide which of two terms is syntactically
  simpler. It uses a total ordering on terms, called the ``term
  order.'' Under this ordering constants such as '(a b c) are simpler
  than terms containing variables such as x and (+ 1 x). Terms
  containing variables are ordered according to how many occurrences
  of variables there are. Thus x and (+ 1 x) are both simpler than
  (cons x x) and (+ x y). If variable counts do not decide the order,
  then the number of function applications are tried. Thus (cons x x)
  is simpler than (+ x (+ 1 y)) because the latter has one more
  function application. Finally, if the number of function
  applications do not decide the order, a lexicographic ordering on
  Lisp objects is used. See [term-order] for details.

  When the loop-stopping algorithm is controlling the use of
  permutative :[rewrite] rules it allows term1 to be moved leftward
  over term2 only if term1 is smaller, in a suitable sense. Note: The
  sense used in loop-stopping is not the above explained term order
  but a more complicated ordering described below. The use of a total
  ordering stops rules like commutativity from looping indefinitely
  because it allows (+ b a) to be permuted to (+ a b) but not vice
  versa, assuming a is smaller than b in the ordering. Given a set of
  permutative rules that allows arbitrary permutations of the tips of
  a tree of function calls, this will normalize the tree so that the
  smallest argument is leftmost and the arguments ascend in the order
  toward the right. Thus, for example, if the same argument appears
  twice in the tree, as x does in the [binary-+] tree denoted by the
  term (+ a x b x), then when the allowed permutations are done, all
  occurrences of the duplicated argument in the tree will be
  adjacent, e.g., the tree above will be normalized to (+ a b x x).

  Suppose the loop-stopping algorithm used term order, as noted above,
  and consider the [binary-+] tree denoted by (+ x y (- x)). The
  arguments here are in ascending term order already. Thus, no
  permutative rules are applied. But because we are inside a
  +-expression it is very convenient if x and (- x) could be given
  virtually the same position in the ordering so that y is not
  allowed to separate them. This would allow such rules as (+ i (- i)
  j) = j to be applied. In support of this, the ordering used in the
  control of permutative rules allows certain unary functions, e.g.,
  the unary minus function above, to be ``invisible'' with respect to
  certain ``surrounding'' functions, e.g., [+] function above.

  Briefly, a unary function symbol fn1 is invisible with respect to a
  function symbol fn2 if fn2 belongs to the value of fn1 in
  [invisible-fns-table]; also see [set-invisible-fns-table], which
  explains its format and how it can be set by the user. Roughly
  speaking, ``invisible'' function symbols are ignored for the
  purposes of the term-order test.

  Consider the example above, (+ x y (- x)). The translated version of
  this term is (binary-+ x (binary-+ y (unary-- x))). The initial
  [invisible-fns-table] makes [unary--] invisible with repect to
  [binary-+]. The commutativity rule for [binary-+] will attempt to
  swap y and (unary-- x) and the loop-stopping algorithm is called to
  approve or disapprove. If term order is used, the swap will be
  disapproved. But term order is not used. While the loop-stopping
  algorithm is permuting arguments inside a [binary-+] expression,
  [unary--] is invisible. Thus, insted of comparing y with (unary--
  x), the loop-stopping algorithm compares y with x, approving the
  swap because x comes before y.

  Here is a more precise specification of the total order used for
  loop-stopping with respect to a list, fns, of functions that are to
  be considered invisible. Let x and y be distinct terms; we specify
  when ``x is smaller than y with respect to fns.'' If x is the
  application of a unary function symbol that belongs to fns, replace
  x by its argument. Repeat this process until the result is not the
  application of such a function; let us call the result x-guts.
  Similarly obtain y-guts from y. Now if x-guts is the same term as
  y-guts, then x is smaller than y in this order iff x is smaller
  than y in the standard term order. On the other hand, if x-guts is
  different than y-guts, then x is smaller than y in this order iff
  x-guts is smaller than y-guts in the standard term order.

  Now we may describe the loop-stopping algorithm. Consider a rewrite
  rule with conclusion (equiv lhs rhs) that applies to a term x in a
  given context; see [rewrite]. Suppose that this rewrite rule has a
  loop-stopper field (technically, the :heuristic-info field) of ((x1
  y1 . fns-1) ... (xn yn . fns-n)). (Note that this field can be
  observed by using the command :[pr] with the name of the rule; see
  [pr].) We describe when rewriting is permitted. The simplest case
  is when the loop-stopper list is nil (i.e., n is 0); in that case,
  rewriting is permitted. Otherwise, for each i from 1 to n let xi'
  be the actual term corresponding to the variable xi when lhs is
  matched against the term to be rewritten, and similarly correspond
  yi' with y. If xi' and yi' are the same term for all i, then
  rewriting is not permitted. Otherwise, let k be the least i such
  that xi' and yi' are distinct. Let fns be the list of all functions
  that are invisible with respect to every function in fns-k, if
  fns-k is non-empty; otherwise, let fns be nil. Then rewriting is
  permitted if and only if yi' is smaller than xi' with respect to
  fns, in the sense defined in the preceding paragraph.

  It remains only to describe how the loop-stopper field is calculated
  for a rewrite rule when this field is not supplied by the user. (On
  the other hand, to see how the user may specify the :loop-stopper,
  see [rule-classes].) Suppose the conclusion of the rule is of the
  form (equiv lhs rhs). First of all, if rhs is not an instance of
  the left hand side by a substitution whose range is a list of
  distinct variables, then the loop-stopper field is nil. Otherwise,
  consider all pairs (u . v) from this substitution with the property
  that the first occurrence of v appears in front of the first
  occurrence of u in the print representation of rhs. For each such u
  and v, form a list fns of all functions fn in lhs with the property
  that u or v (or both) appears as a top-level argument of a subterm
  of lhs with function symbol fn. Then the loop-stopper for this
  rewrite rule is a list of all lists (u v . fns).


Subtopics

  [Add-invisible-fns]
      Make some unary functions invisible to the [loop-stopper] algorithm

  [Invisible-fns-table]
      Functions that are invisible to the [loop-stopper] algorithm

  [Remove-invisible-fns]
      Make some unary functions no longer invisible

  [Set-invisible-fns-table]
      Set the invisible functions table")
 (LOWER-CASE-P
  (CHARACTERS ACL2-BUILT-INS)
  "Recognizer for lower case characters

  (Lower-case-p x) is true if and only if x is a lower case character,
  i.e., a member of the list #\\A, #\\B, ..., #\\Z.

  The [guard] for lower-case-p requires its argument to be a standard
  character (see [standard-char-p]).

  Lower-case-p is a Common Lisp function. See any Common Lisp
  documentation for more information.

  Function: <lower-case-p>

    (defun lower-case-p (x)
           (declare (xargs :guard (and (characterp x)
                                       (standard-char-p x))))
           (and (member x
                        '(#\\a #\\b #\\c #\\d #\\e #\\f #\\g
                              #\\h #\\i #\\j #\\k #\\l #\\m #\\n #\\o #\\p #\\q
                              #\\r #\\s #\\t #\\u #\\v #\\w #\\x #\\y #\\z))
                t))")
 (LP
  (LD)
  "The Common Lisp entry to ACL2

  To enter the ACL2 [command] loop from Common Lisp, call the Common
  Lisp program lp (which stands for ``loop,'' as in ``read-eval-print
  loop'' or ``[command] loop.'') The ACL2 [command] loop is actually
  coded in ACL2 as the function [ld] (which stands for ``load''). The
  [command] loop is just what you get by loading from the standard
  object input channel, [*standard-oi*]. Calling [ld] directly from
  Common Lisp is possible but fragile because hard lisp errors or
  aborts throw you out of [ld] and back to the top-level of Common
  Lisp. Lp calls [ld] in such a way as to prevent this and is thus
  the standard way to get into the ACL2 [command] loop. Also see
  [ACL2-customization] for information on the loading of an
  initialization file.

  All of the visible functionality of lp is in fact provided by [ld],
  which is written in ACL2 itself. Therefore, you should see [ld] for
  detailed [documentation] of the ACL2 [command] loop. We sketch it
  below, for novice users.

  Every expression typed to the ACL2 top-level must be an ACL2
  expression.

  Any ACL2 expression may be submitted for evaluation. Well-formedness
  is checked. Some well-formed expressions cannot be evaluated
  because they involve (at some level) undefined constrained
  functions (see [encapsulate]). In addition, ACL2 does not allow
  ``global variables'' in expressions to be evaluated. Thus, (car '(a
  b c)) is legal and evaluates to A, but (car x) is not, because
  there is no ``global context'' or binding environment that gives
  meaning to the variable symbol x.

  There is an exception to the global variable rule outlined above:
  single-threaded objects (see [stobj]) may be used as global
  variables in top-level expressions. The most commonly used such
  object is the ACL2 ``current state,'' which is the value of the
  variable symbol [state]. This variable may occur in the top-level
  form to be evaluated, but must be passed only to ACL2 functions
  ``expecting'' state as described in the documentation for [state]
  and for [stobj]s in general. If the form returns a new [state]
  object as one of its values, then that is considered the new
  ``current'' [state] for the evaluation of the subsequent form. See
  [state].

  ACL2 provides some support for the functionality usually provided by
  global variables in a read-eval-print loop, namely the saving of
  the result of a computation for subsequent re-use in another
  expression. See [assign] and see [@].

  If the form read is a single keyword, e.g., :[pe] or :[ubt], then
  special procedures are followed. See [keyword-commands].

  The [command] loop keeps track of the [command]s you have typed and
  allows you to review them, display them, and roll the logical
  [state] back to that created by any [command]. See [history].

  ACL2 makes the convention that if a top-level form returns three
  values, the last of which is an ACL2 [state], then the first is
  treated as a flag that means ``an error occurred,'' the second is
  the value to be printed if no error occurred, and the third is (of
  course) the new [state]. When ``an error occurs'' no value is
  printed. Thus, if you execute a top-level form that happens to
  return three such values, only the second will be printed (and that
  will only happen if the first is nil!). See [ld] for details.


Subtopics

  [Q]
      Quit ACL2 (type :q) --- reenter with ([lp])")
 (MACRO-ALIASES-TABLE
  (MACROS)
  "A [table] used to associate function names with macro names

    Example:
    (table macro-aliases-table 'append 'binary-append)

  This example associates the function symbol [binary-append] with the
  macro name [append]. As a result, the name [append] may be used as
  a runic designator (see [theories]) by the various theory
  functions. Thus, for example, it will be legal to write

    (in-theory (disable append))

  as an abbreviation for

    (in-theory (disable binary-append))

  which in turn really abbreviates

    (in-theory (set-difference-theories (current-theory :here)
                                        '(binary-append)))

    General Form:

    (table macro-aliases-table 'macro-name 'function-name)

  or very generally

    (table macro-aliases-table macro-name-form function-name-form)

  where macro-name-form and function-name-form evaluate, respectively,
  to a macro name and a symbol in the current ACL2 [world]. See
  [table] for a general discussion of tables and the table event used
  to manipulate tables.

  Note that function-name-form (above) does not need to evaluate to a
  function symbol, but only to a symbol. As a result, one can
  introduce the alias before defining a recursive function, as
  follows.

    (table macro-aliases-table 'mac 'fn)
    (defun fn (x)
      (if (consp x)
          (mac (cdr x))
        x))

  Although this is obviously contrived example, this flexibility can be
  useful to macro writers; see for example the definition of ACL2
  system macro [defun-inline].

  The [table] [macro-aliases-table] is an alist that associates macro
  symbols with function symbols, so that macro names may be used as
  runic designators (see [theories]). For a convenient way to add
  entries to this [table], see [add-macro-alias]. To remove entries
  from the [table] with ease, see [remove-macro-alias].

  This [table] is used by the theory functions; see [theories]. For
  example, in order that (disable append) be interpreted as (disable
  binary-append), it is necessary that the example form above has
  been executed. In fact, this [table] does indeed associate many of
  the macros provided by the ACL2 system, including [append], with
  function symbols. Loosely speaking, it only does so when the macro
  is ``essentially the same thing as'' a corresponding function; for
  example, (append x y) and (binary-append x y) represent the same
  term, for any expressions x and y.")
 (MACRO-ARGS
  (MACROS)
  "The formals list of a macro definition

    Examples:
    (x y z)
    (x y z &optional max (base '10 basep))
    (x y &rest rst)
    (x y &key max base)
    (&whole sexpr x y)

  The ``lambda-list'' of a macro definition may include simple formal
  parameter names as well as appropriate uses of the following
  lambda-list keywords from CLTL (pp. 60 and 145), respecting the
  order shown:

    &whole,
    &optional,
    &rest,
    &body,
    &key, and
    &allow-other-keys.

  ACL2 does not support &aux and &environment. In addition, we make the
  following restrictions:

      (1) initialization forms in &optional and &key specifiers must be
      quoted values;

      (2) &allow-other-keys may only be used once, as the last specifier;
      and

      (3) destructuring is not allowed.

  You are encouraged to experiment with the macro facility. One way to
  do so is to define a macro that does nothing but return the
  quotation of its arguments, e.g.,

    (defmacro demo (x y &optional opt &key key1 key2)
      (list 'quote (list x y opt key1 key2)))

  You may then execute the macro on some sample forms, e.g.,

      term                         value
    (demo 1 2)                (1 2 NIL NIL NIL)
    (demo 1 2 3)              (1 2 3 NIL NIL)
    (demo 1 2 :key1 3)        error:  non-even key/value arglist
                              (because :key1 is used as opt)
    (demo 1 2 3 :key2 5)      (1 2 3 NIL 5)

  In particular, Common Lisp specifies that if you use both &rest and
  &key, then both will be bound using the same list of arguments. The
  following example should serve to illustrate how this works.

    ACL2 !>(defmacro foo (&rest args &key k1 k2 k3)
             (list 'quote (list args k1 k2 k3)))

    Summary
    Form:  ( DEFMACRO FOO ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     FOO
    ACL2 !>(foo :k1 3 :k2 4 :k3 5)
    ((:K1 3 :K2 4 :K3 5) 3 4 5)
    ACL2 !>(foo :k1 3 :k2 4)
    ((:K1 3 :K2 4) 3 4 NIL)
    ACL2 !>(foo :k1 3 :bad-key 7)

    ACL2 Error in macro expansion:  Illegal key/value args (:BAD-KEY 7)
    in macro expansion of (FOO :K1 3 :BAD-KEY 7).  The argument list for
    FOO is
    (&REST ARGS &KEY K1 K2 K3).

    ACL2 !>

  If we don't want to get the error above, we can use
  &allow-other-keys, as follows.

    ACL2 !>(defmacro bar (&rest args &key k1 k2 k3
                                &allow-other-keys)
             (list 'quote (list args k1 k2 k3)))

    Summary
    Form:  ( DEFMACRO BAR ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     BAR
    ACL2 !>(bar :k1 3 :bad-key 7)
    ((:K1 3 :BAD-KEY 7) 3 NIL NIL)
    ACL2 !>

  Also see [trans].


Subtopics

  [Set-duplicate-keys-action]
      Control action for macro calls with duplicate keyword arguments")
 (MACRO-COMMAND
  (PROOF-CHECKER)
  "Compound command for the proof-checker

  The proof-checker (see [proof-checker]) allows the user to supply
  interactive commands. Compound commands, called macro commands, may
  be defined; these expand into zero or more other commands. Some of
  these are ``atomic'' macro commands; these are viewed as a single
  command step when completed successfully.

  More [documentation] will be written on the [proof-checker]. For now,
  we simply point out that there are lots of examples of the use of
  define-pc-macro and define-pc-atomic-macro in the ACL2 source file
  \"proof-checker-b.lisp\". The former is used to create macro
  commands, which can be submitted to the interactive loop (see
  [verify]) and will ``expand'' into zero or more commands. The
  latter is similar, except that the undoing mechanism (see
  [ACL2-pc::undo]) understands atomic macro commands to represent
  single interactive commands. Also see [ACL2-pc::comm] and see
  [ACL2-pc::commands] for a discussion of the display of interactive
  commands.

  Also see [toggle-pc-macro] for how to change a macro command to an
  atomic macro command, and vice versa.")
 (MACROS
  (ACL2)
  "Macros allow you to extend the syntax of ACL2.


Subtopics

  [Add-binop]
      Associate a function name with a macro name

  [Add-macro-alias]
      Associate a function name with a macro name

  [Add-macro-fn]
      Associate a function name with a macro name

  [Defabbrev]
      A convenient form of macro definition for simple expansions

  [Defmacro]
      Define a macro

  [Macro-aliases-table]
      A [table] used to associate function names with macro names

  [Macro-args]
      The formals list of a macro definition

  [Make-event]
      Evaluate (expand) a given form and then evaluate the result

  [Remove-binop]
      Remove the association of a function name with a macro name

  [Remove-macro-alias]
      Remove the association of a function name with a macro name

  [Remove-macro-fn]
      Remove the association of a function name with a macro name

  [Set-duplicate-keys-action]
      Control action for macro calls with duplicate keyword arguments

  [Trans]
      Print the macroexpansion of a form

  [Trans!]
      Print the macroexpansion of a form without single-threadedness
      concerns

  [Trans1]
      Print the one-step macroexpansion of a form

  [Untrans-table]
      Associates a function symbol with a macro for printing user-level
      terms

  [User-defined-functions-table]
      An advanced [table] used to replace certain system functions")
 (MAKE
  (DEFREC ACL2-BUILT-INS)
  "Constructor macro for [defrec] structures.

  The make macro is built into ACL2, and allows you to construct new
  instances of structures that have been introduced with [defrec].
  For instance:

    (make employee :name \"Jimmy\"
                   :salary 0
                   :position \"Unpaid Intern\")

  Creates a new employee structure with the given values for its name,
  salary, and position fields. See [defrec] for more information.")
 (MAKE-CHARACTER-LIST
  (CHARACTERS ACL2-BUILT-INS)
  "[coerce] to a list of characters

  Non-characters in the given list are [coerce]d to the character with
  code 0.

  Function: <make-character-list>

    (defun make-character-list (x)
           (declare (xargs :guard t))
           (cond ((atom x) nil)
                 ((characterp (car x))
                  (cons (car x)
                        (make-character-list (cdr x))))
                 (t (cons (code-char 0)
                          (make-character-list (cdr x))))))")
 (MAKE-EVENT
  (EVENTS MACROS)
  "Evaluate (expand) a given form and then evaluate the result

  Make-event is a utility for generating [events]. It provides a
  capability not offered by Lisp macros (see [defmacro]), as it
  allows access to the ACL2 [state] and logical [world]. In essence,
  the expression (make-event form) replaces itself with the result of
  evaluating form, say, ev, as though one had submitted ev instead of
  the make-event call. For example, (make-event (quote (defun f (x)
  x))) is equivalent to the event (defun f (x) x).

  We break this documentation into the following sections.

  Introduction
  Detailed Documentation
  Error Reporting
  Restriction to Event Contexts
  Examples Illustrating How to Access State
  Advanced Expansion Control

  We begin with an informal introduction, which focuses on examples and
  introduces the key notion of ``expansion phase''.

  Introduction

  Make-event is particularly useful for those who program using the
  ACL2 [state]; see [programming-with-state]. That is because the
  evaluation of form may read and even modify the ACL2 [state].

  Suppose for example that we want to define a constant *world-length*,
  that is the length of the current ACL2 [world]. A make-event form
  can accomplish this task, as follows.

    ACL2 !>(length (w state))
    98883
    ACL2 !>(make-event
            (list 'defconst '*world-length* (length (w state))))

    Summary
    Form:  ( DEFCONST *WORLD-LENGTH* ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

    Summary
    Form:  ( MAKE-EVENT (LIST ...))
    Rules: NIL
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
     *WORLD-LENGTH*
    ACL2 !>*world-length*
    98883
    ACL2 !>(length (w state))
    98890
    ACL2 !>

  How did this work? First, evaluation of the form (list 'defconst
  '*world-length* (length (w state))) returned the event form
  (defconst *world-length* 98883). Then that event form was
  automatically submitted to ACL2. Of course, that changed the ACL2
  logical [world], which is why the final value of (length (w state))
  is greater than its initial value.

  The example above illustrates how the evaluation of a make-event call
  takes place in two phases. The first phase evaluates the argument
  of the call, in this case (list 'defconst '*world-length* (length
  (w state))), to compute an event form, in this case (defconst
  *world-length* 98883). We call this evaluation the ``expansion''
  phase. Then the resulting event form is evaluated, which in this
  case defines the constant *world-length*.

  Now suppose we would like to introduce such a [defconst] form any
  time we like. It is common practice to define macros to automate
  such tasks. Now we might be tempted simply to make the following
  definition.

    ; WRONG!
    (defmacro define-world-length-constant (name state)
      (list 'defconst name (length (w state))))

  But ACL2 rejects such a definition, because a macro cannot take the
  ACL2 state as a parameter; instead, the formal parameter to this
  macro named \"STATE\" merely represents an ordinary object. You can
  try to experiment with other such direct methods to define such a
  macro, but they won't work.

  Instead, however, you can use the approach illustrated by the
  make-event example above to define the desired macro, as follows.

    (defmacro define-world-length-constant (name)
      `(make-event (list 'defconst ',name (length (w state)))))

  Here are example uses of this macro.

    ACL2 !>(define-world-length-constant *foo*)

    Summary
    Form:  ( DEFCONST *FOO* ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

    Summary
    Form:  ( MAKE-EVENT (LIST ...))
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     *FOO*
    ACL2 !>*foo*
    98891
    ACL2 !>:pe *foo*
              2:x(DEFINE-WORLD-LENGTH-CONSTANT *FOO*)

    >             (DEFCONST *FOO* 98891)
    ACL2 !>(length (w state))
    98897
    ACL2 !>(define-world-length-constant *bar*)

    Summary
    Form:  ( DEFCONST *BAR* ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

    Summary
    Form:  ( MAKE-EVENT (LIST ...))
    Rules: NIL
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
     *BAR*
    ACL2 !>*bar*
    98897
    ACL2 !>:pe *bar*
              3:x(DEFINE-WORLD-LENGTH-CONSTANT *BAR*)

    >             (DEFCONST *BAR* 98897)
    ACL2 !>(length (w state))
    98903
    ACL2 !>

  Finally, we note that the expansion phase can be used for computation
  that has side effects, generally by modifying state. Here is a
  modification of the above example that does not change the world at
  all, but instead saves the length of the world in a state global.

    (make-event
     (pprogn (f-put-global 'my-world-length (length (w state)) state)
             (value '(value-triple nil))))

  Notice that this time, the value returned by the expansion phase is
  not an event form, but rather, is an [error-triple] whose value
  component is an event form, namely, the event form (value-triple
  nil). Evaluation of that event form does not change the ACL2 world
  (see [value-triple]). Thus, the sole purpose of the make-event call
  above is to change the [state] by associating the length of the
  current logical world with the state global named 'my-world-length.
  After evaluating this form, (@ my-world-length) provides the length
  of the ACL2 world, as illustrated by the following transcript.

    ACL2 !>:pbt 0
              0:x(EXIT-BOOT-STRAP-MODE)
    ACL2 !>(length (w state))
    98883
    ACL2 !>(make-event
            (pprogn (f-put-global 'my-world-length (length (w state)) state)
                    (value '(value-triple nil))))

    Summary
    Form:  ( MAKE-EVENT (PPROGN ...))
    Rules: NIL
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
     NIL
    ACL2 !>(length (w state))
    98883
    ACL2 !>:pbt 0
              0:x(EXIT-BOOT-STRAP-MODE)
    ACL2 !>

  When make-event is invoked by a book, it is expanded during book
  certification but not, by default, when the book is included. So
  for the example (define-world-length-constant *foo*) given above,
  if that form is in a book, then the value of *foo* will be the
  length of the world at the time this form was invoked during book
  certification, regardless of world length at [include-book] time.
  (The expansion is recorded in the book's [certificate], and
  re-used.) To overcome this default, you can specify keyword value
  :CHECK-EXPANSION t. This will cause an error if the expansion is
  different, but it can be useful for side effects. For example, if
  you insert the following form in a book, then the length of the
  world will be printed when the form is encountered, whether during
  [certify-book] or during [include-book].

    (make-event
     (pprogn (fms \"Length of current world: ~x0~|\"
                  (list (cons #\\0 (length (w state))))
                  *standard-co* state nil)
             (value '(value-triple nil)))
     :check-expansion t)

  Detailed Documentation

    Examples:

    ; Trivial example: evaluate (quote (defun foo (x) x)) to obtain
    ; (defun foo (x) x), which is then evaluated.
    (make-event (quote (defun foo (x) x)))

    ; Evaluate (generate-form state) to obtain (mv nil val state), and
    ; then evaluate val.  (Generate-form is not specified here, but
    ; imagine for example that it explores the state and then generates
    ; some desired definition or theorem.)
    (make-event (generate-form state))

    ; As above, but make sure that if this form is in a book, then when
    ; we include the book, the evaluation of (generate-form state)
    ; should return the same value as it did when the book was
    ; certified.
    (make-event (generate-form state)
                :CHECK-EXPANSION t)

    ; As above (where the :CHECK-EXPANSION value can be included or
    ; not), where if there is an error during expansion, then the error
    ; message will explain that expansion was on behalf of the indicated
    ; object, typically specified as the first argument.
    (make-event (generate-form state)
                :ON-BEHALF-OF (generate-form state))

    General Form:
    (make-event form :CHECK-EXPANSION chk :ON-BEHALF-OF obj :EXPANSION? form)

  where chk is nil (the default), t, or the intended ``expansion
  result'' from the evaluation of form (as explained below); and if
  supplied, obj is an arbitrary ACL2 object, used only in reporting
  errors in expansion, i.e., in the evaluation of form. The
  :EXPANSION? keyword is discussed in the final section, on Advanced
  Expansion Control.

  We strongly recommend that you browse some .lisp files in the
  community books directory books/make-event/. You may even find it
  helpful, in order to understand make-event, to do so before
  continuing to read this documentation. You may also find it useful
  to browse community book books/misc/eval.lisp, which contains
  definitions of macros must-succeed and must-fail that are useful
  for testing and are used in many books in the books/make-event/
  directory, especially eval-tests.lisp. Another example,
  books/make-event/defrule.lisp, shows how to use macros whose calls
  expand to make-event forms, which in turn can generate [events].
  For more examples, see file books/make-event/Readme.lsp. Other than
  the examples, the explanations here should suffice for most users.
  If you want explanations of subtler details, see
  [make-event-details].

  Note that make-event may only be used at the ``top level'' or where
  an event is expected. See the section ``Restriction to Event
  Contexts'', below.

  Make-event is related to Lisp macroexpansion in the sense that its
  argument is evaluated to obtain an expansion result, which is
  evaluated again. Let us elaborate on each of these notions in turn:
  ``is evaluated,'' ``expansion result'', and ``evaluated again.''
  The final section, on Advanced Expansion Control, will generalize
  these processes in a way that we ignore for now.

      ``is evaluated'' --- The argument can be any expression, which is
      evaluated as would be any expression submitted to ACL2's top
      level loop. Thus, [state] and user-defined [stobj]s may appear
      in the form supplied to make-event. Henceforth, we will refer
      to this evaluation as ``expansion.'' Expansion is actually done
      in a way that restores ACL2's built-in [state] global
      variables, including the logical [world], to their
      pre-expansion values (with a few exceptions --- see
      [make-event-details] --- and where we note that changes to
      user-defined [state] global variables (see [assign]) are
      preserved). So, for example, events might be evaluated during
      expansion, but they will disappear from the logical [world]
      after expansion returns its result. Moreover, proofs are
      enabled by default at the start of expansion (see
      [ld-skip-proofsp]) if keyword :CHECK-EXPANSION is supplied and
      has a non-nil value.

      ``expansion result'' --- The above expansion may result in an
      ordinary (non-[state], non-[stobj]) value, which we call the
      ``expansion result.'' Or, expansion may result in a multiple
      value of the form (mv erp val state), or, more generally, (mv
      erp val state stobj-1 ... stobj-k) where each stobj-i is a
      [stobj]; then the expansion result is val unless erp is not
      nil, in which case there is no expansion result, and the
      original make-event evaluates to a soft error. In either case
      (single or multiple value), either val is an embedded event
      form (see [embedded-event-form]), or else the original
      make-event evaluates to a soft error, printed as described
      under ``Error Reporting'' below.
      (Technical remark: The expansion result described above may be
      modified for [include-book], [add-include-book-dir], and
      [add-include-book-dir!], replacing book names by full
      pathnames, using syntax (:system . relative-pathname) for
      [community-books] (i.e., system books); see [full-book-name],
      and for further details see comments in source function
      make-include-books-absolute. End of technical remark.)

      ``evaluated again'' --- the expansion result is evaluated in place of
      the original make-event.

  The expansion process can invoke subsidiary calls of make-event, and
  the expansion result can (perhaps after macroexpansion) be a call
  of make-event. It can be useful to track all these make-event
  calls. The [state] global variable make-event-debug may be set to a
  non-nil value, for example (assign make-event-debug t), in order to
  see a trace of the expansion process, where a level is displayed
  (as in ``3>'') to indicate the depth of subsidiary expansions.

  Expansion of a make-event call will yield an event that replaces the
  original make-event call. In particular, if you put a make-event
  form in a book, then in essence it is replaced by its expansion
  result, created during the proof pass of the [certify-book]
  process. We now elaborate on this idea of keeping the original
  expansion.

  A make-event call generates a ``make-event replacement'' that may be
  stored by the system. In the simplest case, this replacement is the
  expansion result. When a book is certified, these replacements are
  stored in a book's certificate (technically, in the
  :EXPANSION-ALIST field). Thus, although the book is not textually
  altered during certification, one may imagine a ``book expansion''
  corresponding to the original book, in which events are substituted
  by replacements that were generated during the proof phase of
  certification. A subsequent [include-book] will then include the
  book expansion corresponding to the indicated book. When a book is
  compiled during [certify-book], it is actually the corresponding
  book expansion, stored as a temporary file, that is compiled
  instead. That temporary file is deleted after compilation unless
  one first evaluates the form (assign keep-tmp-files t). Note
  however that all of the original forms must still be legal
  [events]; see [embedded-event-form]. So for example, if the first
  event in a book is (local (defmacro my-id (x) x)), and is followed
  by (my-id (make-event ...)), the final ``include-book'' pass of
  [certify-book] will fail because my-id is not defined when the
  my-id call is encountered.

  A make-event replacement might not be the expansion when either of
  the keyword arguments :CHECK-EXPANSION or :EXPANSION? is supplied.
  We deal with the latter in the final section, on Advanced Expansion
  Control. If :CHECK-EXPANSION t is supplied and the expansion is
  exp, then the replacement is obtained from the original make-event
  call, by substituting exp for t as the value of keyword
  :CHECK-EXPANSION. Such a make-event call --- during the second pass
  of an [encapsulate], or during event processing on behalf of
  [include-book] other than when including a book near the end of its
  certification process --- will do the expansion again and check
  that the expansion result is equal to the original expansion
  result, exp. In the unusual case that you know the expected
  expansion result, res, you can specify :CHECK-EXPANSION res in the
  first place, so that the check is also done during the initial
  evaluation of the make-event form. IMPORTANT BUT OBSCURE DETAIL:
  That expansion check is only done when processing events, not
  during a preliminary load of a book's compiled file. The following
  paragraph elaborates.

  (Here are details on the point made just above, for those who use the
  :CHECK-EXPANSION argument to perform side-effects on the [state].
  When you include a book, ACL2 generally loads a compiled file
  before processing the events in the book; see [book-compiled-file].
  While it is true that a non-nil :CHECK-EXPANSION argument causes
  [include-book] to perform expansion of the make-event form during
  event processing it does not perform expansion when the compiled
  file (or expansion file; again, see [book-compiled-file]) is
  loaded.)

  ACL2 performs the following space-saving optimization: when the
  expansion result is a [local] event, then the make-event
  replacement is (local (value-triple :ELIDED)).

  The notion of ``expansion'' and ``replacement'' extend to the case
  that a call of make-event is found in the course of macroexpansion.
  The following example illustrates this point.

    (encapsulate
     ()
     (defmacro my-mac ()
       '(make-event '(defun foo (x) x)))
     (my-mac))
    :pe :here

  The above call of [pe] shows that the form (my-mac) has a make-event
  expansion (and replacement) of (DEFUN FOO (X) X):

    (ENCAPSULATE NIL
                 (DEFMACRO MY-MAC
                           NIL
                           '(MAKE-EVENT '(DEFUN FOO (X) X)))
                 (RECORD-EXPANSION (MY-MAC)
                                   (DEFUN FOO (X) X)))

  Error Reporting

  Suppose that expansion produces a soft error as described above. That
  is, suppose that the argument of a make-event call evaluates to a
  multiple value (mv erp val state ...) where erp is not nil. If erp
  is a string, then that string is printed in the error message. If
  erp is a [cons] pair whose [car] is a string, then the error prints
  \"~@0\" with #\\0 bound to that cons pair; see [fmt]. Any other
  non-nil value of erp causes a generic error message to be printed.

  Restriction to Event Contexts

  A make-event call must occur either at the top level, or during
  make-event expansion, or as an argument of an event constructor. We
  explain in more detail below. This restriction is imposed to enable
  ACL2 to track expansions produced by make-event.

  The following examples illustrate this restriction.

    ; Legal:
    (progn (with-output
            :on summary
            (make-event '(defun foo (x) x))))

    ; Illegal:
    (mv-let (erp val state)
            (make-event '(defun foo (x) x))
            (mv erp val state))

  More precisely: a make-event call that is not itself evaluated during
  make-event expansion is subject to the following requirement. After
  macroexpansion has taken place, such a make-event call must be in
  an ``event context'', defined recursively as follows. (All but the
  first two cases below correspond to similar cases for constructing
  events; see [embedded-event-form].)

    * A form submitted at the top level, or more generally, supplied to a
      call of [ld], is in an event context.
    * A form occurring at the top level of a book is in an event context.
    * If ([local] x1) is in an event context, then so is x1.
    * If ([skip-proofs] x1) is in an event context, then so is x1.
    * If ([make-event] x ...) is in an event context and its expansion x1
      is an embedded event form, then x1 is in an event context.
    * If ([with-output] ... x1), ([with-prover-step-limit] ... x1 ...), or
      ([with-prover-time-limit] ... x1) is in an event context, then
      so is x1.
    * For any call of [progn] or [progn!], each of its arguments is in an
      event context.
    * For any call of [encapsulate], each of its arguments except the first
      (the signature list) is in an event context.
    * If (RECORD-EXPANSION x1 x2) is in an event context, then x1 and x2
      are in event contexts. Note: record-expansion is intended for
      use only by the implementation, which imposes the additional
      restriction that x1 and its subsidiary make-event calls (if
      any) must specify a :CHECK-EXPANSION argument that is a
      [consp].

  Low-level remark, for system implementors. There is the one exception
  to the above restriction: a single [state-global-let*] form
  immediately under a progn! call. For example:

    (progn! (state-global-let* <bindings> (make-event ...)))

  However, the following form may be preferable (see [progn!]):

    (progn! :STATE-GLOBAL-BINDINGS <bindings> (make-event ...))

  Also see [remove-untouchable] for an interesting use of this
  exception.

  Examples Illustrating How to Access State

  You can modify the ACL2 [state] by doing your state-changing
  computation during the expansion phase, before expansion returns
  the event that is submitted. Here are some examples.

  First consider the following. Notice that expansion modifies state
  global my-global during make-event expansion, and then expansion
  returns a [defun] event to be evaluated.

    (make-event
      (er-progn (assign my-global (length (w state)))
                (value '(defun foo (x) (cons x x)))))

  Then we get:

    ACL2 !>(@ my-global)
    72271
    ACL2 !>:pe foo
     L        1:x(MAKE-EVENT (ER-PROGN # #))

    >L            (DEFUN FOO (X) (CONS X X))
    ACL2 !>

  Here's a slightly fancier example, where the computation affects the
  [defun]. In a new session, execute:

    (make-event
      (er-progn (assign my-global (length (w state)))
                (value `(defun foo (x) (cons x ,(@ my-global))))))

  Then:

    ACL2 !>(@ my-global)
    72271
    ACL2 !>:pe foo
     L        1:x(MAKE-EVENT (ER-PROGN # #))

    >L            (DEFUN FOO (X) (CONS X 72271))
    ACL2 !>

  Note that ACL2 [table] [events] may avoid the need to use [state]
  globals. For example, instead of the example above, consider this
  example in a new session.

    (make-event
      (let ((world-len (length (w state))))
        `(progn (table my-table :STORED-WORLD-LENGTH ,world-len)
                (defun foo (x) (cons x ,world-len)))))

  Then:

    ACL2 !>(table my-table)
     ((:STORED-WORLD-LENGTH . 72271))
    ACL2 !>:pe foo
              1:x(MAKE-EVENT (LET # #))

    >L            (DEFUN FOO (X) (CONS X 72271))
    ACL2 !>

  By the way, most built-in [state] globals revert after expansion. But
  your own global (like my-global above) can be set during expansion,
  and the new value will persist.

  Advanced Expansion Control

  We conclude this [documentation] section by discussing three kinds of
  additional control over make-event expansion. These are all
  illustrated in community book
  books/make-event/make-event-keywords-or-exp.lisp. The discussion
  below is split into the following three parts.

  (1) The value produced by expansion may have the form (:DO-PROOFS
  exp), which specifies exp as the expansion result, to be evaluated
  without skipping proofs even when including a book.

  (2) The value produced by expansion may have the form (:OR exp-1 ...
  exp-k), which specifies that the first form exp-i to evaluate
  without error is the expansion result.

  (3) The keyword argument :EXPANSION? can serve to eliminate the
  storing of make-event replacements, as described above for the
  ``book expansion'' of a book.

  We now elaborate on each of these.

  (1) :DO-PROOFS ``call'' produced by expansion.

  We have discussed the expansion result produced by the expansion
  phase of evaluating a make-event call. However, if the expansion
  phase produces an expression of the form (:DO-PROOFS exp), then the
  expansion result is actually exp. The :DO-PROOFS wrapper indicates
  that even if proofs are currently being skipped (see
  [ld-skip-proofsp]), then evaluation of exp should take place with
  proofs not skipped. For example, proofs will be performed when
  evaluating the make-event expansion, namely the indicated defthm
  event, in the following example.

    (set-ld-skip-proofsp t state)
    (make-event '(:DO-PROOFS
                  (defthm app-assoc (equal
                                     (append (append x y) z)
                                     (append x y z)))))

  Note that such use of :DO-PROOFS causes proofs to be performed when
  evaluating the expansion while including an uncertified book. But
  when including a certified book, then unless :CHECK-EXPANSION is
  supplied a non-nil value, the make-event replacement will just be
  the expansion, which does not include the :DO-PROOFS wrapper and
  hence will be evaluated with proofs skipped.

  (2) :OR ``call'' produced by expansion.

  There may be times where you want to try different expansions. For
  example, the community book books/make-event/proof-by-arith.lisp
  attempts to admit a given event, which we'll denote EV, by trying
  events of the following form as BOOK varies over different
  community books.

    (encapsulate
     ()
     (local (include-book BOOK :DIR :SYSTEM))
     EV)

  A naive implementation of this macro would evaluate all such
  [encapsulate] events until one succeeds, and then return that
  successful event as the expansion. Then that event would need to be
  evaluated again! With some hacking one could avoid that
  re-evaluation by using [skip-proofs], but that won't work if you
  are trying to create a certified book without skipped proofs.
  Instead, the implementation creates an expansion of the form (:OR
  ev-1 ev-2 ... ev-k), where the list (ev-1 ev-2 ... ev-k) enumerates
  the generated encapsulate events. In general, for this
  ``disjunctive case'' of a result from expansion, each ev-i is
  evaluated in sequence, and the first that succeeds without error is
  considered to be the expansion result --- and a repeat evaluation
  is avoided. If evaluation of each ev-i results in an error, then so
  does the make-event call.

  This special use of :OR in a value produced by expansion is only
  supported at the top level. That is, the result can be (:OR ev-1
  ev-2 ... ev-k) but then each ev-i must be a legal expansion result,
  without such further use of :OR --- except, ev-i may be (:DO-PROOFS
  ev-i'), where ev-i' then would serve as the expansion rather than
  ev-i.

  (3) The :EXPANSION? keyword argument.

  If keyword argument :EXPANSION? has a nonnil value, then the
  :CHECK-EXPANSION keyword must be omitted or have value nil or t,
  hence not a cons pair.

  The idea of the :EXPANSION? keyword is to give you a way to avoid
  storing expansion results in a book's [certificate]. Roughly
  speaking, when the expansion result matches the value of
  :EXPANSION?, then no expansion result is stored for the event by
  book certification; then when the book is later included, the value
  of :EXPANSION? is used as the expansion, thus bypassing the
  expansion phase. One could say that the event is its own make-event
  replacement, but it is more accurate to say that there is no
  make-event replacement at all, since nothing is stored in the
  certificate for this event. Below, we elaborate on make-event
  replacements when :EXPANSION is used and also discuss other
  properties of this keyword.

  We modify the notion of ``expansion result'' for make-event forms to
  comprehend the use of the :EXPANSION? keyword. For that purpose,
  let's consider a call of make-event to be ``reducible'' if it has
  an :EXPANSION? keyword with non-nil value, exp, and its
  :CHECK-EXPANSION keyword is missing or has value nil, in which case
  the ``reduction'' of this make-event call is defined to be exp. The
  expansion result as originally defined is modified by the following
  ``recursive reduction'' process: recur through the original
  expansion, passing through calls of [local], [skip-proofs],
  [with-output], [with-prover-step-limit], and
  [with-prover-time-limit], and replacing (recursively) any reducible
  call of make-event by its reduction. Furthermore, we refer to two
  forms as ``reduction equivalent'' if their recursive reductions are
  equal. Note that the recursive reduction process does not pass
  through [progn] or [encapsulate], but that process is applied to
  the computation of expansions for their subsidiary [make-event]
  calls.

  To explain further the effect of :EXPANSION? exp, we split into the
  following two cases.

  Case 1: Evaluation is not taking place when including a book or
  evaluating the second pass of an [encapsulate] event; more
  precisely, the value of (ld-skip-proofsp state) is not the symbol
  INCLUDE-BOOK. There are two subcases.

    * Case 1a: The expansion result is not reduction-equivalent to exp.
      Then the make-event call is processed as though the :EXPANSION?
      keyword had been omitted.
    * Case 2a: The expansion result is reduction-equivalent to exp. Then
      there is no make-event replacement for this call of make-event;
      no replacement will be put into the [certificate] file for a
      book containing this make-event call. When that book is
      subsequently included, the original form will be evaluated in
      the manner described in the next case.

  Case 2: Evaluation is taking place when including a book or
  evaluating the second pass of an [encapsulate] event; more
  precisely, the value of (ld-skip-proofsp state) is the symbol
  INCLUDE-BOOK. Then the expansion is exp. The expansion phase is
  skipped unless :CHECK-EXPANSION is t.

  The :EXPANSION? keyword can be particularly useful in concert with
  the disjunctive (``:OR'') case (2) discussed above. Suppose that
  expansion produces a value as discussed in (2) above, (:OR exp-1
  ... exp-k). If one of these expressions exp-i is more likely than
  the others to be the expansion, then you may wish to specify
  :EXPANSION? exp-i, as this will avoid storing a make-event
  replacement in that common case. This could be useful if the
  expressions are large, to avoid enlarging the [certificate] file
  for a book containing the make-event call.

  It is legal to specify both :EXPANSION? exp and :CHECK-EXPANSION t.
  When either (ld-skip-proofsp state) is the symbol INCLUDE-BOOK, or
  evaluation is taking place in raw Lisp, then this combination is
  treated the same as if :EXPANSION? is omitted and the value of
  :CHECK-EXPANSION is exp. Otherwise, this combination is treated the
  same as :CHECK-EXPANSION t, modified to accommodate the effect of
  :EXPANSION? as discussed above: if the expansion is indeed the
  value of :EXPANSION?, then no make-event replacement is generated.


Subtopics

  [Make-event-details]
      Details on [make-event] expansion")
 (MAKE-EVENT-DETAILS
  (MAKE-EVENT)
  "Details on [make-event] expansion

  The normal user of make-event can probably ignore this section, but
  we include it for completeness. We assume that the reader has read
  and understood the basic documentation for make-event (see
  [make-event]), but we begin below with a summary of expansion.

  Introduction

  Here is a summary of how we handle expansion involving make-event
  forms.

  (make-event form :check-expansion nil)

  This shows the :check-expansion default of nil, and is typical user
  input. We compute the expansion exp of form, which is the expansion
  of the original make-event expression and is evaluated in place of
  that expression.

  (make-event form :check-expansion t)

  The user presumably wants it checked that the expansion doesn't
  change in the future, in particular during [include-book]. If the
  expansion of form is exp, then we will evaluate exp to obtain the
  value as before, but this time we record that the expansion of the
  original make-event expression is (make-event form :check-expansion
  exp) rather than simply exp.

  (make-event form :check-expansion exp) ; exp a cons

  This is generated for the case that :check-expansion is t, as
  explained above. Evaluation is handled as described in that above
  case, except here we check that the expansion result is the given
  exp. (Actually, the user is also allowed supply such a form.) The
  original make-event expression does not undergo any expansion
  (intuitively, it expands to itself).

  Now let us take a look at how we expand [progn] forms ([encapsulate]
  is handled similarly).

  (progn ... (make-event form :check-expansion nil) ...)

  The expansion is obtained by replacing the make-event form as
  follows. Let exp be the expansion of form. Then replace the above
  make-event form, which we denote as F, by (record-expansion F exp).
  Here, record-expansion is a macro that returns its second argument.

  (progn ... (make-event form :check-expansion t) ...)

  The expansion is of the form (record-expansion F exp) as in the nil
  case above, except that this time exp is (make-event form
  :check-expansion exp'), where exp' is the expansion of form.

  (progn ... (make-event form :check-expansion exp) ...) ; exp a cons

  No expansion takes place unless expansion takes place for at least
  one of the other subforms of the progn, in which case each such
  form F is replaced by (record-expansion F exp) where exp is the
  expansion of F.

  Detailed semantics

  In our explanation of the semantics of make-event, we assume
  familiarity with the notion of ``embedded event form'' (see
  [embedded-event-form]).

  Let's say that the ``actual embedded event form'' corresponding to a
  given form is the underlying call of an ACL2 event: that is,
  [local]s are dropped when ld-skip-proofsp is 'include-book, and
  macros are expanded away, thus leaving us with a [progn], a
  [make-event], or an event form (possibly [encapsulate]), any of
  which might have surrounding [local], [skip-proofs], or
  [with-output] calls.

  Thus, such an actual embedded event form can be viewed as having the
  form (rebuild-expansion wrappers base-form) where base-form is a
  progn, a make-event, or an event form (possibly encapsulate), and
  wrappers are (as in ACL2 source function destructure-expansion) the
  result of successively removing the event form from the result of
  macroexpansion, leaving a sequence of (local), (skip-proofs), and
  (with-output ...) forms. In this case we say that the form
  ``destructures into'' the indicated wrappers and base-form, and
  that it can be ``rebuilt from'' those wrappers and base-form.

  Elsewhere we define the notion of the ``expansion result'' from an
  evaluation (see [make-event]), and we mention that when expansion
  concludes, the ACL2 logical [world] and most of the state are
  restored to their pre-expansion values. Specifically, after
  evaluation of the argument of make-event (even if it is aborted),
  the ACL2 logical world is restored to its pre-evaluation value, as
  are all state global variables in the list
  *protected-system-state-globals*. Thus, assignments to user-defined
  state globals (see [assign]) do persist after expansion, since they
  are not in that list.

  We recursively define the combination of evaluation and expansion of
  an embedded event form, as follows. We also simultaneously define
  the notion of ``expansion takes place,'' which is assumed to
  propagate upward (in a sense that will be obvious), such that if no
  expansion takes place, then the expansion of the given form is
  considered to be itself. It is useful to keep in mind a goal that
  we will consider later: Every make-event subterm of an expansion
  result has a :check-expansion field that is a [consp], where for
  this purpose make-event is viewed as a macro that returns its
  :check-expansion field. (Implementation note: The latest expansion
  of a [make-event], [progn], [progn!], or [encapsulate] is stored in
  state global 'last-make-event-expansion, except that if no
  expansion has taken place for that form then
  'last-make-event-expansion has value nil.)

      If the given form is not an embedded event form, then simply cause a
      soft error, (mv erp val state) where erp is not nil. Otherwise:

      If the evaluation of the given form does not take place (presumably
      because [local] events are being skipped), then no expansion
      takes place. Otherwise:

      Let x be the actual embedded event form corresponding to the given
      form, which destructures into wrappers W and base-form B. Then
      the original form is evaluated by evaluating x, and its
      expansion is as follows.

      If B is (make-event form :check-expansion val), then expansion takes
      place if and only if val is not a consp and no error occurs, as
      now described. Let R be the expansion result from protected
      evaluation of form, if there is no error. R must be an embedded
      event form, or it is an error. Then evaluate/expand R, where if
      val is not nil then state global 'ld-skip-proofsp is
      initialized to nil. (This initialization is important so that
      subsequent expansions are checked in a corresponding
      environment, i.e., where proofs are turned on in both the
      original and subsquent environments.) It is an error if this
      evaluation causes an error. Otherwise, the evaluation yields a
      value, which is the result of evaluation of the original
      make-event expression, as well as an expansion, E_R. Let E be
      rebuilt from W and E_R. The expansion of the original form is E
      if val is nil, and otherwise is the result of replacing the
      original form's :check-expansion field with E, with the added
      requirement that if val is not t (thus, a consp) then E must
      equal val or else we cause an error.

      If B is either (progn form1 form2 ...) or (encapsulate sigs form1
      form2 ...), then after evaluating B, the expansion of the
      original form is the result of rebuilding from B, with wrappers
      W, after replacing each formi in B for which expansion takes
      place by (record-expansion formi formi'), where formi' is the
      expansion of formi. Note that these expansions are determined
      as the formi are evaluated in sequence (where in the case of
      encapsulate, this determination occurs only during the first
      pass). Except, if no expansion takes place for any formi, then
      the expansion of the original form is itself.

      Otherwise, the expansion of the original form is itself.

  Similarly to the [progn] and [encapsulate] cases above, book
  certification causes a book to be replaced by its so-called ``book
  expansion.'' There, each event ev for which expansion took place
  during the proof pass of certification --- say, producing ev' ---
  is replaced by (record-expansion ev ev').

  Implementation Note. The book expansion is actually implemented by
  way of the :expansion-alist field of its [certificate], which
  associates 0-based positions of top-level forms in the book (not
  including the initial [in-package] form) with their expansions.
  Thus, the book's source file is not overwritten; rather, the
  certificate's expansion-alist is applied when the book is included
  or compiled. End of Implementation Note.

  It is straightforward by computational induction to see that for any
  expansion of an embedded event form, every make-event sub-event has
  a [consp] :check-expansion field. Here, by ``sub-event'' we mean to
  expand macros; and we also mean to traverse progn and encapsulate
  forms as well as :check-expansion fields of make-event forms. Thus,
  we will only see make-event forms with consp :check-expansion
  fields in the course of include-book forms, the second pass of
  encapsulate forms, and raw Lisp. This fact guarantees that an event
  form will always be treated as its original expansion.

  Notes on ttags

  See [defttag] for documentation of the notion of ``trust tag''
  (``ttag''). We note here that even if an event (defttag tag-name)
  for non-nil tag-name is admitted only during the expansion phase of
  a [make-event] form, then such expansion will nevertheless still
  cause tag-name to be recorded in the logical [world] (assuming that
  the make-event form is admitted). So in order to certify such a
  book, a suitable :ttags argument must be supplied; see
  [certify-book].

  ACL2 does provide a way to avoid the need for :ttags arguments in
  such cases. The idea is to certify a book twice, where the results
  of make-event expansion are saved from the first call of
  [certify-book] and provided to the second call. See
  [set-write-ACL2x].

  Finally, we discuss a very unusual case where certification does not
  involve trust tags but a subsequent [include-book] does involve
  trust tags: a make-event call specifying :check-expansion t, whose
  expansion generates a [defttag] event during [include-book] but not
  [certify-book]. Consider the following book.

    (in-package \"ACL2\")
    (make-event
     (er-progn
      (if (@ skip-notify-on-defttag) ; non-nil when including a certified book
          (pprogn
           (fms \"Value of (@ skip-notify-on-defttag): ~x0~|\"
                (list (cons #0 (@ skip-notify-on-defttag)))
                *standard-co* state nil)
           (encapsulate
            ()
            (defttag :foo)
            (value-triple \"Imagine something bad here!\")))
        (value nil))
      (value '(value-triple :some-value)))
     :check-expansion t)

  This book certifies successfully without the need for a :ttags
  argument for [certify-book]. Indeed, the above book's [certificate]
  does not specify :foo as a trust tag associated with the book,
  because no defttag event was executed during book certification.
  Unfortunately, if we try to include this book without specifying a
  value of :ttags that allows :foo, book inclusion will cause
  executing of the above [defttag]. If that inclusion happens in the
  context of certifying some superior book and the appropriate :ttags
  arguments have not been provided, that certification will fail.")
 (MAKE-FAST-ALIST
  (FAST-ALISTS ACL2-BUILT-INS)
  "(make-fast-alist alist) creates a fast-alist from the input alist,
  returning alist itself or, in some cases, a new object equal to it.

  Note: it is often better to use with-fast-alist; see
  [with-fast-alist].

  Logically, make-fast-alist is the identity function.

  Function: <make-fast-alist>

    (defun make-fast-alist (alist)
           (declare (xargs :guard t))
           alist)

  Under the hood, we construct and return an object that is equal to
  alist and which is a fast alist. If alist is already a fast alist,
  almost no work is required: we simply return it unchanged.

  When alist is not fast, we must minimally construct a hash table for
  its bindings. It is often possible to bind this new hash table to
  alist itself. But in certain cases when the alist keys are not
  [normed], a new alist must be constructed, also, and so we may
  return an equal but not eq alist. (In these cases, we still try to
  avoid at least some consing by reusing the \"longest normed tail\" of
  the alist.)")
 (MAKE-LIST
  (LISTS ACL2-BUILT-INS)
  "Make a list of a given size

  For a nonnegative integer size, (Make-list size) is a list of
  elements of length size, each of which is initialized to the
  :initial-element (which defaults to nil).

  Make-list is a macro in ACL2, defined in terms of a tail recursive
  function make-list-ac whose [guard] requires size to be a
  nonnegative integer. Make-list is a Common Lisp function. See any
  Common Lisp documentation for more information.

  Macro: <make-list>

    (defmacro make-list (size &key initial-element)
              (cons 'make-list-ac
                    (cons size
                          (cons initial-element (cons 'nil 'nil)))))

  Function: <make-list-ac>

    (defun make-list-ac (n val ac)
           (declare (xargs :guard (and (integerp n) (>= n 0))))
           (cond ((zp n) ac)
                 (t (make-list-ac (1- n)
                                  val (cons val ac)))))")
 (MAKE-ORD
  (ORDINALS ACL2-BUILT-INS)
  "A constructor for ordinals.

  Make-ord is the ordinal constructor. Its use is recommended instead
  of using [cons] to make ordinals. For a discussion of ordinals, see
  [ordinals].

  For any ordinal, alpha < epsilon-0, there exist natural numbers p and
  n, positive integers x1, x2, ..., xn and ordinals a1 > a2 > ... >
  an > 0 such that alpha > a1 and alpha = w^(a1)x1 + w^(a2)x2 + ... +
  w^(an)xn + p. We call a1 the ``first exponent'', x1 the ``first
  coefficient'', and the remainder (w^(a2)x2 + ... + w^(an)xn + p)
  the ``rest'' of alpha.

  (Make-ord fe fco rst) corresponds to the ordinal (w^fe)fco + rst.
  Thus the first infinite ordinal, w (omega), is constructed by

    (make-ord 1 1 0)

  and, for example, the ordinal (w^2)5 + w2 + 7 is constructed by:

    (make-ord 2 5 (make-ord 1 2 7)) .

  The reason make-ord is used rather than [cons] is that it allows us
  to reason more abstractly about the ordinals, without having to
  worry about the underlying representation.

  Function: <make-ord>

    (defun make-ord (fe fco rst)
           (declare (xargs :guard (and (posp fco) (o-p fe) (o-p rst))))
           (cons (cons fe fco) rst))")
 (MAKE-TAU-INTERVAL
  (TAU-SYSTEM ACL2-BUILT-INS)
  "Make a tau interval

    General Form:
    (make-tau-interval doc lo-rel lo hi-rel hi)

  An interval is a structure of the form: (dom (lo-rel . lo) . (hi-rel
  . hi)). Every tau contains an interval used to represent the
  domain, the upper, and the lower bounds of the objects recognized
  by the tau.

  make-tau-interval constructs well-formed intervals only if its five
  arguments satisfy certain restrictions given below. When these
  restrictions are violated make-tau-interval can construct objects
  that are not intervals! make-tau-interval does not attempt to
  coerce or adjust its arguments to make well-formed intervals.

  For examples of intervals (and non-intervals!) constructed by
  make-tau-interval see [tau-intervalp]. For examples of what objects
  are contained in certain intervals, see [in-tau-intervalp].

  The components of an interval are as follows:

  dom (``domain'') -- must be one of four symbols: INTEGERP, RATIONALP,
  ACL2-NUMBERP, or NIL denoting no restriction on the domain.

  The two ``relations,'' lo-rel and hi-rel are Booleans, where t
  denotes less-than inequality ([<]) and nil represents
  less-than-or-equal inequality ([<=]). Think of t meaning ``strong''
  and nil meaning ``weak'' inequality.

  Lo and hi must be either nil or explicit rational numbers. If lo is
  nil it denotes negative infinity; if hi is nil it denotes positive
  infinity. Lo must be no greater than hi. Note: Even though
  ACL2-NUMBERP intervals may contain complex rationals, the lo and hi
  bounds must be rational. This is an arbitrary decision made by the
  implementors to simplify coding.

  Finally, if the dom is INTEGERP, then both relations should be weak
  and lo and hi must be integers when they are non-nil.

  For x to be ``in'' an interval it must be of the type described by
  the domain predicate dom, lo must be smaller than x in the strong
  or weak sense denoted by lo-rel, and x must be smaller than hi in
  the strong or weak sense denoted by hi-rel.

  The components of an interval may be accessed with the functions
  [tau-interval-dom], [tau-interval-lo-rel], [tau-interval-lo],
  [tau-interval-hi-rel], and [tau-interval-hi].")
 (MAKE-WORMHOLE-STATUS
  (WORMHOLE)
  "Creates a wormhole status object from given status, entry code, and
  data

    General Form:  (make-wormhole-status whs code data)

  See [wormhole]. Whs should be a well-formed wormhole status, code
  should be :ENTER or :SKIP, and data is arbitrary. This function
  returns a new status with the specified entry code and data,
  reusing whs if it is appropriate.")
 (MANAGING-ACL2-PACKAGES
  (PACKAGES)
  "User-contributed documentation on packages

  Jared Davis has contributed documentation on {managing ACL2 packages
  |
  http://www.cs.utexas.edu/users/moore/acl2/contrib/managing-acl2-packages.html}.

  Also see [working-with-packages].")
 (MAX
  (NUMBERS ACL2-BUILT-INS)
  "The larger of two numbers

  (Max x y) is the larger of the numbers x and y.

  The [guard] for max requires its arguments to be rational ([real], in
  ACL2(r)) numbers.

  Max is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Function: <max>

    (defun max (x y)
           (declare (xargs :guard (and (real/rationalp x)
                                       (real/rationalp y))))
           (if (> x y) x y))")
 (MAXIMUM-LENGTH
  (ARRAYS ACL2-BUILT-INS)
  "Return the :maximum-length from the [header] of an array

    Example Form:
    (maximum-length 'delta1 a)

    General Form:
    (maximum-length name alist)

  where name is an arbitrary object and alist is a 1- or 2-dimensional
  array. This function returns the contents of the :maximum-length
  field of the [header] of alist. Whenever an [aset1] or [aset2]
  would cause the length of the alist to exceed its maximum length, a
  [compress1] or [compress2] is done automatically to remove
  irrelevant pairs from the array. Maximum-length operates in
  virtually constant time if alist is the semantic value of name. See
  [arrays].

  Function: <maximum-length>

    (defun
         maximum-length (name l)
         (declare (xargs :guard (or (array1p name l) (array2p name l))))
         (cadr (assoc-keyword :maximum-length (cdr (header name l)))))")
 (MBE
  (GUARD PROGRAMMING ACL2-BUILT-INS)
  "Attach code for execution

  The macro mbe (``must be equal'') can be used in function definitions
  in order to cause evaluation to use alternate code to that provided
  for the logic. An example is given below. However, the use of mbe
  can lead to non-terminating computations. See [defexec], perhaps
  after reading the present documentation, for a way to prove
  termination.

  In the ACL2 logic, (mbe :exec exec-code :logic logic-code) equals
  logic-code; the value of exec-code is ignored. However, in raw Lisp
  it is the other way around: this form macroexpands simply to
  exec-code. ACL2's [guard] verification mechanism ensures that the
  raw Lisp code is only evaluated when appropriate, since the guard
  proof obligations generated for (the macroexpansion of) this call
  of mbe include not only the guard proof obligations from exec-code,
  but also, under suitable contextual assumptions, the term (equal
  exec-code logic-code). See [verify-guards] (in particular, for
  discussion of the contextual assumptions from the :guard and
  [if]-tests) and, for general discussion of guards, see [guard].

  Normally, during evaluation of an mbe call, only the :logic code is
  evaluated unless the call is in the body of a [guard]-verified
  function or under a call of a :[program] mode function; in those
  cases only the :exec code is evaluated. This implies that equality
  of :exec and :logic code is never checked at runtime. (Rather, such
  equality is proved when verifying guards.) We qualified with
  ``normally'' above because there are two exceptions. During a
  ``safe mode'', which is used in macroexpansion and evaluation of
  [defconst] forms, the :logic and :exec code are both evaluated and
  their equality is checked. Second, when guard-checking is set to
  :all or :none, then for any mbe call in the body of a :logic mode
  definition, only the :logic code will be evaluated.

  Note that the :exec and the :logic code in an mbe call must have the
  same output signature. For example, one cannot return ([mv] * *)
  while the other returns just a single value.

  Also see [mbt], which stands for ``must be true.'' You may find it
  more natural to use [mbt] for certain applications, as described in
  its [documentation].

  Here is an example of the use of mbe. Suppose that you want to define
  factorial in the usual recursive manner, as follows.

    (defun fact (n)
      (if (zp n)
          1
        (* n (fact (1- n)))))

  But perhaps you want to be able to execute calls of fact on large
  arguments that cause stack overflows, perhaps during proofs. (This
  isn't a particularly realistic example, but it should serve.) So,
  instead you can define this tail-recursive version of factorial:

    (defun fact1 (n acc)
      (declare (xargs :guard (and (integerp n) (>= n 0) (integerp acc))))
      (if (zp n)
          acc
        (fact1 (1- n) (* n acc))))

  We are now ready to define fact using mbe. Our intention is that
  logically, fact is as shown in the first definition above, but that
  fact should be executed by calling fact1. Notice that we defer
  [guard] verification, since we are not ready to prove the
  correspondence between fact1 and fact.

    (defun fact (n)
      (declare (xargs :guard (and (integerp n) (>= n 0))
                      :verify-guards nil))
      (mbe :exec  (fact1 n 1)
           :logic (if (zp n)
                      1
                    (* n (fact (1- n))))))

  Next, we prove the necessary correspondence lemmas. Notice the
  inclusion of a community book to help with the arithmetic
  reasoning.

    (include-book \"books/arithmetic/top-with-meta\")

    (defthm fact1-fact
      (implies (integerp acc)
               (equal (fact1 n acc)
                      (* acc (fact n)))))

  We may now do guard verification for fact, which will allow the
  execution of the raw Lisp fact function, where the above mbe call
  expands simply to (fact1 n 1).

    (verify-guards fact)

  Now that guards have been verified, a trace of function calls
  illustrates that the evaluation of calls of fact is passed to
  evaluation of calls of fact1. The outermost call below is of the
  logical function stored for the definition of fact; all the others
  are of actual raw Common Lisp functions.

    ACL2 !>(trace$ fact fact1)
    NIL
    ACL2 !>(fact 3)
    1> (ACL2_*1*_ACL2::FACT 3)
      2> (FACT 3)
        3> (FACT1 3 1)
          4> (FACT1 2 3)
            5> (FACT1 1 6)
              6> (FACT1 0 6)
              <6 (FACT1 6)
            <5 (FACT1 6)
          <4 (FACT1 6)
        <3 (FACT1 6)
      <2 (FACT 6)
    <1 (ACL2_*1*_ACL2::FACT 6)
    6
    ACL2 !>

  You may occasionally get warnings when you compile functions defined
  using mbe. (For commands that invoke the compiler, see
  [compilation].) These can be inhibited by using an ignorable
  [declare] form. Here is a simple but illustrative example. Note
  that the declarations can optionally be separated into two
  [declare] forms.

    (defun foo (x y)
      (declare (ignorable x)
               (xargs :guard (equal x y)))
      (mbe :logic x :exec y))

  Finally, we observe that when the body of a function contains a term
  of the form (mbe :exec exec-code :logic logic-code), the user would
  be unlikely to notice any difference in the theorem prover if this
  term were replaced by logic-code. ACL2 takes various steps to
  ensure this. For example, the proof obligations generated for
  admitting a function treat the above mbe term simply as logic-code.
  Function expansion, :use [hints], :[definition] rules, generation
  of [constraint]s for functional instantiation, and creation of
  rules of class :[rewrite] and :[forward-chaining] also treat mbe
  calls as their :logic code.


Subtopics

  [Defexec]
      Attach a terminating executable function to a definition

  [Mbe1]
      Attach code for execution

  [Mbt]
      Introduce a test into the logic that, however, evaluates to t

  [Mbt*]
      Introduce a guard proof obligation

  [Must-be-equal]
      Attach code for execution")
 (MBE1
  (MBE ACL2-BUILT-INS)
  "Attach code for execution

  The form (mbe1 exec logic) is equivalent to the forms (mbe :logic
  logic :exec exec) and (must-be-equal logic exec). See [mbe].")
 (MBT
  (MBE ACL2-BUILT-INS)
  "Introduce a test into the logic that, however, evaluates to t

  The macro mbt (``must be true'') can be used in order to add code in
  order to admit function definitions in :[logic] mode, without
  paying a cost in execution efficiency. Examples below illustrate
  its intended use.

  Semantically, (mbt x) equals x. However, in raw Lisp (mbt x) ignores
  x entirely, and macroexpands to t. ACL2's [guard] verification
  mechanism ensures that the raw Lisp code is only evaluated when
  appropriate, since a guard proof obligation (equal x t) is
  generated. See [verify-guards] and, for general discussion of
  guards, see [guard].

  Also see [mbe], which stands for ``must be equal.'' Although mbt is
  more natural in many cases, mbe has more general applicability. In
  fact, (mbt x) is essentially defined to be (mbe :logic x :exec t).
  Another related utility is [mbt*], which generates the same proof
  obligation as mbt but logically, is simply t.

  We can illustrate the use of mbt on the following generic example,
  where <g>, <test>, <rec-x>, and <base> are intended to be terms
  involving only the variable x.

    (defun foo (x)
      (declare (xargs :guard <g>))
      (if <test>
          (foo <rec-x>)
        <base>))

  In order to admit this function, ACL2 needs to discharge the proof
  obligation that <rec-x> is smaller than x, namely:

    (implies <test>
             (o< (acl2-count <rec-x>)
                  (acl2-count x)))

  But suppose we need to know that <g> is true in order to prove this.
  Since <g> is only the [guard], it is not part of the logical
  definition of foo. A solution is to add the guard to the definition
  of foo, as follows.

    (defun foo (x)
      (declare (xargs :guard <g>))
      (if (mbt <g>)
          (if <test>
              (foo <rec-x>)
            <base>)
        nil))

  If we do this using <g> rather than (mbt <g>), then evaluation of
  every recursive call of foo will cause the evaluation of (the
  appropriate instance of) <g>. But since (mbt <g>) expands to t in
  raw Lisp, then once we verify the guards of foo, the evaluations of
  <g> will be avoided (except at the top level, when we check the
  guard before allowing evaluation to take place in Common Lisp).

  Other times, the guard isn't the issue, but rather, the problem is
  that a recursive call has an argument that itself is a recursive
  call. For example, suppose that <rec-x> is of the form (foo
  <expr>). There is no way we can hope to discharge the termination
  proof obligation shown above. A standard solution is to add some
  version of this test:

    (mbt (o< (acl2-count <rec-x>) (acl2-count x)))

  Here is a specific example based on one sent by Vernon Austel.

    (defun recurX2 (n)
      (declare (xargs :guard (and (integerp n) (<= 0 n))
                      :verify-guards nil))
      (cond ((zp n) 0)
            (t (let ((call (recurX2 (1- n))))
                 (if (mbt (< (acl2-count call) n))
                     (recurX2 call)
                   1 ;; this branch is never actually taken
                   )))))

    (defthm recurX2-0
     (equal (recurX2 n) 0))

    (verify-guards recurX2)

  If you ([trace$] acl2-count), you will see that evaluation of
  (recurX2 2) causes several calls of [ACL2-count] before the
  [verify-guards]. But this evaluation does not call acl2-count after
  the verify-guards, because the ACL2 evaluation mechanism uses raw
  Lisp to do the evaluation, and the form (mbt (< (acl2-count call)
  n)) macroexpands to t in Common Lisp.

  You may occasionally get warnings when you compile functions defined
  using mbt. (For commands that invoke the compiler, see
  [compilation].) These can be inhibited by using an ignorable
  [declare] form. Here is a simple but illustrative example. Note
  that the declarations can optionally be separated into two
  [declare] forms.

    (defun foo (x y)
      (declare (ignorable x)
               (xargs :guard (equal x t)))
      (and (mbt x) y))")
 (MBT*
  (MBE ACL2-BUILT-INS)
  "Introduce a guard proof obligation

  The macro mbt* is a variant of mbt (``must be true''). However,
  unlike mbt, the call (mbt* test) is equivalent simply to t for both
  logic and evaluation. The only effective difference between (mbt*
  test) and t is that (mbt* test) generates a [guard] proof
  obligation (when used in a [logic]-mode definition) of test.

  If you think that mbt* might be of use, please see [assert*], which
  is defined using mbt* to create a [guard] proof obligation without
  any logical or execution burden.")
 (MEASURE
  (POINTERS)
  "See [xargs] for keyword :measure.


Subtopics

  [Measure-debug]
      Generate markers to indicate sources of [measure] proof obligations

  [Termination-theorem]
      Use a previously-proved measure theorem

  [Termination-theorem-example]
      How to use a previously-proved measure theorem

  [Tthm]
      The [measure] (termination) theorem for a given function symbol")
 (MEASURE-DEBUG
  (MEASURE DEBUGGING)
  "Generate markers to indicate sources of [measure] proof obligations

  When ACL2 is asked to accept a recursive (or mutually recursive)
  function definition, it generates a goal often called the ``measure
  conjecture.'' That goal can split into numerous goals, some of
  which may not be theorems if the definition being processed has
  bugs. This [documentation] topic explains a capability provided by
  ACL2 to help find such bugs. For a similar utility appropriate for
  [guard] verification, see [guard-debug].

  We begin with the following simple, admittedly artificial, example.

    (defun f (x)
      (if (consp x)
          (f (cons x x))
        x))

  ACL2 generates the following proof obligation..

    (IMPLIES (CONSP X)
             (O< (ACL2-COUNT (CONS X X))
                 (ACL2-COUNT X)))

  In this simple example, it is obvious that ACL2 cannot prove the goal
  because in fact, (CONS X X) does not have a smaller [ACL2-count]
  than X, even assuming (CONSP X). But you can get ACL2 to show
  explicitly the source of this proof obligation by specifying
  :measure-debug t in an [xargs] [declare] form, as follows.

    ACL2 !>(defun f (x)
             (declare (xargs :measure-debug t))
             (if (consp x)
                 (f (cons x x))
               x))

    For the admission of F we will use the relation O< (which is known
    to be well-founded on the domain recognized by O-P) and the measure
    (ACL2-COUNT X).  The non-trivial part of the measure conjecture is

    Goal
    (IMPLIES (AND (EXTRA-INFO '(:MEASURE (:RELATION F))
                              '(F (CONS X X)))
                  (CONSP X))
             (O< (ACL2-COUNT (CONS X X))
                 (ACL2-COUNT X))).

  The extra-info call is telling us the following about the measure
  conjecture:

    The appropriate well-founded relation (typically [o<]) holds between
    appropriate terms, because of the indicated recursive call, (F
    (CONS X X)).

  We now describe the measure-debug utility in some detail.

  (Extra-info x y) always returns t by definition. However, if the
  measure conjecture takes place with a non-nil value for the [xargs]
  keyword :measure-debug, then the goals generated will include
  hypotheses that are calls of extra-info. Such a hypothesis has one
  of the following forms.

    (extra-info '(:MEASURE (:RELATION function-name))
                'recursive-call)

    (extra-info '(:MEASURE (:DOMAIN function-name))
                '(D (M term)))

  The first form says that the goal is to show that the measure
  decreases for the indicated recursive call in the body of the
  function named function-name. The second form says that the goal is
  to show that the measure always returns a suitable value.

  We illustrate with a slightly more elaborate, but still contrived,
  example, which we hope clearly illustrates the points above. Notice
  that :measure-debug t need only be specified for a single [defun]
  form in a call of [mutual-recursion]. Also notice in the output
  that when there is more than one source for a goal, each source is
  indicated by its own call of extra-info.

    ACL2 !>(defstub my-measure (x) t) ; for the contrived example below
    [[ .. output omitted here .. ]]
    ACL2 !>(mutual-recursion
             (defun f1 (x)
               (declare (xargs :measure (my-measure x) :measure-debug t))
               (if (consp x)
                   (f2 (cons x (cdr x)))
                 t))
             (defun f2 (x)
               (declare (xargs :measure (my-measure x)))
               (if (consp x)
                   (f1 (cons (make-list (car x)) (cdr x)))
                 nil)))

    For the admission of F1 and F2 we will use the relation O< (which is
    known to be well-founded on the domain recognized by O-P) and the measure
    (MY-MEASURE X) for F1 and (MY-MEASURE X) for F2.  The non-trivial part
    of the measure conjecture is

    Goal
    (AND (IMPLIES (AND (EXTRA-INFO '(:MEASURE (:RELATION F1))
                                   '(F2 (CONS X (CDR X))))
                       (CONSP X))
                  (O< (MY-MEASURE (CONS X (CDR X)))
                      (MY-MEASURE X)))
         (IMPLIES (AND (EXTRA-INFO '(:MEASURE (:RELATION F2))
                                   '(F1 (CONS (MAKE-LIST-AC (CAR X) NIL NIL)
                                              (CDR X))))
                       (CONSP X))
                  (O< (MY-MEASURE (CONS (MAKE-LIST-AC (CAR X) NIL NIL)
                                        (CDR X)))
                      (MY-MEASURE X)))
         (IMPLIES (AND (EXTRA-INFO '(:MEASURE (:DOMAIN F2))
                                   '(O-P (MY-MEASURE X)))
                       (EXTRA-INFO '(:MEASURE (:DOMAIN F1))
                                   '(O-P (MY-MEASURE X))))
                  (O-P (MY-MEASURE X)))).

  All rules (see [rune]) associated with extra-info are [disable]d by
  default, so that hypotheses of the form described above are not
  simplified to t. These hypotheses are intended to ride along for
  free: you can generally expect the proof to have the same structure
  whether or not the :measure-debug option is supplied, though on
  rare occasions the proofs may diverge.")
 (MEASURE-THEOREM (POINTERS)
                  "See [termination-theorem].")
 (MEMBER
  (LISTS ACL2-BUILT-INS)
  "Membership predicate

    General Forms:
    (member x lst)
    (member x lst :test 'eql)   ; same as above (eql as equality test)
    (member x lst :test 'eq)    ; same, but eq is equality test
    (member x lst :test 'equal) ; same, but equal is equality test

  (Member x lst) equals the longest tail of the list lst that begins
  with x, or else nil if no such tail exists. The optional keyword,
  :TEST, has no effect logically, but provides the test (default
  [eql]) used for comparing x with successive elements of lst.

  The [guard] for a call of member depends on the test. In all cases,
  the second argument must satisfy [true-listp]. If the test is
  [eql], then either the first argument must be suitable for [eql]
  (see [eqlablep]) or the second argument must satisfy
  [eqlable-listp]. If the test is [eq], then either the first
  argument must be a symbol or the second argument must satisfy
  [symbol-listp].

  See [equality-variants] for a discussion of the relation between
  member and its variants:

      (member-eq x lst) is equivalent to (member x lst :test 'eq);

      (member-equal x lst) is equivalent to (member x lst :test 'equal).

  In particular, reasoning about any of these primitives reduces to
  reasoning about the function member-equal.

  Member is defined by Common Lisp. See any Common Lisp documentation
  for more information.

  Function: <member-equal>

    (defun member-equal (x lst)
           (declare (xargs :guard (true-listp lst)))
           (cond ((endp lst) nil)
                 ((equal x (car lst)) lst)
                 (t (member-equal x (cdr lst)))))")
 (MEMBER-EQ (POINTERS) "See [member].")
 (MEMBER-EQUAL (POINTERS)
               "See [member].")
 (MEMOIZATION (POINTERS)
              "See [memoize].")
 (MEMOIZE
  (PROGRAMMING HONS-AND-MEMOIZATION EVENTS)
  "Turn on memoization for a specified function

  See [hons-and-memoization] for a general discussion of the
  ``[hons-enabled]'' features: memoization, hash consing, and
  applicative hash tables.

    Examples:
    (memoize 'foo)                      ; remember the values of calls
                                        ;   of foo
    (memoize 'foo :condition t)         ; same as above
    (memoize 'foo :condition '(test x)) ; memoize for args satisfying
                                        ;   the given condition
    (memoize 'foo :condition-fn 'test)  ; memoize for args satisfying
                                        ;   a call of the given function
    (memoize 'foo :recursive nil)       ; don't memoize recursive calls
    (memoize 'foo :aokp t)              ; attachments OK for stored results
    (memoize 'foo :stats nil)           ; don't collect info for (memsum)
    (memoize 'foo :ideal-okp t)         ; memoize for raw Lisp even if foo is
                                        ;   in :logic but not guard-verified

    General Form:
    (memoize fn                         ; memoizes fn and returns fn
             :condition    condition    ; optional (default t)
             :condition-fn condition-fn ; optional
             :hints        hints        ; optional, for verifying the
                                        ;   guards of condition-fn
             :otf-flg      otf-flg      ; optional, for verifying the
                                        ;   guards of condition-fn
             :recursive    t/nil        ; optional (default t)
             :commutative  t/lemma-name ; optional (default nil)
             :forget       t/nil        ; optional (default nil)
             :memo-table-init-size size ; optional (default *mht-default-size*)
             :aokp         t/nil        ; optional (default nil)
             :stats        t/nil        ; optional (default t)
             :ideal-okp    t/:warn/nil  ; optional (default nil)
             :verbose      t/nil        ; optional (default t)
             )

  where fn evaluates to a user-defined function symbol; condition is
  either t (the default), 't, nil, or 'nil, or else evaluates to an
  expression whose free variables are among the formal parameters of
  fn; and condition-fn is either nil (the default) or else evaluates
  to a legal function symbol. Further restrictions and options are
  discussed below. Note that all arguments are evaluated (but for the
  special handling of value t for :commutative, the argument must
  literally be t; see below).

  Generally fn must evaluate to a defined function symbol. However,
  this value can be the name of a macro that is associated with such
  a function symbol; see [macro-aliases-table]. That associated
  function symbol is the one called ``memoized'' in the discussion
  below, but we make no more mention of this subtlety.

  In the most common case, memoize takes a single argument, which
  evaluates to a function symbol. We call this function symbol the
  ``memoized function'' because ``memos'' are saved and re-used, in
  the following sense. When a call of the memoized function is
  evaluated, the result is ``memoized'' by associating the call's
  arguments with that result, in a suitable table. But first an
  attempt is made to avoid such evaluation, by doing a lookup in that
  table on the given arguments for the result, as stored for a
  previous call on those arguments. If such a result is found, then
  it is returned without further computation. This paragraph also
  applies if :condition is supplied but is t or 't.

  If keyword argument :condition-fn is supplied, but :condition is not,
  then the result of evaluating :condition-fn must be a defined
  function symbol whose formal parameter list and [guard] are the
  same as for the function being memoized. If fn is in :[logic] mode,
  then [guard]s must have been verified for :condition-fn. Such a
  ``condition function'' will be run whenever the memoized function
  is called, on the same parameters, and the lookup or table store
  described above are only performed if the result from the condition
  function call is non-nil.

  Suppose however that :condition is supplied. If the value supplied is
  t or 't, then the lookup and table store described above are always
  done. If the value is nil or 'nil, then this lookup and table store
  are never done, although statistics may be gathered; see [profile].
  Now consider other values for :condition. An attempt will be made
  to define a condition function whose [guard] and formal parameters
  list are the same as those of the memoized function, and whose body
  is the result, r, of evaluating the given condition. The name of
  that condition function is the result of evaluating :condition-fn
  if supplied, else is the result of concatenating the string
  \"-MEMOIZE-CONDITION\" to the end of the name of the memoized
  function. The condition function will be defined with [guard]
  verification turned off, but that definition will be followed
  immediately by a [verify-guards] event; and this is where the
  optional :hints and :otf-flg are attached. At evaluation time the
  condition function is used as described in the preceding paragraph;
  so in effect, the condition (r, above) is evaluated, with its
  variables bound to the corresponding actuals of the memoized
  function call, and the memoized function attempts a lookup or table
  store if and only if the result of that evaluation is non-nil.

  Note that fn can be either a :[logic] mode function or a :[program]
  mode function. However, only the corresponding raw Lisp function is
  actually memoized, so [guard] violations can defeat memoization,
  and :[logic] mode functions without their [guard]s verified will
  only be memoized when called by :[program] mode functions. (See
  [guards-and-evaluation] for more information about guards and
  evaluation in ACL2.) If fn is a :[logic] mode function and
  :condition is supplied and not t or nil, then the condition must be
  a [guard]-verified function.

  Calls of this macro generate events of the form (table memoize-table
  fn ((:condition-fn fn) ...)). When successful, the returned value
  is of the form (mv nil function-symbol state).

  Suppose that a function is already memoized. Then it is illegal to
  memoize that function. Moreover, if the function was memoized with
  an associated condition (i.e., was memoized with keyword :condition
  or :condition-fn having value other than t or nil), then it is also
  illegal to convert the function from :[program] to :[logic] mode
  (see [verify-termination]). To turn off memoization, see
  [unmemoize].

  Memoize is illegal for a function if its arguments include [state] or
  if it returns any [stobj]s. A stobj can be an input of a memoized
  function, but in that case, the memoization table for that stobj
  will be cleared every time that stobj is updated.

  By default, memoize does not store results when any attachments have
  been used (see [defattach]). However, such results are stored when
  memoize keyword parameter :aokp has value t. Note that for purposes
  of this discussion, the use of a stored value for a subsidiary
  function that was memoized with :aokp t is treated as the use of an
  attachment, since ACL2 does not know whether or not an attachment
  was actually used in that case.

  We conclude with by documenting keyword parameters not discussed
  above.

  Keyword parameter :recursive is t by default, which means that
  recursive calls of fn will be memoized just as ``top-level'' calls
  of fn. When :recursive is instead set to nil, memoization is only
  done at the top level. Using :recursive nil is similar to writing a
  wrapper function that just calls fn, and memoizing the wrapper
  instead of fn.

  If :trace has a non-nil value, then memoize also traces in a
  traditional Lisp style. If :trace has value notinline or notinline,
  then a corresponding declaration is added at the beginning of the
  new definition of fn.

  A non-nil value for :commutative can be supplied if fn is a binary
  function in :logic mode. Suppose that the memoize event is
  successful, and consider a subsequent call of fn for which some
  argument to fn is either a rational number or, in some host Lisps
  (currently either CCL, or GCL Version 2.6.12 or later) a [hons].
  (Indeed, for such GCL versions this is true for any cons, not just
  a hons.) Then when the evaluation of fn on those arguments is
  memoized, the evaluation of fn on the swap of those arguments is,
  in essence, also memoized. If :commutative is supplied and is not
  nil or t, then it should be the name of a previously-proved theorem
  whose formula states the commutativity of fn, i.e., is the formula
  (equal (fn x y) (fn y x)) for a pair {x,y} of distinct variables.
  If :commutative is t --- but not merely an expression that
  evaluates to t --- then an attempt to prove such a lemma will be
  made on-the-fly. The name of the lemma is the symbol in the same
  package as fn, obtained by adding the suffix \"-COMMUTATIVE\" to the
  [symbol-name] of fn. If the proof attempt fails, then you may want
  first to prove the lemma yourself with appropriate hints and
  perhaps supporting lemmas, and then supply the name of that lemma
  as the value of :commutative.

  If :commutative is supplied, and a non-commutative condition is
  provided by :condition or :condition-fn, then although the results
  will be correct, the extra memoization afforded by :commutative is
  unspecified.

  If :memo-table-init-size is supplied, then it should be a positive
  integer specifying the initial size of an associated hash table.

  Argument :aokp is relevant only when attachments are used; see
  [defattach] for background on attachments. When :aokp is nil, the
  default, computed values are not stored when an attachment was
  used, or even when an attachment may have been used because a
  function was called that had been memoized using :aokp t.
  Otherwise, computed values are always stored, but saved values are
  not used except when attachments are allowed. To summarize:

    aokp=nil (default): ``Pure'', i.e., values do not depend on attachments
    - Fetch: always legal
    - Store: only store resulting value when attachments were not used

    aokp=t: ``Impure'', i.e., values may depend on attachments
    - Fetch: only legal when attachments are allowed (e.g., not during proofs)
    - Store: always legal

  The default value for :stats is essentially t. (Technically, this can
  be subverted by using raw Lisp, to change the default by changing
  the values of variables *record-xxx* introduced in ACL2 source file
  memoize-raw.lisp.) When :stats has its default value (assuming the
  above raw Lisp changes are not made) or value t, calls of memoized
  functions will collect information that can be displayed by calling
  [memsum]. But if :stats is nil, this information will not be
  collected, possibly resulting in better performance for the
  memoized function. As of this writing, built-in memoized functions
  use :stats nil to benefit performance.

  If :ideal-okp is supplied and not nil, then it is permitted to
  memoize an ``ideal-mode'' function: one in :[logic] mode whose
  [guard]s have not been verified. However, this might not have the
  effect you desire, because you will be memoizing the raw Lisp
  version of the function, not the safe (so-called ``*1*'') function
  that is executed in the ACL2 loop and on behalf of the prover.
  Thus, if you memoize an ideal-mode function and then call it at the
  top-level of the ACL2 loop (or, for example, it is called to
  evaluate a ground term arising in a proof or in the evaluation of a
  [meta]function in a proof), the effects of memoization will not be
  felt because the raw Lisp code is not run unless guards are
  verified.

  There are circumstances in which the raw Lisp code of an ideal-mode
  function is called. For example, if the ideal-mode function is
  called by a :[program] mode function, evaluation can transfer to
  raw Lisp where the effects of memoization will be felt.

  A trick, described below, with [ec-call] can provide some of the
  benefit of memoizing an ideal-mode function. The trick exploits the
  fact that ec-call allows you to call an ideal-mode function within
  a [guard]-verified (``Common Lisp compliant'') :[logic] mode
  function without having to verify guards for the ideal-mode
  function. The following edited log illustrates the points above.

     ACL2 !>(defun fib (n)
    	  (declare (xargs :guard (natp n) :verify-guards nil))
    	  (if (zp n)
    	      0
    	    (if (eql n 1)
    		1
    	      (+ (fib (- n 1)) (fib (- n 2))))))
     [[ .. output omitted .. ]]
      FIB
     ACL2 !>(memoize 'fib :ideal-okp t)
     [[ .. output omitted .. ]]
      FIB
     ACL2 !>(time$ (fib 38)) ; slow, since *1*fib never calls fib

     ACL2 Warning [Guards] in TOP-LEVEL:  Guard-checking will be inhibited
     on recursive calls of the executable counterpart (i.e., in the ACL2
     logic) of FIB.  To check guards on all recursive calls:
       (set-guard-checking :all)
     To leave behavior unchanged except for inhibiting this message:
       (set-guard-checking :nowarn)

     ; (EV-REC *RETURN-LAST-ARG3* ...) took
     ; 3.91 seconds realtime, 3.90 seconds runtime
     ; (416 bytes allocated).
     39088169
     ACL2 !>(time$ (fib 38)) ; still slow; no results were stored before

     ACL2 Warning [Guards] in TOP-LEVEL:  Guard-checking will be inhibited
     on recursive calls of the executable counterpart (i.e., in the ACL2
     logic) of FIB.  To check guards on all recursive calls:
       (set-guard-checking :all)
     To leave behavior unchanged except for inhibiting this message:
       (set-guard-checking :nowarn)

     ; (EV-REC *RETURN-LAST-ARG3* ...) took
     ; 3.92 seconds realtime, 3.91 seconds runtime
     ; (416 bytes allocated).
     39088169
     ACL2 !>(defun fib-logic-wrapper (n) ; guard-verified
    	  (declare (xargs :guard (natp n)))
    	  (ec-call (fib n)))
     [[ .. output omitted .. ]]
      FIB-LOGIC-WRAPPER
     ACL2 !>(memoize 'fib-logic-wrapper)
     [[ .. output omitted .. ]]
      FIB-LOGIC-WRAPPER
     ACL2 !>(time$ (fib-logic-wrapper 38)) ; slow; no fib results are stored

     ACL2 Warning [Guards] in TOP-LEVEL:  Guard-checking will be inhibited
     on recursive calls of the executable counterpart (i.e., in the ACL2
     logic) of FIB.  To check guards on all recursive calls:
       (set-guard-checking :all)
     To leave behavior unchanged except for inhibiting this message:
       (set-guard-checking :nowarn)

     ; (EV-REC *RETURN-LAST-ARG3* ...) took
     ; 3.92 seconds realtime, 3.91 seconds runtime
     ; (2,128 bytes allocated).
     39088169
     ACL2 !>(time$ (fib-logic-wrapper 38)) ; fast; fib-logic-wrapper result was stored
     ; (EV-REC *RETURN-LAST-ARG3* ...) took
     ; 0.00 seconds realtime, 0.00 seconds runtime
     ; (16 bytes allocated).
     39088169
     ACL2 !>(time$ (fib-logic-wrapper 37)) ; slow; result only for 38 was stored

     ACL2 Warning [Guards] in TOP-LEVEL:  Guard-checking will be inhibited
     on recursive calls of the executable counterpart (i.e., in the ACL2
     logic) of FIB.  To check guards on all recursive calls:
       (set-guard-checking :all)
     To leave behavior unchanged except for inhibiting this message:
       (set-guard-checking :nowarn)

     ; (EV-REC *RETURN-LAST-ARG3* ...) took
     ; 2.42 seconds realtime, 2.42 seconds runtime
     ; (416 bytes allocated).
     24157817
     ACL2 !>(defun fib-program-wrapper (n) ; program mode function
    	  (declare (xargs :guard (natp n) :mode :program))
    	  (fib n))

     Summary
     Form:  ( DEFUN FIB-PROGRAM-WRAPPER ...)
     Rules: NIL
     Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
      FIB-PROGRAM-WRAPPER
     ACL2 !>(time$ (fib-program-wrapper 100)) ; fast because raw-Lisp fib is called
     ; (EV-REC *RETURN-LAST-ARG3* ...) took
     ; 0.00 seconds realtime, 0.00 seconds runtime
     ; (7,600 bytes allocated).
     354224848179261915075
     ACL2 !>

  Two non-nil values are allowed for keyword parameter :ideal-okp:
  :warn and t. Both of these values allow memoization of ideal-mode
  functions, but if :warn is supplied then a warning will take place
  at memoization time, specifically for the resluting [table] event.
  Note that you may set the key :memoize-ideal-okp of the
  [ACL2-defaults-table] to value t or :warn to change the default,
  but if parameter :ideal-okp is supplied, the [ACL2-defaults-table]
  value is ignored.

  If :verbose is supplied, it should either be nil, which will inhibit
  proof, event, and summary output (see [with-output]), or else t
  (the default), which does not inhibit output. If the output baffles
  you, try

    :trans1 (memoize ...)

  to see the single-step macroexpansion of your memoize call.

  The default for :forget is nil. If :forget is supplied, and not nil,
  then it must be t, which causes all memoization done for a
  top-level call of fn to be forgotten when that top-level call
  exits.


Subtopics

  [Clear-hash-tables]
      Deprecated feature

  [Clear-memoize-statistics]
      Clears all profiling info displayed by ([memoize-summary])

  [Clear-memoize-table]
      Forget values remembered for the given function

  [Clear-memoize-tables]
      Forget values remembered for all the memoized functions

  [Memoize-summary]
      Display all collected profiling and memoization info

  [Memsum]
      Display all collected profiling and memoization info

  [Never-memoize]
      Mark a function as unsafe to memoize.

  [Protect-memoize-statistics]
      Ensure the integrity of memoization statistics even upon aborts

  [Restore-memoization-settings]
      Restore the saved memoization settings

  [Save-and-clear-memoization-settings]
      Save and remove the current memoization settings

  [Unmemoize]
      Turn off memoization for the specified function")
 (MEMOIZE-SUMMARY
  (MEMOIZE)
  "Display all collected profiling and memoization info

  Logically, this function just returns nil, but it displays profiling
  and memoization table information. The profiling statistics may be
  cleared with ([clear-memoize-statistics]).

  Note that by default, statistics might be inaccurate when calls of
  [memoize]d functions are aborted. This issue can be avoided,
  however; see [protect-memoize-statistics].

  Function: <memoize-summary>

    (defun memoize-summary
           nil (declare (xargs :guard t))
           nil)")
 (MEMSUM
  (MEMOIZE)
  "Display all collected profiling and memoization info

  This macro is an abbreviation for [memoize-summary]. Logically, it
  just returns nil. Also see [protect-memoize-statistics].")
 (META
  (RULE-CLASSES)
  "Make a :meta rule (a hand-written simplifier)

  See [rule-classes] for a general discussion of rule classes,
  including how they are used to build rules from formulas and a
  discussion of the various keywords in a rule class description.

  Meta rules extend the ACL2 simplifier with hand-written code to
  transform certain terms to equivalent ones. To add a meta rule, the
  :[corollary] formula must establish that the hand-written
  ``metafunction'' preserves the meaning of the transformed term.

    Examples:
    (defthm fn-correct-1                ; Modify the rewriter to use fn to
      (equal (evl x a)                  ; transform terms that are calls of
             (evl (fn x) a))            ; nth or of foo.
      :rule-classes ((:meta :trigger-fns (nth foo))))

    (defthm fn-correct-2                ; As above, but this illustrates
      (implies (and (pseudo-termp x)    ; that without loss of generality we
                    (alistp a))         ; may restrict x to be shaped like a
               (equal (evl x a)         ; term and a to be an alist.
                      (evl (fn x) a)))
      :rule-classes ((:meta :trigger-fns (nth foo))))

    (defthm fn-correct-3                ; As above (with or without the
      (implies (and (pseudo-termp x)    ; hypotheses on x and a), with the
                    (alistp a)          ; additional restriction that the
                    (evl (hyp-fn x) a)) ; meaning of (hyp-fn x) is true in
               (equal (evl x a)         ; the current context.  That is, the
                      (evl (fn x) a)))  ; applicability of the transformation
      :rule-classes                     ; may be dependent upon some computed
      ((:meta :trigger-fns (nth foo)))) ; hypotheses.

  While our intention is that the set of ACL2 documentation topics is
  self-contained, readers might find it useful to see the following
  paper for an introduction to meta reasoning in ACL2.

      W. A. Hunt, Jr., R. B. Krug, M. Kaufmann, J S. Moore and E. W. Smith,
      ``Meta Reasoning in ACL2.'' TPHOLs 2005, ed. J. Hurd and T. F.
      Melham, LNCS 3603, Springer-Verlag, Berlin, 2005, pp. 163-178.

  A non-nil list of function symbols must be supplied as the value of
  the :trigger-fns field in a :meta rule class object (except that a
  macro alias can stand in for a function symbol; see
  [add-macro-alias]).

    General Forms:
    (implies (and (pseudo-termp x)        ; this hyp is optional
                  (alistp a)              ; this hyp is optional
                  (ev (hyp-fn x ...) a)   ; this hyp is optional
                  ; meta-extract hyps may also be included (see below)
                  )
             (equiv (ev x a)
                    (ev (fn x ...) a)))

  where equiv is a known [equivalence] relation, x and a are distinct
  variable names, and ev is an evaluator function (see below), and fn
  is a function symbol, as is hyp-fn when provided. The arguments to
  fn and hyp-fn should be identical. In the most common case, both
  take a single argument, x, which denotes the term to be simplified.
  If fn and/or hyp-fn are [guard]ed, their [guard]s should be
  trivially implied by [pseudo-termp]. We say the theorem above is a
  ``metatheorem'' or ``metalemma'' and fn is a ``metafunction'', and
  hyp-fn is a ``hypothesis metafunction''.

  If ``...'' is empty, i.e., the metafunctions take just one argument,
  we say they are ``vanilla flavored.'' If ``...'' is non-empty, we
  say the metafunctions are ``extended.'' Extended metafunctions can
  access [state] and context sensitive information to compute their
  results, within certain limits. We discuss vanilla metafunctions
  here and recommend a thorough understanding of them before
  proceeding (at which time see [extended-metafunctions]).

  If a metafunction application to a term, u, evaluates to a result of
  the form (if TEST NEW-TERM u), then TEST is treated as an
  ``implicit hypothesis''. For discussion of this relatively advanced
  feature, see [meta-implicit-hypothesis].

  Additional hypotheses are supported, called ``meta-extract
  hypotheses''. These allow metafunctions to depend on the validity
  of certain terms extracted from the context or the logical [world].
  These hypotheses provide a relatively advanced form of metatheorem
  so we explain them elsewhere; see [meta-extract].

  One might think that metafunctions and (if supplied) hypothesis
  metafunctions must be executable: that is, not constrained (i.e.,
  introduced in the [signature] of [encapsulate] [events]), and not
  [declare]d :[non-executable]. After all, there is no point in
  installing a simplifier that cannot be run! However, such a
  restriction is not enforced, because one could introduce a
  metafunction using [encapsulate] and then use [defattach] to attach
  it to an executable function; see [defattach].

  We defer discussion of the case in which there is a hypothesis
  metafunction and for now address the case in which the other two
  hypotheses are present.

  In the discussion below, we refer to the argument, x, of fn and
  hyp-fn as a ``(translated) term,'' i.e., an object satisfying the
  ACL2 built-in predicate termp. When these metafunctions are
  executed by the simplifier, they will be applied to (the quotations
  of) terms. But during the proof of the metatheorem itself, x may
  not be the quotation of a term. If the [pseudo-termp] hypothesis is
  omitted, x may be any object. Even with the [pseudo-termp]
  hypothesis, x may merely ``look like a term'' but use non-function
  symbols or function symbols of incorrect arity. In any case, the
  metatheorem is stronger than necessary to allow us to apply the
  metafunctions to terms, as we do in the discussion below. We return
  later to the question of proving the metatheorem.

  Suppose the general form of the metatheorem above is proved with the
  [pseudo-termp] and [alistp] hypotheses. Then when the simplifier
  encounters a term, (h t1 ... tn), that begins with a function
  symbol, h, listed in :trigger-fns, it applies the metafunction, fn,
  to the quotation of the term, i.e., it evaluates (fn '(h t1 ...
  tn)) to obtain some result, which can be written as 'val. If 'val
  is different from '(h t1 ... tn) and val is a well-formed term (see
  the next paragraph), then (h t1 ... tn) is replaced by val, which
  is then passed along for further rewriting. Because the metatheorem
  establishes the correctness of fn for all terms (even non-terms!),
  there is no restriction on which function symbols are listed in the
  :trigger-fns. Generally, of course, they should be the symbols that
  head up the terms simplified by the metafunction fn.

  Note that the result of applying a metafunction (or a hypothesis
  metafunction) must be a term, i.e., must satisfy the predicate
  [termp] in the current logical [world]. If not, then an error
  occurs. See [term-table] for how one obtains some assistance
  towards testing that val is indeed a term. ACL2 actually enforces a
  stronger requirement, disallowing calls of certain ``forbidden''
  function symbols as described in [set-skip-meta-termp-checks]. Both
  of these runtime checks can be avoided by proving that the
  metafunction (and the corresponding hypothesis metafunction, if
  any) always produces an acceptable term. See
  [well-formedness-guarantee]. Alternatively, with an active trust
  tag (see [defttag]) you can tell ACL2 to skip these tests; see
  [set-skip-meta-termp-checks].

  The ``evaluator'' function, ev, is a function that can evaluate a
  certain class of expressions, namely, all of those composed of
  variables, constants, and applications of a fixed, finite set of
  function symbols, g1, ..., gk. Generally speaking, the set of
  function symbols handled by ev is chosen to be exactly the function
  symbols recognized and manipulated by the metafunctions being
  introduced. For example, if fn manipulates expressions in which
  '[equal] and '[binary-append] occur as function symbols, then ev is
  generally specified to handle [equal] and [binary-append]. The
  actual requirements on ev become clear when the metatheorem is
  proved. The standard way to introduce an evaluator is to use the
  ACL2 macro [defevaluator], though this is not strictly necessary.
  See [defevaluator] if you want details.

  [Aside for the logic-minded.] Why are we justified in using
  metafunctions this way? Suppose (fn 'term1) is 'term2. What
  justifies replacing term1 by term2? The first step is to assert
  that term1 is (ev 'term1 a), where a is an alist that maps 'var to
  var, for each variable var in term1. This step is incorrect,
  because 'term1 may contain function symbols other than the ones,
  g1, ..., gk, that ev knows how to handle. But we can grow ev to a
  ``larger'' evaluator, ev*, an evaluator for all of the symbols that
  occur in term1 or term2. We can prove that ev* satisfies the
  [constraint]s on ev, provided no [defaxiom] events are adding
  constraints to ev (or callers of ev, and recursively); ACL2 checks
  this additional property. Hence, the metatheorem holds for ev* in
  place of ev, by functional instantiation. We can then carry out the
  proof of the [equivalence] of term1 and term2 as follows: Fix a to
  be an alist that maps the quotations of the variables of term1 and
  term2 to themselves. Then,

    term1 = (ev* 'term1 a)      ; (1) by construction of ev* and a
          = (ev* (fn 'term1) a) ; (2) by the metatheorem for ev*
          = (ev* 'term2 a)      ; (3) by evaluation of fn
          = term2               ; (4) by construction of ev* and a

  Note that in line (2) above, where we appeal to the (functional
  instantiation of the) metatheorem, we can relieve its (optional)
  [pseudo-termp] and [alistp] hypotheses by appealing to the facts
  that term1 is a term and a is an alist by construction. [End of
  Aside for the logic-minded.]

  There are subtleties related to the notion of ``growing'' ev to a
  ``larger'' evaluator, as mentioned in the paragraph just above. For
  corresponding restrictions on :meta rules, see
  [evaluator-restrictions].

  Finally, we turn to the second case, in which there is a hypothesis
  metafunction. In that case, consider as before what happens when
  the simplifier encounters a term, (h t1 ... tn), where h is listed
  in :trigger-fns. This time, after it applies fn to '(h t1 ... tn)
  to obtain the quotation of some new term, 'val, it then applies the
  hypothesis metafunction, hyp-fn. That is, it evaluates (hyp-fn '(h
  t1 ... tn)) to obtain some result, which can be written as
  'hyp-val. If hyp-val is not in fact a term, the metafunction is not
  used. Provided hyp-val is a term, the simplifier attempts to
  establish (by conventional backchaining) that this term is non-nil
  in the current context. Note that this backchaining is done just as
  it is done for hypotheses of [rewrite] (and [linear]) rules,
  namely, by rewriting with special attention to calls of certain
  functions including [force], [case-split], [syntaxp], and
  [bind-free]. If this attempt to establish this term fails, then the
  meta rule is not applied. Otherwise, (h t1...tn) is replaced by val
  as in the previous case (where there was no hypothesis
  metafunction).

  Why is it justified to make this extension to the case of hypothesis
  metafunctions? First, note that the rule

    (implies (and (pseudo-termp x)
                  (alistp a)
                  (ev (hyp-fn x) a))
             (equal (ev x a)
                    (ev (fn x) a)))

  is logically equivalent to the rule

    (implies (and (pseudo-termp x)
                  (alistp a))
             (equal (ev x a)
                    (ev (new-fn x) a)))

  where (new-fn x) is defined to be (list 'if (hyp-fn x) (fn x) x). (If
  we're careful, we realize that this argument depends on making an
  extension of ev to an evaluator ev* that handles [if] and the
  functions manipulated by hyp-fn.) If we write 'term for the
  quotation of the present term, and if (hyp-fn 'term) and (fn 'term)
  are both terms, say hyp1 and term1, then by the previous argument
  we know it is sound to rewrite term to (if hyp1 term1 term). But
  since we have established in the current context that hyp1 is
  non-nil, we may simplify (if hyp1 term1 term) to term1, as desired.

  We now discuss the role of the [pseudo-termp] hypothesis.
  (Pseudo-termp x) checks that x has the shape of a term. Roughly
  speaking, it ensures that x is a symbol, a quoted constant, or a
  true list consisting of a lambda expression or symbol followed by
  some pseudo-terms. Among the properties of terms not checked by
  [pseudo-termp] are that variable symbols never begin with
  ampersand, lambda expressions are closed, and function symbols are
  applied to the correct number of arguments. See [pseudo-termp].

  There are two possible roles for [pseudo-termp] in the development of
  a metatheorem: it may be used as the [guard] of the metafunction
  and/or hypothesis metafunction and it may be used as a hypothesis
  of the metatheorem. Generally speaking, the [pseudo-termp]
  hypothesis is included in a metatheorem only if it makes it easier
  to prove. The choice is yours. (An extreme example of this is when
  the metatheorem is invalid without the hypothesis!) We therefore
  address ourselves the question: should a metafunction have a
  [pseudo-termp] [guard]? A [pseudo-termp] [guard] for a
  metafunction, in connection with other considerations described
  below, improves the efficiency with which the metafunction is used
  by the simplifier.

  To make a metafunction maximally efficient you should (a) provide it
  with a [pseudo-termp] [guard] and exploit the [guard] when possible
  in coding the body of the function (see [guards-and-evaluation],
  especially the section on efficiency issues), (b) verify the
  [guard]s of the metafunction (see [verify-guards]), and (c) compile
  the metafunction (see [comp]). When these three steps have been
  taken the simplifier can evaluate (fn 'term1) by running the
  compiled ``primary code'' (see [guards-and-evaluation]) for fn
  directly in Common Lisp. (Note however that explicit compilation
  may be suppressed; see [compilation].)

  Before discussing efficiency issues further, let us review for a
  moment the general case in which we wish to evaluate (fn 'obj) for
  some :[logic] function. We must first ask whether the [guard]s of
  fn have been verified. If not, we must evaluate fn by executing its
  logic definition. This effectively checks the [guard]s of every
  subroutine and so can be slow. If, on the other hand, the [guard]s
  of fn have been verified, then we can run the primary code for fn,
  provided 'obj satisfies the [guard] of fn. So we must next evaluate
  the [guard] of fn on 'obj. If the [guard] is met, then we run the
  primary code for fn, otherwise we run the logic code.

  Now in the case of a metafunction for which the three steps above
  have been followed, we know the [guard] is (implied by)
  [pseudo-termp] and that it has been verified. Furthermore, we know
  without checking that the [guard] is met (because term1 is a term
  and hence 'term1 is a [pseudo-termp]). Hence, we can use the
  compiled primary code directly.

  We strongly recommend that you compile your metafunctions, as well as
  all their subroutines (unless explicit compilation is suppressed;
  see [compilation]). Guard verification is also recommended.

  Finally, we present a very simple example of the use of :meta rules,
  based on one provided by Robert Krug. This example illustrates a
  trick for avoiding undesired rewriting after applying a
  metafunction or any other form of rewriting. To elaborate: in
  general, the term t2 obtained by applying a metafunction to a term
  t1 is then handed immediately to the rewriter, which descends
  recursively through the arguments of function calls to rewrite t2
  completely. But if t2 shares a lot of structure with t1, then it
  might not be worthwhile to rewrite t2 immediately. (A rewrite of t2
  will occur anyhow the next time a goal is generated.) The trick
  involves avoiding this rewrite by wrapping t2 inside a call of
  [hide], which in turn is inside a call of a user-defined
  ``unhiding'' function, unhide.

    (defun unhide (x)
      (declare (xargs :guard t))
      x)

    (defthm unhide-hide
      (equal (unhide (hide x))
             x)
      :hints ((\"Goal\" :expand ((hide x)))))

    (in-theory (disable unhide))

    (defun my-plus (x y)
      (+ x y))

    (in-theory (disable my-plus))

    (defevaluator evl evl-list
      ((my-plus x y)
       (binary-+ x y)
       (unhide x)
       (hide x)))

    (defun meta-fn (term)
      (declare (xargs :guard (pseudo-termp term)))
      (if (and (consp term)
               (equal (length term) 3)
               (equal (car term) 'my-plus))
          `(UNHIDE (HIDE (BINARY-+ ,(cadr term) ,(caddr term))))
        term))

    (defthm my-meta-lemma
      (equal (evl term a)
             (evl (meta-fn term) a))
      :hints ((\"Goal\" :in-theory (enable my-plus)))
      :rule-classes ((:meta :trigger-fns (my-plus))))

  Notice that in the following (silly) conjecture, ACL2 initially does
  only does the simplification directed by the metafunction; a second
  goal is generated before the commuativity of addition can be
  applied. If the above calls of UNHIDE and HIDE had been stripped
  off, then Goal' would have been the term printed in Goal'' below.

    ACL2 !>(thm
            (equal (my-plus b a)
                   ccc))

    This simplifies, using the :meta rule MY-META-LEMMA and the :rewrite
    rule UNHIDE-HIDE, to

    Goal'
    (EQUAL (+ B A) CCC).

    This simplifies, using the :rewrite rule COMMUTATIVITY-OF-+, to

    Goal''
    (EQUAL (+ A B) CCC).

  The discussion above probably suffices to make good use of this
  (UNHIDE (HIDE ...)) trick. However, we invite the reader who wishes
  to understand the trick in depth to evaluate the following form
  before submitting the [thm] form above.

    (trace$ (rewrite :entry (list (take 2 arglist))
                     :exit (list (car values)))
            (rewrite-with-lemma :entry (list (take 2 arglist))
                                :exit (take 2 values)))

  The following annotated subset of the trace output (which may appear
  a bit different depending on the underlying Common Lisp
  implementation) explains how the trick works.

        2> (REWRITE ((MY-PLUS B A) NIL))>
          3> (REWRITE-WITH-LEMMA
                  ((MY-PLUS B A)
                   (REWRITE-RULE (:META MY-META-LEMMA)
                                 1822
                                 NIL EQUAL META-FN NIL META NIL NIL)))>

    We apply the meta rule, then recursively rewrite the result, which is the
    (UNHIDE (HIDE ...)) term shown just below.

            4> (REWRITE ((UNHIDE (HIDE (BINARY-+ B A)))
                         ((A . A) (B . B))))>
              5> (REWRITE ((HIDE (BINARY-+ B A))
                           ((A . A) (B . B))))>

    The HIDE protects its argument from being touched by the rewriter.

              <5 (REWRITE (HIDE (BINARY-+ B A)))>
              5> (REWRITE-WITH-LEMMA
                      ((UNHIDE (HIDE (BINARY-+ B A)))
                       (REWRITE-RULE (:REWRITE UNHIDE-HIDE)
                                     1806 NIL EQUAL (UNHIDE (HIDE X))
                                     X ABBREVIATION NIL NIL)))>

    Now we apply UNHIDE-HIDE, then recursively rewrite its right-hand
    side in an environment where X is bound to (BINARY-+ B A).

                6> (REWRITE (X ((X BINARY-+ B A))))>

    Notice that at this point X is cached, so REWRITE just returns
    (BINARY-+ B A).

                <6 (REWRITE (BINARY-+ B A))>
              <5 (REWRITE-WITH-LEMMA T (BINARY-+ B A))>
            <4 (REWRITE (BINARY-+ B A))>
          <3 (REWRITE-WITH-LEMMA T (BINARY-+ B A))>
        <2 (REWRITE (BINARY-+ B A))>


Subtopics

  [Backchain-limit]
      Limiting the effort expended on relieving hypotheses

  [Case-split]
      Like force but immediately splits the top-level goal on the
      hypothesis

  [Evaluator-restrictions]
      Some restrictions on the use of evaluators in meta-level rules

  [Extended-metafunctions]
      State and context sensitive metafunctions

  [Force]
      Identity function used to force a hypothesis

  [Meta-extract]
      Meta reasoning using valid terms extracted from context or [world]

  [Meta-implicit-hypothesis]
      A potentially more efficient way of coding a hypothesis metafunction

  [Set-skip-meta-termp-checks]
      Skip output checks for [meta] functions and [clause-processor]s

  [Set-skip-meta-termp-checks!]
      Skip output checks non-[local]ly for [meta] functions and
      [clause-processor]s

  [Syntaxp]
      Attach a heuristic filter on a rule

  [Term-table]
      A table used to validate meta rules")
 (META-EXTRACT
  (META)
  "Meta reasoning using valid terms extracted from context or [world]

  For this advanced topic, we assume familiarity with metatheorems and
  metafunctions (see [meta]), as well as extended metafunctions (see
  [extended-metafunctions]). The capability described here ---
  so-called ``meta-extract hypotheses'' for a :[meta] or a
  :[clause-processor] rule --- provides an advanced form of
  meta-level reasoning that was initially designed largely by Sol
  Swords, who also provided a preliminary implementation.

  A meta rule or clause-processor rule may have so-called
  ``meta-extract'' hypotheses that take forms displayed below. Here
  evl is the evaluator, obj is an arbitrary term, mfc is the
  metafunction context (which is a variable other than the symbol
  STATE that represents the metafunction context; see
  [extended-metafunctions]), state is literally the symbol STATE, a
  is the second argument of evl in both arguments of the conclusion
  of the rule, and aa is an arbitrary term.

    (evl (meta-extract-contextual-fact obj mfc state) a)
    (evl (meta-extract-global-fact obj state) aa)) ; equivalent to the next form
    (evl (meta-extract-global-fact+ obj state state) aa)
    (evl (meta-extract-global-fact+ obj st state) aa)

  The first form is only legal for :meta rules for which the
  metafunction is an extended metafunction. The remaining forms are
  legal for both :meta rules and :clause-processor rules.

  Sol Swords has contributed a community book,
  clause-processors/meta-extract-user.lisp, that uses a Skolemization
  trick to allow one to use at most one meta-extract-global-fact+
  hypothesis and at most one meta-extract-contextual-fact hypothesis.

  These additional hypotheses may be necessary in order to prove a
  proposed metatheorem or (for the second type of hypothesis above)
  clause-processor rule, in particular when the correctness of the
  metafunction depends on the correctness of utilities extracting
  formulas from the logical [world] or (for the first type) facts
  from the metafunction context (mfc). After the rule is proved,
  however, the meta-extract hypotheses have no effect on how the rule
  is applied during a proof. An argument for correctness of using
  meta-extract hypotheses is given in the ACL2 source code within a
  comment entitled ``Essay on Correctness of Meta Reasoning''. In the
  documentation below, we focus primarily on :[meta] rules, since the
  use of meta-extract-global-fact hypotheses in :[clause-processor]
  rules is entirely analogous. (At the end, though, we discuss the
  last of the four forms displayed above.) And for :meta rules we
  focus not on the application of rules but, rather, on how the use
  of meta-extract hypotheses allow you to prove correctness of
  metafunctions that use facts from the logical [world] or the
  metafunction context (mfc).

  Below we describe properties of meta-extract-contextual-fact and
  meta-extract-global-fact, but only after we illustrate their
  utility with an example. But even before we present that example,
  we first give a sense of how to think about these functions by
  showing a theorem that one can prove about the first of them. If
  this snippet doesn't help your intuition, then just skip over it
  and start with the example.

    (defevaluator evl evl-list
      ((binary-+ x y) (typespec-check x y)))

    (thm (implies
          (not (bad-atom (cdr (assoc-equal 'x alist))))
          (equal (evl (meta-extract-contextual-fact (list :typeset 'x)
                                                    mfc
                                                    state)
                      alist)
                 (not (equal 0 ; indicates non-empty intersection
                             (logand (type-set-quote ; type-set of a constant
                                      (cdr (assoc-equal 'x alist)))
                                     (mfc-ts-fn 'x mfc state nil)))))))

  The following example comes from the community book,
  books/clause-processors/meta-extract-simple-test.lisp (after it
  defines the evaluator), which presents very basic (and contrived)
  examples that nevertheless illustrate meta-extract hypotheses.

    (defthm plus-identity-2-meta
      (implies (and (nthmeta-ev (meta-extract-global-fact '(:formula bar-posp)
                                                          state)
                                (list (cons 'u
                                            (nthmeta-ev (cadr (cadr term))
                                                        a))))
                    (nthmeta-ev (meta-extract-contextual-fact
                                 `(:typeset ,(caddr term)) mfc state)
                                a))
               (equal (nthmeta-ev term a)
                      (nthmeta-ev (plus-identity-2-metafn term mfc state) a)))
      :rule-classes ((:meta :trigger-fns (binary-+))))

  The two hypotheses illustratate the two basic kinds of meta-extract
  hypotheses: applications of the evaluator to a call of
  meta-extract-global-fact and to a call of
  meta-extract-contextual-fact. Here is the definition of the
  metafunction used in the above rule, slightly simplified here from
  what is found in the above book (but adequate for proving the two
  events that follow it in the above book).

    (defun plus-identity-2-metafn (term mfc state)
      (declare (xargs :stobjs state :verify-guards nil))
      (case-match term
        (('binary-+ ('bar &) y)
         (cond
          ((equal (meta-extract-formula 'bar-posp state)
                  '(POSP (BAR U)))
           (if (ts= (mfc-ts y mfc state :forcep nil)
                    *ts-character*)
               (cadr term)
             term))
          (t term)))
        (& term)))

  This metafunction returns its input term unchanged except in the case
  that the term is of the form (binary-+ (bar x) y) and the following
  two conditions are met, in which case it returns (bar x).

    (1)  (equal (meta-extract-formula 'bar-posp state)
                '(POSP (BAR U)))

    (2)  (ts= (mfc-ts y mfc state :forcep nil)
              *ts-character*)

  So suppose that term is (list 'binary-+ (list 'bar x) y). We show how
  the meta-extract hypotheses together with (1) and (2) imply that
  the conclusion of the above :meta rule holds. Here is that
  conclusion after a bit of simplification.

    (equal (nthmeta-ev (list 'binary-+ (list 'bar x) y) a)
           (nthmeta-ev (list 'bar x) a))

  This equality simplifies as follows using the evaluator properties of
  nthmeta-ev.

    (equal (binary-+ (bar (nthmeta-ev x a))
                     (nthmeta-ev y a))
           (bar (nthmeta-ev x a)))

  Since a positive number plus a character is that number, it clearly
  suffices to show:

    (A)  (posp (bar (nthmeta-ev x a)))

    (B)  (characterp (nthmeta-ev y a))

  It remains then to show that these follow from (1) and (2) together
  with the meta-extract hypotheses.

  First consider (A). We show that it is just a simplification of the
  first meta-extract hypothesis.

    (nthmeta-ev (meta-extract-global-fact '(:formula bar-posp)
                                          state)
                (list (cons 'u
                            (nthmeta-ev (cadr (cadr term))
                                        a))))
    = {by our assumption that term is (list 'binary-+ (list 'bar x) y)}
    (nthmeta-ev (meta-extract-global-fact '(:formula bar-posp)
                                          state)
                (list (cons 'u
                            (nthmeta-ev x a))))
    = {by definition of meta-extract-global-fact, as discussed later}
    (nthmeta-ev (meta-extract-formula 'bar-posp state)
                (list (cons 'u
                            (nthmeta-ev x a))))
    = {by (1)}
    (nthmeta-ev '(posp (bar u))
                (list (cons 'u
                            (nthmeta-ev x a))))
    = {by evaluator properties of nthmeta-ev}
    (posp (bar (nthmeta-ev x a)))

  Now consider (B). We show that it is just a simplification of the
  second meta-extract hypothesis.

    (nthmeta-ev (meta-extract-contextual-fact
                 `(:typeset ,(caddr term)) mfc state)
                a)
    = {by our assumption that term is (list 'binary-+ (list 'bar x) y)}
    (nthmeta-ev (meta-extract-contextual-fact (list ':typeset y) mfc state)
                a)
    = {by definition of meta-extract-contextual-fact, as discussed later}
    (nthmeta-ev (list 'typespec-check
                      (list 'quote
                            (mfc-ts y mfc state :forcep nil))
                      y)
                a)
    = {by (2)}
    (nthmeta-ev (list 'typespec-check
                      (list 'quote *ts-character*)
                      y)
                a)
    = {by evaluator properties of nthmeta-ev}
    (typespec-check *ts-character* (nthmeta-ev y a))
    = {by definition of typespec-check}
    (characterp (nthmeta-ev y a))

  Note the use of :forcep nil above. All of the mfc-xx functions take a
  keyword argument :forcep. Calls of mfc-xx functions made on behalf
  of meta-extract-contextual-fact always use :forcep nil, so in order
  to reason about these calls in your own metafunctions, you will
  want to use :forcep nil. We have contemplated adding a utility like
  meta-extract-contextual-fact that allows forcing but returns a
  tag-tree (see [ttree]), and may do so if there is demand for it.

  Finally, we document what is provided logically by calls of
  meta-extract-global-fact and meta-extract-contextual-fact. Of
  course, you are invited to look at the definitions of these
  function in the ACL2 source code, or by using :[pe]. Note that both
  of these functions are non-executable (each of their bodies is
  inside a call of [non-exec]); their purpose is purely logical, not
  for execution. The functions return *t*, i.e., (quote t), in cases
  that they provide no information.

  First we consider the value of (meta-extract-global-fact obj state)
  for various values of obj. When we refer below to concepts like
  ``body'' and ``evaluation'', we refer to these with respect to the
  logical world of the input state.

      Case obj = (list :formula FN):
      The value reduces to the value of (meta-extract-formula FN state),
      which returns the ``formula'' of FN in the following sense. If
      FN is a function symbol with formals (X1 ... Xk), then the
      formula is the [constraint] on FN if FN is constrained or
      introduced by [defchoose], and otherwise is (equal (FN X1 ...
      Xk) BODY), where BODY is the (unsimplified) body of the
      definition of FN. Otherwise, if FN is the name of a theorem,
      the formula is just what is stored for that theorem. Otherwise,
      the formula is *t*.

      Case obj = (list :lemma FN N):
      Assume N is a natural number; otherwise, treat N as 0. If FN is a
      function symbol with more than N associated lemmas ---
      ``associated'' in the sense of being either a :[definition]
      rule for FN or a :[rewrite] rule for FN whose left-hand side
      has a top function symbol of FN --- then the value is the Nth
      such lemma (with zero-based indexing). Otherwise the value is
      *t*.

      Case obj = (list :fncall FN ARGLIST):
      Assume that FN is a :[logic]-mode function symbol and that ARGLIST
      is a true list of values of the same length as list of formal
      parameters for FN (i.e., as the input arity of FN). Also assume
      that the application of FN to actual parameter list ARGLIST
      returns a result (mv nil x). Let (QARG1 ... QARGk) be the
      result of quoting each element of ARGLIST, i.e., replacing each
      y in ARGLIST by the two-element list (quote y). Then the value
      is the term (equal (FN QARG1 ... QARGk) (quote x)).

      For any other values of obj, the value is *t*.

  Finally, the value of (meta-extract-contextual-fact obj mfc state) is
  as follows for various values of obj. Note a difference from the
  semantics of meta-extract-global-fact: below, the relevant logical
  world is the one stored in the metafunction context, mfc, not in
  the input state.

      Case obj = (list :typeset TERM ...):
      The value is the value of (typespec-check ts TERM), where ts is the
      value of (mfc-ts TERM mfc state :forcep nil :ttreep nil), and
      where (typespec-check ts val) is defined to be true when val
      has type-set ts. (Exception: If val satisfies bad-atom then
      typespec-check is true when ts is negative.)

      Case obj = (list :rw+ TERM ALIST OBJ EQUIV ...):
      We assume below that EQUIV is a symbol that represents an
      equivalence relation, where nil represents [equal], t
      represents [iff], and otherwise EQUIV represents itself (an
      equivalence relation in the current logical [world]). For any
      other EQUIV the value is *t*. Now let rhs be the value of
      (mfc-rw+ TERM ALIST OBJ EQUIV mfc state :forcep nil :ttreep
      nil). Then the value is the term (list 'equv (sublis-var ALIST
      TERM) rhs), where equv is the equivalence relation represented
      by EQUIV, and sublis-var is defined to substitute a
      variable-binding alist into a term.

      Case obj = (list :rw TERM OBJ EQUIV ...):
      The value is the same as above but for an ALIST of nil, i.e., for
      the case that obj is (list :rw+ TERM nil OBJ EQUIV ...).

      Case obj = (list :ap TERM ...):
      The value is (list 'not TERM) if (mfc-ap TERM mfc state :forcep nil)
      is true, else is *t*.

      Case obj = (list :relieve-hyp HYP ALIST RUNE TARGET BKPTR ...):
      The value is (sublis-var alist hyp) --- see above for a discussion
      of sublis-var --- if the following is true.

        (mfc-relieve-hyp hyp alist rune target bkptr mfc state
                         :forcep nil :ttreep nil)

      Otherwise the value is *t*.

      If no case above applies, then the value is *t*.

  We conclude by considering the fourth of the four forms above (and
  implicitly, its special case represented by the third form above):

    (evl (meta-extract-global-fact+ obj st state) aa)

  The discussion above is for the function meta-extract-global-fact+,
  but assumes that the logical [world]s of st and state are equal;
  otherwise the value returned is *t*. Of course, since a call of
  meta-extract-global-fact expands to a corresponding call of
  meta-extract-global-fact+ in which the last two arguments are both
  state, that condition holds automatically for that case. But the
  state mentioned in the meta-extract hypotheses of a [meta] rule or
  [clause-processor] rule is in essence an initial state. In the case
  of a clause-processor rule, the clause-processor function may
  modify that initial state (say, by printing or modifying some state
  globals) without changing its world, and then pass that modified
  state to fncall-term. While fncall-term may produce a different
  result for this modified state than for the initial state, both are
  valid: the state used for heuristic purposes, such as determining
  whether guard-checking may cause an error. A useful instance of the
  hypothesis displayed above will be one in which st is that modified
  state.")
 (META-EXTRACT-CONTEXTUAL-FACT (POINTERS)
                               "See [meta-extract].")
 (META-EXTRACT-FORMULA (POINTERS)
                       "See [meta-extract].")
 (META-EXTRACT-GLOBAL-FACT (POINTERS)
                           "See [meta-extract].")
 (META-EXTRACT-GLOBAL-FACT+ (POINTERS)
                            "See [meta-extract].")
 (META-EXTRACT-RW+-TERM (POINTERS)
                        "See [meta-extract].")
 (META-IMPLICIT-HYPOTHESIS
  (META)
  "A potentially more efficient way of coding a hypothesis metafunction

  We assume familiarity with [meta] rules. In this topic, we discuss a
  relatively advanced capability of meta reasoning in ACL2 that can
  increase its efficiency.


Introduction

  In brief: if a metafunction application to a term, u, evaluates to a
  result of the form (if TEST NEW-TERM u), then TEST is treated as an
  ``implicit hypothesis,'' which must rewrite to true in order for
  the meta rule to simplify the input term. We now explain in more
  detail.

  Recall the general form of a meta rule:

    (implies (and (pseudo-termp x)        ; this hyp is optional
                  (alistp a)              ; this hyp is optional
                  (ev (hyp-fn x ...) a)   ; this hyp is optional
                  ; meta-extract hyps may also be included (see below)
                  )
             (equiv (ev x a)
                    (ev (fn x ...) a)))

  When this rule is to be applied to a term, x, then (hyp-fn x ...) is
  evaluated to produce a term, which must rewrite to true in order to
  evaluate the call (fn x ...), which is then rewritten to a
  replacement for x. But it may be that these calls of hyp-fn and fn
  share a sub-computation. ACL2 provides the ``implicit hypothesis''
  mechanism in order to share such a sub-computation. The next
  section illustrates how this mechanism works. The final section
  provides a precise specification of implicit hypotheses and how
  they are used in metareasoning.


Example

  The following example is trivial but illustrates the sort of
  situation for which implicit hypotheses can be useful. First let us
  introduce a function and an evaluator (see [defevaluator]).

    (defun foo (x y)
      (+ x y))

    (defevaluator evl evl-list
      ((if x y z)
       (foo x y)
       (binary-+ x y)
       (unary-- x)
       (acl2-numberp x)
       (not x)))

  Let us write a meta function and associated hypothesis metafunction
  that apply a common function, meta-helper, to a term, term, to
  return one of two multiple values: (mv nil term) in the case that
  there is no simplification; else (mv hyp new-term), where the
  following is a theorem: `(implies ,hyp (equal ,term ,new-term)). Of
  course, the following definition introduces a function whose calls
  can be evaluated very quickly; but for purposes of this example,
  let us pretend that calls of meta-helper take a great deal of time
  to evaluate.

    (defun meta-helper (term) ; PRETEND that his function is expensive to compute!
      (declare (xargs :guard (pseudo-termp term)))
      (case-match term
        (('foo x ('foo y ('unary-- x)))
         (declare (ignore x))
         (mv `(acl2-numberp ,y)
             y))
        (& (mv nil term))))

  We can now define our meta function and hypothesis metafunction and
  prove a meta rule based on them.

    (defun meta-fn (term)
      (declare (xargs :guard (pseudo-termp term)))
      (mv-let (hyp new-term)
              (meta-helper term)
              (if hyp new-term term)))

    (defun meta-hyp-fn (term)
      (declare (xargs :guard (pseudo-termp term)))
      (mv-let (hyp new-term)
              (meta-helper term)
              (declare (ignore new-term))
              (or hyp ''nil)))

    (defthm meta-fn-correct
      (implies (evl (meta-hyp-fn x) a)
               (equal (evl x a)
                      (evl (meta-fn x) a)))
      :rule-classes ((:meta :trigger-fns (foo))))

  In order to see this meta rule in action, let us disable foo and try
  a little test.

    (in-theory (disable foo))

    (defthm meta-fn-correct-test
      (implies (acl2-numberp b)
               (equal (foo a (foo b (- a)))
                      b)))

  Happily, the test succeeds, with the summary showing that our meta
  rule, meta-fn-correct, was indeed used in the proof. But if we
  first submit the form (trace$ meta-fn meta-hyp-fn meta-helper), we
  will see that meta-helper is called twice on the term (FOO A (FOO B
  (UNARY-- A))): once on behalf of meta-fn and once on behalf of
  meta-hyp-fn. This would be unfortunate if meta-helper were
  expensive to compute.

  So let us back up and try a different approach, which illustrates the
  idea of using an ``implicit hypothesis'' in order to avoid
  recomputation. This time, we avoid defining a hypothesis
  metafunction, but instead we define meta-fn to return a term of the
  form (if TEST NEW-TERM term). Here, TEST is `(acl2-numberp ,y); we
  call this an ``implicit hypothesis.''

    :ubt! meta-fn

    (defun meta-fn (term)
      (declare (xargs :guard (pseudo-termp term)))
      (mv-let (hyp new-term)
              (meta-helper term)
              (if hyp ; the interesting case
                  `(if ,hyp ,new-term ,term)
                term)))

  There is nothing remarkable in the proof of the corresponding meta
  rule.

    (defthm meta-fn-correct
      (equal (evl x a)
             (evl (meta-fn x) a))
      :rule-classes ((:meta :trigger-fns (foo))))

  Let us test our new implementation. If we first evaluate the form
  (trace$ meta-fn meta-helper), we will see that this time,
  meta-helper is called only once on the term (FOO A (FOO B (UNARY--
  A))).

    (in-theory (disable foo))

    (defthm meta-fn-correct-test
      (implies (acl2-numberp b)
               (equal (foo a (foo b (- a)))
                      b)))

  Note that the following proof attempt fails but does not loop.
  Naively, one might expect it to loop, since the false branch of the
  IF term returned by meta-fn has the original (input) term as its
  false branch. However, ACL2 notices the special form (if TEST
  NEW-TERM term) of the term returned by calling meta-fn, and treats
  this result as though TEST is the term returned by a hypothesis
  metafunction and NEW-TERM is the term returned by the metafunction.

    (thm ; FAILS but does not loop!
     (equal (foo a (foo b (- a)))
            b))

  Suppose that instead we had defined meta-fn as follows, that is, with
  the `then' and `else' branches swapped.

    (defun meta-fn (term)
      (declare (xargs :guard (pseudo-termp term)))
      (mv-let (hyp new-term)
              (meta-helper term)
              (if hyp ; the interesting case ;
                  `(if (not ,hyp) ,term ,new-term)
                term)))

  Then the events above go through as before, up to the [thm] form. But
  that form loops, because the generated IF term no longer has the
  special form (if TEST NEW-TERM term). In the (likely rare) case
  that really wishes to allow an unresolved case split for which one
  branch is the original term, this swapping of branches is available
  to defeat the recognition of an implicit hypothesis.


Precise specification

  Consider a meta rule:

    (implies (and (pseudo-termp x)        ; this hyp is optional
                  (alistp a)              ; this hyp is optional
                  (ev (hyp-fn x ...) a)   ; this hyp is optional
                  ; meta-extract hyps may also be included (see below)
                  )
             (equiv (ev x a)
                    (ev (fn x ...) a)))

  Recall that when this rule is applied to a term, term, then a list of
  hypotheses is initially generated as follows, where each generated
  hypothesis must be rewritten to a non-nil value in order for the
  rule to fire.

   1. If there is a hypothesis metafunction, hyp-fn, then let hyps be the
      list of hypothesis terms returned by the call of hyp-fn on
      term. More precisely, the term returned by the call of hyp-fn
      is flattened into a list of ``hypothesis terms,'' so that for
      example the (translated) conjunction (if a (if b c 'nil) 'nil)
      generates the list (a b c) of hypothesis terms.
   2. Otherwise, let hyps be nil.

  When this rule is applied by calling fn on a term, term, we say that
  a term, test, is an ``implicit hypothesis'' if the value returned
  by that call of fn is a term of the form (if test new-term term):
  that is, test is the test of the resulting if term and the input
  term is the false branch of that if term. In this case, ACL2
  recognizes test as an implicit hypothesis, which triggers two
  changes made in how this meta rule is applied. First, hyps is
  extended by the flattened list of hypotheses generated from test.
  Second, instead of applying hyp-fn to the original term, term,
  hyp-fn is applied to new-term.")
 (MIN
  (NUMBERS ACL2-BUILT-INS)
  "The smaller of two numbers

  (Min x y) is the smaller of the numbers x and y.

  The [guard] for min requires its arguments to be rational ([real], in
  ACL2(r)) numbers.

  Min is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Function: <min>

    (defun min (x y)
           (declare (xargs :guard (and (real/rationalp x)
                                       (real/rationalp y))))
           (if (< x y) x y))")
 (MINIMAL-THEORY
  (THEORIES THEORY-FUNCTIONS)
  "A minimal theory to enable

  This [theory] (see [theories]) enables only a few built-in functions
  and executable counterparts. It can be useful when you want to
  formulate lemmas that rather immediately imply the theorem to be
  proved, by way of a :use hint (see [hints]), for example as
  follows.

    :use (lemma-1 lemma-2 lemma-3)
    :in-theory (union-theories '(f1 f2) (theory 'minimal-theory))

  In this example, we expect the current goal to follow from lemmas
  lemma-1, lemma-2, and lemma-3 together with rules f1 and f2 and
  some obvious facts about built-in functions (such as the
  [definition] of [implies] and the :[executable-counterpart] of
  [car]). The :[in-theory] hint above is intended to speed up the
  proof by turning off all inessential rules.")
 (MINUSP
  (NUMBERS ACL2-BUILT-INS)
  "Test whether a number is negative

  (Minusp x) is true if and only if x < 0.

  The [guard] of minusp requires its argument to be a rational ([real],
  in ACL2(r)) number.

  Minusp is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <minusp>

    (defun minusp (x)
           (declare (xargs :guard (real/rationalp x)))
           (< x 0))")
 (MISCELLANEOUS
  (ACL2)
  "A miscellany of documented functions and concepts (often cited in
  more accessible [documentation])

  Perhaps as the system matures this section will become more
  structured.


Subtopics

  [ACL2-customization]
      File of initial commands for ACL2 to run at [startup]

  [Case-split-limitations]
      A list of two ``numbers'' limiting the number of cases produced at
      once

  [Default-defun-mode]
      The default [defun-mode] of [defun]'d functions

  [Gc$]
      Invoke the garbage collector

  [Gc-strategy]
      The garbage collection strategy

  [Gcl]
      Tips on building and using ACL2 based on Gnu Common Lisp

  [Hints]
      Advice to the theorem proving process

  [Ld]
      The ACL2 read-eval-print loop, file loader, and [command] processor

  [Local-incompatibility]
      When non-local [events] won't replay in isolation

  [Ordinals]
      Ordinals in ACL2

  [Reader]
      Reading expressions in the ACL2 read-eval-print loop

  [Set-case-split-limitations]
      Set the case-split-limitations

  [Set-gc-strategy]
      Set the garbage collection strategy (CCL only)

  [Set-prover-step-limit]
      Sets the step-limit used by the ACL2 prover

  [Specious-simplification]
      Nonproductive proof steps

  [Subversive-inductions]
      Why we restrict [encapsulate]d recursive functions

  [Subversive-recursions]
      Why we restrict [encapsulate]d recursive functions

  [Syntax]
      The syntax of ACL2 is that of Common Lisp

  [Term]
      The three senses of well-formed ACL2 expressions or formulas

  [Thm]
      Prove a theorem

  [Top-level]
      Evaluate a top-level form as a function body

  [Ttags-seen]
      List some declared trust tags (ttags)

  [Ttree]
      Tag-trees

  [Type-set]
      How type information is encoded in ACL2

  [With-prover-step-limit]
      Limit the number of steps for proofs

  [With-prover-time-limit]
      Limit the time for proofs")
 (MOD
  (NUMBERS ACL2-BUILT-INS)
  "Remainder using [floor]

    ACL2 !>(mod 14 3)
    2
    ACL2 !>(mod -14 3)
    1
    ACL2 !>(mod 14 -3)
    -1
    ACL2 !>(mod -14 -3)
    -2
    ACL2 !>(mod -15 -3)
    0
    ACL2 !>

  (Mod i j) is that number k that (* j (floor i j)) added to k equals
  i.

  The [guard] for (mod i j) requires that i and j are rational ([real],
  in ACL2(r)) numbers and j is non-zero.

  Mod is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Function: <mod>

    (defun mod (x y)
           (declare (xargs :guard (and (real/rationalp x)
                                       (real/rationalp y)
                                       (not (eql y 0)))))
           (- x (* (floor x y) y)))")
 (MOD-EXPT
  (NUMBERS ACL2-BUILT-INS)
  "Exponential function

  (mod-expt r i m) is the result of raising the number r to the integer
  power i and then taking the residue mod m. That is, (mod-expt r i
  m) is equal to (mod (expt r i) m).

  The [guard] for (mod-expt r i m) is that r is a rational number and i
  is an integer; if r is 0 then i is nonnegative; and m is a non-zero
  rational number.

  In some implementations (GCL Version 2.7.0 as of this writing), this
  function is highly optimized when r and i are natural numbers, not
  both zero, and m is a positive integer. For other Lisp
  implementations, consider using function mod-expt-fast, defined in
  the community book arithmetic-3/floor-mod/mod-expt-fast.lisp, which
  should still provide significantly improved performance over this
  function.

  Function: <mod-expt>

    (defun
         mod-expt (base exp mod)
         (declare (xargs :guard (and (real/rationalp base)
                                     (integerp exp)
                                     (not (and (eql base 0) (< exp 0)))
                                     (real/rationalp mod)
                                     (not (eql mod 0)))))
         (mod (expt base exp) mod))")
 (MODE (POINTERS)
       "See [xargs] for keyword :mode.")
 (MODELING_IN_ACL2
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Modeling in ACL2

  [{IMAGE}]

  {IMAGE}

  Below we define mc(s,n) to be the function that single-steps n times
  from a given starting state, s. In Common Lisp, ``mc(s,n)'' is
  written (mc s n).

    (defun mc (s n)                     ; To step s n times:
     (if (zp n)                         ; If n is 0
         s                              ;    then return s
         (mc (single-step s) (- n 1)))) ;    else step single-step(s)
                                                          n-1 times.

  This is an example of a formal model in ACL2.

  [{IMAGE}]")
 (MODELS_IN_ENGINEERING
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Models in Engineering

  {IMAGE}

  Frequently, engineers use mathematical models. Use of such models
  frequently lead to

  better designs,

  faster completion of acceptable products, and

  reduced overall cost,

  because models allow the trained user to study the design before it
  is built and analyze its properties. Usually, testing and analyzing
  a model is cheaper and faster than fabricating and refabricating
  the product.

  {IMAGE}")
 (MODELS_OF_COMPUTER_HARDWARE_AND_SOFTWARE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Models of Computer Hardware and Software

  [{IMAGE}]

  {IMAGE}

  Computing machines, whether hardware or software or some
  combintation, are frequently modeled as ``state machines.''

  To so model a computing machine we must represent its states as
  objects in our mathematical framework.

  Transitions are functions or relations on state objects.

  In what language shall we define these objects, functions, and
  relations?

  The mathematical languages we were taught in high school

  algebra,

  geometry,

  trignometry, and

  calculus

  are often inappropriate for modeling digital systems. They primarily
  let us talk about numbers and continuous functions.

  To see what kind of expressive power we need, take a closer look at
  what a typical state contains.

  [{IMAGE}]")
 (MONITOR
  (BREAK-REWRITE)
  "To monitor the attempted application of a rule name

    Example:
    (monitor '(:rewrite assoc-of-app) 't)
    :monitor (:rewrite assoc-of-app) t
    (monitor '(:r assoc-of-app) t)
    :monitor (:r assoc-of-app) t
    :monitor assoc-of-app t
    :monitor (:definition app) (equal (brr@ :target) '(app c d))
    :monitor (:linear rule3) t

  In the example above, the first four forms are equivalent. Those are
  equivalent to the fifth form if the event assoc-of-app corresponds
  to a rewrite rule, or more precisely, to a single [rune], (:rewrite
  assoc-of-app).

    General Forms:
    (monitor x term)
    (monitor x term)

  where x is a runic designator other than a theory name (see
  [theories]) and term is a term, called the ``break condition.'' If
  x is not a symbol then it must designate a rune corresponding to a
  rule of class :[rewrite], :[definition], or :[linear]. If x is a
  symbol then it represents all such runes that it designates, in and
  there must be at least one such. (Thus, x cannot name an event that
  generates only rules of classes other than those three.)

  When a [rune] is [monitor]ed any attempt to apply it may result in an
  interactive break in an ACL2 ``[wormhole] [state].'' There you will
  get a chance to see how the application proceeds. See
  [break-rewrite] for a description of the interactive loop entered.
  Whether an interactive break occurs depends on the value of the
  break condition expression associated with the [monitor]ed [rune].

  NOTE: Some :rewrite rules are considered ``simple abbreviations'';
  see [simple]. These can be be monitored, but only at certain times
  during the proof. Monitoring is carried out by code inside the
  rewriter but abbreviation rules may be applied by a special purpose
  simplifier inside the so-called preprocess phase of a proof. If you
  desire to monitor an abbreviation rule, a warning will be printed
  suggesting that you may want to supply the hint :DO-NOT
  '(PREPROCESS); see [hints]. Without such a hint, an abbreviation
  rule can be applied during the preprocess phase of a proof, and no
  such application will cause an interactive break.

  To remove a [rune] from the list of [monitor]ed [rune]s, use
  unmonitor. To see which [rune]s are [monitor]ed and what their
  break conditions are, evaluate (monitored-runes).

  Monitor, unmonitor and monitored-runes are macros that expand into
  expressions involving state. While these macros appear to return
  the list of [monitor]ed [rune]s this is an illusion. They all print
  [monitor]ed [rune] information to the comment window and then
  return [error-triple]s instructing ld to print nothing. It is
  impossible to return the list of [monitor]ed [rune]s because it
  exists only in the [wormhole] [state] with which you interact when
  a break occurs. This allows you to change the [monitor]ed [rune]s
  and their conditions during the course of a proof attempt without
  changing the [state] in which the the proof is being constructed.

  Unconditional break points are obtained by using the break condition
  t. We now discuss conditional break points. The break condition,
  expr, must be a term that contains no free variables other than
  state and that returns a single non-state result. In fact, the
  result should be nil, t, or a true list of commands to be fed to
  the resulting interactive break. Whenever the system attempts to
  use the associated rule, expr is evaluated in the [wormhole]
  interaction [state]. A break occurs only if the result of
  evaluating expr is non-nil. If the result is a true list, that list
  is appended to the front of standard-oi and hence is taken as the
  initial user commands issued to the interactive break.

  In order to develop effective break conditions it must be possible to
  access context sensitive information, i.e., information about the
  context in which the [monitor]ed [rune] is being tried. The [brr@]
  macro may be used in break conditions to access such information as
  the term being rewritten and the current governing assumptions.
  This information is not stored in the proof [state] but is
  transferred into the [wormhole] [state] when breaks occur. The
  macro form is (brr@ :sym) where :sym is one of several keyword
  symbols, including :target (the term being rewritten), :unify-subst
  (the substitution that instantiates the left-hand side of the
  conclusion of the rule so that it is the target term), and
  :[type-alist] (the governing assumptions). See [brr@].

  For example,

    ACL2 !>:monitor (:rewrite assoc-of-app)
                    (equal (brr@ :target) '(app a (app b c)))

  will monitor (:rewrite assoc-of-app) but will cause an interactive
  break only when the target term, the term being rewritten, is (app
  a (app b c)).

  Because break conditions are evaluated in the interaction
  environment, the user developing a break condition for a given
  [rune] can test candidate break conditions before installing them.
  For example, suppose an unconditional break has been installed on a
  [rune], that an interactive break has occurred and that the user
  has determined both that this particular application is
  uninteresting and that many more such applications will likely
  occur. An appropriate response would be to develop an expression
  that recognizes such applications and returns nil. Of course, the
  hard task is figuring out what makes the current application
  uninteresting. But once a candidate expression is developed, the
  user can evaluate it in the current context simply to confirm that
  it returns nil.

  Recall that when a break condition returns a non-nil true list that
  list is appended to the front of standard-oi. For example,

    ACL2 !>:monitor (:rewrite assoc-of-app) '(:go)

  will cause (:rewrite assoc-of-app) to be [monitor]ed and will make
  the break condition be '(:go). This break condition always
  evaluates the non-nil true list (:go). Thus, an interactive break
  will occur every time (:rewrite assoc-of-app) is tried. The break
  is fed the command :go. Now the command :go causes break-rewrite to
  (a) evaluate the attempt to apply the lemma, (b) print the result
  of that attempt, and (c) exit from the interactive break and let
  the proof attempt continue. Thus, in effect, the above :monitor
  merely ``traces'' the attempted applications of the [rune] but
  never causes an interactive break requiring input from the user.

  It is possible to use this feature to cause a conditional break where
  the effective break condition is tested after the lemma has been
  tried. For example:

    ACL2 !>:monitor (:rewrite lemma12)
                    '(:unify-subst
                      :eval$ nil
                      :ok-if (or (not (brr@ :wonp))
                                 (not (equal (brr@ :rewritten-rhs) '(foo a))))
                      :rewritten-rhs)

  causes the following behavior when (:rewrite lemma12) is tried. A
  break always occurs, but it is fed the commands above. The first,
  :unify-subst, causes break-rewrite to print out the unifying
  substitution. Then in response to :eval$ nil the lemma is tried but
  with all [rune]s temporarily [unmonitor]ed. Thus no breaks will
  occur during the rewriting of the hypotheses of the lemma. When the
  attempt has been made, control returns to break-rewrite (which will
  print the results of the attempt, i.e., whether the lemma was
  applied, if so what the result is, if not why it failed). The next
  command, the :ok-if with its following expression, is a conditional
  exit command. It means exit break-rewrite if either the attempt was
  unsuccessful, (not (brr@ :wonp)), or if the result of the rewrite
  is any term other than (foo a). If this condition is met, the break
  is exited and the remaining break commands are irrelevant. If this
  condition is not met then the next command, :rewritten-rhs, prints
  the result of the application (which in this contrived example is
  known to be (foo a)). Finally, the list of supplied commands is
  exhausted but break-rewrite expects more input. Therefore, it
  begins prompting the user for input. The end result, then, of the
  above :monitor command is that the [rune] in question is
  elaborately traced and interactive breaks occur whenever it
  rewrites its target to (foo a).

  We recognize that the above break condition is fairly arcane. We
  suspect that with experience we will develop some useful idioms.
  For example, it is straightforward now to define macros that
  monitor [rune]s in the ways suggested by the following names:
  trace-rune, break-if-target-is, and break-if-result-is. For
  example, the last could be defined as

    (defmacro break-if-result-is (rune term)
      `(monitor ',rune
                '(quote (:eval :ok-if
                               (not (equal (brr@ :rewritten-rhs) ',term))))))

  (Note however that the submitted term must be in translated form.)

  Since we don't have any experience with this kind of control on
  lemmas we thought it best to provide a general (if arcane)
  mechanism and hope that the ACL2 community will develop the special
  cases that we find most convenient.")
 (MONITORED-RUNES
  (BREAK-REWRITE)
  "Print the [monitor]ed [rune]s and their break conditions

    Example and General Form:
    :monitored-runes

  This macro prints a list, each element of which is of the form (rune
  expr), showing each [monitor]ed [rune] and its current break
  condition.")
 (MSG
  (IO ACL2-BUILT-INS)
  "Construct a ``message'' suitable for the ~@ directive of [fmt]

  See [fmt] for background on formatted printing with ACL2.

  We document msg precisely below, but first, we give an informal
  introduction and illustrate with an example. Suppose you are
  writing a program that is to do some printing. Typically, you will
  either pass the ACL2 state around (see [programming-with-state])
  and use formatted printing functions that take the state as an
  argument (see [fmt])), or else you might avoid using state by
  calling the utility, [cw], to do you printing. Alternatively, you
  might print error messages upon encountering illegal situations;
  see [er]. But there are times where instead of printing
  immediately, you may prefer to pass messages around, for example to
  accumulate them before printing a final message. In such cases, it
  may be desirable to construct ``message'' objects to pass around.

  For example, consider the following pair of little programs. The
  first either performs a computation or prints an error, and the
  second calls the first on two inputs.

    (defun invert1 (x)
      (if (consp x)
          (cons (cdr x) (car x))
        (prog2$ (cw \"ERROR: ~x0 expected a cons, but was given ~x1.~|\"
                    'invert1 x)
                nil)))

    (defun invert2 (x1 x2)
      (list (invert1 x1) (invert1 x2)))

  For example:

    ACL2 !>(invert1 '(3 . 4))
    (4 . 3)
    ACL2 !>(invert1 'a)
    ERROR: INVERT1 expected a cons, but was given A.
    NIL
    ACL2 !>(invert2 '(3 . 4) '(5 . 6))
    ((4 . 3) (6 . 5))
    ACL2 !>(invert2 'a 'b)
    ERROR: INVERT1 expected a cons, but was given A.
    ERROR: INVERT1 expected a cons, but was given B.
    (NIL NIL)
    ACL2 !>

  Notice that when there are errors, there is no attempt to explain
  that these are due to a call of invert2. That could be fixed, of
  course, by arranging for invert2 to print its own error; but for
  complicated programs it can be awkward to coordinate printing from
  many sources. So let's try a different approach. This time, the
  first function returns two results. The first result is an ``error
  indicator'' --- either a message object or nil --- while the second
  is the computed value (only of interest when the first result is
  nil). Then the higher-level function can print a single error
  message that includes the error message(s) from the lower-level
  function, as shown below.

    (defun invert1a (x)
      (if (consp x)
          (mv nil
              (cons (cdr x) (car x)))
        (mv (msg \"ERROR: ~x0 expected a cons, but was given ~x1.~|\"
                 'invert1a x)
            nil)))

    (defun invert2a (x1 x2)
      (mv-let (erp1 y1)
              (invert1a x1)
              (mv-let (erp2 y2)
                      (invert1a x2)
                      (if erp1
                          (if erp2
                              (cw \"~x0 failed with two errors:~|  ~@1  ~@2\"
                                  'invert2a erp1 erp2)
                            (cw \"~x0 failed with one error:~|  ~@1\"
                                'invert2a erp1))
                        (if erp2
                            (cw \"~x0 failed with one error:~|  ~@1\"
                                'invert2a erp2)
                          (list y1 y2))))))

  For example:

    ACL2 !>(invert2a '(3 . 4) '(5 . 6))
    ((4 . 3) (6 . 5))
    ACL2 !>(invert2a '(3 . 4) 'b)
    INVERT2A failed with one error:
      ERROR: INVERT1A expected a cons, but was given B.
    NIL
    ACL2 !>(invert2a 'a 'b)
    INVERT2A failed with two errors:
      ERROR: INVERT1A expected a cons, but was given A.
      ERROR: INVERT1A expected a cons, but was given B.
    NIL
    ACL2 !>

  If you study the example above, you might well understand msg. But we
  conclude with precise documentation.

    General Form:
    (msg str arg1 ... argk)

  where str is a string and k is at most 9.

  This macro returns a pair suitable for giving to the fmt directive
  ~@. Thus, suppose that #\\c is bound to the value of (msg str arg1
  ... argk), where c is a character and k is at most 9. Then the fmt
  directive ~@c will print out the string, str, in the context of the
  alist in which the successive fmt variables #\\0, #\\1, ..., #\\k are
  bound to the successive elements of (arg1 ... argk).")
 (MUST-BE-EQUAL
  (MBE ACL2-BUILT-INS)
  "Attach code for execution

  The form (must-be-equal logic exec) evaluates to logic in the ACL2
  logic but evaluates to exec in raw Lisp. The point is to be able to
  write one definition to reason about logically but another for
  evaluation. Please see [mbe] and see [mbt] for appropriate macros
  to use, rather than calling must-be-equal directly, since it is
  easy to commute the arguments of must-be-equal by accident.

  In essence, the guard for (must-be-equal x y) is (equal x y).
  However, note that must-be-equal is a macro: (must-be-equal logic
  exec) expands to (mbe1 exec logic), which expands to a call of
  [return-last].")
 (MUTUAL-RECURSION
  (EVENTS PROGRAMMING DEFUN)
  "Define some mutually recursive functions

    Example:
    (mutual-recursion
     (defun evenlp (x)
       (if (consp x) (oddlp (cdr x)) t))
     (defun oddlp (x)
       (if (consp x) (evenlp (cdr x)) nil)))

    General Form:
    (mutual-recursion def1 ... defn)

  where each defi is a call of [defun], [defund], [defun-nx], or
  defund-nx.

  When mutually recursive functions are introduced it is necessary to
  do the termination analysis on the entire clique of definitions.
  Each [defun] form specifies its own measure, either with the
  :measure keyword xarg (see [xargs]) or by default to [ACL2-count].
  When a function in the clique calls a function in the clique, the
  measure of the callee's actuals must be smaller than the measure of
  the caller's formals --- just as in the case of a simply recursive
  function. But with mutual recursion, the callee's actuals are
  measured as specified by the callee's [defun] while the caller's
  formals are measured as specified by the caller's [defun]. These
  two measures may be different but must be comparable in the sense
  that [o<] decreases through calls.

  If you want to specify :[hints] or :guard-hints (see [xargs]), you
  can put them in the [xargs] declaration of any of the [defun]
  forms, as the :[hints] from each form will be appended together, as
  will the [guard-hints] from each form.

  You may find it helpful to use a lexicographic order, the idea being
  to have a measure that returns a list of two arguments, where the
  first takes priority over the second. Here is an example.

    (include-book \"ordinals/lexicographic-ordering\" :dir :system)

    (encapsulate
     ()
     (set-well-founded-relation l<) ; will be treated as LOCAL

     (mutual-recursion
      (defun foo (x)
        (declare (xargs :measure (list (acl2-count x) 1)))
        (bar x))
      (defun bar (y)
        (declare (xargs :measure (list (acl2-count y) 0)))
        (if (zp y) y (foo (1- y))))))

  The [guard] analysis must also be done for all of the functions at
  the same time. If any one of the [defun]s specifies the
  :[verify-guards] xarg to be nil, then [guard] verification is
  omitted for all of the functions. Similarly, if any one of the
  [defun]s specifies the :non-executable xarg to be t, or if any of
  the definitions uses [defun-nx] or defund-nx, then every one of the
  definitions will be treated as though it specifies a
  :non-executable xarg of t.

  Technical Note: Each defi above must be a call of [defun], [defund],
  [defun-nx], or defund-nx. In particular, it is not permitted for a
  defi to be an arbitrary form that macroexpands into a [defun] form.
  This is because mutual-recursion is itself a macro, and since
  macroexpansion occurs from the outside in, at the time
  (mutual-recursion def1 ... defk) is expanded the defi have not yet
  been macroexpanded.

  Suppose you have defined your own [defun]-like macro and wish to use
  it in a mutual-recursion expression. Well, you can't. (!) But you
  can define your own version of mutual-recursion that allows your
  [defun]-like form. Here is an example. Suppose you define

    (defmacro my-defun (&rest args) (my-defun-fn args))

  where my-defun-fn takes the arguments of the my-defun form and
  produces from them a [defun] form. As noted above, you are not
  allowed to write (mutual-recursion (my-defun ...) ...). But you can
  define the macro my-mutual-recursion so that

    (my-mutual-recursion (my-defun ...) ... (my-defun ...))

  expands into (mutual-recursion (defun ...) ... (defun ...)) by
  applying my-defun-fn to each of the arguments of
  my-mutual-recursion.

    (defun my-mutual-recursion-fn (lst)
      (declare (xargs :guard (alistp lst)))

    ; Each element of lst must be a consp (whose car, we assume, is always
    ; MY-DEFUN).  We apply my-defun-fn to the arguments of each element and
    ; collect the resulting list of DEFUNs.

      (cond ((atom lst) nil)
            (t (cons (my-defun-fn (cdr (car lst)))
                     (my-mutual-recursion-fn (cdr lst))))))

    (defmacro my-mutual-recursion (&rest lst)

    ; Each element of lst must be a consp (whose car, we assume, is always
    ; MY-DEFUN).  We obtain the DEFUN corresponding to each and list them
    ; all inside a MUTUAL-RECURSION form.

      (declare (xargs :guard (alistp lst)))
      (cons 'mutual-recursion (my-mutual-recursion-fn lst))).


Subtopics

  [Defuns]
      An alternative to [mutual-recursion]

  [Mutual-recursion-proof-example]
      A small proof about mutually recursive functions

  [Set-bogus-mutual-recursion-ok]
      Allow unnecessary ``mutual recursion''")
 (MUTUAL-RECURSION-PROOF-EXAMPLE
  (TUTORIAL5-MISCELLANEOUS-EXAMPLES MUTUAL-RECURSION)
  "A small proof about mutually recursive functions

  Sometimes one wants to reason about mutually recursive functions.
  Although this is possible in ACL2, it can be a bit awkward. This
  example is intended to give some ideas about how one can go about
  such proofs.

  For an introduction to mutual recursion in ACL2, see
  [mutual-recursion].

  We begin by defining two mutually recursive functions: one that
  collects the variables from a [term], the other that collects the
  variables from a list of [term]s. We actually imagine the [term]
  argument to be a pseudo-termp; see [pseudo-termp].

    (mutual-recursion

    (defun free-vars1 (term ans)
      (cond ((atom term)
             (add-to-set-eq term ans))
            ((fquotep term) ans)
            (t (free-vars1-lst (cdr term) ans))))

    (defun free-vars1-lst (lst ans)
      (cond ((atom lst) ans)
            (t (free-vars1-lst (cdr lst)
                               (free-vars1 (car lst) ans)))))

    )

  Now suppose that we want to prove the following theorem.

    (defthm symbol-listp-free-vars1-try-1
      (implies (and (pseudo-termp x)
                    (symbol-listp ans))
               (symbol-listp (free-vars1 x ans))))

  Often ACL2 can generate a proof by induction based on the structure
  of definitions of function symbols occurring in the conjecture. In
  this case, ACL2 chooses to use an induction scheme suggested by
  (symbol-listp ans), and sadly, that doesn't work. If one were doing
  this proof with pencil and paper, one would be more likely to prove
  a combination of the conjecture above and an analogous conjecture
  about free-vars1-lst. Feel free to try a pencil and paper proof! Or
  you can read on, to see how one can get ACL2 to do such a proof
  after all.

  The trick is to define a function that suggests an appropriate
  induction. The induction suggested is based on the if-then-else
  structure of the function's definition, where inductive hypotheses
  are generated for recursive calls --- below we explain how that
  works for this function.

    (defun symbol-listp-free-vars1-induction (x ans)
      (if (atom x)
    ; then we just make sure x and ans aren't considered irrelevant:
          (list x ans)
        (list (symbol-listp-free-vars1-induction (car x) ans)
              (symbol-listp-free-vars1-induction (cdr x) ans)
              (symbol-listp-free-vars1-induction (cdr x)
                                                 (free-vars1 (car x) ans)))))

  The if-then-else structure of this function generates two cases. In
  one case, (atom x) is true, and the theorem to be proved should be
  proved under no additional hypotheses except for (atom x); in other
  words, (atom x) gives us the base case of the induction. In the
  other case, (not (atom x)) is assumed together with three instances
  of the theorem to be proved, one for each recursive call. So, one
  instance substitutes (car x) for x; one substitutes (cdr x) for x;
  and the third substitutes (cdr x) for x and (free-vars1 (car x)
  ans) for ans. If you think about how you would go about a hand
  proof of the theorem to follow, you'll likely come up with a
  similar scheme.

  We now prove the two theorems together as a conjunction, because the
  inductive hypotheses for one are sometimes needed in the proof of
  the other (even when you do this proof on paper!).

    (defthm symbol-listp-free-vars1
      (and (implies (and (pseudo-termp x)
                         (symbol-listp ans))
                    (symbol-listp (free-vars1 x ans)))
           (implies (and (pseudo-term-listp x)
                         (symbol-listp ans))
                    (symbol-listp (free-vars1-lst x ans))))
      :hints
      ((\"Goal\" :induct (symbol-listp-free-vars1-induction x ans))))

  The above works, but we conclude by illustrating a more efficient
  approach, in which we restrict to appropriate inductive hypotheses
  for each case.

    (ubt 'symbol-listp-free-vars1-induction)

    (defun symbol-listp-free-vars1-induction (flg x ans)

    ; Flg is nil if we are ``thinking'' of a single term.

      (if (atom x) ; whether x is a single term or a list of terms
          (list x ans)
        (if flg ; i.e., if x is a list of terms
            (list (symbol-listp-free-vars1-induction nil (car x) ans)
                  (symbol-listp-free-vars1-induction t
                                                     (cdr x)
                                                     (free-vars1 (car x) ans)))
          (symbol-listp-free-vars1-induction t (cdr x) ans))))

  We now state the theorem as a conditional, so that it can be proved
  nicely using the [induction] scheme that we have just coded. The
  prover will not store an [if] [term] as a [rewrite] rule, but
  that's OK (provided we tell it not to try), because we're going to
  derive the corollaries of interest later and make them into
  [rewrite] rules.

    (defthm symbol-listp-free-vars1-flg
      (if flg
          (implies (and (pseudo-term-listp x)
                        (symbol-listp ans))
                   (symbol-listp (free-vars1-lst x ans)))
        (implies (and (pseudo-termp x)
                      (symbol-listp ans))
                 (symbol-listp (free-vars1 x ans))))
      :hints
      ((\"Goal\" :induct (symbol-listp-free-vars1-induction flg x ans)))
      :rule-classes nil)

  And finally, we may derive the theorems we are interested in as
  immediate corollaries.

    (defthm symbol-listp-free-vars1
      (implies (and (pseudo-termp x)
                    (symbol-listp ans))
               (symbol-listp (free-vars1 x ans)))
      :hints ((\"Goal\" :by (:instance symbol-listp-free-vars1-flg
                                     (flg nil)))))

    (defthm symbol-listp-free-vars1-lst
      (implies (and (pseudo-term-listp x)
                    (symbol-listp ans))
               (symbol-listp (free-vars1-lst x ans)))
      :hints ((\"Goal\" :by (:instance symbol-listp-free-vars1-flg
                                     (flg t)))))

  You may find [community-books] that help you to automate this kind of
  reasoning about mutually recursive functions. See for example
  [make-flag].")
 (MV
  (BASICS ACL2-BUILT-INS)
  "Returning a multiple value

  Mv is the mechanism provided by ACL2 for returning two or more
  values. Logically, (mv x1 x2 ... xn) is the same as (list x1 x2 ...
  xn), a list of the indicated values. However, ACL2 avoids the cost
  of building this list structure, with the cost that mv may only be
  used in a certain style in definitions: if a function ever returns
  using mv (either directly, or by calling another function that
  returns a multiple value), then this function must always return
  the same number of values.

  For more explanation of the multiple value mechanism, see [mv-let].
  Also see [mv-list] for a way to convert a multiple value into an
  ordinary list.

  ACL2 does not support the Common Lisp construct values, whose logical
  meaning seems difficult to characterize. Mv is the ACL2 analogue of
  that construct.


Subtopics

  [Mv-let]
      Calling multi-valued ACL2 functions

  [Mv-list]
      Converting multiple-valued result to a single-valued list

  [Mv-nth]
      The mv-nth element (zero-based) of a list

  [Mv?]
      Return one or more values

  [Mv?-let]
      Calling possibly multi-valued ACL2 functions")
 (MV-LET
  (MV ACL2-BUILT-INS)
  "Calling multi-valued ACL2 functions

    Example Form:
    (mv-let (x y z)              ; local variables
            (mv 1 2 3)           ; multi-valued expression
            (declare (ignore y)) ; optional declarations
            (cons x z))          ; body

  The form above binds the three ``local variables,'' x, y, and z, to
  the three results returned by the multi-valued expression and then
  evaluates the body. The result is '(1 . 3). The second local, y, is
  [declare]d ignored. The multi-valued expression can be any ACL2
  expression that returns k results, where k is the number of local
  variables listed. Often however it is simply the application of a
  k-valued function. Mv-let is the standard way to invoke a
  multi-valued function when the caller must manipulate the vector of
  results returned.

    General Form:
    (mv-let (var1 ... vark)
            term
            body)
    or
    (mv-let (var1 ... vark)
            term
            (declare ...) ... (declare ...)
            body)

  where the vari are distinct variables, term is a term that returns k
  results and mentions only variables bound in the environment
  containing the mv-let expression, and body is a term mentioning
  only the vari and variables bound in the environment containing the
  mv-let. Each vari must occur in body unless it is [declare]d
  ignored or ignorable in one of the optional [declare] forms, unless
  this requirement is turned off; see [set-ignore-ok]. The value of
  the mv-let term is the result of evaluating body in an environment
  in which the vari are bound, in order, to the k results obtained by
  evaluating term in the environment containing the mv-let.

  Here is an extended example that illustrates both the definition of a
  multi-valued function and the use of mv-let to call it. Consider a
  simple binary tree whose interior nodes are [cons]es and whose
  leaves are non-[cons]es. Suppose we often need to know the number,
  n, of interior nodes of such a tree; the list, syms, of symbols
  that occur as leaves; and the list, ints, of integers that occur as
  leaves. (Observe that there may be leaves that are neither symbols
  nor integers.) Using a multi-valued function we can collect all
  three results in one pass.

  Here is the first of two definitions of the desired function. This
  definition is ``primitive recursive'' in that it has only one
  argument and that argument is reduced in size on every recursion.

    (defun count-and-collect (x)

    ; We return three results, (mv n syms ints) as described above.

      (cond ((atom x)

    ; X is a leaf.  Thus, there are 0 interior nodes, and depending on
    ; whether x is a symbol, an integer, or something else, we return
    ; the list containing x in as the appropriate result.

             (cond ((symbolp x) (mv 0 (list x) nil))
                   ((integerp x)(mv 0 nil      (list x)))
                   (t           (mv 0 nil      nil))))
            (t

    ; X is an interior node.  First we process the car, binding n1, syms1, and
    ; ints1 to the answers.

               (mv-let (n1 syms1 ints1)
                       (count-and-collect (car x))

    ; Next we process the cdr, binding n2, syms2, and ints2.

                       (mv-let (n2 syms2 ints2)
                               (count-and-collect (car x))

    ; Finally, we compute the answer for x from those obtained for its car
    ; and cdr, remembering to increment the node count by one for x itself.

                               (mv (1+ (+ n1 n2))
                                   (append syms1 syms2)
                                   (append ints1 ints2)))))))

  This use of a multiple value to ``do several things at once'' is very
  common in ACL2. However, the function above is inefficient because
  it [append]s syms1 to syms2 and ints1 to ints2, copying the list
  structures of syms1 and ints1 in the process. By adding
  ``accumulators'' to the function, we can make the code more
  efficient.

    (defun count-and-collect1 (x n syms ints)
      (cond ((atom x)
             (cond ((symbolp x) (mv n (cons x syms) ints))
                   ((integerp x) (mv n syms (cons x ints)))
                   (t (mv n syms ints))))
            (t (mv-let (n2 syms2 ints2)
                       (count-and-collect1 (cdr x) (1+ n) syms ints)
                       (count-and-collect1 (car x) n2 syms2 ints2)))))

  We claim that (count-and-collect x) returns the same triple of
  results as (count-and-collect1 x 0 nil nil). The reader is urged to
  study this claim until convinced that it is true and that the
  latter method of computing the results is more efficient. One might
  try proving the theorem

    (defthm count-and-collect-theorem
      (equal (count-and-collect1 x 0 nil nil) (count-and-collect x))).

  Hint: the inductive proof requires attacking a more general theorem.

  ACL2 does not support the Common Lisp construct multiple-value-bind,
  whose logical meaning seems difficult to characterize. Mv-let is
  the ACL2 analogue of that construct. Also see [mv] and see
  [mv-list].")
 (MV-LIST
  (MV ACL2-BUILT-INS)
  "Converting multiple-valued result to a single-valued list

    Example Forms:
    ; Returns the list (3 4):
    (mv-list 2 (mv 3 4))

    ; Returns a list containing the three values returned by var-fn-count:
    (mv-list 3 (var-fn-count '(cons (binary-+ x y) z) nil))

    General form:
    (mv-list n term)

  Logically, (mv-list n term) is just term; that is, in the logic
  mv-list simply returns its second argument. However, the evaluation
  of a call of mv-list on explicit values always results in a single
  value, which is a (null-terminated) list. For evaluation, the term
  n above (the first argument to an mv-list call) must
  ``essentially'' (see below) be an integer not less than 2, where
  that integer is the number of values returned by the evaluation of
  term (the second argument to that mv-list call).

  We say ``essentially'' above because it suffices that the translation
  of n to a term (see [trans]) be of the form (quote k), where k is
  an integer greater than 1. So for example, if term above returns
  three values, then n can be the expression 3, or (quote 3), or even
  (mac 3) if mac is a macro defined by (defmacro mac (x) x). But n
  cannot be (+ 1 2), because even though that expression evaluates to
  3, nevertheless it translates to (binary-+ '1 '2), not to (quote
  3).

  Mv-list is the ACL2 analogue of the Common Lisp construct
  multiple-value-list.

  Function: <mv-list>

    (defun mv-list (input-arity x)
           (declare (xargs :guard t)
                    (ignore input-arity))
           x)")
 (MV-NTH
  (MV ACL2-BUILT-INS)
  "The mv-nth element (zero-based) of a list

  (Mv-nth n l) is the nth element of l, zero-based. If n is greater
  than or equal to the length of l, then mv-nth returns nil.

  (Mv-nth n l) has a [guard] that n is a non-negative integer.

  Mv-nth is equivalent to the Common Lisp function [nth] (although
  without the guard condition that the list is a [true-listp]), but
  is used by ACL2 to access the nth value returned by a multiply
  valued expression. For example, the following are logically
  equivalent:

    (mv-let (erp val state)
            (read-object ch state)
            (value (list erp val)))

  and

    (let ((erp (mv-nth 0 (read-object ch state)))
          (val (mv-nth 1 (read-object ch state)))
          (state (mv-nth 2 (read-object ch state))))
      (value (list erp val)))

  To see the ACL2 definition of mv-nth, see [pf].

  If EXPR is an expression that is multiply valued, then the form
  (mv-nth n EXPR) is illegal both in definitions and in forms
  submitted directly to the ACL2 loop. Indeed, EXPR cannot be passed
  as an argument to any function (mv-nth or otherwise) in such an
  evaluation context. The reason is that ACL2 code compiled for
  execution does not actually create a list for multiple value
  return; for example, the read-object call above logically returns a
  list of length 3, but when evaluated, it instead stores its three
  returned values without constructing a list. In such cases you can
  use mv-nth to access the corresponding list by using mv-list,
  writing (mv-nth n (mv-list k EXPR)) for suitable k, where mv-list
  converts a multiple value result into the corresponding list; see
  [mv-list].")
 (MV?
  (MV ACL2-BUILT-INS)
  "Return one or more values

  Mv? is designed to work with mv?-let, generalizing how [mv] works
  with [mv-let] by allowing the binding of a single variable. For
  example, the following form is legal.

    (mv?-let (y)
             (mv? (f x))
             (declare (type integer y))
             (g x y z))

  The expression above is equivalent to the following expression,
  because (mv? form) expands to form for any expression, form.

    (let ((y (f x)))
      (declare (type integer y))
      (g x y z))

  Logically, (mv? x) is the same as x, while (mv? v1 v2 ...) is the
  same as (list v1 v2 ...). Also see [mv] and see [mv?-let].")
 (MV?-LET
  (MV ACL2-BUILT-INS)
  "Calling possibly multi-valued ACL2 functions

  Mv?-let is a macro that extends the macro [mv-let] by allowing a
  single variable to be bound. Thus, the syntax is the same as that
  of [mv-let] except that mv?-let is permitted to bind a single
  variable to a form that produces a single value. The macros mv?-let
  and [mv?] are provided to facilitate the writing of macros that
  traffic in expressions that could return one or more (multiple)
  values.

  For example, the form

    (mv?-let (y)
             (f x)
             (declare (type integer y))
             (g x y z))

  is equivalent to the following form.

    (let ((y (f x)))
      (declare (type integer y))
      (g x y z))

  Calls of mv?-let and of [mv-let] are equivalent when the first
  argument contains at least two variables; see [mv-let] for
  documentation. In the case of binding a single variable, the
  general form is

    (mv?-let (var)
             term
             (declare ...) ... (declare ...)
             body)

  and this is equivalent to the following form (see [let]).

    (let ((var term))
      (declare ...) ... (declare ...)
      body)

  Also see [mv?].")
 (NAME
  (EVENTS)
  "Syntactic rules on logical names

    Examples                 Counter-Examples

    PRIMEP               91         (not a symbolp)
    F-AC-23              :CHK-LIST  (in KEYWORD package)
    1AX                  *PACKAGE*  (in the Lisp Package)
    |Prime Number|       1E3        (not a symbolp)

  Many different ACL2 entities have names, e.g., functions, macros,
  variables, constants, packages, theorems, [theories], etc. Package
  names are strings. All other names are symbols and may not be in
  the \"KEYWORD\" package. Moreover, names of functions, macros,
  constrained functions, and constants, other than those that are
  predefined, must not be in the ``main Lisp package'' (which is
  (\"LISP\" or \"COMMON-LISP\", according to whether we are following
  CLTL1 or CLTL2). An analogous restriction on variables is given
  below.

  T, nil, and all names above except those that begin with ampersand
  (&) are names of variables or constants. T, nil, and those names
  beginning and ending with star (*) are constants. All other such
  names are variables.

  Note that names that start with ampersand, such as &rest, may be
  lambda list keywords and are reserved for such use whether or not
  they are in the CLTL constant lambda-list-keywords. (See pg 82 of
  CLTL2.) That is, these may not be used as variables. Unlike
  constants, variables may be in the main Lisp package as long as
  they are in the original list of imports from that package to ACL2,
  the list *common-lisp-symbols-from-main-lisp-package*, and do not
  belong to a list of symbols that are potentially ``global.'' This
  latter list is the value of *common-lisp-specials-and-constants*.

  Our restrictions pertaining to the main Lisp package take into
  account that some symbols, e.g., lambda-list-keywords and boole-c2,
  are ``special.'' Permitting them to be bound could have harmful
  effects. In addition, the Common Lisp language does not allow
  certain manipulations with many symbols of that package. So, we
  stay away from them, except for allowing certain variables as
  indicated above.")
 (NAME_THE_FORMULA_ABOVE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Name the Formula Above

  When the theorem prover explicitly assigns a name, like *1, to a
  formula, it has decided to prove the formula by induction.")
 (NAT-LISTP
  (NUMBERS LISTS ACL2-BUILT-INS)
  "Recognizer for a true list of natural numbers

  The predicate nat-listp tests whether its argument is a true list of
  natural numbers.

  Function: <nat-listp>

    (defun nat-listp (l)
           (declare (xargs :guard t))
           (cond ((atom l) (eq l nil))
                 (t (and (natp (car l))
                         (nat-listp (cdr l))))))")
 (NATP
  (NUMBERS ACL2-BUILT-INS)
  "A recognizer for the natural numbers

  The natural numbers is the set of all non-negative integers,
  {0,1,2,3,...}. Natp returns t if and only its argument is a natural
  number, and nil otherwise.

  The community book [arithmetic/natp-posp] has some lightweight rules
  for reasoning about posp and natp, and is included in the
  [arithmetic-1] library. For a somewhat heavier and more
  comprehensive alternative, you may wish to instead see the
  [arith-equivs] book.

  Function: <natp>

    (defun natp (x)
           (declare (xargs :guard t))
           (and (integerp x) (<= 0 x)))")
 (NESTED-STOBJS
  (STOBJ)
  "Using [stobj]s that contain stobjs

  For this topic we assume that you already understand the basics of
  single-threaded objects in ACL2. See [stobj], and in particular,
  see [defstobj]. The latter topic mentions briefly that a stobj
  field can itself be a stobj or an array of stobjs. That discussion
  is the subject of the present [documentation] topic.

  Our presentation is in four sections. First we augment the
  documentation for [defstobj] by explaining how stobjs may be
  specified for fields in a new stobj definition. Then we explain an
  aliasing problem, which accounts for a prohibition against making
  direct calls to accessors and updaters involving stobj fields of
  stobjs. Next, we introduce an ACL2 primitive, stobj-let, which
  provides the only way to read and write stobj components of stobjs.
  The final section provides precise documentation for stobj-let.

  See also ACL2 community book demos/modeling/nested-stobj-toy-isa.lisp
  for a worked example, which applies nested stobj structures to the
  problem of defining interpreters. A variety of small additional
  examples may be found in ACL2 community book
  misc/nested-stobj-tests.lisp. For further discussion, you are
  welcome to read the ``Essay on Nested Stobjs'', a long comment in
  ACL2 source file other-events.lisp. However, this documentation
  topic is intended to be self-contained for those familiar with
  [stobj]s.


SECTION: Extension of [defstobj] to permit [stobj]s within stobjs

  Recall that the :type keyword of a [defstobj] field descriptor can be
  a ``type-indicator'' that specifies the type of the field as a
  type-spec (see [type-spec]). For example, the following specifies
  an integer field and a field that is an array of bytes.

    (defstobj st
      (int-field :type integer :initially 0)
      (ar-field :type (array unsigned-byte (10)) :initially 0))

  But the :type of a stobj field descriptor may instead be based on a
  stobj. For example, the following sequence of three [events] is
  legal. The first field descriptor of top, named sub1-field,
  illustrates one new kind of value for :type: the name of a
  previously-introduced stobj, which here is sub1. The second field
  descriptor of top, named sub2-ar-field, illustrates the other new
  kind of value for :type: an array whose elements are specified by
  the name of a previously-introduced stobj, in this case, the stobj
  sub2.

    (defstobj sub1 fld1)
    (defstobj sub2 fld2)
    (defstobj top
      (sub1-field :type sub1)
      (sub2-ar-field :type (array sub2 (10))))

  The :initially keyword is illegal for fields whose :type is a stobj
  or an array of stobjs. Each such initial value is provided by a
  corresponding call of the stobj creator for that stobj. In
  particular, in the case of an array of stobjs, the stobj creator is
  called once for each element of the array, so that the array
  elements are distinct. For example, each element of sub2-ar-field
  in the example above is initially provided by a separate call of
  create-sub2. Each initial element is thus unique, and in particular
  is distinct from the initial global value of the stobj. Similarly,
  the initial global stobj for sub1 is distinct from the initial
  sub1-field field of the global stobj for top, as these result from
  separate calls of create-sub1.

  When a stobj is used in a field of another stobj, we may refer to the
  former field as a ``child stobj'' and the latter stobj as a
  ``parent stobj''. So in the example above, sub1-field is a child
  stobj of type sub1 for parent stobj top, and sub2-ar-field is an
  array of child stobjs of type sub2 for parent stobj top. A child
  stobj has the same structural shape as the global stobj of its
  type, but as explained above, these are distinct structures. We
  follow standard terminology by saying ``isomorphic'' to indicate
  the same structural shape. So for example, (the value of)
  sub1-field is isomorphic to sub1, though these are distinct
  structures.

  ACL2 enforces the following restriction, which can allow for greater
  efficiency in the raw Lisp code generated for stobj-let forms, as
  per the discussion below about clearing memoization tables. If the
  parent stobj is introduced by [defstobj] using keyword argument
  :non-memoizable t, then this is required to have been the case for
  every child stobj as well.


SECTION: An aliasing problem

  Before introducing stobj-let below, we provide motivation for this
  ACL2 primitive.

  Consider the following [events].

    (defstobj child fld)
    (defstobj parent
      (fld2 :type child))

  Now suppose we could evaluate the following code, to be run
  immediately after admitting the two [defstobj] events above.

    (let* ((child (fld2 parent))
           (child (update-fld 3 child)))
      (mv child parent))

  Now logically there is no change to parent: parent is passed through
  unchanged. We can indeed prove that fact!

    (thm (equal (mv-nth 1
                        (let* ((child (fld2 parent))
                               (child (update-fld 3 child)))
                          (mv child parent)))
                parent))

  But recall that stobjs are updated with destructive assignments. That
  is, we really are updating (fld2 parent) to be the new value of
  child, whether this is explained logically or not. Thus, evaluation
  of the above [let*] form does in fact change the actual global
  stobj, parent.

  (Aside: Here is an explanation involving raw Lisp, for those who
  might find this useful. We escape to raw Lisp and execute the
  following; note that *the-live-parent* is the Lisp variable
  representing the global value of parent.

    (let ((parent *the-live-parent*))
      (let* ((child (fld2 parent))
             (child (update-fld 4 child)))
        (mv child parent)))

  Then, in raw Lisp, (fld (fld2 *the-live-parent*)) evaluates to 4,
  illustrating the destructive update. End of Aside.)

  Such aliasing can permit a change to a child stobj to cause a
  logically-inexplicable change to the parent stobj. Similarly,
  unfettered accessing of stobj fields can result in logically
  inexplicable changes to the child stobj when the parent stobj is
  changed. Thus, ACL2 disallows direct calls of stobj accessors and
  updaters for fields whose :type is a stobj or an array of stobjs.
  Instead, ACL2 provides stobj-let for reading and writing such
  fields in a sound manner.


SECTION: Accessing and updating stobj fields of stobjs using
stobj-let

  ACL2 provides a primitive, stobj-let, to access and update stobj
  fields of stobjs, in a manner that avoids the aliasing problem
  discussed above. In this section we provide an informal
  introduction to stobj-let, using examples, to be followed in the
  next section by precise documentation.

  We begin by returning to a slight variant of the example above.

    (defstobj child fld)
    (defstobj parent
      (fld2 :type child)
      fld3)

  The following form returns the result of updating the fld2 field of
  parent, which is a stobj isomorphic to child, to have a value of 3.
  Below we explain the terms ``bindings'', ``producer variables'',
  ``producer'', and ``consumer'', as well as how to understand this
  form.

    (stobj-let
     ((child (fld2 parent)))  ; bindings
     (child)                  ; producer variable(s)
     (update-fld 3 child)     ; producer
     (update-fld3 'a parent)) ; consumer

  The four lines under ``stobj-let'' just above can be understood as
  follows.

    * Bindings:
          Bind child to (fld2 parent).

    * Producer variable(s) and producer:
          Then bind the variable, child, to the value of the producer,
          (update-fld 3 child).

    * Implicit update of parent:
          Update fld2 of parent with the producer variable, child.

    * Consumer:
          Finally, return (update-fld3 'a parent).

  Thus, the logical expansion of the stobj-let form above is the
  following expression, though this is approximate (see below).

    (let ((child (fld2 parent))) ; bindings
      (let ((child (update-fld 3 child))) ; bind producer vars to producer
        (let ((parent (update-fld2 child parent))) ; implicit update of parent
          (update-fld3 'a parent))))

  The bindings always bind distinct names to child stobjs of a unique
  parent stobj, where the child stobj corresponds to the :type
  associated with the indicated accessor in the [defstobj] form for
  the parent stobj. Thus in this case, for the unique binding,
  variable child is bound to the stobj of `type' child for accessor
  fld2 of the parent stobj, parent. We refer to child from the
  bindings as a ``stobj-let-bound variable''. Note also that the
  ``implicit extra step'' mentioned above is generated by
  macroexpansion of stobj-let; it logically updates the parent with
  new child values, just before calling the consumer. Implementation
  note for those using [memoization]: destructive updating in raw
  Lisp lets us omit this implicit extra step, though the raw Lisp
  code generated for stobj-let will clear the memoization table for
  every function taking the parent stobj as an input, if any child
  stobj bound in the bindings is among the producer variables ---
  unless the parent stobj was introduced by [defstobj] using keyword
  argument :non-memoizable t.

  The form above is equivalent to the form displayed just below, which
  differs only in specifying an explicit stobj updater corresponding
  to the stobj accessor, fld2. Here we show the default updater name,
  whose name has \"UPDATE-\" prepended to the name of the accessor. But
  if the :RENAMING field of the defstobj event specified a different
  updater name corresponding to fld2, then that would need to be
  included where we have added update-fld2 below.

    (stobj-let
     ((child (fld2 parent) update-fld2)) ; bindings, including updater(s)
     (child)                  ; producer variables
     (update-fld 3 child)     ; producer
     (update-fld3 'a parent)) ; consumer

  You can experiment using :[trans1] to see the single-step
  macroexpansion of a stobj-let form in the logic. For example, here
  is how that works for a stobj-let form that binds three fields and
  updates two of them. Notice that because more than one field is
  updated, an [mv-let] form is generated to bind the two fields to
  their values returned by the producer, rather than a [let] form as
  previously generated. First, let's introduce some events.

    (defstobj child1 child1-fld)
    (defstobj child2 child2-fld)
    (defstobj child3 child3-fld)
    (defstobj mom
      (fld1 :type child1)
      (fld2 :type child2)
      (fld3 :type child3))
    ; Silly stub:
    (defun update-last-op (op mom)
      (declare (xargs :stobjs mom))
      (declare (ignore op))
      mom)
    (defun new-mom (mom)
      (declare (xargs :stobjs mom))
      (stobj-let
       ((child1 (fld1 mom))
        (child2 (fld2 mom))
        (child3 (fld3 mom)))
       (child1 child3)
       (let* ((child1 (update-child1-fld 'one child1))
              (child3 (update-child3-fld 'three child3)))
         (mv child1 child3))
       (update-last-op 'my-compute mom)))

  Now let's look at the single-step macroexpansion of the above
  stobj-let form.

    ACL2 !>:trans1 (stobj-let
                    ((child1 (fld1 mom))
                     (child2 (fld2 mom))
                     (child3 (fld3 mom)))
                    (child1 child3)
                    (let* ((child1 (update-child1-fld 'one child1))
                           (child3 (update-child3-fld 'three child3)))
                      (mv child1 child3))
                    (update-last-op 'my-compute mom))
     (PROGN$
      (LET
       ((CHILD1 (FLD1 MOM))
        (CHILD2 (FLD2 MOM))
        (CHILD3 (FLD3 MOM)))
       (DECLARE (IGNORABLE CHILD1 CHILD2 CHILD3))
       (MV-LET
          (CHILD1 CHILD3)
          (CHECK-VARS-NOT-FREE (MOM)
                               (LET* ((CHILD1 (UPDATE-CHILD1-FLD 'ONE CHILD1))
                                      (CHILD3 (UPDATE-CHILD3-FLD 'THREE CHILD3)))
                                     (MV CHILD1 CHILD3)))
          (LET* ((MOM (UPDATE-FLD1 CHILD1 MOM))
                 (MOM (UPDATE-FLD3 CHILD3 MOM)))
                (CHECK-VARS-NOT-FREE (CHILD1 CHILD2 CHILD3)
                                     (UPDATE-LAST-OP 'MY-COMPUTE MOM))))))
    ACL2 !>

  If you try to evaluate a stobj-let form directly in the top-level
  loop, rather than from within a function body, you will get an
  error. The example above illustrates how stobj-let may be used in
  function bodies; here is another example, presented using an edited
  log.

    ACL2 !>(defstobj child fld)

    Summary
    Form:  ( DEFSTOBJ CHILD ...)
    Rules: NIL
    Time:  0.02 seconds (prove: 0.00, print: 0.00, other: 0.02)
     CHILD
    ACL2 !>(defstobj parent
             (fld2 :type child)
             fld3)

    Summary
    Form:  ( DEFSTOBJ PARENT ...)
    Rules: NIL
    Time:  0.02 seconds (prove: 0.00, print: 0.00, other: 0.02)
     PARENT
    ACL2 !>(defun f (parent)
             (declare (xargs :stobjs parent))
             (stobj-let
              ((child (fld2 parent)))   ; bindings
              (child)                   ; producer variables
              (update-fld 3 child)      ; producer
              (update-fld3 'a parent))) ; consumer
    [[output omitted]]
     F
    ACL2 !>(f parent)
    <parent>
    ACL2 !>(defun check-f (parent)
             ; returns the value of the field of the child stobj
             (declare (xargs :stobjs parent))
             (stobj-let
              ((child (fld2 parent))) ; bindings
              (val)                   ; producer variables
              (fld child)             ; producer
              val))                   ; consumer
    [[output omitted]]
     CHECK-F
    ACL2 !>(check-f parent)
    3
    ACL2 !>

  Notice that the second function defined above, check-f, uses a
  stobj-let form that returns an ordinary value: it reads a value
  from a child stobj, but does not write to the child stobj, as
  indicated by the lack of a child stobj among the producer
  variables. So for that stobj-let form, there is no implicit extra
  step.

  We labeled a stobj-let expansion above as ``approximate'' for two
  reasons, which we give here informally. (Now you know how to apply
  :[trans1] to that stobj-let call to see the precise expansion.)
  First, stobj-let declares the stobj-let-bound variables to be
  ignorable for the top let bindings. Second, and more importantly,
  stobj-let imposes the following restrictions on the producer and
  consumer, to avoid the aliasing problem: it disallows references to
  the parent stobj in the producer and it also disallows references
  to any bound stobj (i.e., bound in the bindings) in the consumer.

  We conclude this section with examples based on a slight variation of
  the nested stobj example from the first section above. These events
  can also be found in ACL2 community book
  misc/nested-stobj-tests.lisp, immediately under the following
  comment:

    ; As promised in :doc stobj-let, we begin with an example from that :doc.

  Note that some lemmas were needed in order to complete the [guard]
  proof for the function update-top, which may be found in the above
  file; they are omitted below.

  First we introduce three stobjs.

    (defstobj kid1 fld1)
    (defstobj kid2 fld2)
    (defstobj mom
      (kid1-field :type kid1)
      (kid2-ar-field :type (array kid2 (5)))
      last-op)

  The next function takes a given index and a mom stobj, and swaps the
  value stored in the stobj in mom's kid2-ar-field array at that
  index with the value stored in the stobj in mom's kid1-field field.

    (defun mom-swap-fields (index mom)
      (declare (xargs :stobjs mom
                      :guard (and (natp index)
                                  (< index (kid2-ar-field-length mom)))))
      (stobj-let
       ((kid1 (kid1-field mom))
        (kid2 (kid2-ar-fieldi index mom)))
       (kid1 kid2)
       (let* ((val1 (fld1 kid1))
              (val2 (fld2 kid2))
              (kid1 (update-fld1 val2 kid1))
              (kid2 (update-fld2 val1 kid2)))
         (mv kid1 kid2))
       (update-last-op 'swap mom)))

  Function mom.kid1-fld1 stores a given value in the given mom's
  kid1-fld1 field.

    (defun mom.kid1-fld1 (val mom)
      (declare (xargs :stobjs mom))
      (stobj-let
       ((kid1 (kid1-field mom)))
       (kid1)
       (update-fld1 val kid1)
       (update-last-op val mom)))

  We next combine the two functions above, according to an op argument,
  as indicated by the following definition.

    (defun update-mom (op mom)
      (declare (xargs :stobjs mom))
      (cond ((and (consp op)
                  (eq (car op) 'swap)
                  (natp (cdr op))
                  (< (cdr op) (kid2-ar-field-length mom)))
             (mom-swap-fields (cdr op) mom))
            (t (mom.kid1-fld1 op mom))))

  The following checker function uses a stobj-let form like the ones
  above, a major difference being that the producer variable is not a
  stobj, since the producer does not modify any stobjs.

    (defun check-update-mom (index val1 val2 last-op mom)
        (declare (xargs :stobjs mom
                        :mode :program
                        :guard
                        (or (null index)
                            (and (natp index)
                                 (< index (kid2-ar-field-length mom))))))
        (and (equal (last-op mom) last-op)
             (stobj-let
              ((kid1 (kid1-field mom))
               (kid2 (kid2-ar-fieldi index mom)))
              (val) ; producer variables
              (and (equal val1 (fld1 kid1))
                   (equal val2 (fld2 kid2)))
              val)))

  Now let us run our update function to populate some fields within the
  mom stobj.

    (let* ((mom ; set mom to (3 (x0 x1 x2 x3 x4))
             (update-mom 3 mom))
            (mom ; set mom to (x1 (x0 3 x2 x3 x4))
             (update-mom '(swap . 1) mom))
            (mom ; set mom to (7 (x0 3 x2 x3 x4))
             (update-mom 7 mom))
            (mom ; set mom to (x0 (7 3 x2 x3 x4))
             (update-mom '(swap . 0) mom))
            (mom ; set mom to (5 (7 3 x2 x3 x4))
             (update-mom 5 mom))
            (mom ; set mom to (7 (5 3 x2 x3 x4))
             (update-mom '(swap . 0) mom)))
       mom)

  Are the above values of 7, 5, and 3 as expected, with a last
  operation being a swap? Yes!

    ACL2 !>(and (check-update-mom 0 7 5 'swap mom)
                (check-update-mom 1 7 3 'swap mom))
    T
    ACL2 !>

  Notice that above, we never tried to access two different entries of
  the array. This can be done, but we need to bind two different
  stobjs to those fields. Fortunately, congruent stobjs make this
  possible; see [defstobj], in particular the discussion of congruent
  stobjs. Since we want to bind two stobjs to values in the array
  that are isomorphic to the stobj kid2, we introduce a stobj
  congruent to kid2.

    (defstobj kid2a fld2a :congruent-to kid2)

  Then we can define our swapping function as follows. The [guard]
  proof obligation includes the requirement that the two indices be
  distinct, again to avoid an aliasing problem.

    (defun mom-swap-indices (i1 i2 mom)
      (declare (xargs :stobjs mom
                      :guard (and (natp i1)
                                  (< i1 (kid2-ar-field-length mom))
                                  (natp i2)
                                  (< i2 (kid2-ar-field-length mom))
                                  (not (equal i1 i2)))))
      (stobj-let
       ((kid2 (kid2-ar-fieldi i1 mom))
        (kid2a (kid2-ar-fieldi i2 mom)))
       (kid2 kid2a)
       (let* ((val2 (fld2 kid2))
              (val2a (fld2 kid2a))
              (kid2 (update-fld2 val2a kid2))
              (kid2a (update-fld2 val2 kid2a)))
         (mv kid2 kid2a))
       mom))

  The aforementioned community book, misc/nested-stobj-tests.lisp,
  contains a corresponding checker immediately following this
  definition.


SECTION: Precise documentation for stobj-let

    General Form:
    (stobj-let
     BINDINGS
     PRODUCER-VARIABLES
     PRODUCER
     CONSUMER)

  where PRODUCER-VARIABLES is a non-empty true list of legal variable
  names without duplicates, PRODUCER and CONSUMER are expressions,
  and BINDINGS is a list subject to the following requirements.

  BINDINGS is a non-empty true list of tuples, each of which has the
  form (VAR ACCESSOR) or (VAR ACCESSOR UPDATER). There is a stobj
  name, ST, previously introduced by [defstobj] (not [defabsstobj]),
  such that each accessor is of the form (ACC ST) or (ACCi I ST),
  with the same stobj name (ST) for each binding. In the case (ACC
  ST), ACC is the accessor for a non-array field of ST. In the case
  (ACCi I ST), ACCi is the accessor for an array field of ST, and I
  is either a variable, a natural number, a list (quote N) where N is
  a natural number, or a symbol introduced by [defconst]. If UPDATER
  is supplied, then it is a symbol that is the name of the stobj
  updater for the field of ST accessed by ACCESSOR. If UPDATER is not
  supplied, then for the discussion below we consider it to be,
  implicitly, the symbol in the same package as the function symbol
  of ACCESSOR (i.e., ACC or ACCi), obtained by prepending the string
  \"UPDATE-\" to the [symbol-name] of that function symbol. Finally,
  ACCESSOR has a [signature] specifying a return value that is either
  ST or is stobj that is congruent to ST.

  If the conditions above are met, then the General Form expands to the
  one of the following expressions, depending on whether the list
  PRODUCER-VARIABLES has one member or more than one member,
  respectively. (But see below for extra code that may be inserted if
  there are stobj array accesses in BINDINGS.) Here we write
  STOBJ-LET-BOUND-VARS for the list of variables VAR discussed above,
  i.e., for (strip-cars BINDINGS). And, we write UPDATES for the
  result of mapping through PRODUCER-VARIABLES and, for each variable
  VAR that has a binding (VAR ACCESSOR UPDATER) in BINDINGS (where
  UPDATER may be implicit, as discussed above), collect into UPDATES
  the tuple (ST (UPDATER VAR ST)).

  For PRODUCER-VARIABLES = (PRODUCER-VAR):

    (let BINDINGS
      (declare (ignorable . STOBJ-LET-BOUND-VARIABLES))
      (let ((PRODUCER-VAR PRODUCER))
        (let* UPDATES
          CONSUMER)))

  Otherwise:

    (let BINDINGS
      (declare (ignorable . STOBJ-LET-BOUND-VARIABLES))
      (mv-let PRODUCER-VARS
              PRODUCER
              (let* UPDATES
                CONSUMER)))

  Moreover, ACL2 places restrictions on the resulting expression: ST
  must not occur free in PRODUCER, and every variable in
  STOBJ-LET-BOUND-VARIABLES must not occur free in CONSUMER.

  Stobj-let forms can be evaluated using ordinary objects in theorem
  contexts, much as any form. They can also, of course, appear in
  function bodies. However, a stobj-let form cannot be evaluated
  directly in the top-level loop or other top-level contexts for
  execution (such as during [make-event] expansion).

  Finally, let FORM denote the form displayed above (either case). We
  explain how FORM is actually replaced by an expression of the form
  (PROGN$ ... FORM). This expression generates an extra [guard] proof
  obligation, which guarantees that no aliasing occurs from binding
  two stobj-let-bound variables to the same array access. So fix a
  stobj array accessor ACCi for which some stobj is bound to (ACCi I
  ST) in BINDINGS; we define an expression ACCi-CHECK as follows.
  Collect up all such index expressions I, where if I is of the form
  (quote N) then replace I by N. If the resulting list of index
  expressions for ACCi consists solely of distinct numbers, or if it
  is of length 1, then no extra check is generated for ACCi.
  Otherwise, let ACCi-CHECK be the form (chk-no-duplicatesp (list I1
  ... Ik)), where I1, ..., Ik are the index expressions for ACCi.
  Note: chk-no-duplicatesp is a function that returns nil, but has a
  [guard] that its argument is an [eqlable-listp] that satisfies
  [no-duplicatesp]. Finally, FORM is replaced by (PROGN$ CHK1 ...
  CHKn FORM), where the CHKm range over all of the above ACCi-CHECK.")
 (NEVER-MEMOIZE
  (MEMOIZE)
  "Mark a function as unsafe to memoize.

  Logically, this function just returns nil. But execution of
  (never-memoize fn) records that fn must never be memoized, so that
  any attempt to memoize fn will fail.

  Any function can be marked as unsafe to memoize; in fact, fn need not
  even be defined at the time it is marked.

  This is useful for prohibiting the memoization of functions that are
  known to involve destructive functions like nreverse.")
 (NFIX
  (NUMBERS ACL2-BUILT-INS)
  "Coerce to a natural number

  Nfix simply returns any natural number argument unchanged, returning
  0 on an argument that is not a natural number. Also see [ifix], see
  [rfix], see [realfix], and see [fix] for analogous functions that
  coerce to an integer, a rational number, a real, and a number,
  respectively.

  Nfix has a [guard] of t.

  Function: <nfix>

    (defun nfix (x)
           (declare (xargs :guard t))
           (if (and (integerp x) (>= x 0)) x 0))")
 (NIL-GOAL
  (DEBUGGING)
  "How to proceed when the prover generates a goal of nil

  At the end of a failed proof, one typically sees so-called ``key
  checkpoints'' (see [set-gag-mode]). These may be annotated as
  follows.

    [NOTE: A goal of NIL was generated.  See :DOC nil-goal.]

  This [documentation] topic gives some ideas about how to think about
  the situation described by that message: some goal has reduced to
  nil.

  Suppose then that you see the above NOTE. If you look back at the
  proof log, even with [gag-mode] enabled, you will see a message
  saying that a goal of NIL ``has been generated''. This may indicate
  that the original goal is not a theorem, since most of the prover's
  activity is to replace a goal by an equivalent conjunction of its
  child subgoals. However, if some ancestor of the nil goal has
  undergone a process other than simplification or destructor
  elimination --- fertilization (heuristic use of equalities),
  generalization, or elimination of irrelevance --- then it is quite
  possible that the prover got to the nil goal by replacing a goal by
  a stronger (and perhaps false) conjunction of child subgoals.

  At present, if you are using [gag-mode] (the default) then you will
  need to issue the command :[pso] (``Print Saved Output'') if you
  want to see whether the situation above has occurred. However, that
  might not be necessary. A good rule of thumb is that if the nil
  goal is under more than one level of induction (e.g., with a prefix
  ``*i.j'' such as ``Subgoal *1.1/2.2''), then there is some
  likelihood that the situation above did indeed occur, and you can
  spend your time and energy looking at the key checkpoints printed
  in the summary to see if they suggest useful [rewrite] rules to
  prove. On the other hand, if the nil goal is at the top level (e.g.
  with a name not starting with ``*'', such as ``Subgoal 3.2''), then
  the original conjecture is probably not a theorem. If you do not
  quickly see why that is the case, then you might find it useful to
  issue the command :[pso] to see which case reduced to nil, in order
  to get insight about how the theorem might be falsified.")
 (NINTH
  (NTH ACL2-BUILT-INS)
  "Ninth member of the list

  See any Common Lisp documentation for details.")
 (NO-DUPLICATESP
  (LISTS ACL2-BUILT-INS)
  "Check for duplicates in a list

    General Forms:
    (no-duplicatesp x)
    (no-duplicatesp x :test 'eql)   ; same as above (eql as equality test)
    (no-duplicatesp x :test 'eq)    ; same, but eq is equality test
    (no-duplicatesp x :test 'equal) ; same, but equal is equality test

  (no-duplicatesp lst) is true if and only if no member of lst occurs
  twice in lst. The optional keyword, :TEST, has no effect logically,
  but provides the test (default [eql]) used for comparing elements
  of lst.

  The [guard] for a call of no-duplicatesp depends on the test. In all
  cases, the argument must satisfy [true-listp]. If the test is
  [eql], then the argument must satisfy [eqlable-listp]. If the test
  is [eq], then the argument must satisfy [symbol-listp].

  See [equality-variants] for a discussion of the relation between
  no-duplicatesp and its variants:

      (no-duplicatesp-eq x lst) is equivalent to (no-duplicatesp x lst
      :test 'eq);

      (no-duplicatesp-equal x lst) is equivalent to (no-duplicatesp x lst
      :test 'equal).

  In particular, reasoning about any of these primitives reduces to
  reasoning about the function no-duplicatesp-equal.

  Function: <no-duplicatesp-equal>

    (defun no-duplicatesp-equal (l)
           (declare (xargs :guard (true-listp l)))
           (cond ((endp l) t)
                 ((member-equal (car l) (cdr l)) nil)
                 (t (no-duplicatesp-equal (cdr l)))))")
 (NO-DUPLICATESP-EQ (POINTERS)
                    "See [no-duplicatesp].")
 (NO-DUPLICATESP-EQUAL (POINTERS)
                       "See [no-duplicatesp].")
 (NO-THANKS (POINTERS)
            "See [hints] for keyword :no-thanks.")
 (NON-EXEC
  (GUARD ACL2-BUILT-INS)
  "Mark code as non-executable

  Non-exec is a macro such that logically, (non-exec x) is equal to x.
  However, the argument to a call of non-exec need not obey the usual
  syntactic restrictions for executable code, and indeed, evaluation
  of a call of non-exec will result in an error. Moreover, for any
  form occurring in the body of a function (see [defun]) that is a
  call of non-exec, no guard proof obligations are generated for that
  form.

  The following example, although rather contrived, illustrates the use
  of non-exec. One can imagine a less contrived example that
  efficiently computes return values for a small number of fixed
  inputs and, for other inputs, returns something logically
  ``consistent'' with those return values.

    (defun double (x)
      (case x
        (1 2)
        (2 4)
        (3 6)
        (otherwise (non-exec (* 2 x)))))

  We can prove that double is compliant with Common Lisp (see [guard])
  and that it always computes (* 2 x).

    (verify-guards double)
    (thm (equal (double x) (* 2 x)))

  We can evaluate double on the specified arguments. But a call of
  non-exec results in an error message that reports the form that was
  supplied to non-exec.

    ACL2 !>(double 3)
    6
    ACL2 !>(double 10)

    ACL2 Error in TOP-LEVEL:  ACL2 has been instructed to cause an error
    because of an attempt to evaluate the following form (see :DOC non-
    exec):

      (* 2 X).

    To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.

    ACL2 !>

  During proofs, the error is silent; it is ``caught'' by the proof
  mechanism and generally results in the introduction of a call of
  [hide] during a proof.

  Also see [defun-nx] for a utility that makes every call of a function
  non-executable, rather than a specified form. The following
  examples contrast non-exec with [defun-nx], in particular
  illustratating the role of [non-exec] in avoiding guard proof
  obligations.

    ; Guard verification fails:
    (defun-nx f1 (x)
      (declare (xargs :guard t))
      (car x))

    ; Guard verification succeeds after changing the guard above:
    (defun-nx f1 (x)
      (declare (xargs :guard (consp x)))
      (car x))

    ; Guard verification succeeds:
    (defun f2 (x)
      (declare (xargs :guard t))
      (non-exec (car x)))

    ; Evaluating (g1) prints \"Hello\" before signaling an error.
    (defun g1 ()
      (f1 (cw \"Hello\")))

    ; Evaluating (g2) does not print before signaling an error.
    (defun g2 ()
      (non-exec (cw \"Hello\")))

    ; Evaluating (h1) gives a guard violation for taking reciprocal of 0.
    (defun h1 ()
      (f1 (/ 1 0)))

    ; Evaluating (h2) does not take a reciprocal, hence there is no guard
    ; violation for that; we just get the error expected from using non-exec.
    (defun h2 ()
      (non-exec (/ 0)))")
 (NON-EXECUTABLE (POINTERS)
                 "See [xargs] for keyword :non-executable.")
 (NON-LINEAR-ARITHMETIC
  (LINEAR)
  "Non-linear Arithmetic

  This documentation topic is divided into two parts. We first discuss
  the practical aspect of how to use the non-linear arithmetic
  extension to ACL2, and then the theory behind it. We assume that
  the reader is familiar with the material in [linear-arithmetic] and
  that on :[linear] rules.

  We begin our discussion of how to use non-linear arithmetic with a
  simple example. Assume that we wish to prove:

    (thm
     (implies (and (rationalp x)
                   (rationalp y)
                   (rationalp z)
                   (< 0 y)
                   (< x (* y z)))
              (< (floor x y) z)))

  Note that (floor x y) <= (/ x y). Note also that if we divide both
  sides of x < (* y z) by y, since 0 < y, we obtain (/ x y) < z. By
  chaining these two inequalities together, we get the inequality we
  desired to prove.

  We now proceed with our example session:

    (skip-proofs
     (progn

    ; Since the truth of this theorem depends on the linear properties
    ; of floor, we will need the linear lemma:

       (defthm floor-bounds-1
           (implies (and (rationalp x)
                         (rationalp y))
                    (and (< (+ (/ x y) -1)
                            (floor x y))
                         (<= (floor x y)
                             (/ x y))))
           :rule-classes ((:linear :trigger-terms ((floor x y)))))

    ; We now disable floor, so that the linear lemma will be used.

       (in-theory (disable floor))

    ; We create five rewrite rules which we will use during non-linear
    ; arithmetic.  The necessity for these is due to one of the differences in
    ; ACL2's behaviour when non-linear arithmetic is turned on.  Although
    ; the conclusions of linear lemmas have always been rewritten before
    ; they are used, now, when non-linear arithmetic is turned on, the
    ; conclusions are rewritten under a different theory than under ``normal''
    ; rewriting.  This theory is also used in other, similar, circumstances
    ; described below.

       (defthm |arith (* -1 x)|
           (equal (* -1 x)
                  (- x)))

       (defthm |arith (* 1 x)|
           (equal (* 1 x)
                  (fix x)))

       (defthm |arith (* x (/ x) y)|
           (equal (* x (/ x) y)
                  (if (equal (fix x) 0)
                      0
                      (fix y))))

       (defthm |arith (* y x)|
           (equal (* y x)
                  (* x y)))

       (defthm |arith (fix x)|
           (implies (acl2-numberp x)
                    (equal (fix x)
                           x))))
     )  ; End skip-proofs.

    ; We disable the above rewrite rules from normal use.

    (in-theory (disable |arith (* -1 x)|
                        |arith (* 1 x)|
                        |arith (* x (/ x) y)|
                        |arith (* y x)|
                        |arith (fix x)|))

    ; We create an arithmetic-theory.  Note that we must give a quoted
    ; constant for the theory --- none of the normal [theory-functions]
    ; are applicable to in-arithmetic-theory.

    (in-arithmetic-theory '(|arith (* -1 x)|
                            |arith (* 1 x)|
                            |arith (* x (/ x) y)|
                            |arith (* y x)|
                            |arith (fix x)|))

    ; We turn non-linear arithmetic on.

    (set-non-linearp t)

    ; We can now go ahead and prove our theorem.

    (thm
     (implies (and (rationalp x)
                   (rationalp y)
                   (rationalp z)
                   (< 0 y)
                   (< x (* y z)))
              (< (floor x y) z)))

  The above example illustrates the two practical requirements for
  using non-linear arithmetic in ACL2. First, one must set up an
  arithmetic-theory. Usually, one would not set up an
  arithmetic-theory on one's own but would instead load a library
  book or books which do so. Second, one must turn the non-linear
  arithmetic extension on. This one must do explicitly --- no book
  can do this for you.

  For a brief discussion of why this is so, even though
  (set-non-linearp t) is an embeddable event, see
  [ACL2-defaults-table] (in particular, the final paragraph). (Note
  that (set-non-linearp t) modifies the acl2-defaults-table.) Also
  see [set-non-linearp], see [embedded-event-form], and see [events].

  You can also enable non-linear arithmetic with the hint :nonlinearp
  t. See [hints]. We, in fact, recommend the use of a hint which will
  enable nonlinear arithmetic only when the goal has stabilized under
  rewriting. Using [default-hints] can make this easier.

    (defun nonlinearp-default-hint (stable-under-simplificationp hist pspv)
      (cond (stable-under-simplificationp
             (if (not (access rewrite-constant
                              (access prove-spec-var pspv :rewrite-constant)
                              :nonlinearp))
                 '(:computed-hint-replacement t :nonlinearp t)
               nil))
            ((access rewrite-constant
                     (access prove-spec-var pspv :rewrite-constant)
                     :nonlinearp)
             (if (not (equal (caar hist) 'SETTLED-DOWN-CLAUSE))
                 '(:computed-hint-replacement t :nonlinearp nil)
               nil))
            (t nil)))

    (set-default-hints '((nonlinearp-default-hint stable-under-simplificationp
                                                  hist pspv)))

  This has proven to be a helpful strategy which allows faster proof
  times.

  We now proceed to briefly describe the theory behind the non-linear
  extension to ACL2. In [linear-arithmetic] it was stated that,
  ``[L]inear polynomial inequalities can be combined by
  cross-multiplication and addition to permit the deduction of a
  third inequality....'' That is, if

    0 < poly1,
    0 < poly2,

  and c and d are positive rational constants, then

    0 < c*poly1 + d*poly2.

  Similarly, given the above,

    0 < poly1*poly2.

  In the linear arithmetic case, we are taking advantage of the facts
  that multiplication by a positive rational constant does not change
  the sign of a polynomial and that the sum of two positive
  polynomials is itself positive. In the non-linear arithmetic case,
  we are using the fact that the product of two positive polynomials
  is itself positive.

  For example, suppose we have the three assumptions:

    p1:  3*x*y + 7*a < 4
    p2:            3 < 2*x  or p2': 0 < -3 + 2*x
    p3:            1 < y    or p3': 0 < -1 + y,

  and we wish to prove that a < 0. As described elsewhere (see
  [linear-arithmetic]), we proceed by assuming the negation of our
  goal:

    p4:            0 <= a,

  and looking for a contradiction.

  There are no cancellations which can be performed by linear
  arithmetic in the above situation. (Recall that two polynomials are
  cancelled against each other only when they have the same largest
  unknown.) However, p1 has a product as its largest unknown, and for
  each of the factors of that product there is a poly that has that
  factor as a largest unknown. When non-linear arithmetic is enabled,
  ACL2 will therefore multiply p1' and p2' obtaining

    p5:            0 < 3 + -2*x + -3*y + 2*x*y.

  The addition of this polynomial will allow cancelation to continue
  and, in this case, we will prove our goal. Thus, just as ACL2 adds
  two polynomials together when they have the same largest unknown of
  opposite signs in order to create a new ``smaller'' polynomial; so
  ACL2 multiplies polynomials together when the product of their
  largest unknowns is itself the largest unknown of another
  polynomial. As the use of :[linear] lemmas to further seed the
  arithmetic database may allow cancellation to proceed, so may the
  use of non-linear arithmetic.

  This multiplication of polynomials is the motivation for an
  arithmetic-theory distinct from than the normal one. Because this
  may be done so often, and because the individual factors have
  presumably already been rewritten, it is important that this be
  done in an efficient way. The use of a small, specialized, theory
  helps avoid the repeated application of rewrite rules to already
  stabilized terms.


Subtopics

  [Set-non-linearp]
      To turn on or off non-linear arithmetic reasoning")
 (NONLINEARP (POINTERS)
             "See [hints] for keyword :nonlinearp.")
 (NONNEGATIVE-INTEGER-QUOTIENT
  (NUMBERS ACL2-BUILT-INS)
  "Natural number division function

    Example Forms:
    (nonnegative-integer-quotient 14 3) ; equals 4
    (nonnegative-integer-quotient 15 3) ; equals 5

  (nonnegative-integer-quotient i j) returns the integer quotient of
  the integers i and (non-zero) j, i.e., the largest k such that (* j
  k) is less than or equal to i. Also see [floor], see [ceiling] and
  see [truncate], which are derived from this function and apply to
  rational numbers.

  The [guard] of (nonnegative-integer-quotient i j) requires that i is
  a nonnegative integer and j is a positive integer.

  Function: <nonnegative-integer-quotient>

    (defun nonnegative-integer-quotient (i j)
           (declare (xargs :guard (and (integerp i)
                                       (not (< i 0))
                                       (integerp j)
                                       (< 0 j))))
           (if (or (= (nfix j) 0) (< (ifix i) j))
               0
               (+ 1
                  (nonnegative-integer-quotient (- i j)
                                                j))))")
 (NONTAUTOLOGICAL_SUBGOALS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Prover output omits some details

  The theorem prover's proof output is intended to suggest an outline
  of the reasoning process employed by its proof engine, which is
  virtually always more than is necessary for the ACL2 user. In
  particular, the output often omits subgoals that are sufficiently
  trivial, including tautologies.")
 (NORMALIZE (POINTERS)
            "See [xargs] for keyword :normalize.")
 (NORMED
  (HONS)
  "Normed objects are ACL2 Objects that are \"canonical\" or \"unique\" in a
  certain sense.

  In Common Lisp, we can tell whether an ACL2 object is normed or not,
  but there is no way for an ordinary ACL2 function to see whether an
  object is normed. Hence, whether or not an object is normed is an
  implementation-level concept.

  The fundamental property of normed objects is that if A and B are
  both normed, then (equal A B) holds if and only if (eql A B) holds.
  For strings and conses, (eql A B) holds only when (eq A B), so any
  normed conses or strings are [equal] precisely when they are [eq].
  The potential benefits of having normed objects include:
  constant-time equality comparisons, reduced memory usage, fast
  association lists, and function memoization.

  Note that in our implementation, all symbols, characters, and numbers
  are automatically normed, and whenever a cons is normed its car and
  cdr must also be normed.

  The Meaning of Normed in Common Lisp.

  Recall that the ACL2 Objects are certain \"good\" Common Lisp symbols,
  characters, strings, and numbers, and the conses which can be
  recursively formed from these good atoms.

  Not all properties of these objects are visible in the ACL2 logic. An
  example of an invisible property is the pointer identity of an
  object. For example, suppose we write the following.

    (defconst *x* (cons 1 2))
    (defconst *y* (cons 1 2))

  In Common Lisp, [cons] is guaranteed to provide a new pair that is
  distinct from any previously created pair, so we know that *x* and
  *y* will be distinct objects and we will be able to tell them apart
  from one another using eq. But this difference is not visible in
  the ACL2 logic, and no ACL2 function can tell *x* apart from *y*.

  The normed-ness of an object is a similarly invisible property. In
  Common Lisp, invisible to ACL2, we maintain a data structure called
  a \"Hons Space\" that records which objects are normed. So, being
  normed is not an intrinsic property of an object, but instead is
  determined by whether the object is mentioned in this Hons Space.

  Notes about Garbage Collection.

  The Hons Space includes tables with pointers to every normed cons and
  string. One consequence of this is that normed objects cannot be
  reclaimed by Lisp's ordinary garbage collector, even after they
  have become unreachable from the perspective of an ACL2 program.

  For CCL and GCL users only, [hons-wash] is a special kind of garbage
  collection that allows normed conses to be reclaimed. For other
  Lisps, the only option is to occasionally, manually clear out these
  Hons Space tables with [hons-clear].")
 (NOT
  (BASICS ACL2-BUILT-INS)
  "Logical negation

  Not is the ACL2 negation function. The negation of nil is t and the
  negation of anything else is nil.

  Not is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Function: <not>

    (defun not (p)
           (declare (xargs :guard t))
           (if p nil t))")
 (NOTE-2-0
  (RELEASE-NOTES)
  "ACL2 Version 2.0 (July, 1997) Notes

  This is the first version of ACL2 released under the copyright of the
  University of Texas (UT). Future releases of ACL2 will be made from
  UT rather than Computational Logic, Inc. (CLI). Version 2.0 is just
  Version 1.9 as released by CLI, with a few bugs fixed.

  A bug causing an infinite loop was fixed in functional instantiation.
  The bug manifested itself when two conditions occurred
  simultaneously: First, the functional substitution replaces a
  function symbol, e.g., FOO, with a LAMBDA expression containing a
  free variable (a variable not among in the LAMBDA formals). And,
  second, in one of the constraints being instantiated there is a
  call of the function symbol FOO within the scope of another LAMBDA
  expression. Unless you used such a functional substitution, this
  bug fix will not affect you.

  Less important notes:

  The implementation of PRINC$ was changed so that it was no longer
  sensitive to the external setting of *print-base* and other Common
  Lisp special variables.

  Typographical errors were fixed in the documentation.")
 (NOTE-2-1
  (RELEASE-NOTES)
  "ACL2 Version 2.1 (December, 1997) Notes

  The identity function [case-split] has been added. It is similar to
  [force] but causes an immediate split of the top-level goal on
  whether the indicated hypothesis is true.

  Less important notes:

  Minor bugs in the documentation were fixed.")
 (NOTE-2-2
  (RELEASE-NOTES)
  "ACL2 Version 2.2 (August, 1998) Notes

  Important changes:

  A bug was fixed in the compile command, :comp. The compiled code
  produced by :comp in previous versions could be wildly incorrect
  because of a confusion between the printer and the reader regarding
  what was the current Lisp *package*. This bug could manifest itself
  only if you used the :comp command to compile previously uncompiled
  functions while the current package was different from \"ACL2\". What
  happened in that situation depended upon what symbols were imported
  into your current package. The most likely behavior is that the
  compiler would break or complain or the resulting compiled code
  would call functions that did not exist.

  There have been no other important changes to the code.

  However, this release contains some useful new books, notably those
  on the books subdirectories cli-misc and ihs. Both have README
  files. The ihs books provide support for integer hardware
  specifications. These books were crucial to Bishop Brock's
  successful modeling of the Motorola CAP. We thank Bishop for
  producing them and we thank all those who worked so hard to get
  these books released. We highly recommend the ihs books to those
  modeling ALUs and other arithmetic components of microprocessors or
  programming languages.

  In previous versions of ACL2, the arithmetic books, found on
  books/arithmetic/, included the addition of several unproved axioms
  stating properties of the rationals that we believed could be
  derived from our ``official'' axioms but which we had not
  mechanically proved. The axioms were found in the book
  rationals-with-axioms.lisp, which was then used in the uppermost
  arithmetic books top.lisp and top-with-meta.lisp. John Cowles has
  now provided us with ACL2 proofs of those ``axioms'' and so in this
  release you will find both rationals-with-axioms.lisp and
  rationals-with-axioms-proved.lisp. The former is provided for
  compatibility's sake. The latter is identical but contains defthms
  where the former contains defaxioms. The top-most books have been
  rebuilt using ``-axioms-proved'' book. Thanks John.

  Less important notes:

  Bishop Brock found a bug in translated-acl2-unwind-protectp4. Jun
  Sawada reported a bug in linear arithmetic that caused us not to
  prove certain trivial theorems concluding with (not (equal i j)).
  We have fixed both.

  We now prohibit definitions that call certain event commands such as
  DEFTHM and TABLE because our Common Lisp implementations of them
  differ from their ACL2 meanings (so that compiled books can be
  loaded correctly and efficiently).

  Minor bugs in the documentation were fixed.")
 (NOTE-2-3
  (RELEASE-NOTES)
  "ACL2 Version 2.3 (October, 1998) Notes

  Important changes:

  Versions of ACL2 preceding this one contain a subtle soundness bug!
  We found a flaw in our detection of [subversive-recursions]. The
  bug allowed some subversive recursions to slip through undetected.

  We believe it would have been difficult to have exploited this flaw
  inadvertently. In particular, the following five conditions are
  necessary.
  (1) Introduce a constrained function, say f, via an encapsulate.
  (2) In the same encapsulation, define a clique of mutually recursive
  functions. This clique must be non-local and in :logic mode.
  (3) In that mutually recursive clique, use the constrained function
  f (perhaps indirectly) so that the termination argument for the
  clique depends on properties of the witness for f. Thus, f or some
  other function dependent upon f, must be used in an argument in a
  recursive call or in a term governing a recursive call.
  Furthermore, the use of f must be such that the termination proof
  cannot be done without exploiting properties of the witness for f.
  Other uses of the constrained functions in the clique are ok.
  (4) Fail to include the exploited properties of f among the
  constraints of the encapsulation.
  (5) Later, outside the encapsulation, explicitly use a functional
  instantiation in which f is replaced by a function not enjoying the
  crucial properties.
  See [subversive-recursions] for details.

  Less important notes:

  We have begun to write some introductory tutorial material for those
  who wish to learn to program in ACL2. Most of this material is
  HTML-based. See the Hyper-Card on the ACL2 home page.

  The documentation of [verify-guards] was improved to explain why one
  might wish to verify the ``guards'' of a defthm event. The missing
  documentation was noticed by John Cowles.

  A bug was fixed in cross fertilization. The bug caused the system to
  report that it had substituted one term for another when in fact no
  substitution occurred. The bug was noticed by Bill McCune.")
 (NOTE-2-4
  (RELEASE-NOTES)
  "ACL2 Version 2.4 (August, 1999) Notes

  Important changes:

  We corrected a soundness bug in Version 2.3 related to the handling
  of [immediate-force-modep]. The bad behavior was noticed by Robert
  Krug. Thanks!

  We corrected a bug that permitted [verify-guards] to accept a
  function even though a subfunction had not yet had its guards
  verified. Thanks to John Cowles for noticing this.

  User defined single-threaded objects are now supported. See [stobj].

  Less important notes:

  We corrected a bug that prevented the intended expansion of some
  recursive function calls.

  We changed the handling of the primitive function [illegal], which is
  logically defined to be nil but which is programmed to signal an
  error, so that when it is evaluated as part of a proof, it does not
  signal an error. The old handling of the function prevented some
  guard proofs involving [the] or [let]s with internal declarations.

  We corrected a bug that permitted some LOCAL DEFAXIOM events to slip
  into certified books.

  We corrected a bug that prevented the correct undoing of certain
  DEFPKG forms.

  Changes were made to support CMU Lisp. Pete Manolios helped with
  these changes.

  Changes were made to make the make files more compatible with Allegro
  Common Lisp. Jun Sawada, who has been a great help with keeping
  ACL2 up and running at UT on various platforms, was especially
  helpful. Thanks Jun.")
 (NOTE-2-5
  (RELEASE-NOTES)
  "ACL2 Version 2.5 (June, 2000) Notes

  Important Changes:

  Concurrent with the release of ACL2 Version 2.5 is the publication of
  two books about ACL2. See the ``Books and Papers about ACL2 and Its
  Applications'' on the ACL2 Home Page.

  The books subdirectory now contains many new certifiable books,
  including solutions to the exercises in the two published books and
  full scripts for the case studies. See books/README.html.

  Improved Unix Makefile support for book certification has also been
  written. See books/README.html.

  The list of symbols in *acl2-exports* has been considerably expanded.
  If you have packages built by importing *acl2-exports* you might
  want to look carefully at the new value of that constant. The new
  value includes all :logic mode functions as of Version 2.5, as well
  as all documented macros and all built-in theorem names.

  [Include-book] and [certify-book] were modified to have some
  additional keyword arguments. It is possible to certify a book
  containing [defaxiom] and/or [skip-proofs] events and get warning
  messages or errors signaled, according to the settings of these new
  flags. In addition, it is possible to specify in include-book
  whether the book must be certified (under penalty of error if not).
  The default values of these new arguments cause warnings to be
  printed rather than errors signaled.

  The above change involved altering the form of certificate files.
  When books certified under previous versions are included, more
  warnings will be generated because these books are considered
  possibly to contain defaxiom and/or skip-proofs events.

  We anticipate further changes to this aspect of books and consider
  the current mechanisms (for controlling whether warnings or errors
  are signaled) just a prototype. See also the discussion below of
  ``soundness related'' warnings. Your suggestions are welcome.

  A discrepancy between ACL2 and Common Lisp was fixed, having to do
  with declare ignore. In past versions of ACL2, a formal parameter
  of a defun was considered ignored if it was not used in the body,
  the guard or the measure of the defun. That meant that a variable
  used only in the guard could not be declared ignored in ACL2; but
  some Common Lisp compilers would complain because the variable was
  not used in the body. Now, ACL2 considers a variable ignored if it
  is not used in the body.

  ACL2 can now be built in releases 5.0 and later of Allegro Common
  Lisp. (Other releases of Allegro Common Lisp and of other lisps
  continue to be supported as well.) This includes Allegro Common
  Lisp running on Windows 98 platforms. John Cowles helped us do some
  testing and answered questions for us. Thanks John!

  We incorporated Ruben Gamboa's changes to allow the building of a
  variant, ACL2(r), of ACL2, in which the user can reason about the
  real numbers using non-standard analysis. See [real]. Note that
  ACL2(r) and ACL2 have different underlying theories, and books
  certified in one system may not be included in the other. For
  backward compatibility and to ensure a smooth transition, ACL2 is
  built by default, not ACL2(r). This is a compile-time switch; see
  the makefile for instructions. There should be no changes to ACL2
  resulting from the capability of building ACL2(r) from the same
  sources. Also see [acknowledgments] for more on the history of
  ACL2(r).

  A large number of bugs (some affecting soundness) were fixed, and
  many small new features were added. See below.

  Less Important Changes:

  Some warnings are now considered ``soundness related,'' namely, those
  that advise you that an uncertified book has been included or that
  a book containing DEFAXIOM or SKIP-PROOFS events. (Technically,
  DEFAXIOMs do not imperil soundness in the proof- theoretic sense,
  though they may imperil the validity of theorems. But you sould
  know when a book has added an axiom to your logic!) In previous
  versions of ACL2, all warnings were inhibited if the token warning
  was included in the argument to [set-inhibit-output-lst]. Now,
  soundness related warnings are printed even if warnings have been
  inhibited. To inhibit all warnings, supply the token warning! to
  set-inhibit-output-lst.

  Several bugs in [defstobj] were fixed, relating to the possibility
  that some of the subfunctions introduced by the defstobj were
  already defined.

  :[Puff] no longer tries to expand [defstobj] events. Previously, the
  attempt would cause a hard error.

  A soundness bug was fixed. The bug might have been exercised if you
  had an alternative definition (implies hyps (equiv (fn ...) body))
  in which equiv is an equivalence relation other than EQUAL. In this
  case, calls of fn might have been expanded to body in places that
  were not equiv-hittable.

  An obscure soundness bug was fixed. The bug was exercised only if you
  had a metafunction with a computed hypothesis (i.e., a ``meta
  hypothesis function''), the hypothesis contained a free variable,
  i.e., a variable not involved in the term being rewritten, and the
  free variable occurred in the output of the metafunction. The
  possibility of this bug was brought to our attention by Robert
  Krug.

  We fixed a bug in the handling of hide related to the question of
  whether a variable symbol occurs in a term. The old code did not
  find the variable and could cause the system to throw away a
  hypothesis about it on the grounds that it was never mentioned. Rob
  Sumners helped discover this problem.

  The handling of :[elim] rules was generalized, permitting arbitrary
  known equivalence relations instead of merely equal in the
  concluding equality.

  The printing of runes (rule names; see [rune]) used has been made
  \"deterministic,\" both in proof output and in proof attempt
  summaries, by sorting the runes before printing.

  The handling of free variables has been improved for hypotheses such
  as (< 0 X), and more generally, any hypotheses involving a
  comparison with 0 (even for example (< X 1) where X is known to be
  an integer, which is handled as (<= X 0)). Thanks to Robert Krug
  for bringing relevant examples to our attention.

  A new value, :comp, has been implemented for the :load-compiled-file
  keyword of [include-book]. If this value is supplied, then a
  compiled file will always be loaded, even if that requires creating
  the compiled file first.

  The event include-book now generates a warning when a compiled file
  is expected but not found (see [include-book]). Formerly, it only
  did so when executed at the top level; it failed to generate the
  warning when executed on behalf of a surrounding include-book
  command.

  Certain redefinition warnings generated by Allegro Common Lisp have
  been eliminated.

  A new key has been implemented for the [ACL2-defaults-table],
  :bogus-mutual-recursion-ok, set with
  :[set-bogus-mutual-recursion-ok]. Thanks to David Russinoff for
  pointing out the utility of such a key.

  A bug was fixed in [defun-sk] that prevented its generated events
  from being accepted when guard verification is being performed.
  Thanks to Bill Young for bringing this problem to our attention. A
  second bug was brought to our attention by Pete Manolios, which was
  causing certain [defun-sk] events to be rejected. That problem has
  been fixed, and an \"Infected\" warning has also been eliminated.

  The command [good-bye] now works with Allegro Common Lisp.

  A low-level bug was fixed that could, for example, cause an error
  such as \"Error: Expected 5 args but received 4 args\" when
  interrupting a local event.

  A bug has been fixed in the [proof-checker] related to definition
  expansion. Thanks to Pete Manolios for bringing this to our
  attention with a simple example.

  A bug has been fixed related to the :[bdd] hint in the presence of
  [equivalence] relations. Thanks to Pete Manolios for bringing this
  to our attention with a simple example.

  The functions [position] and [position-equal] formerly required the
  second argument to be a true list. In accordance with Common Lisp,
  we now also allow the second argument to be a string. This could
  cause earlier proofs about these functions to fail unless
  [true-listp] is known to hold where necessary.

  Robert Krug wrote a patch, which has been incorporated, to prevent
  certain infinite loops that can arise in linear arithmetic. Thanks,
  Robert!

  The macro [let*] no longer requires the bound variables to be
  distinct.

  An obscure bug was fixed related to congruence rules. The bug would
  sometimes cause ACL2 to behave as though no rules (other than
  equality) were available for some argument positions. Thanks to
  Pete Manolios for bringing this bug to our attention.

  Documentation topics have been added for [hard-error] and [prog2$],
  and the documentation for [illegal] has been improved. Thanks to
  Rob Sumners for a useful suggestion in the examples in
  documentation for prog2$ and a fix in documentation for [sublis].

  The event form [certify-book] was made more secure, in that it can
  now catch attempts to write a book to disk during its
  certification. Thanks to Rob Sumners for pointing out the
  insecurity of the existing mechanism.

  A Y2K problem was fixed with our applicative handling of dates.

  Accessors and updaters for [stobj]s have been made more efficient
  when the underlying lisp is Allegro Common Lisp, by the use of
  appropriate simple array declarations.

  A raw Lisp break had been possible when a certified book that had no
  guard verification was included in a session after
  ([set-verify-guards-eagerness] 2). This has been fixed.

  The keyword command :[comp] can now be used to compile only raw Lisp
  functions, excluding executable counterparts, by supplying the
  argument :raw.

  Rewrite rule nth-of-character-listp was removed from source file
  axioms.lisp since it is essentially subsumed by characterp-nth.

  Printing has been sped up. In one example the improvement was over
  50% in both Allegro and GCL.

  We now allow printing in a \"downcase\" mode, where symbols are printed
  in lower case. All printing functions except print-object$ now
  print characters in lower case for a symbol when the ACL2 state
  global variable print-case has value :downcase and vertical bars
  are not necessary for printing that symbol. See [io] for a
  discussion of the macros acl2-print-case and set-acl2-print-case.
  The default printing remains unchanged, i.e., symbols are printed
  in upper case when vertical bars are not required.

  A low-level printing function (prin1$) was modified so that it is not
  sensitive to various Common Lisp globals related to printing. So
  for example, the function [fmt] is no longer sensitive to the value
  of Common Lisp global *print-case*. (The preceding paragraph
  explains how to control the case for printing in ACL2.)

  The definition of [array1p] was fixed so that the :maximum-length of
  an array must be strictly greater than the number specified in the
  :dimensions field; they may no longer be equal. This was always the
  intention; the documentation (see [arrays]) has remained unchanged.
  The corresponding change was also made to [array2p]. Allegro Common
  Lisp formerly caused an error when [compress1] was called on an
  array where the numbers above were equal; now, we get a guard
  violation instead, which is appropriate.

  In the context of theories, a name now represents not just the
  corresponding :definition [rune], as it has done in earlier
  versions of ACL2, but also the corresponding :[induction] rune. See
  [theories] for a discussion of runic designators. Most users will
  rarely, if ever, notice this change. One situation where this
  change will make a difference is after executing (in-theory
  (current-theory 'foo)) followed by (in-theory (enable bar)), where
  function bar is introduced after event foo, and bar is recursively
  defined. The latter [in-theory] form now enables the rune
  (:induction bar), which implies that the prover can use the
  induction scheme stored at definition time for bar. Formerly, the
  rune (:induction bar) was not enabled by (in-theory (enable bar)),
  and hence the induction scheme for bar was ignored even when
  explicit :induct hints were supplied.

  You may now supply [xargs] keyword pair :normalize nil in order to
  prevent certain definitions from ``hanging'' when there are many
  if-subexpressions. see [defun].

  We now translate type declarations of real into guards, as we have
  already done for other types such as rational. For example,
  (declare (type real x)) generates the [guard] (rationalp x). See
  [type-spec].

  The theorem prover now behaves reasonably under the combination of
  specifying a value of t both for :[otf-flg] and for a hint
  :do-not-induct. Previously, it aborted the first time it would have
  otherwise pushed a goal for induction, but now, it will continue
  and wait until all induction subgoals have been pushed before it
  aborts.

  We changed slightly the definition of [round]. However, we believe
  that the new definition is equivalent to the old.

  The definition of Common Lisp function [substitute] has been added.

  The following changes have been made in the use of file names within
  ACL2. We thank Warren Hunt and John Cowles for running some tests
  of these changes on Macintosh and Windows 98 platforms
  (respectively).

      (1) Names of directories and files now use a syntax like that used
      for Unix (trademark of AT&T), where directories are separated
      using the ``/'' character even when the operating system is not
      Unix or Linux. See [pathname]. ACL2 also continues to support
      its notion of structured pathnames from Version 2.4 and before,
      but might not do so in future releases and hence no longer
      documents such syntax.

      (2) The command :[set-cbd] may now take a relative pathname as an
      argument.

      (3) When the macro [ld] is given a file name as a value for
      [standard-oi], then if that file name is a relative pathname it
      refers to the result of prepending the connected book directory
      (see [pathname], see [cbd], and see [set-cbd]) in order to
      obtain an absolute pathname. Simiarly for the ld specials
      [standard-co] and [proofs-co].

  It is no longer necessary to issue :[set-state-ok] t if you include a
  [stobj] declaration for [state], for example:

    (declare (xargs :stobjs state))

  See [declare-stobjs].

  The [proof-checker] has been cleaned up a bit, including the
  documentation and the capability (once again) to define pc-macro
  commands (see [define-pc-macro]) and proof-checker meta commands
  (see [define-pc-meta]).

  Recall that events generate summaries that include a line beginning
  with ``Warnings:'', which is followed (on the same line) by zero or
  more brief strings that summarize the warnings generated by that
  event. Formerly, this warnings summary for an [encapsulate] or
  [include-book] event did not include the summary strings for
  warnings generated by subsidiary events. This has been fixed.

  Macro [cw] has been documented and now expands to a call of a
  ;[logic] mode function. See [cw] for a way to print to the screen
  without having to involve the ACL2 [state]. Thanks to Rob Sumners
  for suggesting that we document this useful utility.

  Functions duplicates, add-to-set-equal, intersection-eq, evens, and
  odds are now :[logic] mode functions.")
 (NOTE-2-5{R}
  (RELEASE-NOTES)
  "ACL2 Version 2.5(r) (June, 2000) Notes

  Important changes to non-standard version:

  Please see [note-2-5] for changes to Version 2.5 of ACL2. We hope to
  write more documentation for ACL2(r) in the future.")
 (NOTE-2-6
  (RELEASE-NOTES)
  "ACL2 Version 2.6 (November, 2001) Notes

  Because of the large number of modifications, we have divided up the
  Version 2.6 notes into the following subtopics.

    * New functionality (see [note-2-6-new-functionality])
    * Changes in proof engine (see [note-2-6-proofs])
    * Changes in rules and definitions (see [note-2-6-rules])
    * Guard-related changes (see [note-2-6-guards])
    * Proof-checker changes (see [note-2-6-proof-checker])
    * System-level changes (see [note-2-6-system])
    * Other (minor) changes (see [note-2-6-other])


Subtopics

  [Note-2-6-guards]
      ACL2 Version 2.6 Notes on Guard-related Changes

  [Note-2-6-new-functionality]
      ACL2 Version 2.6 Notes on New Functionality

  [Note-2-6-other]
      ACL2 Version 2.6 Notes on Other (Minor) Changes

  [Note-2-6-proof-checker]
      ACL2 Version 2.6 Notes on Proof-checker Changes

  [Note-2-6-proofs]
      ACL2 Version 2.6 Notes on Changes in Proof Engine

  [Note-2-6-rules]
      ACL2 Version 2.6 Notes on Changes in Rules and Constants

  [Note-2-6-system]
      ACL2 Version 2.6 Notes on System-level Changes")
 (NOTE-2-6-GUARDS
  (NOTE-2-6)
  "ACL2 Version 2.6 Notes on Guard-related Changes

  When you [declare] that a function treats certain formals as
  :[stobj]s, the [guard] of the function is automatically extended to
  include the corresponding stobj-recognizer calls. For example, if a
  definition includes (declare (xargs :stobjs (ST))) then the guard
  of the function is changed by the addition of the conjunct (ST-P
  ST).

  One impact of this is that if you use the built-in ACL2 [state] as a
  formal parameter of a function, (STATE-P STATE) is added to the
  guard. This may introduce a guard where there was none in previous
  versions of the system. In older versions, therefore, no attempt
  would be made to [verify-guards], while in the new version, we
  would attempt guard verification. You may wish to add (declare
  (xargs :verify-guards nil)) to such definitions.

  A related change affects users who do not use stobjs or state. In
  previous versions of the system --- as now --- a type declaration
  extended the guard you provided explicitly. Thus, if you wrote
  (declare (type integer n)) then (INTEGERP n) was added to your
  guard. This is still the case and :stobjs recognizers are similarly
  added. But in older versions of the system we ``added'' the
  conjuncts without checking whether they were already present in the
  guard you provided. This sometimes produced such guards as (and
  (integerp n) (integerp n)) where the first was produced by your
  type declaration and the second was your :guard. We now eliminate
  redundant conjuncts; this may rearrange the order of the conjuncts.

  The guard conjectures for functions using stobjs have been simplified
  somewhat by taking advantage of the syntactic restrictions checked
  for single-threaded objects.

  The following functions have been modified so that character and
  string arguments are restricted to standard characters. (See
  [standard-char-p] and see [standard-char-listp].)

      [upper-case-p] [lower-case-p] [char-upcase] [char-downcase]
      string-downcase1 [string-downcase] string-upcase1
      [string-upcase] [char-equal] string-equal1 [string-equal]

  Also, function [standard-string-alistp] replaces function
  string-alistp, with concomitant changes in the guard to
  [assoc-string-equal], and in variable *acl2-exports*. Also, lemma
  standard-string-alistp-forward-to-alistp replaces lemma
  string-alistp-forward-to-alistp. There is a new lemma
  standard-char-p-nth, which has also been added to *acl2-exports*.

  The guard had been inadvertently omitted from the definition of the
  function [substitute] (and its subroutine substitute-ac). This
  omission has been corrected; also, the guard is slightly stronger
  than the documentation had claimed (and that has been corrected).")
 (NOTE-2-6-NEW-FUNCTIONALITY
  (NOTE-2-6)
  "ACL2 Version 2.6 Notes on New Functionality

  A fundamental change is the provision of the ``nu-rewriter'' for
  simplifying expressions composed of NTH, UPDATE-NTH, and
  UPDATE-NTH-ARRAY applications and LET expressions and other calls
  of non-recursive functions or LAMBDA expressions involving those
  symbols. The nu-rewriter applies the obvious rewrite rule for (NTH
  i (UPDATE-NTH j v s)) and the analogous rule for UPDATE-NTH-ARRAY.
  See nu-rewriter. The nu-rewriter can be enabled with
  set-nu-rewriter-mode.

  A new flag has been added to the xargs of [defun] permitting the
  declaration that the function is non-executable. The usage is
  (declare (xargs :non-executable t)) and the effect is that the
  function has no executable counterpart. On the positive side: the
  function is permitted to use single-threaded object names and
  functions arbitrarily, as in theorems rather than as in executable
  definitions. Such functions are not permitted to declare any names
  :[stobj]s but accessors, etc., may be used, just as in theorems.

  A new flag has been added to permit the system to abbreviate output
  by introducing LET* notation identifying common subterms. The
  formula being proved is not affected; this flag changes its
  displayed form only. See [set-let*-abstractionp].

  A ``raw mode'' has been added, primarily for faster loading of
  applications. see [set-raw-mode].

  Functions [alphorder] and [lexorder] have been put in :[logic] mode.
  Lexorder is now a total order ordering of the ACL2 universe, and
  theorems are included to that effect. Thanks to Pete Manolios for
  suggesting the idea and providing events to use, and to Rob Sumners
  for assistance with some modifications. See also the new book
  books/misc/total-order for an irreflexive total order.

  The ACL2 user can now make system calls to the host operating system.
  See [sys-call] and see [sys-call-status]. Thanks to Rob Sumners for
  working out this idea with Pete Manolios and Robert Krug, who we
  also thank, and for working out the implementation with us.

  It is no longer required to use absolute [pathname]s in
  [include-book] forms that have been executed before a
  [certify-book]. Any relative pathname strings in such contexts will
  be expanded into absolute pathnames before they are saved in the
  [portcullis] of the [certificate] of the book being certified.

  ACL2 can now be built on top of Allegro Common Lisp 6.0, and also on
  Windows platforms on top of Allegro Common Lisp and GCL. Thanks to
  Pete Manolios and Vinay K. Siddhavanahalli for their help with
  Windows.

  Rob Sumners has designed and provided an initial implementation for
  two improvements to [defstobj] (also see [stobj]). First, array
  fields can now be resized. Resize and length functions are provided
  for array fields, which can be used to resize stobj array fields
  dynamically. The recognizers for array fields have been simplified
  to accommodate this change, so that they only check that each
  element of the array field has the specified type. Second,
  performance has been improved for stobjs with a large number of
  fields, by changing their Common Lisp implementation to store the
  fields in a simple vector instead of a list.

  Now [stobj]s may be bound locally; see [with-local-stobj]. Thanks to
  Rob Sumners, who encouraged us to implement this capability, was an
  early user of it, and participated usefully in discussions on its
  design.

  New functions [fms!], [fmt!], and [fmt1!] are the same as their
  respective functions without the ``!,'' except that the ``!''
  functions are guaranteed to print forms that can be read back in
  (at a slight readability cost).

  We added [extended-metafunctions], metafunctions which allow [state]
  and context sensitive rewriting to some extent. We thank Robert
  Krug for pushing for and on this idea.

  The documentation has been improved. In particular, a new
  documentation topic provides a gentle introduction to ACL2 [arrays]
  --- see [arrays-example] --- and additional documentation has been
  provided for getting started with proof trees in emacs --- see
  [proof-tree].

  New Makefile targets fasl and o have been added to the books/
  directory of the distribution. For example, you might first certify
  books using an ACL2 built on top of GCL (which creates compiled
  files with suffix o). Then, when standing in the books/ directory,
  you might execute the command

      make fasl ACL2=my-allegro-acl2

  which will create compiled (.fasl) files for Allegro Common Lisp,
  assuming that my-allegro-acl2 starts up an ACL2 built on that
  Common Lisp.

  The macro [let*] now allows variables to be declared ignored. See
  [let*] and see [let].

  The user may now control backchaining. This feature was designed and
  primarily implemented by Robert Krug (though the authors of ACL2
  are resposible for any errors); thanks, Robert! See
  [backchain-limit].

  It is now possible to ``slow down'' the rate at which case splits are
  generated by the simplifier. See [set-case-split-limitations].

  Accesses to [stobj]s using [nth] or [update-nth] are now displayed
  using symbolic constants instead of numeric indices. For example,
  given the event

    (defstobj foo a b :renaming ((b c)))

  then the term (nth 0 foo) will be displayed (for example, during
  proofs) as (nth *a* foo) while (nth 1 foo) will be displayed as
  (nth *c* foo). The [defstobj] event now correspondingly introduces
  a [defconst] event for each field accessor function, introducing a
  constant whose name is obtained from the accessor's name by
  prefixing and suffixin a ``*,'' as in the example above: accessor a
  generates (defconst *a* 0) and accessor c generates (defconst *c*
  1). See [nth-aliases-table] for how to extend this feature for
  alternate names of [stobj]s.

  Computed hints have been improved. It is now possible to detect
  within a computed hint whether the goal clause is stable under
  simplification; it is also possible for a computed hint to change
  the list of available hints. See [computed-hints].

  It is now possible to provide ``default hints'' that are appended to
  the hints explicitly provided. See [set-default-hints].

  Using computed hints (see [computed-hints]) and default hints (see
  [set-default-hints]) it is possible to implement a book that
  supports ``priority phased simplification.'' Using this book you
  can assign priorities to your rules and cause the theorem prover to
  simplify each goal maximally under all the rules of one priority
  before enabling rules of the next priority. See
  books/misc/priorities.lisp.

  The macro [defabbrev] has been improved to allow [declare] forms and
  documentation strings and to do more error-checking. Thanks to Rob
  Sumners for designing this enhancement and providing the first
  implementation. See [defabbrev].

  Further changes were made to support CMU Lisp. Wolfhard Buss helped
  with these changes.

  A new table was added that is used when printing proof output, so
  that nests of right-associated calls of a binary function are
  replaced by corresponding macro calls, as has been the case for
  [binary-+] and [+], [binary-append] and [append], and so on. See
  [add-binop].

  Operators [logand], [logior], [logxor], and [logeqv] are now macros
  (formerly, they were functions) that call corresponding binary
  functions (e.g., binary-logand) defined in source file
  \"axioms.lisp\". Thanks to Rob Sumners for this enhancement. Proof
  output will however continue to show calls of [logand], [logior],
  [logxor], and [logeqv].

  Function ([allocate-fixnum-range] fixnum-lo fixnum-hi) sets aside
  more \"permanent\" fixnums in GCL.

  ACL2 now runs under CLISP. Thanks to Wolfhard Buss and Sam Steingold
  for their assistance with the port.

  Michael ``Bogo'' Bogomolny has created a search engine, accessible
  from the ACL2 home page. For that purpose he modified the HTML
  translator to create one file per topic (a good idea in any case).
  Thanks, Bogo!

  An emacs file of potential (but optional) use for ACL2 users may be
  found in emacs/emacs-acl2.el. In particular, this file supports the
  use of proof trees (see [proof-tree]).

  Some [books] have been added or modified. In particular, Robert Krug
  has contributed books/arithmetic-2/, which provides an alternative
  to the existing collection of books about arithmetic,
  books/arithmetic/. For a discussion of the distributed books see
  the link to README.html in the installation instructions.")
 (NOTE-2-6-OTHER
  (NOTE-2-6)
  "ACL2 Version 2.6 Notes on Other (Minor) Changes

  Warning strings are now case-insensitive. See [set-inhibit-warnings].

  ACL2 causes a warning when an [in-theory] hint or event causes a
  0-ary function's definition to be disabled but its
  :[executable-counterpart] to be enabled.

  A minor modification has been made to [defstobj] that can have a
  positive impact on performance in Allegro Common Lisp. (For Lisp
  hackers: the stobj name was formerly declared special, and that was
  disabling Allegro's tail-merging routing for compilation of some
  recursive functions using stobjs.) The downside is that stobj names
  can no longer be evaluated in raw Lisp. However, raw Lisp is not
  the right place to be evaluating ACL2 forms anyhow; see
  [set-raw-mode]. We thank Rob Sumners for bringing this issue to our
  attention.

  Before Version 2.6, there has been the following problem with
  [defstub] and [encapsulate] in the case that the current package is
  not the ACL2 package. If a [signature] was specified using the
  symbol =>, then that symbol had have been imported into the current
  package from the ACL2 package when the current package was defined.
  There are no longer any package restrictions on the use of =>.
  Thanks to John Cowles for bringing this problem to our attention.

  Bugs in [defun-sk] have been fixed. Defun-sk forms introducing
  functions of no arguments were failing to be admitted, for example:
  (defun-sk always-p1 () (forall (x) (p1 x))). Thanks to John Cowles
  for bringing this problem to our attention. Also, defun-sk failed
  on an example in the documentation (see
  [tutorial4-defun-sk-example]), as pointed out by Matyas Sustik;
  this bug has been fixed as well.

  The trace mechanism has been fixed to handle [stobj]s, and to avoid
  the printing of so-called enabled structures.

  The [brr] command :type-alist now produces more readable output.

  An [include-book] of an uncertified book no longer loads an
  associated compiled file.

  We added a few checks to make sure that the underlying lisp is
  suitable, for example checking that the reader is case-insensitive
  and reads in symbols with upper-case names where appropriate.

  We now warn when forcing (see [force]) or immediate force mode (see
  [immediate-force-modep]) change state between enabled and disabled.
  Also see [enable-immediate-force-modep] and see
  [disable-immediate-force-modep] for information about these new
  macros, which may be used to control immediate force mode.

  We have eliminated the use of a low-level raw Lisp constant,
  *most-recent-multiplicity*. Our test suite saw a speed-up of
  approximately 2% as a result for an ACL2 image built on GCL (but no
  significant speed-up for an ACL2 image built on Allegro Common
  Lisp). We thank Rob Sumners for suggesting this improvement.

  Fixnum declarations are now realized as (signed-byte 29) instead of
  (signed-byte 27). We check that the underlying Common Lisp
  recognizes objects of type (signed-byte 29) as fixnums, with the
  exception of CLISP, which is said to have an efficient bignum
  implementation.

  A new documentation topic [functional-instantiation-example]
  illustrates functional instantiation.

  A bug has been fixed in the monitoring of runes (see [monitor]).
  Thanks to Dave Greve for sending an example that clearly showed the
  problem.

  A warning is now issued when it is detected that a
  :[type-prescription] rule may not be as strong as it appears
  because it is not sufficient to prove itself by type reasoning.

  An error is caused for rules of class :[meta] when the function
  symbol IF is among the :trigger-fns. (IF was ignored anyhow; the
  point of this change is to avoid misleading the user.)

  A minor bug has been fixed in :[pr], evident for example if this
  command was applied to IF.

  A minor hole in :[set-bogus-mutual-recursion-ok] did not permit the
  acceptance of [mutual-recursion] forms that include constant
  function definitions. This has been fixed. Thanks to Eric Smith for
  coming up with a simple example illustrating the problem.

  The temporary files \"TMP.lisp\" and \"TMP1.lisp\" written out by :[comp]
  are now written to the connected book directory (see [cbd]).

  Previously, the Allegro compiler was not eliminating tail recursion
  for executable counterparts of functions, because of the way one of
  its flags had been set. As a result, calls of functions whose
  guards had not been verified could run out of stack space when this
  was not necessary. This situation has been fixed.

  Executable counterparts could have slow array accesses. This has been
  fixed (specifically, constants are no longer replaced with their
  values in the definitions of executable counterparts).

  Various improvements have been made to the documentation. Thanks in
  particular to Eric Smith for pointing out a numbers of places where
  fixes were in order.

  File \"mcl-acl2-startup.lisp\" has been updated, thanks to feedback
  from Philippe Georgelin.

  Inefficiencies in GCL fixnum computations were remedied for macros +f
  and *f. Thanks to Rob Sumners for pointing out this issue.")
 (NOTE-2-6-PROOF-CHECKER
  (NOTE-2-6)
  "ACL2 Version 2.6 Notes on Proof-checker Changes

  The proof-checker command =, when used with no arguments, now reports
  which hypothesis is being used.

  The output from [proof-checker] command type-alist has been improved.

  A slight change has been made to the [proof-checker] for commands
  promote, casesplit, equiv, and =, so that terms of the form (if x
  nil y) are recognized as conjunctions, (and (not x) y). Thanks to
  Pete Manolios for suggesting that we consider such a change.

  There is a new [proof-checker] command print-all-concs that prints
  all the conclusions of the unproved goals.

  A new [proof-checker] command, runes, has been added. It reports the
  [rune]s that have participated in the interactive proof up to the
  current point.")
 (NOTE-2-6-PROOFS
  (NOTE-2-6)
  "ACL2 Version 2.6 Notes on Changes in Proof Engine

  Certain optimizations are performed when converting terms to clausal
  form. For example, (< 0 1) is known to be t, (HARD-ERROR ctx str
  alist) is known to be nil, and (INTEGERP n) is known to imply
  (RATIONALP n).

  In earlier versions of ACL2, the conversion of a term to clausal form
  expanded LAMBDA applications. That may no longer occur. Some proofs
  may slow down (or fail) because your LAMBDA-expressions are not
  expanded away when you ``expected'' them to be.

  Robert Krug found a soundness bug in our linear arithmetic package.
  The bug was caused by the derivation of an equation from two
  inequalities without taking adequate precautions to ensure that
  both sides of the inequalities were numeric. Robert also kindly
  provided a fix which we adopted. Thanks Robert!

  We fixed a bug that could prevent the application of a metatheorem.

  A bug has been fixed that had caused bogus forcing rounds (see
  [forcing-round]). The bug could occur when the hypothesis of a rule
  was forced (see [force]) before the prover decided to start over
  and prove the original goal by induction. Thanks to Rob Sumners for
  drawing our attention to this problem.

  Some low-level fixes have been made that prevent certain infinite
  loops, based on reports by users. We thank Yunja Choi, Matt
  Wilding, and Pete Manolios for reporting such problems.

  An obscure potential soundness hole has been fixed by redoing the way
  evaluation takes place in the ACL2 loop and during theorem proving.
  We expect that users will see no difference based on this change.
  (Those interested in the details can see the long comment ``Essay
  on Evaluation in ACL2'' in source file interface-raw.lisp.)

  A small change was made in computation for a heuristic that controls
  backchaining. This will speed up proofs dramatically in a very few
  cases but should have a very small impact in general.

  The simplifier has been modified to avoid eliminating hypotheses of
  goals that can be established by contextual (specifically,
  type-set) reasoning alone. We believe that this change will
  generally strengthen ACL2's reasoning engine, although on rare
  occasions a lemma that formerly was provable may require user
  assistance. Thanks to Robert Krug for suggesting this change and
  providing its implementation.

  Case splits are now limited, by default. This may allow some proof
  attempts to provide output where previously the prover would appear
  to ``go out to lunch.'' For a more complete discussion, including
  instructions for how users can control case splitting, see
  [set-case-split-limitations].

  A bug has been fixed in the handling of :[type-prescription] rules by
  the [bdd] package. Thanks to Rob Sumners for discovering this bug
  and supplying a helpful example.

  ACL2 may now use the built-in induction scheme for a function symbol
  even if that function symbol is disabled. Formerly, if a function
  symbol was disabled then its induction scheme was only considered
  if an explicit induction hint was supplied, other than :induct t.

  We eliminated the rule-class linear-alias. This rule class was seldom
  used and complicated the linear arithmetic decision procedure in
  ways that made it difficult to extend to handle some non-linear
  special cases. The only use of the rule-class that we know of was
  in our own nqthm books, which were an attempt to provide an
  embedding of the Nqthm logic and theorem prover into ACL2. But that
  facility was also practically never used, as far as we know. So
  both linear-alias rules and the nqthm books have been eliminated.

  In earlier versions of ACL2, when the IF-form of (AND p q) was
  assumed true -- as when rewriting the alpha expression in (IF (AND
  p q) alpha beta) -- the assumption mechanism did not deduce that p
  and q are true, only that their conjunction, in its IF-form, is
  true. This has long been known as a deficiency in both ACL2 and the
  earlier Nqthm but it was tedious to do better when one considered
  the full range of IF-forms one might encounter in the test of
  another IF. Rather than code all the cases, we just waited until
  clausification got rid of them. Robert Krug developed a pretty nice
  treatment of the general case and we added it in this version. This
  also involved a surprising number of changes elsewhere in the
  system because the improved handling of assumptions caused the
  theorem prover often to ``erase'' hypotheses provided by :use hints
  because it could simplify them to t. Thank you Robert!

  In response to a suggestion from Robert Krug, we added mfc-ap so that
  extended metafunctions can take advantage of linear arithmetic. See
  [extended-metafunctions].

  There is less delay in printing goals. In previous versions, a goal
  was not printed until its subgoals were created (or the goal was
  proved). Now, the goal is printed essentially as soon as it is
  created.

  A small technical change has been made in the function [term-order],
  to give priority on the function symbol count over the weighting of
  constants. So for example, while previously the term (f) preceded
  the constant 2, that is no longer the case. If this change is
  noticed at all, it will probably be noticed in how so-called
  permutative rewrite rules are applied; see [loop-stopper]. Thanks
  to Robert Krug for suggesting this improvement and providing part
  of the implemtation.")
 (NOTE-2-6-RULES
  (NOTE-2-6)
  "ACL2 Version 2.6 Notes on Changes in Rules and Constants

  The following symbols have been added to the list constant
  *common-lisp-specials-and-constants*: REPLACE, FILL, CHARACTER, =,
  BREAK, and PRIN1. This was done in support of ports to Allegro 6.0
  and Windows platforms (see [note-2-6-new-functionality]).

  The list of symbols in *acl2-exports* has been modified, for example
  to include show-accumulated-persistence and the legal arguments to
  [set-inhibit-output-lst].

  Functions [zp] and [zip] are now handled slightly differently. They
  are are now disabled, but each comes with a :[rewrite] rule that
  allows their expansion on non-variable terms, and also with a
  :[compound-recognizer] rule that avoids the need for opening up
  these functions when applied to variables. The resulting behavior
  should be very similar to the behavior of previous versions, except
  that case splits will be avoided when these functions are applied
  to variables.

  Function [standard-string-alistp] replaces function string-alistp.
  For further discussion, see [note-2-6-guards].

  Rules of class :[rewrite] whose conclusion is a term of the form
  (equal lhs rhs) have always been stored in the expected way: lhs
  rewrites to rhs. This way of storing :rewrite rules has been
  extended to allow [=], [eq], or [eql] in place of [equal].

  Rewrite rule nth-update-nth, in source file axioms.lisp, has been
  strengthened.

  A new rewrite rule equal-constant-+ has been added to the book
  arithmetic/equalities. This should generally be a beneficial
  change, but existing proofs involving the arithmetic books could
  conceivably be affected.

  Function [symbol-package-name] and constant *main-lisp-package-name*
  have undergone small changes. This change should rarely be noticed
  by users and is discussed elsewhere; see [note-2-6-system].

  We mention here that proofs involving [stobj]s may need to be
  modified because of changes in auxiliary functions generated by
  [defstobj]. (These changes were made in support of a new resizing
  capability, mentioned elsewhere in these release notes; see
  [note-2-6-new-functionality].

  In the distributed book directory books/arithmetic/, the book
  rationals-with-axioms-proved.lisp has been renamed rationals.lisp.

  (ACL2(r) only) Rewrite rules realp-+, realp-*, realp-unary--, and
  realp-unary-/ have been added in analogy to existing rules
  rationalp-+, rationalp-*, rationalp-unary--, and rationalp-unary-/.
  Thanks to Jun Sawada for suggesting this change.

  The definition of [aref1] has been modified slightly. Previously, if
  *my-a* were an array then (aref1 'some-name *my-a* :header) would
  evaluate to the cdr of the [header] of *my-a* rather than to its
  [default]. See [arrays].

  Changes have been made in the ihs books, based on suggestions from
  Jun Sawada, that support its use with ACL2(r) (see [real]). The
  primary change is to replace calls of [rationalp] with calls of
  [real/rationalp], which should have no effect on users of standard
  ACL2.")
 (NOTE-2-6-SYSTEM
  (NOTE-2-6)
  "ACL2 Version 2.6 Notes on System-level Changes

  We modified the tracking of [skip-proofs] events and the use of
  [state] global ld-skip-proofsp in order to avoid some soundness
  issues. For example, [skip-proofs] events buried in
  locally-included books are now tracked. The ``Essay on
  Skip-proofs'' in source file axioms.lisp gives several examples of
  dicey behavior that is no longer supported.

  We fixed a problem with some of the makefiles, so that recursive
  invocations of `make' now use the version of `make' specified on
  the command line.

  Files were fixed to help non-Unix/Linux users with book
  certification. Thanks to John Cowles for finding some problems and
  suggesting fixes to books/certify-numbers.lisp,
  books/arithmetic/certify.lsp, and books/cowles/certify.lsp. We
  thank Scott Burson for noticing and fixing some other such
  problems. Moreover, a bdd test was being ignored entirely in
  Version 2.5; this problem has been fixed as well.

  A minor change in system function save-acl2-in-allegro will allow
  this function to continue to work in Allegro CL versions starting
  (someday) with 10.0. Thanks to Art Flatau for suggesting such a
  fix.

  The books/case-studies/ directory has been removed. These books are
  in support of the first (1998) ACL2 workshop, and are accessible
  via the {ACL2 home page |
  http://www.cs.utexas.edu/users/moore/acl2/}. Also, the
  books/cli-misc directory has been renamed books/misc, and the
  books/nqthm directory has been removed.

  The notion of ACL2 version has been slightly modified to catch
  unsoundness due to implementation dependencies. See [version].
  Another change to eliminate such unsoundness is that built-in
  symbols now have a [symbol-package-name] of \"COMMON-LISP\";
  formerly, this string was \"LISP\" for ACL2 images built on GCL. See
  [symbol-package-name]. At a low level, the (undocumented) constant
  *main-lisp-package-name* is now \"COMMON-LISP\"; before, it was
  \"LISP\" for GCL.")
 (NOTE-2-6{R}
  (RELEASE-NOTES)
  "ACL2 Version 2.6(r) (November, 2001) Notes

  Important changes to non-standard version: None since Version 2.5.

  Please see [note-2-6] for changes to Version 2.6 of ACL2. We hope to
  write more documentation for ACL2(r) in the future.")
 (NOTE-2-7
  (RELEASE-NOTES)
  "ACL2 Version 2.7 (November, 2002) Notes

  The Version_2.7 notes are divided into the subtopics below. Here we
  give only a brief summary of a few of the changes that seem most
  likely to impact existing proofs. Not included in this brief
  summary, but included in the subtopics, are descriptions of
  improvements (including bug fixes and new functionality) that
  should not get in the way of existing proof efforts.

  In particular, please see [note-2-7-new-functionality] for discussion
  of a number of new features that you may find useful.

  Acknowledgements and elaboration, as well as other changes, can be
  found in the subtopics listed below.

  Bug fixes (see [note-2-7-bug-fixes])

    * Three soundness bugs were fixed. These bugs were probably rarely hit,
      so users may well not notice these changes.
    * [Certify-book] now requires :skip-proofs-ok t (respectively,
      :defaxioms-okp t) if there are [skip-proofs] (respectively,
      [defaxiom]) events in the book or any included sub-books.
    * When :by hints refer to a definition, they now use the original body
      of that definition rather than the simplfied (``normalized'')
      body.
    * When [ld] is applied to a stringp file name, it now temporarily sets
      the connected book directory (see [cbd]) to the directory of
      that file while evaluating forms in that file.

  New functionality (see [note-2-7-new-functionality])

    * ACL2 now works harder to apply :[rewrite] and :[linear] rules with
      free variables in the hypotheses. See
      [note-2-7-new-functionality], in particular its first two
      paragraphs, for details. [Forward-chaining] also does more with
      free variables.

  Changes in proof engine (see [note-2-7-proofs])

    * Some prover heuristics have changed slightly. Among other
      consequences, this can cause subgoal [hints] to change. For
      example, suppose that the Version_2.6 proof of a particular
      theorem generated \"Subgoal 2\" and \"Subgoal 1\" while Version_2.7
      only generates the second of these. Then a subgoal hint
      attached to \"Subgoal 1\" in Version_2.6 would have to be
      attached to \"Goal'\" in Version_2.7. (See [goal-spec].) The full
      topic has details (see [note-2-7-proofs]).

  Changes in rules and definitions (see [note-2-7-rules])

    * The package name of a generated variable has changed for [defcong].

  Guard-related changes (see [note-2-7-guards])

    * [Guard] verification formerly succeeded in a few cases where it
      should have failed.
    * Guards generated from type declarations now use functions
      signed-byte-p and unsigned-byte-p, now defined in source file
      axioms.lisp and formerly defined rather similarly under
      books/ihs/.

  Proof-checker changes (see [note-2-7-proof-checker])

    * See the above doc topic.

  System-level changes (see [note-2-7-system])

    * See the above doc topic.

  Other changes (see [note-2-7-other])

    * A new [table], [invisible-fns-table], takes the place of the handling
      of invisible functions in the [ACL2-defaults-table],
    * The [theory-invariant] event has been modified so that the default
      action is an error rather than a warning.
    * Proof output that reports destructor elimination no longer uses the
      word ``generalizing''.

  Again, please proceed to the subtopics for more thorough release
  notes.


Subtopics

  [Note-2-7-bug-fixes]
      ACL2 Version 2.7 Notes on Bug Fixes

  [Note-2-7-guards]
      ACL2 Version 2.7 Notes on Guard-related Changes

  [Note-2-7-new-functionality]
      ACL2 Version 2.7 Notes on New Functionality

  [Note-2-7-other]
      ACL2 Version 2.7 Notes on Miscellaneous Changes

  [Note-2-7-proof-checker]
      ACL2 Version 2.7 Notes on Proof-checker Changes

  [Note-2-7-proofs]
      ACL2 Version 2.7 Notes on Changes in Proof Engine

  [Note-2-7-rules]
      ACL2 Version 2.7 Notes on Changes in Rules and Constants

  [Note-2-7-system]
      ACL2 Version 2.7 Notes on System-level Changes")
 (NOTE-2-7-BUG-FIXES
  (NOTE-2-7)
  "ACL2 Version 2.7 Notes on Bug Fixes

  Francisco J. Martin-Mateos emailed us a soundness bug (!) in our
  handling of functional instantiation (for example see
  [functional-instantiation-example]). We are grateful for that
  email, which clearly illustrated the problem. It is included just
  below the definition of push-clause in ACL2 source file prove.lisp,
  where we have fixed the bug. This bug was fixed in a re-release of
  Version 2.6 in February, 2002.

  Rob Sumners emailed us a soundness bug (!) in function
  commutative-p1, which is used by the ACL2 [bdd] package. We are
  grateful for his help; his email gave a proof of nil and also
  pointed to the problem function. This bug was fixed in a re-release
  of Version 2.6 in February, 2002.

  We discovered and fixed a soundness bug illustrated by the book
  below, which was certifiable in Version 2.6 and ends in a proof of
  nil. The event (verify-guards foo) should have been rejected,
  because foo calls a function whose guards have not been verified,
  namely, bar. However, ACL2 did not notice the call of function bar
  in the body of foo because it was looking in the simplified
  (normalized) body of foo rather than in the original body of foo.
  During processing of the book below, the logical definition of zp
  is used before (verify-guards foo), and (zp -3) reduces to t in the
  logic. After (verify-guards foo), ACL2 simplifies (foo -3) by going
  into raw Lisp, where (zp -3) is evaluated and reduces to nil.

    (in-package \"ACL2\")
    (defun bar (x)
      (zp x))
    (defthm zp-false-on-negatives
      (implies (< x 0)
               (bar x))
      :rule-classes :type-prescription)
    (defun foo (x)
      (declare (xargs :guard (rationalp x)
                      :verify-guards nil))
      (if (< x 0)
          (if (bar x) 0 1) ; simplified body reduces this line to 0
        17))
    (defthm foo-of-minus-3-is-0
      (equal (foo -3) 0)
      :rule-classes nil)
    (verify-guards foo)
    (defthm foo-of-minus-3-is-1
      (equal (foo -3) 1)
      :rule-classes nil)
    (defthm bug
      nil
      :rule-classes nil
      :hints ((\"Goal\" :use (foo-of-minus-3-is-0 foo-of-minus-3-is-1))))

  The above bug exploited the fact that [zp] has a different definition
  in raw Lisp than in the logic for arguments that violate its
  guard). The following example caused a hard error in raw Lisp,
  though not a soundness error.

    (in-package \"ACL2\")
    (defun bar (x)
      (cons (car x) (car x)))
    (defun foo (x)
      (declare (xargs :guard t
                      :verify-guards nil))
      (if (bar x) x nil))
    (verify-guards foo)
    (defthm bug
      (equal (foo 3) t)
      :rule-classes nil)

  We have made a minor change to the notion of the formula of a
  function symbol, related to the change above, which however is
  unlikely to be noticeable.

  In order to make it harder to hit problems like the guard problem
  above, we have slighly modified the raw Lisp definition of [zp].

  A [break-rewrite] command, :ancestors, was broken, but has been
  fixed. Thanks to Eric Smith for bringing the problem to our
  attention, and to Robert Krug for supplying the final part of the
  fix.

  Some [proof-checker] commands caused errors when all goals have
  already been proved. This has been fixed. Thanks to Matt Wilding
  for reporting this bug.

  Fixed a bug in :[comp]. When compiling uncompiled functions with very
  large definitions, ACL2 was inserted a backslash (\\) character into
  generated files.

  Fixed the :type-alist :[brr] command (see [brr-commands]), whose
  output was difficult to read when typed after an :eval..

  Fixed some clumsy handling of errors when including an uncertified
  book, for example, with the error message when including an
  uncertified book with a bad [deftheory] event. Thanks to Eric Smith
  for pointing out this problem.

  Two modifications to [certify-book] now cause it to reflect natural
  expectations with respect to soundness. First, it now has default
  values of nil instead of t for keyword arguments :skip-proofs-okp
  and :defaxioms-okp. Thanks to Robert Krug for suggesting this
  change and the ACL2 seminar at the University of Texas for
  discussing it. Second, when :skip-proofs-okp (respectively,
  :defaxioms-okp) is nil, either explicitly or by default, then
  [skip-proofs] commands (respectively, [defaxiom] events) are
  disallowed inside any included books, regardless of the keyword
  parameters passed to [include-book]. This had not been the case for
  previous versions of ACL2, regardless of the values of
  :skip-proofs-okp or :defaxioms-okp passed to [include-book].

  Improved warnings and errors for [certify-book] and [include-book] to
  mention the [portcullis] as a possible source of [skip-proofs] and
  [defaxiom]s.

  ACL2 formerly caused an error when [hints] in a :[corollary] were not
  well-formed. This situation could arise as follows when certifying
  a book. A lemma FOO is proved [local]ly to the book (or, is present
  in a sub-book that is included locally). The :corollary of a
  subsequent theorem, BAR, disables that rule in a hint. When BAR is
  proved, this is not a problem. But [certify-book] makes a second
  pass after processing the events in a book: it essentially does an
  [include-book]. During the include-book pass, FOO is not known
  (because it was [local]), and therefore ACL2 fails to process the
  [disable] of FOO in an [in-theory] hint. The fix is that during
  [include-book], [hints] are ignored in corollaries just as they
  have been for the main theorem (or definition).

  It was possible for guard verification to succeed where it should
  have failed. We have fixed the bug (which was in source function
  (ironically named!) fcons-term-smart). Thanks to Robert Krug for
  sending us an example of bungled guard verification. It turns out
  that this bug was also present in Version_2.6.

  The [proof-checker] command = has been improved. Formerly, it could
  fail to apply when certain [implies] terms were in the context.
  Thanks to Pete Manolios for bringing this problem to our attention.

  The command [add-binop] failed to work. This has been fixed. Thanks
  to Rob Sumners for pointing out this problem. Also see
  [note-2-7-other] for a discussion of how this and another [table]
  are no longer part of the [ACL2-defaults-table].

  Book certification could cause a segmentation fault in cases where
  the certification world (see [certify-book]) has a very large
  number of events. This has been fixed.

  We now allow empty :use [hints] and empty hints, as requested by Eric
  Smith. Examples:

    (\"Goal\" :use ())
    (\"Goal\")

  A large [mutual-recursion] nest could cause a stack overflow when
  executing either :pr FN, :pr! FN, or :monitor (:definition FN) t,
  where FN is in that large mutual recursion nest. This has been
  fixed (implementation detail: function actual-props has been made
  tail-recursive). NOTE: If you just want the definition of FN, :[pf]
  FN can be much faster than :[pr] FN if FN is in a large
  [mutual-recursion].

  Hard Lisp errors could occur when including uncertified books. This
  has been fixed; ACL2 now does syntax-checking formerly omitted when
  including uncertified books.

  Previously, the evaluation of [defstobj] and [mutual-recursion] forms
  could cause ``undefined'' warnings when the form was compiled. This
  has been fixed. Thanks to Eric Smith for bring a mutual-recursion
  example to our attention.

  A bug has been fixed in the syntactic check for valid :[loop-stopper]
  values. Formerly, valid :loop-stopper values were erroneously
  restricted to lists of length at most 2 (a minor problem, since
  these lists typically have length 1), and the function symbol(s)
  need not have been defined in the current ACL2 [world]. Thanks to
  Eric Smith for sending an example to demonstrate the latter
  problem.

  Functions definitions that are :non-executable (see [xargs]) had
  never been recognized as redundant, but this has been fixed. Thanks
  to Vernon Austel for pointing out this problem.

  Compilation using :[comp] now compiles user-defined :[program] mode
  functions. Formerly only :[logic] mode functions could be compiled
  using :comp.

  Handling of :by hints has been improved in essentially three ways.
  The primary change is that now, when the current goal exactly
  matches the supplied lemma instance, the subsumption test will
  always succeeds (see [hints], in particular the discussion of :by).
  Second, certain proof failures involving :by [hints] were failing
  silently, with duplicate messages ``As indicated by the hint, this
  goal is subsumed by....'' This could happen when the original goal
  was among the goals generated by applying the hint. This problem
  has been fixed by no longer considering this proof step to be
  specious (see [specious-simplification]). Third and finally, when
  the [lemma-instance] refers to a definition, the original body of
  that definition is used rather than the simplfied (``normalized'')
  body.

  In addition to the obove, we now recognize more cases of specious
  simplification (see [specious-simplification]). Thanks to Eric
  Smith for bringing this issue to our attention.

  Fixed building of ACL2 under CLISP so that (1) the appropriate ACL2
  startup message is printed out when ACL2 starts up, and (2) the
  lisp process supplied to make, e.g., LISP=/usr/bin/clisp, is the
  one written out to the saved ACL2 file. Thanks to Dave Greve and
  Noah Friedman for suggesting (2). Also, ACL2 now works with CLISP
  2.30. We have accommodated a change in CLISP's handling of streams
  and its package-locking mechanism, as well as certain non-standard
  characters that formerly could cause CLISP 2.30 to break, even when
  those characters are in comments.

  Eliminated compiler warnings for CMU Lisp.

  Fixed an incorrect error supplied when book certification proceeded
  so quickly that the file write dates of the book (.lisp file) and
  the corresponding compiled file are equal. Now that error only
  occurs if the compiled file has a strictly earlier write date,
  which probably should never happen.

  Fixed an infinite loop when executing make clean-books (and hence
  `make' with targets that call clean-books, namely,
  certify-books-fresh, regression-fresh, and
  regression-nonstd-fresh), which could occur when any subdirectories
  of books/ are missing --- even workshops/, which is intended to be
  optional. Thanks to Pete Manolios for pointing out this bug.

  The [include-book] command now works properly even when filenames, or
  their directories or parent directories (etc.) are links. Thanks to
  Matt Wilding for pointing out this problem.

  The commands :[puff] :[puff*] have been fixed. Formerly, there was a
  bug when :puff or :puff* caused the execution of an [include-book]
  for an absolute [pathname], P, that was other than the current
  connected book directory (see [cbd]). When including P, any
  subsidiary [include-book] with a relative pathname would be
  erroneously considered relative to the current [cbd] rather than
  relative to the directory of P. Thanks to Pete Manolios and Matt
  Wilding for pointing out this problem.

  It had been possible in a ``large'' ACL2 image to call
  [verify-termination] successfully on built-in function [sys-call],
  with undesirable results. This hole has been plugged. Thanks to Rob
  Sumners for pointing out this problem. The new function [gc$] must
  also stay in :[program] mode.

  ACL2 no longer warns when certifying a book based on [local]
  functions whose [guard]s have not yet been verified. Thanks to Pete
  Manolios for pointing out this issue.

  An occasional ``slow array warning'' had been possible during proofs.
  The following sequence shows how to evoke that warning in previous
  versions.

    (in-theory (disable binary-append))
    (in-theory (enable binary-append))
    (in-theory (disable binary-append))
    (ubt 2)
    (thm (equal (car (cons x y)) x))

  (See [note-2-7-other] for a discussion of a change to [compress1] in
  support of this fix; however, users should not need to read that
  discussion.)

  The raw Lisp code for [defchoose] had a small bug, which was only
  evidenced in CLISP implementations as far as we know. It has been
  fixed.

  When [ld] is applied to a stringp file name, it now temporarily sets
  the connected book directory (see [cbd]) to the directory of that
  file while evaluating forms in that file. To see the effect of this
  change, imagine a subdirectory \"sub\" of the current directory, and
  imagine executing (ld \"sub/foo.lisp\"), where file foo.lisp contains
  the form (include-book \"bar\"). Presumably the intention was to
  consider the file bar.lisp in the same directory, sub/, as
  foo.lisp. Ld now honors that intention, but in previous versions
  \"bar.lisp\" would have been a reference to a file in the current
  directory, not in sub/.

  For users of run-acl2 [perhaps there are none!]: A fix has been
  provided by a Debian user via Camm Maguire so that acl2-mode anyone
  using that?] will work in Xemacs, which apparently uses variable
  lisp-mode-shared-map rather than shared-lisp-mode-map.

  ACL2 has, for a long time (always?), had a mechanism for avoiding
  re-proving [constraint]s generated by :functional-instance
  [lemma-instance]s in :use and :by hints. But this mechanism had not
  applied to defined (as opposed to constrained) functions. This has
  been fixed. Thanks to Francisco J. Martin-Mateos (ChesKo) for
  pointing out this problem by sending a clear example.")
 (NOTE-2-7-GUARDS
  (NOTE-2-7)
  "ACL2 Version 2.7 Notes on Guard-related Changes

  It was possible for guard verification to succeed where it should
  have failed. See the discussion under [note-2-7-bug-fixes].

  There have been changes in the guards generated from type
  declarations for the following cases. Thanks to Dave Greve and Matt
  Wilding for suggesting such changes.

    (type (signed-byte n) val)
    (type (unsigned-byte n) val)
    (type (integer m n) val)

  The following examples illustrate the changes.

    (type (signed-byte 4) x)
    ==> [old] (AND (INTEGERP X) (<= -8 X) (<= X 7))
    ==> [new] (SIGNED-BYTE-P 4 X)

    (type (unsigned-byte 4) x)
    ==> [old] (AND (INTEGERP X) (<= 0 X) (<= X 15))
    ==> [new] (UNSIGNED-BYTE-P 4 X)")
 (NOTE-2-7-NEW-FUNCTIONALITY
  (NOTE-2-7)
  "ACL2 Version 2.7 Notes on New Functionality

  ACL2 now has a more powerful technique for relieving a :[rewrite] or
  :[linear] rule's hypothesis that contains free variables. A new
  [documentation] section has been written describing the handling
  free variables in rules; see [free-variables]. In brief, the
  primary change is that when a free-variable match for the current
  hypothesis fails to allow subsequent hypotheses to be relieved,
  then additional matches may be attempted until they have all been
  tried. Also see [rule-classes] (discussion of :match-free). Also
  see [set-match-free-error], see [set-match-free-default], and see
  [add-match-free-override] for interfaces provided to the user for
  controlling the way ACL2 deals with free variables in hypotheses.
  We thank Rob Sumners for several helpful discussions about the
  designs of those interfaces, as well as Eric Smith and Robert Krug
  for helpful related discussions. Robert Krug also found a
  performance bug in a preliminary version, for which we are
  grateful.

  WARNING: Book certification attempts may take much longer now that,
  by default, ACL2 looks for more free variable matches (see
  paragraph just above). You can get the old behavior by inserting
  the form

    (set-match-free-default :once)

  just after the initial [in-package] form. However, rules from
  included books that have free variables can still slow down
  certification. This can be fixed by inserting

    (add-match-free-override :once t)

  before the first event in the file that generates a proof.

  [Forward-chaining] has been made more powerful in the presence of
  free variables (see [free-variables]), thanks to a contribution by
  Erik Reeber. Both before and now, when an attempt is made to
  relieve (prove) a hypothesis of a :forward-chaining rule in the
  case that at least one variable in that hypothesis is not yet
  bound, ACL2 looks in the current context for an instance of that
  hypothesis. If it finds one, then it binds the unbound variables
  and continues to the next hyopothesis. What is new is that ACL2 can
  now looks for multiple instances of that hypothesis. Consider the
  following example; an explanation is below.

    (encapsulate (((op * *) => *))
                 (local (defun op (x y) (< x y)))
                 (defthm transitivity-of-op
                   (implies (and (op x y) (op y z)) (op x z))
                   :rule-classes :forward-chaining))

    ; fails in Version_2.6; succeeds in in Version_2.7
    (thm (implies (and (op a b) (op b c) (op b e)) (op a c)))

  Before Version_2.7, the proof of the thm above fails. When the
  :forward-chaining rule transitivity-of-op binds x to a and y to b,
  it then looks for an instance of (op y z) in the current context,
  with y bound to b but z unbound. It happens to find (op b e) before
  (op b c), and it then adds (op a e) to the context. But starting
  with Version_2.7, it continues to look for additional instances and
  finds (op b c) in the context as well, chaining forward to (op a c)
  and thus proving the theorem.

  A new macro, [bind-free], provides a simple way to get much or most
  of the power of [meta]functions. Thanks to Eric Smith for coming up
  with the idea and to Robert Krug for providing an implementation
  (which we modified only very slightly) and documentation. See
  [bind-free] and see [bind-free-examples].

  With the addition of [bind-free] (mentioned above), [syntaxp] has
  become a macro, although that change should be transparent to the
  user. More importantly, the argument of syntaxp may now refer to
  variables mfc and state, giving syntaxp some of the power of
  extended metafunctions; see [syntaxp] and see
  [extended-metafunctions]. Thanks to Robert Krug for implementing
  that extension. Also, the argument of [syntaxp] may now include
  calls of :[program] mode functions. See [syntaxp] and see
  [syntaxp-examples] (thanks to Robert Krug for updating the former
  and creating the latter documentation).

  The linear-arithmetic decision procedure (see [linear-arithmetic])
  has now been extended so that ACL2 can reason about non-linear
  arithmetic as well (see [non-linear-arithmetic] for how to turn on
  this feature). We thank Robert Krug for the initial implementation
  of this, and Eric Smith for finding a couple of bugs in it.

  Some [trace] utilities have been made available in the ACL2 loop.

    * Function [trace$] (and also [untrace$]) calls the corresponding
      underlying Lisp routine trace (and untrace), which however
      continues (as it has for some time) to be enhanced for GCL and
      Allegro CL.
    * Macro [open-trace-file] causes trace output to go to a specified
      file. Macro [close-trace-file] causes trace output to go to the
      screen (which is the default).
    * Macro with-error-trace (or, wet for short) causes a backtrace to be
      written out for many failures, including guard violations. See
      [trace], see [trace$], and see :DOC wet [** NOTE: eliminated
      after Version 3.3].

  A new [theory], [minimal-theory] has been provided (see [theories]).
  It can be particularly useful for speeding up proofs involving :use
  [hints].

  New [events] [defund] and [defthmd] behave exactly like [defun] and
  [defthm], respectively, except that these new events disable the
  new name.

  The new macro [with-output] can be used to suppress output that would
  normally result from evaluation of a form.

  The form ([pstack]) can give the user an idea of what the prover has
  been up to during a proof, or after a user-aborted proof. Moreover,
  by evaluating (verbose-pstack t) (see [verbose-pstack]) one can get
  [trace]-like information about prover functions, including time
  summaries, printed to the screen during a proof. Thanks to Bill
  Legato and Robert Krug for initiating this work and to Robert for
  providing some initial implementation.

  The new command :[comp-gcl] is identical in functionality, except
  that it always leaves .c and .h files when compiling in GCL. Thanks
  to Rob Sumners and Vernon Austel for suggesting such a capability.

  The macro [e/d] provides a convenient way to [enable] some rules and
  [disable] others. It was formerly in a book supplied with the
  distribution, books/ihs/ihs-init.lisp, written by Bishop Brock (who
  we thank for providing this useful macro).

  New distributed books include those in books/ordinals/,
  books/rtl/rel3/, and books/misc/simplify-defuns.lisp (which is
  documented in books/misc/simplify-defuns.txt).

  The :expand hint now accepts a special value, :LAMBDAS, that tells
  the ACL2 rewriter to expand all lambda applications ([let]
  expressions). See [hints].

  A new function [zpf] has been added as fast test against 0 for
  nonnegative fixnums.

  A new macro [gc$] allows the user to call the garbage collector of
  the underlying Common Lisp. Thanks to Rob Sumners for suggesting
  this feature.

  It is now possible to [monitor] [simple] (abbreviation) rules.
  However, as a warning explains, they are still not considered
  monitored during preprocessing; see [monitor]. Thanks to Robert
  Krug for providing this improvement.

  The second argument of [certify-book], if supplied, formerly had to
  be either t or a non-negative integer. Now it can be the symbol ?,
  in the ACL2 package, indicating that the usual check should be
  suppressed on the number of commands that have been executed to
  create the world in which [certify-book] was called.")
 (NOTE-2-7-OTHER
  (NOTE-2-7)
  "ACL2 Version 2.7 Notes on Miscellaneous Changes

  Made several minor [documentation] improvements. We are grateful to
  Eric Smith for suggesting (most of) these.

  Improved (show-bdd) (see [bdd]) to give more useful feedback when
  there are ``leaf'' terms not known to be Boolean.

  Sped up processing of large mutual-recursion nests. In one large
  example the speedup was roughly two orders of magnitude.

  Modified event printing so that if both 'prove and 'event are
  inhibited, then events are no longer printed on behalf of
  [certify-book], [encapsulate], or [defstobj]. Thanks to Eric Smith
  for prompting consideration of such a change.

  The following technical change was made to support with-error-trace
  and wet (see [note-2-7-new-functionality]), but may be of interest
  to those who do low-level programming using the ACL2 logical
  [world]. The 'unnormalized-body property is now stored not only for
  functions defined in :[logic] mode, but also for functions defined
  by the user in :[program] mode. (:Program mode Functions built into
  ACL2 still have their 'unnormalized-body property omitted, in order
  to save space.)

  The handling of ``invisible'' functions for purposes of controlling
  rewriting (see [loop-stopper]) has been moved to a new table; see
  [invisible-fns-table]. Macros that access and modify this table are
  called ``...-invisible-fns-table'' in place of their former names,
  ``...-invisible-fns-alist.'' This feature was formerly implemented
  in the [ACL2-defaults-table], which prevented a book from exporting
  lists of invisible functions intended to work with the [rewrite]
  rules developed in the book. Thanks to Eric Smith and Rob Sumners
  for suggesting this change. See [set-invisible-fns-table] (formerly
  set-invisible-fns-alist), and also see [add-invisible-fns] and see
  [remove-invisible-fns], which provides ways to incrementally add to
  and remove from this table, respectively. The handling of printing
  binary function call nests using macros (See [add-binop]) has also
  been moved out of the [ACL2-defaults-table] as suggested by Eric
  and Rob, but this feature didn't work anyhow (see
  [note-2-7-bug-fixes]). Incidentally, the symbols binop-table,
  [add-binop], and [remove-binop] have all been added to the list
  *acl2-exports* (see [ACL2-user]), [add-invisible-fns] and
  [remove-invisible-fns] have been added to that list, and
  set-invisible-fns-alist has been replaced in that list by
  [set-invisible-fns-table]. Function invisible-fns-alistp is no
  longer defined and has been removed from *acl2-exports*.

  We now enforce the stated restriction on the pairings in
  macro-aliases-table (see [macro-aliases-table]), namely, that it
  associates names of macros with names of funcions (with respect to
  the current ACL2 logical [world]). We make a similar requirement on
  [invisible-fns-table].

  The [theory-invariant] event has been modified so that the default
  action is an error rather than a warning. Thanks to Eric Smith for
  suggesting this change. Also, the value returned upon successful
  execution of a [theory-invariant] event is now the key.

  Proof output that reports destructor elimination no longer uses the
  word ``generalizing''. This small change may help in browsing proof
  output, since now ``generaliz'' takes you to true uses of
  generalization. Thanks to Matyas Sustik for suggesting such a
  change.

  The command :[pl] now prints an abbreviated controller-alist for
  ;[definition] rules. Formerly the output from :pl could be
  overwhelming when the supplied function was part of a large
  [mutual-recursion] nest.

  The defaults for keyword parameters of [certify-book] have changed.
  See [note-2-7-bug-fixes], in particular, the discussion there of
  two modifications to certify-book.

  Technical changes have been made to [compress1] and [compress2] that
  should usually be invisible to users. The next paragraph describes
  them in detail, only for competeness (i.e., that description can be
  ignored by most users). But first, here is an example showing an
  effect on users. The slow array warning was not there previously.
  Notice that the warning only arises if the event form is changed.
  The solution is to be sure that redundant [defconst] forms are
  syntactically identical.

    ACL2 !>(defconst *a* (compress1 'demo
                                    '((:header :dimensions (5)
                                               :maximum-length 15
                                               :default uninitialized
                                               :name demo)
                                      (1 . one)
                                      (0 . zero))))

    Summary
    Form:  ( DEFCONST *A* ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     *A*
    ACL2 !>(aref1 'demo *a* 0)
    ZERO
    ACL2 !>(defconst *a* (compress1 'demo
                                    '((:header :dimensions (5)
                                               :maximum-length 15
                                               :default uninitialized
                                               :name demo)
                                      (1 . one)
                                      (0 . zero))))

    This event is redundant.  See :DOC redundant-events.

    Summary
    Form:  ( DEFCONST *A* ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     :REDUNDANT
    ACL2 !>(aref1 'demo *a* 0)
    ZERO
    ACL2 !>(defconst *a* (compress1 'demo
                                    '((:header :dimensions (5)
                                               :maximum-length 15
                                               :default uninitialized
                                               :name demo)
                                      (0 . zero)
                                      (1 . one))))

    This event is redundant.  See :DOC redundant-events.

    Summary
    Form:  ( DEFCONST *A* ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     :REDUNDANT
    ACL2 !>(aref1 'demo *a* 0)

    **********************************************************
    Slow Array Access!  A call of AREF1 on an array named
    DEMO is being executed slowly.  See :DOC slow-array-warning
    **********************************************************

    ZERO
    ACL2 !>

  As before, the von Neumann structure stored in the 'acl2-array
  property of the array name contains the array list object in its
  [car]. However, previously it was the case that compress1 and
  compress2 did not update that car when its new value would be equal
  to its old value. This was done largely in support of some type-set
  tables defined using [defconst] in type-set-b.lisp. The new
  versions of [compress1] and [compress2] are simpler in that no such
  exception is made in the case of equal lists, although instead the
  entire compression process is short-circuited when the input array
  list object is [eq] to the car of the 'acl2-array property. This
  change was made because the equality test was causing a ``slow
  array access'' warning to be printed in rare cases during proofs,
  as described elswhere (see [note-2-7-bug-fixes]).

  We no longer distribute documentation specific to Lucid Emacs. The
  Info documentation in directory doc/EMACS/ works well both for Gnu
  Emacs and XEmacs.

  A little-advertised macro, value, has long been allowed for top-level
  forms in [books]; see [embedded-event-form]. This has been replaced
  by a new macro, value-triple. The two have the same semantics at
  the top-level of books, where [state] is ``live''. However,
  value-triple should be used at the top-level of a book, while value
  should be used in function definitions (as before). This change
  eliminates a warning put out by the Allegro Common Lisp compiler
  for top-level value forms in [books].")
 (NOTE-2-7-PROOF-CHECKER
  (NOTE-2-7)
  "ACL2 Version 2.7 Notes on Proof-checker Changes

  Output from the [proof-checker] can now be inhibited by supplying the
  symbol proof-checker in the list given to [set-inhibit-output-lst].")
 (NOTE-2-7-PROOFS
  (NOTE-2-7)
  "ACL2 Version 2.7 Notes on Changes in Proof Engine

  An improvement in the linear arithmetic heuristics has been provided
  by Robert Krug. For information about this change, search for the
  comment in add-linear-lemma (file rewrite.lisp) that begins as
  follows.

    ; Previous to Version_2.7, we just went ahead and used the result of

  Thanks, Robert! Also thanks to Eric Smith for providing a motivating
  example.

  The non-linear-arithmetic addition (see [non-linear-arithmetic]) led
  to several small changes in the linear-arithmetic decision
  procedure (see [linear-arithmetic]). Two of these changes could
  affect existing proofs.

      First, when we are setting up the initial arithmetic database (which
      we call the ``pot-lst''), we have always scanned it to see if
      there were any pairs of inequalities from which we could derive
      a previously unknown equality. In some cases we added this
      equality to the clause and in others we used it to rewrite the
      clause, substituting one side of the equality for the other
      throughout the clause. Previously, the heuristics that we used
      to determine whether we performed the substitution differed
      from those used in several other places in the code. This has
      now been regularized, and similar heuristics are now used
      throughout the code.

      The second change to the linear-arithmetic decision procedure is that
      we now explicitly add inequalities derived from type reasoning
      to the pot-lst. Previously, we performed cancellations against
      these inequalities without adding them to the pot-lst. This
      change results in there being more inequalities in the pot-lst
      than before, and so more chances for there to be a pair of
      inequalities from which an equality can be derived. In effect,
      certain simple consequences of the current goal (see
      [type-set]) may now be added as hypotheses of the goal or used
      to peform equality substitutions.

  A slight improvement has been made to the way certain rewrite rules
  are stored. It was already the case that a rewrite rule rule whose
  conclusion C is not a call of a known equivalence relation (or
  [eq], [eql], or [=]) is stored as (iff C t), except that if ACL2
  can determine (using its [type-set] mechanism) that C is Boolean,
  then the rule is stored as (equal C t). The iprovement is that if C
  and C' are Boolean, then a rule stated as (iff C C') is stored as
  (equal C C'). Thanks to Pete Manolios for providing an example that
  led us to consider this improvement.

  The heuristic use of equalities (fertilization) has been modified.
  Previously, ACL2 would sometimes substitute using an equality but
  keep the equality, and then undo the substitution by using the
  equality again. Now, when ACL2 keeps an equality after using it, it
  puts the equality inside a call of [hide]. Descendents of that goal
  that are unchanged by simplification will have this call of [hide]
  removed so that the equality can once again contribute to the
  proof. This change can cause some proofs to succeed that otherwise
  would fail. In the unlikely event that a proof fails that formerly
  succeeded, the following hint on \"Goal\" may fix the problem (see
  [hints]):

    :expand ((:free (x) (hide x)))

  We have refined the heuristics employed when an [if] form is assumed
  true or false. Our previous attempt (see [note-2-6-proofs] for the
  original announcement) was not as general as we had believed. We
  have also improved some low-level code responsible for rewriting IF
  expressions. In earlier versions of ACL2, it was possible to have
  the truth or falsity of an IF expression explicitly recorded in the
  type-alist, and yet not use this information during rewriting. This
  problem has been corrected. Thanks to Robert Krug for noticing this
  problem and implementing the fix.

  We have sped up the rewriter in some cases where there are large
  collections of mutually-recursive functions (see
  [mutual-recursion]). (Implementation notes: technically, we have
  modified the way function being-openedp operates on the fnstack,
  and we have modified *current-acl2-world-key-ordering* as described
  in the essay above its definition.)

  [Forward-chaining] is now done in the preprocessing phase of proof
  attempts (see the discussion of :DO-NOT --- see [hints]). This is
  part of a technical change, made in support of translation of type
  declarations to [guard]s (see [note-2-7-guards]). Previously,
  whenever ACL2 checked for [built-in-clause]s, it then looked for a
  contradiction using [type-set] reasoning if it did not find a
  suitable built-in clause. The change is to perform forward-chaining
  in such cases (i.e., when a built-in clause is not found).

  A couple of changes have been made in the generation of goals for
  [forcing-round]s. Thanks to Eric Smith for bringing issues to our
  attention that led to these changes. For one, [guard]s are no
  longer relevant in such goal generation. Formerly, the addition of
  a guard could make a proof fail that otherwise succeeded. Secondly,
  contextual information is now always kept when it involves a
  constrained constant, i.e., a zero-ary function introduced in the
  signature of an [encapsulate].")
 (NOTE-2-7-RULES
  (NOTE-2-7)
  "ACL2 Version 2.7 Notes on Changes in Rules and Constants

  The [defcong] macro has been slightly changed. The difference is that
  the variable generated with suffix -EQUIV will now be in the same
  package as the name of the variable from which it is generated,
  rather than always belonging to the ACL2 package. Thanks to Hanbing
  Liu for suggesting this change. (Note that a couple of books have
  been modified to accommodate this change, e.g.,
  books/finite-set-theory/set-theory.)

  In Version_2.6, a change was made for rules of class :[rewrite] whose
  conclusion is a term of the form (EQV lhs rhs), where EQV is [=],
  [eq], or [eql]: the rule was stored as though EQV were [equal].
  (See [note-2-6-rules].) This change has been extended to rules of
  class :[definition].")
 (NOTE-2-7-SYSTEM
  (NOTE-2-7)
  "ACL2 Version 2.7 Notes on System-level Changes

  ACL2 now runs (once again) under LispWorks, specifically, LispWorks
  4.2.0. However, we needed a patch, which presumably will be
  unnecessary after 4.2.7. From LispWorks support:

      Users with LispWorks4.2.7 should ask us at lisp-support@xanalys.com
      for the transform-if-node patch. It will be helpful if they
      quote (Lisp Support Call #11372) when doing so. Also, they must
      send a bug form generated from their LispWorks image:
      instructions at
      http://www.lispworks.com/support/bug-report.html.

  File books/Makefile-generic has been improved so that failed attempts
  to certify a book will cause the `make' to fail. Previously, an
  existing .cert file was left in place, and that sufficed for the
  `make' to be considered a success. Now, the old .cert file is first
  removed when recertification is found to be necessary.

  A change has been made to source file acl2.lisp to accommodate GCL
  2.4.3. (ACL2 Version 2.6 does not work with some versions of GCL
  2.4.3.)

  The error message has been improved when certain forms are typed to
  raw Lisp and the ACL2 loop has never been entered (with ([lp])).

  The following symbols in the ACL2 package have been made untouchable,
  meaning that they are not available to the user: ev-fncall, ev,
  ev-lst, ev-acl2-unwind-protect, ev-fncall!, and
  user-stobj-alist-safe. The reason is that these functions can not
  be called safely except under certain restrictions. If you want to
  call the ACL2 evaluator, consider using the built-in system
  functions trans-eval or simple-translate-and-eval.

  CLISP Version_2.30 implements a notion of ``locking'' the \"LISP\"
  package that is incompatible with building ACL2. (CLISP
  Version_2.27 does not appear to have had this feature.) We have
  gotten around this problem by unlocking the \"LISP\" package in ACL2
  images built on such CLISPs.

  Automatic proclaiming for GCL, which has (for a long time) been done
  for functions in compiled books, has been improved. Formerly, the
  only time a non-trivial output type (i.e., other than t) was
  inferred was when macroexpansion produced an explicit call of
  [the]. Now, [if] expressions can also generate non-t output types.
  Consider the following example.

    (defmacro the-fixnum (n)
      (list 'the '(signed-byte 29) n))
    (defmacro 1+f (x)
      (list 'the-fixnum
            (list '1+ (list 'the-fixnum x))))
    (defun foo (x)
      (declare (type (unsigned-byte 27) x))
      (if (zp x)
          0
        (1+f (foo (1-f x)))))

  Formerly, the proclaim forms for foo, before and after this
  improvement, are as shown below.

    (PROCLAIM '(FTYPE (FUNCTION ((UNSIGNED-BYTE 27)) T) FOO))                ;old
    (PROCLAIM '(FTYPE (FUNCTION ((UNSIGNED-BYTE 27)) (SIGNED-BYTE 29)) FOO)) ;new

  Compiler info messages sent to error stream were eliminated for
  CMUCL.")
 (NOTE-2-7{R}
  (RELEASE-NOTES)
  "ACL2 Version 2.7(r) (November, 2002) Notes

  In source file axioms.lisp, in order for proofs to succeed, (make
  proofs), the definitions of [ACL2-count] and explode-atom have been
  modified slightly, and lemma standard-numberp-one [modified after
  Version_3.4 to become standardp-one] has been given :rule-classes
  nil.

  All [skip-proofs] forms have been eliminated from the nonstd books,
  thanks to Ruben Gamboa.

  The directory books/sqrt/, which was intended for ACL2(r), has been
  moved to books/nonstd/sqrt/ and added as appropriate to
  books/nonstd/Makefile.

  Please see [note-2-7] for changes to Version_2.7 of ACL2.")
 (NOTE-2-8
  (RELEASE-NOTES)
  "ACL2 Version 2.8 (March, 2004) Notes

  BRIEF SUMMARY.

  The Version_2.8 notes are divided into the indicated subtopics. Here
  we give only a brief summary of just a few of the major new
  features and changes that seem most likely to impact existing
  proofs. Not included in this brief summary, but included in the
  subtopics, are descriptions of many improvements (including bug
  fixes and new functionality) that should not get in the way of
  existing proof efforts. In the description below we also omit
  discussion of changes that will become clear by way of error
  messages if they affect you.

  In particular, please see [note-2-8-new-functionality] for discussion
  of a number of new features that you may find useful.

  Acknowledgements and elaboration, as well as other changes, can be
  found in the subtopics listed below.

  Some of the bug fixes (see [note-2-8-bug-fixes])

    * Some soundness bugs were fixed.
    * The handling of free variables in hypotheses (see [free-variables])
      of rewrite and linear rules had a bug that prevented some
      proofs from going through. Now that this bug has been fixed,
      you may find some proofs running much more slowly than before.
      You can use [accumulated-persistence] and
      [add-match-free-override] to remedy this situation; see
      [note-2-8-bug-fixes] for details.
    * The [default-hints] in the current logical [world] are no longer
      ignored by [verify-guards].
    * Forms violating guard-checking such as (defconst *silly* (car 3)) are
      now allowed in [books].

  Some of the new functionality (see [note-2-8-new-functionality])

    * WARNING: You may find that control-d (in emacs, control-c control-d)
      can throw you completely out of Lisp where it had not formerly
      done so.
    * ACL2 now starts up inside the ACL2 loop --- that is, ([lp]) is
      executed automatically --- when built on CLISP or Allegro CL.
      This was already the case for GCL and CMUCL, and it still is
      not true for LispWorks.
    * See [note-2-8-ordinals] for a discussion of a significant change in
      ordinal represtation, and in particular, for how to preserve
      existing proofs that depend on the previous ordinal
      representation.
    * Macros [mbe] (``must be equal''), [mbt] (``must be true''), and
      [defexec] have been introduced, which allow the user to attach
      alternate executable definitions to functions.
    * The user can now control multiple matching for free variables in
      hypotheses for :[forward-chaining] rules, as has already been
      supported for :[rewrite] and :[linear] rules.
    * It is no longer necessary to specify (set-match-free-error nil) in
      order to avoid errors when a rule with free variables in its
      hypotheses is missing the :match-free field.
    * The form (break-on-error) causes, at least for most Lisps, entry into
      the Lisp debugger whenever ACL2 causes an error.
    * A new [table] has been provided so that advanced users can override
      the built-in untranslate functionality. See
      [user-defined-functions-table].
    * The [pstack] (`process [prover] stack'') mechanism, formerly denoted
      checkpoints, has been improved. One of these improvements is to
      show actual parameters with (pstack t) rather than formals.
    * The [defstobj] event is now allowed to take an :inline argument,
      which can speed up execution.
    * Macro [cw-gstack] no longer takes arguments for the gstack or
      [state]. To print terms in full rather than abbreviated:
      (cw-gstack :evisc-tuple nil).
    * The [include-book] event now has an additional (optional) keyword,
      :dir. In particular, (include-book \"foo/bar\" :dir :system) will
      include the indicated book after prepending the path of the
      built-in books/ directory. You will probably not find :dir
      :system to be useful if you move the executable image or
      distributed books; see [include-book], in particular its
      ``soundness warning''.
    * The printing of results in raw mode (see [set-raw-mode]) may now be
      partially controlled by the user: see [add-raw-arity].
    * For those using Unix/Linux `make': A cert.acl2 file can contain forms
      to be evaluated before an appropriate [certify-book] command is
      invoked automatically (not included in cert.acl2).

  Some of the changes in the proof engine (see [note-2-8-proofs])

    * ACL2 now prevents certain rewriting loops; see [rewrite-stack-limit].
    * Small changes have been made to heuristics for controlling rewriting
      during proofs by induction and in handling certain ``weak''
      [compound-recognizer] rules.
    * The handling of free variables in a hypothesis of a [rewrite] rule
      (see [free-variables]) has been improved in the case that the
      hypothesis is of the form (equiv x y), where equiv is a known
      equivalence relation (see [equivalence]).
    * We have modified how the ACL2 simplifier handles the application of a
      defined function symbol to constant arguments, by avoiding the
      introduction of [hide] when evaluation fails if the term can be
      rewritten.
    * The generation of \"Goal\" for recursive (and mutually-recursive)
      definitions now uses the subsumption/replacement limitation
      (default 500). See [case-split-limitations].
    * Default hints now apply to hints given in definitions, not just
      theorems. See [default-hints].
    * Linear arithmetic now uses the conclusions of [forward-chaining]
      rules, and [type-set] now uses a small amount of linear
      reasoning when deciding inequalities.

  Some of the changes in rules, definitions, and constants (see
  [note-2-8-rules])

    * See the above doc topic.

  Guard-related changes are described in see [note-2-8-bug-fixes]

  Some of the proof-checker changes (see [note-2-8-proof-checker])

    * Added new [proof-checker] commands wrap1, wrap, and wrap-induct, to
      combine multiple conjuncts or goals.
    * The type-alist command now takes optional arguments that control
      whether or not the governors and/or conclusion are used in
      computing the context.

  Some of the system-level changes (see [note-2-8-system])

    * ACL2 now runs on OpenMCL and on MCL 5.0.

  Some of the other changes (see [note-2-8-other])

    * Emacs file emacs/emacs-acl2.el has been updated (see [note-2-8-other]
      for details).
    * When :pl is given a term other than a symbol, it will print all
      rewrite rules that match that term.
    * A new function, [pkg-witness], returns a symbol in the given package.
    * The list constant *acl2-exports* has been extended.
    * A new release of the rtl library has been included: books/rtl/rel4/.
      See the README file in that directory.

  Again, please proceed to the subtopics for more thorough release
  notes.


Subtopics

  [Note-2-8-bug-fixes]
      ACL2 Version 2.8 Notes on Bug Fixes

  [Note-2-8-guards]
      ACL2 Version 2.8 Notes on Guard-related Changes

  [Note-2-8-new-functionality]
      ACL2 Version 2.8 Notes on New Functionality

  [Note-2-8-ordinals]
      ACL2 Version 2.8 Notes on Changes to the Ordinals

  [Note-2-8-other]
      ACL2 Version 2.8 Notes on Miscellaneous Changes

  [Note-2-8-proof-checker]
      ACL2 Version 2.8 Notes on Proof-checker Changes

  [Note-2-8-proofs]
      ACL2 Version 2.8 Notes on Changes in Proof Engine

  [Note-2-8-rules]
      ACL2 Version 2.8 Notes on Changes in Rules, Definitions, and
      Constants

  [Note-2-8-system]
      ACL2 Version 2.8 Notes on System-level Changes")
 (NOTE-2-8-BUG-FIXES
  (NOTE-2-8)
  "ACL2 Version 2.8 Notes on Bug Fixes

  We have fixed a soundness bug in the tautology checker's handling of
  expressions of the form (not (not x)). This bug has gone back at
  least as far as Version_2.4. All of the regression tests passed
  after the fix, without modification. So we hope that this bug has
  rarely bitten anyone. Thanks to Qiang Zhang for sending us a proof
  of nil that led us to this fix: (thm (equal (and p q) (not (or (not
  p) (not q))))). And thanks to Matyas Sustik for an observation that
  led to an improvement of our initial fix.

  The preceding version (2.7) introduced a soundness bug in handling of
  ACL2 [arrays], in which functions [compress1] and [compress2] were
  returning the input alist rather than compressing it appropriately.
  Here is a proof of nil that no longer succeeds, based on a bug
  report from Warren Hunt, who we thank for bringing this problem to
  our atttention.

    (defthm bad
      (not (let* ((ar2 (aset1 'my-array ar1 3 10))
                  (ar3 (compress1 'my-array ar2))
                  (ar4 (reverse (reverse ar2)))
                  (ar5 (compress1 'my-array ar4)))
             (and (equal ar2 ar4)
                  (not (equal ar3 ar5)))))
      :rule-classes nil)
    (defthm contradiction
      nil
      :rule-classes nil
      :hints ((\"Goal\" :use
               ((:instance bad
                           (ar1 (compress1 'my-array
                                           '((3 . 5)
                                             (:HEADER :DIMENSIONS (5)
                                                      :MAXIMUM-LENGTH 6
                                                      :DEFAULT 0
                                                      :NAME MY-ARRAY)))))))))

  On a related note, a new function [flush-compress] can be used for
  subtle control of under-the-hood raw Lisp support for fast array
  access, although we expect it to be very rare that users need this
  extra support.

  Previous versions have had two soundness bugs that can occur when
  using the [proof-checker]:

    * The first bug pertains to the expand command, and hence x and x-dumb
      commands (which call expand); see [proof-checker-commands]. The
      bug can occur when applying the above commands when the current
      term is a call of a constrained function symbol for which there
      is a :[definition] rule. Now, the expand command will succeed
      only when the function symbol of the current term is a defined
      function symbol, in which case the original definition is
      always used, in analogy to how the :expand hint works in the
      prover; see [hints]. Thanks to John Erickson for sending an
      example that led us to wonder if there might be a soundness
      problem.
    * The second bug pertains to the s command (and commands that call it,
      e.g., s-prop). The proof-checker forms a context out of the
      top-level hypotheses and the if-terms governing the current
      term. If there is a contradiction in the top-level hypotheses,
      the proof-checker can appropriately consider the goal to be
      proved, and it does so. But formerly, the criterion was weaker:
      the contradiction could involve the combination of the
      top-level hypotheses and if-term governors. Thanks to Rob
      Sumners for noticing this bug.

  A soundness bug could be provoked in some Lisps by applying [defpkg]
  to the empty string. This has been disallowed.

  We fixed a soundness bug related to packages caused by a failure to
  track axioms introduced [local]ly on behalf of [defpkg] events. See
  [hidden-death-package].

  We fixed a soundness bug caused by a failure to check that a
  :[type-prescription] rule can be processed when proofs are skipped
  or under a [defequiv] event. The former case can occur when
  processing an [encapsulate] or [include-book] event, where the rule
  could depend on a [local] :[compound-recognizer] rule preceding the
  proposed :[type-prescription] rule under the same [encapsulate] or
  [include-book] event. See [local-incompatibility] for such an
  example.

  We fixed a potential soundness bug relating to reclassifying a
  :program mode function to :logic mode (as done by
  [verify-termination] or the submission of an appropriate
  ``redundant'' definition) without adequate checking that [stobj]
  usage was identical. Allegedly redundant definitions must now
  preserve the stobjs declaration as well as the formals, body, guard
  and type declarations. We thank Vernon Austel for pointing out this
  problem.

  It was possible to get a raw Lisp error by introducing a [local]ly
  defined function with [guard] verification inhibited and then
  subsequently introducing the same definition non-locally without
  that inhibition. The following example will clarify.

    (encapsulate nil
      (local
        (defun foo (x) (declare (xargs :guard t :verify-guards nil)) (car x)))
      (defun foo (x) (declare (xargs :guard t)) (car x)))
    ; The following causes a raw lisp error because ACL2 runs the Common Lisp
    ; definition of foo, because it thinks that foo's guard of t was verified.
    (thm (equal (foo 3) xxx))

  Thanks to Jared Davis for bringing this problem to our attention. We
  are particularly grateful to Jared because his example exploited
  this bug by applying it to a function defined using [mbe]
  (introduced in this same version, 2.8), in order to prove nil!

  The sort of error message shown below can legitimately occur when
  certifying a book in a certification world where there was an
  [include-book] command with a relative pathname (see [pathname]).
  However, it was occurring more often than necessary. This has been
  fixed.

      ACL2 Error in (CERTIFY-BOOK \"foo\" ...): The certification world has
      include-book commands for book \"bar\" that correspond to
      different full pathnames, namely \"/u/dir1/bar\" and
      \"/u/dir2/bar\". ACL2 cannot currently certify a book in such a
      world. To work around this problem, use an absolute pathname
      for at least one of these books (see :DOC pathname).

  Bugs were fixed in [with-output], in particular related to the use of
  values :all. Also, documentation for with-output has been improved.
  Thanks to Vernon Austel for pointing out the bugs.

  Fixed a lisp error occurring when bash proof-checker command was
  given illegal syntax, e.g., (bash ((\"Goal\" :in-theory (enable
  binary-append)))) instead of (bash (\"Goal\" :in-theory (enable
  binary-append))).

  We added an appropriate guard to [find-rules-of-rune], which will
  avoid hard lisp errors when this function is called on non-[rune]
  arguments. Thanks to Eric Smith for pointing out this issue.

  It was possible for a redundant [include-book] form (see
  [redundant-events]) to leave a [command] in the ACL2 logical
  [world] and to cause (re-)loading of a compiled file. These
  behaviors have been fixed. In particular, if book1 has already been
  included in the current ACL2 [world] and (include-book \"book1\")
  occurs in book2, then the compiled file for book1 will not be
  loaded again when book2 is included. Thanks to Dave Greve for
  bringing our attention to these problems, and to Eric Smith for
  bringing up a special case earlier (where \"//\" occurred in the book
  name).

  The summary printed at the end of a proof had not listed :[induction]
  rules used in a proof. This has been corrected.

  The use of proof trees in emacs redefined `control-c control-c' in
  such a way that in telnet mode, the telnet session was interrupted
  and perhaps could not be continued. This has been fixed.

  Source function load-theory-into-enabled-structure contained a
  guard-violating call of [compress1]. Thanks to Vernon Austel for
  bringing this problem to our attention; even though this bug was
  benign (as he pointed out), we like keeping the source code free of
  guard violations.

  A number of proof-checker atomic macros caused a hard error when all
  goals have already been proved. This has been fixed. Thanks to John
  Erickson for sending an example of the issue.

  A bug has been fixed in [add-match-free-override]. Formerly, a
  [table] [guard] violation occurred when calling
  [add-match-free-override] more than once with first argument other
  than :clear.

  Defininitions of functions involving large constants could cause
  stack overflows. This has been fixed, at least in some of the most
  egregious cases (by making a source function fn-count-evg
  tail-recursive). Thanks to Jared Davis for bringing this problem to
  our attention.

  Evaluation of computed hints could cause stack overflows. This has
  been fixed. Thanks to Eric Smith for bringing this problem to our
  attention.

  Evaluation of :[monitor] on :[definition] [rune]s is now fast even if
  the specified function is part of a very large [mutual-recursion]
  nest. Thanks to Eric Smith for sending an example showing that this
  wasn't always the case.

  Fixed a bug in books/bdd/cbf.lisp that was causing certification of
  distributed bdd books to fail when the connected book directory
  (see [cbd]) differs from the current working directory. Thanks to
  Scott Guthery for bringing this bug to our attention and supplying
  a helpful log.

  Duplicate rule names have been eliminated from warnings generated
  upon the use of enabled :[rewrite] or :[definition] rules. Thanks
  to Eric Smith for pointing out this problem.

  The trace utilities (see [trace]), as modified for GCL and Allegro
  Common Lisp, had failed to show more than the first return value
  for so-called ``*1*'' functions (essentially,
  [executable-counterpart] functions) when they were returning
  multiple values (via [mv]). This has been fixed. Thanks to Erik
  Reeber for pointing out this problem. Also, it is now possible to
  refer to arglist in [trace$] forms when ACL2 is built on GCL, not
  just when ACL2 is built on Allegro Common Lisp.

  Uses of [hide] introduced during proofs by failed attempts to
  evaluate constrained functions (see [hide]) are now tracked, so
  that the [rune] (:DEFINITION HIDE) will show up in the summary.

  The following bug, introduced back in Version 2.7, has been fixed.
  The bug applied only to GCL and may well not have affected anyone.
  But the function proclamation computed by ACL2 for compilation
  usually had an output type of nil where it should have been t.

  The macro [gc$] had a bug exhibited when it was supplied one or more
  arguments. This has been fixed.

  The macro [defabbrev] broke when supplied a string and no
  documentation, e.g., (defabbrev foo () \"\"). Thanks to Rob Sumners
  for noticing this problem and providing a fix, which we have
  incorporated.

  For ACL2 executables built on Allegro Common Lisp, a Lisp error
  occurred when [trace$] was called on other than a defined function
  symbol. Now ACL2 prints a more useful error message.

  The proof-checker no longer accepts a ([verify]) command when some
  function symbol in the original goal no longer exists in the
  current ACL2 logical [world]. Thanks to John Erickson for bringing
  this issue to our attention.

  The function ld-redefinition-action may now be called by the user.
  Thanks to Vernon Austel for suggesting that we remove this symbol
  from the list of so-called untouchables.

  The handling of free variables in hypotheses (see [free-variables])
  of rewrite and linear rules had a bug that prevented some proofs
  from going through. Here is a simple example, essentially provided
  by Diana Moisuc, who we thank for bringing this issue to our
  attention. The proof of the [thm] below had failed, but now will
  succeed. This particular bug prevented, for example, the :all
  behavior from occurring when the first hypothesis of the rule does
  not have free variables. NOTE: Now that this bug has been fixed,
  you may find some proofs running much more slowly than before. You
  can use [accumulated-persistence] to locate rules that are slowing
  down your proofs because of excessive attention to free variables,
  and then execute [add-match-free-override] for those rules (or,
  just change the rules themselves to specify :once in the
  :[rule-classes]).

    (defstub foo1 (* ) => *)
    (skip-proofs
     (defthm aux-foo1
       (implies (and (integerp a)
                     (integerp i)
                     (equal (foo1 0)  (list 0 i)))
                (equal (foo1 a) (list 0 (+ a i))))
       :rule-classes ((:rewrite :match-free :all))))
    (thm
     (implies (and (integerp i)
                   (integerp a)
                   (equal (foo1 0) (list 0 i)))
              (equal (foo1 a) (list 0 (+ a i)))))

  Formerly, creation of large arrays could cause an error in the
  underlying Common Lisp implementation without helpful messages for
  the user. Now, we check Common Lisp restrictions on arrays and
  print a helpful error message if they are violated, namely: each
  dimension must be less than the value of Common Lisp constant
  array-dimension-limit, and the product of the dimensions must be
  less than the value of Common Lisp constant array-total-size-limit.
  Thanks to Warren Hunt for bringing this issue to our attention.
  Note: this change also removes a former restriction of [stobj]
  array fields to size smaller than 2^28-1, provided the underlying
  Lisp can support larger arrays.

  The [default-hints] in the current logical [world] were ignored by
  [verify-guards]. This has been fixed. Thanks to Jared Davis for
  pointing out this bug and sending a helpful example.

  The [brr] mechanism has been cleaned up in order to avoid hard errors
  and infinite loops that can arrive when typing interrupts
  (control-c) or end-of-files (control-d) inside the [brr] loop.
  Thanks to Dave Greve, Olga Matlin, Eric Smith, and Serita Van
  Groningen for bringing this issue to our attention. As a byproduct,
  if you type control-d (or if inside emacs, control-c control-d),
  you may now quit entirely out of ACL2 and lisp (see [good-bye]) in
  some cases where you formerly would not have, for example when
  sitting at the ACL2 prompt (which formerly, in Allegro Common Lisp
  for example, would merely take you into raw Lisp rather than
  quitting everything).

  We have eliminated structural flaws in the HTML documentation pages
  that could make them unreadable in some browsers. Thanks to Bill
  Young for bringing this issue to our attention and to Joe Hendrix
  for diagnosing the problem.

  The [proof-checker] could run very slowly after many instructions in
  a given session. This has been fixed; thanks to Art Flatau for
  bringing this problem to our attention. (Implementation detail: We
  now keep tag-trees duplicate-free when we accumulate them into
  state. This change could have minor speed advantages for some
  top-level proofs too, not just in the proof-checker.)

  The printing of accesses to stobjs using nth or update-nth has been
  done using symbolic constants since ACL2 Version_2.6. However,
  there was a bug that prevented this feature from working for
  [update-nth] except at a top-level call. This has been fixed.
  Thanks to Julien Schmaltz for bringing this problem to our
  attention. For example, consider these events:

    (defstobj st field0 field1)
    (thm (equal (nth 1 (update-nth 0 17 st)) (car (cons xxx yyy)))
         :hints ((\"Goal\" :in-theory (disable nth update-nth))))

  Before the fix, the proof attempt of the above silly thm printed the
  following.

    (NTH 1 (UPDATE-NTH *FIELD0* 17 ST))

  After the fix, we instead see the following.

    (NTH *FIELD1* (UPDATE-NTH *FIELD0* 17 ST))

  It is now possible to certify and subsequently include [books] that
  require guard-checking to be off. For example, the book can contain
  the form (defconst *silly* (car 3)) even though 3 fails to satisfy
  the guard of [car]. Formerly, it was necessary to execute
  :[set-guard-checking] nil before a [certify-book] or [include-book]
  in order for such a form to be handled without error. Thanks to
  Hanbing Liu for bringing this problem to our attention.

  Fixed a [proof-checker] bug that could cause probably cause strange
  error, ``Attempt to access the plist field''. Thanks to Bill Young
  for bringing this problem to our attention.

  Fixed a [proof-checker] bug that was failing to record applications
  of rewrite rules using the proof-checker's :rewrite command,
  causing the proof summary to omit mention of that rule (for
  example, when using the proof-checker's :exit command to generate
  an :instructions hint). Thanks to Bill Young for pointing out this
  bug.

  Modernized some of the proof-tree emacs and infix printing stuff,
  thanks to suggestions made by Camm Maguire.")
 (NOTE-2-8-GUARDS
  (NOTE-2-8)
  "ACL2 Version 2.8 Notes on Guard-related Changes

  All the guard-related changes may be found elsewhere; in particular,
  see [note-2-8-bug-fixes].")
 (NOTE-2-8-NEW-FUNCTIONALITY
  (NOTE-2-8)
  "ACL2 Version 2.8 Notes on New Functionality

  WARNING: You may find that control-d (in emacs, control-c control-d)
  can throw you completely out of Lisp where it had not formerly done
  so.

  (CLISP and Allegro CL only) ACL2 now starts up inside the ACL2 loop
  --- that is, ([lp]) is executed automatically --- when built on
  CLISP or Allegro CL. This was already the case for GCL and CMUCL,
  and it still is not true for LispWorks. Thanks to Joe Corneli for
  bringing the CLISP command-line option \"-i\" to our attention, which
  led to this CLISP change and inspired reconsideration of how to do
  this for Allegro CL.

  Pete Manolios and Daron Vroon have changed the representation of
  ordinals in ACL2, defined algorithms for ordinal arithmetic, and
  created a library of theorems to reason about ordinal arithmetic.
  We thank them for these nice contributions. See [note-2-8-ordinals]
  for details, in particular, for how to preserve existing proofs
  that depend on the previous ordinal representation.

  Sometimes users create rules of class :[rewrite] that cause an
  infinite loop in the ACL2 rewriter. This has lead to Lisp stack
  overflows and even segmentation faults. Now, the depth of calls of
  functions in the ACL2 rewriter is limited, and under user control.
  See [rewrite-stack-limit].

  Macros [mbe] (``must be equal'') and [mbt] (``must be true'') have
  been introduced, which allow the user to attach fast executable
  definitions to (presumably slower) :[logic] mode functions. Thanks
  to Vernon Austel for a key idea. Also provided is a macro
  [defexec], which employs [mbe] but enforces the requirement that
  the executable definition also terminates. Thanks to Jose Luis Ruiz
  Reina for collaborating in the design and development of [defexec],
  and for useful comments from a number of others as well in the
  development of mbe including Joe Hendrix and Rob Sumners.

  Definitions have been added for functions [rassoc-eq] and
  [rassoc-equal], which are like [rassoc] but use different tests and
  have different guards. (Compare [assoc-eq] and [assoc-equal], which
  are in similar relation to [assoc].)

  The user can now control multiple matching for free variables in
  hypotheses for :[forward-chaining] rules, as has already been
  supported for :[rewrite] and :[linear] rules. For :forward-chaining
  rules, ``free variables'' are those in the hypotheses not bound by
  a given trigger term. As for :rewrite and :linear rules,
  free-variable matching may be limited to the first successful
  attempt by specifying :match-free :once with :forward-chaining in
  the :[rule-classes], and [add-match-free-override] may be used to
  modify the behavior of an existing rule. Thanks to Erik Reeber for
  most of the implementation of these new capabilities, as well as
  significant assistance with a corresponding new documentation topic
  (see [free-variables-examples-forward-chaining]).

  It is no longer necessary to specify (set-match-free-error nil) in
  order to avoid errors when a rule with free variables in its
  hypotheses is missing the :match-free field. (This was already true
  during book certification, but now it is the case in interactive
  sessions as well.)

  The form (break-on-error) causes, at least for most Lisps, entry into
  the Lisp debugger whenever ACL2 causes an error. See
  [break-on-error]. Thanks to John Erickson for providing
  encouragement to provide this feature.

  A new [table] has been provided so that advanced users can override
  the built-in untranslate functionality. See
  [user-defined-functions-table].

  The [pstack] mechanism (formerly denoted checkpoints) has been
  improved. The ``process [prover] stack,'' or pstack, is
  automatically printed when proofs abort. Evaluation of function
  calls on explicit arguments during proofs is now tracked. Actual
  parameters are shown with (pstack t) rather than formals. Thanks to
  Bill Legato for suggesting the first two of these improvements and,
  in general, encouraging changes that make ACL2 easier to use.

  The [defstobj] event is now allowed to take an :inline argument,
  which can speed up execution. Thanks to Rob Sumners for suggesting
  and implementing this new feature.

  Macro [assert$] has been added in order to make it easy to write
  assertions in one's code. Semantically, (assert$ test form) is the
  same as form, but it causes a hard error (using [illegal]) if test
  evaluates to nil.

  Macro [cw-gstack] no longer takes arguments for the gstack or
  [state]. However, it now takes a keyword argument (which is
  optional), :evisc-tuple, that can be used to control how it prints
  terms. In particular, cw-gstack abbreviates large terms by default,
  but (cw-gstack :evisc-tuple nil) causes terms to be printed in
  full. Thanks to Robert Krug and Eric Smith for requesting this
  improvement.

  The advanced user now has more control over the evisceration of
  terms. See [ld-evisc-tuple], in particular the new paragraph on
  ``The printing of error messages and warnings.''

  The [include-book] event now has an additional (optional) keyword,
  :dir. The value of :dir should be a keyword that is associated with
  an absolute directory pathname to be used in place of the current
  book directory (see [cbd]) for resolving the first argument of
  include-book to an absolute pathname. At start-up, the only such
  keyword is :system, so that for example (include-book
  \"arithmetic/top\" :dir :system) will include the book
  \"arithmetic/top\" under the \"books/\" directory of your ACL2
  installation. But you can associate ``projects'' with keywords
  using [add-include-book-dir], e.g., (add-include-book-dir
  :my-project \"/u/smith/project0/\"). See [add-include-book-dir] and
  also see [delete-include-book-dir] and see [include-book]. Note:
  You will probably not find :dir :system to be useful if the
  distributed books are not placed in the path of their original
  location, pointed to by :dir :system, which will often happen if
  the executable image is obtained from another site. Also see
  [include-book], in particular its ``soundness warning''.

  The printing of results in raw mode (see [set-raw-mode]) may now be
  partially controlled by the user: see [add-raw-arity]. Also,
  newlines are printed when necessary before the value is printed.

  For those using Unix/Linux `make': A cert.acl2 file can contain forms
  to be evaluated before an appropriate [certify-book] command is
  invoked automatically (not included in cert.acl2).

  Jared Davis has contributed a new set of books for ordered finite set
  theory to the standard distribution,
  books/finite-set-theory/osets-0.81/. See the README file in that
  directory. Thanks, Jared.

  Robert Krug has contributed two related changes (thanks, Robert!) in
  support of stronger arithmetic reasoning. First, one can now enable
  and disable nonlinear arithmetic with a :nonlinearp hint, which
  will override the default provided by [set-non-linearp] (initially,
  nil). See [hints]. Second, [computed-hints] can now have access to
  the HISTORY, PSPV, and CTX variables of the waterfall, which (for
  example) allows the writing of a hint which will enable nonlinear
  arithmetic on precisely those goals that are
  stable-under-simplificationp. See [computed-hints].

  Robert Krug has contributed a new set of arithmetic books to the
  standard distribution, books/arithmetic-3/. See the README file in
  that directory. Thanks, Robert.")
 (NOTE-2-8-ORDINALS
  (NOTE-2-8)
  "ACL2 Version 2.8 Notes on Changes to the Ordinals

  Please see [ordinals].")
 (NOTE-2-8-OTHER
  (NOTE-2-8)
  "ACL2 Version 2.8 Notes on Miscellaneous Changes

  Execution of [table] events has been sped up in many cases by
  avoiding excessive consing.

  ACL2 now warns if :[rewrite] (or :[definition]) rules contain free
  variables on the right-hand side. Thanks to Dave Greve for raising
  this issue.

  Emacs file emacs/emacs-acl2.el has been updated to better comprehend
  the notion of the ``ACL2 shell'', which is the buffer to which ACL2
  forms are written by commands defined in the above file. Thus,
  command control-t e has been modified always to write to the ACL2
  shell (which is \"*shell*\" by default), and the following new
  commands have been defined.

      o control-t c
      Set the ACL2 shell to the current buffer. o control-t b
      Change to the ACL2 shell.

  The commands :[pl] and :[pr] may now be given a macro name that
  corresponds via the macro-aliases-table to a function name, so that
  for example :pl append is treated the same as :pl binary-append. A
  more interesting improvement, for :pl only, is that :pl may now
  take any term. When :pl is given a term other than a symbol, it
  will print all rewrite rules that match that term. Thanks to David
  Russinoff, Robert Krug, and Bill Legato for getting this going.

  A new function, [pkg-witness], returns a symbol in the given package.

  The installation instructions have been updated, for example to give
  more guidance on obtaining Lisp implementations and to mention the
  acl2-help mailing list.

  Jared Davis has suggested some symbols to be added to *acl2-exports*,
  and we have done so. Thanks, Jared.

      o MFC (used in [syntaxp] and [extended-metafunctions]; thanks also to
      Robert Krug for this one) o ID, CLAUSE, WORLD, and
      STABLE-UNDER-SIMPLIFICATIONP (used in [computed-hints]) o
      [set-default-hints]

  The command :[pe] has been improved so that when the event is inside
  an included book, the path of included books (from the top-level
  book down to the one containing the event) is shown. Thanks to Eric
  Smith (perhaps among others) for pointing out the utility of this
  improvement.

  A new release of the rtl library has been included: books/rtl/rel4/.
  See the README file in that directory.")
 (NOTE-2-8-PROOF-CHECKER
  (NOTE-2-8)
  "ACL2 Version 2.8 Notes on Proof-checker Changes

  Added new [proof-checker] commands wrap1, wrap, and wrap-induct. Wrap
  replaces multiple goals by their conjunction: (wrap instr1 instr2
  ...) employs wrap1 so that the indicated instructions create only
  at most one new goal. Wrap-induct is a simple example of the use of
  wrap, so that induction creates only one goal (the conjunction of
  the base and induction steps). Wrap1 can be used immediately after
  a prover call (bash, prove, reduce, bdd, or induct) to collapse the
  new goals into one. See [proof-checker-commands].

  The [proof-checker] command = failed to work as expected when a
  governing IF-test of the current term is T. This has been fixed (by
  fixing source function conjuncts-of). Thanks to Yoann Padioleau for
  bringing this problem to our attention.

  The type-alist command now takes optional arguments that control
  whether or not the governors and/or conclusion are used in
  computing the context that is printed (see
  [proof-checker-commands], specifically subtopic type-alist). Thanks
  to Rob Sumners for suggesting this improvement.

  The macro [toggle-pc-macro] has always taken an optional second
  argument of atomic-macro or macro. However, this was not clearly
  documented, and those two symbols had to be in the ACL2 package.
  Both of these problems have been remedied. Thanks to John Erickson
  for bringing the lack of documentation of the second argument to
  our attention.")
 (NOTE-2-8-PROOFS
  (NOTE-2-8)
  "ACL2 Version 2.8 Notes on Changes in Proof Engine

  ACL2 now prevents certain rewriting loops; see [rewrite-stack-limit].

  During the computation of [constraint]s for functional instantiation,
  (prog2$ term1 term2) and (the type term2) are now treated as term2.

  A change has been made in heuristics for controlling rewriting during
  proofs by induction. Formerly, during induction proofs, ACL2
  suppressed rewriting of certain ``induction hypothesis'' terms, and
  forced expansion of certain ``induction conclusion'' terms, until
  rewriting had stabilized. This meddling with the rewriter is still
  turned off when rewriting has stabilized, but it is now turned off
  earlier once an ancestor has been through the rewriter and the
  current goal is free of ``induction conclusion'' terms. Thanks to
  Dave Greve and Matt Wilding for providing an example and associated
  analysis that led us to look for a heuristic modification.

  A change has been made in the heuristics for handling certain
  ``weak'' [compound-recognizer] rules when building contexts. Those
  who want to dig deeply into this change are welcome to look at the
  code following the call of most-recent-enabled-recog-tuple in the
  code for function assume-true-false in the ACL2 sources.

  The handling of free variables in a hypothesis of a [rewrite] rule
  (see [free-variables]) has been improved in the case that the
  hypothesis is of the form (equiv x y), where equiv is a known
  equivalence relation (see [equivalence]). Previously, if the
  rewriter was attempting to rewrite the hypothesis (equiv x y) of a
  rewrite rule, in a context where x' is an instance of x, then the
  rewriter could fail to notice a term (equiv x' y') true in the
  current context where y' is an instance of y, in the case that x'
  precedes y' in the [term-order]. This has been remedied. This
  improvement applies regardless of whether x, y, or (we believe)
  both are already fully instantiated in the present context. Thanks
  to Joe Hendrix for bringing up an example and to Vernon Austel for
  providing another, simple example.

  A very minor change has been made to the rewriter in the case that an
  equality appears on the left-hand side of a :[rewrite] rule.
  Formerly, when such an equality (equal x y) was commuted to (equal
  y x) in order for the rule to match the current term, then all
  equalities on the instantiated right-hand side of the rule were
  commuted, except for those occurring inside another equality. The
  instantiated right-hand side is no longer modified. It seems very
  unlikely that this change will cause proofs to fail, though we
  cannot completely rule out that possibility.

  We have modified how the ACL2 simplifier handles the application of a
  defined function symbol to constant arguments in certain cases,
  which we now describe. As before, ACL2 attempts to simplify such a
  function application by evaluation, provided the
  :[executable-counterpart] of the function is enabled. And as
  before, if that evaluation fails due to a subroutine call of a
  constrained function (introduced by [encapsulate]), ACL2 may wrap a
  call of hide around this function application. (See [hide].) But
  now, ACL2 attempts to apply definitions and rewrite rules in the
  case that this evaluation fails, and only if the resulting term is
  unchanged does ACL2 wrap [hide] around this function application.
  Thanks to Matt Wilding for bringing up the idea of this
  modification.

  The generation of \"Goal\" for recursive (and mutually-recursive)
  definitions now uses the subsumption/replacement limitation
  (default 500). See [case-split-limitations].

  Default hints now apply to hints given in definitions, not just
  theorems. See [default-hints].

  Thanks to Robert Krug for implementing the following two improvements
  involving linear arithmetic reasoning: linear arithmetic now uses
  the conclusions of [forward-chaining] rules, and [type-set] now
  uses a small amount of linear reasoning when deciding inequalities.")
 (NOTE-2-8-RULES
  (NOTE-2-8)
  "ACL2 Version 2.8 Notes on Changes in Rules, Definitions, and
  Constants

  The [theory] [minimal-theory] has been changed by adding the
  [definition] [rune] for [mv-nth] to the theory. A corresponding
  change has been made to the theory warning mechanism, which was
  failing to warn if the definition of mv-nth is disabled, even
  though calls of mv-nth can be expanded by special-purpose code in
  the rewriter. Thanks to Serita Van Groningen for pointing out this
  problem with the theory warning mechanism.

  The [defevaluator] event has been modified so that in the body of the
  evaluator function, to add a new case (ATOM X) (returning nil) has
  been inserted immediately after the case (EQ (CAR X) 'QUOTE). This
  is a no-op semantically but may speed up proofs. Thanks to Warren
  Hunt for suggesting this change.

  A new form of :[compound-recognizer] rule is now allowed:

    (if (fn x) concl1 concl2)

  This is equivalent to an existing form:

    (and (implies (fn x) concl1)
         (implies (not (fn x)) concl2))

  Thanks to Josh Purinton for bringing this to our attention.

  Rewrite rules realpart-+ and imagpart-+ have been added in order to
  simplify the [realpart] and [imagpart] (respectively) of a sum.
  They follow from a theorem add-def-complex that equates a sum with
  the complex number formed by adding real and imaginary parts. All
  three of these theorems may be found in source file axioms.lisp.
  Thanks to Eric Smith for raising a question leading to these
  additions, as well as to Joe Hendrix and Vernon Austel for helpful
  suggestions.")
 (NOTE-2-8-SYSTEM
  (NOTE-2-8)
  "ACL2 Version 2.8 Notes on System-level Changes

  ACL2 now runs on OpenMCL, ``an opensourced Common Lisp
  implementation, derived from Digitool's Macintosh Common Lisp
  product.'' Thanks to Greg Wright and Robert Krug for doing most of
  the work for this port.

  When ([lp]) is first executed, the underlying raw Lisp package will
  change to \"ACL2\" (if that is not already the current package in raw
  Lisp). This is a minor change that will probably not be noticed,
  since up to now it has probably been the case that the ACL2
  executable starts up with \"ACL2\" as the underlying raw Lisp
  package. But this change was made because we have been informed
  that ACL2 executables based on OpenMCL need not start up with
  \"ACL2\" as the underlying raw Lisp package.

  ACL2 now runs on MCL 5.0. Thanks to Pascal Costanza for updates to
  the instructions in file mcl-acl2-startup.lisp and for an update to
  the ACL2 sources (parameter *compiled-file-extension*).")
 (NOTE-2-8{R}
  (RELEASE-NOTES)
  "ACL2 Version 2.8(r) (March, 2003) Notes

  The Makefile has been modified by adding a new target, clean-links.
  This can be used in order to remove all soft links, which is useful
  if the directory is copied or moved to a new location or if there
  are file system changes that cause problems with link pathnames.

  Please also see [note-2-8] for changes to Version_2.8 of ACL2.")
 (NOTE-2-9
  (RELEASE-NOTES)
  "ACL2 Version 2.9 (October, 2004) Notes


Table of Contents

    * BUG FIXES
    * NEW FUNCTIONALITY
    * CHANGES IN PROOF ENGINE
    * GUARD-RELATED CHANGES
    * PROOF-CHECKER CHANGES
    * SYSTEM-LEVEL CHANGES
    * BOOK CHANGES
    * MISCELLANEOUS CHANGES

  BUG FIXES.

  We fixed a soundness bug due to a conflict between user-supplied
  package names and internal package names (obtained by prepending a
  Lisp constant, *1*-package-prefix*) and user-supplied package
  names. For example, the form (defpkg \"ACL2_*1*_MYPKG\" ()) is no
  longer legal. Thanks to Robert Krug for asking a question that led
  directly to the discovery of this bug.

  We fixed a soundness bug that allows :[logic] mode functions to call
  :[program] mode functions. The fix furthermore prevents functions
  with [guard]s verified from calling functions with guards not
  verified. We had thought we already prevented all this, but there
  was a problem with the interaction of [local] definitions and
  redundancy checking (see [redundant-events]).

  We fixed a soundness bug that could occur when built-in functions
  were called during macroexpansion (a hole in so-called
  ``safe-mode'').

  Fixed a minor bug in system functions genvar1 and genvar, where [eq]
  had been used in place of [eql]. This bug was discovered during the
  plugging of a hole in safe-mode, mentioned just above.

  We fixed handling of the :inline keyword for [defstobj], which
  previously could cause raw Lisp errors in OpenMCL and CMU Common
  Lisp. Thanks to John Matthews for bringing this issue to our
  attention.

  Calls of [include-book] could result in a state for which some
  function definitions were not compiled that should have been. The
  result could be performance degradation or even stack overflows.
  This situation could arise in the following two ways.

      o Inclusion of a book with an absolute pathname that differs from the
      absolute pathname at certification time, presumably because of
      the use of soft links. Thanks to Bob Boyer and Warren Hunt for
      bringing a stack overflow to our attention that led us to this
      fix.

      o Large [mutual-recursion] nests (more than 20 functions) are
      executed in a superior book.

  We fixed some performance bugs that can increase the speed of
  [include-book] calls by a factor of close to 2. Thanks to Eric
  Smith for asking if we could speed up [include-book] processing; we
  have done so in the past, but primarily focusing on large
  [mutual-recursion] nests (which have nothing in particular to do
  with the current improvements). Also, thanks to Rob Sumners for a
  very useful remark early in the process that kept us from drawing
  an incorrect conclusion at that point.

  We fixed :[pl] so that it can be run on a form that returns multiple
  values, which it could not do previouslly. Thanks to Eric Smith for
  pointing out this problem.

  Fixed a bug in the Allegro ACL2 trace utility (see [trace$]) that was
  causing ``10>'' to be printed as ``9>'', ``11>'' to be printed as
  ``10 >'', ``12>'' to be printed as ``11 >'', and so on.

  Fixed a [proof-checker] bug that was preventing the use of the DV
  command (or a numerical command) on [let] expressions. Thanks to
  Bill Young for pointing out this problem.

  Fixed a bug in a comment on how to set ACL2_BOOKS_DIR in the
  makefile. Thanks to Dave Greve for pointing out this problem.

  Fixed a potential soundness bug in the linear arithmetic routines.
  Thanks to Jared Davis for noticing this problem and to Robert Krug
  for implementing the fix. (Technical details: We had been assuming
  that polynomials were being normalized -- see the definition of
  good-polyp in linear-a.lisp -- but this assumption was false.)

  When the macro [open-trace-file] is opened twice in succession, it
  now automatically closes the first trace output channel before
  opening another.

  It is now possible to use `make' to build ACL2 on Windows systems
  that support `make'. Thanks to Pete Manolios and Mike Thomas for
  pointing out the problem, to Jared Davis and Mike for helping us to
  analyze the problem, and to Jared for testing the fix.

  Fixed a bug in the [guard] of [with-output] that was causing a
  needless guard violation.

  NEW FUNCTIONALITY.

  The new events [add-default-hints] and [remove-default-hints] allow
  one to append to or subtract from the current list of default
  hints. The event [set-default-hints] continues to set the list of
  default hints, discarding the previous value of the
  [default-hints]. Note that [set-default-hints] is still [local] to
  the [encapsulate] or book in which it occurs, and
  [add-default-hints] has the same property, although neither is
  implemented any longer using the [ACL2-defaults-table]. New events
  [add-default-hints!], [remove-default-hints!], and
  [set-default-hints!] are the same as [add-default-hints],
  [remove-default-hints], and [set-default-hints], respectively,
  except that the former three events are not [local] to their
  enclosing [encapsulate] or book. Thanks to Jared Davis for
  suggesting these enhancements.

  OpenMCL's tracing routines have been modified in a similar manner as
  those of Allegro CL. Thanks to Robert Krug for providing this
  enhancement.

  Guard-checking can now be caused to happen on recursive calls. See
  ``GUARD-RELATED CHANGES'' below for details.

  Advanced users can now inhibit compilation of so-called ``*1*
  functions'' with the :comp command; see [comp]. Thanks to Rob
  Sumners for suggesting this enhancement.

  Added new legal argument hard? for the [er] macro, which is now
  documented. See [er]. Thanks to Rob Sumners for a discussion
  leading to this change. Also, the three legal first arguments to
  [er] --- hard, hard?, and soft --- may now be in any package
  (thanks to Jared Davis for bringing this issue to our attention).

  We have removed the requirement that for a rule's hypothesis
  (bind-free term var-list), at least one variable must occur free in
  term. For example, the expression (bind-free (bind-divisor a b)
  (x)) was legal because a and b occur free in (bind-divisor a b);
  but (bind-free (foo (bar)) (x)) was not legal. The latter is no
  longer disallowed. (Technical note: this allows [bind-free] to be
  used to create explicit substitutions in metafunction hypotheses.)

  The following two enhancements have been implemented for rules of
  class :[meta]. Thanks to Eric Smith for requesting more control of
  reasoning with :[meta] rules, which led to these enhancements, and
  to him and Robert Krug for helpful discussions.

      o It is now possible to control backchaining in rules of class
      :[meta] by providing a :backchain-limit-lst argument, as was
      already allowed for rules of class :[rewrite] and :[linear].
      See [rule-classes]. However, unlike those other two rule
      classes, the value for :backchain-limit-lst is prohibited from
      being a non-empty list; it must be either nil or a non-negative
      integer.

      o (For advanced users.) It is now legal for hypothesis metafunctions
      to generate, in essense, calls of [syntaxp] and [bind-free],
      handled essentially as they are handled in hypotheses of
      :[rewrite] and :[linear] rules. We say ``essentially''
      primarily because both [syntaxp] and [bind-free] are actually
      macros, but hypothesis metafunctions must generate translated
      terms (see [term]). The enterprising advanced user can call
      :[trans] to see examples of translated terms corresponding to
      calls of [syntaxp] and [bind-free].

  A new command :[trans!] has been added, which is like :[trans] except
  that :[trans!] ignored issues of single-threadedness. See [trans!].
  Thanks to Eric Smith for suggesting this addition.

  The :[pf] command now works when the argument is the name of a macro
  associated with a function by [macro-aliases-table].

  CHANGES IN PROOF ENGINE.

  The simplifier has been changed slightly in order to avoid using
  [forward-chaining] facts derived from a literal (essentially, a
  top-level hypothesis or conclusion) that has been rewritten. As a
  practical matter, this may mean that the user should not expect
  forward-chaining to take place on a term that can be rewritten for
  any reason (generally function expansion or application of rewrite
  rules). Formerly, the restriction was less severe: forward-chaining
  facts from a hypothesis could be used as long as the hypothesis was
  not rewritten to t. Thanks to Art Flatau for providing an example
  that led us to make this change; see the comments in source
  function rewrite-clause for details.

  The rewriter has been modified to work slightly harder in relieving
  hypotheses. Thanks to Eric Smith for providing an example that
  inspired the following, which illustrates the issue. Suppose we
  introduce functions foo and bar with the (non-[local]) properties
  shown below.

    (encapsulate
     (((foo *) => *)
      ((bar *) => *))

     (local (defun foo (x) (declare (ignore x)) t))
     (local (defun bar (x) (declare (ignore x)) t))

     (defthm foo-holds
       (implies x
                (equal (foo x) t)))
     (defthm bar-holds-propositionally
       (iff (bar x) t)))

  Consider what happens when ACL2's rewriter is used to prove the
  following theorem.

    (thm (foo (bar y)))

  With ACL2's inside-out rewriting, (bar y) is first considered, but
  rewrite rule bar-holds-propositionally does not apply because the
  context requires preserving equality, not mere Boolean (iff)
  equivalence. Then the rewriter moves its attention outward and sees
  the term (foo (bar y)). It attempts to apply the rule foo-holds, in
  a context created by binding its variable x to the term (bar y). It
  then attempts to relieve the hypothesis x of rule foo-holds in that
  context. Before this change, ACL2 basically assumed that since
  rewriting was inside out, then (bar y) had already been rewritten
  as much as possible, so the rewrite of x in the aforementioned
  context (binding x to (bar y)) simply returned (bar y), and the
  attempt to relieve the hypothesis of foo-holds failed. The change
  is essentially for ACL2's rewriter to make a second pass through
  the rewriter when the attempt fails to rewrite a variable to t,
  this time using the fact that we are in a Boolean context. (We
  mention that source function rewrite-solidify-plus implements this
  idea, for those who want to dig deeply into this issue.) In our
  example, that means that the rewriter considers (bar y) in a
  Boolean context, where it may apply the rule
  bar-holds-propositionally to relieve the hypothesis successfully.

  When ([set-non-linearp] t) has been executed, [non-linear-arithmetic]
  can now be applied in some cases for which it previously was not.
  Thanks to Robert Krug for supplying this modification and to Julien
  Schmaltz for providing a motivating example.

  We modified the rewriter to avoid certain infinite loops caused by an
  interaction of the opening of recursive functions with equality
  reasoning. (This change is documented in detail in the source code,
  in particular functions rewrite-fncall and fnstack-term-member.)
  Thanks to Fares Fraij for sending us an example that led us to make
  this change.

  The :[executable-counterpart] of function [hide] is now disabled when
  ACL2 starts up. This removes an anomoly, for example that

    (thm (not (equal 1 (* (hide 0) a))))

  succeeded while

    (thm (equal (foo (equal 1 (* (hide 0) a))) (foo nil)))

  failed. Now both fail.

  The theory *s-prop-theory* is no longer used by the proof-checker; it
  has been replaced by (theory '[minimal-theory]. We have left the
  constant *s-prop-theory* defined in the source code in support of
  existing books, however. This change eliminates annoying theory
  warnings printed upon invocation of [proof-checker] commands
  s-prop, sl, and split.

  Terms are now kept in an internal form that avoids calls of primitive
  functions (built-ins without explicit definitions; see code for
  cons-term for details), in favor of the constants that result from
  evlaluating those calls. So for example, the internal form for
  (cons 1 2) is (quote (1 . 2)). This change was made at around the
  same time as changes in support of [bind-free]; see above. One
  consequence is that the splitting of goals into cases (technically,
  source function clausify and even more technically, source function
  call-stack) has been modified, which can cause subgoal numbers to
  change.

  GUARD-RELATED CHANGES.

  Guard-checking can now be caused to happen on recursive calls, where
  this was formerly not the case for :[program] mode functions and,
  perhaps more important, for :[logic] mode functions whose [guard]s
  have not been verified. Moreover, a warning is printed when ACL2
  does not rule out the exclusion of guard-checking on recursive
  calls. See [set-guard-checking]. Thanks to David Rager for bringing
  this issue to our attention, and to Rob Sumners and the Univ. of
  Texas ACL2 seminar in general for their feedback.

  Guard violations are reported with less of the offending term hidden.
  Thanks to Jared Davis for suggesting that we look at this issue.

  PROOF-CHECKER CHANGES.

  We fixed the [proof-checker] so that diving works as you might expect
  for a macro call (op a b c) representing (binary-op a (binary-op b
  c)). In the past, if the current term was of the form (append t1 t2
  t3), then (DV 3) (and 3) would dive to t3 even though the
  corresponding function call is (binary-append t1 (binary-append t2
  t3)). This is still the case, but now this behavior holds for any
  macro associated with a function in binop-table (see [add-binop]).
  Moreover, users can now write customized diving functions; see
  [dive-into-macros-table], and also see
  books/misc/rtl-untranslate.lisp for example calls to
  [add-dive-into-macro]. Of course, the old behavior can still be
  obtained using the [proof-checker]'s DIVE command; see
  [proof-checker-commands].

  The runes command in the [proof-checker] now shows only the [rune]s
  used by the most recent primitive or macro command (as shown by
  :comm), unless it is given a non-nil argument. Also,
  [proof-checker] command lemmas-used has been added as, in essence,
  an alias for runes.

  (The following two items are also mentioned above under ``BUG
  FIXES.'')

  Fixed a [proof-checker] bug that was preventing the use of the DV
  command (or a numerical command) on [let] expressions. Thanks to
  Bill Young for pointing out this problem.

  The theory *s-prop-theory* is no longer used by the proof-checker; it
  has been replaced by (theory '[minimal-theory]. We have left the
  constant *s-prop-theory* defined in the source code in support of
  existing books, however. This change eliminates annoying theory
  warnings printed upon invocation of [proof-checker] commands
  s-prop, sl, and split.

  SYSTEM-LEVEL CHANGES.

  Fixed a problem with building ACL2 on CMUCL in some systems (source
  function save-acl2-in-cmulisp). Thanks to Bill Pase for bringing
  this to our attention.

  The installation instructions have been extended to include
  instructions for building on GCL in Mac OS X. Thanks to Jun Sawada
  and Camm Maguire.

  Initial pre-allocation of space has been updated for GCL to reflect
  more current GCL executables (we considered GCL 2.6.1-38). This can
  help avoid running out of memory for large ACL2 sessions.

  The main Makefile has been replaced by GNUmakefile, in order to
  enforce the use of GNU `make'. If you use another `make' program,
  you'll get an error message that may help you proceed.

  (GCL only) SGC is no longer turned on for GCL 2.6 sub-versions
  through 2.6.3 if si::*optimize-maximum-pages* is bound to T, due to
  an apparent issue with their interaction in those sub-versions.
  Also, we have eliminated preallocation for all versions after 2.6.1
  because GCL doesn't need it (comments are in source function
  save-acl2-in-akcl). Thanks to Camm Maguire for excellent GCL help
  and guidance, and to Camm and Bob Boyer for useful discussions.

  We have removed support for so-called ``small'' images. Thus, :[doc],
  :[pe] and :[pc], [verify-termination], and other commands are fully
  supported in ACL2 saved images. Because of this and other changes
  in the generation of the so-called ``*1*'' logical functions,
  related to guards (as described above in -GUARD-RELATED CHANGES'',
  and related to the discussion of safe-mode in ``BUG FIXES'' above),
  image sizes have increased substantially.

  We no longer time or run ``nice'' the certification of individual
  books. The file books/Makefile-generic had done these by default,
  and some individual distributed and workshop book directories had
  Makefiles that did so as well. Thanks to Mike Thomas, who pointed
  out the lack of nice on some Windows systems (and we decided on
  this simple solution). Overall targets in books/Makefile still time
  their runs by default, and the partiular time program is now
  controlled by a Makefile variable.

  Failures during make certify-books or make regression now show up in
  the log as ``**CERTIFICATION FAILED**'', regardless of the
  operating system (as long as it supports `make'). Formerly, one
  searched for ``**'' but this did not appear in openMCL runs.

  We have eliminated ``Undefined function'' warnings that could occur
  in OpenMCL.

  BOOK CHANGES.

  Reconciled the definitions of firstn in book/misc/csort.lisp,
  books/bdd/bdd-primitives.lisp,
  books/ordinals/ordinal-definitions.lisp, and
  books/data-structures/list-defuns.lisp. Thanks to Ray Richards for
  bringing this issue to our attention.

  Distributed book books/misc/defpun now can handle [stobj]s where it
  did not previously. Thanks to John Matthews for bringing this issue
  to our attention.

  The \"make\" variable COMPILE_FLG in file books/Makefile-generic
  formerly only had an effect if there was a cert.acl2 file present.
  That oversight has been remedied.

  File \"books/arithmetic/certify.lsp\" was missing a [certify-book]
  command for \"natp-posp\". Thanks to John Cowles for noticing this
  deficiency and supplying a fix. (This file is of use to those who
  want to certify the \"books/arithmetic/\" books without using
  \"make\".)

  A few small changes have been made to \"books/rtl/rel4\".

  Small changes were made to books misc/symbol-btree and
  misc/rtl-untranslate. In particular, the definition of
  symbol-btreep was strengthened.

  We made a minor fix to books/ordinals/e0-ordinal.lisp, adding
  (verify-guards ob+) and hence (verify-guards ocmp) as well. This
  was necessitated by the fix prohibiting functions with guards
  verified from calling functions with guards not verified (see also
  the related discussion under ``BUG FIXES'' above).

  MISCELLANEOUS CHANGES.

  Further sped up processing of large [mutual-recursion] nests
  (extending what was done for Version_2.7), perhaps by a factor of
  two in some cases.

  As promised in Version_2.5 (see [note-2-5]), structured pathnames are
  no longer supported. So for example, the argument to [include-book]
  must now be a string constant.

  Some documentation has been improved, for [stobj]s thanks to
  suggestions by John Matthews and much of the rest thanks to
  feedback from Eric Smith.

  The function [current-package] is now available to users (it has been
  taken off the list of so-called ``untouchables''). Thanks to Jared
  Davis for bringing this issue to our attention.

  The documentation for topic [using-computed-hints-7] has been
  improved. Thanks to Doug Harper and Eric Smith for inspiring this
  improvement.

  We added several symbols to *acl2-exports*: [cw], [er], [intern$],
  [set-case-split-limitations], and [set-difference-eq]. Thanks to
  Jared Davis for suggesting most of these.

  Now, a [table] event that sets the value for a key, (table tbl key
  val :put), is redundant (see [redundant-events]) when it does not
  change the value associated with an existing key of the table. In
  particular, [define-pc-macro] is now fully redundant when it does
  not change an existing [proof-checker] macro-command definition.
  Thanks to Bill Young for bringing the latter issue to our
  attention.

  The definitions of unused system functions ev-w and ev-w-lst have
  been deleted.

  ACL2 now prints a warning if a [defpkg] event introduces a package
  name with lower-case letters, since there is opportunity for later
  confusion in that case. Thanks to Frederic Peschanski for bringing
  this problem to our attention and Sandip Ray for encouragement.

  ACL2 now works in Version 19 of CMU Common Lisp.

  The function [sys-call] has been modified so that for ACL2 built on
  Allegro Common Lisp in Unix or Linux, the existing environment is
  used. Thanks to Erik Reeber for bringing this issue to our
  attention.

  The function [disabledp] can now be given a macro name that has a
  corresponding function; see [macro-aliases-table]. Also,
  [disabledp] now has a [guard] of t but causes a hard error on an
  inappropriate argument.")
 (NOTE-2-9-1
  (RELEASE-NOTES)
  "ACL2 Version 2.9.1 (December, 2004) Notes

  (GCL only) A bug in [symbol-package-name] has been fixed that could
  be exploited to prove nil, and hence is a soundness bug. Thanks to
  Dave Greve for sending us an example of a problem with [defcong]
  (see below) that led us to this discovery.

  ACL2 now warns when [defcong] specifies [equal] as the first
  equivalence relation, e.g., (defcong equal iff (member x y) 2). The
  warning says that the rule has no effect because [equal] already
  refines all other equivalence relations. Formerly, this caused an
  error unless :event-name was supplied (see [defcong]), and in fact
  the error was a nasty raw Lisp error on GCL platforms due to some
  mishandling of packages by ACL2 that has been fixed (see the
  paragraph about [symbol-package-name] above). Thanks to Dave Greve
  for sending a helpful example in his report of this problem.

  (GCL only) The build process was broken for GCL 2.6.0 (and perhaps
  some earlier versions), and has been fixed. Thanks to Jose Luis
  Ruiz-Reyna for bringing this problem to our attention.

  (GCL only) We have increased the hole size to at least 20% of
  max-pages, which may eliminate some garbage collection at the
  expense of larger virtual memory (not larger resident memory or
  larger image). Thanks to Camm Maguire for helpful explanations on
  this topic.

  We have clarified the [guard] warning message that is printed during
  evaluation of recursively-defined functions whose [guard]s have not
  been verified, for example:

    ACL2 Warning [Guards] in TOP-LEVEL:  Guard-checking may be inhibited
    on some recursive calls of executable counterparts (i.e., in the ACL2
    logic), including perhaps EVENLP.  To check guards on all recursive
    calls:
      (set-guard-checking :all)
    To leave behavior unchanged except for inhibiting this message:
      (set-guard-checking :nowarn)

  And, ACL2 no longer prints that message when the [guard] was
  unspecified for the function or was specified as T. Thanks to
  Serita Nelesen for bringing the latter issue to our attention.
  Finally, ACL2 now prints such a warning at most once during the
  evaluation of any top-level form; thanks to Bill Young for pointing
  out this issue.

  The function [verbose-pstack] has been enhanced to allow specified
  prover functions not to be traced. See [verbose-pstack].

  Added [lp], wet, and [set-non-linearp] to *acl2-exports*, and hence
  to the \"[ACL2-user]\" package.

  The distributed book books/arithmetic-3/bind-free/integerp.lisp has
  been modified in order to prevent potential looping; specifically,
  the definition of function reduce-integerp-+-fn-1. Thanks to Robert
  Krug for providing this change.

  A small improvement was made in the wet failure message when the
  error occurs during translation to internal form. Thanks to Jared
  Davis for pointing out the obscurity of some wet error messages.

  We have improved ACL2's evaluation mechanism for the function
  bad-atom<=, which now is specified to return nil if neither
  argument is a so-called ``bad atom'' (as recognized by function
  bad-atom). The following events had caused a hard error, for
  example. (We're sorry that bad-atom and bad-atom<= are not
  documented, but we also consider it unlikely that anyone needs such
  documentation; otherwise, please contact the implementors.)

    (defun foo (x y) (declare (xargs :guard t)) (bad-atom<= x y))
    (defun bar (x y) (declare (xargs :guard t)) (foo x y))
    (thm (equal (bar 3 4) 7))

  We have also changed the guard on [alphorder] to require both
  arguments to be atoms.

  For forms (local x) that are skipped during [include-book], or during
  the second pass of [certify-book] or [encapsulate], ACL2 had
  nevertheless checked that x is a legal event form. This is no
  longer the case.

  The [proof-checker] now does non-linear arithmetic when appropriate.
  It had formerly ignored [set-non-linearp] executed in the ACL2
  command loop.

  Incremental releases are now supported. See [version] and {obsolete
  after Version 4.3} set-tainted-okp. Thanks to Hanbing Liu for
  discovering a flaw in our original design.

  The pattern-matching algorithm for :[rewrite] rules has been made
  slightly more restrictive, thanks to a suggestion and examples from
  Robert Krug. For example, previously one could get an infinite loop
  as follows.

    (defstub foo (x) t)
    (defaxiom foo-axiom
      (equal (foo (+ 1 x))
             (foo x)))
    (thm (foo 0)) ; or replace 0 by any integer!

  That is because the term (foo 0) was considered to match against the
  pattern (foo (+ 1 x)), with x bound to -1. While such matching is
  sound, it leads to an infinite loop since it allows foo-axiom to
  rewrite (foo 0) to (foo -1), and then (foo -1) to (foo -2), and so
  on. The fix is to insist that the new value, in this case -1, is no
  larger in size according to [ACL2-count] than the old value, in
  this case 0. Since that test fails, the match is considered to fail
  and the loop no longer occurs. An analogous fix has been made for
  multiplication, where now we only match when the new term is still
  a non-zero integer. That change avoids a loop here.

    (defstub foo (x) t)
    (defaxiom foo-axiom
      (equal (foo (* 2 x))
             (foo x)))
    (thm (foo 0)) ; or try (thm (foo 4))

  Added macro find-lemmas in books/misc/find-lemmas.lisp (see brief
  documentation there) for finding all lemmas that mention all
  function symbols in a given list.

  :Restrict [hints] now work for :[definition] rules, though they
  continue to be ignored by the preprocessor and hence you may want
  to use :do-not '(preprocess) with any restrict hints. Thanks to
  John Matthews for pointing out the lack of support for :definition
  rules in :restrict hints.

  Some books have been updated. In particular, there is a new directory
  books/workshops/2004/ in workshops distribution, for the 2004 ACL2
  workshop. There is also a new version of Jared Davis's ordered sets
  library, formerly in books/finite-set-theory/osets-0.81/ but now in
  books/finite-set-theory/osets/.

  Fixed a bug in the (under-the-hood) raw Lisp definition of
  [defchoose], which had been causing a warning in CMU Common Lisp.

  [Technical improvements related to the use of ``make dependencies''
  for certifying distributed books:]
  File books/Makefile-generic now does a better job with ``make
  dependencies,'' specifically with respect to handling *.acl2 files
  and handling [include-book] commands with :dir :system. Regarding
  the latter, suppose for example that book basic.lisp contains the
  line:

    (include-book \"arithmetic/top-with-meta\" :dir :system)

  Then make dependencies would generate the following line:

    basic.cert: $(ACL2_SRC_BOOKS)/arithmetic/top-with-meta.cert

  Thus, if :dir :system is used with [include-book], the corresponding
  Makefile should define the variable ACL2_SRC_BOOKS. A standard
  Makefile header for a books directory could thus be as follows.

    # The following variable should represent the ACL2 source directory.  It is the
    # only variable in this Makefile that may need to be edited.
    ACL2_SRC = ../../../../../..

    ACL2_SRC_BOOKS = $(ACL2_SRC)/books
    include $(ACL2_SRC_BOOKS)/Makefile-generic
    ACL2 = $(ACL2_SRC)/saved_acl2h

  Finally, the ``-s'' flag may now be omitted when running ``make
  dependencies.''")
 (NOTE-2-9-2
  (RELEASE-NOTES)
  "ACL2 Version 2.9.2 (April, 2005) Notes

  Also see [note-2-9-1] for other changes since the last
  non-incremental release (Version_2.9).

  There was a bug in non-linear arithmetic (see
  [non-linear-arithmetic]) that caused the following error:

    ACL2 !>(include-book \"rtl/rel4/lib/top\" :dir :system)
    ....
    ACL2 !>(set-non-linearp t)
     T
    ACL2 !>(thm
     (implies (and (bvecp a 77)
                   (bvecp b 50))
              (bvecp (fl (/ (* a b) (expt 2 23)))
                     104))
     :hints ((\"Goal\" :in-theory (enable bvecp))))

    [Note:  A hint was supplied for our processing of the goal above.
    Thanks!]

    By the simple :definition BVECP, the :executable-counterparts of EXPT
    and UNARY-/ and the simple :rewrite rule ASSOCIATIVITY-OF-* we reduce
    the conjecture to

    Goal'
    (IMPLIES (AND (INTEGERP A)
                  (<= 0 A)
                  (< A 151115727451828646838272)
                  (INTEGERP B)
                  (<= 0 B)
                  (< B 1125899906842624))
             (BVECP (FL (* A B 1/8388608)) 104)).

    HARD ACL2 ERROR in VARIFY:  This should not have happened.  The supposed
    variable, '1/8388608, is instead a constant.

    ACL2 !>

  Thanks to Robert Krug for providing a fix for the above error.

  Guard-checking was being inhibited (since v2-9) for calls of built-in
  primitives on explicit values, e.g., (car 3). This has been fixed.

  Guard-related warnings could be printed during proofs (this bug was
  introduced in Version_2.9.1). These warnings have been eliminated.

  Compound-recognizer rules natp-compound-recognizer and
  posp-compound-recognizer are now built into ACL2 for predicates
  [natp] and [posp], and hence have been deleted from book
  natp-posp.lisp (where they were called natp-cr and posp-cr,
  respectively).

  The function file-clock-p, which recognizes a component of the ACL2
  [state], is now defined using [natp] instead of [integerp]. Thanks
  to Jared Davis for suggesting this change. (Technical explanation
  about functions in ACL2 source file axioms.lisp: With a file-clock
  of -1, the call of make-input-channel in open-input-channel will
  create a channel that can't be closed; see the guard of
  close-input-channel.)

  (Allegro CL users only) Support is now provided for building an
  Allegro CL application, provided you have an Allegro CL dynamic
  runtime license. (Our belief is that with such a license, many
  users can use the same application, rather than each user needing a
  separate license.) See new GNUmakefile target allegro-app and file
  build-allegro-exe.cl for more information.

  The new home page now contains a link to a new page
  other-releases.html, which contains information about other ACL2
  releases. (This is in one's local home page, but may not show up on
  the central ACL2 home page until the next non-incremental release.)
  Thanks to Warren Hunt for suggesting this addition.

  We thank Erik Reeber for suggesting a solution to output redirection
  using [sys-call], which we have described at the end of its
  documentation.

  A new documentation topic fixes the flawed argument for
  conservativity of the [defchoose] event that appears in Appendix B
  of Kaufmann and Moore's paper, ``Structured Theory Development for
  a Mechanized Logic'' (Journal of Automated Reasoning 26, no. 2
  (2001), pp. 161-203). See [conservativity-of-defchoose]. Thanks to
  John Cowles and Ruben Gamboa for helpful feedback on drafts of this
  note.

  The solution to exercise 6.15 in books/textbook/chap6/solutions.txt
  has been fixed. Thanks to Aaron Smith for pointing out the problem.

  A new documentation topic [defun-sk-example] gives a little more help
  in using [defun-sk] effectively. Thanks to Julien Schmaltz for
  presenting this example as a challenge.

  (GCL only) There is now a way to speed up GCL builds of ACL2, at the
  cost of perhaps a percent or so in performance of the resulting
  image. Using `make' one supplies the following.

    LISP='gcl -eval \"(defparameter user::*fast-acl2-gcl-build* t)\"

  Various makefiles have been improved in several ways.

      (1) Parallel book certification, using GNU make's -j option, can be
      used.

      (2) Book certifications now stops at the first failure if
      books/Makefile or books/Makefile-generic is used, and returns
      non-zero exit status. However, the various make targets in the
      ACL2 source directory (regression, certify-books, etc.) still
      continue past failures unless you provide ACL2_IGNORE=' ' on
      the `make' command line.

      (3) The build process has been modified (file GNUmakefile) so that it
      stops upon a failed compile or a failed initialization.

      (4) The automatic dependency generation (from ``make dependencies''
      has been improved so that commands of the form (ld
      \"my-book.lisp\") in .acl2 files cause the appropriate
      depedencies to be generated.

  Thanks to comments from several users that led to the above Makefile
  improvements: Ray Richards, Doug Harper, and the Rockwell ACL2
  users for (1) and (2) (and inspiring (4)), and David Rager for (2)
  and (3). In particular, Doug Harper sent a replacement for the
  .date mechanism, which was interfering with make -n; so, these
  files are no longer written.

  A mechanism has been added for saving output. In particular, you can
  now call [ld] on a file with output turned off, for efficiency, and
  yet when a proof fails you can then display the proof attempt for
  the failed (last) event. See [set-saved-output]. Another new
  command --- see [set-print-clause-ids] --- causes subgoal numbers
  to be printed during proof attempts when output is inhibited.

  Documentation has been added for using ACL2's makefile support to
  automate the certification of collections of books. See
  [books-certification-classic].

  Fixed a bug in [sys-call-status] that was causing hard Lisp errors.

  Improved [cw-gstack] to allow a :frames argument to specify a range
  of one or more frames to be printed. see [cw-gstack].

  Fixed a bug in [proof-checker] command forwardchain. Thanks to
  Ming-Hsiu Wang for bringing this bug to our attention.

  We have provided a mechanism for saving an executable image. See
  [saving-and-restoring] and see [save-exec]. We have eliminated
  obsolete functions note-lib and make-lib.

  Modified the [ground-zero] [theory] so that it contains all of the
  built-in rules (in ACL2 source file axioms.lisp). It had formerly
  failed to include rules from some definitions and theorems near the
  end of axioms.lisp.

  A new event, [set-enforce-redundancy], allows the enforcement of
  [defthm], [defun], and most other events during book development.
  See [set-enforce-redundancy].

  A bug has been fixed that had allowed [deftheory] [events] to cause a
  hard Lisp error when calling [union-theories] on ill-formed
  theories after, for example:

    :set-guard-checking nil
    (in-theory (union-theories '((:rewrite no-such-rule))
                               (current-theory 'ground-zero)))

  The handling of [guard] checking has been modified somewhat in a way
  that should only very rarely affect users. (An ``Essay on Guard
  Checking'' in the ACL2 source code explains this point to anyone
  interested in implementation details.)

  (GCL ONLY) Removed the -dir setting in the ACL2 wrapper script for
  GCL. This should generally have no effect for most users, but it
  eliminates a potential source of error down the road.

  Several interesting new definitions and lemmas have been added to the
  rtl library developed at AMD, and incorporated into
  books/rtl/rel4/lib/. Other book changes include a change to lemma
  truncate-rem-elim in books/ihs/quotient-remainder-lemmas.lisp, as
  suggested by Jared Davis.

  The macro [real/rationalp] may now be referred to in [in-theory]
  [events] and [hints], thanks to a new [add-macro-alias] event.
  Thanks to Jared Davis for this suggestion.

  ACL2 terms of the form (if p 'nil 't) are now printed as (not p),
  where in some setting they had been printed as (and (not p) t).
  Thanks to Robert Krug for this improvement.

  (GCL ONLY) Added profiling support, based heavily on code supplied by
  Camm Maguire. See file save-gprof.lsp for instructions. Thanks to
  Camm, and also to David Hardin for inspiring this addition.

  Added support for preprocessing before printing (untranslating) a
  term. See [user-defined-functions-table], in particular the
  discussion of untranslate-preprocess. Thanks to Jared Davis for
  inspiring this addition, and for providing a book that takes
  advantage of it (books/misc/untranslate-patterns.lisp).

  The documentation has been improved for explaining how [rune]s are
  assigned; see [rune]. Thanks to Robert Krug for pointing out
  inaccuracies in the existing documentation.")
 (NOTE-2-9-3
  (RELEASE-NOTES)
  "ACL2 Version 2.9.3 (August, 2005) Notes

  Also see [note-2-9-1] and see [note-2-9-2] for other changes since
  the last non-incremental release (Version_2.9).

  We fixed a soundness bug that exploited the ability to define
  :[program] mode functions that are improperly guarded, and then to
  use those functions in [defconst] forms. The fix is to evaluate
  [defconst] forms using the same ``safe-mode'' that is used in
  macroexpansion (see [guards-and-evaluation]). Here is a proof of
  nil that succeeded in Allegro Common Lisp (but not, for example,
  GCL). See also a long comment in source function defconst-fn for an
  example that does not require the use of :set-guard-checking.

    :set-guard-checking nil ; execute before certifying the book below

    (in-package \"ACL2\")

    (encapsulate
     ()
     (local (defun f1 ()
              (declare (xargs :mode :program))
              (char-upcase (code-char 224))))
     (local (defconst *b* (f1)))
     (defun f1 ()
       (char-upcase (code-char 224)))
     (defconst *b* (f1))
     (defthm bad
       (not (equal *b* (code-char 224)))
       :rule-classes nil))

    (defthm ouch
      nil
      :hints ((\"Goal\" :use bad))
      :rule-classes nil)

  We fixed a soundness hole due to the fact that the \"LISP\" package
  does not exist in OpenMCL. We now explicitly disallow this package
  name as an argument to [defpkg]. Thanks to Bob Boyer and Warren
  Hunt for bringing an issue to our attention that led to this fix.

  ACL2 now requires all package names to consist of standard characters
  (see [standard-char-p], none of which is lower case. The reason is
  that we have seen at least one lisp implementation that does not
  handle lower case package names correctly. Consider for example the
  following raw lisp log (some newlines omitted).

    >(make-package \"foo\")
    #<\"foo\" package>
    >(package-name (symbol-package 'FOO::A))
    \"foo\"
    >(package-name (symbol-package '|FOO|::A))
    \"foo\"
    >

  Distributed book books/textbook/chap10/compiler, as well as workshop
  books in directory books/workshops/2004/cowles-gamboa/support/,
  were modified to accommodate the above change.

  Added newline, [add-to-set-eql], the-fixnum, and the-fixnum! to
  *acl2-exports*. Thanks to Jared Davis for bringing these to our
  attention.

  Added a line to acl2.lisp to support CMUCL running on Mac OSX, thanks
  to a suggestion from Fabricio Chalub Barbosa do Rosario.

  The executable scripts for saved ACL2 images now include $*, so that
  command-line arguments will be passed along.

  (For GCL profiling only) Fixed a colon (:) that should have been a
  semicolon (;) in file save-gprof.lsp. Thanks to David Hardin for
  pointing out this bug.

  The documentation for :[elim] rules has been expanded and improved,
  thanks to useful feedback from Hanbing Liu.

  Fixed a bug in the guard for function include-book-dir.

  For those who want to experiment with an alternate implementation of
  [mv] and [mv-let], there is now support for under-the-hood
  implementation of these in terms of raw Lisp functions values and
  multiple-value-bind, respectively. The regression suite has seen
  about a 10% speed-up in Allegro CL and about an 8% slowdown in GCL
  for builds with this change. See the makefile (GNUmakefile) for
  examples of how to build ACL2 by including the feature,
  :acl2-mv-as-values. Source file init.lsp has been renamed to
  init.lisp in support of this change (technical detail: otherwise
  GCL loads the init file too soon, before its -eval argument is
  evaluated). Thanks to David Rager for inspiring this change, by
  pointing out the problematic use of globals by the existing [mv]
  implementation from the standpoint of supporting parallel
  evaluation. This capability is experimental: there is likely to be
  some remaining work to be done on it.

  A change related to the one just above is that we now limit the
  maximum number of arguments to any call of [mv] to 32. Thanks to
  Bob Boyer for raising a question that lead to this change.

  Eliminated some compiler warnings in OpenMCL.

  In the rtl library (books/rtl/rel4/), functions bits and setbits have
  had their [guard]s improved (as they had been too restrictive,
  especially for setbits).

  A new function [time$] permits timing of forms, by using (under the
  hood) the host Common Lisp's time utility.

  We fixed an infinite loop that could occur during destructor
  elimination (see [elim]). Thanks to Sol Swords to bringing this to
  our attention and sending a nice example, and to Doug Harper for
  sending a second example that we also found useful.

  The method of speeding up GCL-based builds (see [note-2-9-2]) has
  changed slightly from Version_2.9.2. Now, in the `make' command:

    LISP='gcl -eval \"(defparameter user::*fast-acl2-gcl-build* t)\"

  We improved the pretty-printer's handling of keywords. For example,
  before this change one might see the following printed by ACL2.

    (MODIFY TH S :KEY1 VAL1 :KEY2
            (IF (IF X Y Z) AAAAAAAAAA BBBBBBB))

  Now, the above might print as follows. Notice that we have avoided
  breaking after a keyword (see [keywordp]) that is preceded by other
  forms on the same line.

    (MODIFY TH S
            :KEY1 VAL1
            :KEY2 (IF (IF X Y Z) AAAAAAAAAA BBBBBBB))

  See [note-2-9-3-ppr-change] for a detailed discussion of this change.

  (GCL ONLY) Evaluation in a break is no longer inhibited by ACL2 when
  built on top of GCL, so GCL now matches other Common Lisps in this
  respect.

  For ACL2 built on most host Common Lisps, you will see the string
  [RAW LISP] in the prompt, at least at a break, to emphasize that
  one is inside a break and hence should probably quit from the
  break. See [breaks].

  Jared Davis suggested improvements to lemmas len-update-nth (in
  source file axioms.lisp) and append-true-listp-type-prescription
  (in books/meta/term-defuns.lisp), which have been incorporated. The
  former required a change in books/workshops book
  2004/ruiz-et-al/support/q-dag-unification.cert, which has been
  made.

  The [proof-checker] command rewrite allows further binding of free
  variables in hypotheses, with new optional argument
  instantiate-free. Proof-checker command show-rewrites (sr) gives
  corresponding additional information. Documentation for these
  commands has been improved; see [proof-checker-commands]. Thanks to
  John Matthews and Bill Young for suggestions and feedback leading
  to these improvements.

  Fixed downcase printing so that the package name of a symbol is also
  downcased. For example, after execution of (defpkg \"FOO\" nil) and
  (set-acl2-print-case :downcase), 'foo::ab will print back as the
  same, rather than as 'FOO::ab.

  It is now possible to control the output so that numbers are printed
  in binary, octal, or hex, though the default is still radix 10. See
  [set-print-base]. Note that in support of this change, built-in
  functions [explode-nonnegative-integer] and explode-atom now take
  an extra print-base argument. Different support for radix
  conversion may be found in a book newly contributed by Jun Sawada,
  books/misc/radix.lisp.

  Built-in axiom car-cdr-elim is now only an :[elim] rule. It was
  formerly both an :elim rule and a :[rewrite] rule. A new rule,
  cons-car-cdr, takes the place of the old :rewrite rule, but is
  instead a hypothesis-free rule that can cause a case split (see
  source file axioms.lisp). Thanks to Jared Davis for suggesting this
  change.

  Lemmas about [alphorder] (alphorder-reflexive, alphorder-transitive,
  alphorder-anti-symmetric, and alphorder-total) are now available.
  (They had been [local] in source file axioms.lisp.) Thanks to
  Serita Nelesen for bringing this issue to our attention.

  ACL2 has, for some time, printed a space in the event summary after
  the open parenthesis for a [defthm] event, in order to ease
  backward searching for the original form, for example (defthm bar
  ...):

    Form:  ( DEFTHM BAR ...)

  The intention was that this extra space should be printed for every
  event form; but it was missing in some cases, for example, for
  [verify-guards]. This has been fixed.

  In analogy to [include-book], now [ld] takes the (optional) keyword
  argument :dir. Thanks to Jared Davis for providing an
  implementation of this feature and to Eric Smith and Jeff Marshall
  for requesting this feature.

  We fixed a bug in [include-book] that could cause an error when
  redefinition is on, for example:

    (set-ld-redefinition-action '(:warn! . :overwrite) state)
    (include-book \"/u/acl2/books/arithmetic/top\")

  The behavior of [include-book] now matches the documentation:
  handling of compiled files for uncertified [books] will follow the
  same rules as for certified books. In particular, if you create an
  object file in raw Lisp for some book, then including that book
  will load that object file. Thanks to Jared Davis for bringing this
  issue to our attention.

  New documentation explains the interaction of redefinition and
  redundancy. See [redundant-events] --- the ``Note About Unfortunate
  Redundancies'' is new. Thanks to Grant Passmore for providing
  examples that led us to write this additional documentation.

  Solutions to exercises in { How To Prove Theorems Formally |
  http://www.cs.utexas.edu/users/moore/publications/how-to-prove-thms}
  are now available in distributed book
  books/misc/how-to-prove-thms.lisp. Also in that directory may be
  found a new book hanoi.lisp that contains a solution to the Towers
  of Hanoi problem.


Subtopics

  [Note-2-9-3-ppr-change]
      Change in pretty-printing for ACL2 Version_2.9.3")
 (NOTE-2-9-3-PPR-CHANGE
  (NOTE-2-9-3)
  "Change in pretty-printing for ACL2 Version_2.9.3

  We have improved pretty-printing in ACL2 Version_2.9.3 to handle
  keywords a little differently. To see a discussion of the basics of
  this change, see [note-2-9-3]. In this note we describe it in
  considerable detail.

  Those who wish to understand the ACL2 pretty-printer's implementation
  can now find considerably more comments on it in the source code.
  In this note, we do not focus on the implementation. Rather, we
  motivate the change and show how the improved prettyprinter
  performs.

  Why do we want better keyword handling? Imagine a macro that builds a
  new state from an old state by changing the values in the affected
  fields, leaving everything else unchanged. One could write

    (modify th s :key1 val1 :key2 val2 :key3 val3)

  where the three keys identify fields in the state.

  To make it easier to read new concrete states, we may have a function
  that prints them ``relative'' to a given base state, expressing the
  new state as a modification of the given base state. So we may find
  ourselves prettyprinting modify forms like that above.

  The previous prettyprinter will sometimes print the form above as
  follows.

    (modify th s :key1
            val1
            :key2 val2 :key3 val3)

  This can be unpleasant to read, because of the way :key1 and val1 are
  separated. Here is an example of the old prettyprinter and the new
  one, both printing an expression from the ACL2 source code in a
  width of 40:

    Old:
    (ADD-TO-TAG-TREE
     'ASSUMPTION
     (MAKE
      ASSUMPTION :TYPE-ALIST TYPE-ALIST
      :TERM TERM :REWRITTENP REWRITTENP
      :IMMEDIATEP IMMEDIATEP :ASSUMNOTES
      (LIST
       (MAKE
            ASSUMNOTE :CL-ID
            NIL :RUNE RUNE :TARGET TARGET)))
     TTREE)

    New:
    (ADD-TO-TAG-TREE
         'ASSUMPTION
         (MAKE ASSUMPTION
               :TYPE-ALIST TYPE-ALIST
               :TERM TERM
               :REWRITTENP REWRITTENP
               :IMMEDIATEP IMMEDIATEP
               :ASSUMNOTES
               (LIST (MAKE ASSUMNOTE
                           :CL-ID NIL
                           :RUNE RUNE
                           :TARGET TARGET)))
         TTREE)

  Basically the change we made forces the prettyprinter to print each
  :key on a new line unless they all fit on a single line. So we
  would now get either

    (modify th s :key1 val1 :key2 :val2 :key3 val3)

  or

    (modify th s
            :key1 val1
            :key2 val2
            :key3 val3)

  Furthermore, we fixed it so that if val1 (say) is a big s-expression
  we may still print it on the same line as its key. The old
  prettyprinter enforced the rule that if you wanted to print (foo a
  b) and b gets broken up into several lines, then it has to start on
  a new line. Thus, we'd never print

    (foo a (bbb
            (mum x)))

  but would print instead

    (foo a
         (bbb
          (mum x)))

  Now, if a is a keyword, we can print the first way.

  So here are some nice examples of prettyprinted keyword forms. All of
  these are printed for a page of width 40.

    <--            40 chars               ->
    xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

    (MODIFY TH S :KEY1 V1 :KEY2 V2)

    (MODIFY TH S :KEY1 V1 :KEY2 V2 :KEY3 V3)

    (MODIFY TH S1                               ; Because of the extra char
            :KEY1 V1                            ; in S1 the flat size exceeds
            :KEY2 V2                            ; 40 and we break it.
            :KEY3 V3)

  The old ppr would have printed this as:

    (MODIFY
         TH S1 :KEY1 V1 :KEY2 V2 :KEY3 V3)

  Returning to new examples:

    <--            40 chars               ->
    xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

    (MODIFY TH S
            :KEY1 (IF (IF X Y Z) AAAA BBBB)
            :KEY2 VAL2
            :KEY3 VAL3)

  Now we extend AAAA and BBBB by one char each, so it would overflow
  the right margin if printed as above, and we get:

    <--            40 chars               ->
    xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

    (MODIFY
         TH S
         :KEY1 (IF (IF X Y Z) AAAAX BBBBX)
         :KEY2 VAL2
         :KEY3 VAL3)

  If we make these names even longer we force the value off the line
  containing :key1:

    (MODIFY
         TH S
         :KEY1
         (IF (IF X Y Z) AAAAXXXXX BBBBXXXXX)
         :KEY2 VAL2
         :KEY3 VAL3)

  Here are some examples from the ACL2 source code, printed in 40
  characters:

    (DEFTHM
     ALPHORDER-ANTI-SYMMETRIC
     (IMPLIES (AND (NOT (CONSP X))
                   (NOT (CONSP Y))
                   (ALPHORDER X Y)
                   (ALPHORDER Y X))
              (EQUAL X Y))
     :HINTS
     ((\"Goal\"
       :IN-THEORY
       (UNION-THEORIES
        '(STRING< SYMBOL-<)
        (DISABLE
           CODE-CHAR-CHAR-CODE-IS-IDENTITY))
       :USE
       ((:INSTANCE SYMBOL-EQUALITY (S1 X)
                   (S2 Y))
        (:INSTANCE BAD-ATOM<=-ANTISYMMETRIC)
        (:INSTANCE
             CODE-CHAR-CHAR-CODE-IS-IDENTITY
             (C Y))
        (:INSTANCE
             CODE-CHAR-CHAR-CODE-IS-IDENTITY
             (C X)))))
     :RULE-CLASSES
     ((:FORWARD-CHAINING
       :COROLLARY
       (IMPLIES
          (AND (ALPHORDER X Y)
               (NOT (CONSP X))
               (NOT (CONSP Y)))
          (IFF (ALPHORDER Y X) (EQUAL X Y)))
       :HINTS
       ((\"Goal\"
         :IN-THEORY (DISABLE ALPHORDER))))))

  Here is that same one, printed in a width of 60.

    (DEFTHM
     ALPHORDER-ANTI-SYMMETRIC
     (IMPLIES (AND (NOT (CONSP X))
                   (NOT (CONSP Y))
                   (ALPHORDER X Y)
                   (ALPHORDER Y X))
              (EQUAL X Y))
     :HINTS
     ((\"Goal\"
         :IN-THEORY
         (UNION-THEORIES
              '(STRING< SYMBOL-<)
              (DISABLE CODE-CHAR-CHAR-CODE-IS-IDENTITY))
         :USE ((:INSTANCE SYMBOL-EQUALITY (S1 X)
                          (S2 Y))
               (:INSTANCE BAD-ATOM<=-ANTISYMMETRIC)
               (:INSTANCE CODE-CHAR-CHAR-CODE-IS-IDENTITY (C Y))
               (:INSTANCE CODE-CHAR-CHAR-CODE-IS-IDENTITY
                          (C X)))))
     :RULE-CLASSES
     ((:FORWARD-CHAINING
          :COROLLARY (IMPLIES (AND (ALPHORDER X Y)
                                   (NOT (CONSP X))
                                   (NOT (CONSP Y)))
                              (IFF (ALPHORDER Y X) (EQUAL X Y)))
          :HINTS ((\"Goal\" :IN-THEORY (DISABLE ALPHORDER))))))

  Just for comparison, here is the above printed in 60 columns by the
  old prettyprinter.

    (DEFTHM
     ALPHORDER-ANTI-SYMMETRIC
     (IMPLIES (AND (NOT (CONSP X))
                   (NOT (CONSP Y))
                   (ALPHORDER X Y)
                   (ALPHORDER Y X))
              (EQUAL X Y))
     :HINTS
     ((\"Goal\" :IN-THEORY
              (UNION-THEORIES
                   '(STRING< SYMBOL-<)
                   (DISABLE CODE-CHAR-CHAR-CODE-IS-IDENTITY))
              :USE
              ((:INSTANCE SYMBOL-EQUALITY (S1 X)
                          (S2 Y))
               (:INSTANCE BAD-ATOM<=-ANTISYMMETRIC)
               (:INSTANCE CODE-CHAR-CHAR-CODE-IS-IDENTITY (C Y))
               (:INSTANCE CODE-CHAR-CHAR-CODE-IS-IDENTITY
                          (C X)))))
     :RULE-CLASSES
     ((:FORWARD-CHAINING
           :COROLLARY
           (IMPLIES (AND (ALPHORDER X Y)
                         (NOT (CONSP X))
                         (NOT (CONSP Y)))
                    (IFF (ALPHORDER Y X) (EQUAL X Y)))
           :HINTS
           ((\"Goal\" :IN-THEORY (DISABLE ALPHORDER))))))

  Of course, given that you cannot tell for sure whether the keywords
  you're seeing are part of a keyword/value parameter list or part of
  some constant containing random keywords, the prettyprinter can't
  solve the problem perfectly. We just tried to make it work nicely
  on well-formed keyword/value parameter lists.

  For example, here is a form printed by the each prettyprinter.

    Old:
    (MEMBER
     X
     '(:MONDAY
          :MON :TUESDAY :TUES :WEDNESDAY
          :WED :THURSDAY :THURS :FRIDAY
          :FRI :SATURDAY :SAT :SUNDAY :SUN))

    New:
    (MEMBER X
            '(:MONDAY :MON
                      :TUESDAY :TUES
                      :WEDNESDAY :WED
                      :THURSDAY :THURS
                      :FRIDAY :FRI
                      :SATURDAY :SAT
                      :SUNDAY :SUN))

  The new way is not how one would print it by hand! But then, neither
  is the old way.")
 (NOTE-2-9-4
  (RELEASE-NOTES)
  "ACL2 Version 2.9.4 (February, 2006) Notes

  Also see [note-2-9-1], see [note-2-9-2], and see [note-2-9-3] for
  other changes since the last non-incremental release (Version_2.9).

  A soundness bug has been fixed that was due to inadequate checking of
  :[meta] rules in the presence of [local] [events]. Specifically, a
  local [defevaluator] event is insufficient for supporting a :meta
  rule (an example is shown in source function chk-acceptable-rules).
  Thanks to Dave Greve and Jared Davis for bringing this bug to our
  attention, by sending a proof of nil that exploited this bug. The
  fix is to check legality of :meta rules even when skipping proofs
  during an [include-book] event or the second pass of an
  [encapsulate] event.

  Fixed problem with parallel make for workshop books by adding a
  dependency line to books/workshops/2003/Makefile.

  Default hints (see [set-default-hints]) no longer prevent the use of
  :INSTRUCTIONS (see [proof-checker]). Thanks to Jared Davis for
  pointing out this problem.

  New functions [remove-eq] and [remove-equal] have been defined, in
  analogy to [remove]. These two symbols have also been added to
  *acl2-exports*. Thanks to David Rager for pointing out that
  remove-equal was missing. Moreover, the definitions of delete1-eq
  and delete1-equal have been eliminated. Function remove1-eq, now in
  :[logic] mode in source file axioms.lisp, serves in place of
  delete1-eq, with corresponding new function definitions for
  [remove1] and [remove1-equal].

  The symbol [assert$] has been added to *acl2-exports*. Thanks to
  Jared Davis for the suggestion.

  Added SBCL support. Thanks to Juho Snellman for significant
  assistance with the port. Thanks to Bob Boyer for suggesting the
  use of feature :acl2-mv-as-values with SBCL, which can allow
  thread-level parallelism in the underlying lisp; we have done so
  when feature :sb-thread is present.

  We have continued to incorporate suggestions for wording improvements
  in documentation and error messages. Thanks to all who send these
  suggestions, especially to Eric Smith, who has suggested the vast
  majority of them.

  Made a small improvement to errors and warnings caused on behalf of
  [set-enforce-redundancy], to indicate when an event of the same
  name already exists.

  Fixed a bug in books/misc/rtl-untranslate.lisp that was causing a
  guard violation when adding a new entry for an existing key.

  Fixed a bug in translation to internal form that caused [defun-sk]
  and [defchoose] to have difficulties handling ignored variables in
  [let] forms. Thanks to Sandip Ray to bringing this issue to our
  attention with a helpful example.

  The form (push :acl2-mv-as-values *features*) has been added in
  source file acl2-init.lisp for SBCL and OpenMCL only, in order to
  support parallel execution (looking to the future...).

  Default-hints (see [set-default-hints]) were being ignored inside the
  [proof-checker], but no longer. Thanks to John Erickson for
  bringing this problem to our attention and providing a simple
  example of it.

  Modified the TAGS \"make\" target (specifically, function make-tags) so
  that it is gracefully skipped if the etags program is not found.
  Thanks to David Rager for pointing out this issue.

  Sandip Ray has re-worked the supporting materials for his ACL2
  Workshop 2003 talk (originally with John Matthews and Mark Tuttle),
  to run in a few minutes. The result is in
  workshops/2003/ray-matthews-tuttle/support/ and is included in the
  full ACL2 regression suite. Thanks, Sandip.

  Debian releases of ACL2 had created superfluous .cert.final files
  when certifying books. This has been fixed; thanks to Jared Davis
  for noticing this problem.

  Jared Davis has pointed out that ``If you add a :backchain-limit-lst
  0 to a rewrite rule whose hypotheses are all forced, then ACL2
  `really assumes them' without trying to relieve them right there
  through rewriting.'' Relevant documentation has been added for
  :backchain-limit-lst; see [rule-classes].

  A new version of the rtl library has been included in
  books/rtl/rel5/. Thanks to David Russinoff for contributing hand
  proofs for the new lemmas, and to Matt Kaufmann for carrying out
  their mechanization.

  Fixed a bug in [save-exec] that was failing to set the initial cbd
  according to the current directory when starting up ACL2. Thanks to
  Camm Maguire for bringing our attention to this problem.

  Variables introduced during let* abstraction are now in the current
  package. Thanks to Jared Davis for suggesting such a change. See
  [set-let*-abstractionp].

  It is now allowed for two definitions to be considered the same from
  the standpoint of redundancy (see [redundant-events]) when one
  specifies a :[guard] of t and the other has no explicit :guard
  (hence, the guard is implicitly t). Thanks to Jared Davis for
  bringing this issue to our attention.

  (For users of emacs/emacs-acl2.el) There have been a few enhancements
  to distributed file emacs/emacs-acl2. el (skip this paragraph if
  you don't use that file):

      o Control-t q continues to compare windows ignoring whitespace, but
      now, a prefix argument can be given to control case is also
      ignored (ignore case if positive, else use case).

      o Control-t Control-l has been defined to be similar to Control-t l,
      except that proofs are skipped and output is suppressed.

      o Control-t u has been defined to print, to the shell buffer, a
      :[ubt!] form for the command containing the cursor.

      o Control-t Control-f buries the current buffer.

      o Meta-x new-shell now puts the new shell buffer in shell-mode
      (thanks to David Rager for noticing this issue).

  Linear arithmetic has been modified so that we do not generate the
  equality (equal term1 term2) from the pair of inequalities (<=
  term1 term2) and (<= term2 term1) in the case that we would have to
  [force] both term1 and term2 to be [ACL2-numberp]s. Thanks to Dave
  Greve for providing a motivating example and to Robert Krug for
  providing a fix.

  The event [delete-include-book-dir] had not been allowed inside
  [books] and [encapsulate] forms. This was an oversight, and has
  been fixed.

  Sandip Ray has contributed a new library of books to support proofs
  of partial and total correctness of sequential programs based on
  assertional reasoning, in books/symbolic/. This work is based on
  the paper J. Matthews, J S. Moore, S. Ray, and D. Vroon, ``A
  Symbolic Simulation Approach to Assertional Program Verification,''
  currently in draft form. In particular, the books include the macro
  defsimulate, which automatically transforms inductive assertion
  proofs of correctness of sequential programs to the corresponding
  interpreter proofs. See the README in that directory.

  We have changed the implementation of :dir :system for [ld] and
  [include-book]. This change will not affect you if you build an
  ACL2 executable in the normal manner, leaving in place the books/
  subdirectory of the source directory; nor will it affect you if you
  download a GCL Debian binary distribution. The change is that if
  environment variable ACL2_SYSTEM_BOOKS is set, then it specifies
  the distributed books directory, i.e., the directory determined by
  :dir :system. You may find it convenient to set this variable in
  your ACL2 script file (typically, saved_acl2). If it is set when
  you build ACL2, the generated script for running ACL2 will begin by
  setting ACL2_SYSTEM_BOOKS to that value. Thanks to various people
  who have discussed this issue, in particular Jared Davis who sent
  an email suggesting consideration of the use of an environment
  variable, and to Eric Smith who helped construct this paragraph.
  (Note that this use of ACL2_SYSTEM_BOOKS replaces the use of
  ACL2_SRC_BOOKS described previously; see [note-2-9-1].)

  ACL2 now automatically deletes files TMP*.lisp created during the
  build process and created by :[comp]. If you want these to be
  saved, evaluate (assign keep-tmp-files t) in the ACL2 loop or in
  raw Lisp. The clean target for the standard `make' process for
  certifying books (see [books-certification-classic]) will however
  delete all files TMP*.*.

  The TMP files discussed just above now generally include the current
  process ID in their names, e.g., TMP@16388@1.lisp instead of
  TMP1.lisp. Thanks to Bob Boyer for suggesting this measure, which
  will reduce the possibility that two different processes will
  attempt to access the same temporary file.

  Now, :[pe] will print the information formerly printed by :pe!,
  slightly enhanced to work for logical names that are strings, not
  just symbols. Thanks to Warren Hunt for leading us to this change
  by suggesting that :pe nth print the definition of [nth].

  We eliminated spurious warnings that could occur in raw mode in
  OpenMCL or CMUCL when [stobj]s are present. We thank Juho Snellman
  for pointing out the relevant bug and appropriate fix.

  Mfc-rw now takes a third argument that can specify an arbitrary known
  equivalence relation; see [extended-metafunctions]. Thanks to Dave
  Greve for discussions suggesting this improvement.

  A small modification to a symbol-reading function allows
  documentation string processing on Windows systems that use CR/LF
  for line breaks. Thanks to William Cook for bringing this issue to
  our attention.

  The documentation has been improved on how to control the printing of
  ACL2 terms. See [user-defined-functions-table]. Thanks to Sandip
  Ray for asking a question that led to the example presented there.

  We fixed an inefficiency that could cause an [ld] command to seem to
  hang at its conclusion. Thanks to Sandip Ray for pointing out this
  problem.

  We checked that ACL2 runs under LispWorks 4.4.5, and have inhibited
  redefinition warnings.

  Two changes have been made on behalf of congruence-based reasoning.
  Thanks to Dave Greve for examples and discussions that have led to
  these changes, and to Eric Smith and Vernon Austel, who also sent
  relevant examples.

      o When a call of the new unary function [double-rewrite] is
      encountered by the rewriter, its argument will be rewritten
      twice. This solves certain problems encountered in
      congruence-based rewriting. Warnings for :[rewrite] and
      :[linear] rules will suggest when calls of [double-rewrite] on
      variables in hypotheses are likely to be a good idea. See
      [double-rewrite].

      o Hypotheses of the form (equiv var (double-rewrite term)), where
      equiv is a known [equivalence] relation and var is a free
      variable (see [free-variables]), will bind var to the result of
      rewriting term twice. Previously, hypotheses of the form (equal
      var term) would bind a free variable var, but the call had to
      be of equal rather than of an arbitrary known equivalence
      relation.

  The following improvements were made in support of ACL2 on top of
  OpenMCL.

      o New versions of OpenMCL that do not have :mcl in Lisp variable
      *features* will now work with ACL2. Thanks to David Rager for
      bringing this issue to our attention.

      o Added support for OpenMCL 1.0 for 64-bit DarwinPPC/MacOS X, thanks
      to Robert Krug.

      o Fixed tracing in OpenMCL so that the level is reset to 1 even if
      there has been an abort.

      o Added support in OpenMCL for WET.

      o Incorporated suggestions from Gary Byers for printing the ``Welcome
      to OpenMCL'' prompt before initially entering the ACL2 loop
      and, and for setting useful environment variable
      CCL_DEFAULT_DIRECTORY in the ACL2 script.

  Fixed a long-standing bug in forward-chaining, where variable-free
  hypotheses were being evaluated even if the
  [executable-counterpart]s of their function symbols had been
  disabled. Thanks to Eric Smith for bringing this bug to our
  attention by sending a simple example that exhibited the problem.

  Improved reporting by the [break-rewrite] utility upon failure to
  relieve hypotheses in the presence of free variables, so that
  information is shown about the attempting bindings. See
  [free-variables-examples-rewrite]. Thanks to Eric Smith for
  requesting this improvement. Also improved the [break-rewrite] loop
  so that terms, in particular from unifying substitutions, are
  printed without hiding subterms by default. The user can control
  such hiding (``evisceration''); see :DOC set-brr-term-evisc-tuple.

  A new directory books/defexec/ contains books that illustrate the use
  of [mbe] and [defexec]. Thanks to the contributors of those books
  (see the README file in that directory).

  The directories books/rtl/rel2 and books/rtl/rel3 are no longer
  distributed. They are still available by email request.
  (Subdirectory rel1/ supports some of the optional workshop/ books,
  so it is still distributed.)

  Added book books/misc/sticky-disable.lisp to manage [theories] that
  might otherwise be modified adversely by [include-book]. Thanks to
  Ray Richards for a query that led to our development of this tool.

  The commands (exit) and (quit) may now be used to quit ACL2 and Lisp
  completely; in fact they macroexpand to calls of the same function
  as does [good-bye] (which is now a macro). Thanks to Jared Davis
  for suggesting the new aliases. (OpenMCL-only comment:) These all
  work for OpenMCL even inside the ACL2 loop.

  The macro wet now hides structure by default on large expressions.
  However, a new optional argument controls this behavior, for
  example avoiding such hiding if that argument is nil. Thanks to
  Hanbing Liu for pointing out that wet was not helpful for very
  large terms.

  We have fixed a bug in the forward-chaining mechanism that, very
  rarely, could cause a proof to be aborted needlessly with an
  obscure error message. Thanks to Jared Davis for sending us an
  example that evoked this bug.

  Fixed a bug that was causing proof output on behalf of
  :functional-instance to be confusing, because it failed to mention
  that the number of constraints may be different from the number of
  subgoals generated. Thanks to Robert Krug for pointing out this
  confusing output. The fix also causes the reporting of rules used
  when silently simplifying the constraints to create the subgoals.

  Fixed a bug in handling of leading ./ in pathnames, as in:
  (include-book \"./foo\"). Thanks to Jared Davis for bringing this bug
  to our attention.

  Made a small fix for handling of free variables of
  :[forward-chaining] rules, which had erroneously acted as though a
  hypothesis (equal var term) can bind the variable var.

  A small change has been made for :[type-prescription] rules for
  hypotheses of the form (equal var term), where var is a free
  variable and no variable of term is free (see [free-variables]). As
  with :[rewrite] and :[linear] rules, we now bind var to term even
  if (equal u term) happens to be known in the current context for
  some term u. Also as with :rewrite and :linear rules, similar
  handling is given to hypotheses (equiv var (double-rewrite term))
  where equiv is a known [equivalence] relation.

  We changed the handling of free variables in hypotheses of :[rewrite]
  rules being handled by the [proof-checker]'s rewrite (r) command,
  in complete analogy to the change described just above for
  :[type-prescription] rules.

  The installation instructions have been updated for obtaining GCL on
  a Macintosh. Thanks to Robert Krug for supplying this information
  and to Camm Maguire for simplifying the process by eliminating the
  gettext dependency.

  The macro [comp] is now an event, so it may be placed in [books].

  Previously, a [save-exec] call could fail because of file permission
  issues, yet ACL2 (and the underlying Lisp) would quit anyhow. This
  has been fixed. Thanks to Peter Dillinger for bringing this problem
  to our attention.

  Jared Davis, with assistance from David Rager, has updated his
  ordered sets library, books/finite-set-theory/osets/. See file
  CHANGES.html in that directory.

  A new function, [reset-kill-ring], has been provided for the rare
  user who encounters memory limitations. See [reset-kill-ring].")
 (NOTE-2-9-5
  (RELEASE-NOTES)
  "Changes in Version 3.0 since Version 2.9.4

  Fixed a bug in [cw-gstack] that was causing a hard error when
  attempting to report on a forced assumption. Thanks to Jared Davis
  for pointing this out and sending an example that helped us to
  determine a fix.

  Added [set-backchain-limit] to the set of legal [events] that can be
  placed in [encapsulate] forms and [books]. Thanks to John Cowles
  for bringing this issue to our attention.

  Fixed a bug that broke wet. Thanks to David Rager for bringing this
  bug to our attention.

  Guard verification now evaluates ground subexpressions (those with no
  free variables) when computing the guard conjecture for the body of
  a function. Thanks to Jared Davis for useful conversations leading
  to this change. See [verify-guards], in particular its ``Note on
  computation of guard conjectures and evaluation'' near the end of
  that topic, for more details.

  Added a warning when a [theory-invariant] is redefined. Thanks to
  Jared Davis for suggesting a warning in this case and providing an
  informative example. Also, [theory-invariant]s are now maintained
  more completely, as they are checked at the end of every event
  except for events executed on behalf of an [include-book] or the
  second pass of an [encapsulate].

  Fixed the handling of runic designators to match their specification
  (see [theories]), so that disabling the name of a [defthm] event
  [disable]s all rules generated for that event.

  (For those who do numerous builds using feature :acl2-mv-as-values,
  currently only OpenMCL and multi-threaded SBCL by default:) You can
  speed up builds by adding the following parameter to `make', under
  conditions described in GNUmakefile: USE_ACL2_PROCLAIMS=:REUSE.

  Arranged that traced functions (see [trace$]) are automatically
  untraced when events are undone (for example see [ubt]), at least
  for most underlying Common Lisp implementations.

  The macro [defun-sk] now creates non-executable functions, which
  allows [stobj]s to be used where they had previously been
  prohibited. More generally, the user now has control over [declare]
  forms to be used by the underlying [defun]'d function; see
  [defun-sk]. Thanks to Sandip Ray for pointing out the need for such
  a modification.

  :[Definition] rules are now treated, at least by default, as truly
  first-class definitions. In particular, :expand [hints] use the
  latest :[definition] rule by default. You may specify :install-body
  nil to get the previous behavior of :definition rules; See
  [definition], and you may choose a previously-installed :definition
  rule to provide the current body; see [set-body]. Also see
  [rule-classes] for details of the :install-body field, and see
  [hints] to see a new :with directive for controlling expansion. The
  :with directive for :expand hints can even direct the use of a
  :[rewrite] rule for expansion! Thanks to various people, including
  Sandip Ray and Rob Sumners, for discussions on the issue of the
  applicability of :definition rules for :expand [hints].

  [Constraint]s for functional instantiation now use the original
  definition rather than a simplified (``normalized'') version of it.

  Fixed a bug that caused the prompt to stay the same when
  guard-checking is off (see [set-guard-checking]) and raw-mode is
  changed (see [set-raw-mode]).

  Lemma names in directory books/ordinals have been changed by
  replacing /\\ with & and replacing \\/ with V. We made this change
  because backslash is an escape character and hence disappears
  unless it is itself escaped.

  Fixed [proof-tree] output so that failed non-proof events do not
  cause the proof-tree to be re-printed. Thus for example, if you
  have already advanced the checkpoint marker, it will not be reset
  by subequent failed non-proof events. Thanks to Pete Manolios and
  Peter Dillinger for bringing this bug to our attention.

  Fixed a bug that was preventing the printing of [stobj] fields as
  constants instead of numbers in certain cases. (Note that this bug
  only affected printing, not soundness.) Thanks to Eric Smith for
  bringing this problem to our attention and providing the following
  example (which now works fine).

    (defstobj st fld1 fld2)
    (in-theory (disable update-nth))
    (defund run (st)
      (declare (xargs :stobjs (st))) ;adding this didn't seem to help..
      st)

    ;works great; *fld1* prints as  *fld1*
    (thm (equal (update-nth *fld1* 'abc st)
                (car (cons x y))))

    ;*fld1* gets printed as 0, presumably because the call to run intervenes.
    (thm (equal (update-nth *fld1* 'abc (run st))
                (car (cons x y))))

  The macro [progn] now allows the use of macros defined within its
  bodies even when at the event level, as illustrated by the
  following example.

    (progn (defmacro my-defun (&rest args)
             `(defun ,@args))
           (my-defun g (x) x))

  Thanks to Anna Slobodova for bringing this issue to our attention. A
  related change is that all arguments of [progn] must now be
  embedded event forms (see [embedded-event-form]), so use [er-progn]
  instead if this is not the case.

  The change to [progn] mentioned above also fixes a bug in handling
  [local] events inside a [progn] that is inside an [encapsulate] or
  in a book. For example, the following form formerly caused an
  error.

    (encapsulate
     ()
     (defun foo (x) x)
     (progn (local (defun bar (x) x))
            (defun abc (x) x)))

  We fixed two bugs in :[puff] and :[puff*]. The first, brought to our
  attention by Eric Smith (who we thank), caused a cryptic error
  message when puffing a command with no subsidiary stored events;
  try, for example, (encapsulate () (value-triple 3)). The second was
  due to a failure to restore the [ACL2-defaults-table]. Suppose for
  example that we have certified the book foo.lisp, which contains
  ([program]) followed by some definitions and/or theorems. Now
  suppose we start ACL2 and execute the following.

    (include-book \"foo\")
    (defthm test-thm
      (equal x x)
      :rule-classes nil)

  If we now execute :[puff] 1, ACL2 will roll back the world to before
  the [include-book]; then ``puff'' the include-book, which will
  leave us in :[program] mode; and finally skip re-execution of the
  [defthm] because such [events] are skipped in :[program] mode. The
  fix is to re-install the [ACL2-defaults-table] immediately after
  the [include-book] to its pre-[include-book] value.

  A new event, [make-event], provides something like macros that take
  state. For example, one can use it to put tests into certified
  books, do proof search, and generate new function names. Many
  examples appear in directory books/make-event/. See [make-event].
  Thanks to Bob Boyer and Jared Davis for useful feedback and to
  Warren Hunt, David Rager, and Sandip Ray for helpful discussions
  leading to some of the examples in directory books/make-event/.

  In support of [make-event], which is described in the preceding
  paragraph, certify-book has a new keyword argument,
  :save-expansion, that controls whether the result of expanding
  [make-event] forms is written out to a file. See [certify-book];
  and for a discussion of book expansion files, see [make-event].

  We fixed a soundness bug that did not correctly detect [local]
  events. For example, the following event was admitted.

    (encapsulate
     ()
     (local
      (encapsulate
       ()
       (local (progn (program))) ; or, (local (with-output :off summary (program)))
       (set-irrelevant-formals-ok t)
       (defun foo (x)
         (declare (xargs :measure (acl2-count x)))
         (1+ (foo x)))))
     (defthm inconsistent
       nil
       :hints ((\"Goal\" :use foo))
       :rule-classes nil))

  A new value for [guard] checking, :none, is now allowed. If you
  execute :[set-guard-checking] :none, then no guard checking will
  take place (but raw Lisp code will not be executed in this case).
  As a result, you should never see a guard violation, even for calls
  of :program mode functions. We thank Pete Manolios, who has long
  wanted this feature, and also Peter Dillinger, for asking for it.
  New documentation explains the interaction between the [defun-mode]
  and the value supplied to :[set-guard-checking]. See
  [guard-evaluation-table], see [guard-evaluation-examples-script],
  and see [guard-evaluation-examples-log].

  In the course of adding the [guard]-checking value :none described in
  the paragraph above, we eliminated an optimization that eliminated
  guard checking for some recursive calls of :[logic] mode
  mutually-recursive functions that have not had their guards
  verified. But we doubt that this change will be noticed by any
  users!)

  The ACL2 hyper-card has been enhanced, thanks to David Rager, with a
  listing of ``Useful EMACS Commands'' to match comments in
  emacs/emacs-acl2.el.

  Users contributed books following the Readme.lsp methodology:
  data-structures/memories and unicode (Jared Davis), proofstyles
  (Sandip Ray and J Moore).

  Made some improvements to books/Makefile-generic (a file discussed
  elsewhere; see [books-certification-classic]). In particular,
  improved handling of .acl2 files for dependencies target.

  (Only OpenMCL and, with feature :acl2-mv-as-values, GCL) Fixed a bug
  that was causing proclaiming to fail when definitions are submitted
  interactively.

  The default stack size has been increased for several lisps.

  (Very technical) A restriction has been weakened on the use of
  [local] [stobj]s under a call of an ACL2 evaluator (trans-eval or
  simple-translate-and-eval). Now, the error can only take place for
  [stobj] names that occur in the term being evaluated. Thanks to
  Erik Reeber for bringing this issue to our attention.

  The notion of ``ancestor'' has been changed slightly. This notion is
  used by extended metafunctions and [break-rewrite] (see
  [extended-metafunctions] and see [brr@]), and also with backchain
  limits (see [backchain-limit] and see [set-backchain-limit]).
  Basically, each time a hypothesis is encountered during application
  of a [rewrite] rule, that hypothesis is pushed (after instantiating
  and negating) onto the current list of ancestors before it is
  rewritten. However, hypotheses of the form (equal var term), where
  var is free (see [free-variables]), had not been included in the
  ancestors (similarly for (equiv var (double-rewrite term)) where
  equiv is a known [equivalence] relation). Now such ``binding
  hypotheses'' are included in a special way in ancestors data
  structures. In particular, (null (mfc-ancestors mfc)) will now be
  true if and only if the term being rewritten is part of the current
  goal as opposed to a hypothesis from a rule encountered during
  backchaining, even if that hypothesis is a binding hypothesis.
  Thanks to Dave Greve for bringing this issue to our attention.

  Termination and induction analysis now continue through both
  arguments of [prog2$], not just the second. (Normally, the
  gathering up of [if] tests stops at function calls; but it
  continued through the second argument of [prog2$], and now it will
  continue through both arguments.) Thanks to Sol Swords for
  discussion leading to this change.

  The ACL2 distribution is now kept on the http server rather than the
  ftp server (but the home page has not been moved). Thanks to Robert
  Krug for letting us know that some ACL2 users have found it
  inconvenient to fetch ACL2 using ftp.

  The file books/README.html has been renamed to books/Readme.html,
  since some browsers don't show the former in the directory listing.")
 (NOTE-2-9{R}
  (RELEASE-NOTES)
  "ACL2 Version 2.9(r) (October, 2004) Notes

  No changes have been made for support of non-standard analysis, other
  than a minor modification or two in books/nonstd/ books.

  Please also see [note-2-9] for changes to Version_2.9 of ACL2.")
 (NOTE-3-0
  (RELEASE-NOTES)
  "ACL2 Version 3.0 (June, 2006) Notes

  Please see [note-2-9-5] for a description of changes since Version
  2.9.4. These include the new [make-event] feature, a soundness bug
  fix, an improvement for :expand [hints], evaluation in the logic by
  way of :[set-guard-checking] :none, and many other improvements.

  More generally, there have been several incremental releases since
  Version 2.9: see [note-2-9-1], see [note-2-9-2], see [note-2-9-3],
  see [note-2-9-4], and see [note-2-9-5].

  A very few users have contributed books following the instructions on
  the web. We expect that when more contributions come in, we will
  give more attention to the question of how to organize the
  distributed and workshop books. For now, we have simply added the
  new contributions according to the old-style distribution
  methodology.")
 (NOTE-3-0-1
  (RELEASE-NOTES)
  "ACL2 Version 3.0.1 (August, 2006) Notes

  NOTE! New users can ignore these release notes, because the
  documentation has been updated to reflect all changes that are
  recorded here.

  Fixed a soundness bug, introduced in the previous release, due to a
  failure to disallow [table] [events] that set the
  [ACL2-defaults-table] in a [local] context. Here is a proof of nil
  that exploits the bug.

    (encapsulate ()
     (local (program))
     (defun foo ()
       (declare (xargs :measure 17))
       (+ 1 (foo))))
    (thm
     nil
     :hints ((\"Goal\" :in-theory (disable foo (foo)) :use foo)))

  Fixed a bug in the alternatives to [good-bye], which are the [exit]
  and [quit] commands. Thanks to Jared Davis and Peter Dillinger for
  pointing this out right away.

  The definition of [len] has been highly optimized in raw Lisp. Thanks
  to Bob Boyer and Warren Hunt for suggesting such an improvement and
  providing a lot of help in coming up with the current
  implementation.

  The clause subsumption algorithms have been improved, both to improve
  efficiency during warnings for :[rewrite] rules and to punt when
  the subsumption computation for induction appears to be blowing up.
  Thanks to Robert Krug for bringing this issue to our attention and
  supplying a useful example.

  A bug has been fixed that prevented [time$] from working properly in
  OpenMCL and multi-threaded SBCL (actually, in any ACL2 image where
  feature :acl2-mv-as-values is present). Thanks to Sol Swords for
  bringing this problem to our attention.

  A [type-spec] of the form (satisfies pred) carries the requirement
  that pred be a unary function symbol in the current ACL2 [world];
  otherwise, it is illegal. Thanks to Dave Greve for pointing out
  that Common Lisp has this requirement.

  Installed a fix provided by Gary Byers (for ACL2 source function
  install-new-raw-prompt), for OpenMCL, that fixes an issue exposed
  in some versions of OpenMCL when compiler optimization is off.

  Fixed a bug in contributed book misc/untranslate-patterns.lisp that
  was causing calls of add-untranslate-pattern to be rejected in
  [books]. Thanks to Ray Richards for pointing out this bug and to
  Jared Davis for assisting in the fix.

  Fixed a bug in [defstobj] when keywords :initially and :resizable are
  both supplied. In this case, the definition of the resizing
  function mistakenly failed to quote the :initially value, even
  though this value is not to be evaluated. One could even get an
  error in this case, as in the following example supplied by Erik
  Reeber, whom we thank for bringing this bug to our attention:

    (defstobj $test
      (test-x :type (array t (5)) :initially (0) :resizable t))

  A new feature, [with-prover-time-limit], allows the setting of time
  limits during proofs. This is not a general-purpose time-limit
  utility, nor is it guaranteed to implement a strict bound; it only
  attempts to limit time approximately during proofs. Thanks to Pete
  Manolios and Daron Vroon, who made the most recent request for such
  a feature, and to Robert Krug for a helpful discussion.

  (GCL only) Fixed a bug in the procedure for building a profiling
  image. Thanks to Sol Swords for bringing this bug to our attention
  and to Eric Smith for bringing a subsequent problem to our
  attention.

  Handling of [theories] can now use significantly less time and space.
  A regression suite run took about 25% longer before this change
  than it did after making this change (and also the ones in the next
  two paragraphs). Thanks to Vernon Austel for bringing this issue to
  our attention and for supplying code, quite some time ago, that
  provided detailed, useful implementation suggestions. Also thanks
  to the folks at Rockwell Collins, Inc. for pushing the limits of
  the existing implementation, thus encouraging this improvement.

  Fixed a performance bug in obtaining executable counterpart symbols.

  We now avoid certain computations made on behalf of warnings, when
  such warnings are disabled.

  We have relaxed the checks made when including an uncertified book,
  to match the checks made when including a certified book. Thanks to
  Eric Smith for suggesting this change.

  Fixed a bug in :[pso] (see [set-saved-output]) that caused an error
  when printing the time summary.

  Made fixes to avoid potential hard Lisp errors caused by the use of
  :[program] mode functions. The fix was to use a ``safe mode,''
  already in use to prevent such errors during macroexpansion; see
  [guards-and-evaluation]. However, such errors were possible during
  evaluation of macro [guard]s, for example as follows:

    (defun foo (x)
      (declare (xargs :mode :program))
      (car x))
    (defmacro mac (x)
      (declare (xargs :guard (foo 3)))
      x)
    (defun g (x)
      (mac x))

  A similar issue existed for calls of [defpkg], [in-theory], [table],
  [make-event], and value-triple, but has been fixed for all but
  in-theory and make-event, where technical issues have caused us to
  defer this change.

  Fixed a bug in wet that caused problems in OpenMCL, and perhaps other
  Lisp implementations, when the argument to wet calls, or depends
  on, certain built-ins including [prog2$], [time$], [mbe], and
  [must-be-equal]. Thanks to David Rager for bringing this problem to
  our attention.

  The file books/Makefile-generic has been improved so that when book
  certification fails with `make', the failure message contains the
  book filename.

  Documentation has been written to explain how to avoid an expensive
  immediate rewrite of the result of applying a :[rewrite] or :[meta]
  rule. See [meta]. Thanks to Robert Krug for supplying this trick,
  and to Eric Smith and Dave Greve for useful discussions.

  (OpenMCL only) OpenMCL-based ACL2 image names formerly had extension
  \".dppccl\", which was correct only for some platforms (including
  32-bit Darwin PPC). That has been fixed, thanks to a suggestion
  from Gary Byers.

  It is now legal to attach both a :use and a :cases hint at the same
  goal. Thanks to Eric Smith for (most recently) requesting this
  feature.

  It is now permissible to include the same symbol more than once in
  the imports list of a [defpkg] form (i.e., its second argument).
  Also, the evaluation of [defpkg] forms with long import lists now
  uses a reasonably efficient sorting routine to check for two
  different symbols with the same name (see also
  books/misc/sort-symbols.lisp). If you currently call a function
  like remove-duplicates-eql for your imports list, as had been
  suggested by a [defpkg] error message, then you may experience some
  speed-up by removing that call. Thanks to Eric Smith for helping to
  discover this issue through profiling.

  Made miscellaneous efficiency improvements not listed above (for
  example, following a suggestion of Eric Smith to avoid checking for
  so-called ``bad Lisp objects'' during [include-book], which saved
  almost 3% in time on one large example).

  Modified the notion of ``untouchable'' to separate the notion of
  untouchable functions and macros from the notion of untouchable
  state global variables. See [push-untouchable]. Thanks to Bob Boyer
  for sending an example, (put-global 'ld-evisc-tuple t state), that
  suggested to us the need for more restrictive handling of
  untouchables. In particular, many ld specials (see [ld]) are now
  untouchable. You may be able to work around this restriction by
  calling [ld]; see for example the change to
  books/misc/expander.lisp. But please contact the ACL2 implementors
  if this sort of workaround does not appear to be sufficient for
  your purposes.

  Fixed a bug in function set-standard-oi (see [standard-oi]).

  Fixed a bug in the use of [ld-evisc-tuple]. The bad behavior was an
  improper use of the print-level and print-length components of the
  tuple (specifically, taking its [caddr] and [cadddr] instead of
  taking its [cadr] and [caddr]). Thanks to Bob Boyer for bringing
  this bug to our attention.

  A new argument to the compile-flg argument of [certify-book], :all,
  causes creation of a file to be compiled in place of the given
  book, where that file contains not only a copy of the book (with
  [make-event] forms expanded) but also contains definitions of the
  so-called ``executable counterparts'' of the functions defined in
  the book. Then, functions defined in the book will be run compiled
  when including the book, even for functions whose [guard]s have not
  been verified, or are in :program mode and running in so-called
  ``safe mode'' (for example, during expansion of macros). The
  default behavior, value t of compile-flg, is unchanged. Moreover, a
  new :comp! argument of [include-book] now compiles the executable
  counterparts when creating the book's compiled file, and unlike
  :comp, always deletes the old compiled file first so that one
  always gets a fresh compile.

  Now, [certify-book] gives a \"Guards\" warning only for :[logic] mode
  functions that are defined in the given book but have not had their
  guards verified. Previously, it also warned about such functions
  that were defined in the certification world or in sub-books.

  A new command, [redo-flat], facilitates the debugging of failed
  [encapsulate] and [progn] forms by evaluating preliminary forms in
  order to leave one at the point of failure. See [redo-flat]. Thanks
  to Ray Richards and others for asking for such a utility, and to
  Sandip Ray for useful discussions.

  We have changed the automatic declaration of of function types (still
  done in GCL and OpenMCL only, for now). Our motivation was to avoid
  the assumption that Common Lisp functions return one value when
  ACL2 says that they do; thanks to Bob Boyer for bringing this issue
  to our attention with the example of defining (foo x y) to be
  (floor x y). ACL2 was saying that foo returns a single value, but
  because floor returns two values in raw Lisp, so does foo. Other
  changes to automatic declaration include comprehending [defund],
  not just [defun].

  A new function, [mod-expt], computes (mod (expt base exp) m), and
  does so efficiently in some implementations (currently only in GCL
  2.7.0, which is not yet released). Thanks to Warren Hunt for
  suggesting such an addition.

  New functions [getenv$] and [setenv$] have been made available for
  reading and writing environment variables. Thanks to Jun Sawada for
  requesting these utilities.

  The query utility :[pl] has been improved in several ways. As before,
  :[meta] rules are only printed if the argument is a symbol; but the
  information printed for them is now more appropriate. The following
  are changes for the case that the argument is not a symbol, but
  rather, a term. (1) Rules are displayed that have [equivalence]
  relations other than [equal]. (2) All matching :[definition] rules
  are displayed, where previously :definition rules were only shown
  if they were ``simple'' rules (sometimes known as
  ``abbreviations''); see [simple]. (3) The ``Equiv'' field is
  printed for terms, not just symbols. (4) The substitution is shown
  that, when applied to the left-hand side of the rule, will yield
  the specified term. Thanks to Eric Smith for suggesting these
  changes.

  The [proof-checker] command ;show-rewrites has been improved to match
  the changes described above for :[pl]. In particular, :[definition]
  rules that are not ``[simple]'' are now displayed by the
  [proof-checker]'s show-rewrites (and sr) command, and the
  [proof-checker]'s rewrite command has been correspondingly modified
  to accept these :definition rules.

  Fixed `make' targets copy-distribution, copy-workshops, and
  copy-nonstd so that they should also work for non-developers.

  Fixed a bug that was causing :[pr] to display [syntaxp] hypotheses
  oddly in some cases, in particular (syntaxp (let ...)). (The
  problem was in the ``untranslate'' display of the internal form of
  syntaxp calls.) Thanks to Robert Krug for bringing this problem to
  our attention. We also removed the restriction on [bind-free] that
  its argument could not be a variable, a constant, or (more
  interestingly) a [lambda] application (i.e., a [let] or [mv-let]
  expression).")
 (NOTE-3-0-1{R}
  (RELEASE-NOTES)
  "ACL2 Version 3.0.1(r) (August, 2006) Notes

  No significant changes have been made since Version 3.0 for support
  of non-standard analysis in particular.

  Please also see [note-3-0-1] for changes to Version 3.0.1 of ACL2.")
 (NOTE-3-0-2
  (RELEASE-NOTES)
  "ACL2 Version 3.0.2 (December, 2006) Notes

  NOTE! New users can ignore these release notes, because the
  documentation has been updated to reflect all changes that are
  recorded here.

  Fixed soundness bugs in the handling of primitive function
  [pkg-witness], and improved its documentation. (The executable
  counterpart returned an incorrect default value, and the axiom
  symbol-package-name-pkg-witness-name needed pkg-name to be other
  than \"\" in order to avoid the default value of \"ACL2\".) As fallout,
  a new built-in :[forward-chaining] rule,
  symbol-package-name-of-symbol-is-not-empty-string, now asserts that
  the [symbol-package-name] of a symbol is never \"\". Thanks to Mike
  Gordon for bringing these soundness bugs to our attention by
  attempting to prove translations of ACL2 axioms in HOL4.

  Fixed a soundness bug in linear arithmetic, due to incomplete
  tracking of forced assumptions while deriving inequalities. Thanks
  to Robert Krug for providing a fix and a proof of nil before the
  fix.

  Fixed a soundness bug in the redundancy criterion for [defun] events,
  which has been modified; see [redundant-events]. This bug is
  illustrated below. Thanks to Peter Dillinger and Jared Davis for
  contributions to an email thread that led us to discover this bug.
  The solution is that for a definition to be redundant with an
  earlier definition, ACL2 no longer ignores :[measure] [xargs]
  except when skipping proofs (e.g., during [include-book]). However,
  a new ``measure'', (:? v1 ... vk), is supported, for specifying a
  measured subset of the set of formals, i.e., a set of formals that
  serves as the set of parameters for some valid measure.

    (encapsulate
     ()

     (local (defun foo (x y)
              (declare (xargs :measure (acl2-count y)))
              (if (and (consp x) (consp y))
                  (foo (cons x x) (cdr y))
                y)))

    ; So the following is redundant -- but it guesses a measure
    ; of (acl2-count x), which isn't right!
     (defun foo (x y)
       (if (and (consp x) (consp y))
           (foo (cons x x) (cdr y))
         y)))

    ; end of encapsulate

    ; Now we prove a non-theorem by exploiting the bug above,
    ; erroneously replacing formal y by a constant in the induction
    ; scheme hinted below.  (This should not be allowed, as y should be
    ; labeled as a measured formal.)

    (defthm bad
      (atom x)
      :rule-classes nil
      :hints ((\"Goal\" :induct (foo x '(3)))))

    ; It's easy to get a contradiction by instantiating the
    ; non-theorem just above.
    (defthm contradiction
      nil
      :rule-classes nil
      :hints ((\"Goal\" :use ((:instance bad (x '(7)))))))

  Fixed a bug in :[pl] and the [proof-checker]'s show-rewrites (sr)
  command that was causing a Lisp break. For :[pl], also improved the
  display of unifying substitutions, modified output to take binding
  hypotheses (equal var term) into account properly, and arranged for
  inclusion of [meta] rules that modify the given term. Thanks to
  Eric Smith for bringing these issues to our attention.

  Introduced new utilities for undoing [command]s, :[ubu] and :[ubu!],
  which are analogous to :[ubt] and :[ubt!] (respectively) except
  that they only undo back up to, but not including, the indicated
  command.

  Fixed a performance bug, pointed out by Eric Smith, that was negating
  efforts made for the preceding release to avoid computation for
  disabled warnings.

  Added [time$] and value-triple to *acl2-exports*. Thanks to Bob Boyer
  and Erik Reeber (respectively) for bringing these issues to our
  attention.

  Improved the automatic proclaiming of function types for GCL and
  OpenMCL, specifically to use an output format consistent with the
  Common Lisp spec. Thanks to Bob Boyer for bringing this issue to
  our attention.

  Added books/misc/transfinite.lisp, which deals with transfinite
  induction in ACL2. Thanks to Eric Smith for contributing this book.

  Added books/misc/process-book-readme.lisp to the distribution. Thanks
  to Sandip Ray for pointing out its omission.

  Added contributions books/concurrent-programs/bakery/ and
  books/concurrent-programs/german-protocol/. These contributions can
  be used as tutorials, especially by new ACL2 users, for learning
  how to model concurrent protocols in ACL2 and the steps involved in
  reasoning about their correctness. Thanks to Sandip Ray for these
  contributions. See the Readme.lsp files in these directories.

  Theory invariants may now involve the variable ENS instead of the
  variable THEORY. The practical effect of this change is that any
  expression of the form (MEMBER-EQUAL rune THEORY) occurring in a
  [theory-invariant] expression should be replaced by (ACTIVE-RUNEP
  rune). See [theory-invariant]. Thanks to Eric Smith and Dave Greve
  for pointing out an inefficiency in the handling of theory
  invariants that led to this change, which can speed up their
  handling by orders of magnitude on large examples, and to Eric for
  testing this change and pointing out problems with an early
  implementation of it.

  Theory invariants (see [theory-invariant]) are no longer checked on
  theories defined by [deftheory] [events]. After all, one can define
  a theory with deftheory that is not intended to be used as the
  current theory, but rather is intended to be combined with other
  [theories] (see [theory-functions]). Thanks to Eric Smith for
  bringing this issue to our attention.

  [Theory-invariant] errors had been reported with very little detail
  when warnings were inhibited. This problem has been fixed; thanks
  to Eric Smith for bringing it to our attention and providing an
  example. We have also improved the handling of redundancy for
  [theory-invariant] [events].

  The macro [defun-sk] now has a new optional keyword, rewrite, that
  can be used to change the form of the :[rewrite] rule generated
  when the quantifier is [forall]. Thanks to Eric Smith and Sandip
  Ray for useful discussions on this topic. We have also slightly
  modified the [hints] for the [defthm] event underneath a defun-sk
  in order to make the proof more reliably efficient.

  A new event, [reset-prehistory], allows setting of a barrier before
  which undoing is illegal. An argument to this macro allows the
  barrier to be made permanent; otherwise, it can be removed with
  :[ubt-prehistory]. Thanks to Peter Dillinger for useful
  conversations leading to the addition of [reset-prehistory].

  A new query, ([wormhole-p] [state]), allows users to determine
  whether or not they are in a [wormhole]. Thanks to Peter Dillinger
  for providing this utility.

  Value-triple no longer evaluates its form during [include-book], and
  in raw Lisp its calls trivially macroexpand to nil, without any
  consideration of its argument. This change avoids errors and
  warnings when [stobj] names occur in the argument.

  We fixed what could be considered a soundness hole that could occur
  by exploiting redefinition in a particular way. Thanks to Peter
  Dillinger for raising a question that led to discovery of this
  hole.

  A bug has been fixed in handling of illegal [theory] expressions.
  Thanks to Eric Smith, who reported this problem and provided the
  example (in-theory '((:definition natp) (:rewrite doesntexist))) to
  show how a hard error could occur.

  Improved error reporting by [certify-book] when the certification
  [world] contains inadmissible forms.

  Modified [defchoose] to add two new keyword arguments. There is now a
  :doc keyword argument; previously, an optional documentation string
  (see doc-string) was to be placed just before the body, without a
  keyword. There is also a :strengthen argument that strengthens the
  axiom added, which allows for the definition of ``fixing''
  functions for equivalence relations that choose canonical
  representatives of equivalence classes. See [defchoose]. Thanks for
  Dave Greve for useful discussions that led us to this :strengthen
  enhancement.

  Added books/misc/bash.lisp, which provides utilities for simplifying
  a goal into a list of subgoals (as documented at the top of that
  file). Thanks to Dave Greve for requesting this utility and
  suggesting refinements to its functionality, which have been
  incorporated.

  (For Emacs users only) The command meta-x new-shell provided by file
  emacs/emacs-acl2.el now puts you in shell-mode, which for example
  supports directory tracking. Thanks to Jared Davis for suggesting
  this change.

  Fixed some mishandling of [stobj]s by [make-event] expansion.

  Introduced a new event, [defttag], that introduces a ``trust tag''
  (``ttag'') allowing for extensions of ACL2 and for the use of
  generally unsafe ACL2 constructs. Thanks to Peter Dillinger, Sandip
  Ray, and Erik Reeber for useful discussions on defttag and the
  following related items.

      A new event, [remove-untouchable], can be used to give users access
      to system functions and data structures. We also fixed a bug in
      [push-untouchable]; and, it no longer is a no-op in :[program]
      mode. Thanks to Peter Dillinger for proposing
      [remove-untouchable] and suggesting that it and
      [push-untouchable] be functional in :[program] mode.

      Raw-mode (see [set-raw-mode]) no longer disables [certify-book].
      However, [set-raw-mode] is now disallowed unless there is an
      active ttag (see [defttag]). If you want to execute
      ([set-raw-mode] t) and there is no active ttag, consider
      executing ([set-raw-mode-on!]) instead.

      Redefinition of system functions is disallowed unless there is an
      active ttag. However, [redef!] now introduces (defttag :redef!)
      in order to allow redefinition of system functions.

      A new event, [progn!], is a legal embedded event form that can go in
      [books] and both [encapsulate] and [progn] forms (see
      [embedded-event-form]), and is similar to [progn] except that
      it allows arbitrary forms. Thus, a [progn!] form is potentially
      dangerous and can only be evaluated if there is an active ttag.

      See [ttags-seen] for information about how to find the ttags known in
      the current ACL2 [world], and for related caveats.

      A new book created with Peter Dillinger, books/misc/hacker.lisp
      (added after Version_3.3: now books/hacking/hacker.lisp), uses
      [progn!] to define utiliities with-raw-mode and
      with-redef-allowed, which respectively allow raw Lisp
      evaluation and redefinition to take place within a certifiable
      book (!).

  Macro [with-output] is no longer allowed in function bodies because
  it does not have (and has never had) any effect in raw Lisp. See
  [with-output] for a workaround.

  Fixed a bug in redundancy of [defstobj] in raw Lisp, which caused an
  error when certifying a book with a redundant [defstobj] event
  whose [stobj] had already been modified. Here is an example:

    (defstobj st fld)
    (update-fld 3 st)
    (certify-book \"foo\" 1) ; where foo.lisp contains (defstobj st fld)

  New books illustrating [make-event] have been contributed in
  directory books/make-event/: dotimes.lisp (David Rager),
  stobj-test.lisp, and logical-tangent.lisp (Peter Dillinger).

  Modified print-object$ (see [io]) so that it no longer prints an
  extra space at the end.

  Replaced the ``draconian restriction to avoid capture'' that had
  prevented some :functional-instance [hints] from being legal. The
  corresponding check now only requires that no variable free in the
  functional substitution is captured by a [let] or [mv-let] (or
  [lambda]) binding. See [lemma-instance].

  Added new extended metafunction, mfc-rw+, which is equivalent to
  mfc-rw except that it takes an alist argument, which may be useful
  for efficiency. See [extended-metafunctions]. Thanks to Robert Krug
  for suggesting this more efficient variant of mfc-rw.

  Added support for the ignorable [declare] form.

  We now cause an error on a call of open-input-channel (see [io]) with
  an argument string whose first character is the | character. Thanks
  to Bob Boyer for providing an example (several months ago) showing
  the danger of such calls, namely that the following command would
  log you out and kill all of your processes when running on top of
  GCL in Linux:
  (open-input-channel \"|kill -9 -1\" :object state)

  Restricted the use of [make-event] to contexts in which it can be
  tracked properly, under legal [events] (see [embedded-event-form]).
  Thanks to Peter Dillinger for bringing an example to our attention
  that led to this fix.

  Fixed a bug that was avoiding [guard]-checking for the functions
  [compress1] and [compress2]. Thanks to David Rager for bringing
  this bug to our attention.

  Added an error message when a [defun] or [mutual-recursion] event
  fails, to clarify whether failure is for the [measure] conjecture
  or for the [guard] conjecture. Thanks to David Rager for requesting
  clarification for such failures.

  Fixed a bug in reporting of [guard] violations (hard Lisp error) when
  certain macros (for example, [cond]) are used in the [guard].
  Thanks to Jared Davis for bringing this problem to our attention
  and providing assistance with the solution, in particular by
  providing a helpful example.

  Grant Passmore has contributed a resolution/paramodulation prover
  written in ACL2, in directory books/deduction/passmore/. Thanks,
  Grant.

  Improved the error message when illegal theories are encountered.

  Improved the suppression of output for inhibit-output arguments of
  routines in the book books/misc/expander.lisp. Thanks to Qiang
  Zhang for pointing out the possibility for improvement here.

  Added a new directory books/arithmetic-3/extra/ that extends
  books/arithmetic-3 with additional rules, contributed by Alex
  Spiridonov with guidance from Robert Krug. WARNING: This directory
  is under development. It may undergo large changes in future
  releases, so please consider it experimental and subject to change.
  Feedback is welcomed.

  As part of the work mentioned just above, Robert Krug and Alex
  Spiridonov contributed improvements to books/arithmetic-3/:

      o A new rule |(* (/ x) (/ (expt x n)))| in bind-free/collect.lisp,
      which is important for reducing collect-* expressions though it
      slowed down one proof (see comment above this rule in
      bind-free/collect.lisp).

      o Slight improvements of rules integerp-mod and rationalp-mod in
      floor-mod/floor-mod.lisp.

      o To avoid conflict with books/rtl/rel6/arithmetic/, renamed rule
      mod-minus to mod-neg in floor-mod/floor-mod.lisp, and renamed
      integerp-+-reduce-leading-constant to
      integerp-+-reduce-leading-rational-constant in
      bind-free/integerp.lisp.

  (GCL on Windows only) Made a low-level change to avoid multiplying
  stacks for GCL on Windows, since GCL 2.6.6 broke while doing this.

  Fixed bugs in linear arithmetic (rarely evidenced, it seems)
  involving using < to compare complex rational constants. Thanks to
  Robert Krug for helping with the fixes.

  Added a new event, [assert-event], for checking that forms evaluate
  to non-nil values. Thanks to Peter Dillinger for suggesting and
  collaborating on this addition.")
 (NOTE-3-0{R}
  (RELEASE-NOTES)
  "ACL2 Version 3.0(r) (June, 2006) Notes

  No significant changes have been made since Version 2.9 for support
  of non-standard analysis in particular.

  Please also see [note-3-0] for changes to Version 3.0 of ACL2.")
 (NOTE-3-1
  (RELEASE-NOTES)
  "ACL2 Version 3.1 (December, 2006) Notes

  NOTE! New users can ignore these release notes, because the
  documentation has been updated to reflect all changes that are
  recorded here.

  Please see [note-3-0-2] for a description of changes since Version
  3.0.1, and also see [note-3-0-1] for additional changes since
  Version 3.0.")
 (NOTE-3-1{R}
  (RELEASE-NOTES)
  "ACL2 Version 3.1(r) (December, 2006) Notes

  No significant changes have been made since Version 3.0 for support
  of non-standard analysis in particular.

  Please also see [note-3-1] for changes to Version 3.1 of ACL2.")
 (NOTE-3-2
  (RELEASE-NOTES)
  "ACL2 Version 3.2 (April, 2007) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Before this release, a raw Lisp error could put the ACL2 user into
  the debugger of the host Common Lisp. Now, such cases will
  generally put the user back at the top-level loop after an
  informative message. For details, see [set-debugger-enable]; also
  see [break$].

  Fixed a soundness bug that was allowing unknown packages to sneak
  into a book and wreak havoc. Thanks to Peter Dillinger for sending
  an interesting example that led us to an exploration resulting in
  finding this bug. (A comment in the source code for note-3-2 shows
  such an example.) That example led us to fix a couple of other bugs
  related to packages. See [hidden-death-package] if you are
  generally interested in such issues, and for associated examples,
  see comments in note-3-2 in the ACL2 source code.

  Fixed subtle soundness bugs related to :[meta] rules by restricting
  evaluators (see [defevaluator]), as discussed in a new
  documentation topic: see [evaluator-restrictions].

  Fixed a soundness bug that was allowing redefinition from :[logic] to
  :[program] mode. This prohibition had been in ACL2 for awhile but
  was accidentally removed in the preceding version.

  Fixed a soundness bug related to [trace$]. Thanks to Peter Dillinger
  for bringing it to our attention and for useful discussions, and
  providing a proof of nil, the essence of which is illustrated as
  follows:

    (value-triple (trace$ (bar :entry (defun foo () 17))))

  Thus, [trace$] could be used to cause destructive raw Lisp behavior.
  Now, trace$ fails unless it is either given a list of symbols or
  else there is an active trust tag (see [defttag]); otherwise,
  consider using trace! instead.

  Closed a loophole that could be viewed as compromising soundness. It
  was possible to write files during book certification by exploiting
  [make-event] expansion, but that is no longer the case by default.
  A new function [open-output-channel!] is identical as a function to
  open-output-channel, except that the new function may be called
  even during [make-event] expansion and [clause-processor] [hints],
  but requires that there is an active trust tag (see [defttag]).
  Thanks to Peter Dillinger for producing a convincing example
  (forging a [certificate] during book certification; see
  [open-output-channel!]) and to him, Sandip Ray, and Jared Davis for
  useful discussions on the topic.

  Added book books/defexec/reflexive/reflexive.lisp to illustrate
  reflexive functions.

  ACL2 now generate scripts that invoke the saved image with exec.
  (Previously this was only done for GCL and CLISP.) The benefit of
  this change can be to avoid the lingering of ACL2 processes after
  enclosing processes have exited. Thanks to Peter Dillinger for
  pointing out this issue.

  ACL2 has a better implementation of ([good-bye]) (hence of synonyms
  ([quit]) and ([exit])). As a result, you should now be able to exit
  ACL2 and Lisp from within the ACL2 read-eval-print loop with any of
  the above; formerly, this was not supported for some Lisp
  implementations, and was slow in OpenMCL. Thanks to SBCL developer
  Harald Hanche-Olsen for useful advice.

  Fixed a bug in raw-mode (see [set-raw-mode]) that was causing hard
  errors when evaluating calls of [er-progn], or of macros expanding
  to such calls.

  Fixed a few Makefile dependencies, necessary only for parallel
  `make'.

  A new book, misc/defpun-exec-domain-example.lisp, provides an example
  showing how partial functions which return a unique value for
  arguments in a specified domain can be efficiently executed with
  ACL2. Execution is achieved using the [mbe] construct. Thanks to
  Sandip Ray for providing this example.

  Existing function [mod-expt] computes (mod (expt base exp) mod) with
  great efficiency in GCL, but not in other Lisps. Now, the book
  arithmetic-3/floor-mod/mod-expt-fast.lisp defines a function
  mod-expt-fast that should provide significantly improved
  performance for such expressions in other Lisps as well, though
  still probably not as fast as when using mod-expt in GCL. Thanks to
  Warren Hunt, with contributions from Robert Krug, for providing
  this book,

  Modified macro [break-on-error] to print of an error message before
  entering a break, and to cause a hard error if the underlying Lisp
  cannot handle it (formerly, a raw Lisp break would occur). Thanks
  to Bob Boyer for bringing these issues to our attention.

  The book books/misc/defpun.lisp, as well as other books related to
  the defpun macro, has been modified to avoid namespace collisions
  by prefixing function symbol names with \"DEFPUN-\"; for example base
  has been replaced by defpun-base. Thanks to Dave Greve for
  providing a first version of this update to defpun.lisp.

  A theory, base, in books/arithmetic-3/bind-free/top.lisp, has been
  renamed arithmetic-3-bind-free-base, to avoid potential name
  conflicts.

  Fixed books/arithmetic-3/bind-free/banner.lisp to print (as before) a
  message about how to turn on non-linear arithmetic, by modifying
  the call of value-triple to use :on-skip-proofs t. Thanks to Robert
  Krug for bringing this issue to our attention.

  Modified books/Makefile-subdirs and books/Makefile-psubdirs so that
  they can be used with books/Makefile-generic. Thus, one can set
  things up so that `make' can be used to certify books both in the
  current directory and subdirectories, for example as follows.

    ACL2 = ../../saved_acl2

    arith-top: top all
    all: top

    DIRS = pass1 bind-free floor-mod
    include ../Makefile-subdirs
    include ../Makefile-generic

    top.cert: top.lisp
    top.cert: bind-free/top.cert
    top.cert: floor-mod/floor-mod.cert
    top.cert: floor-mod/mod-expt-fast.cert

  An experimental extension of ACL2 is under development by Bob Boyer
  and Warren Hunt to support function memoization, hash conses, and
  an applicative version of hash tables. The default build of ACL2
  does not include this extension, other than simple logic
  definitions of functions in new source file hons.lisp. Future
  versions of ACL2 may fully incorporate this experimental extension.

  The [defevaluator] event macro has been modified primarily by adding
  a new constraint as follows, where evl is the evaluator. The idea
  is that for the evaluation of a function call, one may replace each
  argument by the quotation of its evaluation and then also replace
  the alist environment with nil.

    (DEFTHMD UNHIDE-evl-CONSTRAINT-0
      (IMPLIES (AND (CONSP X)
                    (SYNTAXP (NOT (EQUAL A ''NIL)))
                    (NOT (EQUAL (CAR X) 'QUOTE)))
               (EQUAL (evl X A)
                      (evl (CONS (CAR X)
                                 (KWOTE-LST (UNHIDE-evl-LIST (CDR X) A)))
                           NIL))))

  In order to support this change, there is another change: an
  evaluator maps nil to nil (note (AND X (CDR (ASSOC-EQ X A))) in
  place of (CDR (ASSOC-EQ X A)) below).

    (DEFTHM UNHIDE-evl-CONSTRAINT-1
      (IMPLIES (SYMBOLP X)
               (EQUAL (UNHIDE-evl X A)
                      (AND X (CDR (ASSOC-EQ X A))))))

  With the new [defevaluator], Dave Greve has been able to do a proof
  about beta reduction that seemed impossible before (see
  books/misc/beta-reduce.lisp). Thanks to Dave for suggesting an
  initial version of this change.

  Explicit compilation is now avoided for OpenMCL, resulting in fewer
  files to manage (no more files resulting from compilation) and,
  according to some tests, slightly faster run times. See
  [compilation]. Thanks to Bob Boyer and Warren Hunt for suggesting
  this possibility.

  Now, the term-evisc-tuple (see [ld-evisc-tuple]) is overridden by
  state global user-term-evisc-tuple in all cases. Formerly, this was
  only the case when term-evisc-tuple was called with non-nil first
  argument.

  Symbols with the dot (.) character are generally no longer printed
  with vertical bars. For example, before this change:

    ACL2 !>'ab.c
    |AB.C|
    ACL2 !>

  After this change:

    ACL2 !>'ab.c
    AB.C
    ACL2 !>

  Thanks to Jared Davis for suggesting this improvement.

  Fixed bugs in guard verification for theorems. The following examples
  illustrate these bugs. If either theorem's body is executed in raw
  Lisp there is likely to be a hard Lisp error, even though
  [verify-guards] was supposed to ensure against that behavior.

    ; Example: Verify-guards failed to check that all functions in the theorem
    ; had already been guard-verified.
    (defun my-car (x) (car x))
    (defthm my-car-compute-example (equal (my-car 3) (my-car 3)))
    (verify-guards my-car-compute-example)

    ; Example: Verify guards of a theorem whose body uses state improperly.
    (defthm bad-state-handler
      (if (state-p state)
          (equal (car state) (car state))
        t)
      :rule-classes nil)
    (verify-guards bad-state-handler)

  See [gcl] for an example, developed with Warren Hunt and Serita
  Nelesen, that shows how to get fast fixnum (small integer)
  arithmetic operations in GCL.

  Fixnum declarations are now realized as (signed-byte 30) and
  (unsigned-byte 29) instead of what was generally (signed-byte 29)
  and (unsigned-byte 28). MCL users may thus find better performance
  if they switch to OpenMCL. Note that some definitions have changed
  correspondingly; for example, [zpf] now [declare]s its argument to
  be of type (unsigned-byte 29) instead of (unsigned-byte 28). A few
  [books] may thus need to be adjusted; for example, changes were
  made to books in books/data-structures/memories/.

  ACL2's rewriter now avoids removing certain true hypotheses and false
  conclusions. When a hypothesis rewrites to true or a conclusion
  rewrites to false, ACL2 formerly removed that hypothesis or
  conclusion. Now, it only does such removal when the hypothesis or
  conclusion is either a call of [equal] or an equivalence relation
  (see [equivalence]), or else is sufficiently trivial (roughly,
  either redundant with another hypothesis or conclusion or else
  trivially true without considering the rest of the goal). A
  specific example may be found in source file simplify.lisp; search
  for ``; But we need to do even more work''. Thanks to Robert Krug
  for providing the idea for this improvement and its initial
  implementation. As is common with heuristic changes, you may find
  it necessary on occasion to rename some subgoals in your [hints].
  And in this case, you might also find it necessary on rare
  occasions to add :do-not '(generalize) [hints].

  A new function, mfc-relieve-hyp, allows (for example) for more
  powerful [bind-free] hypotheses, by providing an interface to the
  rewriter's routine for relieving hypotheses. See
  [extended-metafunctions]. Thanks to Robert Krug for providing the
  idea for this feature and its initial implementation.

  Two improvements have been made to non-linear arithmetic (see
  [non-linear-arithmetic]). One allows for deducing strict inequality
  (<) for the result of certain polynomial multiplications, where
  previously only non-strict inequality (<=) was deduced. A second
  allows the use of the product of two polynomials when at least one
  of them is known to be rational. We had previously restricted the
  use of the product to the case where both were known to be
  rational. Thanks to Robert Krug for these improvements.

  (OpenMCL and Allegro CL only) Fixed ACL2's redefinitions of raw Lisp
  trace and untrace in OpenMCL and Allegro CL so that when given no
  arguments, they return the list of traced functions. For trace,
  this is an ANSI spec requirement. Note that [trace$] and [untrace$]
  continue to return nil in the ACL2 loop.

  Fixed a bug that was allowing the symbol &whole to appear in other
  than the first argument position for a [defmacro] event, in
  violation of the Common Lisp spec (and leading to potentially
  surprising behavior). Thanks to Peter Dillinger for bringing this
  bug to our attention.

  It had been illegal to use [make-event] under some calls of [ld].
  This has been fixed. Thanks to Jared Davis for bringing this issue
  to our attention with a simple example, in essence:

    (ld '((defmacro my-defun (&rest args) `(make-event '(defun ,@args)))
          (my-defun f (x) x)))

  ACL2 no longer prohibits certain [make-event] forms when including
  uncertified [books]. Thanks to Peter Dillinger for first bringing
  this issue to our attention.

  Hard errors arose when using [break-rewrite] stack display commands,
  in particular :path and :frame, from inside the [proof-checker].
  This has been fixed.

  Fixed a bug that could cause functions that call system built-ins
  f-put-global, f-get-global, or f-boundp-global to cause a raw Lisp
  error even when proving theorems. Thanks to Peter Dillinger, for
  reporting such a failure for the form (thm (w '(1 2 3))).

  Renamed the formal parameters of function set-equal in distributed
  book books/arithmetic-3/bind-free/normalize.lisp so that more
  distributed books can be included together in the same session. In
  particular books books/data-structures/set-theory and
  books/arithmetic-3/extra/top-ext can now be included together.
  Thanks to Carl Eastlund for bringing this problem to our attention
  and to Robert Krug for suggesting the formals renaming as a fix.

  Metafunctions must now be executable. See [meta].

  New utilities allow for user-defined simplifiers at the goal level,
  both verified and unverified (``trusted''), where the latter can
  even be defined by programs outside ACL2. See [clause-processor],
  which points to a new directory books/clause-processors/ that
  contains examples of these new utilities, including for example a
  system (``SULFA'') contributed by Erik Reeber that implements a
  decision procedure (thanks, Erik). Also see
  [proof-checker-commands] for the new [proof-checker] command
  clause-processor (or for short, cl-proc).

  The rewriter has been tweaked to run faster in some cases involving
  very large terms. Thanks to Eric Smith and Jared Davis for
  providing a helpful example that helped us locate the source of
  this inefficiency.

  Added books/make-event/defspec.lisp. This book shows how one can
  mimic certain limited forms of higher-order statements in ACL2 by
  use of macros, [make-event], and [table] events. Thanks to Sandip
  Ray for his contribution.

  A new release of the RTL library, books/rtl/rel7/, replaces the
  previous version, books/rtl/rel6/. Thanks to Hanbing Liu and David
  Russinoff for providing this new version.

  We thank David Russinoff for providing a proof of the law of
  quadratic reciprocity. See books/quadratic-reciprocity/Readme.lsp.

  Eliminated a slow array warning (see [slow-array-warning]) that could
  occur when exiting a [wormhole] after executing an [in-theory]
  event in that wormhole. Thanks to Dave Greve for bringing this
  problem to our attention.

  A new accessor, (mfc-rdepth mfc), provides a new field, the remaining
  rewrite stack depth, which has been added to metafunction context
  structures; see [extended-metafunctions]. Thanks to Eric Smith for
  suggesting this addition.

  The algorithms were modified for collecting up rule names and other
  information used in proofs, into so-called ``tag-trees''. Tag-trees
  are now free of duplicate objects, and this change can dramatically
  speed up some proofs that involve many different rules. Thanks to
  Eric Smith for doing some profiling that brought this issue to our
  attention, and for reporting that this change reduced proof time on
  an example by about 47% (from 3681.46 reported seconds down to
  1954.69).

  All legal xargs keywords may now be used in [verify-termination]
  [events]. In particular, this is the case for :normalize.

  (SBCL and CMUCL only) Fixed a problem with stobj array resizing
  functions that was causing a hard error in ACL2 images built on
  SBCL or CMUCL.

  A new [table], [evisc-table], allows you to introduce print
  abbreviations, for example for large constants. Moreover, a new
  reader macro --- #, --- makes it convenient to reference constants
  even inside a quote. See [evisc-table]. Thanks to Bob Boyer and
  Warren Hunt for useful discussions leading to this feature.

  The macros in books/misc/expander.lisp now have a new keyword
  argument, :simplify-hyps-p. The default behavior is as before, but
  now case splitting from hypothesis simplification can be avoided.
  For details, evaluate (include-book \"misc/expander\" :dir :system)
  and then :doc! defthm? and :doc! symsym. Thanks to Daron Vroon for
  sending a question that prompted this additional functionality.

  ACL2 failed to apply :[restrict] hints to rules of class
  :[definition], except for the simplest sorts (see [simple]). This
  has been fixed. Thanks to Jared Davis for pointing out this bug by
  sending a small example.

  Added a new :msg argument to assert-event; see [assert-event]. The
  implementation of value-triple has been modified to support this
  change.

  Fixed a bug in macro io? that now allows the commentp argument to be
  t. This provides a way other than cw to print without modifying
  state, for example as follows. (Warning: Certain errors may leave
  you in a [wormhole], in which case use :a! to abort.)

    ACL2 !>(prog2$ (io? event t state
                        ()
                        (fms \"Howdy~%\" nil *standard-co* state nil))
                   (+ 3 4))

    Howdy
    7
    ACL2 !>:set-inhibit-output-lst (proof-tree event)
     (PROOF-TREE EVENT)
    ACL2 !>(prog2$ (io? event t state
                        ()
                        (fms \"Howdy~%\" nil *standard-co* state nil))
                   (+ 3 4))
    7
    ACL2 !>

  ACL2 now disallows calls of [progn!] inside function bodies, just as
  it already disallowed such calls of [progn], since in both cases
  the Common Lisp meaning differs from the ACL2 meaning.

  Redefinition of system functions now always requires an active trust
  tag (see [defttag]). This restriction was intended before, but
  there was a hole that allowed a second redefinition without an
  active trust tag. Thanks to Peter Dillinger for pointing out this
  bug.

  [Verify-termination] has been disabled for a few more built-in
  functions that are in :[program] mode. (If you are curious about
  which ones they are, evaluate (f-get-global
  'built-in-program-mode-fns state).) [Note added for Version_3.4:
  This state global has been changed to 'program-fns-with-raw-code.]
  Moreover, such functions now will execute only their raw Lisp code,
  so for example they cannot be called during macroexpansion. Thanks
  to Peter Dillinger and Sandip Ray for useful discussions on details
  of the implementation of this restriction.

  New untouchable state global variables, temp-touchable-vars and
  temp-touchable-fns, can control the enforcement of untouchability.
  See [remove-untouchable]. Thanks to Peter Dillinger for suggesting
  these features.

  The ``TTAG NOTE'' string was being printed by [encapsulate] events
  whenever an active trust tag was already in effect (see [defttag]),
  even if the encapsulate event contained no [defttag] event. This
  has been fixed. Thanks to Peter Dillinger for a query leading to
  this fix.

  Fixed a bug in [progn!] that could leave the user in raw-mode (see
  [set-raw-mode]). This could occur when certifying a book with a
  compile-flg value of t (see [certify-book]), when that book
  contained a [progn!] event setting raw-mode to t without setting
  raw-mode back to nil:

    (progn! (set-raw-mode t) ...)")
 (NOTE-3-2-1
  (RELEASE-NOTES)
  "ACL2 Version 3.2.1 (June, 2007) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  (OpenMCL and multi-threaded SBCL only) Fixed a soundness bug in the
  evaluation of [mbe] forms in the presence of Lisp feature
  :acl2-mv-as-values. Thanks to Sol Swords for reporting this problem
  and sending a simple proof of nil (which can be found in a comment
  in the ACL2 sources, in (deflabel note-3-2-1 ...)).

  Added a new utility, [dmr] (Dynamicaly Monitor Rewrites), for
  watching the activity of the rewriter and some other proof
  processes. See [dmr]. We thank Robert Krug for useful
  contributions.

  Fixed a bug in evaluation of calls of [with-prover-time-limit].

  Fixed the writing of executable scripts when building ACL2, so that
  the build-time value of environment variable ACL2_SYSTEM_BOOKS is
  no longer written there. Thanks to Dave Greve for discussing this
  change.

  Fixed bugs in :[pl] (which are similarly present in the
  [proof-checker]'s sr (show-rewrites) command. The first bug was
  evident from the following forms sent by Robert Krug, which caused
  an error.

    (include-book \"arithmetic-3/floor-mod/floor-mod\" :dir :system)
    :pl (mod (+ 1 x) n)

  The second bug was due to a failure to take note of which rules are
  disabled, and could be seen by executing the following (very
  slow!).

    (defstub modulus () t)
    (include-book \"arithmetic-3/floor-mod/floor-mod\" :dir :system)
    :pl (mod (+ x y) (modulus))

  Modified [certify-book] so that by default, all
  executable-counterpart functions (sometimes called ``*1*
  functions'') are compiled. This is the behavior that was already
  supported with a compile-flg argument of :all; the change is that
  argument t now has this behavior as well (and :all is supported
  only for legacy purposes). A new value for compile-flg, :raw, gives
  the behavior formerly produced by value t, namely where
  executable-counterpart functions are not compiled. The above
  changes are irrelevant if compilation is suppressed; see
  [compilation]. Finally, if environment variable ACL2_COMPILE_FLG is
  set, then after converting to upper-case this environment
  variable's value of \"T\", \"NIL\", or \":RAW\" will determine the value
  of the optional compile-flg argument to be t, nil, or :raw,
  respectively, when this argument is not explicitly supplied.

  Modified [include-book] so that :comp argument now acts like :comp!,
  i.e., compiling a file that includes the file together with all
  executable counterpart (so-called ``*1*'') functions. A new
  argument, :comp-raw, has the behavior that :comp had formerly,
  i.e., compiling the actual book only.

  The function [nonnegative-integer-quotient] is now computed in raw
  Lisp by calling [floor] on its arguments. This change was suggested
  by Peter Dillinger, in order to avoid stack overflows such as
  reported by Daron Vroon. A new book, books/misc/misc2/misc.lisp,
  contains a proof of equivalence of [nonnegative-integer-quotient]
  and [floor], and serves as a repository for other miscellaeous
  proofs, including those justifying ACL2 modifications such as this
  one.

  Enhanced [accumulated-persistence] to break down results by useful
  vs. useless rule applications. In particular, this provides
  information about which rules were ever applied successfully, as
  requested by Bill Young.

  Added coverage of :[meta] rules to the [accumulated-persistence]
  statistics.

  Fixed a bug that was causing a :[clause-processor] hint to fire on a
  subgoal of the goal to which it was attached, when the original
  application didn't change the clause. Thanks to Dave Greve for
  pointing out this bug and providing a useful example.

  Fixed a bug in handling of computed [hints] related to the
  stable-under-simplificationp parameter (see [computed-hints]).
  There were actually two bugs. A minor but confusing bug was that
  the same goal was printed twice upon application of such a hint.
  The major bug was that :use [hints] (as well as other ``top''
  hints: :by, :cases, and :clause-processor) were not being applied
  properly. Thanks to Jared Davis for sending an example some time
  ago that showed the duplicate printing, and to Dave Greve for
  sending an example showing mis-application of :[clause-processor]
  [hints]. Note that you may find that existing computed hints using
  the stable-under-simplificationp parameter no longer have the same
  behavior; see a comment about computed hints in note-3-2-1, ACL2
  source file ld.lisp, for an example of how you might want to fix
  such computed hints.

  David Russinoff has contributed an updated version of
  books/quadratic-reciprocity/ including minor modifications of the
  treatment of prime numbers and a proof that there exist infinitely
  many primes. Thanks to David for contributing this work, and to
  Jose Luis Ruiz-Reina for posing the challenge.

  Reduced the sizes of some [certificate] (.cert) files by relaxing the
  test that allows original [defpkg] [events] to be placed there,
  rather than evaluating the import list term into an explicit list
  of symbols.

  Improved execution efficiency slightly for function rcdp in file
  books/misc/records.lisp, by using [mbe] to introduce a
  tail-recursive body.

  The executable script generated by [save-exec] (and by the normal
  build process) now includes a time stamp as a comment. Thanks to
  Jared Davis for suggesting this change in order to support his use
  of omake. In the process, we also arranged that the startup banner
  for an executable created by [save-exec] shows all of the build
  (save) times, not just the one for the original image.

  Sped up most redundant [defpkg] [events] by avoiding evaluation and
  sorting of the imports list in the case of identical event forms.
  And, for [defpkg] events that are not redundant, sped up their
  processing in Allegro CL (and perhaps other Lisps, but apparently
  not GCL) by using our own import function.

  Modified [add-include-book-dir] so that it refuses to associate a
  keyword with a different directory string than one it is already
  bound to. See [delete-include-book-dir] for how to remove the
  existing binding first. Thanks to Robert Krug for pointing out that
  without this change, one can find it difficult to debug a failure
  due to rebinding a keyword with [add-include-book-dir].

  Added a new value for the :do-not-induct hint (see [hints]),
  :otf-flg-override, which causes ACL2 to ignore the :[otf-flg] when
  considering whether to abort the proof because of a :do-not-induct
  hint. Thanks to Daron Vroon for suggesting such an addition.

  Modified the printing of messages for entering and exiting raw mode
  (see [set-raw-mode]), so that in particular they are inhibited
  during [include-book] or whenever observations are inhibited (see
  [set-inhibit-output-lst]). Thanks to Peter Dillinger for suggesting
  such a change.

  (For system hackers only.) The handling of [events] of the form
  (progn! (state-global-let* ...)) had a bug that was causing
  bindings to be evaluated twice. Moreover, the use of system
  function [state-global-let*] is suspect in raw Lisp. We have
  eliminated special treatment of state-global-let* by progn! in
  favor of a new keyword argument, state-global-bindings, that
  provides the intended functionality. See [progn!]. Moreover,
  special handling that allowed [make-event] forms under
  state-global-let* has been removed; the desired effect can be
  obtained using (progn! :state-global-bindings ...). Thanks to Peter
  Dillinger for pointing out the above bug and collaborating on these
  changes.

  Incorporated backward-compatible enhancements to
  books/misc/expander.lisp from Daron Vroon (documented near the top
  of that file).

  The specification of :backchain-limit-lst had required that only a
  single (:[rewrite], :[linear], or :[meta]) rule be generated. We
  have weakened this restriction to allow more than one rule provided
  that each rule has the same list of hypotheses. For example, the
  rule class (:rewrite :backchain-limit-lst 1) is now legal for the
  corollary formula (implies (f x) (and (g x) (h x))), where this was
  not formerly the case. Thanks to Dave Greve for bringing this issue
  to our attention.")
 (NOTE-3-2-1{R}
  (RELEASE-NOTES)
  "ACL2 Version 3.2.1(r) (June, 2007) Notes

  Please also see [note-3-2-1] for changes to Version 3.2.1 of ACL2.")
 (NOTE-3-2{R}
  (RELEASE-NOTES)
  "ACL2 Version 3.2(r) (April, 2007) Notes

  Changed the default distributed [books] directory for ACL2(r) from
  books/ to books/nonstd/. See [include-book], in particular the
  discussion of ``Distributed Books Directory''.

  Added directory books/arithmetic-3/ and its subdirectories to
  books/nonstd/. (But a chunk of theorems from
  arithmetic-3/extra/ext.lisp are ``commented out'' using
  #-:non-standard-analysis because they depend on books/rtl/rel7/,
  which is not yet in books/nonstd/; feel free to volunteer to remedy
  this!)

  Incorporated changes from Ruben Gamboa to some (linear and
  non-linear) arithmetic routines in the theorem prover, to
  comprehend the reals rather than only the rationals.

  Please also see [note-3-2] for changes to Version 3.2 of ACL2.")
 (NOTE-3-3
  (RELEASE-NOTES)
  "ACL2 Version 3.3 (November, 2007) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes since Version 3.2.1 into new
  features, bug fixes, prover algorithm enhancements, and
  miscellaneous. Also see [note-3-2-1] for other changes since
  Version 3.2.

  NEW FEATURES

  A new ``gag-mode'' provides less verbose, more helpful feedback from
  the theorem prover, in support of The Method (see [the-method]).
  See [set-gag-mode]. We recommend the use of gag-mode, which may
  become the default in future ACL2 releases, and we welcome
  suggestions for improvement. We thank Robert Krug and Sandip Ray
  for helpful feedback in the design of [gag-mode]. Note that when
  proofs fail, then even without gag-mode and even if proof output is
  inhibited, the summary will contain a useful listing of so-called
  ``key checkpoints'' (see [set-gag-mode]).

  Added support for a leading `~' in filenames. Thanks to Bob Boyer for
  suggesting this enhancement. Note that since `~/' depends on the
  user, it is disallowed in [books] to be certified (see
  [certify-book]), since otherwise an [include-book] form in a book,
  b, could have a different meaning at certification time than at the
  time [include-book] is later executed on book b.

  Made a change to allow (time$ FORM) and (with-prover-time-limit TIME
  FORM) when FORM includes [make-event] calls that change the ACL2
  [world]. Thanks to Jared Davis for requesting such support for
  [time$].

  Computed [hints] (see [computed-hints]) may now produce a so-called
  ``error triple'', i.e., a result of the form (mv erp val state),
  where a non-nil erp causes an error, and otherwise val is the value
  of the hint. It remains legal for a computed hint to return a
  single ordinary value; indeed, the symbol form of a computed hint
  must still be a function that returns an ordinary single value.

  New hints provide additional control of the theorem prover, as
  follows. See [hints] for more details, and see new distributed book
  directory books/hints/ for examples, in particular file
  basic-tests.lisp in that directory for simple examples.

      o The hint :OR (hints-1 ... hints-k) causes an attempt to prove the
      specified goal using each hints-i in turn, until the first of
      these succeeds. If none succeeds, then the prover proceeds
      after heuristically choosing the ``best'' result, taking into
      account the goals pushed in each case for proof by induction.

      o A custom hint is a keyword that the user associates with a
      corresponding hint-generating function by invoking
      [add-custom-keyword-hint]. Thus, a custom hint may be viewed as
      a convenient sort of computed hint.

      o A custom hint, :MERGE, is implemented in distributed book
      books/hints/merge.lisp. It is useful for combining hints.

      o A sophisticated yet useful custom hint is the :CONSIDER hint
      implemented in distributed book books/hints/consider-hint.lisp.
      With this hint, you can for example give the equivalent of a
      :USE hint without the need to supply an instantiation. Include
      that book in order to see documentation online with :doc
      consideration, and see the book
      books/hints/consider-hint-tests.lisp for examples.

  A new hint, :[reorder], allows the specification of which subgoals
  are to be considered first. Thanks to Sandip Ray for putting
  forward this idea.

  Enhanced [set-saved-output] by supporting a second argument of :same,
  which avoids changing which output is inhibited.

  Added macros thm? and not-thm? to distributed book
  books/make-event/eval.lisp, so that it's easy to test within a
  certified book that a proof attempt succeeds or that it fails.

  Added printing function [cw!], which is analogous to [cw] just as
  [fmt!] is to [fmt], i.e., printing so that the result can be read
  back in. Thanks to Jared Davis for suggesting this enhancement
  (after doing his own implementation).

  The ACL2 customization file can now be specified using environment
  variable ACL2-CUSTOMIZATION [note: starting with Version_4.0,
  ACL2_CUSTOMIZATION]. See [ACL2-customization]. Thanks to Peter
  Dillinger for requesting this feature.

  Added new emacs capabilities for proof trees (all documented in
  emacs):

      o New function start-proof-tree-noninteractive, for example
      (start-proof-tree-noninteractive \"*shell*\")

      o C-z o Switch to another frame

      o C-z b Switch to prooftree buffer

      o C-z B Switch to prooftree buffer in \"prooftree-frame\" frame

  Added Common Lisp function, search, as a macro in [logic] mode, with
  limited support for keyword arguments. Thanks to Warren Hunt for
  requesting this addition.

  Sandip Ray has contributed a book, books/make-event/defrefine.lisp,
  that provides a collection of macros to aid in reasoning about ACL2
  functions via refinement.

  Wrote and incorporated new utility for listing all the theorems in an
  included book. See books/misc/book-thms.lisp. Thanks to Jared Davis
  for requesting this functionality.

  The new distributed book misc/defp.lisp generalizes the [defpun]
  macro to allow more general forms of tail recursion.

  (Low-level printing improvement) A new function,
  set-ppr-flat-right-margin, allows the right margin for certain
  kinds of ``flat'' printing to exceed column 40. Thanks to Jared
  Davis for pointing out that state global variables
  'fmt-hard-right-margin and 'fmt-soft-right-margin are not alone
  sufficient to extend the right margin in all cases.

  The event [add-include-book-dir] can now take a relative pathname as
  an argument. Formerly, it required an absolute pathname.

  A new book, books/misc/defopener.lisp, provides a utility creating a
  theorem that equates a term with its simplification.

  ACL2 now provides limited support for the Common Lisp primitive FLET,
  which supports local function bindings. See [flet]. Thanks to
  Warren Hunt for requesting this feature.

  Added a definition of [boole$], a close analogue of Common Lisp
  function boole. Thanks to Bob Boyer for providing an initial
  implementation.

  BUG FIXES

  Fixed [defstobj] to inhibit a potentially useless theory warning.

  Fixed a bug in the application of [certify-book] to relative
  pathnames for files in other than the current directory. Thanks to
  Amr Helmy for bringing this bug to our attention.

  Fixed a bug in :[pl] and :[pr] for displaying rules of class :[meta].
  Thanks to Jared Davis for finding this bug and providing a fix.

  Formerly, [set-default-backchain-limit] was not a legal event form
  for [encapsulate] forms and [books]. This has been fixed. Thanks to
  Robert Krug and Sandip Ray for bringing this bug to our attention.

  Fixed the handling of [hints] in [proof-checker] commands for the
  prover, such as bash --- see [proof-checker-commands] --- so that
  the user can override the default settings of hints, in particular
  of :do-not and :do-not-induct hints attached to \"Goal\". This fix
  also applies to the distributed book misc/bash.lisp, where Robert
  Krug noticed that he got an error with :hints ((\"Goal\" :do-not
  '(preprocess))); we thank Robert for pointing out this problem.

  Fixed a bug in handling of [stobj]s occurring in guards of functions
  whose [guard]s have been verified. In such cases, a raw Lisp error
  was possible when proving theorems about non-''live'' [stobj]s. We
  thank Daron Vroon for sending us an example that highlighted this
  bug. The following (simpler) example causes such an error in
  previous versions of ACL2.

    (defstobj st fld)
    (defun foo (st)
      (declare (xargs :stobjs st :guard (fld st)))
      st)
    (thm (equal (foo '(3))
                '(3)))

  The [dmr] feature for dynamic monitoring of rewrites had a bug, where
  the file used for communicating with emacs was the same for all
  users, based on who built the ACL2 executable image. This has been
  fixed. Thanks to Robert Krug for bringing this bug to our
  attention.

  Fixed a bug in some warnings, in particular the warning for including
  an uncertified book, that was giving an incorrect warning summary
  string.

  Inclusion of uncertified books erroneously re-used [make-event]
  expansions that were stored in stale [certificate]s. This is no
  longer the case. Thanks to Jared Davis for bringing this bug to our
  attention.

  Fixed a bug that was disallowing calls of [with-output] in [events]
  that were executing before calling [certify-book].

  Modified the functionality of binop-table so other than binary
  function symbols are properly supported (hence with no action based
  on right-associated arguments). See [add-binop].

  Fixed small [proof-checker] issues related to packages. Emacs
  commands ctrl-t d and ctrl-t ctrl-d now work properly with colon
  (`:') and certain other punctuation characters. The p-top command
  now prints ``***'' regardless of the current package.

  Fixed a bug that allowed [certify-book] to succeed without specifying
  value t for keyword argument :skip-proofs-okp, even with
  [include-book] [events] in the certification [world] depending on
  events executed under [skip-proofs].

  Improved [show-accumulated-persistence] in the following two ways.
  Thanks to Robert Krug and Bill Young for requesting these
  improvements and for providing useful feedback.

      o It can provide more complete information when aborting a proof.

      o The :frames reported for a rule are categorized as ``useful'' and
      ``useless'' according to whether they support ``useful'' or
      ``useless'' :tries of that rule, respectively. See
      [accumulated-persistence] for further explanation.

  Modified [make-event] so that the reported time and warnings include
  those from the expansion phase. In analogy with [encapsulate] and
  [progn], the rules reported still do not include those from
  subsidiary events (including the expansion phase). A related change
  to [ld] avoids resetting summary information (time, warnings) with
  each top-level form evaluation; [events] already handle this
  information themselves.

  Fixed [set-inhibit-output-lst] so that all warnings are inhibited
  when warning! but not warning is included in the list. Formerly,
  only soundness-related warnings were inhibited in this case. Thanks
  to Eric Smith for bringing this bug to our attention.

  Distributed directory doc/HTML/ now again includes installation
  instructions (which was missing in Version_3.2.1), in
  doc/HTML/installation/installation.html.

  Some fixes have been made for [proof-tree] support.

      o [Proof-tree] output is no longer inhibited automatically during
      [certify-book], though it continues to be inhibited by default
      (i.e., ACL2 continues to start up as though
      [set-inhibit-output-lst] has been called with argument
      '(proof-tree)).

      o Fixed a bug in Xemacs support for [proof-tree] help keys C-z h and
      C-z ?.

      o Fixed a bug in [proof-tree]s that was failing to deal with the case
      that a goal pushed for proof by induction is subsumed by such a
      goal to be proved later. Now, the proof-tree display regards
      such subsumed goals as proved, as is reported in the theorem
      prover's output.

  Fixed a bug that was disallowing [value-triple] forms inside
  [encapsulate] forms in a certification [world] (see [portcullis]).

  If the :load-compiled-file argument of a call of [include-book] is
  :comp, then an existing compiled file will be loaded, provided it
  is more recent than the corresponding book (i.e., .lisp file). A
  bug was causing the compiled file to be deleted and then
  reconstructed in the case of :comp, where this behavior was
  intended only for :comp!.

  Fixed a bug that was avoiding compilation of some executable
  counterparts (sometimes called ``*1* functions'') during
  [certify-book], and also during [include-book] with
  :load-compiled-file value of :comp or :comp!). Thanks to Eric Smith
  for sending a small example to bring this bug to our attention.

  Incorporated a fix from Eric Smith for a typo (source function
  ancestors-check1) that could cause hard Lisp errors. Thanks, Eric!

  Fixed the following issues with packages and book [certificate]s. See
  [hidden-death-package] if you are generally interested in such
  issues, and for associated examples, see comments on ``Fixed the
  following issues with packages'' in note-3-3 in the ACL2 source
  code.

      o Reduced the size of .cert files by eliminating some unnecessary
      [defpkg] events generated for the [portcullis].

      o Fixed a bug that has caused errors when reading symbols from a
      [portcullis] that are in undefined packages defined in locally
      included books.

      o Fixed a bug that could lead to failure of [include-book] caused by
      a subtle interaction between [set-ignore-ok] and [defpkg]
      events generated for the [portcullis] of a [certificate].

  PROVER ALGORITHM ENHANCEMENTS

  Non-linear arithmetic (see [non-linear-arithmetic]) has been improved
  to be more efficient or more powerful in some cases. Thanks to
  Robert Krug for contributing these improvements.

  Improved certain (so-called ``[type-set]'') reasoning about whether
  or not expressions denote integers. Thanks to Robert Krug for
  contributing code to implement this change, along with examples
  illustrating its power that are now distributed in the book
  books/misc/integer-type-set-test.lisp.

  Improved ACL2's heuristics for relieving hypotheses, primarily to use
  linear reasoning on conjuncts and disjuncts of the test of an [if]
  expression. For example, given a hypothesis of the form (if (or
  term1 term2) ...), ACL2 will now use linear reasoning to attempt to
  prove both term1 and term2, not merely for term2. Thanks to Robert
  Krug for supplying examples illustrating the desirability of such
  an improvement and for useful discussions about the fix.

  Made a slight heuristic change, so that when a hypothesis with [let]
  or [mv-let] subterms (i.e. [lambda] subterms) rewrites to t, then
  that hypothesis is necessarily eliminated. Thanks to Jared Davis
  for sending an example that led us to develop this change, and
  thanks to Robert Krug for a helpful discussion.

  MISCELLANEOUS

  Added documentation on how to use [make-event] to avoid duplicating
  expensive computations, thanks to Jared Davis. See
  [using-tables-efficiently].

  Modified the error message for calls of undefined functions to show
  the arguments. Thanks to Bob Boyer for requesting this enhancement.

  Modified utilies :[pr], :[pr!], :[pl], and :[show-bodies] to
  incorporate code contributed by Jared Davis. That code defines
  low-level source functions info-for-xxx that collect information
  about rules, which is thus available to advanced users.

  Dynamic monitoring of rewrites (see [dmr]) has been improved in the
  following ways, as suggested by Robert Krug.

      o Some stale entries from the rewrite stack are no longer printed, in
      particular above ADD-POLYNOMIAL-INEQUALITIES.

      o An additional rewrite stack entry is made when entering non-linear
      arithmetic (see [non-linear-arithmetic]).

      o An ADD-POLYNOMIAL-INEQUALITIES entry is printed with a counter, to
      show how often this process is called.

  Modified [save-exec] so that the newly-saved image will have the same
  raw Lisp package as the existing saved image. This is a very
  technical change that will likely not impact most users; for
  example, the package in the ACL2 read-eval-print loop (see [lp])
  had already persisted from the original to newly-saved image.
  Thanks to Jared Davis for suggesting this change.

  Changed [make-event] expansion so that changes to [set-saved-output],
  [set-print-clause-ids], set-fmt-soft-right-margin, and
  set-fmt-hard-right-margin will persist after being evaluated during
  make-event expansion. (Specifically,
  *protected-system-state-globals* has been modified; see
  [make-event-details].) Thanks to Jared Davis for bringing this
  issue to our attention.

  Output from the [proof-checker] is now always enabled when invoking
  [verify], even if it is globally inhibited (see
  [set-inhibit-output-lst]).

  Improved the message printed when an :induct hint fails, to give more
  information in some cases. Thanks to Rex Page for suggesting where
  an improvement could be made and providing useful feedback on an
  initial improvement.

  Added a warning for [congruence] rules (see [defcong]) that specify
  [iff] as the second equivalence relation when [equal] can be used
  instead. Those who heed these warnings can eliminate certain
  subsequent [double-rewrite] warnings for [rewrite] rules with
  conclusions of the form (iff term1 term2), and hence implicitly for
  Boolean conclusions term1 that are interpreted as (iff term1 t).
  Thanks to Sarah Weissman for sending us an example that highlighted
  the need for such a warning.

  Modified macro :[redef!] (which is for system implementors) so that
  it eliminates untouchables.

  Several improvements have been made to the experimental
  hons/memoization version of ACL2. See [hons-and-memoization].

  The distributed books directory, (@ distributed-books-dir), is now
  printed in the start-up message.")
 (NOTE-3-3{R}
  (RELEASE-NOTES)
  "ACL2 Version 3.3(r) (November, 2007) Notes

  Please also see [note-3-3] for changes to Version 3.3 of ACL2.")
 (NOTE-3-4
  (RELEASE-NOTES)
  "ACL2 Version 3.4 (August, 2008) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes since Version 3.3 into changes
  to existing features, new features, bug fixes, new and updated
  books, and Emacs support. Each change is described just once,
  though of course many changes could be placed in more than one
  category.

  CHANGES TO EXISTING FEATURES

  Fixed a long-standing potential infinite loop in the rewriter. Thanks
  to Sol Swords for sending a concise example illustrating the
  looping behavior. (Those interested in details are welcome to look
  at the comment about loop behavior in source function
  rewrite-equal.)

  Incorporated a slight strengthening of non-linear arithmetic
  contributed by Robert Krug (thanks, Robert). With non-linear
  arithmetic enabled, the problem was essentially that ACL2 made the
  following ``optimization'': given inequalities (< a u) and (< b v),
  for positive rational constants a and b terms u and v of which at
  least one is known to be rational, infer (< (* a b) (* u v)).
  Without this optimization, however, ACL2 now infers the stronger
  inequality obtained by direct multiplication of the two given
  inequalities. To see the effect of this change, submit the event
  (set-non-linearp t) followed by:

    (thm (implies (and (rationalp x) (< 3 x)
                       (rationalp y) (< 4 y))
                  (< 0 (+ 12 (* -4 x) (* -3 y) (* x y)))))

  The utility [set-checkpoint-summary-limit] has been modified in
  several ways: it now takes a single argument (no longer takes
  [state] as an argument); a natural number n abbreviates the pair (n
  . n); the argument is no longer evaluated, but it still optionally
  may be quoted; and a new value, t, suppresses all printing of the
  checkpoint summary. Thanks to Jared Davis for suggesting most of
  these improvements.

  There was formerly a restriction on [mbe] that the :exec argument may
  not contain a call of [mbe]. This restriction has been removed,
  thanks to a request from Jared Davis and Sol Swords. Thanks also to
  Sandip Ray, who pointed out that this restriction may have been in
  place in order that [defexec] can guarantee termination using the
  :exec code; its [documentation] has therefore been updated to
  clarify this situation.

  Rules of class :[rewrite] are now stored by performing certain
  logical simplifications on the left side of the conclusion: (prog2$
  X Y) is replaced by Y, (mbe :logic X :exec Y) is replaced by X
  (more precisely, the analogous change is made to the generated call
  of [must-be-equal]); and (the TYPE X) is replaced by X (again, the
  change is actually made on the macroexpanded form). Thanks to Jared
  Davis and Sol Swords for requesting this change. An analogous
  change has also been made for rules of class :[forward-chaining].

  The [trace$] utility has been reimplemented to work independently of
  the underlying Lisp trace. It thus works the same for every host
  Lisp, except as provided by an interface to the underlying host
  Lisp trace (the :native option). Note that the host Lisp trace
  continues to be modified for GCL, Allegro CL, and CCL (OpenMCL);
  see [trace]. See [trace$] for updated detailed documentation on
  tracing options, many of which are new, for example an :evisc-tuple
  option that can be set to :no-print if you want the function traced
  without the usual entry and exit printing. The previous [trace$]
  had some issues, including the following, which have all been
  fixed. Thanks to Peter Dillinger for assistance in determining
  desired functionality of the new [trace$] and for helping to test
  it.

      Recursive calls were not always shown in the trace for two reasons.
      (1) Compiler inlining could prevent recursive calls from being
      shown in the trace, in particular in CCL (OpenMCL). Thanks to
      Jared Davis and Warren Hunt for pointing out this issue and
      requesting a fix, and to Bob Boyer and Gary Byers for relevant
      helpful discussions. (2) ACL2's algorithm for producing
      executable counterparts prevented tracing of recursive calls
      even after (set-guard-checking :none). Thanks to Peter
      Dillinger for requesting a fix.

      It was possible to exploit a bug in the interaction of multiple
      values and trace to prove a contradiction. An example is in a
      comment in (deflabel note-3-4 ...) in the ACL2 source code.

      Certain large structures could cause expensive computations for
      printing even when a :cond condition was specified and
      evaluated to nil.

      [Trace!] now suppresses printing of the event summary, and returns
      the value that would be returned (if there is an active trust
      tag) by the corresponding call of [trace$].

      Some bugs have been fixed in the underlying native trace installed by
      ACL2 for GCL, Allegro CL, and CCL (OpenMCL), including the
      following. In GCL it had been impossible to use the variable
      ARGLIST in a :cond expression. In Allegro CL and CCL, a
      [trace$] bug mishandled tracing non-ACL2 functions when
      directives such as :entry and :exit were supplied. GCL trace
      now hides the world even when tracing non-ACL2 functions.
      Tracing in CCL no longer causes a Lisp error when untracing a
      traced function defined outside the ACL2 loop; for example
      (trace$ len1) followed by (untrace$ len1) no longer causes an
      error.

  The macro wet has been changed, for the better we think. see [wet].

  The generation of goals for [forcing-round]s has been changed to
  avoid dropping assumptions formerly deemed ``irrelevant''. (A
  simple example may be found in a comment in source function
  unencumber-assumption, source file prove.lisp.) Thanks to Jared
  Davis for sending us an example that led us to make this change.

  Modified the implementation of [make-event] so that in the
  [certificate] of a book, [local] events arising from [make-event]
  forms are elided. For example, if (make-event <form>) expands to
  (local <expanded-form>), then where the latter had been stored in
  the certificate, now instead (local (value-triple :ELIDED)) will be
  stored. Thanks to Eric Smith for requesting this improvement. He
  has reported that a preliminary version of this improvement shrunk
  a couple of his .cert files from perhaps 40MB each to about 140K
  each.

  Now, a [table] event that sets the entire table, (table tbl nil alist
  :clear), is redundant (see [redundant-events]) when the supplied
  alist is equal to the current value of the table. Thanks to Peter
  Dillinger for requesting this change.

  The event constructor [progn!] now returns the value that is returned
  by evaluation of its final form if no error occurs, except that it
  still returns nil if the that final evaluation leaves ACL2 in
  raw-mode.

  :[Pso] and :[psog] have been improved so that they show the key
  checkpoint summary at the end of a failed proof. (For a discussion
  of key checkpoints, see [set-gag-mode].) As a result, a call of
  [set-checkpoint-summary-limit] now affects subsequent evaluation of
  :[pso] and :[psog]. In particular, you no longer need to
  reconstruct a proof (by calling [thm] or [defthm]) in order to see
  key checkpoints that were omitted due to the limit; just call
  [set-checkpoint-summary-limit] and then run :pso or :psog.

  The [proof-checker] behaves a little differently under [gag-mode].
  Now, proof-checker commands that call the theorem prover to create
  new proof-checker goals, such as bash and induct (see
  [proof-checker-commands]), will show key checkpoints when in
  [gag-mode]. As before, proof-checker commands pso and pso! (and
  now, also psog) --- see [pso], see [psog], and see [pso!] --- can
  then show the unedited proof log. However, unlike proof attempts
  done in the ACL2 loop, such proof attempts will not show a summary
  of key checkpoints at the end, because from a prover perspective,
  all such goals were considered to be temporarily ``proved'' by
  giving them ``byes'', to be dispatched by later proof-checker
  commands.

  A little-known feature had been that a [measure] of 0 was treated as
  though no measure was given. This has been changed so that now, a
  [measure] of nil is treated as though no measure was given.

  Expanded *acl2-exports* to include every documented symbol whose name
  starts with \"SET-\". Thanks to Jared Davis for remarking that
  [set-debugger-enable] was omitted from *acl2-exports*, which led to
  this change.

  The [trace] mechanism has been improved so that the :native and
  :multiplicity options can be used together for Lisps that support
  the trace :exit keyword. These Lisps include GCL and Allegro CL,
  whose native trace utilities have been modified for ACL2. For SBCL
  and CCL (OpenMCL), which use the built-in Lisp mechanism for
  returning multiple values in ACL2 (see [mv]), the use of
  :multiplicity with :native remains unnecessary and will be ignored.
  In support of this change, the modification of native Allegro CL
  tracing for ACL2 was fixed to handle :exit forms correctly that
  involve [mv].

  NEW FEATURES

  The command :[redef!] is just like :[redef], but prints a warning
  rather than doing a query. The old version of :redef! was for
  system hackers and has been renamed to :[redef+].

  Introduced a new utility for evaluating a function call using the
  so-called executable counterpart --- that is, executing the call in
  the logic rather than in raw Lisp. See [ec-call]. Thanks to Sol
  Swords for requesting this utility and participating in its
  high-level design.

  See [print-gv] for a new utility that assists with debugging guard
  violations. Thanks to Jared Davis for requesting more tool
  assistance for debugging guard violations.

  Improved the guard violation error message to show the positions of
  the formals, following to a suggestion of Peter Dillinger.

  Added new [guard-debug] capability to assist in debugging failed
  attempts at [guard] verification. See [guard-debug]. Thanks to
  Jared Davis for requesting a tool to assist in such debugging and
  to him, Robert Krug, and Sandip Ray for useful discussions.

  New utilities provide the formula to be proved by [verify-guards].
  See [verify-guards-formula] and see [guard-obligation], Thanks to
  Mark Reitblatt for making a request leading to these utilities.
  These utilities can be applied to a term, not just an event name;
  thanks to Peter Dillinger for correspondence that led to this
  extension.

  A new utility causes runes to be printed as lists in proof output
  from simplification, as is done already in proof summaries. See
  [set-raw-proof-format]. Thanks to Jared Davis for requesting this
  utility.

  An experimental capability allows for parallel evaluation. See
  [parallelism]. Thanks to David Rager for providing an initial
  implementation of this capability.

  Defined [xor] in analogy to [iff]. Thanks to Bob Boyer, Warren Hunt,
  and Sol Swords for providing this definition.

  Improved distributed file doc/write-acl2-html.lisp so that it can now
  be used to build HTML documentation files for [documentation]
  strings in user [books]. See the comment in the definition of macro
  acl2::write-html-file at the end of that file. Thanks to Dave Greve
  and John Powell for requesting this improvement.

  It is now possible to specify :[hints] for non-recursive function
  definitions (which can be useful when definitions are automatically
  generated). See [set-bogus-defun-hints-ok]. Thanks to Sol Swords
  for requesting such a capability.

  Keyword argument :dir is now supported for [rebuild] just as it has
  been for [ld].

  We relaxed the criteria for functional substitutions, so that a
  function symbol can be bound to a macro symbol that corresponds to
  a function symbol in the sense of [macro-aliases-table]. So for
  example, a functional substitution can now contain the doublet (f
  +), where previously it would have been required instead to contain
  (f binary-+).

  We now allow arbitrary packages in raw mode (see [set-raw-mode]) ---
  thanks to Jared Davis for requesting this enhancement --- and more
  than that, we allow arbitrary Common Lisp in raw mode. Note however
  that for arbitrary packages, you need to be in raw mode when the
  input is read, not just when the input form is evaluated.

  Two new keywords are supported by the [with-output] macro. A
  :gag-mode keyword argument suppresses some prover output as is done
  by [set-gag-mode]. Thanks to Jared Davis for asking for a
  convenient way to set [gag-mode] inside a book, in particular
  perhaps for a single theorem; this keyword provides that
  capability. A :stack keyword allows sub-[events] of [progn] or
  [encapsulate] to ``pop'' the effect of a superior [with-output]
  call. Thanks to Peter Dillinger for requesting such a feature. See
  [with-output].

  The command [good-bye] and its aliases [exit] and [quit] now all take
  an optional status argument, which provides the Unix exit status
  for the underlying process. Thanks to Florian Haftmann for sending
  a query to the ACL2 email list that led to this enhancement.

  Keyword commands now work for macros whose argument lists have lambda
  list keywords. For a macro with a lambda list keyword in its
  argument list, the corresponding keyword command reads only the
  minimum number of required arguments. See [keyword-commands].

  It is now legal to [declare] variables ignorable in [let*] forms, as
  in (let* ((x (+ a b)) ...) (declare (ignorable x)) ...). Thanks to
  Jared Davis for requesting this enhancement.

  Added a warning when more than one hint is supplied explicitly for
  the same goal. It continues to be the case that only the first hint
  applicable to a given goal will be applied, as specified in the
  user-supplied list of :hints followed by the [default-hints-table].
  Thanks to Mark Reitblatt for sending a question that led both to
  adding this clarification to the [documentation] and to adding this
  warning.

  You may now use [set-non-linear], [set-let*-abstraction],
  set-tainted-ok, and [set-ld-skip-proofs] in place of their versions
  ending in ``p''. Thanks to Jared Davis for suggesting consideration
  of such a change. All ``set-'' utilites now have a version without
  the final ``p'' (and most do not have a version with the final
  ``p'').

  Added a \"Loop-Stopper\" warning when a :[rewrite] rule is specified
  with a :[loop-stopper] field that contains illegal entries that
  will be ignored. Thanks to Jared Davis for recommending such a
  warning.

  Added a substantial documentation topic that provides a beginner's
  guide to the use of quantification with [defun-sk] in ACL2. Thanks
  to Sandip Ray for contributing this guide, to which we have made
  only very small modifications. See [quantifier-tutorial].

  [Defun-sk] now allows the keyword option :strengthen t, which will
  generate the extra constraint that that is generated for the
  corresponding defchoose event; see [defchoose]. Thanks to Dave
  Greve for suggesting this feature.

  BUG FIXES

  Fixed a soundness bug related to the use of [mbe] inside
  [encapsulate] events. An example proof of nil (before the fix) is
  in a comment in (deflabel note-3-4 ...) in the ACL2 source code. We
  therefore no longer allow calls of [mbe] inside [encapsulate]
  events that have non-empty [signature]s.

  Fixed a bug related to the definition of a function supporting the
  macro [value-triple]. Although this bug was very unlikely to affect
  any user, it could be carefully exploited to make ACL2 unsound:

    (defthm fact
      (equal (caadr (caddr (value-triple-fn '(foo 3) nil nil)))
             'value) ; but it's state-global-let* in the logic
      :rule-classes nil)
    (defthm contradiction
      nil
      :hints ((\"Goal\" :use fact :in-theory (disable (value-triple-fn))))
      :rule-classes nil)

  Non-[local] definitions of functions or macros are no longer
  considered redundant with built-ins when the built-ins have special
  raw Lisp code, because ACL2 was unsound without this restriction! A
  comment about redundant definitions in source function
  chk-acceptable-defuns shows how one could prove nil without this
  new restriction. Note that system utility :[redef+] removes this
  restriction.

  Although ACL2 already prohibited the use of certain built-in
  :[program] mode functions for [verify-termination] and during
  macroexpansion, we have computed a much more complete list of
  functions that need such restrictions, the value of constant
  *primitive-program-fns-with-raw-code*.

  Modified what is printed when a proof fails, to indicate more clearly
  which event failed.

  Fixed a problem with [dmr] in CCL (OpenMCL) that was causing a raw
  Lisp break after an interrupt in some cases. Thanks to Gary Byers
  for a suggestion leading to this fix.

  Fixed bugs in [proof-checker] code for dealing with free variables in
  hypotheses.

  Upon an abort, the printing of [pstack] and [gag-mode] summary
  information for other than GCL was avoided when inside a call of
  [ld]. This has been fixed.

  (Windows only) Fixed bugs for ACL2 built on SBCL on Windows,
  including one that prevented [include-book] parameters :dir :system
  from working, and one that prevented certain compilation. Thanks to
  Peter Dillinger for bringing these to our attention and supplying a
  fix for the second. Thanks also to Andrew Gacek for bringing
  [include-book] issues to our attention. Also, fixed writing of file
  saved_acl2 at build time so that for Windows, Unix-style pathnames
  are used.

  Fixed a hard Lisp error that could occur with keywords as [table]
  names, e.g., (table :a :a nil :put). Thanks to Dave Greve for
  bringing this problem to our attention and providing this example.

  Fixed handling of :OR [hints] so that proof attempts under an :OR
  hint do not abort (reverting to induction on the original input
  conjecture) prematurely. Thanks to Robert Krug for pointing out
  this problem and pointing to a possible initial fix.

  (SBCL and CLISP only) It is now possible to read symbols in the
  \"COMMON-LISP\" package inside the ACL2 command loop (see [lp]). This
  could cause a raw Lisp error in previous versions of ACL2 whose
  host Common Lisp was SBCL or CLISP. Thanks to Peter Dillinger for
  bringing this issue to our attention.

  Fixed a bug that was preventing certain [hints], such as :do-not
  hints, from being used after the application of an :or hint. Thanks
  to Robert Krug for bringing this bug to our attention.

  (Hons version only) Fixed a bug in the interaction of [memoize]
  ([hons] version only) with event processing, specifically in
  interaction with failures inside a call of [progn] or
  [encapsulate]. Thanks to Jared Davis for bringing this bug to our
  attention and sending an example. A simplified example may be found
  in a comment in source function table-cltl-cmd, source file
  history-management.lisp; search for ``Version_3.3'' there.

  Fixed [cw-gstack] so that its :evisc-tuple is applied to the top
  clause, instead of using (4 5 nil nil) in all cases. If no
  :evisc-tuple is supplied then (term-evisc-tuple t state) is used
  for the top clause, as it is already used for the rest of the
  stack.

  Fixed a bug in the interaction of [proof-tree]s with :induct hint
  value :otf-flg-override. Thanks to Peter Dillinger for reporting
  this bug and sending an example that evokes it.

  Fixed bugs in :[pr] and [find-rules-of-rune] for the case of rule
  class :[elim]. Thanks to Robert Krug and Jared Davis for bringing
  these related bugs to our attention.

  Improved failure messages so that the key checkpoints are printed
  only once when there is a proof failure. Formerly, a proof failure
  would cause the key checkpoints to be printed for every
  [encapsulate] or [certify-book] superior to the proof attempt.

  Fixed a bug in generation of [guard]s for calls of [pkg-witness].
  Thanks to Mark Reitblatt for sending an example showing this bug.
  The bug can be in play when you see the message: ``HARD ACL2 ERROR
  in MAKE-LAMBDA-APPLICATION: Unexpected unbound vars (\"\")''. A
  distillation of Mark's example that causes this hard error is as
  follows.

    (defun foo (x)
      (declare (xargs :guard t))
      (let ((y x)) (pkg-witness y)))

  The [cond] macro now accepts test/value pairs of the form (T val) in
  other than the last position, such as the first such pair in (cond
  (t 1) (nil 2) (t 3)). Thanks to Jared Davis for sending this
  example and pointing out that ACL2 was sometimes printing goals
  that have such a form, and hence cannot be submitted back to ACL2.
  A few macros corresponding to [cond] in some books under books/rtl
  and books/bdd were similarly modified. (A second change will
  probably not be noticeable, because it doesn't affect the final
  result: singleton [cond] clauses now generate a call of [or] in a
  single step of macroexpansion, not of [if]. For example, (cond (a)
  (b x) (t y)) now expands to (OR A (IF B X Y)) instead of (IF A A
  (IF B X Y)). See the source code for cond-macro for a comment about
  this change.)

  Fixed a bug in the interaction of [proof-checker] command DV,
  including numeric (``diving'') commands, with the [add-binop]
  event. Specifically, if you executed (add-binop mac fn) with fn
  having arity other than 2, a [proof-checker] command such as 3 or
  (dv 3) at a call of mac could have the wrong effect. We also fixed
  a bug in diving with DV into certain AND and OR calls. Thanks for
  Mark Reitblatt for bringing these problems to our attention with
  helpful examples.

  Fixed a couple of bugs that were causing an error, ``HARD ACL2 ERROR
  in RENEW-NAME/OVERWRITE''. Thanks to Sol Swords for bringing the
  first of these bugs to our attention.

  Fixed a bug that could cause [certify-book] to fail in certain cases
  where there are [local] [make-event] forms.

  Fixed a bug in [start-proof-tree] that could cause Lisp to hang or
  produce an error. Thanks to Carl Eastlund for sending an example to
  bring this bug to our attention.

  Fixed a bug in the proof output, which was failing to report cases
  where the current goal simplifies to itself or to a set including
  itself (see [specious-simplification]).

  Fixed a bug in [with-prover-time-limit] that was causing a raw Lisp
  error for a bad first argument. Thanks to Peter Dillinger for
  pointing out this bug.

  The following was claimed in :doc [note-3-3], but was not fixed until
  the present release:
  Distributed directory doc/HTML/ now again includes installation
  instructions, in doc/HTML/installation/installation.html.

  In certain Common Lisp implementations --- CCL (OpenMCL) and
  LispWorks, at least --- an interrupt could leave you in a break
  such that quitting the break would not show the usual summary of
  key checkpoints. This has been fixed.

  NEW AND UPDATED BOOKS

  Updated books/clause-processors/SULFA/ with a new version from Erik
  Reeber; thanks, Erik.

  Added new books directory tools/ from Sol Swords. See
  books/tools/Readme.lsp for a summary of what these books provide.

  The distributed book books/misc/file-io.lisp includes a new utility,
  write-list!, which is like write-list except that it calls
  [open-output-channel!] instead of [open-output-channel]. Thanks to
  Sandip Ray for requesting this utility and assisting with its
  implementation.

  Added record-update macro supplied by Sandip Ray to distributed book
  books/misc/records.lisp.

  Sandip Ray has contributed books that prove soundness and
  completeness of different proof strategies used in sequential
  program verification. Distributed directory books/proofstyles/ has
  three new directories comprising that contribution: soundness/,
  completeness/, and counterexamples/. The existing
  books/proofstyles/ directory has been moved to its subdirectory
  invclock/.

  Jared Davis has contributed a profiling utility for ACL2 built on CCL
  (OpenMCL). See books/misc/oprof.lisp. Thanks, Jared.

  ACL2 utilities [getprop] and [putprop] take advantage of
  under-the-hood Lisp (hashed) property lists. The new book
  books/misc/getprop.lisp contains an example showing how this works.

  Added the following new book directories: books/paco/, which includes
  a small ACL2-like prover; and books/models/jvm/m5, which contains
  the definition of one of the more elaborate JVM models, M5, along
  with other files including JVM program correctness proofs. See
  files Readme.lsp in these directories, and file README in the
  latter.

  Added books about sorting in books/sorting. See Readme.lsp in that
  directory for documentation.

  Added book books/misc/computed-hint-rewrite.lisp to provide an
  interface to the rewriter for use in computed hints. Thanks to
  Jared Davis for requesting this feature.

  Jared Davis has provided a pseudorandom number generator, in
  books/misc/random.lisp.

  Robert Krug has contributed a new library, books/arithmetic-4/, for
  reasoning about arithmetic. He characterizes it as being more
  powerful than its predecessor, books/arithmetic-3/, and without its
  predecessor's rewriting loops, but significantly slower than its
  predecessor on some theorems.

  Incorporated changes from Peter Dillinger to verify guards for
  functions in books/ordinals/lexicographic-ordering.lisp (and one in
  ordinal-definitions.lisp in that directory).

  A new directory, books/hacking/, contains a library for those who
  wish to use trust tags to modify or extend core ACL2 behavior.
  Thanks to Peter Dillinger for contributing this library. Obsolete
  version books/misc/hacker.lisp has been deleted. Workshop
  contribution books/workshops/2007/dillinger-et-al/code/ is still
  included with the workshops/ tar file, but should be considered
  deprecated.

  In books/make-event/assert.lisp, changed assert! and assert!-stobj to
  return (value-triple :success) upon success instead of
  (value-triple nil), following a suggestion from Jared Davis.

  EMACS SUPPORT

  Changed emacs/emacs-acl2.el so that the fill column default (for the
  right margin) is only set (still to 79) in lisp-mode.

  Modified Emacs support in file emacs/emacs-acl2.el so that names of
  events are highlighted just as [defun] has been highlighted when it
  is called. Search in the above file for font-lock-add-keywords for
  instructions on how to eliminate this change.

  The name of the temporary file used by some Emacs utilities defined
  in file emacs/emacs-acl2.el has been changed to have extension .lsp
  instead of .lisp; thus it is now temp-emacs-file.lsp. Also, `make'
  commands to `clean' books will delete such files (specifically,
  books/Makefile-generic has been changed to delete
  temp-emacs-file.lsp).")
 (NOTE-3-4{R}
  (RELEASE-NOTES)
  "ACL2 Version 3.4(r) (August, 2008) Notes

  Please also see [note-3-4] for changes to Version 3.4 of ACL2.

  Fixed makefiles, books/nonstd/Makefile and GNUmakefile. The old
  set-up seemed to work fine as long as all books certified, but it
  was really broken, for example only certifying some of the books in
  books/nonstd/nsa/, and then only when required by books in other
  directories. Also fixed the ``clean'' target to clean links rather
  than to make links.")
 (NOTE-3-5
  (RELEASE-NOTES)
  "ACL2 Version 3.5 (May, 2009) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes since Version 3.4 into the
  following categories: changes to existing features, new features,
  heuristic improvements, bug fixes, new and updated books, Emacs
  support, and experimental [hons] version. Each change is described
  in just one category, though of course many changes could be placed
  in more than one category.

  CHANGES TO EXISTING FEATURES

  Many improvements have been made to ACL2's ``evisceration'' mechanism
  for hiding substructures of objects before they are printed, and to
  related documentation:

      o A new documentation topic explains evisc-tuples. See [evisc-tuple].

      o A new interface, [set-evisc-tuple], has been provided for setting
      the four global evisc-tuples. See [set-evisc-tuple].

      o A new mode, ``iprinting'', allows eviscerated output to be read
      back in. See [set-iprint].

      o Function default-evisc-tuple has been deprecated and will probably
      be eliminated in future releases; use abbrev-evisc-tuple
      instead. Also eliminated is the brr-term-evisc-tuple (also the
      user-brr-term-evisc-tuple). The term-evisc-tuple controls
      printing formerly controlled by the brr-term-evisc-tuple or
      user-brr-term-evisc-tuple.

      o ACL2 output is done in a more consistent manner, respecting the
      intention of those four global evisc-tuples. In particular,
      more proof output is sensitive to the term-evisc-tuple. Again,
      see [set-evisc-tuple].

      o A special value, :DEFAULT, may be provided to [set-evisc-tuple] in
      order to restore these [evisc-tuple]s to their original
      settings.

      o (Details for heavy users of the evisc-tuple mechanism) (1) There
      are no longer [state] globals named user-term-evisc-tuple or
      user-default-evisc-tuple. (2) Because of the above-mentioned
      :DEFAULT, if you have referenced state globals directly, you
      should use accessors instead, for example (abbrev-evisc-tuple
      state) instead of (@ abbrev-evisc-tuple). (3) For uniformity,
      [set-trace-evisc-tuple] now takes a second argument, state.

  Improved [break-on-error] in several ways. First, it breaks earlier
  in a more appropriate place. Thanks to Dave Greve for highlighting
  this problem with the existing implementation. Also,
  [break-on-error] now breaks on hard errors, not only soft errors
  (see [er], options hard and hard?). Thanks to Warren Hunt and Anna
  Slobodova for sending an example that showed a flaw in an initial
  improvement. Finally, new options cause printing of the call stack
  for some host Common Lisps. See [break-on-error]. Thanks to Bob
  Boyer for requesting this feature.

  [Trace!] may now be used in raw Lisp (though please note that all
  soundness claims are off any time you evaluate forms in raw Lisp!).
  Thanks to Bob Boyer for feedback that led to this enhancement.

  ACL2 now searches for file acl2-customization.lsp in addition to (and
  just before) its existing search for acl2-customization.lisp; See
  [ACL2-customization]. Thanks to Jared Davis for suggesting this
  change, which supports the methodology that files with a .lisp
  extension are certifiable books (thus avoiding the need to set the
  BOOKS variable in makefiles; see [books-certification-classic]).

  Improved the error message for illegal [declare] forms of the form
  (type (satisfies ...)). Thanks to Dave Greve for sending an example
  highlighting the issue.

  If trace output is going to a file (because [open-trace-file] has
  been executed), then a note will be printed to that effect at the
  time that a call of [trace$] or [trace!] is applied to one or more
  [trace] specs.

  The notion of redundancy (see [redundant-events]) has been made more
  restrictive for [mutual-recursion] events. Now, if either the old
  or new event is a [mutual-recursion] event, then redundancy
  requires that both are [mutual-recursion] events that define the
  same set of function symbols. Although we are not aware of any
  soundness bugs fixed by this modification, nevertheless we believe
  that it reduces the risk of soundness bugs in the future.

  The definition of trace* has been moved to a book, misc/trace1.lisp.
  A new version, used in ACL2s, is in book misc/trace-star.lisp.
  [Trace] utilities [trace$] and [trace!] are still built into ACL2.
  [Note: File misc/trace1.lisp was deleted after Version 4.2.]

  Certain [certificate] files will now be much smaller, by printing in
  a way that takes advantage of structure sharing. Certifying the
  following example produces a .cert file of over 3M before this
  change, but less than 1K after the change.

    (defun nest (i)
      ;; Makes an exponentially-sized nest of conses i deep.
      (if (zp i)
          nil
        (let ((next (nest (1- i))))
          (cons next next))))

    (make-event
     `(defconst *big* ',(nest 20)))

  Thanks to Sol Swords for providing the above example and to him as
  well as to Bob Boyer, Jared Davis, and Warren Hunt for encouraging
  development of this improvement. We have also applied this
  improvement to the printing of function definitions to files on
  behalf of [certify-book] and [comp].

  Names of symbols are now printed with vertical bars according to the
  Common Lisp spec. Formerly, if the first character of a symbol name
  could be the first character of the print representation of a
  number, then the symbol was printed using vertical bars (|..|)
  around its name. Now, a much more restrictive test for ``potential
  numbers'' is used, which can result in fewer such vertical bars.
  Base 16 is now carefully considered as well; see [set-print-base].
  Thanks to Bob Boyer for requesting this improvement. Note that
  macros set-acl2-print-base and set-acl2-print-case have been
  replaced by functions; see [set-print-base] and see
  [set-print-case].

  The ACL2 reader now supports `#.' syntax in place of the `#, syntax
  formerly supported. Thanks to Bob Boyer for requesting this change.
  See [sharp-dot-reader]. NOTE that because of this change, `#.' no
  longer causes an abort; instead please use (a!) or optionally, if
  in the ACL2 loop, :a!; see [a!].

  Some small changes have been made related to [gag-mode]:

      o [Gag-mode] now suppresses some messages that were being printed
      upon encountering disjunctive splits from :OR [hints]. Thanks
      to Sol Swords for suggesting this improvement.

      o ACL2 had printed ``Q.E.D.'' with all output suppressed and
      [gag-mode] enabled. Now, ``Q.E.D.'' will be suppressed when
      PROVE and SUMMARY output are suppressed, even if gag-mode is
      enabled.

      o The use of [set-gag-mode] had drastic effects on the inhibited
      output (see [set-inhibit-output-lst]), basically inhibiting
      nearly all output (even most warnings) when turning on gag-mode
      and enabling all output except proof-tree output when turning
      off gag-mode. Now, [set-gag-mode] only inhibits or enables
      proof (PROVE) output, according to whether gag-mode is being
      turned on or off (respectively). The related utility
      [set-saved-output] has also been modified, basically to
      eliminate :all as a first argument and to allow t and :all as
      second arguments, for inhibiting prover output or virtually all
      output, respectively (see [set-saved-output]).

  A [defstub] event [signature] specifying output of the form (mv ...)
  now introduces a :[type-prescription] rule asserting that the new
  function returns a [true-listp] result. Thanks to Bob Boyer for
  sending the following example, which motivated this change.

    (defstub census (*) => (mv * *))
    (defn foo (x)
      (mv-let (a1 a2)
              (census x)
              (list a1 a2)))

  Improved the efficiency of [string-append] so that in raw Lisp, it
  calls [concatenate]. Thanks to Jared Davis for suggesting this
  change, including the use of [mbe]. A minor change was made to the
  definition of [concatenate] to support this change, and the lemma
  append-to-nil was added (see below).

  The checksum algorithm used for [certificate] files of [books] has
  been changed. Thanks to Jared Davis for contributing the new code.
  This change will likely not be noticed unless one is using the
  experimental [hons] version of ACL2, where it can greatly speed up
  book certification and inclusion because of function memoization
  (of source function fchecksum-obj).

  Fewer calls are made to the checksum algorithm on behalf of
  [certify-book] and a few other operations. Thanks to Jared Davis
  for providing data that helped lead us to these changes.

  Formatted printing directives ~p, ~q, ~P, and ~Q are deprecated,
  though still supported. See [fmt]. Instead, please use ~x, ~y, ~X,
  and ~Y (respectively). As a by-product, rule names in proof output
  are no longer hyphenated.

  A new keyword, :multiplicity, is available for tracing raw Lisp
  functions using the ACL2 [trace] utility. See [trace$].

  Users may now control whether or not a slow array access results in a
  warning printed to the screen (which is the default, as before),
  and if so, whether or not the warning is followed by a break. See
  [slow-array-warning].

  On linux-like systems (including Mac OS X and SunOS), :[comp] will
  now write its temporary files into the \"/tmp\" directory, which is
  the value of [state] global 'tmp-dir. You can change that directory
  with (assign tmp-dir \"<your_temp_directory_path>\").

  The messages printed for uncertified books have been enhanced. Thanks
  to Jared Davis for requesting such an improvement.

  A function definition that would be redundant if in :[logic] mode is
  now considered redundant even if it (the new definition) is in
  :[program] mode. That is, if a definition is ``downgraded'' from
  :logic to :program mode, the latter (:program mode) definition is
  considered redundant. Previously, such redundancy was disallowed,
  but we have relaxed that restriction because of a scenario brought
  to our attention by Jared Davis: include a book with the :logic
  mode definition, and then include a book with the :program mode
  definition followed by [verify-termination]. Thanks, Jared.

  The ACL2 reader no longer accepts characters other than those
  recognized by [standard-char-p] except for #\\Tab, #\\Page, and
  #\\Rubout (though it still accepts strings containing such
  characters). As a result, no [make-event] expansion is allowed to
  contain any such unacceptable character or string. Thanks to Sol
  Swords for sending an example that led us to make this restriction.
  A simple example is the following book:

    (in-package \"ACL2\")
    (defconst *my-null* (code-char 0))
    (make-event `(defconst *new-null* ,*my-null*))

  For this book, a call of [certify-book] formerly broke during the
  compilation phase, but if there was no compilation, then a call of
  [include-book] broke. Now, the error occurs upon evaluation of the
  [make-event] form.

  ACL2 now collects up [guard]s from [declare] forms more as a user
  might expect, without introducing an unexpected ordering of
  conjuncts. We thank Jared Davis for sending us the following
  illustrative example, explained below.

    (defun f (x n)
      (declare (xargs :guard (and (stringp x)
                                  (natp n)
                                  (= (length x) n)))
               (type string x)
               (ignore x n))
      t)

  Formerly, a guard was generated for this example by unioning the
  conjuncts from the :guard onto a list containing the term (string
  x) generated from the type declaration, resulting in an effective
  guard of:

    (and (natp n)
         (= (length x) n)
         (stringp x))

  The guard of this guard failed to be verified because (stringp x))
  now comes after the call (length x). With the fix, contributions to
  the guards are collected up in the order in which they appear. So
  in the above example, the effective guard is the specified :guard;
  the contribution (stringp x) comes later, and is thus dropped since
  it is redundant. NOTE by the way that if :guard and :stobjs are
  specified in the same [xargs] form, then for purposes of collecting
  up the effective guard as described above, :stobjs will be treated
  as through it comes before the :guard.

  Modified [close-output-channel] to try to do a better job flushing
  buffers. Thanks to Bob Boyer for helpful correspondence.

  The notion of ``subversive recursion'' has been modified so that some
  functions are no longer marked as subversive. See
  [subversive-recursions], in particular the discussion elaborating
  on the notion of ``involved in the termination argument'' at the
  end of that [documentation] topic.

  Formerly, :[type-prescription] rules for new definitions inside
  [encapsulate] forms were sometimes added as [constraint]s. This is
  no longer the case. See also discussion of the ``soundness bug in
  the forming of constraints'', which is related.

  NEW FEATURES

  It is now possible to affect ACL2's termination analysis (and
  resulting induction analysis). Thanks to Peter Dillinger for
  requesting this feature. The default behavior is essentially
  unchanged. But for example, the following definition is accepted by
  ACL2 because of the use of the new :ruler-extenders features; See
  [ruler-extenders].

    (defun f (x)
      (declare (xargs :ruler-extenders :all))
      (cons 3
            (if (consp x)
                (f (cdr x))
              nil)))

  The following lemma was added in support of the improvement to
  [string-append] described above:

    (defthm append-to-nil
      (implies (true-listp x)
               (equal (append x nil)
                      x)))

  A mechanism has been provided for users to contribute documentation.
  See [managing-ACL2-packages] for an example, which contains a link
  to an external web page on effective use of ACL2 packages, kindly
  provided by Jared Davis. ACL2 [documentation] strings may now link
  to external web pages using the new symbol, ~url; see markup. Of
  course, those links appear in the web version of the documentation,
  but you made need to take a bit of action in order for these to
  appear as links in the Emacs Info version; see [documentation].

  Added [intersectp] (similar to [intersectp-eq] and
  [intersectp-equal]).

  The user now has more control over how ACL2 prints forms; See
  [print-control]. Thanks to Bob Boyer for useful discussions leading
  to this enhancement.

  Some Common Lisp implementations only allow the syntax
  pkg-name::expression when expression is a symbol. The ACL2 reader
  has been modified to support a package prefix for arbitrary
  expressions; see [sharp-bang-reader]. Thanks to Hanbing Liu for a
  query that led to this feature and to Pascal J. Bourguignon for
  suggesting an implmentation.

  Ill-formed [documentation] strings need not cause an error. See
  set-ignore-doc-string-error. Thanks to Bob Boyer for requesting
  this feature.

  Type declarations are now permitted in let* forms; see [let*], see
  [declare], and see [type-spec].

  (For Lisp programmers) Macro with-live-state has been provided for
  programmers who refer to free variable STATE, for example with
  macros that generate uses of STATE, and want to avoid compiler
  warnings when evaluating in raw Lisp. For example, the following
  form can be submitted either inside or outside the ACL2 loop to get
  the desired effect (see doc-string): (with-live-state (f-put-global
  'doc-prefix \" \" state)). For another example use of this macro, see
  the definition of trace$ (ACL2 source file other-events.lisp).

  (System hackers only) Added :[redef-] to undo the effect of
  :[redef+]. See [redef-].

  Function [random$] is a built-in random number generator. See
  [random$]. Thanks to Sol Swords for requesting this feature and
  providing an initial implementation.

  HEURISTIC IMPROVEMENTS

  Sped up [guard] generation for some functions with large if-then-else
  structures in their bodies. Thanks to Sol Swords for sending an
  illustrative example.

  Sped up [guard] generation in some cases by evaluating ground
  (variable-free) subexpressions. Thanks to Bob Boyer for sending a
  motivating example: (defn foo (x) (case x ((1 2) 1) ((3 4) 3) ...
  ((999 1000) 999))).

  Modified slightly a heuristic association of ``size'' with constants,
  which can result in significant speed-ups in proofs involving
  constants that are very large cons trees.

  Added a restriction in the linear arithmetic procedure for deleting
  polynomial inequalities from the linear database. Formerly, an
  inequality could be deleted if it was implied by another
  inequality. Now, such deletion requires that certain heuristic
  ``parent tree'' information is at least as restrictive for the
  weaker inequality as for the stronger. Thanks to Dave Greve for
  bringing a relevant example to our attention and working with us to
  figure out some surprising behavior, and to Robert Krug for making
  a key observation leading to the fix.

  (GCL especially) Improved compiled code slightly by communicating to
  raw Lisp the output type when a function body is of the form (the
  character ...). This tiny improvement will probably only be
  observed in GCL, if at all.

  Applied a correction suggested by Robert Krug to the variant of
  [term-order] used in parts of ACL2's arithmetic reasoning.

  BUG FIXES

  Fixed bugs in the handling of [flet] expressions, one of which had
  the capability of rendering ACL2 unsound. Thanks to Sol Swords for
  pointing out two issues and sending examples. One example
  illustrated how ACL2 was in essence throwing away outer [flet]
  bindings when processing an inner flet. We have exploited that
  example to prove a contradiction, as follows: this book was
  certifiable before this fix.

    (in-package \"ACL2\")

    (defun a (x)
      (list 'c x))

    ; Example from Sol Swords, which failed to be admitted (claiming that
    ; function A is undefined) without the above definition of A.
    (defun foo1 (x y)
       (flet ((a (x) (list 'a x)))
         (flet ((b (y) (list 'b y)))
           (b (a (list x y))))))

    (defthm not-true
      (equal (foo1 3 4)
             '(b (c (3 4))))
      :hints ((\"Goal\"
               :in-theory
               (disable (:executable-counterpart foo1))))
      :rule-classes nil)

    (defthm contradiction
      nil
      :hints ((\"Goal\" :use not-true))
      :rule-classes nil)

  Sol's second example, below, pointed to a second bug related to
  computing output signatures in the presence of nested flet
  expressions, which we have also fixed: this form failed before the
  fix.

    :trans (flet ((foo (a) (list (flet ((bar (b) b)) a)))) x)

  Fixed a subtle soundness bug in the forming of constraints from
  deduced type prescriptions. As a result, when ACL2 prints a warning
  message labeling encapsulated functions as ``subversive'', ACL2
  will no longer deduce :[type-prescription] rules for those
  functions. Examples that exploit the bug in ACL2 Version_3.4 may be
  found in comments in ACL2 source function convert-type-set-to-term
  (file other-processes.lisp) and especially in function
  putprop-type-prescription-lst (file defuns.lisp). For more on the
  general issue of ``subversive recursions,'' see
  [subversive-recursions].)

  Fixed a soundness bug in the handling of inequalities by the
  [type-set] mechanism, which was using the inequality database
  inside the body of a [lambda].

  Fixed a long-standing soundness bug in [compress1] and [compress2],
  whose raw Lisp code gave the logically incorrect result in the case
  of a single entry other than the [header], where that entry mapped
  an index to the [default] value. Also fixed soundness bugs in
  [compress1], in the case of :order >, where the raw Lisp code could
  drop the [header] from the result or, when the input alist had
  entries in ascending order, fail to return an alist in descending
  order. For example, the following book certified successfully.

    (in-package \"ACL2\")
    (defthm true-formula-1
      (equal (compress1 'a '((:HEADER :DIMENSIONS (4) :MAXIMUM-LENGTH 5
                                      :DEFAULT 1 :NAME A :ORDER <)
                             (1 . 1)))
             '((:HEADER :DIMENSIONS (4) :MAXIMUM-LENGTH 5
                        :DEFAULT 1 :NAME A :ORDER <)))
      :hints ((\"Goal\" :in-theory (disable (compress1))))
      :rule-classes nil)
    (defthm ouch-1
      nil
      :hints ((\"Goal\" :use true-formula-1))
      :rule-classes nil)
    (defthm true-formula-2
      (equal (compress1 'a '((:HEADER :DIMENSIONS (4) :MAXIMUM-LENGTH 5
                                      :DEFAULT NIL :NAME A :ORDER >)
                             (1 . 1)
                             (2 . 2)))
             '((:HEADER :DIMENSIONS (4) :MAXIMUM-LENGTH 5
                        :DEFAULT NIL :NAME A :ORDER >)
               (2 . 2)
               (1 . 1)))
      :hints ((\"Goal\" :in-theory (disable (compress1))))
      :rule-classes nil)
    (defthm ouch-2
      nil
      :hints ((\"Goal\" :use true-formula-2))
      :rule-classes nil)
    (defthm true-formula-3
      (equal (compress1 'a '((:HEADER :DIMENSIONS (3) :MAXIMUM-LENGTH 4
                                      :NAME A :ORDER >)
                             (1 . B)
                             (0 . A)))
             '((:HEADER :DIMENSIONS (3) :MAXIMUM-LENGTH 4
                        :NAME A :ORDER >)
               (1 . B)
               (0 . A)))
      :hints ((\"Goal\" :in-theory (disable (compress1))))
      :rule-classes nil)
    (defthm ouch-3
      nil
      :hints ((\"Goal\" :use true-formula-3))
      :rule-classes nil)

  Fixed a soundness bug involving measured subsets and
  [verify-termination], by changing [verify-termination] so that it
  uses [make-event]. See [verify-termination], in particular the
  discussion about [make-event] near the end of that [documentation]
  topic. Peter Dillinger first raised the idea to us of making such a
  change; when we found this soundness bug, we were certainly happy
  to do so!

  Fixed a bug that could cause a hard Lisp error but not, apparently,
  unsoundness. The bug was in the lack of attention to the order of
  guard and type declarations when checking for redundancy. In the
  following example, the second definition was redundant during the
  first pass of the [encapsulate] form. The second definition,
  however, was stored on the second pass with a guard of (and (consp
  (car x)) (consp x)), which caused a hard Lisp error when evaluating
  (foo 3) due to a misguided attempt to evaluate (car 3) in raw Lisp.
  The fix is to restrict redundancy of definitions so that the guard
  and type declarations must be in the same order for the two
  definitions.

    (encapsulate
     ()
     (local (defun foo (x)
              (declare (xargs :guard (consp x)))
              (declare (xargs :guard (consp (car x))))
              x))
     (defun foo (x)
       (declare (xargs :guard (consp (car x))))
       (declare (xargs :guard (consp x)))
       x))
    ; Now we get a hard Lisp error from evaluation of the guard of foo:
    (foo 3)

  Fixed a bug in the guard violation report for function
  [intern-in-package-of-symbol]. Thanks to Dave Greve for bringing
  this bug to our attention.

  Made a change to allow certain [hints], in particular certain
  :[clause-processor] hints, that had previously caused errors during
  termination proofs by viewing the function being defined as not yet
  existing. Thanks to Sol Swords for bringing this issue to our
  attention with a nice example.

  ACL2 now properly handles interrupts (via control-c) issued during
  printing of the checkpoint summary. Previously it was possible on
  some platforms to make ACL2 hang when interrupting both during a
  proof and during the ensuing printing of the checkpoint summary.
  Thanks to Jared Davis and Sol Swords for bringing this problem to
  our attention.

  Fixed a bug that was preventing, inside some book \"b\", the use of a
  :dir argument to [include-book] that refers to a directory defined
  using [add-include-book-dir] earlier in the book \"b\". (We found
  this ourselves, but we thank John Cowles for observing it
  independently and sending us a nice example.)

  (GCL and CCL only) Fixed a bug in certain under-the-hood type
  inferencing. Thanks to Sol Swords for sending an example using
  [stobj]s defined with the :inline keyword, along with a helpful
  backtrace in CCL, and to Gary Byers for his debugging help.

  Fixed a bug in [print-gv], which was mishandling calls of functions
  with more than one argument.

  Fixed a bug in the handling of [and] and [or] terms by the
  [proof-checker] command DV, including numeric (``diving'')
  commands. Thanks for Mark Reitblatt for bringing this problems to
  our attention with a helpful example.

  Fixed printing of goal names resulting from the application of :OR
  [hints] so that they aren't ugly when working in other than the
  \"ACL2\" package. Thanks to Sol Swords for bringing this issue to our
  attention.

  Fixed [proof-tree] printing so that interrupts will not cause
  problems with hiding ordinary output because of incomplete
  proof-tree output. Thanks to Peter Dillinger for pointing out this
  issue.

  Fixed a hard error that could be caused by mishandling a [force]d
  hypothesis during [forward-chaining]. Thanks to Peter Dillinger for
  bringing this bug to our attention by sending a useful example.

  Fixed a bug that could cause simplifications to fail because of
  alleged ``specious simplification.'' This bug could appear when
  deriving an equality from the linear arithmetic database, and then
  attempting to add this equality to the current goal's hypotheses
  when it was already present. Thanks to Eric Smith for sending a
  helpful example (in July 2005!) that helped us debug this issue.

  Fixed a bug in processing of :[type-set-inverter] rules.

  Fixed a bug that was causing an error, at least for an underlying
  Lisp of CCL (OpenMCL), when [ec-call] was applied to a term
  returning multiple values. Thanks to Sol Swords for sending an
  example that brought this bug to our attention.

  Fixed handling of array orders to treat keyword value :order :none
  correctly from an array's [header]. Previously, there were two
  problems. One problem was that :order :none was treated like the
  default for :order, <, while :order nil was treated in the manner
  specified by :order :none (see [arrays]). Now, both :order :none
  and :order nil are treated as :order nil had been treated, i.e., so
  that there is no reordering of the alist by [compress1]. The other
  problem with this case of :order was that the :maximum-length field
  of the [header] was not being respected: the length could grow
  without bound. Now, as previously explained (but not previously
  implemented) --- see [arrays] --- a [compress1] call made on behalf
  of aset1 causes a hard error if the header of the supplied array
  specifies an :order of :none or nil.

  An ignorable [declare] form had caused an error in some contexts when
  it should have been allowed. In particular, this problem could
  arise when using an ignorable declaration at the top level in a
  [defabbrev] form. It could also arise upon calling
  [verify-termination] when the corresponding [defun] form contained
  an ignorable declaration at the top level. These bugs have been
  fixed.

  Contrary to existing documentation (see [make-event-details]), the
  value of ``[ld] special variable'' [ld-skip-proofsp] was always set
  to nil during [make-event] expansion, not merely when the
  make-event form has a non-nil value for keyword parameter
  :check-expansion. This has been fixed. Thanks to Sol Swords for
  bringing this issue to our attention.

  We have disallowed the certification of a book when not at the
  top-level, either directly in the top-level loop or at the top
  level of [ld]. Before this restriction, the following would certify
  a book with a definition such as (defun foo (x) (h x)) that calls
  function h before defining it, if the certification was by way of
  the form such as:

    (er-progn (defun h (x) x) (certify-book \"my-book\"))

  But a subsequent [include-book] of \"my-book\" would then fail, because
  h is not defined at the top level.

  Printing with [fmt] directive ~c now works properly even when the
  print-base is other than 10. Thanks to Sol Swords for reporting
  this bug and providing a fix for it.

  (SBCL, CMUCL, and CCL only) Fixed a bug in [sys-call-status] in the
  case that the underlying Common Lisp is SBCL, CMUCL, or CCL
  (OpenMCL). Thanks to Jun Sawada for bringing this bug to our
  attention and providing a fix.

  Fixed a bug that was preventing [local] [defstobj] events in
  [encapsulate] events. Thanks to Jared Davis for bringing this bug
  to our attention.

  Fixed a bug evidenced by error message ``Unexpected form in
  certification world'', which could result from attempting to
  certify a book after evaluating an [encapsulate] form with a local
  [defmacro]. Thanks to Jared Davis for pointing out this bug and
  sending the example:

    (encapsulate
     ()
     (local (defmacro foo (x) `(table foo 'bar ,x)))
     (local (foo 3)))

  Formerly, evaluating a [trace$] form inside a [wormhole] such as the
  [break-rewrite] loop could leave the user in a bad state after
  returning to the top level, in which that function could not be
  untraced. This has been fixed. Note however that when you proceed
  from a break in the [break-rewrite] loop, the tracing state will be
  the same as it was when you entered that break: all effects of
  calling [trace$] and [untrace$] are erased when you proceed from
  the break.

  A :[guard] of (and) is no longer ignored. Thanks to Sol Swords for
  bringing this bug to our attention.

  A bug has been fixed that could result in needlessly weak induction
  schemes in the case that a recursive call is made in the first
  argument of [prog2$]. This has been fixed by including [prog2$] as
  a default ruler-extender in the new ruler-extenders feature (see
  above, and see [ruler-extenders]). For details on this bug see
  Example 11 in distributed book
  books/misc/misc2/ruler-extenders-tests.lisp.

  (For CCL/OpenMCL on Windows) ACL2 should now build on CCL (OpenMCL)
  on Windows. Thanks to David Rager for bringing this issue to our
  attention and helping with a fix that worked for CCL 1.2, and to
  the CCL team for improving handling of Windows-style filenames in
  CCL 1.3.

  NEW AND UPDATED BOOKS

  See {ReleaseVersionNumbers |
  https://code.google.com/p/acl2-books/wiki/ReleaseVersionNumbers}
  for a list of books in Version 3.5 of ACL2 but not Version 3.4.

  Run the shell command

     svn log -r 94:HEAD

  to see all changes to books/ since the release of Version 3.4.

  Here are just a few highlights.

  Thanks largely to Jared Davis, many Makefiles have been improved to
  do automatic dependency analysis. See [books-certification-classic]
  for how to get your own Makefiles to do this by adding a line:
  -include Makefile-deps.

  Libraries books/arithmetic-4/ and books/rtl/rel7/ have been
  eliminated from the default book certification (make regression),
  in favor of new libraries books/arithmetic-5/ and books/rtl/rel8/
  contributed by Robert Krug and Hanbing Liu, respectively. They and
  Jun Sawada have arranged the compatibility of these libraries;
  i.e., it is possible to evaluate both of the following in the same
  session:

    (include-book \"arithmetic-5/top\" :dir :system)
    (include-book \"rtl/rel8/lib/top\" :dir :system)

  Library books/rtl/rel1/ is no longer certified by default (though it
  is still distributed in support of ACL2(r); see [real]).

  EMACS SUPPORT

  Slightly modified Control-t e (defined in emacs/emacs-acl2.el) to
  comprehend the notion of an ``ACL2 scope'', and added Control-t o
  to insert a superior [encapsulate] defining such a scope. See the
  Emacs documentation for Control-t e (generally obtained after
  typing Control-h k).

  Modified distributed file emacs/emacs-acl2.el so that if you put the
  following two forms in your ~/.emacs file above the form that loads
  emacs/emacs-acl2.el, then Emacs will not start up a shell. Thanks
  to Terry Parks for leading us to this modification.

    (defvar acl2-skip-shell nil)
    (setq acl2-skip-shell t)

  EXPERIMENTAL HONS VERSION

  Bob Boyer and others have contributed numerous changes for the
  experimental ``hons'' version of ACL2 (see [hons-and-memoization]).

  The ACL2 [state] can now be queried with (@ hons-enabled) so that a
  result of t says that one is in the experimental hons version,
  while nil says the opposite.")
 (NOTE-3-5{R}
  (RELEASE-NOTES)
  "ACL2 Version 3.5(r) (May, 2009) Notes

  Please also see [note-3-5] for changes in Version 3.5 of ACL2.

  This release incorporates improvements from Ruben Gamboa in support
  for non-standard analysis in ACL2(r), in the following ways:

  ACL2(r) now supports non-classical objects that are not also numeric,
  e.g., non-classical cons pairs. Consequently, the built-in
  standard-numberp has been replaced with [standardp].

  If f is a classical function, the value (f x1 ... xn) is guaranteed
  to be standard when the xi are standard. ACL2(r) can now recognize
  this fact automatically, using defun-std. For example, the
  following can be used to assert that the square root of 2 is a
  standard value.

    (defthm-std sqrt-2-rational
      (standardp (acl2-sqrt 2)))

  More generally, the expression (f x1 ... xn) can contain free
  variables, but the result is guaranteed to be standard when the
  variables take on standard variables, as in the following:

    (defthm-std sqrt-x-rational
      (implies (standardp x)
               (standardp (acl2-sqrt x))))

  A potential soundness bug in [encapsulate] was fixed. Specifically,
  when a classical, constrained function is instantiated with a
  lambda expression containing free variables, it may produce
  non-standard values depending on the values of the free variables.
  This means that the functional instantiation cannot be used to
  justify a non-classical theorem. For example, consider the
  following sequence:

    (encapsulate
      ((f (x) t))
      (local (defun f (x) x)))
    (defthm-std f-x-standard
      (implies (standardp x)
               (standardp (f x))))
    (defthm plus-x-standard
      (implies (standardp x)
               (standardp (+ x y)))
      :hints ((\"Goal\"
               :use ((:functional-instance f-x-standard
                                           (f (lambda (x) (+ x y))))))))
    (defthm plus-x-eps-not-standard
      (implies (standardp x)
               (not (standardp (+ x (/ (i-large-integer)))))))
    (defthm nil-iff-t
      nil
      :hints ((\"Goal\"
              :use ((:instance plus-x-standard
                               (y (/ (i-large-integer))))
                    (:instance plus-x-eps-not-standard)))))

  ACL2(r) also supports the introduction of non-classical functions
  with [defchoose]. These behave just as normal functions introduced
  with [defchoose], but they have a non-classical choice property.

  Finally, ACL2(r) now comes with a revamped library supporting
  non-standard analysis, still distributed separately as
  books/nonstd/. The new library uses [defchoose] to state more
  natural and useful versions of the IVT, MVT, etc. It also supports
  the introduction of inverse functions, e.g., logarithms. Finally,
  the library has much more extensive support for differentiation.")
 (NOTE-3-6
  (RELEASE-NOTES)
  "ACL2 Version 3.6 (August, 2009) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes since Version 3.5 into the
  following categories of changes: existing features, new features,
  heuristic improvements, bug fixes, distributed books, Emacs
  support, and experimental [hons-and-memoization] version. Each
  change is described in just one category, though of course many
  changes could be placed in more than one category.

  Note that (starting with ACL2 Version 3.5) LispWorks is no longer
  supported as a platform for ACL2, as the LispWorks compiler could
  not handle the ACL2 sources; see comments in the ACL2 sources about
  ``function size'' being ``too large''.

  CHANGES TO EXISTING FEATURES

  In the [xargs] [declare] form, the function symbol (or symbols,
  plural, in the case of [mutual-recursion]) being defined may now be
  used in the specified :measure and :[guard] terms. Note that, the
  definition(s) of the new symbol(s) are still not used in the
  termination proof. Thanks to Daron Vroon for discussions leading to
  this addition for the measure and to Dave Greve for requesting such
  an enhancement for the guard.

  Processing of the :guard-hints in an [xargs] [declare] form is now
  delayed until the start of [guard] verification. As a result, the
  function symbol(s) being defined may now be used as one might
  expect in such hints, for example in an :in-theory form. Thanks to
  Jared Davis for suggesting that we make such an improvement and
  providing an example.

  Made a low-level change to [make-event] in support of the ACL2s
  utility ``dynamic-make-event''. Thanks to Peter Dillinger for
  explaining the issue leading to this change.

  Modified the failure message printed when a measure conjecture fails
  to be proved, to indicate whether or not the hint :ruler-extenders
  :all would create a different measure conjecture. Thanks to Peter
  Dillinger for suggesting such a modification.

  A call of [add-default-hints] had added hints to the end of the
  current list of default hints. Now, it adds them to the beginning
  of that list, so that they are tried first. However,
  [add-default-hints] now takes a keyword argument, :at-end. If that
  argument is supplied and evaluates to other than nil, then the
  previous behavior occurs.

  When [save-exec] is used to save ACL2 images, the build dates are now
  printed on separate lines at startup and in the executable script.
  Thanks To Bob Boyer for requesting some newlines.

  [Forward-chaining] rules are now generated so that every [let] (also
  [let*] and [lambda]) expression is expanded away, as is every call
  of a so-called ``guard holder'' ([must-be-equal], [prog2$],
  [ec-call], [the]). These were formerly only expanded away in the
  conclusion. Thanks to Konrad Slind for a helpful email leading to
  this change.

  [Current-theory] now causes a hard error when applied to a name not
  found in the current ACL2 logical [world], rather than simply
  returning nil.

  When the underlying Common Lisp is GCL, ACL2 no longer uses the #n=
  reader macro when writing out certain files, including
  [certificate] files. In all other Lisps, it now uses the #n=
  ``print-circle'' feature not only for [certificate] files and
  ``expansion.lsp'' files written for example in support of
  [make-event], but also for files written in support of :[comp].
  This is all managed with new [state] global variable
  print-circle-files; see [print-control]. Thanks to Dave Greve for
  pointing out that GCL is limited by default to 1024 indices for
  #n=.

  NEW FEATURES

  A documentation topic explains in some detail how [hints] work with
  the ACL2 proof ``waterfall'': see [hints-and-the-waterfall]. This
  topic may be useful to those who write computed hints (see
  [computed-hints]) or other advanced hints.

  Added a new hint keyword, :no-thanks, that avoids printing the usual
  ``Thanks'' message for [hints]. Thanks to Peter Dillinger for
  requesting this feature.

  Added a new hint keyword, :backtrack, that checks the goals produced
  by processing a goal, and can cause the goal to be re-processed
  using a new hint. See [hints]. Thanks to Pete Manolios for a
  conversation that led to the idea of this hint.

  Added a new class of hints, [override-hints], that is similar to
  [default-hints], except that override-hints are always applied,
  even if the user has supplied a hint explicitly for the goal. See
  [override-hints]. Thanks to Pete Manolios and Harsh Raju Chamarthi
  for useful discussions on this topic, including its application to
  testing.

  When a goal ready to be pushed for proof by induction is given the
  new hint ``:do-not-induct :otf'', it is indeed pushed for proof by
  induction, rather than causing immediate failure as in the case of
  the hint ``:do-not-induct t''. Instead, the proof fails when the
  goal is later picked to be proved by induction. Thanks to Peter
  Dillinger for discussions leading to this feature.

  Related to computed hints only: Each history entry in the list stored
  in variable HIST (see [computed-hints]) now has a :CLAUSE field,
  which provide's access to a goal's parent, parent's parent, and so
  on (within the same induction and forcing round only).

  It is now possible to inhibit warnings produced by [in-theory]
  [events] and [hints] that occur when certain built-in definitions
  and executable-counterparts are disabled: just evaluate (assign
  verbose-theory-warning nil). Thanks to Jared Davis (and probably
  others in the past) for requesting such a mechanism.

  HEURISTIC IMPROVEMENTS

  A source function (linearize-lst) was replaced by tail-recursive
  code, which can avoid a stack overflow. Thanks to Dave Greve for
  sending a helpful example.

  The heuristics for limiting [forward-chaining] have been slightly
  relaxed, to allow derivations based on the occurrence of all
  arguments of the forward-chaining rule's conclusion in the goal
  (after stripping leading calls of NOT). Thanks to Dave Greve for
  contributing this improvement and providing a motivating example.

  We simplified induction schemes by eliminating each hypothesis of the
  form (not (equal term (quote const))) for which some other
  hypothesis in the same case equates term with some (presumably
  other) quoted constant. Thanks to Dave Greve for requesting an
  improvement of this sort.

  BUG FIXES

  Fixed a soundness bug related to redundancy of [encapsulate] events
  (see [redundant-events]) and [ruler-extenders]. A proof of nil in
  ACL2 Version 3.5 appears in a comment in (deflabel note-3-6 ...) in
  the ACL2 source code. The fix is to insist that in order for one
  [encapsulate] event to be redundant with another, they must be
  evaluated with the same [default-ruler-extenders]. Analogous to
  this issue of [default-ruler-extenders] for [encapsulate]s is an
  issue of the [default-verify-guards-eagerness], which has similarly
  been fixed.

  Fixed soundness bugs related to the handling of
  [subversive-recursions] for [constraint]s. Proofs of nil in ACL2
  Version 3.5 appear in a comment in (deflabel note-3-6 ...) in the
  ACL2 source code.

  Fixed a bug that could cause the following error during calls of
  [certify-book] in the presence of calls of [skip-proofs] in the
  book:

    ACL2 Warning [Skip-proofs] in

    HARD ACL2 ERROR in FMT0: Illegal Fmt Syntax.  The tilde-@ directive at
    position 0 of the string below is illegal because its variable evaluated
    to 0, which is neither a string nor a list.

    \"~@0\"

  Thanks to Dave Greve for reporting this bug and making available a
  very helpful test case.

  The :corollary of a rule (see [rule-classes]) failed to use the
  [default-hints] of the logical [world]. This has been fixed.

  (CCL only) We removed a call, for CCL 1.3 (and beyond) only, of
  foreign function sync in the closing of output channels. Thanks to
  Daron Vroon for reporting issues with such a call on a non-Intel
  platform.

  Fixed a bug in reporting failures when monitoring rewrite rules with
  free variables in the hypotheses, that could cause a hard Lisp
  error (from which ACL2 continues, however). Thanks to Eric Smith
  for sending a very helpful example with his bug report.

  Fixed the handling of :induct [hints], which had thrown away hint
  information from parent goals. For example, the [thm] form below
  failed to prove even though the second hint is in some sense
  superfluous; induction occurs automatically at \"Goal'\" even without
  the hint on that. The failure was due to discarding the hint
  information on \"Goal\".

    (in-theory (disable append))
    (thm (equal (cdr (cons a (append (append x y) z))) (append x y z))
         :hints
         ((\"Goal\" :in-theory (enable append))
          (\"Goal'\" :induct t) ; failed unless this line is commented out
          ))

  Fixed a bug in the [args] command that was failing to show the
  formals of primitives (built-in functions like consp that do not
  come with explicit definitions). Thanks to John Cowles for pointing
  out this bug. (At a lower level, the bug was that primitives failed
  to have 'stobjs-in or 'stobjs-out properties.)

  Fixed bugs in the utility supporting moving directories of certified
  books, sometimes used in Debian builds (as described in source
  function make-certificate-file). Thanks to Alan Dunn for pointing
  out such a bug, in paths associated with [defpkg] events in
  [portcullis] commands in [certificate]s (which are used for error
  reporting). There were also bugs, now fixed, that prevented
  renaming some book paths. Please note that this mechanism is not
  guaranteed to be sound; in particular, it can probably misbehave
  when macros are used to generate portcullis events. However, it
  seems likely that such issues will be very rare.

  Eliminated warnings that could arise when tracing a function with
  [trace$]. Now, when [trace$] is applied to a function without
  option :native, that function's declarations and documentation are
  discarded.

  Fixed a bug that could cause a failure when building an executable
  image using SBCL as the underlying Common Lisp. Thanks to Jun
  Sawada for reporting this failure. We made a similar fix for CMUCL.

  Fixed a bug in [save-exec] in the case that an absolute pathnanme is
  supplied. Thanks to Jared Davis for bringing this bug to our
  attention.

  Fixed a bug in the use of [trace$] with the :native and :multiplicity
  options that caused hard errors for some underlying Lisps.

  Fixed a bug in the interaction of [trace$] and :[comp], which caused
  error as [comp] tried to re-trace functions that it temporarily
  untraced.

  NEW AND UPDATED BOOKS AND RELATED INFRASTRUCTURE

  See {ReleaseVersionNumbers |
  https://code.google.com/p/acl2-books/wiki/ReleaseVersionNumbers}
  for a list of books in Version 3.6 of ACL2 but not Version 3.5. For
  changes to existing books rather than additions, see the {log
  entries | http://code.google.com/p/acl2-books/source/list} starting
  with revision r286 up through revision r329.

  It is no longer required to specify a value for environment (or
  `make') variable ACL2_SYSTEM_BOOKS when running `make' in the
  distributed book directory, even when that directory is not under
  the directory containing the ACL2 executable. Thanks to Peter
  Dillinger for providing this improvement, by modifying
  books/Makefile-generic and, as needed, distributed book Makefiles.

  Thanks to Peter Dillinger, some books in support of the ACL2 Sedan
  (ACL2s) are more easily available for ACL2 users who do not use
  ACL2s. See [ACL2-sedan].

  EMACS SUPPORT

  If the following form is evaluated before the load of
  emacs/emacs-acl2.el, then variables are now set to reflect the
  directory containing that file.

    (if (boundp '*acl2-sources-dir*)
        (makunbound '*acl2-sources-dir*))

  Fixed info-dir-entry line in generated info file (by patching
  doc/write-acl2-texinfo.lisp). Thanks to Alan Dunn for providing
  this patch.

  EXPERIMENTAL HONS VERSION

  Bob Boyer and others have contributed numerous changes for the
  experimental ``hons'' version of ACL2 (see [hons-and-memoization]).
  A number of these have been crafted to work specifically with CCL
  (Clozure Common Lisp, formerly OpenMCL), which is now required as
  the underlying Lisp for the ``hons'' version of ACL2.

  A heuristic (source function too-many-ifs has been made more scalable
  (for the non-HONS version as well, in fact), but with no functional
  change. Thanks to Jared Davis for noticing performance issues and
  suggesting fixes.

  Other changes including the following, quoting Bob Boyer:

      The CCL CASE macro now does better than a dumb linear search in some
      CASEes.

      SH and CSH are functions to talk to the underlying Gnu-Linux from
      CCL. Good for repeated calling when you simply cannot afford
      the copying cost of a FORK because you are using, say, a dozen
      gigabytes.

      Added CCL compiler-macros for IF and OR, to support some 'coverage'
      analysis, cf. IF-REPORT, extending the profiling.

      Introduced the type 'mfixnum' so that things like counting honses and
      counting calls to memoized or profiled functions can run fast
      in CCL 64 bits and yet still run at all under 32 bits.

      Moved all HONSes to CCL's newish static space, which permits the
      address of a cons to be used as a hash key, as in most Lisps.
      (CCL moves most conses and most everything when it does a
      compacting-gc.)

      Quite a few changes in the memoize-fn reporting.

      Added a timer facility, cf. call-with-timeout. Good for running under
      throttle some gross thoughts like 'Is it true that you can't
      fit 12 pigeons into 11 holes' on some propositional calculus
      systems/functions.

      Added rwx-size, pid-owner-cmdlines, rss, and proc-stat to help see
      what is really going on virtually in Gnu-Linux.

      Fixed at least one bug in compact-print-file and helped make its
      integration into ACL2's read-object$ a little more sound. Still
      worried some about *print-readably* vs. readtable-case. Does
      anyone else stay awake late at night worrying about
      readtable-case?

      Revised how the *watch-dog-process* interrupts the main process for
      the thousandth time, cf. watch. Haven't changed it in weeks,
      which means that (a) it is getting tolerable or (b) I've run
      out of gas.")
 (NOTE-3-6-1
  (RELEASE-NOTES)
  "ACL2 Version 3.6.1 (September, 2009) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  The essential changes to ACL2 since Version 3.6 are the two bug fixes
  described below. There was also some functionality-neutral code
  refactoring, as requested by Daron Vroon in support of the ACL2
  Sedan (see [ACL2-sedan]). Also see {ReleaseVersionNumbers |
  https://code.google.com/p/acl2-books/wiki/ReleaseVersionNumbers}
  for a list of books in Version 3.6.1 of ACL2 but not Version 3.6.
  For changes to existing books rather than additions, see the {log
  entries | http://code.google.com/p/acl2-books/source/list} starting
  with revision r329 up through revision 350.

  Fixed a soundness bug in the handling of [ruler-extenders],
  specifically in the handling of [let]-expressions. Thanks to Pete
  Manolios, who sent us a proof of nil, essentially as follows. In
  the termination proof for foo below, the binding of x to (cons t x)
  was not substituted into the recursive call of foo for purposes of
  the termination proof.

    (defun foo (x)
      (declare (xargs :ruler-extenders :all))
      (let ((x (cons t x)))
        (if (endp (cdr x))
            x
          (cons t (foo (cdr x))))))

    (defthm foo-bad
      nil
      :hints ((\"Goal\"
               :use ((:instance foo (x '(3))))
               :in-theory (disable foo (foo))))
      :rule-classes nil)

  Fixed a typo in code supporting [ruler-extenders] (specifically,
  swapped arguments in a recursive call of ACL2 source function
  get-ruler-extenders2, which could cause problems for functions
  defined using [mutual-recursion]). Thanks to Daron Vroon for
  bringing this bug to our attention, pointing out the swapped
  arguments.")
 (NOTE-3-6{R}
  (RELEASE-NOTES)
  "ACL2 Version 3.6(r) (August, 2009) Notes

  Please also see [note-3-6] for changes in Version 3.6 of ACL2.")
 (NOTE-4-0
  (RELEASE-NOTES)
  "ACL2 Version 4.0 (July, 2010) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes since Version 3.6.1 into the
  following categories of changes: existing features, new features,
  heuristic improvements, bug fixes, distributed books, Emacs
  support, and experimental versions. Each change is described in
  just one category, though of course many changes could be placed in
  more than one category. Also see [note-3-6-1] for other changes
  since Version 3.6.

  CHANGES TO EXISTING FEATURES

  There have been extensive changes to the handling of compiled files
  for books, which may generally be invisible to most users. The
  basic idea is that when compiled files are loaded on behalf of
  [include-book], they are now loaded before events in the book are
  processed, not afterwards. This can speed up calls of include-book,
  especially if the underlying Lisp compiles all definitions on the
  fly (as is the case for CCL and SBCL). One functional change is
  that for keyword argument :load-compiled-file of [include-book],
  the values :comp-raw, :try, and :comp! are no longer legal. (Note
  that the handling of :comp-raw was actually broken, so it seems
  that this value wasn't actually used by anyone; also, the handling
  of :comp! formerly could cause an error in some Lisp platforms,
  including SBCL.) Another change is that if [include-book] is called
  with :load-compiled-file t, then each sub-book must have a compiled
  file or a so-called ``expansion file''; see [book-compiled-file].
  In the unlikely event that this presents a problem, the makefile
  provides a way to build with compilation disabled; see
  [compilation]. Users of raw mode (see [set-raw-mode]) will be happy
  to know that [include-book] now works if there an up-to-date
  compiled file for the book, since [portcullis] commands are now
  incorporated into that compiled file. The mechanism for saving
  expansion files has changed, and the :save-expansion argument of
  [certify-book] has been eliminated; see [certify-book]. More
  discussion of ACL2's new handling of book compilation is described
  in a new documentation topic; see [book-compiled-file].

  It was possible to get a hard Lisp error when certifying a book with
  a redundant [defconst] form whose term is not identical to the
  existing [defconst] form for the same name. The following example
  illustrates the problem, which has been fixed (as part of the
  change in handling of compiled files for books, described above).
  Imagine that after the initial (in-package \"ACL2\") form, file
  foo.lisp has just the form (defconst *a* (append nil nil)). Then
  before the fix, we could have:

    ACL2 !>(defconst *a* nil)
    [[output omitted]]
    ACL2 !>(certify-book \"foo\" 1)
    [[initial output omitted]
    * Step 5:  Compile the functions defined in \"/v/joe/foo.lisp\".
    Compiling /v/joe/foo.lisp.
    End of Pass 1.
    End of Pass 2.
    OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3
    Finished compiling /vjoe/foo.lisp.
    Loading /v/joe/foo.lisp

    Error: Illegal attempt to redeclare the constant *A*.

  The [wormhole] facility has been changed to repair a bug that allowed
  guard violations to go undetected. The major change has to do with
  the treatment of what used to be called the ``pseudo-flag''
  argument which has been replaced by a quoted lambda expression. See
  [note-4-0-wormhole-changes] for help in converting calls of
  [wormhole]. Also see see [wormhole] and see [wormhole-eval].

  The function assign-wormhole-output has been eliminated but its
  functionality can be provided by [wormhole-eval].

  The ACL2 tutorial has been greatly expanded, for example to include a
  self-contained discussion of rewriting. See [ACL2-tutorial].

  Formerly, the [mbe] macro and [must-be-equal] function were
  disallowed in any definition within an encapsulate having a
  non-empty signature. Now, these are allowed provided the definition
  has been declared to be non-executable (see [defun-nx]). As a
  result, [defevaluator] [events] may now include [must-be-equal]
  among the function symbols known by the evaluator; this had not
  previously been allowed. Thanks to Sol Swords for discussions
  leading to this relaxation for [defevaluator].

  [Princ$] now prints strings more efficiently. Thanks to Jared Davis
  for suggesting the improvements to princ$.

  The use of [xargs] declaration :non-executable t no longer requires
  the absence of [state] or declared [stobj]s among the formal
  parameters of a function definition. As before, the use of
  :non-executable t turns off single-threadedness checking for the
  body, and also as before, attempts to execute the function will
  fail. Thanks to Sol Swords for requesting this relaxation (for
  automatic generation of so-called ``flag functions'' for
  definitions using [mutual-recursion]).

  The [documentation] has been improved for explaining to advanced
  users the details of the ACL2 hint mechanism; see
  [hints-and-the-waterfall], and see the example about
  nonlinearp-default-hint in distributed book
  books/hints/basic-tests.lisp. Thanks to Robert Krug for useful
  discussions, in particular suggesting the above example as one to
  be explained with the documentation.

  The time$ macro has been enhanced to allow user control of the timing
  message that is printed, and of when it is printed. See [time$].
  Thanks to Jared Davis for providing the essential design, helpful
  documentation (largely incorporated), and an initial implementation
  for raw Lisp.

  The :ttags argument to [include-book] had been required when
  including a certified book that uses trust tags. This is no longer
  the case: essentially, :ttags defaults to :all except that warnings
  will be printed. Thanks to Jared Davis for requesting such a
  relaxation, and to him and Sandip Ray for useful discussions.

  The definition of [mv-let] has been modified so that the single-step
  macroexpansion (see [trans1]) of its calls can be evaluated. Thanks
  to Pete Manolios for bringing this evaluation issue to our
  attention and ensuing discussions.

  All calls of so-called ``guard-holders'' --- [prog2$],
  [must-be-equal] (from calls of see [mbe]), [ec-call], and [mv-list]
  --- are now removed before storing hypotheses of rules of class
  :[rewrite] or :[linear]. Thanks to Sol Swords for requesting this
  enhancement and sending the following example in the case of
  [rewrite] rules.

    (defthm foo
      (prog2$ (cw \"asdf\")
              (and (equal (car (cons x y)) x)
                   (equal (cdr (cons x y)) y))))

  The handling of [fmt] directive ~s has been modified so that if the
  argument is a symbol that would normally be printed using vertical
  bars (|), then that symbol is printed as with ~f. Thanks to Jared
  Davis for providing the following example showing that treatment of
  ~s was a bit unexpected: (cw \"~s0.~%\" '|fo\\|o|).

  Error messages have been improved for ill-formed terms (in ACL2's
  so-called ``translation'' routines). Thanks to Jared Davis for
  requesting such an enhancement.

  Modified [defun-sk] so that it executes in :[logic] mode. Previously,
  evaluation of a [defun-sk] event in :[program] mode caused a
  somewhat inscrutable error, but now, :[program] mode is treated the
  same as :[logic] mode for purposes of [defun-sk].

  The ``system hacker'' commands ([redef+]) and ([redef-]) are now
  embedded event forms (see [embedded-event-form]), hence may be used
  in [books] as well as in [progn] and [encapsulate] [events]. Also,
  these two commands are now no-ops in raw Lisp.

  The function symbol worldp (in the \"ACL2\" package) has been renamed
  to plist-worldp.

  The function gc$-fn (resulting from macroexpansion of [gc$]) is now
  in :[logic] mode. Thanks to Jared Davis for requesting this change.

  The user now has control over whether compilation is used, for
  example whether or not [certify-book] compiles by default, using
  function set-compiler-enabled. See [compilation].

  Modified the conversion of relative to absolute pathnames in
  [portcullis] [command]s for book certification. Now, more pathnames
  remain as relative pathnames.

  The \"Ttags\" warning that can be printed by [include-book] is now
  given even if [set-inhibit-output-lst] has specified `warning'. To
  suppress it, specify warning! instead, for example,
  (set-inhibit-output-lst '(acl2::warning! acl2::proof-tree)).

  On occasion, ACL2 prints the message ``Flushing current installed
  world'' as it cleans up when certain actions (installing a [world])
  are interrupted. This operation has been sped up considerably. If
  your session includes many [events], you can probably speed up any
  such operation further by invoking [reset-prehistory]. Thanks to
  Jared Davis for sending a query that led us to make this
  improvement.

  Calls of the form (ec-call (must-be-equal logic exec)) are no longer
  allowed, since we do not have confidence that they would be handled
  correctly.

  The underlying function for [good-bye] (and hence for [exit] and
  [quit]) is now in :[logic] mode. Thanks to Jared Davis for
  requesting this enhancement.

  We now require that every function symbol in the [signature] of an
  [encapsulate] event have a :[logic] mode definition at the end of
  the first pass, not merely a :[program] mode definition (which
  formerly was sufficient). You can still define such a function in
  :program mode, provided it is followed by a :logic mode definition
  (where of course both definitions are [local], since we are
  discussing functions is introduced in the [signature]). Thanks to
  Carl Eastlund for bringing this issue to our attention. (Note: An
  analogous modification has been made for :[bdd] [hints] as well.)

  The following functions now have raw Lisp implementations that may
  run faster than their ACL2 definitions: [assoc-eq], [assoc-equal],
  [member-eq], [member-equal], subsetp-eq, [subsetp-equal],
  [remove-eq], [remove-equal], [position-eq], and [position-equal].
  Thanks to Jared Davis for suggesting that we consider such an
  improvement.

  We now avoid infinite loops caused when tracing functions that
  implement [trace$]. Thanks to Rob Sumners and Eric Smith for useful
  discussions.

  The implementation of [trace!] has been modified slightly, to
  accommodate the fix for ``some holes in the handling of trust
  tags'' described later, below.

  This item applies unless the host Lisp is GCL. An interrupt
  (control-c) will now cause a proof to exit normally in most cases,
  by simulating a timeout, as though [with-prover-time-limit] had
  been called with a time-limit of 0. If the first interrupt doesn't
  terminate the proof, a second one should do so (because a
  different, more ``severe'' mechanism is used after the first
  attempt). As a result, [redo-flat] should work as one might expect
  even if a proof is interrupted. Thanks to Dave Greve for requesting
  this enhancement to [redo-flat]. Technical note: for reasons
  related to this change, time-limits are no longer checked in
  evaluator functions (ev-fncall, ev, ev-lst, ev-fncall-w, ev-w, and
  ev-w-lst).

  It is now legal for [proof-checker] [macro-command]s to appear in
  :[instructions] that are used in place of :[hints]. Thanks to
  Sandip Ray for (most recently) requesting this feature.

  The value of :command-conventions for [ld] special variable
  ld-post-eval-print is now treated as though it were t if the value
  [ld] special variable ld-error-triples is nil. The following
  example illustrates this change.

    ACL2 !>(ld-post-eval-print state) ; default
    :COMMAND-CONVENTIONS
    ACL2 !>(ld-error-triples state) ; default
    T
    ACL2 !>(set-ld-error-triples nil state)
    *** Then, before the change:
    ACL2 !>(mv t 3 state)
     3
    *** Instead, after the change:
    ACL2 !>(mv t 3 state)
    (T 3 <state>)

  The default behavior of [ld] has been changed. Formerly when an error
  occurred that halted a subsidiary call of ld, then the parent ld
  would continue. That is no longer the case. Consider the following
  example.

    (ld '((ld '((defun f (x) x)
                (defun bad (x)) ; ERROR -- missing the body
                ))
          (defun g (x) x)))

  Formerly, g would be defined in the resulting logical [world]. Now,
  the error halts not only the inner ld but also the outer ld. See
  [ld], and for details of the new default value for
  :ld-error-action, :RETURN!, see [ld-error-action]. Also see the
  paragraph below about a new utility, :[p!]. Thanks to Robert Krug
  and Sandip Ray for helpful discussions.

  Environment variable ACL2-CUSTOMIZATION has been replaced by
  ACL2_CUSTOMIZATION --- that is, the hyphen has been replaced by an
  underscore --- so that it can be set conveniently in the bash
  shell. See [ACL2-customization].

  The ``Warnings:'' summary is now omitted when there are no warnings,
  where formerly ``Warnings: None'' was printed. Thanks to Jared
  Davis for suggesting this change.

  We have modified the generation of constraints for [encapsulate]
  [events] in two primary ways, neither of them likely to affect many
  users. One change is that the virtual movement of definitions and
  theorems to in front of an [encapsulate] event, or of definitions
  to behind that event, is no longer inhibited in the case of nested
  encapsulates with non-empty [signature]s. The following example
  illustrates the other change, as discussed below.

    (encapsulate
     ((f (x) t))
     (local (defun f (x) x))
     (defun g (x) (cons x (f x)))
     (defun h (x) (g x))
     (defthm h-is-f (equal (car (h x)) x)))

  Previously, the [constraint] on f and h was essentially the
  conjunction of the definition of h and the theorem h-is-f. Now, the
  definition of g is conjoined as well; moreover, g receives the same
  [constraint] as do f and h, where previously g was only constrained
  by its definition. While we are not aware of a soundness bug caused
  by the previous approach, the new approach follows more precisely
  the intended notion of [constraint].

  The use of [trace$] (or [trace!]) option :multiplicity had been
  required when option :native was supplied. This is no longer the
  case. Also, a bug has been fixed that had prevented :multiplicity
  from working properly in GCL and Allegro CL.

  Several errors have been eliminated that formerly occurred when the
  constraints for a function symbol were unknown because it was
  constrained using a dependent clause-processor (see
  [define-trusted-clause-processor]. Now, it is assumed that the
  supporters argument in a [define-trusted-clause-processor] event is
  such that every ancestor of any function symbol constrained by the
  ``promised encapsulate'' of that event among, or ancestral in,
  those supporters. Thanks to Sol Swords, Sandip Ray, and Jared Davis
  for helpful discussions.

  The notion of [constraint] for functions introduced by [defun] has
  been modified slightly. No longer do we remove from the body of the
  definition calls of so-called ``guard-holders'': [prog2$],
  [must-be-equal], [ec-call], and [mv-list], and uses of the-error
  generated by [the]. Also, we now expand calls of the-error with the
  same aggressive heuristics applied to a number of other functions
  (technically, adding it to the list
  *expandable-boot-strap-non-rec-fns*).

  NEW FEATURES

  A new event, [defattach], allows evaluation of calls of constrained
  ([encapsulate]d) functions. In particular, users can now, in
  principle, soundly modify ACL2 source code; please feel free to
  contact the ACL2 implementors if you are interested in doing so.
  See [defattach].

  Eric Smith has noticed that if you exit the [break-rewrite] loop
  using :[a!] during an [ld] of a file, then all changes to the
  logical [world] are discarded that were made during that call of
  [ld]. A new utility, :[p!], pops just one level instead, and avoids
  discarding that work. (This change is related to an item above,
  ``The default behavior of [ld] has been changed.'') Thanks to Eric
  for pointing out this issue.

  New function [mv-list] is the identity function logically, but
  converts multiple values to lists. The first argument is the number
  of values, so an example form is as follows, where foo returns
  three values: (mv-list 3 (foo x y)). Thanks to Sol Swords for
  requesting this feature and for reporting a soundness bug in one of
  our preliminary implementations.

  A new [state] global variable, host-lisp, has as its value a keyword
  whose value depends on the underlying Common Lisp implementation.
  Use (@ host-lisp) to see its value.

  It is now possible to write [documentation] for HTML without error
  when there are links to nonexistent documentation topics. See the
  comments in macro acl2::write-html-file at the end of file
  doc/write-acl2-html.lisp. When there are such errors, they should
  be easier to understand than previously. Thanks to Alan Dunn for
  providing the initial modifications.

  It is now possible to inhibit specified parts of the Summary printed
  at the conclusion of an event. See [set-inhibited-summary-types].
  Also see [with-output], in particular the discussion of the new
  :summary keyword. Thanks to Sol Swords for requesting more control
  over the Summary.

  A new :[hints] keyword, :case-split-limitations, can override the
  default case-split-limitations settings (see
  [set-case-split-limitations]) in the simplifier. Thanks to Ian
  Johnson for requesting this addition and providing an initial
  implementation.

  It is now possible to defer and avoid some ttag-related output; see
  [set-deferred-ttag-notes]. Thanks to Jared Davis for requesting
  less verbosity from ttag-related output.

  A new [command], :[pl2], allows you to restrict the rewrite rules
  printed that apply to a given term. See [pl2]. Thanks to Robert
  Krug for requesting such a capability.

  ACL2 now provides a utility for canonicalizing filenames, so that
  soft links are resolved; see [canonical-pathname]. Moreover, ACL2
  uses this utility in its own sources, which can eliminate some
  issues. In particular, [include-book] with argument :ttags :all no
  longer breaks when given a book name differing from the book name
  that was used at certification time; thanks to Sol Swords for
  reporting that problem. Also, certain errors have been eliminated
  involving the combination of packages in the certification world
  and trust tags; thanks to Jared Davis for sending an example of
  that problem.

  You can now suppress or enable guard-checking for an individual form;
  see [with-guard-checking]. Thanks to Sol Swords for requesting this
  feature.

  The [walkabout] utility has been documented (thanks to Rob Sumners
  for suggesting this documentation). This utility can make it easy
  to explore a large cons tree. New interactive commands (pp n) and
  (pp print-level print-length) have been added to restrict how much
  of the current object is displayed. See [walkabout].

  Rules of class :[type-prescription] may now be provided a
  :backchain-limit-lst keyword. The default behavior is unchanged,
  but now [type-set] is sensitive not only to the new
  :backchain-limit-lst of a :[type-prescription] rule (if supplied)
  but to the [default-backchain-limit] of the current logical
  [world]. Setting of backchain-limits can now specify either the new
  (type-set) limit or the old limit (for rewriting); see
  [set-default-backchain-limit] and see [set-backchain-limit].
  Moreover, the functions [default-backchain-limit] and
  [backchain-limit] now take a second argument of :ts or :rewrite to
  specify which backchain-limit is desired.

  HEURISTIC IMPROVEMENTS

  The so-called ``too-many-ifs'' heuristic has been modified. Such a
  heuristic has been employed in ACL2 (and previous Boyer-Moore
  provers) for many years, in order to limit the introduction of
  calls of [if] by non-recursive functions. Most users need not be
  concerned with this change, but two proofs in the regression suite
  (out of thousands) needed trivial adjustment, so user proofs could
  need tweaking. In one application, this modification sped up proofs
  by 15%; but the change in runtime for the regression suite is
  negligible, so such speedups may vary. Thanks to Sol Swords for
  providing a test from ACL2 runs at Centaur Technology, which was
  useful in re-tuning this heuristic.

  Guard proof obligations could have size quadratic in the number of
  clauses in a [case] statement. This inefficiency has been removed
  with a change that eliminates a hypothesis of the form (not (eql
  term constant)) when there is already a stronger hypothesis,
  equating the same term with a different constant. Thanks to Sol
  Swords for bringing this problem to our attention and suggesting an
  alternate approach to solving it, which we may consider in the
  future if related efficiency problems persist.

  We adjusted the heuristics for determining induction schemes in the
  presence of [ruler-extenders], when handling calls of a function
  symbol that is a ruler-extender, in either of two cases: either the
  function takes only one argument; or the function is [prog2$] or
  [ec-call], and the first argument contains no recursive call. These
  cases are treated more directly as though the ruler-extender call
  is replaced by the unique (in the case of [prog2$] and [ec-call],
  the second) argument.

  A new :[type-prescription] rule, true-listp-append, has been added:

    (implies (true-listp b)
             (true-listp (append a b)))

  If you are interested in the motivation for adding this rule, see
  comments in true-listp-append in ACL2 source file axioms.lisp.

  The use of :forward-chaining lemmas has been improved slightly. In
  previous versions, a conclusion derived by forward chaining was
  discarded if it was derivable by type-set reasoning, since it was
  ``already provable.'' But this heuristic prevented the conclusion
  from triggering further forward chaining. This has been fixed.
  Thanks to Dave Greve for pointing out this problem.

  The fundamental utility that turns an IF expression into a set of
  clauses has been optimized to better handle tests of the form
  (equal x 'constant) and their negations. This eliminates an
  exponential explosion in large case analyses. But it comes at the
  inconveience of sometimes reordering the clauses produced. The
  latter aspect of this change may require you to change some Subgoal
  numbers in proof hints. We apologize for the inconvenience.

  Certification can now run faster (specifically, the compilation
  phase) for books with very large structures generated by
  [make-event], when there is significant sharing of substructure,
  because of a custom optimization of the Lisp reader. Thanks to Sol
  Swords for bringing this efficiency issue to our attention.

  Jared Davis reported inefficiency in certain [make-event] evaluation
  due to a potentially expensive ``bad lisp object'' check on the
  expansion produced by the make-event. This check has been
  eliminated except in the case that the expansion introduces
  packages (for example, by including a book during the expansion
  phase that introduces packages). Thanks to Jared for providing a
  helpful example.

  The application of rules of class :[induction] had the potential to
  loop (as commented in ACL2 source function apply-induction-rule).
  This has been fixed. Thanks to Daron Vroon and Pete Manolios for
  sending nice examples causing the loop.

  Heuristics have been tweaked so that false goals may be simplified to
  nil that had formerly been left unchanged by simplification,
  perhaps resulting in useless and distracting proofs by induction.
  Thanks to Pete Manolios for pointing out this issue by sending the
  following example: (thm (<= (+ 1 (acl2-count x)) 0)). (Technical
  explanation: When every literal in a clause simplifies to nil, even
  though we might not normally delete one or more such literals, we
  will replace the entire clause by the false clause.)

  Improved the efficiency of the built-in function, [take]. Thanks to
  Bob Boyer for suggesting this improvement.

  ACL2 can now use evaluation to relieve hypotheses when applying
  :[type-prescription] rules. Thanks to Peter Dillinger and Dave
  Greve for requesting this enhancement, and to Robert Krug for a
  relevant discussion long ago.

  Evaluation has been sped up during theorems for calls of [mv-let], by
  avoiding repeated evaluation of the expression to which its
  variables are bound. Thanks to Sol Swords for requesting this
  improvement and sending an illustrative example.

  Modified a heuristic to avoid the opening up non-recursive function
  calls on calls of [hide] involving [if]-expressions. For example,
  the [thm] form below is now admitted

    (defun bar (x)
      (cons x x))
    (thm (equal (bar (hide (if a b c)))
         (cons (hide (if a b c)) (hide (if a b c)))))

  BUG FIXES

  Fixed a soundness bug in destructor elimination, which was preventing
  some cases from being generated. Thanks to Eric Smith for reporting
  this bug and sending a helpful example. (Technical detail: the
  fixes were in ACL2 source functions apply-instantiated-elim-rule
  and eliminate-destructors-clause1, and comments in the former
  contain Eric's example.)

  Fixed a bug that supported a proof of nil by exploiting the fact that
  [portcullis] [command]s were not included in check-sum computations
  in a book's [certificate]. For such a proof of nil, see the
  relevant comment in the ACL2 source file ld.lisp under (deflabel
  note-4-0 ...).

  Changed the implementation of [add-include-book-dir]. The previous
  implementation could allow relative pathnames to be stored in the
  [portcullis] [command]s of [certificate]s of [books], which perhaps
  could lead to unsoundness (though we did not try to exploit this to
  prove nil). Thanks to Jared Davis for reporting a bug in our first
  new implementation. An additional change to both
  [add-include-book-dir] and [delete-include-book-dir] is that these
  now work in raw-mode (see [set-raw-mode]). (Thanks to Dave Greve
  for suggesting a reduction in the warnings we produced related to
  raw-mode.) Note that it is no longer permitted to make a direct
  call of the form (table acl2-defaults-table :include-book-dir-alist
  ...); use [add-include-book-dir] instead.

  Fixed a soundness bug related to [xargs] keyword :non-executable. New
  macros, defun-nx and defund-nx, have been provided for declaring
  functions to be non-executable; see [defun-nx]. While we expect
  this bug to occur only rarely if at all in practice, the following
  example shows how it could be evoked.

    ;;;;;;;;;;;;;;;;;;;;
    ;;; Book sub.lisp
    ;;;;;;;;;;;;;;;;;;;;
    (in-package \"ACL2\")
    (defun f ()
      (declare (xargs :guard t
                      :non-executable t))
      (mv-let (a b c)
              (mv 3 4)
              (declare (ignore a b))
              c))
    (defun g ()
      (declare (xargs :guard t))
      (prog2$ (mv-let (x y z)
                      (mv 2 3 4)
                      (declare (ignore x y z))
                      nil)
              (f)))
    (defthm g-nil
      (equal (g) nil)
      :hints ((\"Goal\" :in-theory (disable (f))))
      :rule-classes nil)
    ;;;;;;;;;;;;;;;;;;;;
    ;;; Book top.lisp
    ;;;;;;;;;;;;;;;;;;;;
    (in-package \"ACL2\")
    (include-book \"sub\")
    (defthm contradiction
      nil
      :hints ((\"Goal\" :use g-nil))
      :rule-classes nil)

  The modification described above pertaining to [defun-nx] also
  prevents execution of non-executable functions that have been
  [trace]d. The following example illustrates the problem; now, the
  following [defun] of g is illegal, and the problem disappears if
  [defun-nx] is used instead.

    (defun g (x) ; Use defun-nx to avoid an error after Version_3.6.1.
      (declare (xargs :guard t :non-executable t))
      x)
    (g 3) ; causes error, as expected
    (trace$ g)
    (g 3) ; returned 3 before the bug fix; after fix, causes error as expected

  A hard error was possible when attempting to include an uncertified
  book containing [events] of the form (make-event '(local ...)).
  This has been fixed. Thanks to Sol Swords for bringing this issue
  to our attention.

  Fixed a bug in the heuristic improvement described for Version_3.6
  (see [note-3-6]) as ``We simplified induction schemes....'' The bug
  had prevented, in unusual cases such as the following (notice the
  impossible case), a proof by induction.

    (defun foo (a x)
      (and (consp x)
           (case a
             (0 (foo (car x) (cdr x)))
             (1 (foo (cdr x) (car x)))
             (0 (foo a (cons x x))))))
    (in-theory (disable (:type-prescription foo)))
    (thm (atom (foo a x)))

  Macro [cw-gstack] did not work with an :evisc-tuple argument. This
  has been fixed by changing cw-gstack so that it now evaluates its
  arguments. Thanks to Sol Swords for bringing this bug to our
  attention.

  Fixed a bug in :[pso] during the printing of failure messages for
  termination proofs.

  Fixed a bug in the handling of #. (see [sharp-dot-reader]). Thanks to
  Bob Boyer for bringing this bug to our attention.

  Replaced a hard Lisp error with a clean error, in certain cases that
  a :[hints] value is erroneously supplied as a non-nil atom.
  Example: (thm (equal x x) :hints 3).

  Fixed a bug in the interaction of function tracing with conversion of
  a function from :[program] to :[logic] mode. The following example
  illustrates what had been wrong.

    (defun f (x)
      (declare (xargs :mode :program))
      (car x))
    (f 3) ; raw Lisp hard error
    (trace$ f)
    (f 3) ; raw Lisp hard error (still)
    (defun f (x) (car x)) ; upgrade f to :logic mode
    (f 3) ; clean guard violation; f is no longer traced
    (trace$) ; uh oh - f is shown as traced
    (untrace$ f)
    (f 3) ; OUCH: hard Lisp error because old :program mode definition of
          ; the executable counterpart (sometimes called *1*f) was restored!

  Made a fix so that when building ACL2 with `make' option
  ACL2_SAFETY=3, there will no longer be any safety-0 compiled code
  generated. Thanks to Gary Byers for bringing this bug to our
  attention.

  Fixed a bug in the handling of [override-hints] that generate custom
  keyword hints (see [custom-keyword-hints]) involving the variable
  stable-under-simplificationp. Thanks to Ian Johnson for bringing
  this bug to our attention with explanation that included a helpful
  example, included as comment in the ACL2 source code for function
  apply-override-hint.

  The saved_acl2 script in CLISP could contain unexpected characters
  where simple newlines were expected. Dave Greve found this in a
  Cygwin environment on Windows. Thanks to Dave for reporting this
  bug and experimenting with a fix, and thanks to the CLISP folks for
  providing helpful information.

  Fixed a bug that could make :[oops] cause an error. Also, the [oops]
  command can no longer take you back before a [reset-prehistory]
  event.

  (GCL only) Fixed a bug that could occur when calling trace in raw
  Lisp in GCL.

  Proof summaries have been improved, so that they account for [rune]s
  used in rewriting that takes place when generating goals to be
  proved in a forcing round. Thanks to Jared Davis for sending us an
  example illustrating this issue.

  Fixed a bug that (at least in CCL) could put extra backslashes (`\\')
  in a pathname that ACL2 writes out to the executable script created
  by a build. Thanks to Gary Byers for explaining that the CCL
  behavior is legal (for our previous use of Common Lisp function
  merge-pathnames).

  We closed some holes in the handling of trust tags (also known as
  ``ttags''; see [defttag]) by [include-book]. The following example
  illustrates this rather subtle situation. Consider the following
  book.

    (in-package \"ACL2\")
    (make-event
     (er-progn
      (encapsulate
       ()
       (defttag :foo)
       (value-triple \"Imagine something bad here!\"))
      (value '(value-triple :some-value)))
     :check-expansion t)

  Formerly, the following commands succeeded.

    (certify-book \"test3\" 0 t :ttags :all)
    :u
    (include-book \"test3\" :ttags nil)

  But because of [make-event] keyword argument :check-expansion t, we
  know that the event (defttag :foo) is evaluated by the above
  [include-book] form, and hence the :ttags argument of include-book,
  above, should have specified :foo. The problem was that [defttag]
  forms evaluated during [make-event] expansion did not contribute to
  the trust tag information stored in the book's [certificate]. Note:
  Because of this change, one should avoid using [make-event] with
  :check-expansion t when the expansion would introduce a [defttag]
  event during [include-book] but not [certify-book] time. For an
  example illustrating this issue, see [make-event-details],
  specifically the new version of the section labeled ``A note on
  ttags'' at the end of that [documentation] topic.

  Closed a small loophole that had the potential, in rare
  circumstances, to violate atomicity of under-the-hood updates for
  ACL2 [arrays].

  The following example was formerly allowed, but resulted in a
  guard-verified function (here, g) whose guard proof obligation is
  not a theorem outside the [encapsulate] event. We now disallow
  [guard] verification for functions introduced non-[local]ly inside
  an [encapsulate] event unless we determine that the proof
  obligations hold outside the [encapsulate] event as well.

    (encapsulate
     ((f (x) t))
     (local (defun f (x) (declare (xargs :guard t)) (consp x)))
     ;; ERROR!
     (defun g (x)
       (declare (xargs :guard (f x)))
       (car x)))

  The use of :[comp] on [stobj] functions had potentially caused a hard
  Lisp error; for example, this could occur when (defstobj foo fld)
  was followed by :comp foop. This has been fixed.

  Fixed a bug that could cause a raw Lisp error when the first argument
  of [with-local-stobj] is not a symbol.

  It had been possible to use the reserved keyword
  :computed-hints-replacement as the name of a custom keyword hint
  (see [custom-keyword-hints]). This has been fixed. Thanks to Dave
  Greve, who pointed out a confusing hint error message (which has
  also been fixed) that led us to this issue.

  Fixed a bug that could cause a hard Lisp error, instead of a graceful
  ACL2 error, if keyword :backchain-limit-lst in a rule class is
  given a cons that is not a true list, such as (1 . 1).

  Eliminated an error that could occur when redefining a function as a
  macro and then compiling, as in the example below.

    (defun foo (x) x)
    :redef!
    (defmacro foo (x) x)
    :comp t

  Thanks to Eric Smith for sending the above example in his bug report.

  Fixed a bug that could result in an assertion when a
  [clause-processor] causes an error.

  NEW AND UPDATED BOOKS AND RELATED INFRASTRUCTURE

  See the {log entries |
  http://code.google.com/p/acl2-books/source/list} for a record of
  books changed or added since the preceding release, with log
  entries.

  We note in particular the new system/ directory, which begins to
  specify ACL2 system code in anticipation of opening the
  architecture of ACL2 (see [defattach] for a relevant tool). Some
  system functions were changed slightly (but with the expectation of
  not generally affecting ACL2 behavior) in support of the
  development of this directory. Those interested in contributing to
  further such efforts are invited to contact the ACL2 implementors.

  New utilities have been provided for certifying most of the
  distributed books with more `make'-level parallelism. For example,
  we have obtained close to a 12x reduction in time by using `make -j
  24 regression-fast' on a 24-processor machine. For more information
  see books/make-targets, or to include the books/workshops in the
  regression run, see books/regression-targets. Thanks to Sol Swords
  for providing these nice utilities.

  The top-level makefile, GNUmakefile, has been fixed so that the build
  processes (which are inherently sequential) will ignore the -j
  option of `make'. Note that regressions can still, however, be done
  in parallel, as the -j option will be passed automatically to the
  appropriate `make' command.

  EMACS SUPPORT

  EXPERIMENTAL VERSIONS

  The HONS version, supported primarily by Bob Boyer and Warren Hunt
  (see [hons-and-memoization]), has undergone numerous improvements.
  For example, keyword argument :FORGET is now supported when calling
  [memoize] from within the ACL2 loop, and system function worse-than
  is [memoize]d with the :condition that both terms are function
  applications (clearing the memo-table after each prover
  invocation). Thanks to Jared Davis and Sol Swords for investigating
  the memoization of worse-than, and with suitable condition. Thanks
  also to Jared Davis for contributing structural modifications to
  the implementation of [hons].

  David Rager contributed modifications to the parallel version (see
  [parallelism]), which include taking advantage of atomic increments
  available at least since Version 1.0.21 of SBCL and Version 1.3 of
  CCL.


Subtopics

  [Note-4-0-wormhole-changes]
      How to convert calls of wormhole for Version 4.0")
 (NOTE-4-0-WORMHOLE-CHANGES
  (NOTE-4-0)
  "How to convert calls of wormhole for Version 4.0

  Here we describe how to convert an ``old-style'' call of [wormhole]
  --- that is, a call suitable for ACL2 versions preceding 4.0 --- in
  which the pseudo-flag was t. In order to convert such a call

    (wormhole t 'name input form ...)

  to a new-style call, the following steps must be carried out. Note
  that the wormhole name must always be quoted now.

  First, eliminate the first argument, t, and add a new second argument
  that is the quoted lambda expression

    '(lambda (whs) (set-wormhole-entry-code whs :ENTER))

  Setting the entry code to :ENTER is not necessary if you maintain the
  invariant (after initialization) that it is always :ENTER. In that
  case, the simpler quoted lambda will suffice:

    '(lambda (whs) whs)

  Second, change the form argument so that instead of talking about the
  state-global variable wormhole-output it talks about the
  state-global variable wormhole-status. Look for (@
  wormhole-output), (assign wormhole-output ...), (f-get-global
  'wormhole-output ...) and (f-put-global 'wormhole-output ...) in
  form and replace them with expressions involving wormhole-status.

  However, remember that the old data stored in wormhole-output is now
  in the wormhole-data component of the wormhole-status. Thus, for
  example, an old use of (@ wormhole-output) will typically be
  replaced by (wormhole-data (@ wormhole-status)) and an old use of
  (assign wormhole-output ...) will typically be replaced by

    (assign wormhole-status (set-wormhole-data (@ wormhole-status) ...))

  In summary, an old-style call like

    (wormhole t 'name
              input
              '(...1 (@ wormhole-output) ...2
                ...3 (assign wormhole-output ...4) ...5)
              ...6)

  can become

    (wormhole 'name
              '(lambda (whs) (set-wormhole-entry-code whs :ENTER))
              input
              '(...1 (wormhole-data (@ wormhole-status)) ...2
                ...3 (assign wormhole-status
                            (set-wormhole-data (@ wormhole-status)
                                               ...4) ...5)
              ...6)

  In any case, and especially if your wormhole call had a pseudo-flag
  other than t, we recommend that you see [wormhole].")
 (NOTE-4-0{R}
  (RELEASE-NOTES)
  "ACL2 Version 4.0(r) (July, 2010) Notes

  Please see [note-4-0] for changes in Version 4.0 of ACL2.")
 (NOTE-4-1
  (RELEASE-NOTES)
  "ACL2 Version 4.1 (September, 2010) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes since Version 4.1 into the
  following categories of changes: existing features, new features,
  heuristic improvements, bug fixes, distributed books, Emacs
  support, and experimental versions. Each change is described in
  just one category, though of course many changes could be placed in
  more than one category.

  CHANGES TO EXISTING FEATURES

  The [guard] associated with calls of the macro, [search], has been
  weakened so that now, given strings are no longer restricted to
  contain only standard characters unless the :test argument is
  [char-equal].

  Modified the writing of ``hidden [defpkg]'' forms into [certificate]
  files (see [hidden-defpkg]), to support moving certificate files
  for distributed books, as is done by ACL2s (see [ACL2-sedan]) and
  Debian releases of ACL2. Thanks to Camm Maguire for reporting a
  problem with Debian releases of ACL2 that led to this change.

  Expanded the constant *acl2-exports* by adding intersection-equal to
  the list. Thanks to Jared Davis for requesting this change.

  The :[comp] utility now compiles functions that have code
  conditionalized for raw Lisp only (presumably because a trust tag
  was active when they were defined). Previously, this was not the
  case when :comp was applied to more than a single function symbol.

  NEW FEATURES

  A new macro, [top-level], allows evaluation directly in the top level
  loop for forms that normally need to be evaluated inside function
  bodies, such as [with-local-stobj]. See [top-level]. Thanks to
  Jared Davis for requesting such a utility.

  Added [count], a Common Lisp function, to ACL2. In support of that
  addition, also added rewrite rule eqlablep-nth.

  HEURISTIC IMPROVEMENTS

  [None this time.]

  BUG FIXES

  We fixed a soundness bug that could occur when a function that
  returns multiple values that is called in its own guard. Thanks to
  Sol Swords for reporting this bug and sending a small
  self-contained example, which is included in a comment in the
  function chk-acceptable-defuns1 in ACL2 source file defuns.lisp.

  It was possible to cause an error when giving theory hints during
  redefinition of functions. This has been fixed. Thanks to Ian
  Johnson for sending an example that nicely illustrated this
  problem.

  Fixed system function io? for the case that formal parameter commentp
  is t and vars is non-empty. Thanks to David Rager for bringing to
  our attention the fact that io? was broken for such a combination
  of parameters.

  Not exactly a bug fix, but: [defun-sk] was breaking when a :[guard]
  is specified, so we have improved the documentation (see
  [defun-sk]) to explain how to provide verified guards for a
  function introduced by [defun-sk]. Thanks to Jared Davis for
  bringing this issue to our attention.

  Made a fix to the handling of interrupts, which in rare cases might
  have left one in a state where all subsequent proof attempts were
  labeled as ``Aborting due to an interrupt''.

  Fixed :[pso] and related utilities, so that when proof output is
  redirected to a file, all summary output goes to that file rather
  than to the terminal.

  (GCL on Windows only) Removed an inappropriate check, resulting in an
  error about ``pathname-device,'' that could prevent Windows GCL
  builds of ACL2. Thanks to Camm Maguire for reporting this problem
  and a helpful discussion.

  (Windows only) Modified the computation of canonical pathnames to
  avoid issues of case-insensitivity, in particular for the drive
  (e.g., \"C:\" vs. \"c:\"). Thanks to Harsh Raju Chamarthi for reporting
  this issue and helping with its debugging.

  (Windows only) The value of (@ distributed-books-dir) no longer will
  be missing the Windows drive prefix, for example, \"C:\". Thanks to
  Harsh Raju Chamarthi for reporting this issue and helping with its
  debugging.

  NEW AND UPDATED BOOKS AND RELATED INFRASTRUCTURE

  See the {log entries |
  http://code.google.com/p/acl2-books/source/list} for a record of
  books changed or added since the preceding release, with log
  entries.

  Modified books/Makefile-generic by adding a new BOOKS_SKIP_COMP
  variable, which is used in Makefiles in some subdirectories of
  books/, in order to avoid errors when compiling certified books for
  multiple Lisps.

  EMACS SUPPORT

  Distributed file emacs/emacs-acl2.el has been modified so that the
  forms control-t e and control-t control-e now pick up package
  markers (see [sharp-bang-reader]), in the following sense: if the
  top-level form is preceded by a line starting with #!, then that
  line is included in the inserted string. Thanks to Jared Davis for
  suggesting this enhancement and providing a preliminary
  implementation.

  EXPERIMENTAL VERSIONS

  For the HONS version there have been some changes to [memoize]:

      [Memoize] accepts a new keyword, :recursive, that is a synonym for
      the existing keyword :inline. Thanks to Sol Swords for
      requesting this addition. Moreover, it is now enforced that
      these keywords have Boolean values.

      [Memoize] may now be called on :[program] mode functions. Thanks to
      Sol Swords for requesting this enhancement.

      A bug has been fixed. Now, if [memoize] is called with a
      :condition-fn (with value other than nil or t), then the
      [guard] of the memoized function and the :condition-fn must be
      the same. Previously, one could exploit the lack of such a
      check to get a hard Lisp error, for example as follows.

        (defun f (x) (declare (xargs :guard t)) x)
        (defun cf (x) (declare (xargs :guard (consp x))) (car x))
        (memoize 'f :condition-fn 'cf)
        (f 3)

      Memoization is now illegal for built-in functions that use underlying
      raw Lisp in their implementations. To see why, consider the
      form (gc$), which is a macro call expanding to (gc$-fn nil).
      Previously, after evaluation of (memoize 'gc$-fn), a call of
      gc$ would no longer call the garbage collector, which had been
      invoked by raw Lisp code. Now, evaluation of (memoize 'gc$-fn)
      causes an error.")
 (NOTE-4-1{R}
  (RELEASE-NOTES)
  "ACL2 Version 4.1(r) (September, 2010) Notes

  Please see [note-4-1] for changes in Version 4.1 of ACL2.")
 (NOTE-4-2
  (RELEASE-NOTES)
  "ACL2 Version 4.2 (January, 2011) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes since Version 4.2 into the
  following categories of changes: existing features, new features,
  heuristic improvements, bug fixes, distributed books, Emacs
  support, and experimental versions. Each change is described in
  just one category, though of course many changes could be placed in
  more than one category.

  CHANGES TO EXISTING FEATURES

  The [accumulated-persistence] utility can now do finer-grained
  tracking, providing data for individual hypotheses and the
  conclusion of a rule. See [accumulated-persistence]. To try this
  out, evaluate the form (accumulated-persistence :all); then see
  [accumulated-persistence] for a discussion of display options using
  show-accumulated-persistence. Thanks to Dave Greve for suggesting
  this new capability and collaborating on its design and
  implementation.

  The [defattach] utility now permits the use of :[program] mode
  functions, though this requires the use of a trust tag (see
  [defttag]). See [defattach] and for discussion of the new
  capability, see [defproxy], which explains how part of this change
  involves allowing :[program] mode functions to be declared
  [non-executable].

  Redefinition (see [ld-redefinition-action]) is no longer permitted
  for functions that have attachments (see [defattach]). In such
  cases, the attachment must be removed first, e.g. with (defattach
  foo nil).

  Made small changes to [mv-nth] and [defun-sk] in order to permit
  guard verification of functions introduced with more than one
  quantified variable in a [defun-sk] form. The change to [mv-nth] is
  to weaken the [guard] by eliminating the requirement that the
  second argument satisfy [true-listp], and replacing the call of
  [endp] in the definition body by a corresponding call of [atom].
  The new definition of [mv-nth] is thus logically equivalent to the
  old definition, but with a weaker guard. Thanks to Sol Swords for
  sending the following example, for which the final [verify-guards]
  form had failed but now succeeds.

    (defstub foo (a b c) nil)
    (defun-sk forall-a-b-foo (c)
       (forall (a b) (foo a b c))
       :witness-dcls ((declare (Xargs :guard t
                                      :verify-guards nil))))
    (verify-guards forall-a-b-foo)

  The implementations of [prog2$], [time$], [with-prover-time-limit],
  [with-guard-checking], [mbe] (and [must-be-equal]), and [ec-call]
  have changed. See the discussion below of the new utility,
  [return-last]. A consequence is that [trace$] is explicitly
  disallowed for these and related symbols, which formerly could
  cause hard Lisp errors, because they are now macros. Tracing of
  return-last is also disallowed. Another consequence is that time$
  now prints a more abbreviated message by default, but a version of
  the old behavior can be obtained with :mintime nil.

  The following utilities no longer print an observation about raw-mode
  transitions: set-raw-mode-on, [set-raw-mode-on!], [set-raw-mode],
  and set-raw-mode-off. Thanks to Jared Davis for suggestion this
  change in the case of [include-book] (which proved awkward to
  restrict to that case).

  The system function translate-and-test now permits its LAMBDA form to
  refer to the variable WORLD, which is bound to the current ACL2
  logical [world].

  Modified abort handling to avoid talking about an interrupt when the
  error was caused by a Lisp error rather than an interrupt.

  The value of the constant *acl2-exports*, which is still a list, has
  been extended significantly, though only with the addition of
  symbols that one might reasonably have expected all along to belong
  to this list. A new distributed book,
  books/misc/check-acl2-exports.lisp, checks (at certification time)
  that no documented constant, macro, or function symbol in the
  \"ACL2\" package has been accidentally omitted from *acl2-exports*.
  Thanks to Dave Greve for helpful discussions related to this
  change.

  Improved the built-in `untranslate' functions to produce let*
  expressions when appropriate (more to help with tools that call
  untranslate and the like, than to help with proof output).

  The utility [redo-flat] now works for [certify-book] failures, just
  as it continues to work for failures of [encapsulate] and [progn].

  The following only affects users who use trust tags to add to list
  values of either of the [state] global variables
  program-fns-with-raw-code or logic-fns-with-raw-code. For functions
  that belong to either of the above two lists, trace$ will supply a
  default value of :fncall to keyword :notinline, to avoid discarding
  raw-Lisp code for the function.

  The [guard] of the macro [intern] has been strengthened so that its
  second argument may no longer be either the symbol
  *main-lisp-package-name* or the string \"COMMON-LISP\". That change
  supports another change, namely that the following symbols in the
  \"COMMON-LISP\" package are no longer allowed into ACL2: symbols in
  that package that are not members of the list constant
  *common-lisp-symbols-from-main-lisp-package* yet are imported into
  the \"COMMON-LISP\" package from another package. See [pkg-imports]
  and see [symbol-package-name]. To see why we made that change,
  consider for example the following theorem, which ACL2 was able to
  prove when the host Lisp is GCL.

    (let ((x \"ALLOCATE\") (y 'car))
      (implies (and (stringp x)
                    (symbolp y)
                    (equal (symbol-package-name y)
                           \"COMMON-LISP\"))
               (equal (symbol-package-name (intern-in-package-of-symbol x y))
                      \"SYSTEM\")))

  Now suppose that one includes a book with this theorem (with
  :[rule-classes] nil), using an ACL2 built on top of a different
  host Lisp, say CCL, that does not import the symbol
  SYSTEM::ALLOCATE into the \"COMMON-LISP\" package. Then then one can
  prove nil by giving this theorem as a :use hint.

  The axioms introduced by [defpkg] have changed. See the discussion of
  [pkg-imports] under ``NEW FEATURES'' below.

  The error message for free variables (e.g., in definition bodies and
  guards) now supplies additional information when there are
  governing IF conditions. Thanks to Jared Davis for requesting this
  enhancement and collaborating in its design.

  The command :[redef-] now turns off redefinition.

  Improved proof output in the case of a :[clause-processor] hint that
  proves the goal, so that the clause-processor function name is
  printed.

  The [proof-checker] command `then' now stops at the first failure (if
  any).

  It is no longer permitted to submit definitions in :logic mode for
  merely part of an existing [mutual-recursion] event. Such an action
  left the user in an odd state and seemed a potential soundness
  hole.

  The function [break$] is now in :[logic] mode. Thanks to Jared Davis
  for requesting this enhancement.

  The macro [verify-termination] now provides clearer output in the
  case that it is redundant. More important perhaps, as a courtesy it
  now causes an error when applied to a constrained function, since
  presumably such an application was unintended (as the constrained
  function could never have been in :[program] mode). Note that if
  one desires different behavior, one can create one's own version of
  [verify-termination] (but with a different name).

  Improved the [guard]s for the following functions, often weakening
  them, to reflect more precisely the requirements for calling [eq]:
  alist-difference-eq, intersection-eq, intersection1-eq,
  [intersectp-eq], not-in-domain-eq, set-difference-assoc-eq,
  set-equalp-eq, and [union-eq]. Thanks to Jared Davis for pointing
  out this issue for [intersectp-eq].

  (CCL only) Made a change that can reduce the size of a compiled file
  produced by [certify-book] when the host Lisp is CCL, by discarding
  source information (for example, discarding [local] events).

  NEW FEATURES

  See the discussion above about new statistics that can be gathered by
  the [accumulated-persistence] utility.

  A new hint, :[instructions], allows use of the [proof-checker] at the
  level of [hints] to the prover. Thanks to Pete Manolios for
  requesting this feature (in 2001!). See [instructions].

  (For system hackers) There are new versions of system functions
  translate1 and translate, namely translate1-cmp and translate-cmp
  respectively, that do not take or return [state]. See the Essay on
  Context-message Pairs for relevant information. Thanks to David
  Rager for collaborating on this enhancement.

  A new utility, [return-last], is now the unique ACL2 function that
  can pass back a multiple value result from one of its arguments.
  Thus, now the following are macros whose calls ultimately expand to
  calls of [return-last]: [prog2$], [time$],
  [with-prover-time-limit], [with-guard-checking], [mbe] (and
  [must-be-equal]), and [ec-call]. With an active trust tag, an
  advanced user can now write code that has side effects in raw Lisp;
  see [return-last]. Thanks to Jared Davis for requesting this
  feature.

  A new function, [pkg-imports], specifies the list of symbols imported
  into a given package. The axioms for [defpkg] have been
  strengthened, taking advantage of this function. Now one can prove
  theorems using ACL2 that we believe could not previously be proved
  using ACL2, for example the following.

    (equal (symbol-package-name (intern-in-package-of-symbol str t))
           (symbol-package-name (intern-in-package-of-symbol str nil)))

  Thanks to Sol Swords for a helpful report, which included the example
  above. See [pkg-imports] and see [defpkg].

  Added function [no-duplicatesp-eq].

  Added a new hint keyword, :[backchain-limit-rw], to control the level
  of backchaining for [rewrite], [meta], and [linear] rules. This
  overrides, for the current goal and (as with :[in-theory] hints)
  descendent goals, the default [backchain-limit] (see
  [set-backchain-limit]). Thanks to Jared Davis for requesting this
  feature.

  Support is now provided for creating and certifying books that do not
  depend on trust tags, in the case that the only use of trust tags
  is during [make-event] expansion. See [set-write-ACL2x]. Thanks to
  Sol Swords for reporting a couple of bugs in a preliminary
  implementation.

  Function (file-write-date$ filename state) has been added, giving the
  write date of the given file.

  See [forward-chaining-reports] for how to get new reports on the
  forward chaining activity occurring in your proof attempts. Thanks
  to Dave Greve for inspiring the addition of this utility.

  It is now possible to use ACL2's printing utilities to return
  strings, by opening output channels to the keyword :STRING rather
  than to filenames. See [io]. Thanks to Jared Davis for a helpful
  conversation that led us to add this feature.

  HEURISTIC IMPROVEMENTS

  We have slightly improved the handling of :[forward-chaining] rules
  that contain free variables. Formerly, such rules might fire only
  once, when the first match for a free variable is discovered, and
  would not fire again even if subsequent forward chaining made
  available another match. This made it difficult to predict whether
  a rule with free variables would fire or not, depending as it did
  on the order in which newly derived conclusions were added. The new
  handling is a little slower but more predictable. Thanks to Dave
  Greve for sending a helpful example that led us to consider making
  such an improvement.

  We have slightly improved the so-called ``[type-set]'' heuristics to
  work a bit harder on terms of the form (rec term), where rec is a
  so-called ``compound-recognizer'' function, that is, a function
  with a corresponding enabled :[compound-recognizer] rule. Thanks to
  Jared Davis for sending a helpful example (found, in essence, in
  the modified function type-set-rec, source file type-set-b.lisp).

  We made three heuristic improvements in the way contexts (so-called
  ``type-alists'') are computed from goals (``clauses''). Although
  these changes did not noticeably affect timing results for the ACL2
  regression suite, they can be very helpful for goals with many
  hypotheses. Thanks to Dave Greve for sending a useful example (one
  where we found a goal with 233 hypotheses!).

  The algorithm for substituting alists into terms was modified. This
  change is unlikely to affect many users, but in one example it
  resulted in a speed-up of about 21%. Thanks to Dave Greve for
  supplying that example.

  Sped up [include-book] a bit by memoizing checksums of symbols. (This
  change pertains to ``normal'' ACL2 only, not the [hons] version
  (see [hons-and-memoization], where such memoization already
  occurred.) We found about a 23% speed-up on an example from Dave
  Greve.

  Made a small change to the algorithm used to prove hypotheses of
  :[type-prescription] rules (ACL2 source function
  type-set-relieve-hyps). One change avoids a linear walk through the
  context (the ``type-alist'' structure), while the other could avoid
  storing unnecessary [force]d assumptions (into the so-called
  ``tag-tree'').

  BUG FIXES

  Fixed a long-standing soundness bug caused by the interaction of
  [force]d hypotheses with destructor [elim]ination. The fix was to
  avoid using forcing when building the context (so-called
  ``type-alist'') when the goal is considered for destructor
  elimination; those who are interested can see a discussion in
  source function eliminate-destructors-clause1, which includes a
  proof of nil that no longer succeeds. A similar fix was made for
  generalization, though we have not exploited the previous code to
  prove nil in that case.

  Fixed a bug that allowed book certification to ignore skip-proofs
  around [encapsulate] [events]. Thus, a book could contain an event
  of the form (skip-proofs (encapsulate ...)), and a call of
  [certify-book] on that book could succeed even without supplying
  keyword :skip-proofs-okp t. This bug was introduced in Version 3.5
  (May, 2009).

  Fixed a bug that could occur when including a book that attempts to
  redefine a function as a macro, or vice-versa. (For details of the
  issue, see the comment in the definition of variable
  *hcomp-fn-macro-restore-ht* in source file other-events.lisp.)

  (Windows only) Fixed handling of the Windows drive so that an
  executable image saved on one machine can be used on another, even
  with a different drive. Thanks to Harsh Raju Chamarthi for
  reporting this issue and doing a lot of testing and collaboration
  to help us get this right.

  Made a change to avoid possible low-level errors, such as bus errors,
  when quitting ACL2 by calling [good-bye] or its synonyms. This was
  occurring in CCL, and we are grateful to Gary Byers for helping us
  find the source of those errors (which basically was that ACL2 was
  attempting to quit while already in the process of quitting).

  Fixed a bug in [with-guard-checking], which was being ignored in
  function bodies.

  Fixed a bug in [top-level], which was not reverting the logical
  [world] when an error resulted from evaluation of the given form.
  Thanks to Jared Davis for bringing this bug to our attention.

  Fixed a long-standing bug (back through Version 2.7) that was
  discarding changes to the connected book directory (see [cbd]) when
  exiting and then re-entering the top-level ACL2 loop (with [lp]).

  In some host Lisps, it has been possible to be in a situation where
  it is impossible to interrupt checkpoint printing during the
  summary. We had thought this solved when the host Lisp was CCL, but
  Sol Swords sent us an example (for which we are grateful)
  illustrating that this behavior could occur. This has been fixed.

  Fixed a bug in a proof obligation generated for :[meta] and
  :[clause-processor] rules, that the [guard] on the metafunction or
  clause-processor function, fn, holds under suitable assumptions.
  Those assumptions include not only that the first argument of fn
  satisfies [pseudo-termp], but also that all [stobj] inputs satisfy
  the corresponding stobj recognizer predicates. We had erroneously
  considered stobj outputs of fn instead of stobj inputs. Thanks to
  Sol Swords for bringing this bug to our attention with a simple
  example, and correctly pointing us to the bug in our code.

  Fixed the following bugs in [defattach]. We hadn't always been
  applying the full functional substitution when generating guard
  proof obligations. We had been able to hit an assertion when
  reattaching to more than one function. Attachment was permitted in
  the case of an untouchable function (see [remove-untouchable]).
  Finally, the guard proof obligation could fail in the case that the
  two functions have different formal parameter lists, as in the
  following example.

    (encapsulate
     ((foo (x) x :guard (symbolp x)))
     (local (defun foo (x) x)))
    (defun bar (x2)
      (declare (xargs :guard (symbolp x2)))
      x2)
    (defattach foo bar)

  Fixed a raw Lisp error that could be caused by including a book using
  [make-event] to define a function symbol in a locally-introduced
  package. An example appears in a comment in ACL2 source function
  write-expansion-file.

  Made a change that can prevent an error near the end of book
  certification when the underlying Host Lisp is Allegro Common Lisp,
  in the case that environment variable ACL2_SYSTEM_BOOKS has been
  set to the name of a directory with a parent that is a soft link.
  Thanks to Dave Greve for supplying an example to led us to this
  fix, which involves avoiding Allegro CL's implementation of the
  Common Lisp function, truename.

  Fixed a bug that was failing to substitute fully using bindings of
  free variables in [force]d hypotheses. A related change is that
  instead of binding such a free variable to a new variable of the
  form ???-Y, the new variable is now of the form UNBOUND-FREE-Y.

  Fixed a bug that could inhibit the printing of certain theory
  warnings (and probably, in the other direction, cause inappropriate
  such printing).

  We eliminated excessive \"Raw-mode\" warnings about
  [add-include-book-dir] that could be generated by the use of
  raw-mode during [include-book]. Thanks to Dave Greve for bringing
  this issue to our attention.

  Fixed the printing of results from forms within an [encapsulate], so
  that they are abbreviated according to the [ld-evisc-tuple].

  It is now possible to evaluate [stobj]-related forms after evaluating
  :[set-guard-checking] :none or :[set-guard-checking] nil, even in
  cases where such evaluation formerly caused a guard violation due
  to a bug in ACL2. Here is an example of an error that no longer
  occurs.

    ACL2 !>(defstobj st fld)

    Summary
    Form:  ( DEFSTOBJ ST ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     ST
    ACL2 !>(set-guard-checking :none)

    Turning off guard checking entirely.  To allow execution in raw Lisp
    for functions with guards other than T, while continuing to mask guard
    violations, :SET-GUARD-CHECKING NIL.  See :DOC set-guard-checking.

    ACL2 >(fld st)

    ACL2 Error in TOP-LEVEL:  The guard for the function call (FLD ST),
    which is (STP ST), is violated by the arguments in the call (FLD ST).
    [... etc. ...]

  You can understand how things now work by imagining that when a
  function introduced by [defstobj] is called, [guard]-checking
  values of :none or nil are temporarily converted to t. Thanks to
  Pete Manolios, Ian Johnson, and Harsh Raju Chamarthi for requesting
  this improvement.

  Fixed a bug in which the wrong attachment could be made when the same
  function has an attachment in a book and another in the
  certification world of that book (possibly even built into ACL2),
  if the load of a compiled file is aborted because a sub-book's
  compiled file is missing. The bug has been present since the time
  that [defattach] was added (Version_4.0). An example may be found
  in a comment in the [deflabel] for note-4-2 (ACL2 source file
  ld.lisp).

  The :[doc] and related utilities now cause a clean error when
  provided other than a symbol. Thanks to Jared Davis for pointing
  out the raw Lisp error that had occurred in such cases.

  It had been the case that in raw-mode (see [set-raw-mode]), it was
  possible to confuse [include-book] when including a book in a
  directory different from the current directory. This has been
  fixed. Thanks to Hanbing Liu for bringing this problem to our
  attention with a small example.

  NEW AND UPDATED BOOKS AND RELATED INFRASTRUCTURE

  Many changes have been made to the distributed books, thanks to an
  active ACL2 community. You can contribute books and obtain updates
  between ACL2 releases by visiting the {ACL2 Books |
  http://acl2-books.googlecode.com/} web page.

  There is new Makefile support for certifying just some of the
  distributed books. See [books-certification-classic], in particular
  discussion of the variable ACL2_BOOK_DIRS. Thanks to Sandip Ray for
  requesting this enhancement.

  The [documentation] for [make-event] now points to a new book,
  books/make-event/defrule.lisp, that shows how make-event can be
  used to do macroexpansion before generating [events]. Thanks to
  Carl Eastlund for useful interaction on the acl2-help mailing list
  that led us to add this example.

  EMACS SUPPORT

  Incorporated a version of changes from Jared Davis to the control-t f
  emacs utility (distributed file emacs/emacs-acl2.el), so that one
  can fill a format string from anywhere within the string.

  EXPERIMENTAL VERSIONS

  We refrain from listing changes here to experimental versions, other
  than an enhancement to the [hons] version that can reduce sizes of
  [certificate] files, by applying [hons-copy] to introduce structure
  sharing (ACL2 source function make-certificate-file1).")
 (NOTE-4-2{R}
  (RELEASE-NOTES)
  "ACL2 Version 4.2(r) (January, 2011) Notes

  Please see [note-4-2] for changes in Version 4.2 of ACL2.")
 (NOTE-4-3
  (RELEASE-NOTES)
  "ACL2 Version 4.3 (July, 2011) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes since Version 4.2 into the
  following categories of changes: existing features, new features,
  heuristic improvements, bug fixes, changes at the system level and
  to distributed books, Emacs support, and experimental versions.
  Each change is described in just one category, though of course
  many changes could be placed in more than one category.

  CHANGES TO EXISTING FEATURES

  Significant changes have been made for list-processing primitives
  such as [member] and [assoc]; see [equality-variants]. In summary:
  instead of separate functions based on [eq], [eql], and [equal],
  there is essentially just one function, which is based on [equal];
  the [eq] and [eql] variants are logically just the [equal] variant.
  For example, [member-eq] and [member] are macros that generate
  corresponding calls of [member-equal] in the logic, although in raw
  Lisp they will execute using tests [eq] and [eql], respectively.
  References to any of these in logical contexts such as [theories]
  are now references to the function based on [equal]; for example,
  the hint :in-theory (disable member) is completely equivalent to
  the hint :in-theory (disable member-equal). Distributed books have
  been modified as necessary to accommodate this change. While the
  need for such changes was relatively infrequent, changes were for
  example needed in contexts where terms are manipulated directly;
  for example, [defevaluator] needs to mention [member-equal] rather
  than [member], just as it was already the case to mention, say,
  [binary-append] rather than [append]. Again, see
  [equality-variants] for more information about equality variants.

  A few improvements were made in support of the modified treatment of
  equality variants discussed above. The changes include the
  following.

      o We now allow the use of macro aliases (see [macro-aliases-table] in
      :trigger-fns of rules (see [rule-classes]).

      o We now remove so-called ``guard holders'' (including calls of
      [return-last], hence of [mbe]) in :trigger-terms of rules.

      o We also remove guard holders in formulas of :[congruence] and
      [type-prescription] rules.

      o Macros union-eq and intersection-eq can now take any positive
      number of arguments, and [union-eq] can take zero arguments.
      (Thanks to Jared Davis for requesting this enhancement.) The
      same can be said for new macros [union$] and [intersection$],
      respectively.

      o A few changes were made to built-in theorems from source file
      axioms.lisp, in particular disabling :[type-prescription] rule
      consp-assoc-equal (formerly two enabled rules, consp-assoc-eq
      and consp-assoc) but adding this theorem as a :forward-chaining
      rule, and similarly for
      true-list-listp-forward-to-true-listp-assoc-equal (and
      eliminating rule
      true-list-listp-forward-to-true-listp-assoc-eq; and disabling
      rule true-listp-cadr-assoc-eq-for-open-channels-p. Also,
      theorem all-boundp-preserves-assoc has been renamed to
      all-boundp-preserves-assoc-equal and also strengthened.

      o Some [guard]s were slightly improved (logically weaker or the
      same).

  Improved get-output-stream-string$ to allow for a context and to do
  genuine error printing instead of using [cw]. See [io].

  Added the symbols [flet] and [with-local-stobj] to *acl2-exports*.

  A small change was made to the processing of more than one :[guard]
  declaration for the same function. In particular, a guard of t is
  essentially ignored.

  Attachments are now allowed during evaluation of the first argument
  of [prog2$] even in contexts (such as proofs) during which the use
  of attachments is normally prohibited. More generally, the second
  of the three arguments of [return-last] has this property, except
  in the case of [mbe] (or related macros like [mbe1]), where the
  exec argument may provide the value. Thanks to Sol Swords for
  useful discussions leading us to implement this enhancement.

  The restriction has been removed that prohibited the use of [mbe]
  inside [encapsulate] [events] with a non-empty [signature]. This
  restriction was introduced in Version 3.4, but has not been
  necessary since Version 4.0, when we first started disallowing
  [guard] verification for functions introduced non-[local]ly inside
  such [encapsulate] events.

  We weakened the checks involving common ancestors for evaluator and
  [meta] (and [clause-processor]) functions (see
  [evaluator-restrictions]) so that except in the [mbe] case, the
  next-to-last argument of [return-last] is not considered. Thanks to
  Sol Swords for bringing this issue to our attention.

  The macro [append] no longer requires at least two arguments. Thanks
  to Dave Greve for requesting this enhancement.

  (Mostly for system hackers) Now, [break-on-error] breaks at a more
  appropriate (earlier) time for certain system functions that do not
  return state, such as translate11. Thanks to David Rager for
  requesting this improvement.

  [Show-accumulated-persistence] may take a new argument, :runes, which
  simply causes an alphabetical list of [rune]s to be printed out.

  Improved [trace$] so that :entry, :exit, and :cond forms may
  reference state even if the function being traced does not include
  state as a formal.

  The system function acl2x-expansion-alist now takes a second
  argument, namely [state]. This change allows for more flexibility
  in the sorts of attachments that can be made to this function (see
  [defattach]). Thanks to Jared Davis and Sol Swords for requesting
  this enhancement and providing a preliminary implementation.

  An obscure [proof-checker] change, unlikely to affect users, replaces
  the state global variables erp, val, print-macroexpansion-flg, and
  print-prompt-and-instr-flg by pc-erp, pc-val,
  pc-print-macroexpansion-flg, and pc-print-prompt-and-instr-flg,
  respectively.

  [State] globals fmt-hard-right-margin and fmt-soft-right-margin are
  now untouchable (see [set-fmt-hard-right-margin] and see
  [push-untouchable]). If you bind these state globals with
  [state-global-let*], then you will need to do so with appropriate
  setters to restore their values, for example as follows.

    (state-global-let*
     ((fmt-hard-right-margin 500 set-fmt-hard-right-margin)
      (fmt-soft-right-margin 480 set-fmt-soft-right-margin))
     ...)

  The error message has been improved for the case of evaluating an
  undefined function that has an attachment (see [defattach]). Thanks
  to Jared Davis for sending the following example, which illustrates
  the additional part of the message.

    ACL2 !>(defstub foo (x) t)
    [[... output omitted ...]]
    ACL2 !>(defattach foo identity)
    [[... output omitted ...]]
    ACL2 !>(defconst *x* (foo 3))

    ACL2 Error in ( DEFCONST *X* ...):  ACL2 cannot ev the call of undefined
    function FOO on argument list:

    (3)

    Note that because of logical considerations, attachments (including
    IDENTITY) must not be called in this context.

    [[... additional output omitted ...]]

  The directory string supplied to [add-include-book-dir] no longer
  must terminate with the `/' character, as had been required in some
  Lisp implementations. Thanks to Sol Swords for bringing this issue
  to our attention.

  We no longer print induction schemes with [gag-mode]; use :[pso] if
  you want to see them. Thanks to Dave Greve for this suggestion.

  It is now legal to supply a constant for a [stobj] array dimension.
  See [defstobj]. Thanks to Warren Hunt for requesting this
  enhancement.

  We cleaned up a few issues with [defpkg].

      o It is no longer illegal to submit a [defpkg] form in raw-mode (see
      [set-raw-mode]). Thanks to Jun Sawada for reporting an example
      in which an [include-book] form submitted in raw-mode caused an
      error because of a `hidden' [defpkg] form (see
      [hidden-defpkg]). There will no longer be an error in such
      cases.

      o It had been the case that [local]ly including a book could make it
      possible to use a package defined by that book. Consider for
      example the following book, foo.lisp.

        (in-package \"ACL2\")
        (local (include-book \"arithmetic/top\" :dir :system))

      After certifying this book, it had been possible to admit the
      following events in a new session.

        (include-book \"foo\")
        (defconst acl2-asg::*foo* 3)
        (defconst *c* 'acl2-asg::xyz)

      In Version_4.3, neither of these [defconst] events is admitted.

      o A hard Lisp error is now avoided that had been possible in rare
      cases when including books with hidden packages (see
      [hidden-defpkg]). An example may be found in a comment in the
      [deflabel] for note-4-3 (in ACL2 source file ld.lisp).

  The undocumented (but sometimes useful) functions packn1 and packn
  are now [guard]-verified :[logic] mode functions. Thanks to Sandip
  Ray for requesting this enhancement.

  It had been the case that when including a book, functions defined in
  the book's certification [world] (that is, in its [portcullis]
  [command]s) were typically not given compiled code. That has been
  fixed.

  The commands :[pl] and :[pl2] have been improved, primarily by
  printing information for more rule classes. See [pl] and see [pl2].
  See also the item below about the new [proof-checker] command,
  show-type-prescriptions.

  NEW FEATURES

  New macros [mv?-let] and [mv?] extend the funtionality of [mv-let]
  and [mv] (respectively) to the case of a single value.

  Macro [with-local-state] is available for system programmers who wish
  bind [state] locally, essentially using [with-local-stobj]. But
  this should only be done with extreme care, and it requires an
  active trust tag; see [with-local-state].

  Formatted printing functions now have analogues that print to strings
  and do not take an output channel or [state] as arguments. See
  [printing-to-strings].

  The system function ancestors-check is now available for verified
  modification by users, i.e., attachment using (defattach
  ancestors-check <your_function>). Thanks to Robert Krug for
  providing the necessary proof support, which we modified only in
  small ways.

  New macros, observation-cw and warning$-cw, provide formatted
  printing of [observation]s and warnings (respectively) without
  [state]. Thanks to Harsh Raju Chamarthi and David Rager for
  requests leading to these utilities. Observation-cw is now used in
  some of the distributed books (thanks to Robert Krug for useful
  interaction for that).

  The [proof-checker] command type-alist (see [proof-checker-commands])
  now takes an optional third argument that causes the production of
  forward-chaining reports (see [forward-chaining-reports]). Thanks
  to Dave Greve for requesting such an enhancement.

  The reports generated by forward-chaining,
  [forward-chaining-reports], have been changed to indicate when a
  conclusion reached by forward chaining is REDUNDANT with respect to
  the type information already known. Thanks to Dave Greve for
  suggesting this enhancement.

  The utility [with-prover-time-limit] is now legal for [events] (see
  [embedded-event-form]). For example, the following is now legal.

    (encapsulate
     ()
     (with-prover-time-limit
      2
      (defthm append-assoc
        (equal (append (append x y) z)
               (append x (append y z))))))

  The new utility [with-prover-step-limit] is analogous to the utility
  [with-prover-time-limit], but counts ``prover steps'' rather than
  checking for time elapsed. See [with-prover-step-limit]. Also see
  [set-prover-step-limit] to provide a default step-limit. Note that
  just as [with-prover-time-limit] may now be used to create
  [events], as discussed just above, [with-prover-step-limit] may
  also be used to create [events]. Thanks to Carl Eastlund for
  requesting support for step-limits.

  The macro [progn$] is analogous to [prog2$], but allows an arbitrary
  number of arguments. For example:

    ACL2 !>:trans1 (progn$ (f1 x) (f2 x) (f3 x))
     (PROG2$ (F1 X) (PROG2$ (F2 X) (F3 X)))
    ACL2 !>

  Thanks to David Rager for contributing this macro.

  The macro [defattach] may now be supplied the argument :skip-checks
  :cycles. In this case, as with argument :skip-checks t, a trust tag
  is reuired (see [defttag]), and no logical claims are made. The
  effect is to avoid the usual check that the extended ancestor
  relation has no cycles (see [defattach]). Thanks to Dave Greve for
  requesting this feature.

  You can now limit the printing of subgoal names when using
  :[set-gag-mode] :goals. See [set-print-clause-ids]. Thanks to Karl
  Hoech for a suggestion leading to this enhancement.

  A new [proof-checker] command, show-type-prescriptions, or st for
  short, provides information about :[type-prescription] rules that
  match a given term. Thanks to Dave Greve for requesting this
  enhancement. See also the item above about related improvements to
  commands :[pl] and :[pl2].

  HEURISTIC IMPROVEMENTS

  ACL2 now avoids some repeated attempts to rewrite hypotheses of
  rewrite rules. See [set-rw-cache-state] for a discussion of this
  behavior and how to avoid it. The default behavior has been
  observed to reduce by 11% the overall time required to complete a
  regression. Here are the directories that had the top three time
  decreases and top three time increases, shown in seconds.

    -368 coi/gacc (1064 down to 696: decrease of 35%)
    -220 workshops/1999/ste (664 down to 444: decrease of 33%)
    -148 unicode (331 down to 183: decrease of 45%)
    ....
      +7 workshops/2002/cowles-flat/support (229 up to 236: increase of 3%)
      +8 workshops/1999/ivy/ivy-v2/ivy-sources (508 up to 516: increase of 2%)
     +12 workshops/2009/hardin/deque-stobj (78 up to 91: increase of 17%)

  The so-called ``ancestors check,'' which is used to limit
  backchaining, has been strengthened so that two calls of [equal]
  are considered the same even if their arguments appear in the
  opposite order. Thanks to Robert Krug for providing an
  implementation and a useful discussion.

  The check for [irrelevant-formals] in processing of [defun]s has been
  made more efficient. Thanks to Eric Smith for reporting this issue
  in 2001 (!) and thanks to Warren Hunt for recently sending an
  example. For that example, we have seen the time for the
  [irrelevant-formals] check reduced from about 10 seconds to about
  0.04 seconds.

  (GCL only) The macro [mv] has been modified so that certain fixnum
  boxing can be avoided.

  (Allegro CL only) We have set to nil four Allegro CL variables that
  otherwise enable storing of certain source information (for
  details, see the discussion of ``cross-referencing'' in ACL2 source
  file acl2-init.lisp). As a result of this change we have about a 6%
  speedup on the regression suite, but a 27% time reduction on an
  example that includes a lot of books.

  Exhaustive matching for the case of [free-variables] has been
  extended to [type-prescription] rules, in analogy to the default
  setting :match-free :all already in place for [rewrite], [linear],
  and [forward-chaining] rules. See
  [free-variables-type-prescription]. Thanks to Dave Greve for
  requesting this enhancement.

  BUG FIXES

  A soundness bug was fixed in some raw-Lisp code implementing the
  function, [take]. Thanks to Sol Swords for pointing out this bug
  with (essentially) the following proof of nil.

    (defthmd take-1-nil-logic
      (equal (take 1 nil) '(nil))
      :hints((\"Goal\" :in-theory (disable (take)))))
    (thm nil :hints ((\"Goal\" :use take-1-nil-logic)))

  Calls of [mbe] in ``safe-mode'' situations --- i.e., during
  evaluation of [defconst], [value-triple], and [defpkg] forms, and
  during macroexpansion --- are now guard-checked. Thus, in these
  situations both the :logic and :exec forms will be evaluated, with
  an error if the results are not equal. Formerly, only the :logic
  form was evaluated, which was a soundness bug that could be
  exploited to prove nil. For a such a proof and a bit of further
  explanation, see the example at the top of the comments for
  (deflabel note-4-3 ..) in ACL2 source file ld.lisp.

  It had been possible to prove nil by proving the following theorem
  using ACL2 built on CCL and then proving its negation using ACL2
  built on a different host Lisp.

    (defthm host-lisp-is-ccl
      (equal (cdr (assoc 'host-lisp *initial-global-table*))
             :ccl)
      :rule-classes nil)

  This hole has been plugged by moving the setting of 'host-lisp out of
  the constant *initial-global-table*.

  Fixed [trace$] for arguments that are [stobj] accessors or updaters.
  It also gives an informative error in this case when the accessor
  or updater is a macro (because the introducing [defstobj] event
  specified :inline t).

  Avoided a potential error that could occur when no user home
  directory is located. Our previous solution for Windows simply
  avoided looking for ACL2 customization files (see
  [ACL2-customization]) and acl2-init.lsp files in a user's home
  directory. With this change, we handle such files the same for
  Windows as for non-Windows systems: we always look for ACL2
  customization files (see [ACL2-customization]) and acl2-init.lsp
  files in a user's home directory, but only if such a directory
  exists. Thanks to Hanbing Liu for reporting this issue.

  (GCL only) Fixed a bug that prevented the use of
  [get-output-stream-string$] when the host Lisp is GCL.

  Fixed [with-live-state] to work properly for executable counterparts
  (so-called ``*1*'' functions).

  Fixed a bug in the error message caused by violating the [guard] of a
  macro call.

  Fixed a bug in an error message that one could get when calling
  [defattach] with argument :skip-checks t to attach to a :[program]
  mode function symbol that was introduced with [defun]. (This is
  indeed an error, but the message was confusing.) Thanks to Robert
  Krug for bringing this bug to our attention.

  Fixed a bug in the loop-checking done on behalf of [defattach], which
  could miss a loop. For an example, see the comment about
  loop-checking in the comments for (deflabel note-4-3 ..) in ACL2
  source file ld.lisp.

  Terms of the form (hide <term>) without free variables could be
  simplified, contrary to the purpose of [hide]. This is no longer
  the case, Thanks to Dave Greve for reporting this issue.

  An infinite loop could occur when an error was encountered in a call
  of [wormhole-eval], for example with the following form, and this
  has been fixed.

    (wormhole-eval 'demo
                   '(lambda ()
                      (er hard 'my-top \"Got an error!\"))
                   nil)

  Fixed a bug in detection of package redefinition. While we have no
  example demonstrating this as a soundness bug, we cannot rule it
  out.

  Fixed a bug in the message produced by an erroneous call of [flet].
  Thanks to Jared Davis for reporting this bug and sending a helpful
  example.

  For a failed [defaxiom] or [defthm] event, we now avoid printing
  [rune]s that are used only in processing proposed rules to be
  stored, but not in the proof itself. Thanks to Dave Greve for
  sending us an example that led us to make this fix.

  ACL2 did not reliably enforce the restriction against non-[local]
  [include-book] [events] inside [encapsulate] events, as illustrated
  by the following examples.

    ; not permitted (as expected)
    (encapsulate () (include-book \"foo\"))

    ; permitted (as expected)
    (encapsulate () (local (include-book \"foo\")))

    ; formerly permitted (surprisingly); now, not permitted
    (local (encapsulate () (include-book \"foo\")))

  Moreover, the corresponding error message has been fixed. Thanks to
  Jared Davis and Sandip Ray for relevant discussions.

  When [include-book] is given a first argument that is not a string, a
  more graceful error now occurs, where previously an ugly raw Lisp
  error had occurred. Thanks to Eric Smith for bringing this bug to
  our attention.

  Fixed a bug in an error message that was printed when an unexpected
  expression has occurred where a [declare] form is expected.

  (Since all functions are compiled when the host Lisp is CCL or SBCL,
  the following bug fix did not occur for those host Lisps.) After
  evaluation of ([set-compile-fns] t), all defined functions are
  expected to run with compiled code; but this was not the case for
  functions exported from an [encapsulate] event. This has been
  fixed.

  It had been the case that the :[puff] command was broken for
  [include-book] form whose book had been certified in a world with
  an [add-include-book-dir] event. This has been fixed.

  Evaluation of [stobj] updaters (see [defstobj]) may no longer use
  attachments (see [defattach]). This is a subtle point that will
  likely not affect many users. Thanks to Jared Davis for bringing
  this issue to our attention; a slight variant of his example
  appears in a comment in ACL2 source function oneify-cltl-code.

  It had been the case that even when a [stobj] creator function was
  declared to be untouchable (see [push-untouchable]), a
  [with-local-stobj] form based on that same stobj was permitted.
  Now, such forms are not admitted. Thanks to Jared Davis for a query
  leading to this fix.

  Fixed a buggy message upon [guard] violations, which was suggesting
  the use of (set-guard-checking :none) in some cases when
  guard-checking was already set to :none.

  It had been possible to get a hard Lisp error when computing with
  [ec-call] in [books]. The following is an example of such a book,
  whose certification no longer causes an error.

    (in-package \"ACL2\")
    (defun f (x) x)
    (defconst *c* (ec-call (f 3)))
    (defun g (x) (cons x x))

  The command :[pl2], and also the [proof-checker] commands rewrite and
  show-rewrites (and hence their respective aliases r and sr), now
  take rule-id arguments that can be :[definition] [rune]s. These
  commands dealt with definition rules already, e.g.

    :pl2 (append x y) binary-append

  but they did not allow explicit specification of :definition runes,
  e.g.:

    :pl2 (append x y) (:definition binary-append)

  The following example illustrates a bug in the processing of
  (admittedly obscure) [hints] of the form :do-not-induct name, where
  name is not t, :otf-flg-override, :otf, or nil. In this example,
  ACL2 had essentially ignored the hint and reverted to prove the
  original goal by induction, rather than to skip the goal
  temporarily as is expected for such hints. Thanks to David Rager
  for a helpful discussion.

    (thm (and (equal (append (append x y) z) (append x y z))
              (equal (append (append x2 y2) z2) (append x2 y2 z2)))
         :hints ((\"Subgoal 1\" :do-not-induct some-name)))

  Fixed a slight bug in the definitions of built-in [theories]. For
  example, in a fresh ACL2 session the value of the following form is
  nil, but formerly included several :[definition] [rune]s.

    (let ((world (w state)))
      (set-difference-theories (function-theory :here)
                               (function-theory 'ground-zero)))

  CHANGES AT THE SYSTEM LEVEL AND TO DISTRIBUTED BOOKS

  Many changes have been made to the distributed books, as recorded in
  svn logs under the `Source' and 'Updates' links at the {ACL2 Books
  | http://acl2-books.googlecode.com/} web page. Here we list some of
  the more significant changes.

      o A large library has been graciously contributed by the formal
      verification group at Centaur Technology. See books/centaur/
      and, in particular, file books/centaur/README, which explains
      how the library depends on the experimental HONS extension (see
      [hons-and-memoization]).

      o Among the new books is an illustration of [defattach],
      books/misc/defattach-example.lisp, as well as a variant of
      defattach that avoids the need for [guard] verification,
      books/misc/defattach-bang.lisp.

      o Distributed book books/misc/trace1.lisp has been deleted. It had
      provided slightly more friendly [trace] output for new users,
      but distributed book books/misc/trace-star.lisp may be better
      suited for that purpose.

  ACL2 can once again be built on LispWorks (i.e., as the host Lisp),
  at least with LispWorks 6.0. Thanks to David Rager for useful
  conversations. Several changes have been made from previous
  LispWorks-based ACL2 executables:
  o ACL2 now starts up in its read-eval-print loop.
  o You can save an image with [save-exec].
  o Multiprocessing is not enabled.
  o The stack size is managed using a LispWorks variable that causes
  the stack to grow as needed.
  o When ACL2 is built a script file is written, as is done for other
  host Lisps. Thus, (assuming that no PREFIX is specified),
  saved_acl2 is just a small text file that invokes a binary
  executable, which for Lispworks is saved_acl2.lw.

  The HTML documentation no longer has extra newlines in <pre>
  environments.

  Statistics on ACL2 code size may be found in distributed file
  doc/acl2-code-size.txt. This file and other information can be
  found in a new [documentation] topic, [about-ACL2].

  Fixed the build process to pay attention to environment variable
  ACL2_SYSTEM_BOOKS (which may be supplied as a command-line argument
  to `make'). An ACL2 executable can thus now be built even when
  there is no books/ subdirectory if a suitable replacement directory
  is supplied.

  Some warnings from the host Lisp are now suppressed that could
  formerly appear. For example, the warnings shown below occurs in
  Version 4.2 using Allegro CL, but not in Version 4.3.

    ACL2 !>(progn (set-ignore-ok t)
                  (set-irrelevant-formals-ok t)
                  (defun bar (x y)
                    x))
    [[.. output omitted ..]]
     BAR
    ACL2 !>:comp bar
    ; While compiling BAR:
    Warning: Variable Y is never used.
    ; While compiling (LABELS ACL2_*1*_ACL2::BAR ACL2_*1*_ACL2::BAR):
    Warning: Variable Y is never used.
     BAR
    ACL2 !>

  EMACS SUPPORT

  The distributed Emacs file emacs/emacs-acl2.el now indents calls of
  er@par and warning$@par the same way that calls of defun are
  indented.

  EXPERIMENTAL VERSIONS

  The parallel version (see [parallelism]) now supports parallel
  evaluation of the ``waterfall'' part of the ACL2 prover; see
  [set-waterfall-parallelism]. Thanks to David Rager for doing the
  primary design and implementation work.

  A new macro, [spec-mv-let], supports speculative and parallel
  execution in the parallel version, courtesy of David Rager.

  Among the enhancements for the HONS version (see
  [hons-and-memoization]) are the following.

      [Memoize]d functions may now be traced (see [trace$]). Thanks to Sol
      Swords for requesting this enhancement.

      [Memoize-summary] and [clear-memoize-statistics] are now :[logic]
      mode functions that return nil. Thanks to Sol Swords for this
      enhancement.

      [Memoize] is now explicitly illegal for constrained functions.
      (Already such memoization was ineffective.)

      A new keyword argument, :AOKP, controls whether or not to allow
      memoization to take advantage of attachments; see [memoize] and
      for relevant background, see [defattach].

      [Memoize] is now illegal by default for :[logic] mode functions that
      have not had their guards verified. See [memoize] (keyword
      :ideal-okp) and see [ACL2-defaults-table] (key
      :memoize-ideal-okp) for and explanation of this restriction and
      how to avoid it.

      [History] commands such as :[pe] and :[pbt] now display ``M'' or
      ``m'' to indicate memoized functions. See [pc].")
 (NOTE-4-3{R}
  (RELEASE-NOTES)
  "ACL2 Version 4.3(r) (July, 2011) Notes

  Please see [note-4-3] for changes in Version 4.3 of ACL2.")
 (NOTE-5-0
  (RELEASE-NOTES)
  "ACL2 Version 5.0 (August, 2012) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes since Version 4.3 into the
  following categories of changes: existing features, new features,
  heuristic improvements, bug fixes, changes at the system level and
  to distributed books, Emacs support, and experimental versions.
  Each change is described in just one category, though of course
  many changes could be placed in more than one category.

  NOTE: ACL2 is now distributed under Version 2 of the GNU General
  Public License. [Added later: The license has changed since
  Version_5.0. See LICENSE.] Formerly, any later version had been
  acceptable. Moreover, books are no longer distributed from a
  University of Texas website, but rather, from Google Code at the
  {ACL2 Books Downloads |
  http://code.google.com/p/acl2-books/downloads/} page.

  CHANGES TO EXISTING FEATURES

  A fatal error now occurs if environment variable ACL2_CUSTOMIZATION
  has a value other than NONE or the empty string, but is not the
  name of an existing file. Thanks to Harsh Raju Chamarthi for
  requesting such a change.

  Functions read-acl2-oracle (and read-acl2-oracle@par), read-run-time,
  and main-timer are no longer untouchable (see
  [remove-untouchable]).

  We now avoid certain duplicate conjuncts in the [constraint] stored
  for [encapsulate] [events]. For example, the constraint stored for
  the following event formerly included (EQUAL (FOOP (CONS X Y))
  (FOOP Y)) and (BOOLEANP (FOOP X)) twice each, but no more.

    (encapsulate
     ((foop (x) t))
     (local (defun foop (x) (declare (ignore x)) t))
     (defthm foop-constraints
       (and (booleanp (foop x))
            (equal (foop (cons x y)) (foop y)))
       :rule-classes
       ((:type-prescription :corollary (booleanp (foop x)))
        (:rewrite :corollary (equal (foop (cons x y)) (foop y))))))

  The :[guard] for a constrained function (see [signature]) may now
  mention function symbols introduced in the same [encapsulate] event
  that introduces that function. Thanks to Nathan Wetzler for a
  helpful discussion leading to this improvement.

  The test for redundancy (see [redundant-events]) of [encapsulate]
  [events] has been improved in cases involving redefinition (see
  [ld-redefinition-action]). Thanks to Jared Davis for providing the
  following example, which illustrates the problem.

    (redef!)

    (encapsulate ()
      (defun g (x)
        (+ 3 x)))

    (g 0) ; 3, as expected

    (encapsulate ()
      (defun g (x)
        (+ 4 x)))

    (g 0) ; 4, as expected

    ; Unfortunately, the following was flagged as redundant because it agreed
    ; with the first encapsulate above.  That has been fixed; now, it is
    ; recognized as not being redundant.
    (encapsulate ()
      (defun g (x)
        (+ 3 x)))

  The test for redundancy of [defun] and [defconst] events has been
  improved in the case that redefinition is active. In that case,
  redundancy now additionally requires that the ``translated'' body
  is unchanged, i.e., even after expanding macro calls and replacing
  constants (defined by [defconst]) with their values. Thanks to Sol
  Swords for requesting this enhancement, and to Jared Davis for
  pointing out a bug in a preliminary change. See [redundant-events],
  in particular the ``Note About Unfortunate Redundancies''. Note
  that this additional requirement was already in force for
  redundancy of [defmacro] events.

  The macro [defmacro-last] and the [table] [return-last-table] have
  been modified so that when they give special treatment to a macro
  mac and its raw Lisp counterpart mac-raw, a call (return-last
  'mac-raw ...) can be made illegal when encountered directly in the
  top level loop, as opposed to inside a function body. See
  [return-last]. Thanks to Harsh Raju Chamarthi for showing us an
  example that led us to make this improvement.

  We removed a barrier to admitting function definitions, as we explain
  using the following example.

    (defun foo (m state)
      (declare (xargs :stobjs state))
      (if (consp m)
          (let ((state (f-put-global 'last-m m state)))
            (foo (cdr m) state))
        state))

  Previously, ACL2 complained that it could not determine the outputs
  of the [let] form, as is necessary in order to ensure that [state]
  is returned by it. ACL2 now works harder to solve this problem as
  well as the analogous problem for [mv-let] and, more generally for
  [mutual-recursion]. (The main idea is to reverse the order of
  processing the [if] branches if necessary.) We thank Sol Swords for
  contributing a version of the above example and requesting this
  improvement.

  It is no longer the case that [break-on-error] causes a Lisp break
  when encountering an error during translation of user input into
  internal (translated) form (see [term]). The reason is that an
  improvement to the translation process, specifically the one
  described in the preceding paragraph, allows certain backtracking
  from ``errors'', which are intended to be silent rather than
  causing breaks into raw Lisp. Thanks to Jared Davis for sending an
  example leading to this change.

  (CCL and SBCL only) When the host Lisp is CCL or SBCL, then since all
  functions are compiled, a [certify-book] command will no longer
  load the newly-compiled file (and similarly for [include-book] with
  argument :load-compiled-file :comp).

  [Set-write-acl2x] now returns an error triple and can take more
  values, some of which automatically allow including uncertified
  books when [certify-book] is called with argument :acl2x t.

  The environment variable COMPILE_FLG has been renamed
  ACL2_COMPILE_FLG; see [certify-book].

  The macros [defthmd] and [defund] no longer return an error triple
  with value :SKIPPED when proofs are being skipped. Rather, the
  value returned is the same as would be returned on success when
  proofs are not skipped.

  For those who use [set-write-ACL2x]: now, when [certify-book] is
  called without a :ttagsx argument supplied, then the value of
  :ttagsx defaults to the (explicit or default) value of the :ttags
  argument.

  The :[pl] and :[pl2] [command]s can now accept [term]s that had
  previously been rejected. For example, the command :pl (member a
  (append x y)) had caused an error, but now it works as one might
  reasonably expect, treating [member] as [member-equal] (see
  [equality-variants] for relevant background). Thanks to Jared Davis
  for reporting this problem by sending the above example.

  We have eliminated some hypotheses in built-in [rewrite] rules
  characterp-nth and ordered-symbol-alistp-delete-assoc-eq.

  Added the symbols [f-get-global], [f-put-global], and
  [state-global-let*] to *acl2-exports*.

  Added to the [guard]s of [push-untouchable] and [remove-untouchable]
  the requirement that the second argument must be a Boolean. Thanks
  to Jared Davis for sending an example that led to this change.

  The built-in function string-for-tilde-@-clause-id-phrase has been
  put into :[logic] mode and had its guards verified, as have some
  subsidiary functions. A few new rules have been added in support of
  this work; search for string-for-tilde-@-clause-id-phrase in ACL2
  source file boot-strap-pass-2.lisp if interested. Thanks to David
  Rager for contributing an initial version of this improvement.

  All trust tags are now in the [keyword] package. The [defttag] event
  may still take a symbol in an arbitrary package, but the trust tag
  created will be in the keyword package (with the same [symbol-name]
  as the symbol provided). Similarly, non-nil symbols occurring in
  the :ttags argument of an [include-book] or [certify-book] command
  will be converted to corresponding keywords. See [defttag].

  There have been several changes to [gag-mode]. It is now is initially
  set to :goals, suppressing most proof commentary other than key
  checkpoints; see [set-gag-mode]. (As before, see [pso] for how to
  recover the proof output.) Also, top-level induction schemes are
  once again printed when gag-mode is on, though these as well as
  printing of guard conjectures can be abbreviated (``eviscerated'')
  with a new [evisc-tuple]; see [set-evisc-tuple], in particular the
  discussion there of :GAG-MODE. Finally, the commentary printed
  within [gag-mode] that is related to [forcing-round]s is now less
  verbose. Thanks to Dave Greve and David Rager for discussions
  leading to the change in the printing of induction schemes under
  gag-mode; thanks to Warren Hunt for an email that led us to similar
  handling for printing of guard conjectures; and thanks to Robert
  Krug for a suggestion that led us to restore, in abbreviated form,
  important information about the sources of forcing round goals.

  An error now occurs if [ld] is called while loading a compiled book.
  See [calling-ld-in-bad-contexts]. Thanks to David Rager for
  reporting a low-level assertion failure that led us to make this
  change.

  The [proof-checker] interactive loop is more robust: most errors will
  leave you in that loop, rather than kicking you out of the
  proof-checker and thus back to the main ACL2 read-eval-print loop.
  Thanks to David Hardin for suggesting this improvement in the case
  of errors arising from extra right parentheses.

  The summary at the end of a proof now prints the following note when
  appropriate:

    [NOTE: A goal of NIL was generated.  See :DOC nil-goal.]

  See [nil-goal].

  Improved [dmr] to show the function being called in the case of
  explicit evaluation: ``(EV-FNCALL function-being-called)''.

  It is now permitted to bind any number of [stobjs] to themselves in
  the bindings of a [let] expression. But if any stobj is bound to
  other than itself in [let] bindings, then there still must be only
  one binding in that LET expression. The analogous relaxation holds
  for [lambda] expressions. Thanks to Sol Swords for requesting such
  a change, which was needed for some code generated by macro calls.

  The macro [top-level] now returns without error; See [top-level].
  Formerly, this macro always returned an error triple (mv t ..
  state), which meant that normal calls of [ld] would stop after
  encountering a call of top-level. Thanks to Jared Davis for
  bringing this issue to our attention.

  It is no longer the case that when you specify [xargs] keyword
  :non-executable t in a [defun] form rather than using [defun-nx],
  then the form of the body need match only the shape (prog2$
  (throw-nonexec-error ... ...) ...). We now require that the body of
  the definition of a function symbol, fn, with formals (x1 ... xk),
  be of the form (prog2$ (throw-nonexec-error 'fn (list x1 ... xk))
  ...). This fixes the following odd behavior, which could be
  considered a bug. Consider a book that contains the following two
  events.

    (defun foo (x)
      (declare (xargs :guard t :non-executable t :mode :logic))
      (prog2$ (throw-nonexec-error 'bar (list x))
              (cons 3 x)))
    (defn h (x)
      (foo x))

  After certifying this book and then including it in a new session,
  the behavior occurred that is displayed below; notice the mention
  of BAR. However, if the two forms were submitted directly in the
  loop, then the error message had mentioned FOO instead of BAR. This
  discrepancy has been eliminated, by rejecting the proposed
  definition of foo because the name in the first argument of
  throw-nonexec-error was 'bar where now it must be 'foo.

    ACL2 !>(h 3)

    ACL2 Error in TOP-LEVEL:  ACL2 cannot ev the call of undefined function
    BAR on argument list:

    (3)

    To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.

    ACL2 !>

  A tautology checker used in the ACL2 sources (function if-tautologyp)
  has been limited somewhat in the effort it makes to recognize a
  tautology. While we expect it to be rare for the effect of this
  change to be noticeable, we thank Sol Swords for sending us an
  example that motivated this change: a [guard] verification that
  took about 5 seconds in Version_4.3 now takes, on the same machine,
  about 0.07 seconds.

  The behavior of backquote (`) has been changed slightly to be
  compatible with its behavior in raw Lisp. The change is to allow
  the use of comma-atsign (,@) at the end of a list, as in the
  following example.

    (let ((x 3) (y 2) (z 7)) `(,x ,y ,@z))

  Formerly, evaluation of this form had caused a guard violation in the
  ACL2 loop unless guard-checking was off (i.e., [set-guard-checking]
  was invoked with nil or :none), in which case it returned (3 2).
  But we observed evaluation of this form to return (3 2 . 7) in
  every host Lisp on which ACL2 runs (Allegro CL, CCL, CLISP, CMUCL,
  GCL, LispWorks, and SBCL). Now, ACL2 behaves like these Lisps.

  A call of the [theory] macro had previously returned nil when applied
  to other than the name of name of a previously executed [deftheory]
  event. Now, a hard error occurs.

  The [table] binop-table has been replaced by the table
  [untrans-table]. However, [add-binop] and [remove-binop] continue
  to have the same effect as before. See [add-macro-fn], which is a
  new feature discussed below.

  The function [booleanp] is now defined using [eq] instead of [equal],
  which may increase its efficiency. Thanks to Jared Davis for this
  change.

  For pairs (key . val) in the [macro-aliases-table], there had been a
  requirement that val is a known function symbol. Now, it only needs
  to be a symbol. (This change was made to support the new feature,
  [defun-inline], described elsewhere in these release notes.)

  NEW FEATURES

  A new ``tau system'' provides a kind of ``type checker.'' See
  [tau-system]. Thanks to Dave Greve for supplying a motivating
  example (on which this system can provide significant speedup), and
  to Sol Swords for sending a very helpful bug report on a
  preliminary implementation.

  Users may now arrange for additional summary information to be
  printed at the end of [events]. [Note added at Version_6.1:
  Formerly we pointed here to print-summary-user, but now, see
  [finalize-event-user]; also see [note-6-1]]. Thanks to Harsh Raju
  Chamarthi for requesting this feature and participating in a design
  discussion.

  A new, advanced [proof-checker] command, geneqv, shows the generated
  equivalence relation at the current subterm. Thanks to Dave Greve
  for an inquiry leading to this enhancement.

  A new reader macro, #u, permits the use of underscore characters in a
  number. See [sharp-u-reader]. Thanks to Jared Davis for requesting
  this capability.

  New [proof-checker] commands pl and pr provide interfaces to the ACL2
  commands :[pl] and :[pr], respectively. These can be useful if you
  want to see trivially-proved hypotheses, as now clarified in the
  [proof-checker] documentation for its show-rewrites command. See
  [proof-checker-commands]. Thanks to Pete Manolios for suggesting
  such clarification and capability.

  It is now legal to call [non-executable] functions without the usual
  [signature] restrictions imposed on executable code. For example,
  the third event below was not admissible, but now it is.

    (defstobj foo fld)
    (defun-nx id (x)
      x)
    (defun f (foo)
      (declare (xargs :stobjs foo :verify-guards nil))
      (cons 3 (id foo)))

  Thanks to Jared Davis for requesting this enhancement, in particular
  for calling non-executable functions in the :logic part of an [mbe]
  call. Here is Jared's example, which is admissible now but formerly
  was not.

    (defstobj foo (fld))
    (defun-nx my-identity (x) x)
    (defun my-fld (foo)
      (declare (xargs :stobjs foo))
      (mbe :logic (my-identity foo)
           :exec (let ((val (fld foo)))
                   (update-fld val foo))))

  A new macro, [non-exec], allows the use of non-executable code, for
  example inside ordinary function definitions. Thanks to Sol Swords
  for requesting this enhancement.

  A new ``provisional certification'' process is supported that can
  allow [books] to be certified before their included sub-books have
  been certified, thus allowing for potentially much greater
  `make'-level parallelism. See [provisional-certification]. Thanks
  to Jared Davis for requesting this feature and for helpful
  discussions, based in part on rudimentary provisional certification
  schemes that he developed first at Rockwell Collins and later for
  his `Milawa' project. Also, thanks to Jared and to Sol Swords for
  testing this feature and for providing a fix for a bug in a
  preliminary implementation, and thanks to Sol for providing
  performance feedback and a crucial suggestion that led to an
  improved implementation.

  Event summaries now show the names of events that were mentioned in
  [hints] of type :use, :by, or :clause-processor. See
  [set-inhibited-summary-types]. Thanks to Francisco J. Martin Mateos
  for requesting such an enhancement (actually thanks to the
  community, as his request is the most recent but this has come up
  from time to time before).

  ACL2 now stores a data structure representing the relation ``Event A
  is used in the proof of Event B.'' See [dead-events], which
  explains this data structure and mentions one application: to
  identify dead code and unused theorems. Thanks to Shilpi Goel for
  requesting such a feature and for helpful feedback.

  A new [documentation] topic provides a guide to programming with
  state; see [programming-with-state]. Thanks to Sarah Weissman for
  suggesting that such a guide might be useful, and to David Rager
  for helpful feedback on a preliminary version. There also has been
  some corresponding reorganization of the documentation as well as
  creation of additional documentation (e.g., see
  [state-global-let*]). Now, most built-in functions and macros
  commonly used in programs (as opposed to [events] like [defun], for
  example) are subtopics of a new topic --- see [ACL2-built-ins] ---
  which is a subtopic of [programming], a topic that in turn has
  considerably fewer direct subtopics than before.

  It is now possible to bind extra variables in a :USE hint, thus
  avoiding the error message: ``The formula you wish to instantiate,
  ..., mentions only the variable(s) ...''. See [lemma-instance], in
  particular the discussion of keyword :extra-bindings-ok. Thanks to
  Sol Swords for requesting such an enhancement.

  The function read-object-suppress is like read-object except that it
  avoids errors and discards the value read. See [io].

  A [stobj] may now be passed as an argument where another stobj is
  expected if the two are ``congruent''. See [defstobj], in
  particular, its discussion of the new :congruent-to keyword of
  defstobj. Thanks to Sol Swords for requesting this enhancement and
  for useful discussions contributing to its design.

  A new top-level utility has been provided that shows the assembly
  language for a defined function symbol; see [disassemble$]. Thanks
  to Jared Davis for requesting such a utility and to Shilpi Goel for
  pointing out an inconvenience with the initial implementation. Note
  that it uses the distributed book books/misc/disassemble.lisp,
  which users are welcome to modify (see [community-books]).

  The macro set-accumulated-persistence is an alias for
  [accumulated-persistence]. Thanks to Robert Krug for suggesting
  this addition.

  A new [documentation] topic lists lesser-known and advanced ACL2
  features, intended for those with prior ACL2 experience who wish to
  extend their knowledge of ACL2 capabilities. See
  [advanced-features]. Thanks to Warren Hunt and Anna Slobodova for
  requesting such information.

  A new macro, [deftheory-static], provides a variant of [deftheory]
  such that the resulting theory is the same at [include-book] time
  as it was at [certify-book] time. Thanks to Robert Krug for helpful
  discussions on this new feature and for updating his
  books/arithmetic-5/ distributed books to use this feature.

  A new event, [defabsstobj], provides a new way to introduce
  single-threaded objects (see [stobj] and see [defstobj]). These
  so-called ``abstract [stobj]s'' permit user-provided logical
  definitions for primitive operations on stobjs, for example using
  an alist-based representation instead of a list-based
  representation for array fields. Moreover, the proof obligations
  guarantee that the recognizer is preserved; hence the
  implementation avoids executing the recognizer, which may be an
  arbitrarily complex invariant that otherwise would be an expensive
  part of [guard] checks. Thanks to Warren Hunt for a request leading
  us to design and implement this new feature, and thanks to Rob
  Sumners for a request leading us to implement a related utility,
  [defabsstobj-missing-events]. See [defabsstobj]. Also thanks to Sol
  Swords for sending an example exhibiting a bug in the initial
  implementation, which has been fixed.

  A new command, :psof <filename>, is like :pso but directs proof
  replay output to the specified file. For large proofs, :[psof] may
  complete much more quickly than :[pso]. see [psof]. More generally,
  a new utility, [wof] (an acronym for ``With Output File''), directs
  standard output and proofs output to a file; see [wof].

  The new macro [defnd] defines a function with :[guard] t and
  [disable]s that function, in analogy to how [defund] defines with
  [defun] and then [disable]s. Thanks to Shilpi Goel for requesting
  this feature.

  The :[pl2] command now shows :[linear] rules; and a new
  [proof-checker] command, show-linears (equivalently, sls), is an
  analogue of the [proof-checker] show-rewrites (sr) command, but for
  [linear] rules. Thanks to Shilpi Goel for requesting this new
  proof-checker command. Finally, a corresponding new proof-checker
  command, apply-linear (al), is an analogue of the [proof-checker]
  rewrite (r) command, but for [linear] rules.

  The macros [add-macro-fn] and [remove-macro-fn] replace macros
  [add-binop] and [remove-binop], respectively, though the latter
  continue to work. The new macros allow you to decide whether or not
  to display calls of binary macros as flat calls for
  right-associated arguments, e.g., (append x y z) rather than
  (append x (append y z)). See [add-macro-fn].

  It is now possible to request that the host Lisp compiler inline
  calls of specified functions, or to direct that the host Lisp
  compiler not inline such calls. See [defun-inline] and see
  [defun-notinline]. We thank Jared Davis for several extensive,
  relevant conversations, and for finding a bug in a preliminary
  implementation. We also thank others who have engaged in
  discussions with us about inlining for ACL2; besides Jared Davis,
  we recall such conversations with Rob Sumners, Dave Greve, and
  Shilpi Goel.

  HEURISTIC IMPROVEMENTS

  Reading of ACL2 [arrays] (see [aref1], see [aref2]) has been made
  more efficient (as tested with CCL as the host Lisp) in the case of
  consecutive repeated reads of the same named array. Thanks to Jared
  Davis and Sol Swords for contributing this improvement.

  Slightly modified the induction schemes stored, so that calls of
  so-called ``guard-holders'' (such as [mbe] and [prog2$] --- indeed,
  any call of [return-last] --- and [the]) are expanded away. In
  particular, calls of equality variants such as [member] are treated
  as their corresponding function calls, e.g., [member-equal]; see
  [equality-variants]. Guard-holders are also now expanded away
  before storing [constraint]s for [encapsulate] [events], which can
  sometimes result in simpler constraints.

  Improved the performance of [dmr] (technical note: by modifying raw
  Lisp code for function dmr-flush, replacing finish-output by
  force-output).

  We now avoid certain rewriting loops. A long comment about this
  change, including an example of a loop that no longer occurs, may
  be found in source function expand-permission-result.

  Slightly strengthened [type-set] reasoning at the level of literals
  (i.e., top-level hypotheses and conclusions). See the comment in
  ACL2 source function rewrite-atm about the ``use of dwp = t'' for
  an example of a theorem provable only after this change.

  Strengthened the ability of [type-set] reasoning to make deductions
  about terms being integers or non-integer rationals. The following
  example illustrates the enhancement: before the change, no
  simplification was performed, but after the change, the conclusion
  simplifies to (foo t). Thanks to Robert Krug for conveying the
  problem to us and outlining a solution.

    (defstub foo (x) t)
    (thm ; should reduce conclusion to (foo t)
     (implies (and (rationalp x)
                   (rationalp y)
                   (integerp (+ x (* 1/3 y))))
              (foo (integerp (+ y (* 3 x))))))

  BUG FIXES

  Fixed a class of soundness bugs involving each of the following
  functions: [getenv$], [get-wormhole-status], [cpu-core-count],
  [wormhole-p], [random$], file-write-date$, and serialize-read-fn,
  and (for the HONS version of ACL2) [clear-memoize-table] and
  [clear-memoize-tables] as well as (possible soundness bug)
  serialize-write-fn. For example, we were able to admit the
  following events, but that is no longer the case (neither for
  getenv$ as shown, nor analogously for other functions listed
  above).

    (defthm not-true
      (stringp (cadr (getenv$ \"PWD\" (build-state))))
      :rule-classes nil)

    (defthm contradiction
      nil
      :hints ((\"Goal\"
               :in-theory (disable (getenv$))
               :use not-true))
      :rule-classes nil)

  Fixed a soundness bug involving with-live-state, which could cause an
  error in the use of [add-include-book-dir] or
  [delete-include-book-dir] in a book or its [portcullis] commands.
  See [with-live-state], as the documentation for this macro has been
  updated; in particular it is now untouchable (see
  [remove-untouchable]) and is intended only for system hackers.
  Thanks to Jared Davis for reporting a bug in the use of
  [add-include-book-dir] after our first attempt at a fix.

  Fixed a soundness bug based on the use of [skip-proofs] together with
  the little-used argument k=t for [certify-book]. An example proof
  of nil appears in a comment in the ACL2 sources, in (deflabel
  note-5-0 ...).

  Fixed a soundness bug that allowed users to define new
  [proof-checker] primitive commands. Before this fix, a book proving
  nil could be certified, as shown in a comment now in the
  introduction of the [table] pc-command-table in source file
  proof-checker-a.lisp.

  (Technical change, primarily related to [make-event]:) Plugged a
  security hole that allowed [books]' [certificate]s to be
  out-of-date with respect to [make-event] expansions, but not
  recognized as such. The change is to include the so-called
  expansion-alist in the certificate's checksum. An example appears
  in a comment in the ACL2 sources, in (deflabel note-5-0 ...).

  Fixed a bug in [guard] verification due to expanding calls of
  primitives when translating user-level terms to internal form, so
  called ``translated terms'' (see [term]). While we have not
  observed a soundness hole due to this bug, we have not ruled it
  out. Before the bug fix, the following event was admissible, as
  guard verification succeeded (but clearly should not have).

    (defun f ()
      (declare (xargs :guard t))
      (car (identity 3)))

  For those who want details about this bug, we analyze how ACL2
  generates [guard] proof obligations for this example. During that
  process, it evaluates ground subexpressions. Thus, (identity '3) is
  first simplified to '3; so a term must be built from the
  application of car to '3. Guard-checking is always turned on when
  generating guard proof obligations, so now, ACL2 refuses to
  simplify (car '3) to 'nil. However, before this bug fix, when ACL2
  was building a term by applying car to argument '3, it did so
  directly without checking guards; source code function cons-term is
  `smart' that way. After the fix, such term-building reduction is
  only performed when the primitive's guard is met.

  While calls of many event macros had been prohibited inside
  executable code, others should have been but were not. For example,
  the following was formerly allowed.

    (defun foo (state)
      (declare (xargs :mode :program :stobjs state))
      (add-custom-keyword-hint :my-hint (identity nil)))
    (foo state) ; Caused hard raw Lisp error!

  Thus, several event macros (including for example
  [add-custom-keyword-hint]) may no longer be called inside
  executable code.

  Fixed an assertion that could occur, for example, after reverting to
  prove the original goal by induction and generating a goal of NIL.
  Thanks to Jared Davis for sending us a helpful example to bring
  this bug to our attention.

  It was possible for [defstobj] to generate raw Lisp code with
  excessively restrictive type declarations. This has been fixed.
  Thanks to Warren Hunt for reporting this bug and sending an example
  that illustrates it. See [stobj-example-2] for examples of such raw
  Lisp code; now, one finds (and fixnum (integer 0 *)) where formerly
  the type was restricted to (integer 0 268435455).

  Fixed a bug in that was ignoring the use of
  :computed-hint-replacement in certain cases involving a combination
  of computed hints and custom keyword hints. Thanks to Robert Krug
  for reporting this bug and sending a very helpful example.

  Fixed a bug in the output from [defattach], which was failing to list
  previous [events] in the message about ``bypassing constraints that
  have been proved when processing the event(s)''.

  (GCL only) Fixed a bug in [set-debugger-enable] (which was only a bug
  in GCL, not an issue for other host Lisps).

  Fixed ACL2 trace output to indent properly for levels above 99 (up to
  9999). Thanks to Warren Hunt for bringing this bug to our
  attention.

  Fixed a bug in the reporting of times in event summaries --- probably
  one that has been very long-standing! The times reported had often
  been too small in the case of compound [events], notably
  [include-book]. Thanks to everyone who reported this problem (we
  have a record of emails from Eric Smith and Jared Davis on this
  issue).

  Fixed a bug in :expand [hints], where the use of :lambdas could
  prevent other parts of such a hint. For example, the following
  invocation of [thm] failed before this fix was made.

    (defund foo (x) (cons x x))
    (thm (equal (car (foo x)) x)
    :hints ((\"Goal\" :expand (:lambdas (foo x)))))

  Certain ``program-only'' function calls will now cause hard Lisp
  errors. (The rather obscure reason for this fix is to support
  logical modeling of the ACL2 evaluator. A relevant technical
  discussion may be found in source function oneify-cltl-code, at the
  binding of variable fail_program-only-safe.)

  There was an unnecessary restriction that [flet]-bound functions must
  return all [stobj]s among their inputs. For example, the following
  definition was rejected because state was not among the outputs of
  h. This restriction has been removed.

    (defun foo (state)
      (declare (xargs :stobjs state))
      (flet ((h (state) (f-boundp-global 'x state)))
        (h state)))

  We fixed a bug, introduced in the preceding release (Version 4.3), in
  the check for irrelevant formals (see [irrelevant-formals]). That
  check had been too lenient in its handling of lambda ([let])
  expressions, for example allowing the following definition to be
  admitted in spite of its first formal parameter obviously being
  irrelevant.

    (defun foo (x clk)
      (if (zp clk)
          :diverge
        (let ((clk (1- clk)))
          (foo x clk))))

  Fixed a bug in the mini-proveall target in GNUmakefile. The fix
  includes a slight change to the :mini-proveall [command] (an extra
  event at the end). Thanks to Camm Maguire for reporting this bug.

  Fixed a bug that occurred when [certify-book] was called after using
  [set-fmt-soft-right-margin] or [set-fmt-hard-right-margin] to set a
  small right margin.

  Fixed [set-inhibit-warnings] so that it takes effect for a subsequent
  [include-book] event. Thanks to Jared Davis and David Rager for
  queries that led to this fix.

  Hard Lisp errors are now avoided for certain :[rewrite] rules: those
  whose [equivalence] relation is other than equal when the rule is
  originally processed, but is no longer a known equivalence relation
  when the rule is to be stored. Thanks to Jared Davis for sending a
  useful example, a minor variant of which is included in a comment
  in source function interpret-term-as-rewrite-rule (file
  defthm.lisp).

  Fixed a bug in the ACL2 evaluator (source function raw-ev-fncall),
  which was unlikely to be exhibited in practice.

  Fixed a hard Lisp error that could occur for ill-formed :[meta]
  [rule-classes], e.g., (:meta :trigger-fns '(foo)).

  It is now an error to include a [stobj] name in the :renaming alist
  (see [defstobj]).

  Some bogus warnings about non-recursive function symbols have been
  eliminated for rules of class :[type-prescription].

  (Allegro CL host Lisp only) Fixed an obsolete setting of compiler
  variable comp:declared-fixnums-remain-fixnums-switch, which may
  have been responsible for intermittent (and infrequent) checksum
  errors encountered while including books during certification of
  the regression suite.

  Fixed a [proof-checker] bug that could result in duplicate goal names
  in the case of forced hypotheses. An example showing this bug,
  before the fix, appears in a comment in the ACL2 sources, in
  (deflabel note-5-0 ...).

  We fixed a bug in a prover routine involved in [type-set]
  computations involving linear arithmetic. This bug has been around
  since at least as far back as Version_3.3 (released November,
  2007). We are not aware of any resulting unsoundness, though it did
  have the potential to weaken the prover. For example, the following
  is proved now, but was not proved before the bug was fixed.

    (thm
     (implies (and (rationalp x)
                   (rationalp y)
                   (integerp (+ (* 1/3 y) x)))
              (integerp (+ y (* 3 x))))
     :hints ((\"Goal\" :in-theory (disable commutativity-of-+))))

  Although all bets are off when using redefinition (see
  [ld-redefinition-action]), we wish to minimize negative effects of
  its use, especially raw Lisp errors. The examples below had caused
  raw Lisp errors, but no longer.

    (defstobj st fld :inline t)
    (redef!)
    (defstobj st new0 fld)
    (u)
    (fld st) ; previously an error, which is now fixed

    ; Fresh ACL2 session:
    (redef!)
    (defun foo (x) x)
    (defmacro foo (x) `(quote ,x))
    (u)

    ; Fresh ACL2 session:
    (redef!)
    (defmacro foo (x) (cons 'list x))
    (defun foo (x) x)

  Fixed a bug that could cause hard Lisp errors in an [encapsulate]
  event. Thanks to Sol Swords for sending an example that exhibited
  this bug. Here is a simpler such example; the bug was in how it was
  checked whether the [guard] for a guard-verified function (here, g)
  depends on some function introduced in the [signature] of the
  [encapsulate] (here, the function f).

    (encapsulate
     ((f (x) t))
     (local (defun f (x) (declare (xargs :guard t)) x))
     (defun g (x)
       (declare (xargs :guard (if (integerp x) (f x) t)))
       x))

  Fixed a bug in mfc-relieve-hyp that we believe could prohibit its use
  on the last hypothesis. Thanks to Sol Swords for reporting this bug
  and providing a fix.

  The syntax #! (see [sharp-bang-reader]) was broken after a skipped
  readtime conditional. For example, the following input line caused
  an error.

    #+skip #!acl2(quote 3)

  This bug has been fixed.

  Fixed a bug in the [break-rewrite] utility, which was evidenced by
  error messages that could occur when dealing with free variables.
  An example of such an error message is the following; we thank
  Robert Krug for sending us an example that produced this error and
  enabled us to produce a fix.

    HARD ACL2 ERROR in TILDE-@-FAILURE-REASON-PHRASE1:  Unrecognized failure
    reason, ((MEM-ARRAY . X86) (ADDR QUOTE 9)).

  We fixed an obscure bug that we believe could interfere with
  [defproxy] because of an incorrect (declaim (notinline <function>))
  form.

  CHANGES AT THE SYSTEM LEVEL AND TO DISTRIBUTED BOOKS

  Improvements have been made related to the reading of characters. In
  particular, checks are now done for ASCII encoding and for the
  expected [char-code] values for Space, Tab, Newline, Page, and
  Rubout. Also, an error no longer occurs with certain uses of
  non-standard characters. For example, it had caused an error to
  certify a book after a single [portcullis] [command] of (make-event
  `(defconst *my-null* ,(code-char 0))); but this is no longer an
  issue. Thanks to Jared Davis for helpful correspondence that led us
  to make these improvements.

  The character encoding for reading from files has been fixed at
  iso-8859-1. See [character-encoding]. Thanks to Jared Davis for
  bringing this portability issue to our attention (as this change
  arose in order to deal with a change in the default character
  encoding for the host Lisp, CCL), and pointing us in the right
  direction for dealing with it. In many cases, the character
  encoding for reading from the terminal is also iso-8859-1; but this
  is not guaranteed. In particular, when the host Lisp is SBCL this
  may not be the case.

  Although the HTML documentation is distributed with ACL2, it had not
  been possible for users to build that documentation without
  omitting graphics, for example on the ACL2 home page. That has been
  fixed, as files graphics/*.gif are now distributed.

  Compiler warnings are suppressed more completely than they had been
  before. For example, the following had produced a compiler warning
  when the host Lisp is CCL, but no longer does so.

    (defun f () (car 3))
    (trace$ f)

  Removed support for ``tainted'' [certificate]s. One reason is that
  there are rarely incremental releases. A stronger reason is that
  for the compatibility of a new release is with the previous
  non-incremental release, it's not particularly relevant whether or
  not the new release is incremental.

  The `make' variable BOOKS can now be defined above the line that
  includes Makefile-generic. (For relevant background, see
  [books-certification-classic].)

  (SBCL only) ACL2 images built on SBCL now have an option,
  --dynamic-space-size 2000, that can avoid space problems that could
  previously have caused the session to die.

  The default value for variable LISP in file GNUmakefile is now ccl.
  Thus, if you use `make' in the standard way to build an ACL2
  executable, the default host Lisp is ccl rather than gcl.

  EMACS SUPPORT

  EXPERIMENTAL VERSIONS

  For the version supporting the reals, ACL2(r) (see [real]), the
  supporting function floor1 has been defined in raw Lisp. This
  avoids an error such as in the following case.

    (defun f () (declare (xargs :guard t)) (floor1 8/3))
    (f) ; had caused raw Lisp error, before the fix

  Among the enhancements for the parallel version, ACL2(p) (see
  [parallelism]), are the following. We thank David Rager for his
  work in developing ACL2(p) and these improvements in particular.

      The macro set-parallel-evaluation has been renamed
      [set-parallel-execution].

      Calls of the macro [set-waterfall-printing] are no longer [events],
      so may not be placed at the top level of [books]. However, it
      is easy to create events that have these effects; see
      [set-waterfall-printing]. Note that now, :[ubt] and similar
      commands do not change the settings for either
      waterfall-parallelism or waterfall-printing.

      The implementation of [deflock] has been improved. Now, the macro it
      defines can provide a lock when invoked inside a
      [guard]-verified or :[program] mode function. Previously, this
      was only the case if the function definition was loaded from
      raw Lisp, typically via a compiled file.

      The underlying implementation for waterfall parallelism (see
      [set-waterfall-parallelism]) has been improved. As a result,
      even the largest proofs in the regression suite can be run
      efficiently in :resource-based waterfall parallelism mode.
      Among these improvements is one that can prevent machines from
      rebooting because operating system limits have been exceeded;
      thanks to Robert Krug for bringing this issue to our attention.

      There is also a new flag for configuring the way waterfall
      parallelism behaves once underlying system resource limits are
      reached. This flag is most relevant to :full waterfall
      parallelism. see [set-total-parallelism-work-limit] for more
      information.

      The [dmr] utility has the same behavior in ACL2(p) as it has in ACL2
      unless waterfall-parallelism has been set to a non-nil value
      (see [set-waterfall-parallelism]), in which case statistics
      about parallel execution are printed instead of the usual
      information.

      The user can now build the regression suite using waterfall
      [parallelism]. See the distributed file
      acl2-customization-files/README for details, and see
      [unsupported-waterfall-parallelism-features] for a disclaimer
      related to building the regression suite using waterfall
      parallelism.

      When building ACL2 with both the hons and parallelism extensions
      (what is called ``ACL2(p)'' or, equivalently, ``ACL2(hp)''),
      the functions that are automatically memoized by the hons
      extension are now automatically unmemoized and memoized when
      the user toggles waterfall parallelism on and off,
      respectively.

      Calling [set-waterfall-parallelism] with a flag of t now results in
      the same settings as if it were called with a flag of
      :resource-based, which is now the recommended mode for
      waterfall parallelism. Thanks to Shilpi Goel for requesting
      this feature.

      The prover now aborts in a timely way in response to interrupts
      issued during a proof with waterfall parallelism enabled. (This
      had often not been the case.) Thanks to Shilpi Goel for
      requesting this improvement.

  Among the enhancements for the HONS extension (see
  [hons-and-memoization]) are the following.

      The compact-print code has been replaced by new serialization
      routines contributed by Jared Davis. This may improve
      performance when including books that contain [make-event]s
      that expand to very large constants. You can also now save
      objects to disk without going into raw lisp; see [serialize]
      for details.

      Printing of certain messages has been sped up (by using Lisp function
      force-output in place of finish-output). Thanks to Jared Davis
      for contributing this improvement.

      [Stobj] array writes are perhaps twice as fast.

      It is now permitted to [memoize] functions that take user-defined
      [stobj]s as inputs, provided that no [stobj]s are returned.
      Even if stobjs are returned, memoization is permitted provided
      the condition is nil, as when profiling (see [profile]). Thanks
      to Sol Swords for an observation that led to this improvement
      and for useful conversations, including follow-up leading us to
      improve our initial implementation.

      Fixes have been made for memoizing with a non-nil value of
      :ideal-okp. Errors had occurred when memoizing with a
      :condition other than t for a :[logic] mode function that had
      not been [guard]-verified, even with a non-nil value of
      :ideal-okp; and after successfully memoizing such a function
      (without such :condition), it had not been possible to
      [unmemoize] it. Thanks to Sol Swords for reporting issues with
      the :ideal-okp argument of [memoize].

      If a book defined a function that was subsequently [memoize]d in that
      book, the function would no longer behaves as memoized upon
      completion of book certification (unless that [certify-book]
      command was undone and replaced by evaluation of a
      corresponding [include-book] command). This has been fixed.
      Thanks to David Rager for pointing out the problem by sending
      an example.

      We now support ACL2(h) built not only on 64-bit CCL but also on all
      supported host Ansi Common Lisps (i.e., all supported host
      Lisps except GCL). Thanks to Jared Davis for doing much of the
      work to make this improvement. Note that performance will
      likely be best for 64-bit CCL; for some Lisps, performance may
      be much worse, probably depending in part on the underlying
      implementation of hash tables.")
 (NOTE-6-0
  (RELEASE-NOTES)
  "ACL2 Version 6.0 (December, 2012) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes since Version 5.0 into the
  following categories of changes: existing features, new features,
  heuristic improvements, bug fixes, changes at the system level,
  Emacs support, and experimental versions. Each change is described
  in just one category, though of course many changes could be placed
  in more than one category.

  NOTE. But we start with one major change that is outside the usual
  categories:

  LICENSE change

  The ACL2 license has been changed from GPL Version 2 to a 3-clause
  BSD license, found in the LICENSE file distributed with ACL2.

  CHANGES TO EXISTING FEATURES

  Function [fmt-to-string] and similar functions (see
  [printing-to-strings]) now use the default right margin settings;
  formerly the right margin had been set at 10,000. If you want the
  former behavior, you can use the :fmt-control-alist, as illustrated
  below.

    (fmt-to-string \"~x0\"
                   (list (cons #\\0 (make-list 30)))
                   :fmt-control-alist
                   `((fmt-soft-right-margin . 10000)
                     (fmt-hard-right-margin . 10000)))

  The use of attachments (see [defattach]) has been made more
  efficient, avoiding some low-level checks (Common Lisp `boundp'
  checks). Thanks to Shilpi Goel for constructing an example that we
  used to help direct us to remove inefficiency. The following
  results for that example --- a Fibonacci program run on a machine
  interpreter in raw-mode (see [set-raw-mode]) --- give a sense of
  the potential speedup, though we note that a full ACL2(h)
  regression showed no significant speedup.

    ; Time before the change:
    ; 0.89 seconds realtime, 0.90 seconds runtime

    ; Time after the change:
    ; 0.75 seconds realtime, 0.75 seconds runtime

    ; Time when cheating to avoid the cost of attachments, by redefining a
    ; function to BE its attachment (so, this gives a lower bound on possible
    ; execution time):
    ; 0.72 seconds realtime, 0.72 seconds runtime

  Functions read-acl2-oracle and read-acl2-oracle@par are no longer
  untouchable (see [remove-untouchable]). We reported this change for
  Version_5.0 but it was not made; thanks to Jared Davis for bringing
  this to our attention. Function get-timer also is no longer
  untouchable.

  The function [butlast] now behaves more reasonably on arguments
  violating its [guard]. For example, (butlast '(1 2 3) -1) is now
  provably equal to (1 2 3) instead of to (1 2 3 nil). Thanks to
  Jared Davis for suggesting a change to the definition of butlast.

  The utilities mfc-ts and mfc-ap (see [extended-metafunctions])
  formerly never used forcing (see [force]). Now, by default, forcing
  is allowed during execution of these functions if and only if it is
  permitted in the rewriting environment where they are called.
  Moreover, these and the mfc-xx utilities --- mfc-rw, mfc-rw+, and
  mfc-relieve-hyp --- are now macros that take (optional) keyword
  arguments :forcep and :ttreep. The :forcep argument is :same by
  default, providing the forcing behavior inherited from the
  environment (as described above); but it can be the symbol t or
  nil, indicating that forcing is to be enabled or disabled,
  respectively. The :ttree argument is nil by default, but when it is
  t, then a second value is returned, which is a tag-tree. See
  [extended-metafunctions].

  Many improvements have been made to the tau-system (see
  [tau-system]), including support for arithmetic intervals bounded
  by constants. Thus, for example, (and (<= 0 x) (<= x 15)) is a tau
  predicate. The [documentation] has also been improved (see
  [introduction-to-the-tau-system]). Also see [time-tracker-tau] for
  discussion of how the new [time-tracker] utility can help discover
  ways to detect slowdown related to the tau-system.

  The [defthm] [events] printed by [defabsstobj], namely those that
  remain to be proved, are now given with :rule-classes nil since
  there is probably no intention to use them as rules. Thanks to
  Robert Krug for suggesting that we consider this change.

  The formal parameters for a macro definition (see [defmacro]) may now
  include [state] and user-defined [stobj]s. (However, macro formals
  may not be declared as stobjs; see [xargs].) Thanks to Jose Luis
  Ruiz-Reina for raising this issue and to Rob Sumners for helpful
  conversations --- both of these nearly 10 years ago!

  The utilities [defun-inline], [defun-notinline], [defund-inline], and
  [defund-notinline] have been simplified, by taking advantage of the
  lifting of restrictions on formal parameters of macro definitions
  mentioned above (involving symbols that happen to be [stobj]
  names). Now, when any of the above four utilities is called with a
  given set of formal parameters, those formals will be used not only
  for the generated [defun] event but also for the generated
  [defmacro] event. (Previously, they had been renamed for the
  [defmacro] event in order to respect the stobj name restriction
  that no longer exists.) Thanks to Jared Davis for pointing out the
  value of making this change.

  The [events] [add-invisible-fns] and [remove-invisible-fns] now
  convert arguments as appropriate using the [macro-aliases-table].
  For example, the event (add-invisible-fns append car) is now legal
  (though probably not a good idea), because add-invisible-fns is now
  sensitive to the fact that [append] maps to [binary-append] in the
  [macro-aliases-table].

  When :pe is applied to a built-in function that does not have a
  defining event, such as [symbolp], :pe now gives more useful output
  that points to the documentation instead of printing a call of
  ENTER-BOOT-STRAP-MODE. Thanks to Anthony Knape for bringing this
  issue to our attention.

  The macros [memoize] and [unmemoize] now cause a warning rather than
  an error in ACL2 (and work as before in ACL2(h)).

  Terms are now parsed into :[type-prescription] rules in a manner that
  removes [let] bindings both at the top level and in the conclusion
  (but still not in the hypotheses of the rule). See
  [type-prescription]. Thanks to Jared Davis for requesting such an
  enhancement.

  Printing of numbers is now appropriately sensitive to the print
  radix; see [set-print-radix]. Thanks to Shilpi Goel for requesting
  this enhancement.

  The system function explode-atom no longer includes the radix
  indicator. The new function explode-atom+ may be used for that
  purpose.

  NEW FEATURES

  Among the new features for system hackers are analogues of system
  function simple-translate-and-eval that do not return [state].
  (Thanks to David Rager for requesting this feature and helpful
  conversations on its implementation.) This and other low-level
  changes are typically documented in comments in the corresponding
  release note event, which in this case is (deflabel note-6-0 ...).

  More built-in functions are now [guard]-verified (and in :[logic]
  mode). Furthermore, a mechanism exists for marking yet more
  built-in functions as guard-verified based on [books] contributed
  by users; see Part II of
  {http://www.cs.utexas.edu/users/moore/acl2/open-architecture/ |
  http://www.cs.utexas.edu/users/moore/acl2/open-architecture/}. The
  current state of that enterprise may be viewed by evaluating the
  constant *system-verify-guards-alist*, which associates a community
  book name with a list of functions. When ACL2 is built in the
  normal way, each of those functions is marked as guard-verified
  when ACL2 is started up; but a special developer build can be used
  to check that the indicated book, together with its sub-books,
  proves that those functions are guard-verified.

  Metatheorems (see [meta]) may now have additional hypotheses, called
  ``meta-extract hypotheses'', that allow metafunctions to depend on
  the validity of certain terms extracted from the context or the
  logical [world]. See [meta-extract]. Thanks to Sol Swords for
  providing an initial implementation, together with very helpful
  discussions as well as a community book,
  books/clause-processors/meta-extract-user.lisp, that extends the
  power of meta-extract hypotheses.

  New utilities [oracle-funcall], [oracle-apply], and
  [oracle-apply-raw] call a function argument on specified arguments.
  Thanks to Jared Davis for requesting this utility.

  A new utility makes it convenient to track time spent inside
  specified function calls or, more generally, during specified
  evaluation. See [time-tracker].

  New runic designators make it easy to refer to macro names when
  building theories. Thus, for example, the object (:i append) may be
  used in theory expressions to designate the [rune] (:induction
  binary-append). See [theories]. Thanks to Jared Davis for a useful
  discussion leading to this enhancement.

  [Defabsstobj] [events] now take an optional :congruent-to keyword
  argument, much like [defstobj]. Thanks to Sol Swords for requesting
  this feature and for suggesting a very nice optimization that
  avoids the need to prove additional lemmas.

  [Flet] may now include inline and notinline declarations. Thanks to
  Jared Davis for requesting this feature.

  The utility gc-verbose controls printing of messages by the garbage
  collector, for certain host Lisps. See [gc-verbose]. Thanks to
  Shilpi Goel for requesting this utility.

  Added definitions of functions [nat-listp] and [ACL2-number-listp].
  Thanks to Harsh Raju Chamarthi for requesting these additions. Many
  community books had varying definitions of these functions; these
  additions guarantee that all books must agree on how these two
  functions are defined. (Some community books have been changed in
  order that they remain certifiable, given these additions.) Note
  that a few built-in :[forward-chaining] rules were modified in
  order to accommodate these additions, and the definition of
  [integer-listp] was modified to call [eq] instead of [equal], like
  the other such definitions.

  See [get-command-sequence] for a new utility that returns a list of
  [command]s between two given command descriptors.

  HEURISTIC IMPROVEMENTS

  We obtained a substantial speedup --- 13% observed for the regression
  suite, and 8% observed for the ACL2(h) regression suite --- by
  tweaking the [break-rewrite] implementation to eliminate virtually
  all of its overhead when it is not in use (the default, which holds
  until :[brr] t is evaluated). Thanks to David Rager for a
  conversation involving ACL2(p) performance statistics that
  suggested looking at changing [break-rewrite] to boost performance.

  The heuristics for automatically expanding recursive function calls
  have been changed during proofs by induction. Now, during
  induction, more terms that suggested the induction scheme are
  automatically expanded. Thanks to David Rager for providing an
  example and having discussions with us that spurred us to develop
  this heuristic improvement.

  BUG FIXES

  Fixed a soundness bug in [defabsstobj] based on [guard]s that
  violated single-threadedness restrictions. Thanks to Sol Swords for
  bringing this bug to our attention and supplying a proof of nil,
  which we include as a comment in source file ld.lisp, in (deflabel
  note-6-0 ...). We also thank Sol for helpful discussions about
  [guard]s of functions introduced by defabsstobj, which has led us
  to enhance the [documentation]; see [defabsstobj].

  Fixed a soundness bug in [defabsstobj] based on interrupted updates
  of abstract stobjs. As part of the fix a new keyword, :PROTECT, has
  been introduced for defabsstobj exports, along with a new top-level
  defabsstobj keyword, :PROTECT-DEFAULT; see [defabsstobj]. We do
  some analysis that we expect will avoid the use of :PROTECT in many
  cases, which is fortunate since the use of :PROTECT t may cause a
  slight slowdown in (abstract) stobj updates. Thanks to Sol Swords
  for bringing this bug to our attention and supplying a proof of
  nil, which we include as a comment in source file
  other-events.lisp, in the definition of function
  set-absstobj-debug.

  Fixed a raw Lisp error that occurred when tracing a stobj resize
  function, thanks to an error report from Warren Hunt, Marijn Heule,
  and Nathan Wetzler.

  Fixed a raw Lisp error that occurred for certain ill-formed
  signatures, as in the following example.

    ACL2 !>(encapsulate
               (((f (*) => * :guard t)))
               (local (defun f (x) (consp x))))

    ***********************************************
    ************ ABORTING from raw Lisp ***********
    Error:  value (F (*) => * :GUARD T) is not of the expected type SYMBOL.
    ***********************************************

  The notion of ``error triple'' (see [error-triple]) had been
  implemented ambiguously, with the result that for a [stobj], st,
  the result of evaluating the following two forms was the same: (mv
  nil st state) and (mv t st state). Of course, these are just
  examples; in general, a result of (mv erp val state) was sometimes
  treated as an error triple even when val is a [stobj]. Now, (mv erp
  val state) is an error triple only when erp and val are ordinary
  (non-[stobj]) values. Thanks to Warren Hunt and Marijn Heule for
  bringing this problem to our attention.

  The ``with-error-trace'' utility, [wet], now works in the non-error
  case when given a form that returns multiple values. (Note however
  that [state] will be printed as REPLACED-STATE; and similarly, a
  user-defined [stobj], say ST, will be printed as REPLACED-ST.)

  Some possible error messages for [defabsstobj] have been fixed that
  had been ill-formed. Thanks to Sol Swords for bringing this bug to
  our attention.

  Fixed a bug that sometimes caused the times displayed in the summary
  for [certify-book] to be smaller than the actual times.

  Fixed a bug in the [guard]s to system functions fmt-char and fmt-var,
  which are no longer :[logic]-mode, guard-verified functions.

  (GCL only) Fixed a bug present in Gnu Common Lisp for #u (see
  [sharp-u-reader]).

  CHANGES AT THE SYSTEM LEVEL

  The [state] global variable 'distributed-books-dir has been renamed
  'system-books-dir. On a related note, the [documentation] now
  refers to ``community books'' rather than ``distributed books'',
  and there is a corresponding new documentation topic; see
  [community-books].

  Fixed a bug in the implementation of [wet] (which is actually in the
  community book books/misc/wet.lisp).

  A directory, interface/, is no longer part of the ACL2 distribution.
  Rather, it is a subdirectory of the ACL2 community books. Thus, if
  you fetch those books in the usual way (see the installation
  instructions on the ACL2 home page), you will find a directory
  books/interface/. Subdirectory emacs/ of that interface directory
  provides Emacs support for [proof-tree]s as well an acl2-mode. This
  change has been reflected in ACL2 file emacs/emacs-acl2.el, so
  users will probably not be impacted if they load that file into
  Emacs.

  The community books file books/Makefile-generic now causes, by
  default, a backtrace to be printed when there is a raw Lisp error.

  Some changes have been made to how regressions are run, i.e., to how
  the community books are certified. (1) The standard regression now
  includes community books directory books/centaur. To skip these
  (for example, a Windows system has encountered difficulty with them
  even after installing Perl), include ACL2_CENTAUR=skip with your
  `make' command. (2) A new `make' (or environment) variable,
  ACL2_JOBS, specifies the number of parallel jobs to run, serving as
  a replacement for the -j argument of `make' that works for all
  community books, including those under directory centaur; see
  [books-certification-classic]. (3) It is no longer necessary to do
  an ACL2(h) regression in order to build a copy of the documentation
  generated by Jared Davis's xdoc utility at
  books/xdoc-impl/manual/preview.html; a vanilla ACL2 regression will
  build this manual. (4) It is no longer necessary to set the ACL2
  environment variable for ACL2(h) regressions if you want to use the
  executable saved_acl2h in the ACL2 sources directory.

  The ACL2 home page now has a search utility for documentation and
  books. Thanks to Shilpi Goel and David Rager for feedback on a
  preliminary version of this utility.

  (only for SBCL with 64-bit ACL2(h)) The value of SBCL command line
  option --dynamic-space-size for ACL2(h) on 64-bit platforms has
  been increased from 2000 to 16000 (as explained in a comment in the
  ACL2 source definition of *sbcl-dynamic-space-size*).

  EMACS SUPPORT

  EXPERIMENTAL/ALTERNATE VERSIONS

  Among the enhancements for ACL2(r) (see [real]) are the following.

      Thanks to Ruben Gamboa for his helpful role in making the following
      improvements made with Ruben Gamboa in support for non-standard
      analysis in ACL2(r).

      Constrained functions can now be introduce as non-classical. See
      [signature].

      [Defun-sk] now takes a new keyword argument, :CLASSICALP, that
      determines whether or not the named function is classical. See
      [defun-sk].

      Incorporated a bug fix from Ruben Gamboa for [ceiling]. The default
      (for `bad' arguments) had been 1, but now we follow normal ACL2
      practice by returning 0 in that case.

  Among the enhancements for the HONS extension (see
  [hons-and-memoization]) are the following.

      Macros [with-fast-alist], [with-stolen-alist], and
      [fast-alist-free-on-exit] are now defined in ACL2(h), rather
      than being defined in the community book
      \"books/centaur/misc/hons-extra.lisp\". Thanks to Jared Davis and
      Sol Swords for donating this code, and thanks to Jared for
      helpful discussions leading to this change.

  Among the enhancements for ACL2(p) (see [parallelism]) are the
  following. We thank David Rager for his work in developing ACL2(p)
  and for his helpful role in these improvements.

      A bug has been fixed that could leave one in a [wormhole], awaiting
      input, after an error, such as an error in an :in-theory hint
      during a proof. Thanks to Shilpi Goel for bringing this bug to
      our attention.

      A key checkpoint for a given goal is now printed only once.
      Previously, if a key checkpoint led to more than one goal
      pushed for proof by induction, the key checkpoint would be
      printed once for each such goal during the proof, and also once
      for each such goal in the summary at the end.")
 (NOTE-6-1
  (RELEASE-NOTES)
  "ACL2 Version 6.1 (February, 2013) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes since Version 6.0 into the
  following categories of changes: existing features, new features,
  heuristic improvements, bug fixes, changes at the system level,
  Emacs support, and experimental versions. Each change is described
  in just one category, though of course many changes could be placed
  in more than one category.

  CHANGES TO EXISTING FEATURES

  More system functions are in :[logic] mode, [guard]-verified.
  Evaluate

    (strip-cars (cdr (assoc-equal \"system/top\" *system-verify-guards-alist*)))

  for the list of functions checked to be guard-verifiable in the
  community books. Thanks to those who have contributed to this
  effort, as shown in file headers in directory system/ of the
  community books.

  The macro [defund] now avoids an error when :mode :program has been
  specified in an [xargs] form of a [declare] form, for example:
  (defund f (x) (declare (xargs :mode :program)) x). It does this by
  avoiding the generation of [in-theory] [events] in such cases.
  Thanks to David Rager and Jared Davis for requesting such a change,
  and for ensuing helpful discussions.

  Added a field :UNIFY-SUBST to metafunction contexts (see
  [extended-metafunctions]), accessed with function mfc-unify-subst.
  Thanks to Sol Swords for requesting this enhancement.

  The functions [sys-call] and [sys-call-status] are now
  [guard]-verified :[logic]-mode functions.

  It had been the case that if any supporter of a dependent clause
  processor (see [define-trusted-clause-processor]) is among the
  ancestors of a given formula, then it was illegal to apply
  functional instantiation (see [lemma-instance]) to that formula.
  Now, this is illegal only if some such supporter is in the domain
  of the functional substitution.

  The tau system (see [tau-system], or if you are unfamiliar with the
  tau system, see [introduction-to-the-tau-system]) now allows the
  user to define and verify functions that compute bounds on
  arithmetic expressions. See [bounders].

  The utility print-summary-user has been replaced by
  [finalize-event-user], which is described below. If you previously
  attached a function to print-summary-user, say
  my-print-summary-user, then you can get the effect you had
  previously as follows.

    (defun my-finalize-event-user (state)
      (declare (xargs :mode :logic :stobjs state))
      (prog2$ (my-print-summary-user state)
              state))
    (defattach finalize-event-user my-finalize-event-user)

  It had been the case that when you [ld] a file, the connected book
  directory (see [cbd]) was set to the canonical pathname of that
  file's directory for the duration of the LD call. This could cause
  problems, however, if the file is actually a soft link: an
  [include-book] form in the book with a relative pathname for the
  book would be resolved with respect to the absolute pathname for
  that link, which is probably not what was intended. So soft links
  are no longer followed when computing the above connected book
  directory. The following example, which is how we discovered this
  problem, may clarify. We attempted to execute the form (ld
  \"top.lisp\") using ACL2(r) (see [real]) in community books directory
  nonstd/arithmetic/, where all of the .lisp files are soft links to
  files in arithmetic/. Thus, the form (include-book \"equalities\")
  attempted to include arithmetic/equalities instead of
  nonstd/arithmetic/equalities, which caused an error.

  We no longer document the use of value :START for
  [with-prover-step-limit]. This value has always been used by the
  ACL2 implementation and may have semantics that change with new
  ACL2 versions. If you have reason to use this value, please contact
  the ACL2 implementors.

  NEW FEATURES

  By default, the prover now gives information about case splits. See
  [splitter]. Thanks to many ACL2 users, most recently David Rager,
  for requesting such a capability. Also thanks to David Rager and
  Jared Davis for helpful discussions, and thanks to Robert Krug for
  feedback on the initial implementation and documentation that led
  us to make improvements.

  New utilities [initialize-event-user] and [finalize-event-user] allow
  the user to run [state]-modifying code at the start and end of
  [events]. Thanks to Harsh Raju Chamarthi for requesting these
  capabilities. Note that [finalize-event-user] replaces
  print-summary-user.

  HEURISTIC IMPROVEMENTS

  Several heuristic improvements have been made to the tau system, even
  if you do not explicitly use the new capability for computing
  bounds on arithmetic expressions, mentioned above. See
  [tau-system], or if you are unfamiliar with the tau system, see
  [introduction-to-the-tau-system].

  BUG FIXES

  A soundness bug has been fixed that exploited the use of expansion
  files (see [book-compiled-file]) together with [defstobj]. For an
  example illustrating this bug, see the comment about
  ``Expansion/Defstobj Bug'' in the form (deflabel note-6-1 ...) in
  ACL2 source file ld.lisp.

  We fixed a soundness bug involving system function
  [canonical-pathname] and (most likely) other functions in the
  former value of constant *unattachable-primitives*. Thanks to Jared
  Davis and Sol Swords for bringing this bug to our attention by way
  of an example. We include a very slight variant of that example in
  a comment within the form (deflabel note-6-1 ...) in ACL2 source
  file ld.lisp.

  There was a soundness bug that allowed attachments to prove nil in a
  consistent logical [world] involving [defaxiom] [events]. This has
  been fixed, by requiring that no function symbol ancestral in a
  [defaxiom] formula is allowed to get an attachment. See
  [defattach], in particular discussion of ``a restriction based on a
  notion of a function symbol syntactically supporting an event'',
  which concludes with a proof of nil that is no longer possible.

  (ACL2(h) only) We fixed a soundness bug in the interaction of
  memoization with congruent stobjs, in cases where the :congruent-to
  field of [defstobj] was not the canonical representative in the
  congruence class. For an example illustrating this bug, see the
  comment about ``memoize/congruent stobj bug'' in the form (deflabel
  note-6-1 ...) in ACL2 source file ld.lisp.

  Functions defined by [defstobj] had failed to be compiled when
  certifying books, except in host Lisps that compile on-the-fly
  (CCL, SBCL). This has been fixed for all host Lisps. A related
  change, probably less significant, was made for [defabsstobj].
  Thanks to Sol Swords for reporting bugs that turned out to be
  mistakes in a preliminary implementation of this change.

  Fixed an assertion error involving linear arithmetic. Thanks to Sol
  Swords for sending an example illustrating the bug (now appearing
  as a comment in ACL2 source function linearize1).

  Fixed a bug that was breaking the ACL2s build mechanism (see
  [ACL2-sedan]) by causing certain needless evaluation of ``hidden
  [defpkg]'' forms in [certificate] files when executing a call of
  [include-book]. The bug could also affect rare error messages
  arising from ill-formed [certificate] files. Thanks to Harsh Raju
  Chamarthi for bringing this bug to our attention by sending us an
  example script of the sort that was breaking during an ACL2s build.

  Fixed handling of pathnames by some low-level code (system function
  our-truename) that could cause errors, for example for host-Lisp
  GCL on some platforms when environment variable HOME points to a
  non-existent directory. Thanks to Camm Maguire for bringing this
  issue to our attention and helping with the debugging.

  Fixed a coding bug in generation of stobj resizing functions for a
  stobj named OLD. The following example illustrates the bug.

    (defstobj old
      (fld :type (array (unsigned-byte 31) (8))
            :initially 0 :resizable t))
    (resize-fld 10 old)
    ; The following returned 8 but should have returned 10:
    (fld-length old)

  Fixed a bug in [defabsstobj-missing-events] (which macroexpanded
  incorrectly). Thanks to Sol Swords for bringing this bug to our
  attention.

  Fixed two bugs in the handling of step-limits. Thanks to Hanbing Liu
  for bringing the main such bug to our attention, which was that
  ACL2 could report a step-limit violation during [certify-book] (in
  fact, during any compound event such as a call of [encapsulate] or
  [progn]), even without direct user involvement in managing
  step-limits (see [set-prover-step-limit] and see
  [with-prover-step-limit]). The other bug was that a bad argument to
  [set-prover-step-limit] could result in a raw Lisp error, for
  example: (progn (set-prover-step-limit '(a b))).

  CHANGES AT THE SYSTEM LEVEL

  The books/ directory no longer needs to exist in order to build an
  ACL2 executable. Thanks to Robert Krug for pointing out that the
  installation instructions had suggested that this was already the
  case.

  Many changes have been made to the [community-books]. For example,
  some community books now include std/lists/rev.lisp, which contains
  the rule revappend-removal, which may cause some proofs involving
  [revappend] to fail where they formerly succeeded, or vice-versa.
  When a proof fails that formerly succeeded, it may be useful for
  you to look over the [rune]s printed in the event summary.

  EMACS SUPPORT

  EXPERIMENTAL/ALTERNATE VERSIONS

  For ACL2(p), [wormhole-eval] is now locked by default; thanks to
  David Rager for suggesting this change. But there is a way to avoid
  the lock; see [wormhole-eval]. In particular, the lock is avoided
  in the implementations of [accumulated-persistence] and
  [forward-chaining-reports], which are not supported in ACL2(p) (see
  [unsupported-waterfall-parallelism-features]).")
 (NOTE-6-2
  (RELEASE-NOTES)
  "ACL2 Version 6.2 (June, 2013) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes since Version 6.1 into the
  following categories of changes: existing features, new features,
  heuristic improvements, bug fixes, changes at the system level,
  Emacs support, and experimental versions. Each change is described
  in just one category, though of course many changes could be placed
  in more than one category.

  CHANGES TO EXISTING FEATURES

  The macro [top-level] has been changed, so that evaluation of a form
  (top-level x) results in an error when evaluation of x results in
  an error. Thanks to Jared Davis for observing that when evaluating
  a file using [ld], an interrupt of a call of a [top-level] call in
  that file would not prevent evaluation of later forms in the file.

  The macro [the] no longer causes an error when [guard]-checking is
  :NONE. For example, it had been the case that evaluation of (the
  integer t) always caused an error; but now, there is no error after
  executing command :[set-guard-checking] :NONE. Thanks to Jared
  Davis for asking for a way to avoid such errors.

  The error printed when attempting to ``reincarnate'' a package ---
  that is, to define a package that is not part of the ACL2 logical
  [world] but exists in raw Lisp because it was once part of the
  world --- is now much more instructive. In particular, it shows
  pathnames for the previous and proposed [defpkg] events, and it
  shows the symbols that are imported by one but not the other.
  Thanks to Jared Davis for requesting this improvement.

  Functions [open-input-channel] and [open-output-channel] no longer
  cause an error when failing to open a channel because of a
  permissions problem, but instead return (mv nil state). Thanks to
  Jared Davis for requesting this change. (Note: this change does not
  apply if the host Lisp is non-ANSI, i.e., if the host Lisp is
  non-ANSI GCL.)

  The advanced [meta-extract] mechanisms, provided for using facts from
  the [world] or metafunction context, have been enhanced in the
  following ways, in collaboration with Sol Swords. See
  [meta-extract] for more details.

      It is now permissible to use calls of meta-extract-global-fact in
      hypotheses of [clause-processor] rules, much as they are used
      in hypotheses of [meta] rules. See [meta-extract]. Thanks to
      Sol Swords for requesting this feature.

      The utility meta-extract-global-fact is now a macro, which expands to
      a corresponding call of the new function,
      meta-extract-global-fact+. This new function takes an
      alternate, extra [state] as an argument; it is not to be
      executed, and it operates on the alternate state, whose logical
      [world] is intended to be the same as that of the ``live''
      (usual) state.

      A new sort of value for the obj argument is supported for
      meta-extract-global-fact (and meta-extract-global-fact+), which
      results in a term equating a function application to its
      result. See [meta-extract], in particular the discussion of
      :fncall.

  It is now possible for trace$ to avoid printing prefixes of the form
  \"n> \" and \"<n \", while also (optionally) avoiding indentation. See
  [trace$], in particular the discussion of :fmt!. Thanks to Shilpi
  Goel for requesting this feature.

  It was possible for the [guard-debug] feature to generate duplicate
  calls of extra-info in hypotheses generated for guard verification.
  We have eliminated duplicates of this sort.

  When [in-theory] returns without error, it returns a value
  (:NUMBER-OF-ENABLED-RUNES k), where k is the length of the new
  current theory. (Formerly, k was returned.) This value is thus
  printed when an in-theory event is submitted at the top level.
  Thanks to Gisela Rossi for feedback that led us to make this
  change.

  A new keyword parameter for [ld] is :ld-missing-input-ok. Its default
  value is nil, which causes an error, as before, upon failure to
  open a specified file. Other legal values are t and :WARN; see
  [ld-missing-input-ok] and see [ld].

  Extended *acl2-exports*, in particular adding UNSIGNED-BYTE-P and
  SIGNED-BYTE-P (thanks to a suggestion by Jared Davis)

  Even if the function f is defined to take one or more [stobj]
  arguments, the form (ec-call (f ...)) is now legal if all arguments
  of the call of f are non-stobj objects, in any context where only
  ordinary object return values are expected.

  When the second argument of [certify-book] is a symbol, that symbol
  formerly needed to be ? or t, in the \"ACL2\" package. Now, the
  [symbol-package-name] of the second argument is ignored: any symbol
  whose [symbol-name] is \"?\" or \"T\" is treated the same in that
  argument position as the symbol ? or t in the \"ACL2\" package,
  respectively. Thanks to Warren Hunt and Nathan Wetzler for
  suggesting consideration of a more relaxed criterion for that
  second argument.

  (For system hackers, not standard ACL2 users:) Utilities
  [initialize-event-user] and [finalize-event-user] now each take a
  list of three arguments, (ctx body state). Thanks to Harsh Raju
  Chamarthi for requesting this change.

  NEW FEATURES

  It is now permissible to specify a [stobj] field that is itself
  either a stobj or an array of stobjs. A new primitive, [stobj-let],
  is provided in order to access or update such fields; see
  [stobj-let]. Thanks to Warren Hunt and Sol Swords for requesting
  the ability to specify nested stobjs.

  New accessor function (mfc-world mfc) returns the world component of
  a metafunction context. See [extended-metafunctions].

  A new [xargs] keyword, :SPLIT-TYPES, can be used to ``split'' the
  [type] declarations from the [guard] in the following sense. By
  default, or when :SPLIT-TYPES has value nil, one gets the existing
  behavior: the terms corresponding to type declarations are
  conjoined into the guard. However, if :SPLIT-TYPES t is specified,
  then that is not the case; instead, guard verification will require
  that these terms are proved under the hypothesis that the guard
  holds. In this way, one can add type declarations to assist the
  host Lisp compiler without cluttering the function's guard. See
  [xargs]. Thanks to Jared Davis for requesting this feature.

  Advanced users may want to see
  [quick-and-dirty-subsumption-replacement-step] for a way to turn
  off a prover heuristic. Thanks to those who have mentioned to us
  potential issues with this heuristic, most recently Dave Greve.

  HEURISTIC IMPROVEMENTS

  We made changes to the ``ancestors check'' heuristic (source function
  ancestors-check-builtin), as follows.

      The heuristic could prevent a [rewrite] rule's hypothesis from being
      rewritten to true, even when that hypothesis is of the form
      (force <term>). Now, forcing will take place as expected; see
      [force]. Thanks to Robert Krug for bringing this issue to our
      attention and sending an example, which we include as a comment
      in the ACL2 source code (see (deflabel note-6-2 ...)).

      The heuristic is now delayed until after we check whether the
      hypothesis is already known, using [type-set] reasoning alone
      (in particular, not using rewriting), to be true or to be
      false. We believe that this is now the ``right'' order for
      those two operations. We saw a slight speed up in the
      regression tests (about a percent) with this change, but that
      might be in the noise.

      A technical change makes the heuristic slightly less aggressive in
      preventing backchaining. Roughly speaking, ordering checks
      based on function symbol counts could suffice to permit
      backchaining, where now variable counts also suffice. Thanks to
      Robert Krug for showing us an example where backchaining led to
      a term with no free variables that was nevertheless subject to
      the ancestors check, preventing it from being rewritten.

      (For those who use [defattach] to attach to ancestors-check) We have
      used defrec to introduce an `ancestor' data structure. A new
      function, strip-ancestor-literals, should be used to obtain the
      literals from a list of ancestors, although strip-cars will
      still work at this time.

  When we rewrite the current literal of the current clause we assume
  the falsity of the other literals and of the conclusions produced
  by forward chaining. We have changed the order in which those
  assumptions are made, which affects the type-alist used during
  rewriting. This has three effects: the new type-alist, which is
  sometimes stronger than the old one, may allow additional rules to
  fire, the choice of free vars may be different, and the order of
  the literals in forced subgoals may be different. Should ``legacy''
  proofs fail under the new type-alist, we recommend looking for
  rules that are fired in the new proof that were not fired (on that
  same subgoal) in the old one. Thanks to Dave Greve for sending us
  an example that led us to make this change.

  BUG FIXES

  We fixed a soundness bug that could be exploited by calling system
  functions acl2-magic-mfc or acl2-magic-canonical-pathname. Thanks
  to Sol Swords for bringing this bug to our attention.

  We fixed a soundness bug in the handling of [stobj]s, in which
  strings were recognized as stobjs in raw Lisp. Thanks to Jared
  Davis for sending us a proof of nil that exploited this bug. We now
  have a much simpler example of this bug, as follows.

    (defstobj st fld)
    (defthm bad (stp \"abc\") :rule-classes nil)
    (defthm contradiction
      nil
      :hints ((\"Goal\" :in-theory (disable (stp)) :use bad))
      :rule-classes nil)

  We fixed bugs in extended metafunctions (see
  [extended-metafunctions]). The macro mfc-ap no longer takes a
  :TTREEP keyword argument, because this argument could allow
  returning a tag tree that does not properly account for forcing.
  The remaining mfc-xx macros --- mfc-relieve-hyp, mfc-rw+, mfc-rw,
  and mfc-ts --- still take a :TTREEP keyword argument, but the
  corresponding functions when :TTREEP is t ---
  mfc-relieve-hyp-ttree, mfc-rw+-ttree, mfc-rw-ttree, and
  mfc-ts-ttree --- were introduced with incorrect output signatures.
  A complication is that mfc-relieve-hyp-ttree was improperly defined
  in raw Lisp in a way that actually matched the incorrect signature!
  All of these bugs have been fixed. Perhaps any of them could have
  made it possible to prove nil, though we have not tried to do so.

  (Windows only) On Windows, it had been possible for ACL2 not to
  consider two pathnames to name the same file when the only
  difference is the case of the drive, e.g., `C:' vs. `c:'. This has
  been fixed. Thanks to Sol Swords for reporting this issue.

  Fixed a bug in the storing of rules for the tau system; see
  [tau-system]. (The error message mentions
  PARTITION-SIGNATURE-HYPS-INTO-TAU-ALIST-AND-OTHERS.) Thanks to Sol
  Swords for reporting this bug and sending a simple example to
  illustrate it.

  It had been possible to admit the missing [defthm] events printed by
  [defabsstobj], and yet get an error when subsequently submitting
  the same defabsstobj event, stating: ``Note discrepancy with
  existing formula''. The problem could occur when an expression of
  the form (or X Y) occurred in one of those missing events, because
  ACL2 created it from the term (if X 't Y) but then translated (or X
  Y) to (if X X Y), resulting in a mismatch. This has been fixed.
  Thanks to Jared Davis for reporting this bug using a simple
  example.

  A hard Lisp error was possible for certain illegal functional
  substitutions (see [lemma-instance]). Thanks to Sol Swords for
  reporting this bug.

  We fixed a bug in the case that an exported function of a
  [defabsstobj] event had a [guard] of t. Thanks to Jared Davis for
  sending a simple example when reporting this bug.

  We now avoid an infinite loop that could occur when attempting to
  close the standard character output channel (see [standard-co]).
  Instead, an error message explains how to accomplish what was
  probably intended. Thanks to Shilpi Goel for bringing this issue to
  our attention.

  (Windows only) Fixed a bug that was causing a hard error on Windows
  when ACL2 encountered filenames starting with the tilde character
  (~), for example, (ld \"~/acl2-customization.lsp\"). Thanks to Sol
  Swords for bringing this bug to our attention. Also thanks to Harsh
  Raju Chamarthi for a useful conversation that led to a better fix
  than our first one.

  CHANGES AT THE SYSTEM LEVEL

  ACL2 may now be built on recent versions of a new host Lisp, ANSI Gnu
  Common Lisp (GCL). Traditional (non-ANSI) GCL was the original host
  Lisp underlying ACL2, and we are grateful for GCL support that we
  received from the late Bill Schelter and, more recently and
  particularly for ANSI GCL, from Camm Maguire.

  The `make' process suggested for book certification has changed
  substantially, thanks in large part to contributions from Jared
  Davis and Sol Swords. We have seen the new process provide better
  performance on machines with many cores, and we expect maintenance
  advantages such as eliminating the need for Makefiles in individual
  book directories. The ``classic'' process, which was based on
  community books file books/Makefile-generic, is still supported
  (see [books-certification-classic]) but may disappear in a future
  release of ACL2. See [books-certification]. Most changes should be
  invisible to the user, other than improved `make'-level
  parallelism, with the exception of the following.

      o Variable ACL2_JOBS is no longer supported, nor is it necessary;
      simply use `make' option `-j' instead.

      o Regressions now use `make' option -k by default, which causes the
      regression to keep going after errors, rather than -i, which
      ignores errors. If you encounter problems because of this
      change, use ACL2_IGNORE=-i with your `make' command.

      o The `regression' target works for the experimental extension,
      ACL2(h) (see [hons-and-memoization]); target `regression-hons'
      no longer exists.

  Please let us know if you run into problems with the new
  infrastructure, as we consider the legacy infrastructure to be
  deprecated and we will probably eliminate much of it in the future.
  In particular, circular dependencies were formerly prohibited at
  the directory level, but that is no longer the case, and we expect
  such cycles to occur in the future.

  Although ACL2 users don't typically modify raw Lisp variables, we
  have arranged to reset Lisp variable *default-pathname-defaults* if
  necessary at startup so that it will not interfere with ACL2, in
  particular by messing up the initial connected book directory (see
  [cbd]). Thanks to Jared Davis, Sol Swords, and Raymond Toy for
  helping us to identify this issue.

  EMACS SUPPORT

  EXPERIMENTAL/ALTERNATE VERSIONS

  In ACL2(h), [print-object$] no longer uses the serialize printer
  except in system applications as before (e.g., write out .cert
  files). Thanks to Dave Greve for bringing this issue to our
  attention.

  Jared Davis contributed changes related to the [memoize] utility of
  ACL2(h), including some low-level changes as well as the following.

  o [Never-memoize] specifies that a given function should never be
  memoized.

  o Removed memoize-let, which may never have ever been used.

  o Removed the :inline keyword option to memoize, which was just an
  alias for the :recursive option.

  For ACL2(p), some anomalous behavior may no longer occur because
  prover calls (more specifically, trips through the ACL2
  ``waterfall'') will return only after all sub-computations
  (threads) have finished. Thanks to David Rager for contributing
  this improvement.

  ACL2(pr), which includes [parallelism] (as for ACL2(p)) and
  non-standard analysis support for the [real]s (as for ACL2(r)), now
  builds and can certify the community nonstd/ books. Thanks to David
  Rager for his contribution to this capability.")
 (NOTE-6-3
  (RELEASE-NOTES)
  "ACL2 Version 6.3 (October, 2013) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes since Version 6.2 into the
  following categories of changes: existing features, new features,
  heuristic improvements, bug fixes, changes at the system level,
  Emacs support, and experimental versions. Each change is described
  in just one category, though of course many changes could be placed
  in more than one category.

  CHANGES TO EXISTING FEATURES

  The evaluation of a term from a [bind-free] hypothesis had been
  expected to produce an alist binding free variables to terms. While
  that is still legal, it is also legal for that evaluation to
  produce a list of such alists: then each is considered, until one
  of them permits all remaining hypotheses to be relieved. See
  [bind-free]. Thanks to Sol Swords for requesting this enhancement.

  ACL2 continues to provide a way to specify keyword command
  abbreviations for the top-level loop; see [ld-keyword-aliases].
  However, [ld-keyword-aliases] is now a [table] rather than a
  [state] global; it is thus no longer a so-called [ld] special. The
  functionality of set-ld-keyword-aliases has essentially been
  preserved, except that it is now an event (see [events]), hence it
  may appear in a book; it is [local] to a book (or [encapsulate]
  event); and the [state] argument is optional, and deprecated. A
  non-local version (set-ld-keyword-aliases!) has been added, along
  with corresponding utilities add-keyword-alias and
  add-keyword-alias! for adding a single keyword alias. See
  [ld-keyword-aliases]. Thanks to Jared Davis for correspondence that
  led us to make this change.

  The [proof-checker] command (exit t) now exits without a query (but
  still prints an event to show the :INSTRUCTIONS). Thanks to Warren
  Hunt for feedback leading us to make this change.

  We made the following minor changes to the behavior of dmr; see
  [dmr]. First, if dmr monitoring is enabled, then (dmr-start) will
  have no effect other than to print a corresponding observation, and
  if monitoring is disabled, then (dmr-stop) will have no effect
  other than to print a corresponding observation. Second, it had
  been the case that when (dmr-start) is invoked, the debugger was
  always automatically enabled with value t (see
  [set-debugger-enable]), and the debugger remained enabled when
  (dmr-stop) was invoked. Now, the debugger is only enabled by
  (dmr-start) if it is not already enabled and does not have setting
  :never. Moreover, if such automatic enabling takes place, then the
  old setting for the debugger is restored by (dmr-stop) unless
  [set-debugger-enable] has first been called after that automatic
  enabling. Finally, if the value of [state] global variable
  'debugger-enable is :bt, then the new value will be :break-bt, not
  t.

  When a call of [progn] is executed in the ACL2 loop, its constituent
  [events] and their results are printed, just as was already done
  for calls of [encapsulate]. Thanks to Jared Davis for a
  conversation causing us to consider this change.

  (CCL only) When [set-debugger-enable] is invoked with an argument
  that prints a backtrace and CCL is the host Lisp, the backtrace
  will be limited to 10,000 stack frames. (We have seen more than
  65,000 stack frames before this change.) This limit is the value of
  raw Lisp variable *ccl-print-call-history-count*, which may be
  assigned another positive integer value to serve as the maximum
  number of stack frames to be printed.

  Improvements have been made pertaining to the disabling (inhibiting)
  of individual types of warning. Now, inhibited warnings are
  implemented in a straightforward way using a separate [table] for
  this purpose, the inhibit-warnings-table, rather than using the
  [ACL2-defaults-table]. See [set-inhibit-warnings], and see
  [set-inhibit-warnings!] for a variant that is not [local] to an
  [encapsulate] or a book in which it occurs. Thanks to Sol Swords
  for sending examples showing how [set-inhibit-warnings] did not
  always behave as one might reasonably expect when books are
  involved.

  It had been the case that [lp] took a single argument, 'raw. This
  argument was not documented and also caused an error, so it has
  been eliminated.

  The functionality of [make-event] has been significantly expanded.
  First: if the expansion is of the form (:OR e1 e2 ...), then event
  forms e1, e2, and so on are evaluated, in order, until the
  evaluation of some ek completes without error. In that case, the
  expansion is treated simply as ek. With this capability,
  alternative expansions can be attempted and the successful one does
  not need to be evaluated again. See the new version of community
  book books/make-event/proof-by-arith.lisp for an example. Second,
  an expansion may be of the form (:DO-PROOFS e), in which case the
  event e is evaluated with proofs not skipped; see
  [ld-skip-proofsp]. Third, new keyword :EXPANSION? can be used to
  avoid storing expansions in certificate files. See [make-event].

  When a [defun] event prints a failure message in the summary, that
  message now indicates when the failure is due to a failed proof of
  guard verification or a failed proof of the measure theorem. Thanks
  to Shilpi Goel for requesting this enhancement.

  NEW FEATURES

  ACL2 can now be instructed to time activities using real time (wall
  clock time) instead of run time (typically, cpu time). See
  [get-internal-time]. Thanks to Jared Davis for asking to be able to
  obtain real-time reports in event summaries.

  A new utility, [sys-call+], is similar to existing utility [sys-call]
  in that it executes a command. Unlike sys-call, however, sys-call+
  returns values that include output from the command (in addition to
  the exit status), rather than simply printing the command. See
  [sys-call+].

  The new macro [verify-guards+] extends the functionality of
  [verify-guards] by permitting macro-aliases (see
  [macro-aliases-table]). See [verify-guards+]. Thanks to Jared Davis
  for requesting this feature and suggesting the use of [make-event]
  in its implementation. We have also modified [verify-guards] to
  print a friendlier error message when its argument is a
  macro-alias.

  See [last-prover-steps] for a new utility that returns the number of
  prover steps most recently taken.

  HEURISTIC IMPROVEMENTS

  The processing of :use and :by [hints] has been changed in the
  following two rather subtle ways, thanks to suggestions from Sol
  Swords.

      o For :by hints, the simplest check was an equality check, rather
      than a more general subsumption check. That equality check was
      made after removing so-called ``guard holders''
      ([must-be-equal], [prog2$], [ec-call], [the]) from both the
      previous theorem and the purported theorem. Now, guard-holder
      removal has been strengthened, so that the results are also put
      into so-called quote-normal form, for example replacing (cons
      '3 '4) by '(3 . 4).

      o For a [lemma-instance] provided to a :use or :by hint that is a
      :functional-instance, if a :do-not hint (see [hints]) has
      specified that preprocess-clause is not to be used, then
      preprocessing will not be used on the constraints.

  We eliminated certain warnings about being ``weak'' for every
  :[type-prescription] rule whose conclusion designates that the
  function call can be equal to one of its arguments, e.g., (or
  (integerp (foo y)) (equal (foo y) y)). In many cases (such as the
  one above), such warnings about ``weak'' simply aren't correct.

  BUG FIXES

  Fixed a soundness bug that was permitting a [stobj] to be bound by a
  [let] or [mv-let] form, without being among the outputs of that
  form. Thanks to Jen Davis and Dave Greve for reporting this bug.
  Their report included an example which forms the basis for a proof
  of nil, included as a comment in the form (deflabel note-6-3 ...)
  in ACL2 source file ld.lisp.

  (GCL only) Fixed an obscure soundness bug due to an error in the GCL
  implementation of [set-debugger-enable]. For details, see the
  relevant comment in the ACL2 source code under (deflabel note-6-3
  ...).

  Fixed a bug in the case of a field of a (concrete) stobj that is an
  abstract stobj (see [nested-stobjs]). Thanks to David Rager for
  bringing this bug to our attention.

  Splitter output for type if-intro (see [splitter]) could formerly
  occur even when at most one subgoal is generated. This has been
  fixed.

  Fixed a bug in [wof], hence in [psof] (which uses wof), that was
  causing the printing of a bogus error message.

  A small logical bug has been fixed in the logical definition of
  [sys-call-status]. Formerly it always returned (mv nil state)
  whenever the oracle of the state is non-empty (see [state]).

  Fixed a bug that was causing an error upon evaluation of the form
  (set-prover-step-limit nil). Thanks to David Russinoff for
  reporting this error.

  The :measure (if supplied) is now ignored when checking redundancy
  with respect to a non-recursive definition that is not defined
  within a [mutual-recursion]. (See [redundant-events] and see
  [xargs].) It had been possible to get a low-level ACL2 error in
  this situation. Thanks to Jared Davis for reporting this bug with a
  helpful example.

  Eliminated a potential error when using [comp] to compile an
  uncompiled function defined under [progn!], which we observed in
  LispWorks.

  CHANGES AT THE SYSTEM LEVEL

  The ACL2 sources are now publicly available between ACL2 releases,
  using svn; see the new ``acl2-devel'' project hosted by Google code
  at {http://acl2-devel.googlecode.com |
  http://acl2-devel.googlecode.com}. Although such a copy of ACL2 is
  likely to work well with the latest svn (trunk) revision of the
  ACL2 community books (see [community-books]), please take seriously
  the warning message printed at startup: ``The authors of ACL2
  consider svn distributions to be experimental; they may be
  incomplete, fragile, and unable to pass our own regression.'' That
  message also provides instructions for bug reports. If you decide
  to use svn versions of either the community books or ACL2, then you
  should use both, as they tend to be kept in sync. We fully expect
  ACL2 releases to continue from time to time, as usual. Thanks to
  Jared Davis for his efforts in setting up the new acl2-devel
  project and svn repository, and to him and David Rager for
  convincing us to distribute ACL2 sources via svn between releases.

  Thanks to a suggestion from Jared Davis, over 30 built-in functions
  are now declared to be inline in order to boost performance. (The
  list may be found by searching ACL2 source file axioms.lisp for
  ``(declaim (inline''.)

  Better support has been provided for command line arguments,
  especially those supplied directly by the user when calling ACL2.
  For one, problems with quoting have been solved using \"$@\" in place
  of $*. Also, the function [save-exec] now allows specification of
  arguments, both for the host Lisp as well as ``inert'' arguments
  that can be passed along to calls of programs (as with [sys-call]).
  A keyword argument, :return-from-lp, specifies a form to evaluate
  before quitting the read-eval-print loop at startup. See
  [save-exec]. Also see the source function user-args-string and its
  comments, source file acl2-init.lisp, for more information. Thanks
  to Jared Davis for suggesting the use of \"$@\", as well as
  modifications to [save-exec] and helpful conversations about that.

  A rather extensive overhaul has taken place for the function
  proclaiming mechanism. As before, this is only used when the host
  Lisp is GCL. However, building an executable is now faster for some
  Lisps, including GCL, by avoiding repeated recompilation and
  perhaps repeated initialization.

  (CCL only) We increased stack sizes when the host Lisp is CCL. The
  default for recent CCL versions is equivalent to specifying `-Z 2M'
  on the command line, but saved ACL2 scripts (including experimental
  versions ACL2(h), ACL2(p), ACL2(r), and combinations of them) to
  `-Z 64M', representing a 32-fold increase. Thanks to Jared Davis
  for pointing us to community books file
  books/centaur/ccl-config.lsp and to Sol Swords for helpful
  discussions.

  (SBCL only) Fixed save-exec for host Lisp SBCL to provide the same
  export of variable SBCL_HOME that was provided in the original
  saved_acl2 script.

  (GCL only) We made changes, following suggestions from Camm Maguire
  (whom we thank for these suggestions), to support ACL2 builds on
  recent versions of GCL (2.6.8 and 2.6.10; we recommend against
  using GCL 2.6.9, since issues there were fixed in 2.6.10).
  Specifically, we no longer set the hole size, and we allocate
  contiguous pages sufficient to run an ACL2 regression without
  failing due to memory limitations.

  EMACS SUPPORT

  Modified file emacs/emacs-acl2.el to eliminate some warnings that
  were appearing in a recent Emacs version, replacing (end-of-buffer)
  by (goto-char (point-max)) and next-line by forward-line. Thanks to
  Warren Hunt for bringing the warnings to our attention.

  EXPERIMENTAL/ALTERNATE VERSIONS

  (Allegro CL only) ACL2(h) now avoids blow-ups in hash table sizes
  that could be caused by [fast-alist-fork]. Thanks to Jared Davis
  for helping to debug this problem, and to David Rager for
  contributing the community book
  books/parsers/earley/earley-parser.lisp, which highlighted this
  problem.

  (SBCL only) Fixed a bug that was causing a Lisp break after turning
  on [waterfall-parallelism]. Thanks to David Rager for confirming
  that our proposed fix is correct.")
 (NOTE-6-4
  (RELEASE-NOTES)
  "ACL2 Version 6.4 (January, 2014) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes to ACL2 since Version 6.3 into
  the following categories of changes: existing features, new
  features, heuristic improvements, bug fixes, changes at the system
  level, Emacs support, and experimental versions. Each change is
  described in just one category, though of course many changes could
  be placed in more than one category.

  See also [note-6-4-books] for a summary of changes made to the ACL2
  Community Books since ACL2 6.3, including the build system.


Changes to Existing Features

  [Gag-mode] no longer saves prover output when PROVE output is
  inhibited (see [set-inhibit-output-lst]). This may improve
  performance slightly when certifying community books using their
  Makefile or [build::cert.pl]; in particular, GCL 2.6.8 running on a
  Mac can now certify the book
  books/tau/bounders/elementary-bounders.lisp without running out of
  space, even without explicitly turning off [gag-mode] (which had
  been done shortly before the Version 6.3 release).

  When [include-book] fails to find a readable [certificate] (.cert)
  file, the error message now distinguishes between the case that
  this file is missing and the case that read permission is missing.

  (GCL only) Time reporting has been improved when the host Lisp is Gnu
  Common Lisp. A key change was made in the computation of runtime
  (for example, to report in event summaries), so that it includes
  the ``child runtime''. See [get-internal-time]. Also, the utility
  [time$] now gives improved information by including child runtime
  information, which can be significant; for example, it probably
  includes compile time, while the ``seconds runtime'' statistic
  (still) does not. Recent versions of GCL might also provide system
  runtime and child system runtime. See [time$]. Thanks to Camm
  Maguire for suggesting these improvements to time$ and providing an
  initial implementation for them.

  Fixed a bug in an ACL2 system function, our-truename, which returns
  the ``true name'' for a file name, when supplied with an optional
  second argument. Thanks to Camm Maguire for bringing this bug to
  our attention.

  The wording in theory warnings has been improved, to avoid giving the
  impression that you are newly disabling a built-in rule in the case
  that it merely remains disabled.

  As requested by Sol Swords, erroneous evaluations of system function
  magic-ev-fncall that had produced a message, msg, will now also
  return that message. The following example, sent by Sol,
  illustrates the fix: before, evaluation of (magic-ev-fncall 'cons
  '(a) state nil nil) printed a message (to the comment window) and
  then returned (mv t nil), but now it returns mv t <msg>, shere
  <msg> denotes the message (printed with the [fmt] ~@ directive).

  Fixed :[pbt] to avoid printing the bodies of [defconst] forms. Thanks
  to Jared Davis for pointing out the large output when the body is a
  large character string.

  A new output type, history, now controls the printing of
  history-related information; see [set-inhibit-output-lst]. The
  unused output type, expansion, is no longer supported, i.e., is no
  longer a member of the list *valid-output-names*. Because of this
  change, printing of information when undoing, as by :[u], will now
  take place even when event output is inhibited (if history output
  is not inhibited); we thank Sol Swords for requesting that change.

  The :[loop-stopper] field of a rule of class :[rewrite], should still
  be a list of lists (var1 var2 fn1 fn2 ... fnk), where var1 and var2
  are variables and the fni are symbols. But formerly each fni was
  required to be a function symbol; now, it can be a macro alias for
  a function symbol (see [add-macro-alias]). For example, the
  following is a valid :[loop-stopper] field: ((x y +)).

  The restrictions on utilities [oracle-apply] and [oracle-funcall]
  have been updated in order to avoid potentially confusing or
  inappropriate results, by imposing the following new requirements
  on their first argument, which must still be a function symbol.
  That symbol must not be if (formerly the illegal symbol was
  [return-last]); it must not be a key of the alist,
  *ttag-fns-and-macros*; it must not be untouchable (see
  [remove-untouchable]); and it must not be a [stobj] creator (see
  [defstobj]).

  The [table] guard on [dive-into-macros-table] has been strengthened
  in order to avoid calling untouchable functions (see
  [remove-untouchable]).


New Features

  We have added a tool for writing out useful information about a
  book's event names when certifying the book. See [bookdata]. Thanks
  to Dave Greve for requesting this tool and participating in its
  specification.

  There are new analogues of [add-include-book-dir] and
  [delete-include-book-dir]: [add-include-book-dir!] and
  [delete-include-book-dir!], respectively. The new utilities are
  similar to their existing counterparts, except that their effects
  are not [local] to enclosing [books] or [encapsulate] events.
  Thanks to Shilpi Goel for requesting this enhancement.

  The class of [congruence] rules has been broadened considerably, so
  that one can restrict to patterns. For example, a congruence rule
  can now state that an equivalence is maintained for the term
  (mv-nth 1 (f (cons u v) y 'a)) when rewriting y. See
  [patterned-congruence]. Thanks to Sol Swords for requesting this
  feature.


Heuristic Improvements

  (None to report this time.)


Bug Fixes

  Fixed a soundness bug in the handling of hypotheses of conditional
  :[definition] rules invoked during rewriting by applying :[expand]
  [hints]. See (defxdoc note-6-4 ...) in community book
  system/doc/acl2-doc.lisp for a proof of nil in ACL2 Version_6.3
  that exploits this bug.

  It had been possible to update a [stobj] (either an ordinary stobj or
  an abstract stobjs) so that it no longer satisfies its recognizer
  predicate. This soundness bug has been fixed. Thanks to Jared Davis
  and Sol Swords for pointing out this bug, making useful
  observations about the issue, and sending proofs of nil, one of
  which may be found in a Lisp comment in the defxdoc form for
  note-6-4.

  Fixed a long-standing soundness bug (found at least as far back as
  Version 1.9!) in the checking done for [congruence] rules. There
  had failed to be a check that the new variable on the right-hand
  side of the conclusion is indeed new. The following example is
  shown in detail as a comment in function
  interpret-term-as-congruence-rule, ACL2 source file defthm.lisp,
  where it is used to prove nil in Version 6.3.

    (implies (e y1 y2)
             (equal (h y2 y1)
                    (h y2 y2)))

  Fixed a bug in the ACL2 character reader that was causing an
  end-of-file error when reading from a string ending in \"#\\c\", for c
  a character or non-terminating sequence of characters. Thanks to
  Jared Davis for sending the following example, whose evaluation in
  raw Lisp had caused an error.

    (let* ((*readtable* *acl2-readtable*)
           (stream (make-string-input-stream \"#\\\\a\"))
           (x1 (read stream nil :EOF))
           (x2 (read stream nil :EOF)))
      (list x1 x2))

  (GCL only) Improved the automatic proclaiming mechanism used for GCL
  builds, in particular to avoid computing a return type when a term
  is detected that could come from a call of [non-exec], and to do a
  more complete job for calls of [return-last].

  (CCL only) A CCL bug was treating filenames of the form \"~/user/...\"
  as \"~/...\". Thanks to Gary Byers for sending us a CCL-specific form
  that is now included in the ACL2 sources, which avoids this
  problem.

  Attempts to submit [congruence] rules had unfortunate consequences in
  the case that the function ``symbol'' is [if] or [quote]: for if,
  rules were appropriately ignored because of the special handling
  that ACL2 already gives to calls of [if] for congruence-based
  reasoning, while for quote, it was possible to get a hard Lisp
  error. Now, attempts to submit such rules will result in a clear
  ACL2 error.

  It had been possible to get a confusing raw Lisp error when
  submitting a [defstobj] event whose first argument is not a symbol,
  as in: (defstobj (fld :type integer :initially 0)). That user error
  is now reported gracefully by ACL2.

  When an [include-book] form is executed for a non-existent book, we
  no longer get a bogus warning about a missing compiled file. (Of
  course the compiled file is missing when the book itself is
  missing! So there's no need to report this fact.) Thanks to Caleb
  Eggensperger for bringing this issue to our attention.


Changes at the System Level

  The ACL2 system [documentation] has been reworked for the [xdoc]
  framework developed by Jared Davis. While the ACL2 User's Manual
  can still be built, it is now possible for the ACL2 community to
  contribute to the ACL2 system documentation, in community book
  books/system/doc/acl2-doc.lisp; see comments near the top of that
  book. Now that both the ACL2 system documentation and much of the
  community books documentation are written in [xdoc] format, we hope
  the ACL2 community will add links from the ACL2 system
  documentation topics to book documentation topics. Note that :[doc]
  still works at the terminal, but it is based on the new system, and
  other terminal-based access to the documentation has been
  eliminated (for example :more). Thanks to Jared for all his work
  contributing to this enhancement.

  Fixed community books books/Makefile-generic and also books/Makefile,
  which now has filename books/GNUmakefile, to work with Cygwin
  (Windows). Thanks to Harsh Raju Chamarthi for his substantial help.

  The guard for system function ev-fncall-w now includes an arity
  check.


EMACS Support

  There is now an Emacs utility for browsing the hypertext
  documentation for ACL2 and the community books. This browser,
  ACL2-Doc, essentially serves as a replacement for Emacs Info, which
  can no longer be used to browse the documentation. ACL2-Doc can be
  used not just for the ACL2 User's Manual but also for the
  ACL2+Books Manual. It is loaded automatically into Emacs if you
  load the file emacs/emacs-acl2.el. See [ACL2-doc] and
  [documentation].


Experimental/Alternate Versions

  (None to report this time.)")
 (NOTE-6-5
  (RELEASE-NOTES)
  "ACL2 Version 6.5 (August, 2014) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes to ACL2 since Version 6.4 into
  the following categories of changes: existing features, new
  features, heuristic improvements, bug fixes, changes at the system
  level, Emacs support, and experimental versions. Each change is
  described in just one category, though of course many changes could
  be placed in more than one category.

  See also [note-6-5-books] for a summary of changes made to the ACL2
  Community Books since ACL2 6.4, including the build system.


Changes to Existing Features

  The [brr@] command now supports inputs :initial-ttree and
  :final-ttree. Thanks to David Rager for a request leading to these
  enhancements. See [ttree] for a discussion of the tag-tree
  structures returned for these inputs.

  (GCL only) A restriction for structure-sharing (as described in a
  remark, ``Remark on print-circle-files''; see [print-control])
  involving GCL has been removed, since this is no longer required
  for the latest GCL versions (2.6.8 and 2.6.10). Thanks to Jared
  Davis and Camm Maguire for useful discussions and this GCL
  improvement.

  The keyword commands :exit and :quit are disabled inside [brr], in
  order to avoid accidental exits from ACL2. Thanks to David Rager
  for suggesting such a change.

  For calls of [make-event] made during the [include-book] phase of
  [certify-book], keyword :check-expansion no longer causes
  evaluation of the first argument of make-event; rather, the value
  of :check-expansion is simply used as the expansion. Thanks to Sol
  Swords for suggesting this change, which made it reasonable to
  ignore such make-event forms when determining the ``rolling back''
  before that include-book phase, as described in the next section.

  The form (reset-prehistory nil) now is a no-op if [state] global
  'skip-reset-prehistory has a non-nil value. Thanks to Sol Swords
  for requesting this feature (in support of infrastructure for
  certifying the [community-books]).

  The output from :[pr], :[pr!], :[pl], and :[show-bodies] has been
  tweaked. Thanks to a suggestion from Ben Selfridge, such output now
  shows the hypotheses (the Hyps field) above the left-hand side and
  right-hand side of a [rewrite] rule (Lhs and Rhs, respectively).
  The Equiv field has also been moved up before the Lhs field in such
  output for rewrite rules, and this field has been added for [elim]
  rules. Finally, the Hyps field now appears above the Term field in
  such output for [type-prescription] rules.

  Rules of class :[linear] may now be [monitor]ed. Thanks to David
  Rager for requesting this enhancement.

  When forcing (see [force]) is applied, we now always see the
  appropriate [executable-counterpart] [rune],
  (:executable-counterpart force), in the proof output and summary;
  this hadn't previously been the case. Thanks to Robert Krug for
  bringing this issue to our attention.

  The default value for the :write-port keyword argument of
  [certify-book] is now t, as was already claimed by the
  documentation. Thus, a .port file will be written when a book is
  certified, making it more likely that a subsequent [include-book]
  will complete without error even if the book has been modified
  without recertification. Note that a change by Sol Swords to the
  build system for the [community-books] now sets an environment
  variable to guarantee that write-port is true, independent of this
  change. On a related note: the unadvertised environment variable
  ACL2_WRITE_PORT is now handled more appropriately, by interning its
  upcased argument into the ACL2 package.

  The following changes can make it easier to include books that are
  uncertified or have corrupted compiled files. Thanks to Sol Swords
  for sending helpful, relevant examples and for subsequent
  discussions helping to lead to these changes.

    * It is no longer illegal to call set-compiler-enabled within [books].
      See [compilation], which shows how to do this in order to avoid
      loading the compiled file not only for a book specified by
      [include-book] but also for all books included under that book.
      Also see [compilation] for an analogous utility,
      (set-port-file-enabled nil state), to avoid loading .port
      files. (For background on .port files, see
      [uncertified-books]).
    * In situations where it is legal to include an uncertified book
      (typically, any time other than during [certify-book], ACL2
      nonetheless could fail to do so when an error occurred while
      reading a [certificate] file. ACL2 can now instead include the
      book successfully as an uncertified book.
    * When hard raw Lisp errors occur during loading of compiled files on
      behalf of an [include-book] event, that event can now complete
      successfully much as though the compiled file were simply
      missing.

  (SBCL only) The function [setenv$] is now supported in SBCL, which
  had been the one supported host Lisp for which setenv$ had not been
  supported. Thanks to Jared Davis for pointing the way to this
  improvement.

  Built-in [equality-variants] have been modified in order to support
  suitable guard-checking. For example, evaluation of the form
  (member-eq 3 '(4 5)), or equivalently, (member 3 '(4 5) :test 'eq),
  had produced a value of nil, but now we get what one should have
  expected: a guard violation (since [member-eq] is intended to
  compare symbols). Thanks to Yan Peng for raising a question on the
  acl2-help mailing list that led us to make this improvement.

  When the :[pe] command is supplied the macro alias for a function
  symbol (see [macro-aliases-table]), the system will now print
  [events] not only for the macro symbol but also for the
  corresponding function symbol. Thanks to Cuong Chau, Jared Davis,
  Shilpi Goel, Sol Swords, and Warren Hunt for requesting this
  enhancement.

  Some evaluations of forms (mbe :logic L :exec E) are more efficient
  or avoid guard violations, by evaluation of the :exec form (E)
  instead of the :logic form (L). If the [mbe] call is in a
  :[program] mode function definition, the :exec code will be
  evaluated, where unlike before, this is true even when
  guard-checking is :all or :none (see [set-guard-checking]). If the
  mbe call is in a :[logic] mode function definition, the change is
  that the :exec code will be evaluated when there is a superior call
  of a :program mode function, except when guard-checking is :all or
  :none or in a couple of technical cases (see a comment in the
  source code for constant **1*-as-raw* [formerly *mbe-as-exec*] for
  details). This use of :exec code had been defeated when the
  superior :program mode function had an ``invariant-risk'' of making
  ill-guarded stobj updates. However, there is no change in the case
  of safe-mode, which is used during evaluation of [defconst],
  [value-triple], and [defpkg] forms, and during macroexpansion: the
  :logic and :exec forms are still both evaluated and checked for
  equality. Thanks to Jared Davis for reporting this issue and for
  helpful chats about it. For more information, see the comment about
  ``mbe and invariant-risk'' in the form (defxdoc note-6-5 ...) in
  [community-books] file books/system/doc/acl2-doc.lisp.

  The utility [save-exec] has a new (optional) keyword argument,
  :init-forms, which specifies a list of forms to evaluate when first
  entering the ACL2 read-eval-print loop, [lp]. Thanks to Jared Davis
  for requesting this enhancement.


New Features

  A [defstobj] event may now include the keyword argument
  :non-memoizable. When its value if t, then for ACL2(h) builds (see
  [hons-and-memoization]), code will run somewhat faster. In a little
  test doing just reads and writes to a stobj array in ACL2(h), it
  took 26% less time when the stobj to be written was introduced by
  [defstobj] using :non-memoizable t. Thanks to Warren Hunt for
  requesting this feature and helping to develop the test.

  See [set-print-base-radix] for a utility that may be preferable to
  [set-print-base], since it essentially calls [set-print-radix]
  automatically. Thanks to David Rager, Shilpi Goel, and David Hardin
  for participating in an acl2-help mailing list discussion that
  motivated this feature.


Heuristic Improvements

  One of the steps performed by [certify-book] has traditionally been
  to check for local incompatibilities (see [local-incompatibility])
  after admitting all the events in the book. This step involved
  rolling back the logical [world] to what it was at the start of
  certification, and then including the book (see [include-book]). As
  an optimization, we now avoid rolling back the world more than
  necessary; see [certify-book], specifically the discussion of Step
  3. We thank Sol Swords for requesting this optimization and for
  making a suggestion that improved it, pertaining to [make-event]
  (described above). We also thank Jared Davis for alerting us to an
  issue that turned out to be caused by a bug in our initial
  implementation. Sol has reported a nearly 20% reduction in time for
  certifying a certain large collection of books.

  The test for redundancy of [encapsulate] [events] has been made more
  efficient. Also, while the criterion itself remains unchanged, the
  documentation has been made more accurate; see
  [redundant-encapsulate]. We observed more than a 2% reduction in
  time for the ``everything'' regression target, but we observed more
  than 23% of the time eliminated for the form (time$ (include-book
  \"doc/top\" :dir :system)) after building the documentation. Thanks
  to David Rager for bringing that particular book to our attention,
  as one that took a long time to include.

  The function [pairlis$] is now tail-recursive, hence potentially more
  efficient. More precisely, its definition for the logic remains
  unchanged, but using [mbe], for execution it calls a new
  tail-recursive function, pairlis$-tailrec. Thanks to Jared Davis
  for requesting this improvement.

  [Linear] arithmetic has been strengthened slightly so that
  immediately after simplification has ``settled down'' (see
  [hints-and-the-waterfall]), the unrewritten conclusion of a
  :[linear] rule may be used when normally this would not be the
  case. Thanks to Robert Krug for reminding us of examples we had
  encountered that could benefit from some such a change, and for
  pointing us to some relevant source code. This improvement
  generally causes an extra pass through the simplifier; hence we
  have observed approximately a 2% slowdown in the regression suite.
  Note that machinery is now in place for installing additional
  ``desperation heuristics''; perhaps the ACL2 community will have
  some to suggest.


Bug Fixes

  We fixed a soundness bug in how the [tau-system] processed calls of
  if. Thanks to Dmitry Nadezhin for reporting this bug by sending a
  simple example that exploited it to prove nil. To see that example,
  see the comment about ``tau soundess bug'' in the form (defxdoc
  note-6-5 ...) in [community-books] file
  books/system/doc/acl2-doc.lisp.

  We fixed a soundness bug for nested [stobj]s (see [stobj-let]). In
  the case of a stobj producer variable that is not a child stobj, it
  had been possible to update that stobj without returning it. Thanks
  to Sol Swords for reporting this bug and providing a corresponding
  proof of nil, which is included in a comment in the form (defxdoc
  note-6-5 ...) in [community-books] file
  books/system/doc/acl2-doc.lisp.)

  We fixed a soundness bug in the case of a [stobj] with a field that
  is a resizable array of stobjs. Thanks to Sol Swords for sending a
  proof of nil exploiting this bug, together with some helpful
  analysis attributing the bug to a mistake in the generated logical
  definition of the corresponding resize function. (His example is
  included in a comment in the form (defxdoc note-6-5 ...) in
  [community-books] file books/system/doc/acl2-doc.lisp.)

  (ACL2(h) only) We fixed a soundness bug involving the interaction of
  [stobj-let] and [memoize], which thus is only a bug in ACL2(h) (see
  [hons-and-memoization]), not in ACL2. The fix was to add code to
  stobj-let that clears the memoization table for the parent stobj if
  any child stobj is updated. An example proof of nil before this fix
  may be found in the ACL2 source file translate.lisp, in a comment
  in the function stobj-let-fn-raw.

  (Allegro CL and CMUCL only) We fixed bugs in function [princ$] when
  invoked in an ACL2 image with Allegro CL or CMUCL as the host Lisp
  implementation. In Allegro CL, when printing a complex number in
  base 16, lower case characters were produced, for example printing
  #C(c d) instead of the characters predicted by the axioms, namely
  #C(C D). In some recent versions of CMUCL, after executing the
  forms (set-print-base 16 state) and (set-print-case :downcase
  state), hex digits were printed in lower case, unlike other host
  Lisps and contrary to the ACL2 axioms: for example, 1000 base 10
  was printed as 3e8 rather than as predicted by the ACL2 axioms,
  3E8. Thanks to Jared Davis for bringing these bugs to our
  attention, and also for pointing out excessive printing of a big
  note about such printing in Allegro CL. We now avoid that note
  altogether, which had warned that printing numbers in base 16 can
  be slow for Allegro CL. In fact, that performance issue has been
  eliminated: for example, after evaluating (defconst *c* (expt 2
  200000)) and (set-print-base 16 state), the form (time$ (pprogn
  (princ$ *c* *standard-co* state) state)) reports taking about 3
  seconds before the change but about 1/100 seconds after the change.
  Thanks to David Margolies of Franz Inc. for passing along a remark
  from a colleague that showed how to make this improvement.

  The utility [sys-call+] can now only be called if there is an active
  [trust-tag], which is the restriction that was already in place for
  [sys-call]. This plugs a potential soundness hole.

  We have made several system functions untouchable (see
  [remove-untouchable]), in order to prevent soundness bugs. We thank
  Jared Davis and Sol Swords for sending us an example that used a
  call of one of these functions to prove nil. We have placed that
  example into a comment in Community Books file
  system/doc/acl2-doc.lisp, form (defxdoc note-6-5 ...).

  The brr command, :wonp, had not been installed for use after :eval
  even though this was claimed in the documentation (see
  [brr-commands]). This has been fixed. Thanks to David Rager for
  bringing this issue to our attention.

  Fixed a bug in [make-event] that could cause [include-book] to fail
  with a bogus message about ``the set of ttags permitted in the
  current context.'' Thanks to Sol Swords and Anna Slobodova for
  reporting this bug, and to Sol for sending a small example that
  illustrated the problem.

  Fixed a bug that was wrongly disallowing certain calls of exported
  functions for abstract stobjs (see [defabsstobj]). Thanks to Sol
  Swords for reporting this bug, supplying an example illustrating
  the bug, and suggesting a nice fix. A slight variant of his example
  is included in a comment in Community Books file
  system/doc/acl2-doc.lisp, form (defxdoc note-6-5 ...).

  When a macro symbol mac was a macro-alias for a function symbol f
  (see [macro-aliases-table]), then the form (verify-guards+ mac)
  caused an error when encountered while including an uncertified
  book. This problem has been fixed. Thanks to Jared Davis for
  pointing out the problem and sending a simple example to illustrate
  it. Technical Note: the actual problem was that [verify-guards+]
  generates a call of [make-event] with an :expansion? argument, and
  that argument needed to be ignored (as it now is, after the fix)
  when including an uncertified book.

  The [walkabout] utility could cause hard Lisp errors when the current
  package is other than \"ACL2\". This has been fixed. Thanks to Sol
  Swords for bringing this bug to our attention and suggesting a fix.


Changes at the System Level

  (SBCL only) Fixed the executable script generated for SBCL so that
  SBCL_HOME is set to the SBCL obj/sbcl-home/ directory if it exists,
  since that fix seems needed for some recent versions of SBCL
  (1.1.14 in particular).

  File GNUmakefile in the ACL2 sources directory wasn't passing the
  value of shell variable ACL2 from target certify-books-fresh to
  target certify-books, and similarly for target
  books/system/doc/render-doc.cert (invoked by target DOC). This has
  been fixed. We thank Jared Davis and Camm Maguire for helpful
  discussions.

  The \"make DOC\" command was not completing correctly when variable
  ACL2 was not set. Also, for host Lisp CMUCL at least, it stalled at
  the terminal unless a quit command was issued twice (as ACL2 was
  stuck without exiting). Those problems have been resolved. Thanks
  to Jim Ward for bringing these issues to our attention

  Improved the error message when encountering an illegal comma while
  reading input (i.e., for a comma not within a suitable nesting of
  backquotes). Thanks to Jared Davis for bringing this issue to our
  attention and for a helpful discussion.

  (GCL only) Arranged for state global 'tmp-dir to be set to GCL's
  si::*tmp-dir*, even on Windows; this may be important for
  compilation on Windows. Thanks to Camm Maguire for pointing out the
  need to set 'tmp-dir for ACL2 built on GCL on mingw.

  (GCL only) Now, [gc$] may be called with no arguments, in which case
  the missing argument for system::gc is t.


EMACS Support

  Improvements to the [ACL2-Doc] browser include the following.

    * A new `w' command displays the topic name in the minibuffer, together
      with the manual name (ACL2+Books Manual or ACL2 User's Manual).
    * Improved the `control-t .' command so that the default topic is
      selected just as in acl2-doc mode. (Technically: the same
      syntax table is used for `control-t .' as is used in the
      acl2-doc buffer for that command and the `g' command.)
    * Improved the search commands so that the display doesn't move when
      the next occurrence is already displayed on the screen.
    * Eliminated the deprecated commands `Control-x a A', `Control-x a a',
      and `Control-t G'.


Experimental/Alternate Versions

  For ACL2(r), Ruben Gamboa found a bug in constraints for functions
  introduced with defun-std, and also kindly provided a fix, which
  has been incorporated.

  Modified ACL2(hp) so that two system functions that had been
  [unmemoize]d when turning on [waterfall-parallelism] ---
  fchecksum-obj and expansion-alist-pkg-names-memoize --- now remain
  memoized. This can greatly improve performance when using ACL2(hp)
  with [waterfall-parallelism] on, in particular community book
  books/system/doc/render-doc-combined.lisp.

  Made miscellaneous small improvements to ACL2(h).

  The utilities hons-shrink-alist and hons-shrink-alist! have
  essentially been renamed to [fast-alist-fork] and
  [fast-alist-fork!], respectively. The old names are deprecated but
  remain as macros that are macro-aliases for the respective new
  names (see [macro-aliases-table]). New utilities,
  [fast-alist-clean] and [fast-alist-clean!] are similar to the above
  but take just one argument and, if it is a fast alist, associates
  the result with the hash table link of that argument. Thanks to
  Jared Davis for providing a concrete proposal, together with the
  new names, for what had been only a concept.")
 (NOTE-7-0
  (RELEASE-NOTES)
  "ACL2 Version 7.0 (January, 2015) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes to ACL2 since Version 6.5 into
  the following categories of changes: existing features, new
  features, efficiency improvements, bug fixes, changes at the system
  level, Emacs support, and experimental versions. Each change is
  described in just one category, though of course many changes could
  be placed in more than one category.

  A particularly major change with this release is that by default,
  ACL2 executables are [hons-enabled]: see [hons-and-memoization]. We
  expect this change to be backward compatible for current ACL2
  users, other than a change to the name of the executable, as
  described below.

    * As before, there are two ways to build ACL2: either [hons-enabled],
      to produce ACL2(h) with executable name saved_acl2h; or not
      hons-enabled, to produce ``classic ACL2'', which we now call
      ACL2(c), with executable name saved_acl2. [Note: These defaults
      were changed after Version_7.0.]
    * Unlike before, the default build of ACL2 is now ACL2(h), hence with
      name saved_acl2h [after Version_7.0, once again saved_acl2]. It
      is still possible to build ACL2(c) (hence with name saved_acl2)
      [after Version_7.0, saved_acl2c], but this is not the default.
    * The change to building ACL2(h) by default may require you to change
      scripts and environment variables to point to saved_acl2h
      rather than saved_acl2. [This change is only for Version_7.0,
      not later versions.]

  Note that after the next ACL2 release, we might only support
  [hons-enabled] ACL2 builds.

  See also [note-7-0-books] for a summary of changes made to the ACL2
  Community Books since ACL2 6.5, including the build system.


Changes to Existing Features

  Three new theorems have been built into ACL2 to allow some additional
  simple arithmetic reasoning. For example, the following failed
  before this change, typically causing the user to include an
  arithmetic book; but that is no longer necessary.

    (thm (implies (natp x)
                  (equal (expt 2 (+ 1 -1 x))
                         (expt 2 x))))

  Thanks to Jared Davis for suggesting these, and for providing seven
  small modifications to the community books to keep proofs from
  failing after the changes. (So, if you have a proof failure
  involving `plus' (+) that formerly succeeded, consider disabling
  one or more of these rules.) Here are the three new built-in
  theorems.

  Theorem: <commutativity-2-of-+>

    (defthm commutativity-2-of-+
            (equal (+ x (+ y z)) (+ y (+ x z))))

  Theorem: <fold-consts-in-+>

    (defthm fold-consts-in-+
            (implies (and (syntaxp (quotep x))
                          (syntaxp (quotep y)))
                     (equal (+ x (+ y z)) (+ (+ x y) z))))

  Theorem: <distributivity-of-minus-over-+>

    (defthm distributivity-of-minus-over-+
            (equal (- (+ x y)) (+ (- x) (- y))))

  [Type-set] reasoning has been improved for a few built-in functions,
  including first-n-ac, [substitute], [nthcdr], and [subseq], and
  thus for some functions whose computed type depends on one of
  these: for example, [take] and therefore, also [butlast] and
  [subseq-list], are now known to return [true-listp] results. Thanks
  to Jared Davis for a request that led us to these changes. In
  particular, the definitions of first-n-ac and substitute-ac have
  been modified to call [revappend] instead of [reverse], and the
  following :[type-prescription] rules have been added to source file
  axioms.lisp (and can be seen using :[pe]).

    * true-listp-first-n-ac-type-prescription
    * stringp-substitute-type-prescription
    * true-listp-substitute-type-prescription
    * true-listp-nthcdr-type-prescription
    * stringp-subseq-type-prescription
    * true-listp-subseq-type-prescription

  Technical note on the above change: in some cases, the built-in
  :[type-prescription] rule has been changed, essentially for the
  better, but new rules have also been added. Consider for example
  the function, [substitute]. This function calls substitute-ac,
  which in turn now calls [revappend] instead of [reverse], which
  allows ACL2 to deduce a :type-prescription rule saying that
  substitute returns a string or a true-list. However, new
  :type-prescription rules stringp-substitute-type-prescription and
  true-listp-substitute-type-prescription allow the stronger
  conclusion that substitute returns a string or true-list,
  respectively depending on whether [type-set] reasoning can deduce
  that the given sequence is or is not a string. The deduced
  :type-prescription rule can still be of some use in cases that
  type-set reasoning cannot establish whether or not the input
  sequence is a string.

  We removed support for processing legacy [documentation] strings
  (those starting with \":Doc-Section\"), since the [xdoc] system has
  been stable for some time. Thanks to Jared Davis for assisting in
  that effort and to David Rager for his encouragement. The ACL2
  system and [community-books] still have code to support such
  processing, but it is essentially commented out: specifically, each
  such piece of code is prefixed by #+acl2-legacy-doc. We expect to
  delete such code entirely before the next release.

  The [with-output] macro now takes a new keyword, :evisc, that
  specifies [evisc-tuple]s. Thanks to Warren Hunt for requesting a
  way to submit [defun] forms in a way that avoids printing large
  [guard] goals during guard verification. The following example
  illustrates a way to arrange this.

    (defmacro defun/ (&rest args)
     (mv-let (evisc args)
             (cond ((eq (car args) :evisc)
                    (mv (cadr args) (cddr args)))
                   (t (mv '(:gag-mode (evisc-tuple 3 4 nil nil)) args)))
             `(with-output :evisc ,evisc
                           (defun ,@args))))

    ; example:
    (defun/ h (x)
     (declare (xargs :guard t))
     (append (cons (make-list 10) x) x))

  The utility :[pl2] no longer automatically instantiates free
  variables; similarly for calls of :[pl] on a term. Thanks to Eric
  Smith for sending an example showing the problem with the previous
  implementation.

  When the [ld-evisc-tuple] is non-nil, the utilities :[pe], :[pc], and
  :[pcb!] now abbreviate their output accordingly. See
  [set-evisc-tuple]. Thanks to David Rager for bringing the need for
  this change to our attention.

  The utility [disabledp] now accepts runic abbreviations such as (:d
  append). (See [theories] for a discussion of runic abbreviations.)
  Thanks to Shilpi Goel for requesting this enhancement.

  Gc-verbose now takes an optional second argument, which is only
  relevant when the host Lisp is CCL, where that argument specifies
  verbosity for EGC.

  Nests of [car] and [cdr] calls are now printed (``untranslated'')
  differently. The old method availed itself of all 28 of the car-cdr
  macros. The new method only introduces 6 of them: cadr, caddr,
  cadddr, cddr, cdddr, cddddr. It never introduces such macros as
  caar or cddaar, preferring cars and cdrs when necessary. Lisp
  programmers tend to recognize cadr, caddr, and cadddr as the
  accessors for the 1st, 2nd, and 3rd (0-based) elements of a list.
  See community book books/system/untranslate-car-cdr.lisp for
  further discussion and a correctness proof.

  It is now possible to create more efficient :[meta] rules by writing
  metafunctions that create ``implicit hypotheses.'' See
  [meta-implicit-hypothesis].

  We improved a few built in rules: lower-case-p-char-downcase,
  upper-case-p-char-upcase, lower-case-p-forward-to-alpha-char-p, and
  upper-case-p-forward-to-alpha-char-p. We also improved the rule
  alpha-char-p-forward-to-characterp by replacing it with two rules,
  alpha-char-p-forward-to-standard-char-p and
  standard-char-p-forward-to-characterp. The new rules are, as
  before, in ACL2 source file axioms.lisp.

  The reader macro sharp-comma (#,), which has been deprecated since
  ACL2 Version 3.5 (May, 2009), has been eliminated. Use sharp-dot
  (#.) instead; see [sharp-dot-reader].

  A [defthm] or [defaxiom] event is now redundant when there is already
  a syntactically identical event in the logical [world], even if the
  rules suggested by the two [events] differ. See [redundant-events].
  Thanks to Jared Davis and Sol Swords for sending the following
  example, which illustrates the change. Previously, the final event
  was not redundant, and hence failed. Now, it is redundant, even
  though the :typed-term suggested by the new [type-prescription]
  rule is (booleanp (foop x)) where the existing rule's :typed-term
  is (foop x).

    (defund foop (x) (consp x))

    (defthm booleanp-of-foop
      (booleanp (foop x))
      :rule-classes :type-prescription)

    (in-theory (disable booleanp-compound-recognizer))

    (defthm booleanp-of-foop
      (booleanp (foop x))
      :rule-classes :type-prescription)

  In the case that summary output is inhibited but error output is not
  (see [set-inhibited-summary-types]), failed [events] did not print
  an error message. Now they do.

  When a call of [encapsulate] with empty [signature] introduces no
  [events], it now has no effect on the ACL2 logical [world].
  Formerly, such an [encapsulate] form would create an event even in
  this case. For example, the form (encapsulate nil (local (defun f
  (x) x))) formerly created an event in the world, as well as a
  [command] when executed at the top-level; but now it is truly a
  no-op. See [encapsulate]. Note: An idiom sometimes used for testing
  is (encapsulate () (local ...) (local ...) ...), that is, a trivial
  encapsulate where each sub-event is [local]. With this change, that
  idiom is now properly supported. (Formerly, the second such
  encapsulate was considered redundant with the first; but that is no
  longer the case, since the first will not be stored in the
  [world].)

  We replaced an error with a warning for cases where a classic
  [congruence] rule is unnecessary. Thanks to Jared Davis for sending
  us an example suggesting the need for a change. (See ACL2 source
  function chk-acceptable-congruence-rule for his example and more
  explanation.)

  We removed support for three [declare] forms that had been permitted
  in ACL2(h) only, but were not advertised: dynamic-extent, inline
  and notinline, because they seem difficult or impossible to support
  correctly. For alternatives to using inline and notinline
  declarations, see [defun-inline] and [defun-notinline].

  The nu-rewriter contained special provisions for rewriting
  expressions composed of [nth], [update-nth], and
  [update-nth-array], together with [let] expressions and other
  applications of non-recursive functions or [lambda] expressions. An
  email query was sent to the acl2 mailing list on 10/24/2014, giving
  people an opportunity to object to the removal of this feature.
  Nobody objected, so we have removed it in order to simplify the
  ACL2 code base. Thanks to David Rager for suggesting this sort of
  code clean-up. Note that some system functions, for example
  all-equal, have been deleted in support of this change.

  [Guard]s have been added for some system functions that support the
  implementation of the [tau-system]: lower-bound-<=, upper-bound->=,
  lower-bound->, upper-bound-<, and squeeze-k. Thanks to Dmitry
  Nadezhin for supplying these improvements (which he also used in
  modifications to the community book,
  books/tau/bounders/elementary-bounders.lisp).


New Features

  The new command :btm has been added to the list of valid
  [brr-commands], to show the bottom-most frame in the path. Thanks
  to David Rager for requesting this feature.

  A new [xargs] keyword, :[measure-debug], decorates each termination
  proof goal with [extra-info] calls that show the source of the
  goal. Thanks to Jared Davis (first in 2008!), Sol Swords, and Anna
  Slobodova for requesting this feature.

  A new reader macro, #{\"\"\"...\"\"\"}, has been contributed by Jared Davis
  to support the writing of strings without escape characters. See
  his community book books/system/fancy-string-reader-test.lisp for
  examples.

  (For those who program in raw Lisp) A new Lisp variable,
  *hard-error-is-error*, has a default of nil that preserves existing
  behavior; but it can be set to a non-nil value in order to cause
  so-called ACL2 ``hard errors'' to result in Lisp errors whose
  condition, when printed with format directive ~a, is the same error
  message that ACL2 would otherwise print. See [hard-error]. Thanks
  to Jared Davis for requesting this feature.

  A new value for [include-book] keyword argument :uncertified-okp is
  :ignore-certs, which specifies that all certificate files are to be
  ignored during inclusion of this book and all of its sub-books. See
  [include-book]. Thanks to Sol Swords for requesting this feature
  and for helpful discussions on its details.


Efficiency Improvements

  The heuristics have changed for guessing the :typed-term field for a
  :[type-prescription] rule when that field is not explicitly
  specified. Specifically, consider the case that the conclusion of
  the rule is a function call (p u) for some term u, such that there
  is an enabled [compound-recognizer] rule for p. Formerly, the
  :typed-term was u in this case. Now, it must be the case that the
  most recent enabled such [compound-recognizer] rule is `strong', in
  the following sense: if ts1 is the [type-set] implied by assuming
  the conclusion true and if ts2 is the [type-set] implied by
  assuming the conclusion false, then ts1 and ts2 are complementary.
  Thanks to Jared Davis for an email that prompted us to make this
  change.

  We have made several efficiency improvements (arguably heuristic in
  nature), which may apply in many settings but especially in
  handling of several forms during the execution of [include-book]
  --- most notably with-output forms, as (with-output ... FORM) is
  now essentially just FORM during include-book. For some details,
  including statistics showing up to 1/3 of [include-book] time
  eliminated by these changes (and even significant time saved
  outside include-book), see the comment about ``efficiency
  improvements'' in Community Books file system/doc/acl2-doc.lisp,
  form (defxdoc note-7-0 ...). Thanks to Sol Swords for noticing
  inefficiencies that led us to these improvements, and for helpful
  discussions.

  The [dmr] utility has been made much more efficient, yielding a
  performance penalty of perhaps 10% instead of perhaps more than a
  factor of 30 (3000%).

  We made a low-level implementation tweak that resulted in a speed-up
  of 2.6% in wall-clock time for a CCL-based regression (using
  ``make'' with -j 8 and target ``everything''). (Technical note: We
  eliminated the Lisp special variable *attached-fn-called*, using
  another variable *aokp* instead. Special variable bindings can
  apparently be expensive!)

  Some space has been saved in ACL2 executables by avoiding the
  duplication of certain constants. Specifically: for each event
  (defconst name (quote val)) in the ACL2 source files, val is stored
  in the Lisp image in several places, but not all of these had been
  identical: they were all [equal], but not all [eq]. (We believe
  that these were already all eq for user-defined [defconst] events.)
  For example, in Linux builds of ACL2(h) on host Lisp CCL, we have
  seen a space saving of approximately 18.9 MB, which is 12.6%.
  Thanks to Jared Davis for pointing out duplicate strings that he
  noticed using his [spacewalk] tool.


Bug Fixes

  We fixed two bugs in [spec-mv-let]. The first was pointed out to us
  by Jared Davis using essentially the following example, where the
  result should be nil given that spec-mv-let is intended to have the
  semantics of [mv?-let].

    ACL2 !>(set-ignore-ok t)
     T
    ACL2 !>(let ((a t)
                 (xval nil))
             (spec-mv-let (yval)
                          xval
                          (mv?-let (xval)
                              a
                              (if xval
                                  yval
                                nil))))
    T
    ACL2 !>

  The second [spec-mv-let] bug was to allow the two lists of bound
  variables to intersect. In the following example, given that
  spec-mv-let is semantically just mv?-let, the result should have
  been 46, not 34. This has been fixed. Thanks to David Rager for
  encouraging these two fixes and checking them over.

    ACL2 !>(set-ignore-ok t)
     T
    ACL2 !>(spec-mv-let
            (x)
            17
            (mv?-let (x)
                23
                (if t
                    (+ x x)
                  \"bad\")))
    34
    ACL2 !>

  The guard for function [alpha-char-p] was strengthened to require
  that its argument is a standard character. The previous guard
  required only that the argument is a character, and was a soundness
  bug; for a proof of nil before this fix, see the comment about
  ``alpha-char-p'' in Community Books file system/doc/acl2-doc.lisp,
  form (defxdoc note-7-0 ...).

  Errors were possible when evaluating functions [pkg-imports] and
  [pkg-witness] while including a book with a compiled (or expansion)
  file. Such errors have been eliminated.

  Fixed a bug in [oracle-apply-raw].

  (GCL CLtL1 only) Fixed a bug that was preventing
  [set-debugger-enable] from taking full effect in non-ANSI GCL.

  (GCL only) The utility [gc-verbose] was broken, but has been fixed.

  Fixed a bug in [provisional-certification] that incorrectly caused an
  error during the convert step for [verify-guards+] forms. More
  generally, this error occurred when encountering a [make-event]
  form with a non-nil value supplied for the :expansion? keyword.
  Thanks to David Rager for reporting this bug.

  A raw Lisp error could occur with [guard]-checking turned off,
  because type declarations were mistakenly left in the executable
  counterparts (so-called ``*1* functions'') when ACL2 processed
  function definitions. The following example shows how a type
  violation could occur in some Lisps (we saw this in SBCL but not in
  CCL, for example).

    (defun f (x)
      (declare (xargs :guard (natp x)))
      (let ((y (1+ x)))
        (declare (type (integer 0 *) y))
        y))
    (set-guard-checking nil)
    ; Possible raw Lisp error:
    ; \"The value -2 is not of type UNSIGNED-BYTE.\"
    (f -3)

  Thanks to Jared Davis for sending us an example that brought this bug
  to our attention.

  Fixed a bug that was causing a low-level assertion, saying:
  ``Implementation error: see 'replace-free-rw-cache-entry.'' Thanks
  to Anna Slobodova for bringing this bug to our attention via an
  example, and to Sol Swords for simplifying that example.

  The [iprint] feature, which allows abbreviated output to be read back
  in, did not work as one might expect when using the [break-rewrite]
  feature (see [brr]). Thanks to David Rager for reporting this
  problem. More generally: the problem was that values associated
  with [iprint] indices during a [wormhole], for example after
  breaking on a [rewrite] rule, were forgotten when exiting the
  wormhole. (Technical note for those interested: the fix restores
  the main iprinting structure after exiting a wormhole, just before
  reading the next top-level form. That restoration uses raw Lisp,
  with logic-only code based on [read-ACL2-oracle].) The example
  below failed before the fix but now works.

    (set-evisc-tuple (evisc-tuple 3 3 nil nil)
                     :iprint t
                     :sites :all)
    (defthm my-rule (equal (car (cons x x)) x))
    (brr t)
    (monitor '(:rewrite my-rule) t)
    (thm (equal (car (cons a a)) a) :hints ((\"Goal\" :do-not '(preprocess))))
    ; Now entering a :brr break:
    (make-list 10) ; printed without evisceration
    ; Set evisceration with iprinting:
    (set-evisc-tuple (evisc-tuple 3 3 nil nil)
                     :iprint t
                     :sites :all)
    (make-list 10) ; printed with evisceration
    (a!) ; quit break-rewrite
    ; The following formerly caused a hard Lisp error, because although #@3#
    ; was printed in the output from (make-list 10) just above, iprint index 3
    ; was lost when exiting the break-rewrite wormhole.  Now, this works
    ; because iprinting information from the wormhole is retained.
    '#@3#

  There was a bug in how so-called ``hidden packages'' were handled by
  [encapsulate] forms (see [hidden-death-package]), which was
  preventing package axioms from being visible in certain contexts.
  (Technical remark: packages that were hidden after the second pass
  but not the first were treated as not-hidden, even though their
  package axioms were not introduced.) That, in turn, could cause an
  [include-book] form to fail when the book contains a
  [deftheory-static] form. Here is an example failure. First, in a
  fresh ACL2 session evaluate the form (defpkg \"FOO\" nil) and then
  evaluate the form (certify-book \"foo\" 1), where file foo.lisp is as
  follows.

    (in-package \"ACL2\")
    (defun foo::foo (x) x)
    (deftheory-static foo-theory
      (current-theory :here))

  Now evaluate the following sequence of forms. In previous versions of
  ACL2, the final ([include-book]) form failed.

    (encapsulate () (local (include-book \"foo\")) (defun h (x) x))
    (encapsulate () (local (include-book \"foo\")) (defun h2 (x) x))
    (include-book \"foo\") ; failed before the fix

  We have cleaned up handling of interrupts and aborts when inside the
  [break-rewrite] loop, or indeed any [wormhole]. Thanks to David
  Russinoff for bringing to our attention a case in which ACL2 quit a
  proof with ``Aborting due to an interrupt'' when in fact no
  interrupts had taken place. Here is an example where that no longer
  happens but did, previously. (For a different example, see the
  comment in the ACL2 sources definition of macro
  bind-acl2-time-limit.)

    (defun foo (x) (cons x x))
    (brr t)
    (monitor '(:definition foo) t)
    (thm (equal (foo y) z))
    (defun h (x) (declare (xargs :mode :program)) (car x))
    ; Raw Lisp error:
    (h 3)
    ; Previously, unexpected proof abort \"due to interrupt\":
    (thm (equal (append (append x y) x y) (append x y x y)))

  When aborting with :[a!] inside the [break-rewrite] loop from within
  the [proof-checker], a raw Lisp error could subsequently occur
  saying, ``Attempt to execute *wormhole-cleanup-form* twice!''. This
  has been fixed. Thanks to Sol Swords for reporting a bug in our
  original fix. Here is an example that formerly caused that
  behavior.

    (defthm silly (implies (null x) (equal (append x y) y)))
    (defconst *c* (make-list 10))
    :brr t
    :monitor (:rewrite silly) t
    (verify (equal (append x (append *c* y)) (append y (append *c* x))))
    bash
    :go
    :a!
    bash ; formerly caused error

  The utility [redo-flat] no longer worked when interrupting a proof
  (with Control-c), due to a bug in Version 7.0. This has been fixed.
  Thanks to Dave Greve for reporting this problem.


Changes at the System Level

  As mentioned near the top of this [documentation] topic, default
  builds of ACL2 are now [hons-enabled].

  (GCL only) GCL Versions prior to 2.6.12 are no longer supported.

  Modified code used in distributing Debian releases that allows books
  certified in one directory to be distributed in another. This
  change, together with the fact that such relocation is not truly
  supported, is explained in comments in source function
  make-certificate-file-relocated. Thanks to Camm Maguire for
  discussions leading to this change.

  (GCL only) Modified how home directory is calculated. Thanks to Camm
  Maguire for help in making this change.

  (SBCL only) Fixed a check done at build time that was preventing
  builds in SBCL 1.2.2 because of its new backquote implementation.
  Thanks to Harsh Raju Chamarthi and Pete Manolios for bringing this
  issue to our attention.

  Development snapshots of ACL2 (and of the [community-books]) are now
  available between releases from {an ACL2 github repository |
  https://github.com/acl2/acl2}; they are no longer available via
  svn. Thanks to David Rager and Jared Davis for taking the lead on
  this conversion. As a result, the banner printed at startup for
  those snapshots has changed slightly. For a quick start guide for
  using git with ACL2, see [git-quick-start].

  (CCL only) Control-d now quits ACL2 in raw Lisp just as it has done
  for a long time in the loop and, for ACL2(h) (i.e., [hons-enabled]
  ACL2), even in raw Lisp.

  (Should essentially affect GCL only) Significant re-work has been
  done for function proclaiming, which is still only done when the
  host Lisp is GCL. In particular, the build process now has extra
  steps even for other Lisps though for them, the extra steps are
  trivial (technical details may be found in the comment labeled
  ``Essay on Proclaiming'' in source file acl2-fns.lisp). We now use
  GCL's automatic proclaiming mechanism to calculate function types
  during the build (boot-strap), as we have seen it perform better
  than our own. Thanks to Camm Maguire for helpful discussions, in
  particular for explaining that mechanism and for pointing out that
  the re-proclaiming that had been done previously during the build
  could lead to buggy behavior.

  For Makefile targets for testing such as regression, the default ACL2
  image used is now the same one that would be built for the same
  Makefile variables. In particular, the command make regression is
  equivalent to make regression ACL2_HONS=h, which uses the
  executable saved_acl2h, not saved_acl2 as was formerly the case.
  Thanks to Harsh Raju Chamarthi for finding a bug in a first attempt
  to make this change.


EMACS Support


Hons-enabled and Experimental Versions

  (For [hons-enabled] executables only) Fixed a soundness bug related
  to function memoization. For a proof of nil exploiting this bug in
  Version 6.5, see the comment about ``pons-addr-of-argument'' in
  Community Books file system/doc/acl2-doc.lisp, form (defxdoc
  note-7-0 ...). Thanks to Jared Davis for improving our original
  fix: by noting its applicability to [hons-clear] (not just
  [hons-wash]); by tweaking our fix so that it works even if a
  control-c interrupts (hons-clear or) hons-wash; and later by
  finding another bug in source function pons-addr-of-argument and
  suggesting a fix, which we incorporated.

  (For [hons-enabled] executables only) Fixed a soundness bug due to
  the fact that function never-memoize-fn returned nil in the logic
  but returned t in raw Lisp. For a proof of nil exploiting this bug
  in Version 6.5, see the comment about ``never-memoize-fn'' in
  Community Books file system/doc/acl2-doc.lisp, form (defxdoc
  note-7-0 ...).

  Static honsing for [hons-enabled] ACL2, an efficiency enhancement
  formerly only available for CCL, is now incorporated into builds on
  sufficiently recent GCL versions.

  ACL2 executables that were [hons-enabled] could fail to use
  previously-compiled definitions for [memoize]d functions when
  [include-book] is invoked. This has been fixed.

  (For [hons-enabled] executables only built on other than CCL or SBCL)
  Calls of [memoize] only compile the memoized definition when the
  original function is compiled, rather than unconditionally as
  before.

  Several changes been made to function memoization (see [memoize]).
  Here is a list of changes visible at the user level; for
  implementation details, see [note-7-0-memoize].

    * It is now legal to call [memoize] on functions with special raw-Lisp
      code (such as [len]) provided the value of the :inline keyword
      argument is nil.
    * Bug fix: Fixed bug that was making [memsum] attribute the count of
      making of hash tables to ``Heap bytes allocated'' instead of to
      ``Number of calls to mht.''
    * Memoize keyword :trace is no longer supported, as the [trace$]
      utility provides much more flexibility.
    * Bug fix: Fixed a bug in handling of the :commutative argument of
      [memoize] that could cause a hard Lisp error. For a book that
      exhibits this bug, see the comment about ``:commutative'' in
      Community Books file system/doc/acl2-doc.lisp, in the form
      (defxdoc note-7-0 ...).
    * When [memoize] is called with keyword argument :commutative having
      value t, the benefit of that argument can apply to rational
      number arguments even when not using static honsing. Moreover,
      now only one argument needs to be a rational or to be
      ``static'' according to the implementation (technically: to
      have an hl-staticp value).
    * Bug fix: Calls of [memoize] with keyword argument :commutative t were
      sometimes inappropriately treated as redundant
      [redundant-events]. This has been fixed. Here is a simple
      example of what formerly went wrong.

          (defn f (x y) (equal x y))
          (memoize 'f :commutative t)
          (unmemoize 'f)
          (memoize 'f :commutative t) ; was redundant, so did not memoize

    * (For those who memoized directly in raw Lisp) Memoize-fn now requires
      its first argument to be a defined (fboundp) function symbol.
      (It seemed odd and needlessly arcane to allow memoize-fn to
      define an undefined function.)
    * (For those who memoized directly in raw Lisp) Memoize-fn now causes
      an error when it fails.
    * Bug fix: It had been possible to lose a memoization setting of :aokp
      t when many functions were memoized. For an example, see the
      comment about ``rememoize-all'' in Community Books file
      system/doc/acl2-doc.lisp, in the form (defxdoc note-7-0 ...).
    * We eliminated undocumented utilities memoize-on and memoize-off,
      which were not used as far as we know.
    * When a memoized function call fails to satisfy the specified
      condition, that call is no longer counted as a ``hit'', at
      least by default. This can be changed with raw Lisp variable,
      *condition-nil-as-hit*.
    * The utility [memsum] had reported one more pons call and (CCL only)
      one more byte than was correct, and could perhaps report one
      call when there were actually zero. That has all been fixed.
    * Bug fix: Some sorting of results based on ``self'' time and ``other
      functions'' time had been wrong. (Technical remark: the problem
      was that the implementation confused ``ticks'' with ``time''.)
      This has been fixed.
    * Statistics reporting (see [memsum]) often has a more uniform look. It
      is now done with a right margin of 79 instead of 70. For
      [memsum], thanks to a suggestion from Warren Hunt, the defun
      formerly printed to start each entry is now omitted, and after
      the name is printed at the start, a newline is printed before
      the ``hits'' or ``hits/calls'' information is printed. A
      related change: when *report-hits* and *report-calls* are both
      nil, ``calls'' is no longer printed. Other cosmetic changes
      were also made to [memsum] output.
    * The output from [memsum] on the line ``Time of all outermost calls''
      no longer includes a percentage, which had been at best
      misleading and at worse nonsensical. Suppose for example that f
      calls g, which does all the work. Then memsum had reported 50%
      of the ``Time of all outermost calls'' for each of f and g,
      even though 100% of the time was spent under each.
    * On Mac OS (Darwin), the physical memory is now accurately computed
      (using shell command ``sysctl hw.memsize'', which works in some
      versions of Mac OS, maybe all recent ones; tested on 10.6 and
      10.7). Before, the physical memmory value had been assumed to
      be 2^32 bytes. The physical memory value is used in CCL for
      triggering garbage collections. (Technical remark: this is
      implemented in function start-sol-gc.)
    * Bug fix: in the pons summary, misses had been reported instead of
      hits on the ``hits/calls'' line.
    * Fixed [memsum] so that package names are printed with the symbols.
      Also, printing is done with respect to the current package, not
      the \"ACL2\" package.
    * It is now legal to [profile] functions that take [state] as an
      argument. Thanks to Sol Swords for requesting this change. In
      the course of making this change, we took a conservative
      approach and put the same requirement regarding illegal
      memoization of functions involving user-defined [stobj]s: that
      is, when memoization must have value nil for the :condition
      keyword, it must also have value nil for the :inline keyword.
      We can perhaps remove this additional restriction if necessary.
    * For every built-in memoized function defined in the ACL2 logic, the
      memoization is done in the usual way (during the ACL2 build),
      using the [memoize] event during the ACL2 build. Such functions
      can thus be [unmemoize]d by users in the usual way. Thanks to
      David Rager for requesting this enhancement.
    * A new memoize keyword, :stats, can control whether statistics will be
      saved for reporting with (memsum).
    * Memoization in [hons-enabled] ACL2(p) is no longer affected by calls
      of [set-waterfall-parallelism].

  (ACL2(p) only, either [hons-enabled] or not) The function
  [Cpu-core-count] is now sensitive to environment variable
  ACL2_CORE_COUNT. See [cpu-core-count]. Thanks to Jared Davis for
  requesting this enhancement.

  Support for multi-threading has been added for memoization. Thanks to
  Jared Davis for contributing an initial implementation. Note that
  this may slow down [hons-enabled] ACL2(p) by several percent on
  memoization-intensive applications. Undocumented function
  mf-multiprocessing is available for low-level system hackers to
  turn on/off this feature, which by default is off for
  [hons-enabled] ACL2 and on for [hons-enabled] ACL2(p).

  (ACL2(p) only, either [hons-enabled] or not) We fixed a bug in
  [pand], which we believe was also a bug in [por], [pargs], and
  [plet]. (Technical remark: this bug had a low-level cause,
  pertaining to maintenance of a Lisp variable, *ld-level*, that
  holds the number of nested calls of [ld].) Thanks to Jared Davis
  for reporting this bug and to David Rager for assisting in its
  repair. Below is a slightly simplified version of Jared's example,
  which formerly caused an assertion error but now works as expected.

    (defmacro pand* (x y)
      `(spec-mv-let (yval)
                    ,y
                    (mv?-let (xval)
                             ,x
                             (if xval
                                 yval
                               nil))))
    (defn f3 (x)
      (pand* x x))
    (defn f4 (x)
      (pand x
            (f3 x)))
    (value-triple (f4 5))

  (Only for [hons-enabled] executables on Windows) Certain memory
  management is avoided on Windows (technically: by avoiding a call
  of source function start-sol-gc), where it was causing errors.
  Thanks to Harsh Raju Chamarthi and Sol Swords for testing on
  Windows that led us to this change.


Subtopics

  [Note-7-0-memoize]
      ACL2 Version 7.0 Notes on Changes to Memoization Implementation")
 (NOTE-7-0-MEMOIZE
  (NOTE-7-0)
  "ACL2 Version 7.0 Notes on Changes to Memoization Implementation

  See [memoize] for a user-level introduction to function memoization.
  Here we summarize technical changes made in Version 7.0 of ACL2 to
  the implementation of function memoization; most ACL2 users should
  have no need to read further in this topic. We thank Jared Davis
  for helpful conversations.

  The function memoize-init now resets the table *memo-max-sizes*,
  which is used when creating memo tables and pons tables. This
  change may be irrelevant, since generally memoize-init is only
  called at startup. But it seemed appropriate to reset it along with
  all other globals involved in the memoization implementation.

  Lisp variable *print-pretty* is no longer globally set to t by
  certain memoization code. Probably this change will not generally
  be observable.

  The utility [clear-memoize-statistics] now resets data for the pons
  summary, but implementation function clear-memo-tables no longer
  does so (it only calls clear-memoize-tables).

  Avoided some recklessness in computing statistics related to ponsing
  (specifically, replaced very-unsafe-incf by macro safe-incf-pons,
  which is a wrapper for safe-incf).

  Clear-memo-tables no longer takes &rest arguments, since it is merely
  a wrapper for [clear-memoize-tables], which does not (and did not)
  take &rest arguments.

  For the utility pons-summary, we no longer use our-syntax-nice; so
  far example, *print-case* is not bound to :downcase.

  Function internal-real-ticks (formerly internal-real-time) now uses
  [logand] in its implementation, which should improve performance.
  It also replaces, for non-static-hons implementations, the call
  (get-internal-real-time) by (the mfixnum (get-internal-real-time)),
  which can also help performance.

  More principled, consistent use is made of our-syntax for suitable
  printing.

  Added ``TO DO'' comments near the top of source file
  memoize-raw.lisp. Thanks to Jared Davis for suggesting some of
  these.

  We improved many comments in source file memoize-raw.lisp.

  We did some renaming, including the following (note that this is
  probably not a complete list):

    - number-of-arguments       -> mf-len-inputs
    - number-of-return-values   -> mf-len-outputs
    - *compute-array*           -> *callers-array*
    - maybe-count-pons-calls    -> incf-pons-calls
    - maybe-count-pons-misses   -> incf-pons-misses
    - print-alist               -> mf-print-alist
    - shorten                   -> mf-shorten
    - outside-p                 -> outside-caller-p
    - ofni                      -> mf-make-symbol
    - ofnum                     -> mf-num-to-string
    - internal-real-time        -> internal-real-ticks
    - dcls                      -> mf-dcls
    - hl-without-interrupts     -> without-interrupts [which already existed]
    - *ma-initial-max-symbol-to-fixnum* -> *initial-max-symbol-to-fixnum*
    - REPLACEMENT:
      *initial-max-memoize-fns* -> *initial-2max-memoize-fns*

  We eliminated some dead code, including the following functions
  (probably not a complete list): our-syntax-brief, ofnm, uses-state,
  global-restore-memoize, prine-alist, set-gc-threshold, our-gctime,
  and short-symbol-name, and all variants of format functions with
  names starting with \"of\" except for ofni (now mf-make-symbol) and
  ofnum (now mf-num-to-string). Also, we moved memoize-here-come to
  community book books/centaur/memoize/old/profile-raw.lsp. Regarding
  our-syntax-brief: there had been one call, in print-call-stack, but
  that call did not seem appropriate so we deleted it.

  The variable *count-pons-calls* was deleted. It had been set to t and
  was only used during macroexpansion of incf-pons-calls and
  incf-pons-misses (formerly maybe-count-pons-calls and
  maybe-count-pons-misses), where that macroexpansion was done at
  ACL2 build time --- hence user setting of *count-pons-calls* had no
  effect.

  We eliminated a needless error check that prevented loading
  memoize-raw.lisp without #+hons, since we don't currently ever
  expect to try to do that.

  Miscellaneous additional code cleanup has been done. Here is a
  (probably very incomplete) list.

    * Float-ticks/second-init uses a default rather than duplicating the
      default's code, and has improved treatment of errors.
    * Removed unused :before field of memoize-info-ht-entry record.
    * The implementations of number-of-arguments and
      number-of-return-values (now called mf-len-inputs and
      mf-len-outputs, respectively) have been made cleaner, in
      particular, starting with an empty
      *number-of-arguments-and-values-ht*.
    * New macros such as ma-index provide some abstraction, to give the
      illusion that *memoize-call-array* is two-dimensional.
    * We broke up some defintions, in particular substantially shortening
      memoize-fn by moving parts of it into new functions
      memoize-fn-inner-body, memoize-fn-outer-body, and
      memoize-fn-def. A benefit: it is easy to see the definition
      that is actually created when memoizing, by tracing
      memoize-fn-def.
    * Added raw Lisp interface function mf-note-arity for informing
      memoize-fn of input and output arities.
    * Coerce-index asserts that an index is in range rather than treating
      an out-of-range index as a symbol.
    * We renamed some variables to make them clearer. In particular, it is
      whether a variable stores time or ticks.
    * We now make complete and correct (we hope) the use of suitable fixnum
      and mfixnum declarations, many of which had been missing or
      incorrect.
    * Both [memoize] and [unmemoize] are now safe for control-c and
      unexpected errors.
    * We no longer set ccl::*save-definitions* or
      ccl::*fasl-save-definitions* to t. This may improve
      performance, but it may require explicitly calling
      mf-note-arity, as is now done in books/centaur/aig/bddify.lisp.
      However, this removes CCL-only behavior; in particular, we
      removed dependence on #+Clozure in
      books/centaur/aig/bddify.lisp for profiling count-branches-to.
    * We use #+ccl instead of #+Clozure, for consistency with most of the
      rest of ACL2.
    * We no longer set ccl::*save-source-locations* or
      ccl::*record-source-file* to t, as there is no clear advantage
      to doing so, and in fact there is a comment near the end of
      source file acl2.lisp suggesting that there could be slowdown
      from setting (at least) the first of these variables to t.
    * We slightly modified internal-real-time to improve its performance
      (see comments there).
    * We fixed a performance bug in function addr-for (parenthesis error
      was needlessly putting us in the ``large-case'').
    * Fixed a typo: declaim of fixnum type for *initial-max-memoize-fns*
      had instead been for nonexistent variable
      *initial-2max-memoize-fns*.
    * In memoize-fn, we removed support for :condition to be a function
      symbol, which was at best confused.
    * The table *never-memoize-ht* is now populated mostly automatically,
      by initialize-never-memoize-ht.
    * Slight optimization: the form (update-attached-fn-called
      ,*attached-fn-temp*), which had been in the definition of
      memoize-fn but now is in memoize-fn-inner-body, is conditioned
      on ,*attached-fn-temp*.")
 (NOTE-7-1
  (RELEASE-NOTES)
  "ACL2 Version 7.1 (May, 2015) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes to ACL2 since Version 7.0 into
  the following categories of changes: existing features, new
  features, heuristic and efficiency improvements, bug fixes, changes
  at the system level, Emacs support, and experimental versions. Each
  change is described in just one category, though of course many
  changes could be placed in more than one category.

  The default build is [hons-enabled], as for the previous release; but
  the generated executable is now saved_acl2, as discussed below.
  Please note that ACL2(c) (``classic ACL2'', i.e., ACL2 that is not
  [hons-enabled]) now builds as saved_acl2c, is deprecated, and will
  likely be unsupported or even eliminated in future releases.

  See also [note-7-1-books] for a summary of changes made to the ACL2
  Community Books since ACL2 7.0, including the build system.


Changes to Existing Features

  For both [add-include-book-dir] and [add-include-book-dir!], the
  second argument is no longer evaluated (which we think could
  perhaps have been exploited to get unsound behavior, by arranging
  for the value of the second argument to depend on [state]).
  Moreover, that argument can not only be a string, but also can be a
  sysfile: an object (:system . filename), where filename is a file
  name. When filename is a relative pathname, the meaning of such an
  object is the file with that pathname under the system books
  directory.

  The event summary had not been printed when a proof is interrupted
  (that is, with Control-C). Now, summary information is printed for
  two summary types (see for example [set-inhibited-summary-types]):
  rules and hint-events.

  By default, (memsum) is now truncated to 100 entries rather than to
  20 entries. (Implementation note: raw Lisp variable
  *memoize-summary-limit* is 100 instead of 20.)

  Calls of THE no longer cause a [guard] violation when guard-checking
  is nil. Also see [the] and see [set-guard-checking].

  Type declarations for [let] and [mv-let] forms are now
  [guard]-checked. Consider for example the definition: (defun foo ()
  (let ((x t)) (declare (type integer x)) x)). Previously, evaluation
  of the call (foo) had failed to result in a guard violation error;
  now, it does, provided guard-checking is on (i.e., not nil or
  :none; see [set-guard-checking]).

  The symbols ctx, hist, pspv, unquote, and value have been added to
  [*ACL2-exports*]. Thanks to Jared Davis for suggesting these
  additions.

  Consider :use or :by [hints] in which a variable bound using the
  :instance keyword is in the wrong package. For example, for the
  hint :use ((:instance foo (x 3))), suppose that the lemma foo
  mentions the variable bar::x, but not x. This situation formerly
  caused an error, but now, x indicates the variable bar::x from the
  lemma foo. See [lemma-instance], in particular Condition (4), which
  has been updated accordingly. Thanks to David Rager for a remark
  that led us to implement this enhancement.

  The [ld] special ld-error-action may now have a value (:exit N),
  where N is a natural number. If an error occurs for a call of ld,
  then this value causes the ACL2 process to quit with exit status N.
  See [ld-error-action]. Note that ld-error-action is set to this new
  value when using the cert.pl utility provided with the community
  books; see [build::pre-certify-book-commands]. Thanks to David
  Rager for presenting an example showing how this change can make it
  easier to locate certain certification failures, and thanks to Sol
  Swords for helping in the design of this enhancement.

  A \"[Theory]\" warning is still printed when [definition]s of certain
  built-in functions, such as [mv-nth], are [disable]d; similarly for
  some built-in [executable-counterpart] rules. However, we now print
  such warnings only when the disabling occurs, rather than every
  time an [in-theory] event or hint is evaluated. For example, if you
  evaluate (in-theory (disable mv-nth)) followed by (in-theory
  (disable append)), then the second event will no longer produce a
  warning about mv-nth. Thanks to Eric Smith for (most recently)
  suggesting such a change.

  (SBCL only) ACL2 built on SBCL now reports bytes usage, both in
  [time$] and in [memsum], essentially exactly as has already been
  done for ACL2 built on CCL. Thanks to Jared Davis for suggesting
  this enhancement.

  (SBCL only) [Fast-alists] can now be garbage collected (we believe)
  in SBCL, as they had already been done in CCL. (Implementation
  note: The change was to use weak hash tables in the implementation
  of SBCL fast-alists.) Thanks to Jared Davis for suggesting this
  enhancement.

  The utility [ec-call] can now be applied to calls of symbols
  introduced with [defun-inline], or with [define] using keyword
  argument :inline t, thanks to a request from Jared Davis. For
  example, the following is now legal.

    (defun-inline foo (x)
      (cons x x))

    (defun bar (x)
      (ec-call (foo x)))

  The [proof-checker] is now sensitive to the current
  [case-split-limitations].


New Features

  The Common Lisp function [sleep] is now defined in ACL2. Thanks to
  Jared Davis for requesting this addition.

  Custom error messages may now be created for guard violations. See
  [set-guard-msg].

  The new macro [assert*] is like [assert$], except that assert* only
  generates a [guard] proof obligation, not a runtime check. Assert*
  is defined using a new macro [mbt*], which is a variant of [mbt]: a
  call of mbt* logically returns t, but generates the same [guard]
  proof obligation as mbt. Thanks to Shilpi Goel for a query that led
  us to add these macros.


Heuristic and Efficiency Improvements

  We fixed an inefficiency that could occur in calls of [program]-mode
  functions that update [stobj]s. See the discussion of
  invariant-risk in the [documentation] topic, [program-wrapper].
  Thanks to Jared Davis for bringing this issue to our attention.

  We improved the ``worse-than'' heuristic, providing modest speed-up
  and eliminating the use of memoization for it. Thanks to Jared
  Davis for useful discussions on the topic, and to Camm Maguire for
  an observation that led us to do some investigations that led to
  this improvement. For more information see comments in source
  function worse-than-builtin-clocked (source file type-set-b.lisp).

  We avoid the cost of translating ACL2 terms (see [term]) to
  user-level syntax after applying the ``preprocess'' simplifier (see
  [hints-and-the-waterfall]), and also after applying either :use or
  :by [hints]. Thanks to David Rager for helpful discussions towards
  this change. Note: On rare occasions, this might change the prover
  flow as follows.

    * Consider the case that the input goal, \"Goal\", simplifies with the
      ``preprocess'' simplifier to a new goal that prints the same as
      \"Goal\". Formerly, this case avoided labeling the new goal as
      \"Goal'\"; it was as though the new goal was actually the user
      input. The new criterion for avoiding \"Goal'\" is somewhat
      weaker: the internal syntax must suitably match for \"Goal\" and
      its simplification, rather than their displayed forms.
    * Consider the application of a :use or :by hint. In such cases, the
      resulting constraint (if any) is simplified with the
      ``preprocess'' simplifier. Formerly, the rules used by that
      simplifier were not recorded if the printed version of the
      simplified constraint was equal to the original constraint,
      which was really a bug since the comparison was between the
      user-level syntax of the simplified constraint and the internal
      syntax of the original constraint. Now, ACL2 compares the
      internal syntax of each.

  We fixed an inefficiency that could occur in processing of
  [make-event] forms. Thanks to Sol Swords for reporting and
  diagnosing the problem. (Technical note: The fix involves avoiding,
  in most cases, looking up world global 'boot-strap-flg by using a
  new state global instead of the same name.)

  We changed the heuristics for equality subsitution so that so-called
  cross-fertilization, where an equality substitution is made on only
  one side of the goal's conclusion, is not made when generalization
  is turned off, as with the hint :do-not '(generalize). Instead, the
  equality is used throughout the goal in that case. Thanks to David
  Hardin for bringing an example to our attention that led us to make
  this change.

  Some clause-building (essentially, goal-building) operations already
  avoided duplication, but now consider clauses to be ``duplicates''
  when the only difference is commuted arguments of [equal] or [iff].
  (Note: This change was made in support of [assert*] and [mbt*],
  mentioned above.)

  (SBCL only) It had been the case for host Lisp SBCL that the use of
  [defun-inline] to define functions in [books] had failed to result
  in inlined code, when those functions were called after including
  those books. This has been fixed (and appears not to have been a
  problem for host Lisp CCL). Thanks to Jared Davis for bringing this
  issue to our attention.


Bug Fixes

  A potential soundness issue could result from the application of
  [meta]functions and [clause-processor]s: although ACL2 checked that
  their outputs contain only legal [term]s, it did not check for the
  absence of calls of certain ``forbidden'' function symbols. For
  example, [sys-call] should be prohibited unless there is an active
  trust tag (see [defttag]), but a metafunction was able to introduce
  a call of sys-call. We have added the necessary checks, in a way
  that we hope has negligible impact on performance. To avoid that
  impact or to learn more about this issue, see
  [set-skip-meta-termp-checks]; this new utility, which requires a
  trust tag, avoids not only the new checks but even the
  above-mentioned checks for legal terms.

  The edited log below illustrates a bug that we have fixed, involving
  the processing of [include-book] [events] in the certification
  [world] whose filename starts with the tilde (~) character.

    ~/temp/incl$ cat sub/bad.acl2
    (include-book \"~/acl2/acl2/books/arithmetic/top\")
    ~/temp/incl$ acl2h
    [[.. output elided ..]]
    ACL2 !>(ld \"sub/bad.acl2\")
    [[.. output elided ..]]
    ACL2 !>(certify-book \"foo\" 1)


    HARD ACL2 ERROR in ABSOLUTE-PATHNAME-STRING-P:  Implementation error:
    Forgot to apply expand-tilde-to-user-home-dir before calling absolute-
    pathname-string-p. Please contact the ACL2 implementors.



    ACL2 Error in TOP-LEVEL:  Evaluation aborted.  To debug see :DOC print-
    gv, see :DOC trace, and see :DOC wet.

    ACL2 !>

  Fixed several issues with the :puff command, and updated its
  documentation accordingly. See [puff].

  Fixed a bug in the [proof-checker]'s wrap command. Thanks to Keshav
  Kini for sending a simple example that illustrated this bug.

  (Allegro CL only) Fixed a bug in [trace!], which for example was
  evidenced when evaluating (trace! (nth :native t)).

  Fixed a bug in the printing of user-level terms that failed to
  account for [untrans-table] entries for [nth], [update-nth], and
  [update-nth-array], when printing the first argument as a symbolic
  constant corresponding to a [stobj] argument. Thanks to Warren Hunt
  for reporting this issue with an example much like the following.
  When submitting the forms below, ACL2 output for the final form
  displayed the user-level term (update-nth *fld* v st) instead of
  the expected form, (!nth *fld* v st).

    (defstobj st fld)

    (defmacro !nth (x y z)
      `(update-nth ,x ,y ,z))

    (add-macro-fn !nth update-nth)

    (thm (equal (update-fld v st)
                xxx)
         :hints ((\"Goal\" :in-theory (disable update-nth))))

  Fixed a failure to [guard]-check [type] declarations for [let] and
  [mv-let] forms. Consider for example:

    (defun foo (x)
      (let ((a (car x)))
        (declare (type string a))
        a))

  Previously, the call (foo '(3 4)) did not cause a guard violation,
  even though it should have done so. (Indeed, the event
  (verify-guards foo) failed, and continues to fail.)

  Fixed a bug in redundancy checking for [mutual-recursion] events that
  specify :[ruler-extenders] in an [xargs] [declare] form. Thanks to
  Sol Swords for sending an example that illustrates the bug: a
  [mutual-recursion] event that, when executed twice, caused an error
  the second time rather than being redundant (see
  [redundant-events]). The bug was actually in how ACL2 stores
  information about the [ruler-extenders] used in definitions: the
  :ruler-extenders specified for the first [defun] was being
  mistakenly stored for the second defun. This mishandling of
  redundancy for [mutual-recursion] events appears to be the only
  consequence of that bug.

  The following bug was probably not observable, but violated our claim
  that the system behaves as logically specified. When a [guard]
  check failed during execution, the error message that was printed
  could differ slightly from what is logically specified. (Technical
  detail: the error actually printed by source function ev-fncall-rec
  was appropriately showing the original guard, but the specification
  function ev-fncall-rec-logical was showing the untranslation of the
  translated guard.) This has been fixed.

  The save and retrieve commands for the [proof-checker] (see
  [ACL2-pc::save] and [ACL2-pc::retrieve]) now cause an error when
  the supplied name is not a symbol; similarly for the :event-name
  argument of [verify]. The behavior wasn't as expected for
  non-symbol names; for example, after issuing the instruction (save
  'abc) in the [proof-checker], the command (retrieve 'abc) failed to
  resume the proof-checker session. (Notice the erroneous use of the
  quoted symbol 'abc, i.e., (quote abc), rather than of the symbol
  abc.) Thanks to Keshav Kini for bringing this problem to our
  attention.

  We fixed the following two bugs in the processing of backchain limits
  stored for rules. Thanks to Dave Greve for bringing these to our
  attention.

    * For rules of class :[type-prescription], the specification of
      :backchain-limit-lst within the :[rule-classes] could be
      ignored or cause a hard Lisp error.
    * For rules of class :[meta], preceding calls of
      [set-default-backchain-limit] were ignored.

  Fixed a bug in the processing of certain operations on pathnames
  containing \"..\".


Changes at the System Level

  By default, the ACL2 executable once again is named saved_acl2,
  though unlike previous versions, this executable is [hons-enabled].
  Correspondingly, the ACL2(c) executable (that is, the executable
  that is not [hons-enabled]) is by default saved_acl2c. Thanks to
  David Hardin for suggesting these changes.

  Links from the home page to user's manual topics now point to the
  ACL2+Books combined manual, not the ACL2 (only) User's Manual,
  except for the one link that explicitly points to the latter.
  Thanks to David Hardin for feedback leading to this change, which
  was incorporated into the ACL2 Version 7.0 home page several days
  after the release of that version.

  Garbage collection notification has been turned off by default, not
  only for ACL2(c) as before, but also for (the default build)
  ACL2(h). Thanks to Eric Smith for suggesting this change. See
  [ACL2-customization] and see [gc-verbose] for how to turn such
  notification back on in your own environment.

  It is now possible to move the system books directory after
  certifying its books, without invalidating their status as
  certified. Users should generally not notice this change. We thank
  Harsh Raju Chamarthi and Camm Maguire for reporting problems with
  hacks we have produced over the years to support distribution of
  books with their [certificate] files. Those hacks are no longer
  necessary: as a byproduct of this change, we have deleted both the
  [community-books] directory books/fix-cert/ and the source function
  make-certificate-file-relocated. For a bit more detail see the
  final remark in the topic [full-book-name]. We also thank Eric
  Smith, Jared Davis, and Sol Swords for reporting bugs in our
  initial implementations of this enhancement.

  The certify-books target for make now excludes other expensive
  directories in addition to workshops.

  (SBCL only) Modified the handling of environment variable SBCL_HOME.
  Thanks to Jared Davis for pointing out a problem leading to this
  change, namely, failure on his platform when evaluating (require
  :sb-sprof) in raw Lisp.

  Intended compiler optimizations are now guaranteed to be in place. We
  observed, thanks to communication from Jared Davis, that when ACL2
  is built using SBCL 1.2.10, ACL2 starts up without the compiler
  optimizations that had been installed during the build. Perhaps
  that has been true for other SBCL versions or even other Lisps.
  Now, ACL2 explicitly restores those optimizations when it starts
  up. We observed a 5% time reduction for SBCL-based regression after
  this change.

  Environment variable ACL2_WRITE_PORT is now ignored when doing
  [provisional-certification]. Thanks to Sol Swords for discussing
  this issue, which arose from a failure in [community-books]
  directory books/workshops/2011/verbeek-schmaltz/sources/, which
  uses [provisional-certification].

  (GCL only) A few tweaks were made in support of GCL changes starting
  with pre-releases of GCL 2.6.13 in late April 2015 (but these
  tweaks are backward compatible with older GCL releases). Resulting
  ACL2 builds for a new GCL show dramatic speed-ups for a single
  user, perhaps cutting between a third and half the time, with less
  dramatic improvements when running regressions with -j 8. Thanks to
  Camm Maguire for pointing us to the changes and for improving GCL.


EMACS Support

  The commands Control-t e and Control-t Control-e, defined in file
  emacs/emacs-acl2.el, now check that the *acl2-shell* buffer exists,
  has a live process, and has a last line matching the specification
  in *acl2-insert-pats*, which has Emacs documentation (using
  Control-h v) but is set to a default based on shell prompts. Thanks
  to David Rager, Jared Davis, and Shilpi Goel for helpful
  discussions leading to this change.

  We installed the following two patches to file emacs/emacs-acl2.el,
  both contributed by Keshav Kini.

    * Emacs highlighting for forms starting with \"(def\" now works when the
      \"def\" symbol has a package prefix, for example,
      \"(fty::deflist\".
    * The Control-d character is no longer explicitly bound to the default,
      delete-char, but instead is unbound in comint-mode-map, so that
      the global binding of Control-d will take effect. Thus, users
      who bind Control-d themselves will no longer have that binding
      overridden in shell-mode (or comint-mode).

  We made several improvements to the [ACL2-doc] Emacs browser for ACL2
  [documentation].

    * Fixed a bug that could occur when Emacs variable
      large-file-warning-threshold is nil. Thanks to Bob Boyer for
      bringing this bug to our attention.
    * Links are now in color (blue, by default). See [ACL2-doc] for
      instructions on how to change or remove this color. Thanks to
      Jared Davis for suggesting the use of color. We are open to
      suggestions for improvements; this might be just a first step.
    * Allow limiting search and index commands to ancestors (sub-topics,
      sub-sub-topics, etc.) of a command (including the command
      itself), by supplying a prefix argument.
    * New \"p\", \"<\", and Control-TAB commands are analogues of \"n\", \",\", and
      TAB --- for search, index, and next-link commands, respectively
      --- to go backward instead of forward.


Experimental Versions

  (For ACL2(p) users only; see [parallelism]) If parallel execution is
  enabled (see (@see set-parallel-execution)), as it is by default in
  ACL2(p), then hons-wash and hons-clear may be no-ops (other than to
  print a warning), in order to avoid thread-unsafe behavior.
  (However, In CCL you are unlikely to see this restriction unless
  you are running more than one thread.) To get around this
  restriction, you can instead use [hons-wash!] or [hons-clear!],
  which however require a [trust-tag]. Thanks to Bob Boyer for
  bringing this issue to our attention.")
 (NOTE-7-2
  (RELEASE-NOTES)
  "ACL2 Version 7.2 (January, 2016) Notes

  NOTE! New users can ignore these release notes, because the
  [documentation] has been updated to reflect all changes that are
  recorded here.

  Below we roughly organize the changes to ACL2 since Version 7.1 into
  the following categories of changes: existing features, new
  features, heuristic and efficiency improvements, bug fixes, changes
  at the system level, Emacs support, and experimental versions. Each
  change is described in just one category, though of course many
  changes could be placed in more than one category.

  See also [note-7-2-books] for a summary of changes made to the ACL2
  Community Books since ACL2 7.1, including the build system.


Changes to Existing Features

  The utility [with-guard-checking] is now limited to forms that do not
  reference the ACL2 [state]. A related new utility,
  [with-guard-checking-error-triple], may be used for forms that
  evaluate to [error-triple]s. For an example showing a bug when
  with-guard-checking was applied to forms that access [state], see
  the comment about ``with-guard-checking'' in Community Books file
  system/doc/acl2-doc.lisp, in the form (defxdoc note-7-2 ...). We
  thank Jared Davis for sending us an example showing that our
  preliminary fix was not adequate; for details, and for how a trust
  tag can avoid the new restriction (at the potential cost of
  unsoundness), see the remark for advanced users in the
  documentation for [with-guard-checking].

  Several built-in functions are now in :[logic] mode with [guard]s
  verified: [term-order], merge-sort-term-order, [arity], [termp],
  [term-listp], and [term-list-listp] --- new functions arities-okp
  and plist-worldp-with-formals; and (thanks to Eric Smith for the
  suggestions) collect-by-position, make-lambda-application, >=-len,
  all->=-len, strip-cadrs, and alist-to-doublets. (Technical note:
  This enhancement followed the usual process: adding or extending
  community books in directory books/system/, including any new such
  books in books/system/top.lisp, and updating source constant
  *system-verify-guards-alist*.)

  Deprecated utilities clear-hash-tables and wash-memory have been
  eliminated. For clear-hash-tables, you can get the same effect by
  first invoking [clear-memoize-tables], and then invoking either
  (hons-clear t) or instead, if your executable uses static honsing,
  (hons-wash). For wash-memory you can invoke (clear-memoize-tables)
  and then (hons-wash). Thanks to Jared Davis for helpful
  discussions.

  The [command]s :[ubt] and :[ubu] have been changed. Their previous
  functionality is available with the commands :[ubt?] and :[ubu?],
  respectively. Now, :[ubt] and :[ubu] behave much more like :[ubt!]
  and :[ubu!] (which have not been changed), in that they do not
  cause queries; however, unlike :[ubt!] and :[ubu!], the [command]s
  :[ubt] and :[ubu] do report errors. Thanks to Eric Smith for
  requesting this change.

  Now, :[puff*] has an optional argument that can avoid rollback of the
  world when there is an error. See [puff*].

  After invoking :[redef] and redefining functions in a
  [mutual-recursion] event, it was necessary to answer Y repeatedly
  in order to complete the redefinitions. A new option, Y!, will
  complete the remaining such redefinitions without further query.
  Thanks to Eric Smith for requesting this feature.

  A harmless but somewhat annoying superfluous declaration (DECLARE
  (XARGS :NON-EXECUTABLE T)) was, by default, included in the
  generated [defun] for a [defun-sk] event. This has been fixed.
  Thanks to Eric Smith for bringing this issue to our attention.

  The [proof-checker] command show-rewrites (or sr; see
  [ACL2-pc::show-rewrites]) now shows additional bindings of free
  variables that would be generated when a third argument of t is
  supplied for the rewrite (or r; see [ACL2-pc::rewrite]) command.
  Thanks to Ben Selfridge for noting that this information was
  missing. Note that we also made a few trivial formatting changes
  for sr.

  The redundancy check for [encapsulate] [events] has changed in two
  small ways. One change is described below (see ``Redundancy
  checking for [encapsulate]''). The other change is the redundancy
  check now properly identifies a previous subsidiary [make-event]
  form with its expansion, ignoreing the record-expansion wrapper.
  See the example labeled ``Redundant after Version_7.1 (as of
  mid-September 2015)'' in community book
  books/make-event/local-elided.lisp.

  A new mechanism for controlling the checking for [invariant-risk]
  replaces the raw Lisp global variable *ignore-invariant-risk*,
  which is obsolete. See [set-check-invariant-risk]. In particular,
  the default is now to print a (new) warning when encoutering
  potential slowdown due to invariant-risk. Note that more functions
  are now subject to the invariant-risk check; see the discussion
  below in the section on Bug Fixes that pertains to invariant-risk.

  The (undocumented) system utility with-ubt!, which continues to be
  used in [trace!] and [disassemble$] and is now also used in
  [set-check-invariant-risk], now binds [ld] special
  [ld-pre-eval-print] to nil. Thus, when with-ubt! is invoked,
  subsidiary forms will not be printed to the screen even when the
  above LD special is non-nil.

  Formerly, [certify-book], [include-book], and [puff] operated with
  guard-checking off; technically, with [state] global
  guard-checking-on bound to nil. Now, that value is bound to t,
  which matches the default value in the top-level loop. Thanks to
  Eric Smith for suggesting this change to certify-book and to Jared
  Davis for a helpful conversation about it.

  For [guard] proof obligations, all conjuncts from [stobj]
  declarations (supplied as :stobjs keywords in [xargs] declarations)
  preceded all other conjuncts (i.e., from [type] declarations or
  [xargs] :guard declarations). Previously, this was only true within
  a given [declare] form. Thanks to Dave Greve for bringing this
  issue to our attention.

  A new runic abbreviation has been added: :r, which abbreviates
  :rewrite. For example, you may use (:r app-assoc) in a theory
  expression to denote the [rune] (:rewrite app-assoc). See
  [theories].

  It is now possible to [monitor] rules by supplying a symbol or other
  runic designator other than a theory (see [theories]), thus
  relaxing the previous requirement that a [rune] is supplied. For
  example, the form :monitor nth t is legal, as is :monitor (:d nth)
  t, where before the corresponding command would necessarily have
  been :monitor (:definition nth) t. Thanks to Eric Smith for
  requesting this enhancement.

  Suitable [warnings] are now printed when attempting to [monitor]
  [simple] rules of class :[definition]. These had only been printed
  for simple rules of class :(tsee rewrite), because of potential
  inefficiency in computing for such warnings in the case of large
  [mutual-recursion] [events], but that problem has been addressed in
  the ACL2 source code using [fast-alists].

  ACL2 sometimes produces smaller .cert files, by avoiding certain
  macroexpansion. Formerly, for each macro call encountered in a
  certification world or [make-event] expansion, ACL2 performed
  repeated single-step macroexpansion until an event form was
  obtained, and replaced the original form with that result. The
  reason for this replacement was to modify certain [include-book]
  forms involving relative pathnames (though only under specific
  conditions). Now, no such replacement is made except when such a
  modification is made to an include-book call. This change could
  result in smaller [certificate] (.cert) files; for example, if a
  [portcullis] [command] is a macro call, (foo), that expands into a
  very large [defun] or [defthm] event, the certificate file will
  contain (foo) rather than its macroexpansion. Of course, this
  change could result in longer times for processing an
  [include-book] forms, because now macroexpansion may need to be
  done when they are processed; but such macroexpansion has always
  been necessary for all forms within a book, so such behavior is at
  least more consistent than before. If you really want a portullis
  macro call to be expanded, wrap it in a [make-event] call, for
  example, (make-event '(foo)) instead of (foo).

  The macros [defund] and [defthmd] now produce less output. In fact,
  the output is the same as for [defun] and [defthm], respectively,
  except for the printing of the return value, which (as before)
  looks like (:DEFUND NAME) or (:DEFTHMD NAME). Thanks to Jared Davis
  for suggesting such a change.

  Remaining traces of legacy documentation have generally been
  eliminated, including all vestiges of the obsolete command, defdoc.
  ([Documentation] is now generally provided through the [xdoc]
  system.) In particular, optional and keyword arguments, doc, have
  been eliminated for the following macros.

    * [defabsstobj]
    * [defabsstobj-missing-events]
    * [defaxiom]
    * [defchoose]
    * [deflabel]
    * [defstobj]
    * [defstub]
    * [deftheory]
    * [defthm]
    * defthm-std (defined only in ACL2(r); see [real])
    * [defttag]
    * [in-arithmetic-theory]
    * [include-book]
    * [push-untouchable]
    * [regenerate-tau-database]
    * [remove-untouchable]
    * [reset-prehistory]
    * [thm]
    * [verify-guards]

  Note that [defabbrev], [defconst], [defmacro], [defpkg], and [defun]
  may still be supplied documentation strings, as a nod to Common
  Lisp. In particular, for defun and defmacro this can ease the
  porting of Common Lisp code to ACL2.

  Several source-level definitions have changed, many of them
  unadvertised. Some are for unadvertised event commands like
  defthm-fn, which no longer have a doc argument (see ``traces of
  legacy documentation have generally been eliminated'' above).
  Others, like flambda-applicationp, are macros that were formerly
  defined with [defabbrev] but now are defined with [defmacro];
  thanks to Eric Smith for suggesting such simplifications.

  In prover output, terms of the form (not (not expr)) had been printed
  simply as expr. That could cause confusion; for example, the
  following form would lead to the checkpoint (EQUAL (ALISTP X)
  (ALISTP X)), where actually the checkpoint was (EQUAL (NOT (NOT
  (ALISTP X))) (ALISTP X)). This ``feature'' has been eliminated.
  Thanks to Shilpi Goel for bringing this issue to our attention and
  supplying an illustrative example.

  A warning was formerly printed when encountering a macro call with
  duplicate keys, for example (foo 3 :y 4 :y 5) where :y is a keyword
  argument of the macro, foo. Now, this is an error by default, in
  order to make it easier for users to catch bugs due to accidental
  repetition of a keyword argument. However, the utility
  [set-duplicate-keys-action] can be used to allow such duplicate
  keys, with or without a warning. Thanks to Jared Davis for
  requesting these changes.

  Warnings are no longer printed for :use hints applied to functional
  instances of enabled rules. Thanks to Eric Smith for suggesting
  this change.

  The second (optional) argument of show-accumulated-persistence may
  now have a new value, :list, which causes the results to be
  displayed as a single list with entries of the form (frames tries
  xrune). Thanks to David Rager for requesting a way to display
  useless [rune]s, sorted in a manner that can help with automating
  the creation of in-theory forms that disable unnecessary runes;
  also thanks for his helpful discussions in designing its
  functionality. See [accumulated-persistence]; in particular,
  (show-accumulated-persistence :useless :list) can display a list of
  runes to consider disabling.

  The utility [print-gv] now takes additional keyword arguments,
  :conjunct and :substitute, which respectively show a specific
  conjunct of the [guard] evaluation that produced nil, and avoid
  [flet] in favor of substituting actuals (even at the risk of
  duplication). See [print-gv], and see [set-print-gv-defaults] for a
  utility that sets default values for the keyword arguments. Thanks
  to Eric Smith for requesting these enhancements and for helpful
  discussions. Note that the system default value for the
  :evisc-tuple keyword is now the value of the form
  (print-gv-evisc-tuple).

  [State] global variable global-enabled-structure is now untouchable
  (see [remove-untouchable]).

  Users may see a change in the order, number, and size of termination
  proof obligations because of an optimization that removes trivial
  equality tests generated by [case] and [cond] statements. (The
  removal of the tests can affect subsumption, which is how the order
  and number of proof obligations may change.)

  Once again, all documented constant, function, and macro symbols in
  the \"ACL2\" package are included in the constant, [*ACL2-exports*].
  Community book books/misc/check-acl2-exports.lisp has been updated
  for the current documentation system to enforce this invariant in
  the future. Thanks to Jared Davis for pointing out that the symbol
  [extend-pe-table] was missing from *acl2-exports* and would be a
  good addition; that led us to this change. As also suggested by
  Jared, we added the symbols [exists] and [forall] to
  *acl2-exports*, as well.

  The quantifier [forall] or [exists] used in the body of a [defun-sk]
  call must now be in the \"ACL2\" package. Many users will not notice
  this change, since the symbols forall and exists in the \"ACL2\"
  package are now in the list [*ACL2-exports*]; see the paragraph
  just above. Thanks to Alessandro Coglio for a remark leading to
  this change.

  Definitions are no longer redundant that have different values
  specified for their [xargs] keyword, :normalize. (See
  [redundant-events].) Although we are not aware of a need to make
  this change, this change eliminates a possibile unsoundness.

  It is now the case that open-output-channel and open-output-channel!
  will attempt to create missing directories as needed. (This had
  formerly been observed to be the case in CCL but not other Lisp
  implementations.) Thanks to Jared Davis for requesting this
  enhancement.


New Features

  It is now possible to make ACL2 avoid the well-formedness checks done
  when metafunctions and clause processors are run. By default, when
  a metafunction or clause processor is run, ACL2 calls [termp] or
  [term-list-listp], respectively, on the new value to make sure it
  is well-formed. Now, if you prove and provide a
  :[well-formedness-guarantee] with the :meta or :clause-processor
  rule-class, you can skip these checks. This can speed up the use of
  metafunctions and clause processors on big terms and formulas.

  It is now possible to ensure the integrity of statistics produced by
  [memsum] after functions are [memoize]d. See
  [protect-memoize-statistics]. Thanks to Alessandro Coglio for
  noticing oddities in those statistics and to Jared Davis for
  providing an implementation of this new feature.

  Function [read-file-into-string] provides an efficient way to return
  the contents of a file as a string, without returning an ACL2
  [state]. Thanks to Jared Davis for pointing out a logical flaw in
  the initial implementation.

  A new function, get-skipped-proofs-p, can tell system programmers
  whether or not a given event name was introduced with proofs
  skipped, as with [skip-proofs] or using [set-ld-skip-proofsp]. See
  [system-utilities]. Thanks to Eric Smith for requesting such a
  capability.

  A new [table] permits the association of names with substitute event
  forms, for use by [history] commands that print event forms,
  including :[pe], :[pc], :[pcb], and :[pcb!]. See [extend-pe-table].
  Thanks to Eric Smith for requesting such a capability. Note that
  :[pe!] now avoids use of this table.

  A new macro, ffn-symb-p, has been introduced and then used in the
  source code to simplify some definitions. Thanks to Jared Davis for
  a remark that led us to define and introduce this macro. See
  [system-utilities] for a description of this and many other
  low-level system utilities.

  It is now possible to give [hints] that specify the use of
  termination or [guard] theorems for existing function symbols. See
  [lemma-instance], [termination-theorem-example], and
  [guard-theorem-example]. Also see [gthm] and [tthm] for related
  query utilities. Thanks to Alessandro Coglio and Eric Smith for
  requesting these features.

  See [set-print-gv-defaults] for a new utility for setting default
  values for the keyword arguments of [print-gv]. Thanks to Eric
  Smith for requesting this feature and for helpful discussions.

  For [history] commands and the function [disabledp], the notion of
  ``[disable]d'' is now computed inside the [break-rewrite] loop with
  respect to the [enable]d status at the current point of the current
  proof attempt, rather than with respect to the global state. Thanks
  to David Rager for suggesting this enhancement. Note that this
  change only affects [history] commands and [disabledp], not other
  utilities (for example [tau-status] and [guard-obligation]).x

  New system utility [getpropc] is a convenient abbreviation for
  [getprop].

  A new utility causes some warnings to be printed in a ``raw''
  s-expression format. See [set-raw-warning-format]. Thanks to Shilpi
  Goel for requesting this utility.

  The macro accumulated-persistence-oops undoes the effect of
  accidentally clearing statistics with (accumulated-persistence t)
  or (accumulated-persistence :all). See [accumulated-persistence].
  Thanks to Jared Davis for requesting this feature.


Heuristic and Efficiency Improvements

  The redundancy check for [defconst] has been sped up in cases with a
  very large term, as in the following example. Thanks to David Rager
  and Jared Davis for helpful related discussions.

    (defun make-tree (n)
      (declare (type (integer 0 *) n))
      (if (zp n)
          nil
        (let ((x (make-tree (1- n))))
          (cons x x))))
    (make-event
    `(defconst *a* (hons-copy ',(make-tree 50))))
    ; Redundant, and formerly very slow:
    (make-event
    `(defconst *a* (hons-copy ',(make-tree 50))))

  Processing of [defpkg] forms may be faster, thanks to a change
  suggested by Jared Davis (who observed significant speedup in
  SBCL).

  Optimizations have been made that can speed up [include-book] for
  some large books, as follows. In particular, for the form (time$
  (include-book \"centaur/sv/tutorial/alu\" :dir :system)) we have seen
  a 25% reduction (on Mac OS) for the first item below, and an
  additional 29% reduction (also on Mac OS) for the second item.

    * Various optimizations have been made for [theory] manipulation,
      including some to make processing for efficient for [defund]
      and [defthmd]. Thanks to Sol Swords for bringing this issue to
      our attention in GitHub Issue #401 and for reporting bugs in
      our initial implementations.
    * Redundancy checking for [encapsulate] [events] can be much faster.
      The only functional change (with one small exception, described
      in an item above) is to check for a sub-event of the proposed
      encapsulate event that is attempting to introduce a new name;
      if no such name is found, then the redundancy check is skipped,
      and the proposed encapsulate event is evaluated. This new check
      is quite thorough (see [redundant-encapsulate]), so we expect
      it to be rare that an encapsulate event that was formerly
      redundant is no longer redundant.

  [Certify-book] is faster in some cases; for example, we found the
  time required to certify a book whose only event is (include-book
  \"centaur/gl/gl\" :dir :system) was reduced from 57 seconds to 10
  seconds. (Implementation note: The change was to avoid installing
  worlds in function defpkg-items. That had probably been done in
  order to speed up calls of simple-translate-and-eval in
  defpkg-items-rec, but that speed-up seems to be dwarfed by the
  expense of extend-world1 in such cases.)

  We tweaked a part of the so-called ``clausify'' process for doing
  Boolean simplification towards producing subgoals of a given goal,
  namely, the so-called ``subsumption-replacement-loop''
  (specifically, source function find-subsumer-replacement). Thanks
  to Jared Davis for helpful discussions that led us to make this
  change.

  [Defevaluator] is faster, especially so when many functions are to be
  interpreted by the new evaluator. The new version is a refactored
  version of community book books/tools/defevaulator-fast.lisp used
  with the permission of its original authors Sol Swords and Jared
  Davis. Thanks!

  The Common Lisp code generated for [stobj] accessors and updaters has
  been improved in the case that the :type is T or of the form (array
  T ...). In particular, we have seen efficiency improvements for
  host Lisp CCL when the value read from or written to the array is a
  fixnum (integers that are sufficiently small in absolute value).
  Thanks to Bob Boyer and Gary Byers for helpful discussions that led
  to this improvement.


Bug Fixes

  We fixed a soundness bug pertaining to [local] [defpkg] [events]. See
  community books directory misc/hidden-defpkg-checks/ for an example
  that exploits this bug to prove nil in Version 7.1 and perhaps some
  other previous ACL2 versions. Thanks to Sol Swords for helping us
  set up that test (specifically, suggesting addition of the comment
  ``; no_port'' after an [include-book] call that is not to be put
  into a .port file).

  The use of [set-deferred-ttag-notes] during [make-event] expansion
  could cause some TTAG NOTE messages never to be printed. Thanks to
  Jared Davis for a remark that led us to discover this bug, which
  could be considered a soundness bug since the TTAG NOTE mechanism
  is a key part of the soundness story. With this change, the effects
  of set-deferred-ttag-notes persist past make-event expansion.

  It was possible to use :[program] mode functions to write past the
  end of an array, leading to unsoundness. This has been fixed. Now,
  updaters for [stobj] array fields are marked as having so-called
  ``invariant-risk'', even when the element type of the array is t
  (unconstrained). Also marked with invariant-risk are built-in
  functions [aset1] and [aset2]. See [program-wrapper],
  [invariant-risk] and [set-check-invariant-risk], which is discussed
  above in the section Changes to Existing Features. Thanks to Jared
  Davis and Sol Swords for sending an example to illustrate the bug.

  When ACL2 was interrupted while debugging was on (see
  [set-debugger-enable]), it was possible later to get the following
  error repeatedly:

    HARD ACL2 ERROR in TIME-TRACKER:  It is illegal to specify :START for
    tag :TAU, because tracking for this tag is already in an active state.

  This problem has been fixed, by defining a new keyword argument for
  [time-tracker], :start!, and using it to track the use of the
  [tau-system]; see [time-tracker] and [time-tracker-tau].

  ACL2 would cause an error at startup when the value of environment
  variable ACL2_SYSTEM_BOOKS was a string starting with the tilde
  character (~). This has been fixed. Thanks to Shilpi Goel and
  Warren Hunt for bringing this bug to our attention.

  (GCL only) It had not been possible to define a [stobj] with more
  than 64 fields in GCL. We have removed that restriction. (Technical
  note: GCL disallows calls of the function, vector, with more than
  64 arguments. So instead we now build a list of stobj fields that
  is coerced to a vector, rather than calling vector directly.)

  Fixed [deftheory-static] by declaring the [world] to be ignorable,
  thus avoiding errors for forms that don't reference the world.
  Thanks to Jared Davis for pointing out this bug with the example,
  (deftheory-static my-theory '(car-cons)).

  Fixed a bug that was causing the hiding-cars component of the
  [ld-evisc-tuple] to be ignored when printing evaluation results.

  We avoid an error in the case that [skip-proofs] is used around a
  definition with no tests above a recursive call, as in the
  following example.

    (skip-proofs (defun foo (x)
                  (declare (xargs :measure (acl2-count x)))
                  (identity
                   (cond ((zp x) 17)
                         (t (foo (1- x)))))))

  Thanks to Dave Greve for bringing this bug to our attention. Note
  that such a definitional event may be unsound (not surprisingly,
  because of the use of skip-proofs). For example, the following form
  succeeds: (thm nil :hints ((\"Goal\" :induct (foo x)))).

  Several improvements have been made to avoid errors in the execution
  of :[puff] and :[puff*]. Thanks to Eric Smith for reporting this
  issue. (Technical implementation note: a bug in source function
  find-longest-common-retraction1-event, used in reverting logical
  [world]s, was fixed in support of this work.)

  When the [default-defun-mode] was :[logic], then a [mutual-recursion]
  form with [xargs] declaration of :[program] mode, which also had
  one or more [defund] [events], would cause a error when attempting
  to [disable] new function symbols after admitting their
  definitions. This has been fixed. Thanks to Jared Davis for
  bringing this bug to our attention (GitHub Issue #464).

  We fixed some printing bugs for :[psof], :[pso], and raw proof format
  (see [set-raw-proof-format]). Both :[psof] and :[pso] were printing
  explicit splitter notes (see [splitter]) --- and worse yet, and
  thanks to David Rager for pointing this out, :[psof] was printing
  them to the terminal. Those explicit splitter notes were not
  appropriate during proof replay, where instead parenthetical
  phrases like ``(if-intro)'' are sufficient; those phrases continue
  to be printed during proof replay, just as when [gag-mode] is off.
  Raw proof format had a couple of whitespace bugs, but more
  important was its failure to indicate any information about
  splitters; so now it prints the same explicit splitter notes as are
  printed for gag-mode.

  Insufficient checking has been fixed for [signature]s. Thanks to
  Jared Davis for sending the example ((f * *) => * :formals (x)
  :guard (natp x)), which was not flagged as illegal by ACL2 even
  though the specified arity of 2 did not match the length of the
  specified :formals. There could also be mismatches between the
  [stobj]s specified, for example, with (((f * st1) => * :formals (x
  st2) :guard (natp x))), that were not flagged as illegal.

  The inclusion of uncertified books was leading to some incorrect
  messages about other books that are also uncertified. This has been
  fixed (though the messages can still be verbose at times). Thanks
  to Eric Smith for sending an example to bring this problem to our
  attention.

  There were some incorrect error messages produced for bad calls of
  [ec-call]; these have been fixed.

  Fixed a bug in [memoization] that could occur when multiprocessing is
  turned on, as in the call (acl2::mf-multiprocessing t) in community
  book books/centaur/vl/server/server-raw.lsp. Thanks to Sol Swords
  for reporting a bad report from [memsum] when profiling function
  include-book-fn before including system book \"doc/top\".

  [Guard] violation error messages printed 'ACL2_INVISIBLE::|The Live
  State Itself| where they should have printed STATE; similarly for
  the utility [print-gv], which also failed to print entirely in
  user-level ``untranslated'' syntax. These problems have been fixed.
  Thanks to Eric Smith for bringing the ``STATE'' bug to our
  attention.

  Infinite loops occurred for calls of (close-output-channel
  *standard-co* state) after redirecting standard output using
  set-standard-co. A clean error now occurs instead.

  We fixed a bug in [state-global-let*] --- actually, in its supporting
  system utility acl2-unwind-protect --- that allowed capture of a
  lexical variable, temp, to produce bad results, for example as
  follows.

    (defun foo (temp state)
      (declare (xargs :stobjs state :mode :program))
      (state-global-let*
       ((x 3))
       (pprogn
        (fms \"TEMP = ~x0~%X = ~x1~%\" (list (cons #0 temp) (cons #1 (@ x)))
             *standard-co* state nil)
        (value nil))))
    (foo 17 state) ; should show TEMP = 17 and X = 3, but caused Lisp error

  ACL2 no longer prints a message for a failed :induct hint (in the
  case that [gag-mode] is off), saying that a definition is
  [disable]d when that is not the case.

  (CCL only, probably only 32-bit CCL) We fixed a bug manifested with
  an error, ``is not of the expected type (UNSIGNED-BYTE 32).''
  (Technical note: Function ccl::set-lisp-heap-gc-threshold requires
  a fixnum, but was passed a bignum.) Thanks to Harsh Raju Chamarthi
  for sending us a log that exhibited this bug, namely
  books/oracle/stv-invariant-extraction-pitfall/alu.lisp, which seems
  to have evoked the bug by using an unusually large amount of
  memory.

  One might reasonably expect that for a [rewrite] or [linear] rule
  with a hypothesis of the form (force ...) or (case-split ...), an
  attempt to relieve that hypothesis should be successful when
  forcing is enabled. The situation is a bit tricky if the hypothesis
  has free variables, but even then, one would expect success if the
  :match-free value is the default, :all, or if no suitable bindings
  are found. Such attempts had however not always been successful;
  but they are now, and the relevant documentation on
  [free-variables] has been clarified. For an example exhibiting the
  bug, see the comment about ``free variables'' in Community Books
  file system/doc/acl2-doc.lisp, in the form (defxdoc note-7-2 ...).

  An inappropriate warning has been eliminated for some
  [type-prescription] rules, for example the following.

    (defthm foo
      (implies (alistp mem)
               (or (equal (assoc loc mem) nil)
                   (consp (assoc loc mem))))
      :rule-classes :type-prescription)

  The warning had claimed that the rule ``may be weaker than you
  expect'' because the theorem itself ``is not provable using
  type-set reasoning''. But the theorem is provable when
  [guard-holders] are removed, as could generally be expected; so
  now, the check is applied after removing guard-holders from the
  theorem.

  The [guard]s stored for [macros] now include [type] declarations.
  Formerly the guards stored for macros were based only on the
  :[xargs] :guard keyword. Consider for example the following
  definition.

    (defmacro foo (x)
      (declare (type integer x))
      x)

    (defun bar (y)
      (foo y))

  Formerly, no error occurred when processing the definition of bar,
  because the guard stored for foo was t. Now, the guard stored for
  foo is (integerp x); since the variable y is not an integer (it is
  a symbol), the attempted [defun] for bar causes an error.


Changes at the System Level

  ACL2 is now defined to incorporate its [hons-enabled] features. We
  formerly supported building ACL2 without these features, resulting
  in so-called Classic ACL2, also called ``ACL2(c)''. Such builds are
  no longer supported: although it is still technically possible to
  build ACL2(c), we do not stand behind such builds; in particular,
  we do not test them, and we have removed the GNUmakefile target,
  saved_acl2c.

  (CCL only) Starting with CCL Version 16384, EGC (the ephemeral
  garbage collector) is enabled in ACL2 by default, in place of a
  ``start-sol-gc'' memory management scheme, but with some of the
  delay in full garbage collection that had been provided by that
  scheme. That scheme is still available to users, under a different
  name and inside the ACL2 loop; see [set-gc-strategy]. (Note that
  both set-gc-strategy and gc-strategy have been added to
  [*ACL2-exports*].) Thanks to Gary Byers for CCL improvements
  leading to this change, and to him, Bob Boyer, Jared Davis, and Sol
  Swords for helpful discussions. The default behavior can be
  restored to the previous behavior at ACL2 build time, by setting
  Make variable ACL2_EGC_ON=nil when building an ACL2 executable.

  A new mechanism allows importing of theorems into the ACL2 source
  code, thus extending the existing mechanism for importing
  termination and guard verification for system functions (see the
  item above about [term-order], merge-sort-term-order, and so on).
  Using this mechanism, some theorems have been imported from a new
  community book, books/system/termp.lisp. (For an example of how
  ACL2 developers use this mechanism, see the call of system-events
  in ACL2 source file boot-strap-pass-2.lisp.)

  File GNUmakefile in the (top-level) ACL2 sources directory now sets
  environment variable TIME_CERT so that regressions will generate
  timing information.

  (SBCL only) The --control-stack-size argument for ACL2 executables
  saved for SBCL is now 64 (formerly 16). Thanks to Jared Davis for
  requesting this increase.

  The existing utility [get-event-data] is now documented. Moreover, it
  can be used for determining whether an interrupt (Control-C)
  occurred during execution of an event. (This capability is used in
  a new utility, [removable-runes].) See [get-event-data].

  The startup banner now shows the git commit hash for development
  snapshots. Thanks to Bob Boyer for suggesting such a modification
  and to Jared Davis for bringing to our attention the appropriate
  git command for retrieving the hash.

  (CMUCL only) It is now the case for CMUCL that [setenv$] modifies the
  environment of the underlying Lisp process. Thanks to Jared Davis
  for this suggestion, and for pointing out that CCL and SBCL [at
  least] already have this behavior.

  A new optimize declaration for [defun], (:stack-access 3), can result
  in some speed up for evaluations done when the host Lisp is CCL
  (but is likely to be a no-op in other host Lisps). Thus, you may
  write: (defun foo (x) (declare (optimize (:stack-access 3))) ...).
  Thanks to Gary Byers and the CCL team for their excellent compiler
  work, including the new stack-access feature, and to Bob Boyer and
  Warren Hunt for helpful discussions. To build ACL2 on CCL with this
  feature, add the variable setting ACL2_STACK_ACCESS=3 to the make
  command that you invoke to build ACL2. NOTE: The use of
  ACL2_STACK_ACCESS relies on recognition by CCL of the :stack-access
  keyword for optimize expressions, hence will only have effect for
  CCL versions starting with 16678.

  (CMUCL only) Updated saved_acl2 for CMUCL to use maximum heap for CMU
  Common Lisp snapshot-2016-01 and beyond. Thanks to Raymond Toy for
  updating CMUCL such that one can specify with -dynamic-space-size 0
  that the maximum heap is used.


EMACS Support

  We made several improvements in the [ACL2-doc] browser.

    * A bug has been fixed in the S command (acl2-doc-re-search).
    * The help message is displayed more often (but only, we think, when
      appropriate) in the echo area (i.e., below the mode line).
    * The q command (acl2-doc-quit) now can be run from any buffer in
      acl2-doc mode, for example after typing the H command.
      Moreover, all such buffers will be buried after q; formerly, if
      you quit from the main acl2-doc buffer you could have been left
      in the acl2-doc-history buffer.

  [Verify-termination] calls are now indented like [defun] calls.
  Thanks to Alessandro Coglio for suggesting this change to
  emacs/emacs-acl2.el.

  The [ACL2-doc] Emacs browser now allows handling of topics with
  square brackets. This fix was necessary because a new topic,
  SV::4VEC-[=, broke acl2-doc; it wouldn't initialize. The fix simply
  replaces characters #\\[ and #\\] with #\\< and #\\>, respectively.
  It's not a perfect fix, but it seems awkward to try to escape #\\[
  (which Emacs Lisp thinks starts a vector). See community book
  system/doc/render-doc-base.lisp.


Experimental Versions

  Fixed some interleaved output that could appear with
  [waterfall-parallelism] enabled. Thanks to Eric Smith for reporting
  this problem and to David Rager for a helpful chat.")
 (NOTE1
  (RELEASE-NOTES)
  "Acl2 Version 1.1 Notes

  The new features are extensively documented. The relevant topics are:

  It is especially important to read all of of the [documentation] for
  [books] before trying to use books. However, the new :more keyword
  command is so handy for reading long [documentation] strings that
  we recommend you start with :[doc] more if reading at the terminal.
  Some documentation has been written for [guard]s which you might
  find interesting.


Subtopics

  [Books]
      Books are files of ACL2 [events]---they are the main way to split up
      large ACL2 developments into separate modules.")
 (NOTE2
  (RELEASE-NOTES)
  "Acl2 Version 1.2 Notes

  Hacker mode has been eliminated and [programming] mode has been
  added. [Programming] mode is unsound but does syntax checking and
  permits redefinitions of names. See :[doc] load-mode and :[doc]
  g-mode.

  The arguments to [ld] have changed. [Ld] is now much more
  sophisticated. See [ld].

  For those occasions on which you wish to look at a large list
  structure that you are afraid to print, try (walkabout x state),
  where x is an Acl2 expression that evaluates to the structure in
  question. I am afraid there is no [documentation] yet, but it is
  similar in spirit to the Interlisp structure editor. You are
  standing on an object and commands move you around in it. E.g., 1
  moves you to its first element, 2 to its second, etc.; 0 moves you
  up to its parent; nx and bk move you to its next sibling and
  previous sibling; pp prettyprints it; [q] exits returning nil; [=]
  exits returning the thing you're standing on; (= symb) assigns the
  thing you're standing on to the [state] global variable symb.

  Several new [hints] have been implemented, including :by and :do-not.
  The old :do-not-generalize has been scrapped in favor of such new
  [hints] as :do-not (generalize elim). :By lets you say ``this goal
  is subsumed by'' a given lemma instance. The :by hint also lets you
  say ``this goal can't be proved yet but skip it and see how the
  rest of the proof goes.'' See [hints].")
 (NOTE3
  (RELEASE-NOTES)
  "Acl2 Version 1.3 Notes

  [Programming] mode has been eliminated. Instead, all functions have a
  ``color'' which indicates what can be done with the function. For
  example, :red functions can be executed but have no axioms
  describing them. Thus, :red functions can be introduced after
  passing a simple syntactic check and they can be redefined without
  undoing. But nothing of consequence can be proved about them. At
  the other extreme are :gold functions which can be executed and
  which also have passed both the termination and the [guard]
  verification proofs. The color of a function can be specified with
  the new [xargs] keyword, :color, which, if omitted defaults to the
  global setting of ld-color. Ld-color replaces load-mode. Setting
  ld-color to :red causes behavior similar to the old :g-mode.
  Setting ld-color to :gold causes behavior similar to the old
  :v-mode. It is possible to prototype your system in :red and then
  convert :red functions to :blue individually by calling
  [verify-termination] on them. They can then be converted to :gold
  with [verify-guards]. This allows us to undertake to verify the
  termination and [guard]s of system functions. See :[doc] color for
  an introduction to the use of colors.

  Type prescription rules have been added. Recall that in Nqthm, some
  [rewrite] rules were actually stored as ``[type-prescription]s.''
  Such rules allow the user to inform Nqthm's primitive type
  mechanism as to the kinds of shells returned by a function. Earlier
  versions of Acl2 did not have an analogous kind of rule because
  Acl2's type mechanism is complicated by [guard]s. Version 1.3
  supports [type-prescription] rules. See [type-prescription].

  Three more new [rule-classes] implement congruence-based rewriting.
  It is possible to identify a binary relation as an equivalence
  relation (see [equivalence]), to show that one equivalence relation
  refines another (see [refinement]) and to show that a given
  equivalence relation is maintained when rewriting a given function
  call, e.g., (fn ...xk...), by maintaining another equivalence
  relation while rewriting the kth argument (see [congruence]). If r
  has been shown to be an [equivalence] relation and then (implies
  hyps (r (foo x) (bar x))) is proved as a :[rewrite] rule, then
  instances of (foo x) will be replaced by corresponding instances of
  (bar x) provided the instance occurs in a slot where the
  maintainence of r-equivalence is known to be sufficient and hyps
  can be established as usual.

  In Version 1.2, [rule-classes] were simple keywords, e.g., :[rewrite]
  or :[elim]. In Version 1.3, [rule-classes] have been elaborated to
  allow you to specify how the theorem ought to be used as a rule.
  That is, the new [rule-classes] allows you to separate the
  mathematical statement of the formula from its interpretation as a
  rule. See [rule-classes].

  Rules used to be named by symbols, e.g., [car] and car-cons were the
  names of rules. Unfortunately, this was ambiguous because there are
  three rules associated with function symbols: the symbolic
  definition, the executable counterpart, and the
  [type-prescription]; many different rules might be associated with
  theorems, depending on the rule classes. In Version 1.3 rules are
  named by ``[rune]s'' (which is just short hand for ``rule names'').
  Example [rune]s are (:definition car), (:executable-counterpart
  car), and (:type-prescription car . 1). Every rule added by an
  event has a different name and you can [enable] and [disable] them
  independently. See [rune] and see [theories].

  The identity function [force], of one argument, has been added and
  given a special interpretation by the functions responsible for
  establishing hypotheses in backchaining: When the system fails to
  establish some hypothesis of the form (force term), it simply
  assumes it is true and goes on, delaying until later the
  establishment of term. In particular, pushes a new subgoal to prove
  term in the current context. When that subgoal is attacked, all of
  the resources of the theorem prover, not just rewriting, are
  brought to bear. Thus, for example, if you wish to prove the rule
  (implies (good-statep s) (equal (exec s n) s')) and it is your
  expectation that every time exec appears its first argument is a
  good-statep then you might write the rule as (implies (force
  (good-statep s)) (equal (exec s n) s')). This rule is essentially
  an unconditional rewrite of (exec s n) to s' that spawns the new
  goal (good-statep s). See [force]. Because you can now specify
  independently how a theorem is used as a rule, you need not write
  the [force] in the actual theorem proved. See [rule-classes].

  Version 1.3 supports a facility similar to Nqthm's [break-lemma]. See
  [break-rewrite]. You can install ``[monitor]s'' on [rune]s that
  will cause interactive breaks under certain conditions.

  Acl2 also provides ``[wormhole]s'' which allow you to write functions
  that cause interaction with the user but which do not require that
  you have access to [state]. See [wormhole].

  The rewriter now automatically backchains to stronger recognizers.
  There is no user hook to this feature but it may simplify some
  proofs with which older versions of Acl2 had trouble. For example,
  if the rewriter is trying to prove (rationalp (foo a b c)) it is
  now smart enough to try lemmas that match with (integerp (foo a b
  c)).")
 (NOTE4
  (RELEASE-NOTES)
  "Acl2 Version 1.4 Notes

  Once again [ld] only takes one required argument, as the bind-flg has
  been deleted.

  Three commands have been added in the spirit of :[pe]. :[Pe!] is
  similar to :[pe] but it prints all [events] with the given name,
  rather than just the most recent. The command :[pf] prints the
  corollary formula corresponding to a name or [rune]. The command
  :[pl] (print lemmas) prints rules whose top function symbol is the
  given name. See [pe!], see [pf], and see [pl].

  Book naming conventions have been changed somewhat. The once-required
  .lisp extension is now prohibited! Directories are supported,
  including a notion of ``connected book directory''. See
  [book-name]. Also, the second argument of [certify-book] is now
  optional, defaulting to 0.

  [Compilation] is now supported inside the Acl2 loop. See [comp] and
  see [set-compile-fns].

  The default color is now part of the Acl2 [world]; see :[doc]
  default-color. Ld-color is no longer an [ld] special. Instead,
  colors are [events]; see the documentation for red, pink, blue, and
  gold.

  A [table] exists for controlling whether Acl2 prints comments when it
  [force]s hypotheses of rules; see :[doc] force-table. Also, it is
  now possible to turn off the forcing of assumptions by disabling
  the definition of [force]; see [force].

  The event defconstant is no longer supported, but a very similar
  event, [defconst], has been provided in its place. See [defconst].

  The event for defining [congruence] relations is now [defcong]
  (formerly, defcon).

  Patterns are now allowed in :expand [hints]. See the documentation
  for :expand inside the documentation for [hints].

  We have improved the way we report rules used by the simplifier. All
  [rune]s of the same type are reported together in the running
  commentary associated with each goal, so that for example,
  executable counterparts are listed separately from definitions, and
  rewrite rules are listed separately from [linear] rules. The
  preprocessor now mentions ``simple'' rules; see [simple].

  The mechanism for printing warning messages for new rewrite rules,
  related to subsumption, now avoids worrying about nonrecursive
  function symbols when those symbols are [disable]d. These messages
  have also been eliminated for the case where the old rule is a
  :[definition] rule.

  Backquote has been modified so that it can usually provide
  predictable results when used on the left side of a rewrite rule.

  Time statistics are now printed even when an event fails.

  The Acl2 trace package has been modified so that it prints using the
  values of the Lisp globals *print-level* and *print-length*
  (respectively).

  [Table] has been modified so that the :clear option lets you replace
  the entire [table] with one that satisfies the val and key guards
  (if any); see [table].

  We have relaxed the translation rules for :measure [hints] to
  [defun], so that the the same rules apply to these terms that apply
  to terms in [defthm] [events]. In particular, in :measure [hints]
  [mv] is treated just like [list], and [state] receives no special
  handling.

  The [loop-stopper] test has been relaxed. The old test required that
  every new argument be strictly less than the corresponding old
  argument in a certain [term-order]. The new test uses a
  lexicographic order on term lists instead. For example, consider
  the following rewrite rule.

    (equal
     (variable-update var1
                      val1 (variable-update var2 val2 vs))
     (variable-update var2
                      val2 (variable-update var1 val1 vs)))

  This rule is permutative. Now imagine that we want to apply this rule
  to the term

    (variable-update u y (variable-update u x vs)).

  Since the actual corresponding to both var1 and var2 is u, which is
  not strictly less than itself in the [term-order], this rule would
  fail to be applied in this situation when using the old test.
  However, since the pair (u x) is lexicographically less than the
  pair (u y) with respect to our [term-order], the rule is in fact
  applied using our new test.

  Messages about [events] now contain a space after certain left
  parentheses, in order to assist emacs users. For example, the event

    (defthm abc (equal (+ (len x) 0) (len x)))

  leads to a summary containing the line

    Form:  ( DEFTHM ABC ...)

  and hence, if you search backwards for ``(defthm abc'', you won't
  stop at this message.

  More tautology checking is done during a proof; in fact, no goal
  printed to the screen, except for the results of applying :use and
  :by [hints] or the top-level goals from an induction proof, are
  known to Acl2 to be tautologies.

  The [ld-query-control-alist] may now be used to suppress printing of
  queries; see [ld-query-control-alist].

  Warning messages are printed with short summary strings, for example
  the string ``Use'' in the following message.

    Acl2 Warning [Use] in DEFTHM:  It is unusual to :USE an enabled
    :REWRITE or :DEFINITION rule, so you may want to consider
    disabling FOO.

  At the end of the event, just before the time is printed, all such
  summary strings are printed out.

  The keyword command :u has been introduced as an abbreviation for
  :[ubt] :[max]. Printing of query messages is suppressed by :u.

  The keyword :cheat is no longer supported by any event form.

  Some irrelevant formals are detected; see [irrelevant-formals].

  A bug in the application of metafunctions was fixed: now if the
  output of a metafunction is equal to its input, the application of
  the metafunction is deemed unsuccessful and the next metafunction
  is tried.

  An example has been added to the documentation for [equivalence] to
  suggest how to make use of [equivalence] relations in rewriting.

  The following Common Lisp functions have been added to Acl2:
  [alpha-char-p], [upper-case-p], [lower-case-p], [char-upcase],
  [char-downcase], [string-downcase], [string-upcase], and
  digit-charp-p.

  A documentation section called [proof-checker] has been added for the
  interactive facility, whose documentation has been slightly
  improved. See in particular the documentation for [proof-checker],
  [verify], and [macro-command].

  A number of [events] that had been inadvertently disallowed in
  [books] are now permitted in [books]. These are: [defcong], defcor,
  [defequiv], [defrefinement], [defstub], and [verify-termination].")
 (NOTE5
  (RELEASE-NOTES)
  "Acl2 Version 1.5 Notes

  Acl2 now allows ``complex rationals,'' which are complex numbers
  whose real parts are rationals and whose imaginary parts are
  non-zero rationals. See [complex].

  A new way of handling [force]d hypotheses has been implemented.
  Rather than cause a case split at the time the [force] occurs, we
  complete the main proof and then embark on one or more ``forcing
  rounds'' in which we try to prove the [force]d hypotheses. See
  [forcing-round]. To allow us to compare the new handling of [force]
  with the old, Version 1.5 implements both and uses a flag in
  [state] to determine which method should be used. Do (assign
  old-style-forcing t) if you want [force] to be handled as it was in
  Version 1.4. However, we expect to eliminate the old-style forcing
  eventually because we think the new style is more effective. To see
  the difference between the two approaches to forcing, try proving
  the associativity of [append] under both settings of
  old-style-forcing. To get the new behavior invoke:

    (thm (implies (and (true-listp a) (true-listp b))
                  (equal (append (append a b) c)
                         (append a (append b c)))))

  Then (assign old-style-forcing t) and invoke the thm [command] above
  again.

  A new :cases [hints] allows proof by cases. See [hints].

  [Include-book] and [encapsulate] now restore the
  [ACL2-defaults-table] when they complete. See [include-book] and
  see [encapsulate].

  The [guard]s on many Acl2 primitives defined in axioms.lisp have been
  weakened to permit them to be used in accordance with lisp custom
  and tradition.

  It is possible to attach heuristic filters to :[rewrite] rules to
  limit their applicability. See [syntaxp].

  A tutorial has been added (but as of Version_3.6.1 it has become
  obsolete).

  [Events] now print the Summary paragraph listing [rune]s used, time,
  etc., whether they succeed or fail. The format of the ``[failure]
  banner'' has been changed but still has multiple asterisks in it.
  Thm also prints a Summary, whether it succeeds or fails; but thm is
  not an event.

  A new event form [skip-proofs] has been added; see [skip-proofs].

  A user-specific customization facility has been added in the form of
  a book that is automatically included, if it exists on the current
  directory. See [ACL2-customization].

  A facility for conditional metalemmas has been implemented; see
  [meta].

  The acceptable values for [ld-skip-proofsp] have changed. In the old
  version (Version 1.4), a value of t meant that proofs and [local]
  [events] are to be skipped. In Version 1.5, a value of t means
  proofs (but not [local] [events]) are to be skipped. A value of
  '[include-book] means proofs and [local] [events] are to be
  skipped. There are two other, more obscure, acceptable values. See
  [ld-skip-proofsp].

  In order to turn off the forcing of assumptions, one should now
  [disable] the :[executable-counterpart] of [force] (rather than the
  :[definition] of [force], as in the previous release); see [force].

  The macros [enable-forcing] and [disable-forcing] make it convenient
  to [enable] or [disable] forcing. See [enable-forcing] and see
  [disable-forcing].

  The new commands :[pr] and :[pr!] print the rules created by an event
  or command. See [pr] and see [pr!].

  The new [history] [command]s :[puff] and :[puff*] will replace a
  compound [command] such as an [encapsulate] or [include-book] by
  the sequence of [events] in it. That is, they ``[puff] up'' or
  ``lift'' the subevents of a [command] to the [command] level,
  eliminating the formerly superior [command] and lengthening the
  [history]. This is useful if you want to ``partially undo'' an
  [encapsulate] or book or other compound [command] so you can
  experiment. See [puff] and see [puff*].

  Theory expressions now are allowed to use the free variable [world]
  and prohibited from using the free variable [state]. See
  [theories], although it is essentially the same as before except it
  mentions [world] instead of [state]. See [world] for a discussion
  of the Acl2 logical [world]. Allowing [in-theory] [events] to be
  state-sensitive violated an important invariant about how [books]
  behaved.

  [Table] keys and values now are allowed to use the free variable
  [world] and prohibited from using the free variable [state]. See
  the note above about theory expressions for some explanation.

  The macro for minus, [-], used to expand (- x 3) to (+ x -3) and now
  expands it to (+ -3 x) instead. The old macro, if used in the
  left-hand sides of rewrite rules, produced inapplicable rules
  because the constant occurs in the second argument of the [+], but
  potential target terms generally had the constant in the first
  argument position because of the effect of commutativity-of-+.

  A new class of rule, :linear-alias rules, allows one to implement the
  nqthm package and similar hacks in which a [disable]d function is
  to be known equivalent to an arithmetic function.

  A new class of rule, :built-in-clause rules, allows one to extend the
  set of clauses proved silently by [defun] during measure and
  [guard] processing. See [built-in-clause].

  The new command [pcb!] is like [pcb] but sketches the [command] and
  then prints its subsidiary [events] in full. See [pcb!].

  :[Rewrite] class rules may now specify the :[loop-stopper] field. See
  [rule-classes] and see [loop-stopper].

  The rules for how [loop-stopper]s control permutative rewrite rules
  have been changed. One effect of this change is that now when the
  built-in commutativity rules for [+] are used, the terms a and (-
  a) are permuted into adjacency. For example, (+ a b (- a)) is now
  normalized by the commutativity rules to (+ a (- a) b); in Version
  1.4, b was considered syntactically smaller than (- a) and so (+ a
  b (- a)) is considered to be in normal form. Now it is possible to
  arrange for unary functions be be considered ``invisible'' when
  they are used in certain contexts. By default, [unary--] is
  considered invisible when its application appears in the argument
  list of [binary-+]. See [loop-stopper] and see :DOC
  set-invisible-fns-table.

  Extensive documentation has been provided on the topic of Acl2's
  ``term ordering.'' See [term-order].

  Calls of [ld] now default [ld-error-action] to :return rather than to
  the current setting.

  The [command] descriptor :x has been introduced and is synonymous
  with :[max], the most recently executed [command]. [History]
  [command]s such as :[pbt] print a :x beside the most recent
  [command], simply to indicate that it is the most recent one.

  The [command] descriptor :x-23 is synonymous with (:x -23). More
  generally, every symbol in the keyword package whose first
  character is #\\x and whose remaining [characters] parse as a
  negative integer is appropriately understood. This allows :[pbt]
  :x-10 where :[pbt] (:max -10) or :[pbt] (:here -10) were previously
  used. The old forms are still legal.

  The order of the arguments to [defcong] has been changed.

  The simplifier now reports the use of unspecified built-in type
  information about the primitives with the phrase ``primitive type
  reasoning.'' This phrase may sometimes occur in situations where
  ``propositional calculus'' was formerly credited with the proof.

  The function [pairlis] has been replaced in the code by a new
  function [pairlis$], because Common Lisp does not adequately
  specify its [pairlis] function.

  Some new Common Lisp functions have been added, including [logtest],
  [logcount], [integer-length], [make-list], [remove-duplicates],
  [string], and [concatenate]. The source file
  /slocal/src/acl2/axioms.lisp is the ultimate reference regarding
  Common Lisp functions in Acl2.

  The functions [defuns] and [theory-invariant] have been documented.
  See [defuns] and see [theory-invariant].

  A few symbols have been added to the list *acl2-exports*.

  A new key has been implemented for the [ACL2-defaults-table],
  :irrelevant-formals-ok. See [set-irrelevant-formals-ok].

  The connected book directory, [cbd], must be nonempty and begin and
  end with a slash. It is set (and displayed) automatically upon your
  first entry to [lp]. You may change the setting with [set-cbd]. See
  [cbd].

  :[oops] will undo the last :[ubt]. See [oops].

  Documentation has been written about the ordinals. See :DOC
  e0-ordinalp and see :DOC e0-ord-<. [Note added later: Starting with
  Version_2.8, instead see [o-p] and see [o<].

  The color [events] --- (red), (pink), (blue), and (gold) --- may no
  longer be enclosed inside calls of [local], for soundness reasons.
  In fact, neither may any event that sets the [ACL2-defaults-table].
  See [embedded-event-form].

  See [ld-keyword-aliases] for an example of how to change the exit
  keyword from :[q] to something else.

  The attempt to install a [monitor] on :[rewrite] rules stored as
  simple abbreviations now causes an error because the application of
  abbreviations is not tracked.

  A new message is sometimes printed by the theorem prover, indicating
  that a given simplification is ``specious'' because the subgoals it
  produces include the input goal. In Version 1.4 this was detected
  but not reported, causing behavior some users found bizarre. See
  [specious-simplification].

  :[Definition] rules are no longer always required to specify the
  :clique and :controller-alist fields; those fields can be defaulted
  to system-determined values in many common instances. See
  [definition].

  A warning is printed if a macro form with keyword arguments is given
  duplicate keyword values. Execute (thm t :doc nil :doc \"ignored\")
  and read the warning printed.

  A new restriction has been placed on [encapsulate]. Non-[local]
  recursive definitions inside the [encapsulate] may not use, in
  their tests and recursive calls, the constrained functions
  introduced by the [encapsulate]. See [subversive-recursions]. (Note
  added in Version 2.3: Subversive recursions were first recognized
  by us here in Version 1.5, but our code for recognizing them was
  faulty and the bug was not fixed until Version 2.3.)

  The [events] [defequiv], [defcong], [defrefinement], and
  [defevaluator] have been reimplemented so that they are just macros
  that expand into appropriate [defthm] or [encapsulate] [events];
  they are no longer primitive [events]. See the [documentation] of
  each affected event.

  The defcor event, which was a shorthand for a [defthm] that
  established a [corollary] of a named, previously proved event, has
  been eliminated because its implementation relied on a technique we
  have decided to ban from our code. If you want the effect of a
  defcor in Version 1.5 you must submit the corresponding [defthm]
  with a :by hint naming the previously proved event.

  Error reporting has been improved for inappropriate [in-theory]
  [hints] and [events], and for syntax errors in rule classes, and
  for non-existent filename arguments to [ld].

  Technical Note: We now maintain the Third Invariant on type-alists,
  as described in the Essay on the Invariants on Type-alists, and
  Canonicality. This change will affect some proofs, for example, by
  causing a to rewrite more quickly to c when (equiv a b) and (equiv
  b c) are both known and c is the canonical representative of the
  three.")
 (NOTE6
  (RELEASE-NOTES)
  "Acl2 Version 1.6 Notes

  A new key has been implemented for the [ACL2-defaults-table],
  :ignore-ok. See [set-ignore-ok].

  It is now legal to have color [events], such as (red), in the
  [portcullis] of a book. More generally, it is legal to set the
  [ACL2-defaults-table] in the [portcullis] of a book. For example,
  if you execute :red and then certify a book, the event (red) will
  show up in the [portcullis] of that book, and hence the definitions
  in that book will all be red (except when overridden by appropriate
  declarations or [events]). When that book is included, then as
  always, its [portcullis] must first be ``raised,'' and that will
  cause the default color to become red before the [events] in the
  book are executed. As always, the value of [ACL2-defaults-table]
  immediately after execution of an [include-book], [certify-book],
  or [encapsulate] form will be the same as it was immediately before
  execution (and hence, so will the default color). See [portcullis]
  and, for more about books, see [books].

  A theory [ground-zero] has been defined to contain exactly those
  rules that are [enable]d when Acl2 starts up. See [ground-zero].

  The function [nth] is now [enable]d, correcting an oversight from
  Version 1.5.

  Customization files no longer need to meet the syntactic restrictions
  put on [books]; rather, they can contain arbitrary Acl2 forms. See
  [ACL2-customization].

  Structured directory names and structured file names are supported;
  see especially the documentation for [pathname], [book-name], and
  [cbd].

  Acl2 now works with some Common Lisp implementations other than akcl,
  including Lucid, Allegro, and MCL.

  A facility has been added for displaying proof trees, especially
  using emacs; see [proof-tree].

  There is a considerable amount of new [documentation], in particular
  for the printing functions [fmt], [fmt1], and [fms], and for the
  notion of Acl2 term (see [term]).

  It is possible to introduce new well-founded relations, to specify
  which relation should be used by [defun], and to set a default
  relation. See [well-founded-relation].

  It is possible to make functions suggest new inductions. See
  [induction].

  It is possible to change how Acl2 expresses [type-set] information;
  in particular, this affects what clauses are proved when [force]d
  assumptions are generated. See [type-set-inverter].

  A new restriction has been added to [defpkg], having to do with
  undoing. If you undo a [defpkg] and define the same package name
  again, the imports list must be identical to the previous imports
  or else an explanatory error will occur. See
  [package-reincarnation-import-restrictions].

  [Theory-invariant] and [set-irrelevant-formals-ok] are now embedded
  event forms.

  The command :[good-bye] may now be used to quit entirely out of Lisp,
  thus losing your work forever. This command works in akcl but may
  not work in every Common Lisp.

  A theory [ground-zero] has been added that contains exactly the
  [enable]d rules in the [startup] theory. See [ground-zero].

  Define-pc-macro and define-pc-atomic-macro now automatically define
  :red functions. (It used to be necessary, in general, to change
  color to :red before invoking these.)

  For a proof of the well-foundedness of e0-ord-< on the e0-ordinalps,
  see [proof-of-well-foundedness]. [Note added later: Starting with
  Version_2.8, [o<] and [o-p] replace e0-ord-< and e0-ordinalp,
  respectively.]

  Free variables are now handled properly for hypotheses of
  :[type-prescription] rules.

  When the system is loaded or saved, [state] is now bound to
  *the-live-state*.

  [Certify-book] has been modified so that when it compiles a file, it
  loads that object file.

  [Defstub] has been modified so that it works when the color is hot
  (:red or :pink).

  Several basic, but not particularly commonly used, [events] have been
  added or changed. The obscure axiom symbol-name-intern has been
  modified. The definition of firstn has been changed. [Butlast] is
  now defined. The definition of [integer-length] has been modified.
  The left-hand side of the rewrite rule rational-implies2 has been
  changed from (* (numerator x) (/ (denominator x))) to (* (/
  (denominator x)) (numerator x)), in order to respect the fact that
  [unary-/] is invisible with respect to [binary-*]. See
  [loop-stopper].

  The `preprocess' process in the waterfall (see [hints] for a
  discussion of the :do-not hint) has been changed so that it works
  to avoid case-splitting. The `simplify' process refuses to force
  (see [force]) when there are [if] terms, including [and] and [or]
  terms, in the goal being simplified.

  The function apply is no longer introduced automatically by
  translation of user input to internal form when functions are
  called on inappropriate explicit values, e.g., (car 3).

  The choice of which variable to use as the measured variable in a
  recursive definition has been very slightly changed.")
 (NOTE7
  (RELEASE-NOTES)
  "ACL2 Version 1.7 (released October 1994) Notes

  [Include-book] now takes (optionally) an additional keyword argument,
  indicating whether a compiled file is to be loaded. The default
  behavior is unchanged, except that a warning is printed when a
  compiled file is not loaded. See [include-book].

  A markup language for [documentation] strings has been implemented,
  and many of the source files have been marked up using this
  language (thanks largely to the efforts of Laura Lawless). See
  markup. Moreover, there are translators that we have used to
  provide versions of the ACL2 [documentation] in info (for use in
  emacs), html (for Mosaic), and tex (for hardcopy) formats.

  A new event defdoc has been implemented. It is like [deflabel], but
  allows redefinition of [doc] strings and has other advantages. See
  defdoc.

  We used to ignore corollaries when collecting up the axioms
  introduced about constrained functions. That bug has been fixed. We
  thank John Cowles for bringing this bug to our attention.

  The macro [defstub] now allows a :[doc] keyword argument, so that
  [documentation] may be attached to the name being introduced.

  A new command [nqthm-to-ACL2] has been added to help Nqthm users to
  make the transition to ACL2. See [nqthm-to-ACL2], which also
  includes a complete listing of the relevant tables.

  Many function names, especially of the form ``foo-lst'', have been
  changed in order to support the following convention, for any
  ``foo'':

  (foo-listp lst) represents the notion (for x in lst always foop x).

  A complete list of these changes may be found at the end of this
  note. All of them except symbolp-listp and list-of-symbolp-listp
  have the string ``-lst'' in their names. Note also that
  keyword-listp has been renamed [keyword-value-listp].

  Accumulated persistence has been implemented. It is not connected to
  :[brr] or rule monitoring. See [accumulated-persistence].

  :Trigger-terms has been added for :[linear] rule classes, so you can
  hang a [linear] rule under any addend you want. See [linear], which
  has been improved and expanded.

  ACL2 now accepts 256 [characters] and includes the Common Lisp
  functions [code-char] and [char-code]. However, ACL2 controls the
  lisp reader so that #\\c may only be used when c is a single
  standard character or one of Newline, Space, Page, Rubout, Tab. If
  you want to enter other [characters] use [code-char], e.g., (coerce
  (list (code-char 7) (code-char 240) #a) 'string). See [characters].
  Note: our current handling of [characters] makes the set of
  theorems different under Macintosh Common Lisp (MCL) than under
  other Common Lisps. We hope to rectify this situation before the
  final release of ACL2.

  A new [table], [macro-aliases-table], has been implemented, that
  associates macro names with function names. So for example, since
  [append] is associated with [binary-append], the form (disable
  append) it is interpreted as though it were (disable
  binary-append). See [macro-aliases-table], see [add-macro-alias]
  and see [remove-macro-alias].

  The implementation of conditional metalemmas has been modified so
  that the metafunction is applied before the hypothesis metafunction
  is applied. See [meta].

  The Common Lisp functions [acons] and [endp] have been defined in the
  ACL2 logic.

  We have added the symbol [declare] to the list *acl2-exports*, and
  hence to the package \"ACL2-USER\".

  A new hint, :restrict, has been implemented. See [hints].

  It used to be that if :[ubt] were given a number that is greater than
  the largest current [command] number, it treated that number the
  same as :[max]. Now, an error is caused.

  The [table] :force-table has been eliminated.

  A command :[disabledp] (and macro [disabledp]) has been added; see
  [disabledp].

  [Compilation] via :[set-compile-fns] is now suppressed during
  [include-book]. In fact, whenever the [state] global variable
  [ld-skip-proofsp] has value '[include-book].

  Here are some less important changes, additions, and so on.

  Unlike previous releases, we have not proved all the theorems in
  axioms.lisp; instead we have simply assumed them. We have deferred
  such proofs because we anticipate a fairly major changed in Version
  1.8 in how we deal with [guard]s.

  We used to (accidentally) prohibit the ``redefinition'' of a [table]
  as a function. That is no longer the case.

  The check for whether a [corollary] follows tautologically has been
  sped up, at the cost of making the check less ``smart'' in the
  following sense: no longer do we expand primitive functions such as
  [implies] before checking this propositional implication.

  The [command] [ubt!] has been modified so that it never causes or
  reports an error. See [ubt!].

  ACL2 now works in Harlequin LispWorks.

  The user can now specify the :trigger-terms for :[linear] rules. See
  [linear].

  The name of the system is now ``ACL2''; no longer is it ``Acl2''.

  The raw lisp counterpart of [theory-invariant] is now defined to be a
  no-op as is consistent with the idea that it is just a call of
  [table].

  A bug was fixed that caused [proof-checker] [instructions] to be
  executed when [ld-skip-proofsp] was t.

  The function [rassoc] has been added, along with a corresponding
  function used in its [guard], r-eqlable-alistp.

  The [in-theory] event and hint now print a warning not only when
  certain ``primitive'' :[definition] rules are [disable]d, but also
  when certain ``primitive'' :[executable-counterpart] rules are
  [disable]d.

  The modified version of trace provided by ACL2, for use in raw Lisp,
  has been modified so that the lisp special variable *trace-alist*
  is consulted. This alist associates, using [eq], values with their
  print representations. For example, initially *trace-alist* is a
  one-element list containing the pair (cons state
  '|*the-live-state*|).

  The system now prints an observation when a form is skipped because
  the default color is :red or :pink. (Technically: when-cool has
  been modified.)

  Additional protection exists when you submit a form to raw Common
  Lisp that should only be submitted inside the ACL2 read-eval-print
  loop.

  Here is a complete list of the changes in function names described
  near the top of this note, roughly of the form

    foo-lst --> foo-listp

  meaning: the name ``foo-lst'' has been changed to ``foo-listp.''

    symbolp-listp    --> symbol-listp
    list-of-symbolp-listp  --> symbol-list-listp
                           {for consistency with change to symbol-listp}
    rational-lst     --> rational-listp
                         {which in fact was already defined as well}
    integer-lst      --> integer-listp
    character-lst    --> character-listp
    stringp-lst      --> string-listp
    32-bit-integer-lst   --> 32-bit-integer-listp
    typed-io-lst     --> typed-io-listp
    open-channel-lst --> open-channel-listp
    readable-files-lst   --> readable-files-listp
    written-file-lst --> written-file-listp
    read-file-lst    --> read-file-listp
    writeable-file-lst   --> writable-file-listp
                         {note change in spelling of ``writable''}
    writeable-file-lst1  --> writable-file-listp1
    pseudo-termp-lst     --> pseudo-term-listp
    hot-termp-lst --> hot-term-listp {by analogy with pseudo-term-listp}
    weak-termp-lst   --> weak-term-listp
    weak-termp-lst-lst   --> weak-termp-list-listp
    ts-builder-case-lstp -> ts-builder-case-listp
    quotep-lst       --> quote-listp
    termp-lst        --> term-listp
    instr-lst        --> instr-listp
    spliced-instr-lst    --> spliced-instr-listp
    rewrite-fncallp-lst  --> rewrite-fncallp-listp
    every-occurrence-equiv-hittablep1-lst -->
                every-occurrence-equiv-hittablep1-listp
    some-occurrence-equiv-hittablep1-lst  -->
                some-occurrence-equiv-hittablep1-listp
                {by analogy with the preceding, even though it's a
                 ``some'' instead of ``all'' predicate]
    almost-quotep1-lst   --> almost-quotep1-listp
    ffnnames-subsetp-lst --> ffnnames-subsetp-listp
    boolean-lstp     --> boolean-listp
    subst-expr1-lst-okp  --> subst-expr1-ok-listp")
 (NOTE8
  (RELEASE-NOTES)
  "ACL2 Version 1.8 (May, 1995) Notes

  See [note8-update] for yet more recent changes.

  [Guard]s have been eliminated from the ACL2 logic. A summary is
  contained in this brief note. Also see [defun-mode] and see
  [set-guard-checking].

  [Guard]s may be included in [defuns] as usual but are ignored from
  the perspective of admission to the logic: functions must terminate
  on all arguments.

  As in Nqthm, primitive functions, e.g., [+] and [car], logically
  default unexpected arguments to convenient values. Thus, (+ 'abc 3)
  is 3 and (car 'abc) is nil. See [programming], and see the
  [documentation] for the individual primitive functions.

  In contrast to earlier versions of ACL2, Version 1.8 logical
  functions are executed at Nqthm speeds even when [guard]s have not
  been verified. In versions before 1.8, such functions were
  interpreted by ACL2.

  Colors have been eliminated. Two ``[defun-mode]s'' are supported,
  :[program] and :[logic]. Roughly speaking, :[program] does what
  :red used to do, namely, allow you to prototype functions for
  execution without any proof burdens. :[Logic] mode does what :blue
  used to do, namely, allow you to add a new definitional axiom to
  the logic. A global [default-defun-mode] is comparable to the old
  default color. The system comes up in :[logic] mode. To change the
  global [defun-mode], type :[program] or :[logic] at the top-level.
  To specify the [defun-mode] of a [defun] locally use

     (declare (xargs :mode mode)).

  The [prompt] has changed. The initial [prompt], indicating :[logic]
  mode, is

    ACL2 !>

  If you change to :[program] mode the [prompt] becomes

    ACL2 p!>

  [Guard]s can be seen as having either of two roles: (a) they are a
  specification device allowing you to characterize the kinds of
  inputs a function ``should'' have, or (b) they are an efficiency
  device allowing logically defined functions to be executed directly
  in Common Lisp. If a [guard] is specified, as with [xargs]
  :[guard], then it is ``verified'' at defun-time (unless you also
  specify [xargs] :verify-guards nil). [Guard] verification means
  what it always has: the input [guard] is shown to imply the
  [guard]s on all subroutines in the body. If the [guard]s of a
  function are verified, then a call of the function on inputs
  satisfying the [guard] can be computed directly by Common Lisp.
  Thus, verifying the [guard]s on your functions will allow them to
  execute more efficiently. But it does not affect their logical
  behavior and since you will automatically get Nqthm speeds on
  unverified logical definitions, most users will probably use
  [guard]s either as a specification device or only use them when
  execution efficiency is extremely important.

  Given the presence of [guard]s in the system, two issues are
  unavoidable. Are [guard]s verified as part of the [defun] process?
  And are [guard]s checked when terms are evaluated? We answer both
  of those questions below.

  Roughly speaking, in its initial [state] the system will try to
  verify the [guard]s of a [defun] if a :[guard] is supplied in the
  [xargs] and will not try otherwise. However, [guard] verification
  in [defun] can be inhibited ``locally'' by supplying the [xargs]
  :[verify-guards] nil. ``Global'' inhibition can be obtained via the
  :[set-verify-guards-eagerness]. If you do not use the :[guard]
  [xargs], you will not need to think about [guard] verification.

  We now turn to the evaluation of expressions. Even if your functions
  contain no [guard]s, the primitive functions do and hence you have
  the choice: when you submit an expression for evaluation do you
  mean for [guard]s to be checked at runtime or not? Put another way,
  do you mean for the expression to be evaluated in Common Lisp (if
  possible) or in the logic? Note: If Common Lisp delivers an answer,
  it will be the same as in the logic, but it might be erroneous to
  execute the form in Common Lisp. For example, should (car 'abc)
  cause a [guard] violation error or return nil?

  The top-level ACL2 loop has a variable which controls which sense of
  execution is provided. To turn ``[guard] checking on,'' by which we
  mean that [guard]s are checked at runtime, execute the top-level
  form :set-guard-checking t. To turn it off, do :set-guard-checking
  nil. The status of this variable is reflected in the [prompt].

    ACL2 !>

  means [guard] checking is on and

    ACL2 >

  means [guard] checking is off. The exclamation mark can be thought of
  as ``barring'' certain computations. The absence of the mark
  suggests the absence of error messages or unbarred access to the
  logical axioms. Thus, for example

    ACL2 !>(car 'abc)

  will signal an error, while

    ACL2 >(car 'abc)

  will return nil.

  Note that whether or not [guard]s are checked at runtime is
  independent of whether you are operating in :[program] mode or
  :[logic] mode and whether theorems are being proved or not.
  (Although it must be added that functions defined in :[program]
  mode cannot help but check their [guard]s because no logical
  definition exists.)

  Version 1.8 permits the verification of the [guard]s of theorems,
  thus insuring that all instances of the theorem will evaluate
  without error in Common Lisp. To verify the [guard]s of a theorem
  named name execute the event

    (verify-guards name).

  If a theorem's [guard]s have been verified, the theorem is guaranteed
  to evaluate without error to non-nil in Common Lisp (provided
  resource errors do not arise).

  Caveat about [verify-guards]: [implies] is a function symbol, so in
  the term (implies p q), p cannot be assumed true when q is
  evaluated; they are both evaluated ``outside.'' Hence, you cannot
  generally verify the [guard]s on a theorem if [implies] is used to
  state the hypotheses. Use [if] instead. In a future version of
  ACL2, [implies] will likely be a macro.

  See sum-list-example.lisp for a nice example of the use of Version
  1.8. This is roughly the same as the documentation for
  [guard-example].

  We have removed the capability to do ``old-style-forcing'' as existed
  before Version 1.5. See [note5].

  NOTE: Some low level details have, of course, changed. One such
  change is that there are no longer two distinct type prescriptions
  stored when a function is admitted with its [guard]s verified. So
  for example, the type prescription [rune] for [binary-append] is
  now

    (:type-prescription binary-append)

  while in Versions 1.7 and earlier, there were two such [rune]s:

    (:type-prescription binary-append . 1)
    (:type-prescription binary-append . 2)

  Nqthm-style forcing on [linear] arithmetic assumptions is no longer
  executed when forcing is [disable]d.

  Functional instantiation now benefits from a trick also used in
  Nqthm: once a [constraint] generated by a :functional-instance
  lemma instance (see [lemma-instance]) has been proved on behalf of
  a successful event, it will not have to be re-proved on behalf of a
  later event.

  [1+] and [1-] are now macros in the logic, not functions. Hence, for
  example, it is ``safe'' to use them on left-hand sides of rewrite
  rules, without invoking the common warning about the presence of
  nonrecursive function symbols.

  A new [documentation] section [file-reading-example] illustrates how
  to process forms in a file.

  A new [proof-checker] command forwardchain has been added; see
  [ACL2-pc::forwardchain].

  It is now possible to use quantifiers. See [defun-sk] and see
  [defchoose].

  There is a new event [set-inhibit-warnings], which allows the user to
  turn off warnings of various types. see [set-inhibit-warnings].

  An unsoundness relating [encapsulate] and :functional-instance
  [hints] has been remedied, with a few small effects visible at the
  user level. The main observable effect is that [defaxiom] and
  non-local [include-book] [events] are no longer allowed in the
  scope of any [encapsulate] event that has a non-empty [signature].

  When [certify-book] is called, we now require that the default
  [defun-mode] (see [default-defun-mode]) be :[logic]. On a related
  note, the default [defun-mode] is irrelevant to [include-book]; the
  mode is always set to :[logic] initially, though it may be changed
  within the book and reverts to its original value at the conclusion
  of the [include-book]. A bug in [include-book] prevented it from
  acting this way even though the [documentation] said otherwise.

  The [documentation] has been substantially improved. A new section
  ``Programming'' contains [documentation] of many useful functions
  provided by ACL2; see [programming]. Also, the [documentation] has
  been ``marked up'' extensively. Thus in particular, users of Mosaic
  will find many links in the [documentation].

  The symbols [force], [mv-nth], and acl2-count have been added to the
  list *acl2-exports*.

  We now permit most names from the main Lisp package to be used as
  names, except for names that define functions, macros, or
  constants. See [name].

  We have changed the list of imports from the Common Lisp package to
  ACL2, i.e., the list *common-lisp-symbols-from-main-lisp-package*,
  to be exactly those external symbols of the Common Lisp package as
  specified by the draft Common Lisp standard. In order to
  accommodate this change, we have renamed some ACL2 functions as
  shown below, but these and other ramifications of this change
  should be transparent to most ACL2 users.

    warning      --> warning$
    print-object --> print-object$

  Proof trees are no longer enabled by default. To start them up,
  :[start-proof-tree].

  We have added the capability of building smaller images. The easiest
  way to do this on a Unix (trademark of AT&T) system is: make small.

  Here we will put some less important changes, additions, and so on.

  We have added definitions for the Common Lisp function [position]
  (for the test [eql]), as well as corresponding versions
  [position-equal] and [position-eq] that use tests [equal] and [eq],
  respectively. See [position], see [position-equal], and see
  [position-eq].

  The [defthm] event rational-listp-implies-rationalp-car no longer
  exists.

  We fixed a bug in the hint mechanism that applied :by, :cases, and
  :use [hints] to the first induction goal when the prover reverted
  to proving the original goal by induction.

  We fixed a bug in the handling of (set-irrelevant-formals-ok :warn).

  In support of removing the old-style forcing capability, we deleted
  the initialization of [state] global old-style-forcing and deleted
  the definitions of recover-assumptions,
  recover-assumptions-from-goal, remove-assumptions1,
  remove-assumptions, and split-on-assumptions, and we renamed
  split-on-assumptions1 to split-on-assumptions.

  The special value 'none in the [proof-checker] commands claim and [=]
  has been replaced by :none.

  A bug in the handling of [hints] by subgoals has been fixed. For
  example, formerly a :do-not hint could be ``erased'' by a :use hint
  on a subgoal. Thanks go to Art Flatau for noticing the bug.

  The functions weak-termp and weak-term-listp have been deleted, and
  their calls have been replaced by corresponding calls of
  [pseudo-termp] and pseudo-term-listp. The notion of [pseudo-termp]
  has been slightly strenthened by requiring that terms of the form
  (quote ...) have length 2.

  Performance has been improved in various ways. At the prover level,
  backchaining through the recognizer alist has been eliminated in
  order to significantly speed up ACL2's rewriter. Among the other
  prover changes (of which there are several, all technical): we no
  longer clausify the input term when a proof is interrupted in favor
  of inducting on the input term. At the [io] level, we have improved
  performance somewhat by suitable declarations and proclamations.
  These include technical modifications to the macros [mv] and
  [mv-let], and introduction of a macro the-mv analogous to the macro
  [the] but for forms returning multiple values.

  The function spaces now takes an extra argument, the current column.

  A bug in the [proof-checker] equiv command was fixed.

  The function intersectp has been deleted, because it was essentially
  duplicated by the function [intersectp-equal].

  We now proclaim functions in AKCL and GCL before compiling [books].
  This should result in somewhat increased speed.

  The function repeat has been eliminated; use [make-list] instead.

  The [proof-checker] command expand has been fixed so that it
  eliminates [let] (lambda) expressions when one would expect it to.

  A new primitive function, [mv-nth], has been introduced. [Mv-nth] is
  equivalent to [nth] and is used in place of [nth] in the
  translation of [mv-let] expressions. This allows the user to
  control the simplification of [mv-let] expressions without
  affecting how [nth] is treated. In that spirit, the rewriter has
  been modified so that certain [mv-nth] expressions, namely those
  produced in the translation of (mv-let (a b c)(mv x y z) p), are
  given special treatment.

  A minor bug in untranslate has been fixed, which for example will fix
  the printing of conjunctions.

  Translate now takes a logicp argument, which indicates whether it
  enforces the restriction that :[program] mode functions do not
  occur in the result.

  The modified version of trace provided by ACL2, for use in raw Lisp,
  has been modified so that the lisp special variable *trace-alist*
  has a slightly different functionality. This alist associates,
  using [eq], symbols with the print representations of their values.
  For example, initially *trace-alist* is a one-element list
  containing the pair (cons 'state '|*the-live-state*|). Thus, one
  may cons the pair (cons '*foo* \"It's a FOO!\") on to *trace-alist*;
  then until *foo* is defined, this change will have no effect, but
  after for example

    (defconst *foo* 17)

  then trace will print 17 as \"It's a FOO!\".

  Trace also traces the corresponding logic function.

  [Proof-tree] display has been improved slightly in the case of
  successful proofs and certain event failures.

  The function positive-integer-log2 has been deleted.

  The macro [skip-proofs] now prints a warning message when it is
  encountered in the context of an [encapsulate] event or a book. See
  [skip-proofs].

  Some functions related to the-fn and wormhole1 now have [defun-mode]
  :[program], but this change is almost certain to be inconsequential
  to all users.")
 (NOTE8-UPDATE
  (RELEASE-NOTES)
  "ACL2 Version 1.8 (Summer, 1995) Notes

  ACL2 can now use Ordered Binary Decision Diagram technology. See
  [bdd]. There is also a [proof-checker] bdd command.

  ACL2 is now more respectful of the intention of the function [hide].
  In particular, it is more careful not to dive inside any call of
  [hide] during equality substitution and case splitting.

  The [ld] special (see [ld]) [ld-pre-eval-print] may now be used to
  turn off printing of input forms during processing of [encapsulate]
  and [certify-book] forms, by setting it to the value :never, i.e.,
  (set-ld-pre-eval-print :never state). See [ld-pre-eval-print].

  The TUTORIAL documentation section (now obsolete) has, with much help
  from Bill Young, been substantially improved to a bona fide
  introduction.

  The term pretty-printer has been modified to introduce (<= X Y) as an
  abbreviation for (not (< Y X)).

  Forward chaining and linear arithmetic now both benefit from the
  evaluation of ground subterms.

  A new macro [set-inhibit-output-lst] has been defined. This should be
  used when setting the [state] global inhibit-output-lst; see
  [set-inhibit-output-lst] and see [proof-tree].

  The test for redundancy in definitions includes the [guard] and type
  declarations. See [redundant-events].

  See [generalized-booleans] for a discussion of a potential soundness
  problem for ACL2 related to the question: Which Common Lisp
  functions are known to return Boolean values?

  Here we will put some less important changes, additions, and so on.

  A bug has been fixed so that now, execution of :comp t (see [comp])
  correctly handles non-standard characters.

  A bug in [digit-char-p] has been fixed, so that the ``default'' is
  nil rather than 0.

  [True-listp] now tests the final [cdr] against nil using [eq] instead
  of [equal], for improved efficiency. The logical meaning is,
  however, unchanged.

  [Put-assoc-equal] has been added to the logic (it used to have
  :[defun-mode] :[program], and has been documented.")
 (NOTE9
  (RELEASE-NOTES)
  "ACL2 Version 1.9 (Fall, 1996) Notes

  By default, when the system is started it is illegal to use the
  variable [state] as a formal parameter of a function definition.
  The aim is to prevent novice users from stumbling into the
  Byzantine syntactic restrictions on that variable symbol. Use

    :set-state-ok t

  or, equivalently,

    (set-state-ok t)

  to switch back to the old default mode. See [set-state-ok]

  Set-state-ok is an event that affects the ACL2 defaults table (see
  [ACL2-defaults-table]). Recall that when books are included, the
  defaults table is restored to its pre-inclusion state. Thus, while
  a set-state-ok form will permit the book to define a state-using
  function, it will not permit the user of the book to make such a
  definition. We recommend putting (set-state-ok t) in any book that
  defines a state using function.

  Books certified under Version 1.8 must be recertified under Version
  1.9. See :DOC version.

  The simplifier has been made to look out for built-in clauses,
  whereas in past versions such clauses were only noticed by the
  ``preprocessor'' at the top of the waterfall. THIS CHANGE MAY
  PREVENT OLD SCRIPTS FROM REPLAYING! The undesirable side-effect is
  caused by the fact that :HINTS require you to refer to clauses by
  their exact name (see [goal-spec]) and because the new simplifier
  proves more clauses than before, the goals produced have different
  names. Thus, if a script uses :HINTS that refer to clauses other
  than \"Goal\", e.g., \"Subgoal 1.3\" then the hint may be applied to a
  different subgoal than originally intended.

  The use of built-in-clauses has been made more efficient. If a set of
  clauses arise often in a piece of work, it might be advantageous to
  build them in even if that results in a large set (hundreds?) of
  built-in clauses. See [built-in-clause]

  Wormholes can now be used in :logic mode functions. See [wormhole]

  It is now possible to provide ``computed hints.'' For example, have
  you ever wished to say ``in all goals with a name like this, :use
  that'' or ``if this term is in the subgoal, then :use that''? Well,
  see [computed-hints] and the extraordinarily long example in see
  [using-computed-hints].

  Hide terms may be rewritten with :rewrite rules about hide. See
  [hide], where we also now explain why hide terms are sometimes
  introduced into your proof attempts.

  A bug that sometimes caused the ``non-lazy IF'' hard error message
  was fixed.

  A bug that sometimes caused a hard error in forward chaining was
  fixed.

  A bug in print-rules (:pr) was fixed.

  We report the use of :executable-counterparts in the evaluation of
  SYNTAXP forms.

  Some documentation errors were fixed.

  A bug in parent-tree tracking in add-literal-and-pt was fixed.

  A bug in ok$, go$ and eval$ was fixed.

  Clausify now optimizes (mv-nth 'k (list x0 ... xk ... xn)) to xk.")
 (NQTHM-TO-ACL2
  (ACL2-TUTORIAL)
  "ACL2 analogues of Nqthm functions and commands

    Example Forms:
    :nqthm-to-acl2 prove-lemma   ; Display ACL2 topic(s) and/or print
                                 ; information corresponding to Nqthm
                                 ; PROVE-LEMMA command.
    (nqthm-to-acl2 'prove-lemma) ; Same as above.

    General Form:
    (nqthm-to-acl2 name)

  where name is a notion documented for Nqthm: either a function in the
  Nqthm logic, or a command. If there is corresponding information
  available for ACL2, it will be printed in response to this command.
  This information is not intended to be completely precise, but
  rather, is intended to help those familiar with Nqthm to make the
  transition to ACL2.

  We close with two tables that contain all the information used by
  this nqthm-to-acl2 command. The first shows the correspondence
  between functions in the Nqthm logic and corresponding ACL2
  functions (when possible); the second is similar, but for commands
  rather than functions.

    Nqthm functions  -->     ACL2
    ----------------------------------------
    ADD1          -->  1+
    ADD-TO-SET    -->  ADD-TO-SET-EQUAL and ADD-TO-SET-EQ
    AND           -->  AND
    APPEND        -->  APPEND and BINARY-APPEND
    APPLY-SUBR    -->  No correspondent, but see the documentation for
                       DEFEVALUATOR and META.
    APPLY$        -->  No correspondent, but see the documentation for
                       DEFEVALUATOR and META.
    ASSOC         -->  ASSOC-EQUAL, ASSOC and ASSOC-EQ
    BODY          -->  No correspondent, but see the documentation for
                       DEFEVALUATOR and META.
    CAR           -->  CAR
    CDR           -->  CDR
    CONS          -->  CONS
    COUNT         -->  ACL2-COUNT
    DIFFERENCE    -->  -
    EQUAL         -->  EQUAL, EQ, EQL and =
    EVAL$         -->  No correspondent, but see the documentation for
                       DEFEVALUATOR and META.
    FALSE         -->  Nqthm's F corresponds to the ACL2 symbol NIL.
    FALSEP        -->  NOT and NULL
    FORMALS       -->  No correspondent, but see the documentation for
                       DEFEVALUATOR and META.
    GEQ           -->  >=
    GREATERP      -->  >
    IDENTITY      -->  IDENTITY
    IF            -->  IF
    IFF           -->  IFF
    IMPLIES       -->  IMPLIES
    LEQ           -->  <=
    LESSP         -->  <
    LISTP         -->  CONSP
    LITATOM       -->  SYMBOLP
    MAX           -->  MAX
    MEMBER        -->  MEMBER-EQUAL, MEMBER and MEMBER-EQ
    MINUS         -->  - and UNARY--
    NEGATIVEP     -->  MINUSP
    NEGATIVE-GUTS -->  ABS
    NLISTP        -->  ATOM
    NOT           -->  NOT
    NUMBERP       -->  ACL2-NUMBERP, INTEGERP and RATIONALP
    OR            -->  OR
    ORDINALP      -->  O-P
    ORD-LESSP     -->  O<
    PACK          -->  See intern and coerce.
    PAIRLIST      -->  PAIRLIS$
    PLUS          -->  + and BINARY-+
    QUOTIENT      -->  /
    REMAINDER     -->  REM and MOD
    STRIP-CARS    -->  STRIP-CARS
    SUB1          -->  1-
    TIMES         -->  * and BINARY-*
    TRUE          -->  The symbol T.
    UNION         -->  UNION-EQUAL and UNION-EQ
    UNPACK        -->  See symbol-name and coerce.
    V&C$          -->  No correspondent, but see the documentation for
                       DEFEVALUATOR and META.
    V&C-APPLY$    -->  No correspondent, but see the documentation for
                       DEFEVALUATOR and META.
    ZERO          -->  The number 0.
    ZEROP         -->  ZP



    Nqthm commands   -->     ACL2
    ----------------------------------------
    ACCUMULATED-PERSISTENCE
                  -->  ACCUMULATED-PERSISTENCE
    ADD-AXIOM     -->  DEFAXIOM
    ADD-SHELL     -->  There is no shell principle in ACL2.
    AXIOM         -->  DEFAXIOM
    BACKQUOTE-SETTING
                  -->  Backquote is supported in ACL2, but not
                       currently documented.
    BOOT-STRAP    -->  GROUND-ZERO
    BREAK-LEMMA   -->  MONITOR
    BREAK-REWRITE -->  BREAK-REWRITE
    CH            -->  PBT
                       See also :DOC history.
    CHRONOLOGY    -->  PBT
                       See also :DOC history.
    COMMENT       -->  DEFLABEL
    COMPILE-UNCOMPILED-DEFNS
                  -->  COMP
    CONSTRAIN     -->  See :DOC encapsulate and :DOC local.
    DATA-BASE     -->  Perhaps the closest ACL2 analogue of DATA-BASE
                       is PROPS.  But see :DOC history for a collection
                       of commands for querying the ACL2 database
                       (``world'').  Note that the notions of
                       supporters and dependents are not supported in
                       ACL2.
    DCL           -->  DEFSTUB
    DEFN          -->  DEFUN and DEFMACRO
    DEFTHEORY     -->  DEFTHEORY
    DISABLE       -->  DISABLE
    DISABLE-THEORY
                  -->  See :DOC theories.  The Nqthm command
                       (DISABLE-THEORY FOO) corresponds roughly to the
                       ACL2 command
                       (in-theory (set-difference-theories
                                    (current-theory :here)
                                    (theory 'foo))).
    DO-EVENTS     -->  LD
    DO-FILE       -->  LD
    ELIM          -->  ELIM
    ENABLE        -->  ENABLE
    ENABLE-THEORY -->  See :DOC theories.  The Nqthm command
                       (ENABLE-THEORY FOO) corresponds roughly to the
                       ACL2 command
                       (in-theory (union-theories
                                    (theory 'foo)
                                    (current-theory :here))).
    EVENTS-SINCE  -->  PBT
    FUNCTIONALLY-INSTANTIATE
                  -->  ACL2 provides a form of the :USE hint that
                       corresponds roughly to the
                       FUNCTIONALLY-INSTANTIATE event of Nqthm. See
                       :DOC lemma-instance.
    GENERALIZE    -->  GENERALIZE
    HINTS         -->  HINTS
    LEMMA         -->  DEFTHM
    MAINTAIN-REWRITE-PATH
                  -->  BRR
    MAKE-LIB      -->  There is no direct analogue of Nqthm's notion of
                       ``library.''  See :DOC books for a description
                       of ACL2's mechanism for creating and saving
                       collections of events.
    META          -->  META
    NAMES         -->  NAME
    NOTE-LIB      -->  INCLUDE-BOOK
    PPE           -->  PE
    PROVE         -->  THM
    PROVEALL      -->  See :DOC ld and :DOC certify-book.  The latter
                       corresponds to Nqthm's PROVE-FILE,which may be
                       what you're interested in,really.
    PROVE-FILE    -->  CERTIFY-BOOK
    PROVE-FILE-OUT
                  -->  CERTIFY-BOOK
    PROVE-LEMMA   -->  DEFTHM
                       See also :DOC hints.
    R-LOOP        -->  The top-level ACL2 loop is an evaluation loop as
                       well, so no analogue of R-LOOP is necessary.
    REWRITE       -->  REWRITE
    RULE-CLASSES  -->  RULE-CLASSES
    SET-STATUS    -->  IN-THEORY
    SKIM-FILE     -->  LD-SKIP-PROOFSP
    TOGGLE        -->  IN-THEORY
    TOGGLE-DEFINED-FUNCTIONS
                  -->  EXECUTABLE-COUNTERPART-THEORY
    TRANSLATE     -->  TRANS and TRANS1
    UBT           -->  UBT and U
    UNBREAK-LEMMA -->  UNMONITOR
    UNDO-BACK-THROUGH
                  -->  UBT
    UNDO-NAME     -->  See :DOC ubt.  There is no way to undo names in
                       ACL2 without undoing back through such names.
                       However, see :DOC ld-skip-proofsp for
                       information about how to quickly recover the
                       state.")
 (NTH
  (LISTS ACL2-BUILT-INS)
  "The nth element (zero-based) of a list

  (Nth n l) is the nth element of l, zero-based. If n is greater than
  or equal to the length of l, then nth returns nil.

  (Nth n l) has a [guard] that n is a non-negative integer and l is a
  [true-listp].

  Nth is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Function: <nth>

    (defun nth (n l)
           (declare (xargs :guard (and (integerp n)
                                       (>= n 0)
                                       (true-listp l))))
           (if (endp l)
               nil
               (if (zp n)
                   (car l)
                   (nth (- n 1) (cdr l)))))


Subtopics

  [Eighth]
      Eighth member of the list

  [Fifth]
      Fifth member of the list

  [First]
      First member of the list

  [Fourth]
      Fourth member of the list

  [Ninth]
      Ninth member of the list

  [Nth-aliases-table]
      A [table] used to associate names for nth/update-nth printing

  [Rest]
      Rest ([cdr]) of the list

  [Second]
      Second member of the list

  [Seventh]
      Seventh member of the list

  [Sixth]
      Sixth member of the list

  [Tenth]
      Tenth member of the list

  [Third]
      Third member of the list")
 (NTH-ALIASES-TABLE
  (STOBJ NTH UPDATE-NTH)
  "A [table] used to associate names for nth/update-nth printing

    Example:
    (table nth-aliases-table 'st0 'st)

  This example associates the symbol st0 with the symbol st. As a
  result, when the theorem prover prints terms of the form (nth n
  st0) or (update-nth n val st0), where st is a [stobj] whose nth
  accessor function is f-n, then it will print n as *f-n*.

    General Form:
    (table nth-aliases-table 'alias-name 'name)

  This event causes alias-name to be treated like name for purposes of
  the printing of terms that are calls of nth and update-nth. (Note
  however that name is not recursively looked up in this table.) Both
  must be symbols other than [state]. See [term], in particular the
  discussion there of untranslated terms.

  For a convenient way to add entries to this [table], see
  [add-nth-alias]. To remove entries from the [table] with ease, see
  [remove-nth-alias].


Subtopics

  [Add-nth-alias]
      Associate one symbol with another for printing of [nth]/[update-nth]
      terms

  [Remove-nth-alias]
      Remove a symbol alias for printing of [nth]/[update-nth] terms")
 (NTHCDR
  (LISTS ACL2-BUILT-INS)
  "Final segment of a list

  (Nthcdr n l) removes the first n elements from the list l.

  The following is a theorem.

    (implies (and (integerp n)
                  (<= 0 n)
                  (true-listp l))
             (equal (length (nthcdr n l))
                    (if (<= n (length l))
                        (- (length l) n)
                      0)))

  For related functions, see [take] and see [butlast].

  The [guard] of (nthcdr n l) requires that n is a nonnegative integer
  and l is a true list.

  Nthcdr is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <nthcdr>

    (defun nthcdr (n l)
           (declare (xargs :guard (and (integerp n)
                                       (<= 0 n)
                                       (true-listp l))))
           (if (zp n) l (nthcdr (+ n -1) (cdr l))))")
 (NULL
  (BASICS ACL2-BUILT-INS)
  "Recognizer for the empty list

  Null is the function that checks whether its argument is nil. For
  recursive definitions it is often preferable to test for the end of
  a list using [endp] instead of null; see [endp].

  Null is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Function: <null>

    (defun null (x)
           (declare (xargs :guard t))
           (eq x nil))")
 (NUMBER-SUBTREES
  (HONS-AND-MEMOIZATION ACL2-BUILT-INS)
  "(number-subtrees x) returns the number of distinct subtrees of X, in
  the sense of [equal]

  In the logic, number-subtrees is defined as the length of
  [cons-subtrees].

  Under the hood, we first [hons-copy] X to obtain a normed version,
  then count the number of unique conses in X using an EQ hash table.

  Function: <number-subtrees>

    (defun number-subtrees (x)
           (declare (xargs :guard t))
           (len (cons-subtrees x 'number-subtrees)))")
 (NUMBERS
  (PROGRAMMING)
  "Numbers in ACL2 and operations on them

  See [numbers-introduction] for introductory background. See
  [arithmetic] for libraries of [books] for arithmetic reasoning.


Subtopics

  [*]
      Multiplication macro

  [+]
      Addition macro

  [-]
      Macro for subtraction and negation

  [/]
      Macro for division and reciprocal

  [/=]
      Test inequality of two numbers

  [1+]
      Increment by 1

  [1-]
      Decrement by 1

  [<]
      Less-than

  [<=]
      Less-than-or-equal test

  [=]
      Test equality of two numbers

  [>]
      Greater-than test

  [>=]
      Greater-than-or-equal test

  [Abs]
      The absolute value of a real number

  [ACL2-number-listp]
      Recognizer for a true list of numbers

  [ACL2-numberp]
      Recognizer for numbers

  [Allocate-fixnum-range]
      Set aside fixnums in GCL

  [Ash]
      Arithmetic shift operation

  [Boole$]
      Perform a bit-wise logical operation on 2 two's complement integers

  [Ceiling]
      Division returning an integer by truncating toward positive infinity

  [Char-code]
      The numeric code for a given character

  [Code-char]
      The character corresponding to a given numeric code

  [Complex]
      Create an ACL2 number

  [Complex-rationalp]
      Recognizes complex rational numbers

  [Complex/complex-rationalp]
      Recognizer for complex numbers

  [Conjugate]
      Complex number conjugate

  [Denominator]
      Divisor of a ratio in lowest terms

  [Evenp]
      Test whether an integer is even

  [Explode-nonnegative-integer]
      The list of [characters] in the radix-r form of a number

  [Expt]
      Exponential function

  [Fix]
      Coerce to a number

  [Floor]
      Division returning an integer by truncating toward negative infinity

  [Ifix]
      Coerce to an integer

  [Imagpart]
      Imaginary part of a complex number

  [Int=]
      Test equality of two integers

  [Integer-length]
      Number of bits in two's complement integer representation

  [Integer-listp]
      Recognizer for a true list of integers

  [Integer-range-p]
      Recognizer for integers between two bounds.

  [Integerp]
      Recognizer for whole numbers

  [Logand]
      Bitwise logical `and' of zero or more integers

  [Logandc1]
      Bitwise logical `and' of two ints, complementing the first

  [Logandc2]
      Bitwise logical `and' of two ints, complementing the second

  [Logbitp]
      The ith bit of an integer

  [Logcount]
      Number of ``on'' bits in a two's complement number

  [Logeqv]
      Bitwise logical equivalence of zero or more integers

  [Logior]
      Bitwise logical inclusive or of zero or more integers

  [Lognand]
      Bitwise logical `nand' of two integers

  [Lognor]
      Bitwise logical `nor' of two integers

  [Lognot]
      Bitwise not of a two's complement number

  [Logorc1]
      Bitwise logical inclusive or of two ints, complementing the first

  [Logorc2]
      Bitwise logical inclusive or of two ints, complementing the second

  [Logtest]
      Test if two integers share a `1' bit

  [Logxor]
      Bitwise logical exclusive or of zero or more integers

  [Max]
      The larger of two numbers

  [Min]
      The smaller of two numbers

  [Minusp]
      Test whether a number is negative

  [Mod]
      Remainder using [floor]

  [Mod-expt]
      Exponential function

  [Nat-listp]
      Recognizer for a true list of natural numbers

  [Natp]
      A recognizer for the natural numbers

  [Nfix]
      Coerce to a natural number

  [Nonnegative-integer-quotient]
      Natural number division function

  [Numbers-introduction]
      Numbers in ACL2

  [Numerator]
      Dividend of a ratio in lowest terms

  [Oddp]
      Test whether an integer is odd

  [Plusp]
      Test whether a number is positive

  [Posp]
      A recognizer for the positive integers

  [Random$]
      Obtain a random value

  [Rational-listp]
      Recognizer for a true list of rational numbers

  [Rationalp]
      Recognizer for rational numbers (ratios and integers)

  [Real/rationalp]
      Recognizer for rational numbers (including real number in ACL2(r))

  [Realfix]
      Coerce to a real number

  [Realpart]
      Real part of a complex number

  [Rem]
      Remainder using [truncate]

  [Rfix]
      Coerce to a rational number

  [Round]
      Division returning an integer by rounding off

  [Sharp-u-reader]
      Allow underscore characters in numbers

  [Signed-byte-p]
      Recognizer for signed integers that fit in a specified bit width

  [Signum]
      Indicator for positive, negative, or zero

  [Truncate]
      Division returning an integer by truncating toward 0

  [Unary--]
      Arithmetic negation function

  [Unary-/]
      Reciprocal function

  [Unsigned-byte-p]
      Recognizer for natural numbers that fit in a specified bit width

  [Zero-test-idioms]
      How to test for 0

  [Zerop]
      Test an acl2-number against 0

  [Zip]
      Testing an ``integer'' against 0

  [Zp]
      Testing a ``natural'' against 0

  [Zpf]
      Testing a nonnegative fixnum against 0")
 (NUMBERS-INTRODUCTION
  (NUMBERS)
  "Numbers in ACL2

  ACL2 numbers are precisely represented and unbounded. They can be
  partitioned into the following subtypes:

    ACL2 Numbers
     |
     |- Rationals
     |  |
     |  |- Integers
     |  |  |- Positive integers                 3
     |  |  |- Zero                              0
     |  |  |- Negative Integers                 -3
     |  |
     |  |- Non-Integral Rationals
     |  |  |
     |  |  |- Positive Non-Integral Rationals   19/3
     |  |  |- Negative Non-Integral Rationals   -22/7
     |
     |- Complex Rational Numbers                 #c(3 5/2) ; i.e., 3 + (5/2)i

  Signed integer constants are usually written (as illustrated above)
  as sequences of decimal digits, possibly preceded by + or -.
  Decimal points are not allowed. Integers may be written in binary,
  as in #b1011 (= 23) and #b-111 (= -7). Octal may also be used,
  #o-777 = -511. Non-integral rationals are written as a signed
  decimal integer and an unsigned decimal integer, separated by a
  slash. Complex rationals are written as #c(rpart ipart) where rpart
  and ipart are rationals.

  Of course, 4/2 = 2/1 = 2 (i.e., not every rational written with a
  slash is a non-integer). Similarly, #c(4/2 0) = #c(2 0) = 2.

  The common arithmetic functions and relations are denoted by +, -, *,
  /, =, <, <=, > and >=. However there are many others, e.g., floor,
  ceiling, and lognot. See any Common Lisp language documentation.

  The primitive predicates for recognizing numbers are illustrated
  below. The following ACL2 function will classify an object, x,
  according to its numeric subtype, or else return 'NaN (not a
  number). We show it this way just to illustrate programming in
  ACL2.

    (defun classify-number (x)
      (cond ((rationalp x)
             (cond ((integerp x)
                    (cond ((< 0 x) 'positive-integer)
                          ((= 0 x) 'zero)
                          (t 'negative-integer)))
                   ((< 0 x) 'positive-non-integral-rational)
                   (t 'negative-non-integral-rational)))
            ((complex-rationalp x) 'complex-rational)
            (t 'NaN)))")
 (NUMBERS_IN_ACL2
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Numbers in ACL2

  ACL2 numbers are precisely represented and unbounded. They can be
  partitioned into the following subtypes:

    ACL2 Numbers
     |
     |- Rationals
     |  |
     |  |- Integers
     |  |  |- Positive integers                 3
     |  |  |- Zero                              0
     |  |  |- Negative Integers                 -3
     |  |
     |  |- Non-Integral Rationals
     |  |  |
     |  |  |- Positive Non-Integral Rationals   19/3
     |  |  |- Negative Non-Integral Rationals   -22/7
     |
     |- Complex Rational Numbers                 #c(3 5/2) ; i.e., 3 + (5/2)i

  Signed integer constants are usually written (as illustrated above)
  as sequences of decimal digits, possibly preceded by + or -.
  Decimal points are not allowed. Integers may be written in binary,
  as in #b1011 (= 23) and #b-111 (= -7). Octal may also be used,
  #o-777 = -511. Non-integral rationals are written as a signed
  decimal integer and an unsigned decimal integer, separated by a
  slash. Complex rationals are written as #c(rpart ipart) where rpart
  and ipart are rationals.

  Of course, 4/2 = 2/1 = 2 (i.e., not every rational written with a
  slash is a non-integer). Similarly, #c(4/2 0) = #c(2 0) = 2.

  The common arithmetic functions and relations are denoted by +, -, *,
  /, =, <, <=, > and >=. However there are many others, e.g., floor,
  ceiling, and lognot. See any Common Lisp language documentation.

  The primitive predicates for recognizing numbers are illustrated
  below. The following ACL2 function will classify an object, x,
  according to its numeric subtype, or else return 'NaN (not a
  number). We show it this way just to illustrate programming in
  ACL2.

    (defun classify-number (x)
      (cond ((rationalp x)
             (cond ((integerp x)
                    (cond ((< 0 x) 'positive-integer)
                          ((= 0 x) 'zero)
                          (t 'negative-integer)))
                   ((< 0 x) 'positive-non-integral-rational)
                   (t 'negative-non-integral-rational)))
            ((complex-rationalp x) 'complex-rational)
            (t 'NaN)))")
 (NUMERATOR
  (NUMBERS ACL2-BUILT-INS)
  "Dividend of a ratio in lowest terms

  Completion Axiom (completion-of-numerator):

    (equal (numerator x)
           (if (rationalp x)
               (numerator x)
             0))

  [Guard] for (numerator x):

    (rationalp x)")
 (O-FINP
  (ORDINALS ACL2-BUILT-INS)
  "Recognizes if an ordinal is finite

  We introduce the function o-finp which returns t for any ordinal that
  is finite, else nil. This function is equivalent to the function
  [atom], and is introduced so that we can [disable] its definition
  when dealing with ordinals (also see [make-ord]).

  Function: <o-finp>

    (defun o-finp (x)
           (declare (xargs :guard t))
           (atom x))")
 (O-FIRST-COEFF
  (ORDINALS ACL2-BUILT-INS)
  "Returns the first coefficient of an ordinal

  An ACL2 ordinal is either a natural number or, for an infinite
  ordinal, a list whose elements are exponent-coefficient pairs (see
  [o-p]). In the latter case, this function returns the [cdr] of the
  first pair in the list. In the case of a natural number, this
  function returns the ordinal itself (since a natural number, n, can
  be thought of as (w^0)n).

  For the corresponding exponent, see [o-first-expt].

  Function: <o-first-coeff>

    (defun o-first-coeff (x)
           (declare (xargs :guard (or (o-finp x) (consp (car x)))))
           (if (o-finp x) x (cdar x)))")
 (O-FIRST-EXPT
  (ORDINALS ACL2-BUILT-INS)
  "The first exponent of an ordinal

  An ACL2 ordinal is either a natural number or, for an infinite
  ordinal, a list whose elements are exponent-coefficient pairs (see
  [o-p]). In the latter case, this function returns the [car] of the
  first pair in the list. In the case of a natural number, the value
  returned is 0 (since a natural number, n, can be thought of as
  (w^0)n).

  For the corresponding coefficient, see [o-first-coeff].

  Function: <o-first-expt>

    (defun o-first-expt (x)
           (declare (xargs :guard (or (o-finp x) (consp (car x)))))
           (if (o-finp x) 0 (caar x)))")
 (O-INFP
  (ORDINALS ACL2-BUILT-INS)
  "Recognizes if an ordinal is infinite

  O-infp is a macro. (O-infp x) opens up to (not (o-finp x)).")
 (O-P
  (ORDINALS ACL2-BUILT-INS)
  "A recognizer for the ordinals up to epsilon-0

  Using the nonnegative integers and lists we can represent the
  ordinals up to epsilon-0. The ordinal representation used in ACL2
  has changed as of Version_2.8 from that of Nqthm-1992, courtesy of
  Pete Manolios and Daron Vroon; additional discussion may be found
  in ``Ordinal Arithmetic in ACL2'', {proceedings of ACL2 Workshop
  2003 | http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/}.
  Previously, ACL2's notion of ordinal was very similar to the
  development given in ``New Version of the Consistency Proof for
  Elementary Number Theory'' in The Collected Papers of Gerhard
  Gentzen, ed. M.E. Szabo, North-Holland Publishing Company,
  Amsterdam, 1969, pp 132-213.

  The following essay is intended to provide intuition about ordinals.
  The truth, of course, lies simply in the ACL2 definitions of o-p
  and [o<].

  Very intuitively, think of each non-zero natural number as by being
  denoted by a series of the appropriate number of strokes, i.e.,

    0             0
    1             |
    2             ||
    3             |||
    4             ||||
    ...           ...

  Then ``omega,'' here written as w, is the ordinal that might be
  written as

    w             |||||...,

  i.e., an infinite number of strokes. Addition here is just
  concatenation. Observe that adding one to the front of w in the
  picture above produces w again, which gives rise to a standard
  definition of w: w is the least ordinal such that adding another
  stroke at the beginning does not change the ordinal.

  We denote by w+w or w*2 the ``doubly infinite'' sequence that we
  might write as follows.

    w*2           |||||... |||||...

  One way to think of w*2 is that it is obtained by replacing each
  stroke in 2 (||) by w. Thus, one can imagine w*3, w*4, etc., which
  leads ultimately to the idea of ``w*w,'' the ordinal obtained by
  replacing each stroke in w by w. This is also written as ``omega
  squared'' or w^2, or:

     2
    w             |||||... |||||... |||||... |||||... |||||... ...

  We can analogously construct w^3 by replacing each stroke in w by w^2
  (which, it turns out, is the same as replacing each stroke in w^2
  by w). That is, we can construct w^3 as w copies of w^2,

     3              2       2       2       2
    w              w  ...  w  ...  w  ...  w ... ...

  Then we can construct w^4 as w copies of w^3, w^5 as w copies of w^4,
  etc., ultimately suggesting w^w. We can then stack omegas, i.e.,
  (w^w)^w etc. Consider the ``limit'' of all of those stacks, which
  we might display as follows.

           .
          .
         .
        w
       w
      w
     w
    w

  That is epsilon-0.

  Below we begin listing some ordinals up to epsilon-0; the reader can
  fill in the gaps at his or her leisure. We show in the left column
  the conventional notation, using w as ``omega,'' and in the right
  column the ACL2 object representing the corresponding ordinal.

    ordinal            ACL2 representation

    0                  0
    1                  1
    2                  2
    3                  3
    ...                ...
    w                 '((1 . 1) . 0)
    w+1               '((1 . 1) . 1)
    w+2               '((1 . 1) . 2)
    ...                ...
    w*2               '((1 . 2) . 0)
    (w*2)+1           '((1 . 2) . 1)
    ...                ...
    w*3               '((1 . 3) . 0)
    (w*3)+1           '((1 . 3) . 1)
    ...                ...

     2
    w                 '((2 . 1) . 0)
    ...                ...

     2
    w +w*4+3          '((2 . 1) (1 . 4) . 3)
    ...                ...

     3
    w                 '((3 . 1) . 0)
    ...                ...

     w
    w                 '((((1 . 1) . 0) . 1) . 0)
    ...                ...

     w  99
    w +w  +w4+3       '((((1 . 1) . 0) . 1) (99 . 1) (1 . 4) . 3)
    ...                ...

      2
     w
    w                 '((((2 . 1) . 0) . 1) . 0)

    ...                ...

      w
     w
    w                 '((((((1 . 1) . 0) . 1) . 0) . 1) . 0)
    ...               ...

  Observe that the sequence of o-ps starts with the natural numbers
  (which are recognized by [natp]). This is convenient because it
  means that if a term, such as a measure expression for justifying a
  recursive function (see [o<]) must produce an o-p, it suffices for
  it to produce a natural number.

  The ordinals listed above are listed in ascending order. This is the
  ordering tested by [o<].

  The ``epsilon-0 ordinals'' of ACL2 are recognized by the recursively
  defined function o-p. The base case of the recursion tells us that
  natural numbers are epsilon-0 ordinals. Otherwise, an epsilon-0
  ordinal is a list of [cons] pairs whose final [cdr] is a natural
  number, ((a1 . x1) (a2 . x2) ... (an . xn) . p). This corresponds
  to the ordinal (w^a1)x1 + (w^a2)x2 + ... + (w^an)xn + p. Each ai is
  an ordinal in the ACL2 representation that is not equal to 0. The
  sequence of the ai's is strictly decreasing (as defined by [o<]).
  Each xi is a positive integer (as recognized by [posp]).

  Note that infinite ordinals should generally be created using the
  ordinal constructor, [make-ord], rather than [cons]. The functions
  [o-first-expt], [o-first-coeff], and [o-rst] are ordinals
  destructors. Finally, the function [o-finp] and the macro [o-infp]
  tell whether an ordinal is finite or infinite, respectively.

  The function [o<] compares two epsilon-0 ordinals, x and y. If both
  are integers, (o< x y) is just x<y. If one is an integer and the
  other is a [cons], the integer is the smaller. Otherwise, [o<]
  recursively compares the [o-first-expt]s of the ordinals to
  determine which is smaller. If they are the same, the
  [o-first-coeff]s of the ordinals are compared. If they are equal,
  the [o-rst]s of the ordinals are recursively compared.

  Fundamental to ACL2 is the fact that [o<] is well-founded on
  epsilon-0 ordinals. That is, there is no ``infinitely descending
  chain'' of such ordinals. See [proof-of-well-foundedness].

  Function: <o-p>

    (defun o-p (x)
           (declare (xargs :guard t))
           (if (o-finp x)
               (natp x)
               (and (consp (car x))
                    (o-p (o-first-expt x))
                    (not (eql 0 (o-first-expt x)))
                    (posp (o-first-coeff x))
                    (o-p (o-rst x))
                    (o< (o-first-expt (o-rst x))
                        (o-first-expt x)))))")
 (O-RST
  (ORDINALS ACL2-BUILT-INS)
  "Returns the rest of an infinite ordinal

  An ACL2 infinite ordinal is a list whose elements are
  exponent-coefficient pairs (see [o-p] and see [o-infp]). The first
  exponent and first coefficient of an ordinal can be obtained by
  using [o-first-expt] and [o-first-coeff] respectively. To obtain
  the rest of the ordinal (for recursive analysis), use the o-rst
  function. It returns the rest of the ordinal after the first
  exponent and coefficient are removed.

  Function: <o-rst>

    (defun o-rst (x)
           (declare (xargs :guard (consp x)))
           (cdr x))")
 (O<
  (ORDINALS ACL2-BUILT-INS)
  "The well-founded less-than relation on ordinals up to epsilon-0

  If x and y are both o-ps (see [o-p]) then (o< x y) is true iff x is
  strictly less than y. o< is well-founded on the [o-p]s. When x and
  y are both nonnegative integers, o< is just the familiar ``less
  than'' relation ([<]).

  o< plays a key role in the formal underpinnings of the ACL2 logic. In
  order for a recursive definition to be admissible it must be proved
  to ``terminate.'' By terminate we mean that the arguments to the
  function ``get smaller'' as the function recurses and this sense of
  size comparison must be such that there is no ``infinitely
  descending'' sequence of ever smaller arguments. That is, the
  relation used to compare successive arguments must be well-founded
  on the domain being measured.

  The most basic way ACL2 provides to prove termination requires the
  user to supply (perhaps implicitly) a mapping of the argument
  tuples into the ordinals with some ``measure'' expression in such a
  way that the measures of the successive argument tuples produced by
  recursion decrease according to the relation o<. The validity of
  this method rests on the well-foundedness of o< on the [o-p]s.

  Without loss of generality, suppose the definition in question
  introduces the function f, with one formal parameter x (which might
  be a list of objects). Then we require that there exist a measure
  expression, (m x), that always produces an [o-p]. Furthermore,
  consider any recursive call, (f (d x)), in the body of the
  definition. Let hyps be the conjunction of terms, each of which is
  either the test of an [if] in the body or else the negation of such
  a test, describing the path through the body to the recursive call
  in question. Then it must be a theorem that

    (IMPLIES hyps (O< (m (d x)) (m x))).

  When we say o< is ``well-founded'' on the [o-p]s we mean that there
  is no infinite sequence of [o-p]s such that each is smaller than
  its predecessor in the sequence. Thus, the theorems that must be
  proved about f when it is introduced establish that it cannot recur
  forever because each time a recursive call is taken (m x) gets
  smaller. From this, and the syntactic restrictions on definitions,
  it can be shown (as on page 44 in ``A Computational Logic'', Boyer
  and Moore, Academic Press, 1979) that there exists a function
  satisfying the definition; intuitively, the value assigned to any
  given x by the alleged function is that computed by a sufficiently
  large machine. Hence, the logic is consistent if the axiom defining
  f is added.

  See [o-p] for a discussion of the ordinals and how to compare two
  ordinals.

  The definitional principle permits the use of relations other than o<
  but they must first be proved to be well-founded on some domain.
  See [well-founded-relation]. Roughly put, alternative relations are
  shown well-founded by providing an order-preserving mapping from
  their domain into the ordinals. See [defun] for details on how to
  specify which well-founded relation is to be used.

  Function: <o<>

    (defun o< (x y)
           (declare (xargs :guard (and (o<g x) (o<g y))))
           (cond ((o-finp x) (or (o-infp y) (< x y)))
                 ((o-finp y) nil)
                 ((not (equal (o-first-expt x)
                              (o-first-expt y)))
                  (o< (o-first-expt x) (o-first-expt y)))
                 ((not (= (o-first-coeff x) (o-first-coeff y)))
                  (< (o-first-coeff x) (o-first-coeff y)))
                 (t (o< (o-rst x) (o-rst y)))))")
 (O<=
  (ORDINALS ACL2-BUILT-INS)
  "The less-than-or-equal relation for the ordinals

  o<= is a macro and (o<= x y) expands to (not (o< y x)). See [o<].")
 (O>
  (ORDINALS ACL2-BUILT-INS)
  "The greater-than relation for the ordinals

  O> is a macro and (o> x y) expands to (o< y x). See [o<].")
 (O>=
  (ORDINALS ACL2-BUILT-INS)
  "The greater-than-or-equal relation for the ordinals

  O>= is a macro and (o>= x y) expands to (not (o< x y)). See [o<].")
 (OBDD
  (BDD)
  "Ordered binary decision diagrams with rewriting

  See [bdd] for information on this topic.")
 (OBSERVATION
  (IO ACL2-BUILT-INS)
  "Print an observation

  Here is a typical application of observation.

    ACL2 !>(let ((ctx 'top-level)
                 (name 'foo))
             (observation ctx
                          \"Skipping processing of name ~x0.\"
                          name))

    ACL2 Observation in TOP-LEVEL:  Skipping processing of name FOO.
    <state>
    ACL2 !>

  Observation prints an initial ``ACL2 Observation...: '', and then
  prints the indicated message using formatted printing (see [fmt]).
  Notice in the example above that evaluation of a call of
  observation returns [state]. Indeed, observation is actually a
  macro whose expansion takes and returns the ACL2 [state]. A similar
  utility, observation-cw, is available that does not take or return
  state; rather, it returns nil as the suffix ``cw'' suggests that a
  ``comment window'' is the target of this printing, rather than the
  state. For example:

    ACL2 !>(let ((ctx 'top-level)
                 (name 'foo))
             (observation-cw ctx
                             \"Skipping processing of name ~x0.\"
                             name))

    ACL2 Observation in TOP-LEVEL:  Skipping processing of name FOO.
    NIL
    ACL2 !>

  Observation-cw takes exactly the same arguments as observation, but
  observation-cw does its printing in a so-called ``wormhole''; see
  [wormhole].

    General Forms:
    (observation    ctx fmt-string fmt-arg1 fmt-arg2 ... fmt-argk)
    (observation-cw ctx fmt-string fmt-arg1 fmt-arg2 ... fmt-argk)

  where ctx generally evaluates to a symbol (but see below), and
  fmt-string together with the fmt-argi are suitable for passing to
  [fmt]. Output begins and ends with a newline.

  Recall from the example above that the output from a call of
  observation (or observation-cw) begins with ``ACL2 Observation''
  and additional characters ending in ``: '', for example `` in
  TOP-LEVEL: '', followed by formatted output produced from
  fmt-string with the given fmt-argi. The characters printed
  immediately following the string ``ACL2 Observation'' depend on the
  value of ctx. If ctx is nil, nothing is printed. If ctx is a
  non-nil symbol, it is printed using [fmt] directive ~x. If ctx is a
  [cons] pair whose [car] is a symbol, formatted printing is applied
  to the string \"(~x0 ~x1 ...)\", where #\\0 and #\\1 are bound
  respectively to that car and cdr. Otherwise, ctx is printed using
  [fmt] directive ~@.

  We next discuss situations in which printing is inhibited for
  observation and observation-cw. No printing is done when
  observation is among the inhibited output types; see
  [set-inhibit-output-lst]. Moreover, no printing is done by
  observation during [include-book]. If you want to avoid printing
  from observation-cw during [include-book], then you need to manage
  that yourself.")
 (OBSERVATION-CW (POINTERS)
                 "See [observation].")
 (ODDP
  (NUMBERS ACL2-BUILT-INS)
  "Test whether an integer is odd

  (oddp x) is true if and only if x is odd, i.e., not even in the sense
  of [evenp].

  The [guard] for oddp requires its argument to be an integer.

  Oddp is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Function: <oddp>

    (defun oddp (x)
           (declare (xargs :guard (integerp x)))
           (not (evenp x)))")
 (OK-IF
  (BREAK-REWRITE)
  "Conditional exit from break-rewrite

    Example Form:
    :ok-if (null (brr@ :wonp))

    General Form:
    :ok-if expr

  where expr is a term involving no free variables other than state and
  returning one non-state result which is treated as Boolean. This
  form is intended to be executed from within break-rewrite (see
  [break-rewrite]).

  Consider first the simple situation that the (ok-if term) is a
  command read by break-rewrite. Then, if the term is non-nil,
  break-rewrite exits and otherwise it does not.

  More generally, ok-if returns an ACL2 error triple (mv erp val
  state). (See [ld] or see [programming-with-state] for more on error
  triples.) If any form being evaluated as a command by break-rewrite
  returns the triple returned by (ok-if term) then the effect of that
  form is to exit [break-rewrite] if term is non-nil. Thus, one might
  define a function or macro that returns the value of ok-if
  expressions on all outputs and thus create a convenient new way to
  exit break-rewrite.

  The exit test, term, generally uses brr@ to access context sensitive
  information about the attempted rule application. See [brr@]. Ok-if
  is useful inside of command sequences produced by break conditions.
  See [monitor]. :ok-if is most useful after an :eval command has
  caused break-rewrite to try to apply the rule because in the
  resulting break environment expr can access such things as whether
  the rule succeeded, if so, what term it produced, and if not, why.
  There is no need to use :ok-if before :evaling the rule since the
  same effects could be achieved with the break condition on the rule
  itself. Perhaps we should replace this concept with
  :eval-and-break-if? Time will tell.")
 (ON_THE_NAMING_OF_SUBGOALS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "On the Naming of Subgoals

  Subgoal *1/2 is the induction step from the scheme, obtained by
  instantiating the scheme with our conjecture.

  We number the cases ``backward'', so this is case ``2'' of the proof
  of ``*1''. We number them backward so you can look at a subgoal
  number and get an estimate for how close you are to the end.")
 (OOPS
  (HISTORY)
  "Undo a :u or :[ubt]

  The keyword [command] :oops will undo the most recent :[ubt] (or :u,
  which we here consider just another :[ubt]). A second :oops will
  undo the next most recent :[ubt], a third will undo the :[ubt]
  before that one, and a fourth :oops will return the logical [world]
  to its configuration before the first :oops.

  Consider the logical world (see [world]) that represents the current
  extension of the logic and ACL2's rules for dealing with it. The
  :[ubt] and :u [command]s ``roll back'' to some previous [world]
  (see [ubt]). Sometimes these [command]s are used to inadvertently
  undo useful work and user's wish they could ``undo the last undo.''
  That is the function provided by :oops.

  :Oops is best described in terms of an implementation. Imagine a ring
  of four [world]s and a marker (*) indicating the current ACL2
  [world]:

          *
        w0
      /    \\
    w3      w1
      \\    /
        w2

  This is called the ``kill ring'' and it is maintained as follows.
  When you execute an event the current [world] is extended and the
  kill ring is not otherwise affected. When you execute :[ubt] or :u,
  the current [world] marker is moved one step counterclockwise and
  that [world] in the ring is replaced by the result, say w0', of the
  :[ubt] or :u.

         w0
       /    \\
    *w0'     w1
       \\    /
         w2

  If you were to execute [events] at this point, w0' would be extended
  and no other changes would occur in the kill ring.

  When you execute :oops, the marker is moved one step clockwise. Thus
  the kill ring becomes

          *
        w0
      /    \\
    w0'     w1
      \\    /
        w2

  and the current ACL2 [world] is w0 once again. That is, :oops
  ``undoes'' the :[ubt] that produced w0' from w0. Similarly, a
  second :oops will move the marker to w1, undoing the undo that
  produced w0 from w1. A third :oops makes w2 the current [world].
  Note however that a fourth :oops restores us to the configuration
  previously displayed above in which w0' has the marker.

  In general, the kill ring contains the current [world] and the three
  most recent [world]s in which a :[ubt] or :u were done.

  While :[ubt] may appear to discard the information in the [events]
  undone, we can see that the [world] in which the :[ubt] occurred is
  still available. No information has been lost about that [world].
  But :[ubt] does discard information! :[Ubt] discards the
  information necessary to recover from the third most recent [ubt]!
  An :oops, on the other hand, discards no information, it just
  selects the next available [world] on the kill ring and doing
  enough :oopses will return you to your starting point.

  We can put this another way. You can freely type :oops and inspect
  the [world] that you thus obtain with :[pe], :[pc], and other
  [history] [command]s. You can repeat this as often as you wish
  without risking the permanent loss of any information. But you must
  be more careful typing :[ubt] or :u. While :oops makes :[ubt] seem
  ``safe'' because the most recent :[ubt] can always be undone,
  information is lost when you execute :[ubt].

  We note that :ubt and :u may remove compiled definitions (but note
  that in some Lisps, including CCL (OpenMCL) and SBCL, functions are
  always compiled). When the original world is restored using :oops,
  restored functions will not generally be compiled (except for Lisps
  as above), though the user can remedy this situation; see [comp].

  Finally, we note that our implementation of oops can use a
  significant amount of memory, because of the saving of old logical
  [world]s. Most users are unlikely to experience a memory problem,
  but if you do, then you may want to disable oops by evaluting
  (reset-kill-ring 0 state); see [reset-kill-ring].")
 (OPEN-INPUT-CHANNEL (POINTERS)
                     "See [io].")
 (OPEN-INPUT-CHANNEL-P (POINTERS)
                       "See [io].")
 (OPEN-OUTPUT-CHANNEL (POINTERS)
                      "See [io].")
 (OPEN-OUTPUT-CHANNEL!
  (IO ACL2-BUILT-INS)
  "When trust tags are needed to open output channels

  Use this function in place of open-output-channel if you want to open
  a channel for output at times this would otherwise be prohibited,
  for example during [make-event] expansion and [clause-processor]
  [hints]. If this functionality doesn't quite seem like what you
  need, take a look at the definition of open-output-channel! in
  axioms.lisp, specifically the binding of [state] global variable
  writes-okp. The following example, taken from (no longer available)
  community book books/hons-archive/hons-archive.lisp, illustrates
  the latter approach.

    (defmacro har-zip! (x filename &key sortp)
      \"See :doc hons-archive\"
      `(mv-let (erp val state)
               (progn!
                :state-global-bindings
                ((temp-touchable-vars t set-temp-touchable-vars))
                (state-global-let*
                 ((writes-okp t))
                 (let ((state (har-zip-fn ,x ,filename ,sortp state)))
                   (mv nil nil state))))
               (declare (ignore erp val))
               state))

  The book below illustrates the soundness loophole plugged in ACL2
  Version_3.2 related to file writes during book certification.

    ; The following example is adapted (with only very slight changes)
    ; from one written by Peter Dillinger.  It illustrates the prohibition
    ; against writing files enforced by with-output-channel during book
    ; certification (more specifically, during make-event expansion).

    ; This book certifies in ACL2 Version_3.1 before the fix discussed in the
    ; paragraph about it being ``possible to write files during book
    ; certification'' in :DOC NOTE-3-2.  The fix was actually made to ACL2
    ; function open-output-channel.

    ; After the fix, in order for certification to succeed one needs to do
    ; two things.  First, in raw lisp:
    ;   (push :after-writes-okp-fix *features*)
    ; Second, certify with this command:
    ;   (certify-book \"writes-okp\" 0 nil :ttags (:writes-okp))

    (in-package \"ACL2\")

    (local
     (defun write-objects-to-channel (obj-lst chan state)
       (declare (xargs :mode :program
                       :stobjs state
                       :guard (true-listp obj-lst)))
       (if (consp obj-lst)
           (pprogn (print-object$ (car obj-lst) chan state)
                   (write-objects-to-channel (cdr obj-lst) chan state)
                   state)
         state)))

    #+after-writes-okp-fix
    (defttag :writes-okp)

    (local
     (defun write-objects-to-file (obj-lst filename state)
       (declare (xargs :mode :program
                       :stobjs state
                       :guard (and (stringp filename)
                                   (true-listp obj-lst))))
       (mv-let (chan state)
               #-after-writes-okp-fix
               (open-output-channel filename :object state)
               #+after-writes-okp-fix
               (open-output-channel! filename :object state)
               (if chan
                   (pprogn (write-objects-to-channel obj-lst chan state)
                           (close-output-channel chan state)
                           (value :done))
                 (er soft 'write-object-to-file
                     \"Could not open for writing: ~x0\"
                     filename)))))

    (local
     (defconst *nil.lisp*
       '((in-package \"ACL2\")
         (defthm bad nil :rule-classes nil))))

    (local
     (defconst *nil.cert*
       '((IN-PACKAGE \"ACL2\")
         \"ACL2 Version 3.1\"
         :BEGIN-PORTCULLIS-CMDS
         :END-PORTCULLIS-CMDS
         NIL
         ((\"/home/peterd/test/nil.lisp\" \"nil\" \"nil\"
           ((:SKIPPED-PROOFSP) (:AXIOMSP) (:TTAGS)) . 134094174))
         62589544
         )))

    (local
     (make-event (er-progn
                  (write-objects-to-file *nil.lisp* \"nil.lisp\" state)
                  (write-objects-to-file *nil.cert* \"nil.cert\" state)
                  (value '(value-triple :invisible)))))

    (local (include-book
            \"nil\" :load-compiled-file nil))

    (defthm bad nil :rule-classes nil)")
 (OPEN-OUTPUT-CHANNEL-P (POINTERS)
                        "See [io].")
 (OPEN-TRACE-FILE
  (TRACE)
  "Redirect trace output to a file

    Example:
    (open-trace-file \"foo\") ; trace output will go to file foo

    General Form:
    (open-trace-file filename) ; trace output will go to file filename

  Output from [trace$] normally goes to the screen, i.e.,
  [standard-co]. But it can be redirected to a file as shown above.
  See [close-trace-file] for how to send trace output back to the
  screen.")
 (OPTIMIZE (POINTERS) "See [declare].")
 (OR
  (BASICS ACL2-BUILT-INS)
  "Disjunction

  Or is the macro for disjunctions. Or takes any number of arguments
  and returns the first that is non-nil, or nil if there is no
  non-nil element.

  In the ACL2 logic, the macroexpansion of (or x y) is an IF term that
  appears to cause x to be evaluated twice:

    ACL2 !>:trans (or x y)

    (IF X X Y)

    => *

    ACL2 !>

  If x were replaced by an expression whose evaluation takes a long
  time, then such an expansion would be ineffecient. However, don't
  be fooled: you can expect Common Lisp implementations to avoid this
  problem, say by generating a new variable, for example:

    ACL2 !>:q ; Exit the ACL2 loop and go into raw Common Lisp

    Exiting the ACL2 read-eval-print loop.  To re-enter, execute (LP).
    ACL2>(macroexpand '(or x y))

    (LET ((#:G5374 X)) (IF #:G5374 #:G5374 Y))
    T

    ACL2>

  Or is a Common Lisp macro. See any Common Lisp documentation for more
  information.

  Macro: <or>

    (defmacro or (&rest args)
              (or-macro args))

  Function: <or-macro>

    (defun or-macro (lst)
           (declare (xargs :guard t))
           (if (consp lst)
               (if (consp (cdr lst))
                   (list 'if
                         (car lst)
                         (car lst)
                         (or-macro (cdr lst)))
                   (car lst))
               nil))")
 (ORACLE-APPLY
  (PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "Call a function argument on the given list of arguments

  Oracle-apply evaluates its first argument to produce an ACL2 function
  symbol, FN, and then applies FN to the value of the second
  argument, which should be a true list whose length is the number of
  inputs for FN. The return value is of the form (mv call-result
  state).

    Examples:
    (oracle-apply 'cons '(3 4) state) = (mv '(3 . 4) <state>)
    (oracle-apply (car '(floor foo)) (list (+ 6 7) 5) state) = (mv 2 <state>)

  Also see [oracle-funcall] for a related utility.

  Note that calls of oracle-funcall and oracle-apply return two values:
  the result of the function application, and a modified [state].

  Oracle-apply is defined in :[logic] mode, and in fact is
  [guard]-verified. However, you will not be able to prove much about
  this function, because it is defined in the logic using the
  acl2-oracle field of the ACL2 [state]; see [read-ACL2-oracle]. The
  behavior described above --- i.e., making a function call --- takes
  place when the third argument is the ACL2 [state], so during proofs
  (when that can never happen), a term (oracle-apply 'fn '...) will
  not simplify using a call of fn.

  The guard for (oracle-apply fn args state) is the term
  (oracle-apply-guard fn args state), which we describe below.

  Function: <oracle-apply-guard>

    (defun oracle-apply-guard (fn args state)
           (declare (xargs :stobjs state))
           (and (f-boundp-global 'temp-touchable-fns
                                 state)
                (ev-fncall-w-guard fn args (w state)
                                   (f-get-global 'temp-touchable-fns
                                                 state))))

  where:

  Function: <ev-fncall-w-guard>

    (defun
     ev-fncall-w-guard
     (fn args wrld temp-touchable-fns)
     (declare (xargs :guard t))
     (and
      (plist-worldp wrld)
      (symbolp fn)
      (not (eq fn 'if))
      (not (assoc-eq fn *ttag-fns-and-macros*))
      (true-listp args)
      (let* ((formals (getpropc fn 'formals t wrld))
             (stobjs-in (stobjs-in fn wrld))
             (untouchable-fns (global-val 'untouchable-fns wrld)))
            (and (not (eq formals t))
                 (eql (len formals) (len args))
                 (true-listp untouchable-fns)
                 (or (not (member-eq fn untouchable-fns))
                     (and temp-touchable-fns
                          (or (eq t temp-touchable-fns)
                              (and (true-listp temp-touchable-fns)
                                   (member-eq fn temp-touchable-fns)))))
                 (not (and (null formals)
                           (getpropc fn 'stobj-function nil wrld)))
                 (true-listp stobjs-in)
                 (all-nils stobjs-in)))))

  These definitions say that fn is a function symbol other than if; it
  is not among the keys of the alist, *ttag-fns-and-macros*; and it
  does not take or create a [stobj] (see [defstobj]). Moreover, the
  second argument, args, must be a true list whose length is the
  number of formal parameters of fn. These requirements may be a bit
  onerous for guard verification of functions that call oracle-apply,
  but this is easily overcome by using [ec-call], for example as
  follows.

    (defun f (x state)
      (declare (xargs :stobjs state))
      (ec-call (oracle-apply 'car (list x) state)))

  This use of [ec-call] will, however, cause the [guard] of
  oracle-apply to be checked at runtime.

  If the [guard] for oracle-apply fails to hold but there is no guard
  violation because guard-checking is suppressed (see
  [set-guard-checking]), then the value returned is computed using
  its logical definition --- which, as mentioned above, uses the ACL2
  oracle --- and hence the value computed is unpredictable (indeed,
  the function argument will not actually be called).

  The value returned by oracle-apply is always a single value obtained
  by calling the executable counterpart of its function argument, as
  we now explain. Consider a form (oracle-apply fn args state) that
  evaluates to (mv VAL state'), where fn evaluates to the function
  symbol F. If F returns multiple values, then VAL is the first value
  computed by the call of F on the value of args. More precisely,
  oracle-apply actually invokes the executable counterpart of F;
  thus, if args is the expression (list x1 ... xk), then VAL is the
  same as (first) value returned by evaluating (ec-call (F x1 x2 ...
  xk)). See [ec-call].

  (Remark. If you identify a need for a version of oracle-apply to
  return multiple values, we can perhaps provide such a utility; feel
  free to contact the ACL2 implementors to request it.)

  A subtlety is that the evaluation takes place in so-called ``safe
  mode'', which avoids raw Lisp errors due to calls of :[program]
  mode functions. The use of safe mode is unlikely to be noticed if
  the value of the first argument of oracle-apply is a :[logic] mode
  function symbol. However, for :program mode functions with side
  effects due to special raw Lisp code, as may be the case for
  built-in functions or for custom functions defined with active
  trust tags (see [defttag]), use of the function [oracle-apply-raw]
  may be preferable. It is a much less restrictive version of
  oracle-apply, which avoids safe mode and (for example) can apply a
  function that has a definition in the host Lisp but not in the ACL2
  [world].

  Function: <oracle-apply>

    (defun oracle-apply (fn args state)
           (declare (xargs :stobjs state
                           :guard (oracle-apply-guard fn args state)))
           (mv-let (erp val state)
                   (read-acl2-oracle state)
                   (declare (ignore erp))
                   (mv (and (true-listp val)
                            (eq (car val) fn)
                            (equal (cadr val) args)
                            (caddr val))
                       state)))")
 (ORACLE-APPLY-RAW
  (PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "Call a function argument on the given list of arguments, no
  restrictions

  See [oracle-apply], as we assume familiarity with that function.
  Oracle-apply-raw is a variant of oracle-apply that is untouchable,
  and hence requires a trust tag to remove the untouchability (see
  [defttag] and see [remove-untouchable]). Unlike oracle-apply,
  oracle-apply-raw simply calls the raw Lisp function funcall to
  compute the result, without restriction: the specified :[guard] is
  t, the function itself is applied (not its executable counterpart),
  there is no restriction for untouchable functions or [return-last],
  and safe mode is not used. Thus, in general, oracle-apply-raw can
  be dangerous to use: any manner of error can occur!

  As is the case for [oracle-apply], the function symbol
  [oracle-apply-raw] is defined in :[logic] mode and is
  [guard]-verified. Oracle-apply-raw is logically defined to be
  [oracle-apply]; more precisely:

    (oracle-apply-raw fn args state)
    = {logical definition}
    (ec-call (oracle-apply fn args state))

  Function: <oracle-apply-raw>

    (defun oracle-apply-raw (fn args state)
           (declare (xargs :stobjs state :guard t))
           (ec-call (oracle-apply fn args state)))")
 (ORACLE-FUNCALL
  (PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "Call a function argument on the remaining arguments

  Oracle-funcall evaluates its first argument to produce an ACL2
  function symbol, and then applies that function symbol to the
  values of the rest of the arguments. The return value is of the
  form (mv call-result state).

    Examples:
    (oracle-funcall 'cons 3 4) ==> (mv '(3 . 4) <state>)
    (oracle-funcall (car '(floor foo bar)) (+ 6 7) 5) ==> (mv 2 <state>)

  Oracle-funcall is a macro; each of its calls macroexpands to a call
  of the related utility oracle-apply that takes the ACL2 [state] as
  an argument, as follows:

    (oracle-funcall fn x1 x2 .. xk)

  macroexpands to

    (oracle-apply fn (list x1 x2 .. xk) state)

  Note that calls of oracle-funcall and oracle-apply return two values:
  the result of the function application, and a modified [state].

  See [oracle-apply] for details, including information about [guard]s.

  Macro: <oracle-funcall>

    (defmacro oracle-funcall (fn &rest args)
              (cons 'oracle-apply
                    (cons fn
                          (cons (cons 'list args)
                                (cons 'state 'nil)))))")
 (ORDINALS
  (MISCELLANEOUS)
  "Ordinals in ACL2

  Ordinals are used in ACL2 for proving termination in the admission of
  recursive function definitions. For a proof that the ACL2 ordinals
  are well-founded, see [proof-of-well-foundedness].

  The representation of ordinals changed in ACL2 Version_2.8, and is
  due to Pete Manolios and Daron Vroon. They have also defined
  algorithms for ordinal arithmetic, created a library of theorems to
  reason about ordinal arithmetic, and written the rest of this
  documentation in order to explain this change. We thank them for
  their efforts. Although they have provided the implementation and
  even modified the community books as needed, we have looked over
  their work and are maintaining it (and this documentation); if
  there are any bugs, they should be considered ours (Matt Kaufmann
  and J Moore).

  A book is included for compatibility with the representation before
  Version_2.8. For books that contain events relying on the previous
  ordinal implementation, insert the following lines before the first
  such event:

    (include-book \"ordinals/e0-ordinal\" :dir :system)
    (set-well-founded-relation e0-ord-<)

  The new ordinal representation is based on a slightly different
  version of Cantor Normal Form than that used by the old ordinals.
  An advantage of the new representation is that it is exponentially
  more succinct than the old representation.

  While pre-Version_2.8 ACL2 versions provided built-in functions for
  checking if an object is an ordinal and for comparing two ordinals,
  they did not provide support for reasoning about and constructing
  ordinals. The community books directory books/ordinals provides
  such support. First, it provides efficient algorithms for ordinal
  arithmetic (including addition, subtraction, multiplication, and
  exponentiation). The algorithms and their complexity are described
  in the following paper.

    Manolios, Panagiotis & Vroon, Daron.
    Algorithms for ordinal arithmetic.
    Baader, Franz (ed),
    19th International Conference on Automated Deduction--CADE-19.
    Pages 243-257 of LNAI, vol. 2741.  Springer-Verlag.

  Second, the algorithms are mechanically verified and libraries of
  theorems which can be used to automate reasoning involving the
  ordinals are provided. For details, see the following paper.

    Manolios, Panagiotis & Vroon, Daron.
    Ordinal arithmetic in ACL2.
    Kaufmann, Matt, & Moore, J Strother (eds).
    Fourth International Workshop on the ACL2 Theorem
    Prover and Its Applications (ACL2-2003),
    July, 2003.
    See {http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/ | http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/}.

  We now describe aspects of the above mentioned books in more detail.

  The new ordering function is [o<] and the new ordinal recognizer is
  [o-p]. See also [natp], [posp], [o<=], [o>], [o>=], [o-first-expt],
  [o-first-coeff], [o-rst], [make-ord], [o-finp], and [o-infp].

  The old ordinals were based on the following formulation of Cantor
  Normal Form:

  For any ordinal, a < epsilon-0, there exist natural numbers p and n,
  and ordinals a1 >= a2 >= ... >= an > 0 such that a > a1 and a =
  w^(a1) + w^(a2) + ... + w^(an) + p.

  Thus, a predicate recognizing ACL2's old ordinals is given by the
  following definition.

    (defun e0-ordinalp (x)
      (if (consp x)
          (and (e0-ordinalp (car x))
               (not (equal (car x) 0))
               (e0-ordinalp (cdr x))
               (or (atom (cdr x))
                   (not (e0-ord-< (car x) (cadr x)))))
        (and (integerp x)
             (>= x 0))))

  The new representation is based on a corollary to the above theorem,
  which we get by the left distributive property of ordinal
  multiplication over ordinal addition. Thus, w^a + w^a = (w^a)2, w^a
  + w^a + w^a = (w^a)3 and so forth. The corollary is as follows:

  For any ordinal, a < epsilon-0, there exist natural numbers p and n,
  positive integers x1, x2, ..., xn and ordinals a1 > a2 > ... > an >
  0 such that a > a1 and a = w^(a1)x1 + w^(a2)x2 + ... + w^(an)xn +
  p.

  Instead of representing an ordinal as a list of non-increasing
  ordinals, we represent it as a list of exponent-coefficient pairs,
  such that the exponents are strictly decreasing (see [o-p]). Note
  that this representation is exponentially more efficient than the
  old representation.

  The ordinal arithmetic functions: o+, o-, o*, and o^ are defined in
  the ordinals library (in the community books directory
  books/ordinals). To use them, include the book
  ordinals-without-arithmetic or ordinals, depending on whether you
  want the arithmetic books included or not (ordinals includes
  community book books/arithmetic/top-with-meta). To use the old
  ordinals, include the book e0-ordinal and run the command
  (set-well-founded-relation e0-ord-<)

  The community book [arithmetic/natp-posp] is a book for reasoning
  about posp and natp. We recommend using this book if you have to
  reason about posp and natp. It is included in community book
  books/arithmetic/top, which is included in community book
  books/arithmetic/top-with-meta, which is included in community book
  books/ordinals/ordinals.

  If you have a good reason to use the old definitions of the ordinals
  (e.g., because of legacy code and theorems), then we provide a
  convenient way to do this. The book ordinal-isomorphism proves that
  the new ordinals are order-isomorphic to the old ordinals and thus
  theorems proved in one context can be directly transferred to the
  other. For an example of how to do this, look at the book defmul in
  the community books directory books/workshops/2000/ruiz/multiset.

  The ordinals books have been used to prove non-trivial theorems. For
  a good example, see the books in the community books directory
  books/workshops/2003/sustik/support, where Matyas Sustik proves
  Dickson's lemma.

  Finally, many termination proofs can be carried out with weaker
  orderings than the ordinals up to epsilon-0. For example, many
  inductive theorem provers only know that the lexicographic ordering
  on natural numbers is well-founded. The book lexicographic-ordering
  contains a definition of such an ordering l< whose arguments are
  either a list of natural numbers, or a natural number. In the book
  we prove that l< is well-founded (that is, we prove a
  :well-founded-relation [defthm] and provide a macro llist to
  simplify the generation of measure functions. We also show how to
  use l< to prove that the famous Ackermann function terminates.
  Finally, since l< does something reasonable with natural numbers,
  it gets along with [ACL2-count], the default measure chosen by
  ACL2.


Subtopics

  [Make-ord]
      A constructor for ordinals.

  [O-finp]
      Recognizes if an ordinal is finite

  [O-first-coeff]
      Returns the first coefficient of an ordinal

  [O-first-expt]
      The first exponent of an ordinal

  [O-infp]
      Recognizes if an ordinal is infinite

  [O-p]
      A recognizer for the ordinals up to epsilon-0

  [O-rst]
      Returns the rest of an infinite ordinal

  [O<]
      The well-founded less-than relation on ordinals up to epsilon-0

  [O<=]
      The less-than-or-equal relation for the ordinals

  [O>]
      The greater-than relation for the ordinals

  [O>=]
      The greater-than-or-equal relation for the ordinals

  [Proof-of-well-foundedness]
      A proof that [o<] is well-founded on [o-p]s")
 (OTF-FLG
  (DEFTHM THM XARGS)
  "Allow more than one initial subgoal to be pushed for induction

  The value of this flag is normally nil. If you want to prevent the
  theorem prover from abandoning its initial work upon pushing the
  second subgoal, set :otf-flg to t.

  Suppose you submit a conjecture to the theorem prover and the system
  splits it up into many subgoals. Any subgoal not proved by other
  methods is eventually set aside for an attempted induction proof.
  But upon setting aside the second such subgoal, the system chickens
  out and decides that rather than prove n>1 subgoals inductively, it
  will abandon its initial work and attempt induction on the
  originally submitted conjecture. The :otf-flg (Onward Thru the Fog)
  allows you to override this chickening out. When :otf-flg is t, the
  system will push all the initial subgoals and proceed to try to
  prove each, independently, by induction.

  Even when you don't expect induction to be used or to succeed,
  setting the :otf-flg is a good way to force the system to generate
  and display all the initial subgoals.

  For [defthm] and [thm], :otf-flg is a keyword argument that is a peer
  to :[rule-classes] and :[hints]. It may be supplied as in the
  following examples; also see [defthm].

    (thm (my-predicate x y) :rule-classes nil :otf-flg t)

    (defthm append-assoc
      (equal (append (append x y) z)
             (append x (append y z)))
      :hints ((\"Goal\" :induct t))
      :otf-flg t)

  The :otf-flg may be supplied to [defun] via the [xargs] declare
  option. When you supply an :otf-flg hint to defun, the flag is
  effective for the termination proofs and the guard proofs, if any.")
 (OTHER_REQUIREMENTS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Other Requirements

  [{IMAGE}]

  ACL2 is distributed on the Web without fee.

  There is a license agreement based on the 3-clause BSD license. See
  the file LICENSE in the ACL2 distribution.

  ACL2 currently runs on Unix, Linux, Windows, and Macintosh OS X
  operating systems.

  It can be built in any of the following Common Lisps:

    * Allegro Common Lisp,
    * CCL (formerly OpenMCL)
    * CLISP,
    * CMU Common Lisp,
    * GCL (Gnu Common Lisp),
    * LispWorks, and
    * SBCL (Steel Bank Common Lisp)

  [{IMAGE}]")
 (OUTPUT-TO-FILE
  (IO)
  "Redirecting output to a file

  For a general discussion of ACL2 input/output and of the ACL2
  read-eval-print loop, see [io] and see [ld] (respectively). Here we
  use an example to illustrate how to use some of the options
  provided by ld to redirect ACL2 output to a file, other than the
  printing of the prompt (which continues to go to the terminal).

  There are two ld specials that control output from the ld command:
  [proofs-co] for proof output and [standard-co] for other output.
  The following example shows how to use these to redirect output to
  a file \"tmp.out\". The following command opens a character output
  channel to to the file \"tmp.out\" and redirects proof output to that
  channel, i.e., to file \"tmp.out\".

    (mv-let (chan state)
            (open-output-channel \"tmp.out\" :character state)
            (set-proofs-co chan state))

  Next, we redirect standard output to that same channel.

    (set-standard-co (proofs-co state) state)

  Now we can load an input file, in this case file \"tmp.lisp\", and
  output will be redirected to file \"tmp.out\". (The use of
  :ld-pre-eval-print t is optional; see [ld].)

    (ld \"tmp.lisp\" :ld-pre-eval-print t)

  Having completed our load operation, we restore both proof output and
  standard output to the terminal, as follows.

    (set-standard-co *standard-co* state)
    (close-output-channel (proofs-co state) state)
    (set-proofs-co *standard-co* state)

  The following variant of the above example shows how to redirect
  output as above except without changing the global settings of the
  two [ld] specials, [proofs-co] and [standard-co]. This approach
  uses a notion of ``global variables'' stored in the ACL2 [state];
  see [assign] and see [@].

    (mv-let (chan state)
            (open-output-channel \"tmp.out\" :character state)
            (assign tmp-channel chan))
    (ld \"tmp.lisp\" :ld-pre-eval-print t
                   :proofs-co (@ tmp-channel)
                   :standard-co (@ tmp-channel))
    (close-output-channel (@ tmp-channel) state)")
 (OVERRIDE-HINTS
  (HINTS)
  "A list of hints given priority in every proof attempt

  This is an advanced feature, originally implemented to help system
  designers to create ``modes'' that control the way hints are
  supplied to the theorem prover. Please see [default-hints] for the
  much more usual way to install hints that may be applied by
  default.

    Examples:
    ACL2 !>(override-hints (w state))
    ((computed-hint-1 clause keyword-alist processor)
     (computed-hint-2 clause keyword-alist stable-under-simplificationp))

  Override-hints returns a list of computed hints (see
  [computed-hints]) which, unlike other computed hints, may mention
  the variable KEYWORD-ALIST.

  Before reading further, please see [hints-and-the-waterfall] to
  review the basics of how [hints] are applied during a proof. In
  particular, we assume familiarity with the notion of selecting a
  hint to be applied to the current goal. If there are
  override-hints, that hint selection is tentative, because if it
  reduced to nil after the application of override-hints, then that
  hint will be skipped and the attempt will continue for selecting an
  applicable hint. (Craft your override-hints so that :no-op t is
  returned in such cases instead of nil, if you don't want the hint
  to be skipped.) But we must explain what is meant by ``the
  application of override-hints'', and we do that now.

  Suppose that there are override-hints when a hint is selected for the
  current goal. That selected hint is a keyword-alist, which is an
  alternating list of hint keywords and their values, whose source is
  either an explicit hint (goal-name :key1 val1 ... :keyn valn) where
  the :keyi are allowed to be custom hint keywords (which are
  expanded away; see [custom-keyword-hints]), or else is the non-nil
  keyword-alist produced by evaluating a computed hint. Then the
  override-hints are applied to that keyword-alist as follows, one at
  a time, in order of their occurrence in the list of override-hints
  (as determined by the use of [set-override-hints] and
  [add-override-hints]). The first override-hint is evaluated, in the
  usual manner of evaluating computed hints but with the variable
  KEYWORD-ALIST bound to the above keyword-alist. That evaluation
  produces a result that should also be a keyword-alist, or else an
  error occurs. Any custom keyword hints are then eliminated from
  that keyword-alist. The resulting keyword-alist must not contain
  the :ERROR hint keyword and must not start with the
  :COMPUTED-HINT-REPLACEMENT keyword; otherwise an error occurs. With
  KEYWORD-ALIST bound to this result, the second override-hint is
  similarly evaluated. This process continues, and the keyword-alist
  returned by the final override-hint is the one used when processing
  the goal at hand. Except: If that keyword-alist is nil, then the
  next hint among the pending hints is tentatively selected and the
  process repeats, applying each override hint to that new tentative
  selection. Of course we might obtain nil again, in which case we
  tentatively select the next pending hint; and so on.

  If finally no hint is selected for the current goal, then
  KEYWORD-ALIST is bound to nil and the override-hints are applied as
  described above. But note that this final step is skipped if hint
  selection is being performed because stable-under-simplificationp
  has just become true, rather than at the top of the waterfall.
  (Otherwise the override-hints could easily keep firing uselessly
  yet putting us back at the top of the waterfall, with no change to
  the given goal, resulting in an infinite loop.)

  As mentioned above, the :COMPUTED-HINT-REPLACEMENT keyword is illegal
  for the value of an override-hint. But a selected hint may be a
  computed hint that evaluates to a keyword-alist beginning with
  prefix :COMPUTED-HINT-REPLACEMENT val. What value does ACL2 return
  for such a computed hint in the presence of override-hints? First,
  this prefix is stripped off before passing the resulting
  keyword-alist to the override-hints as described above. If the
  result of applying override-hints to that keyword-alist is not nil,
  then the prefix is put back on the front of that resulting
  keyword-alist after doing internal processing of the hint,
  including expansion of any custom keyword hints. Otherwise, the
  application of override-hints to the computed hint is nil, so this
  hint is not selected after all.

  WARNING: Unlike ordinary computed hints, a value of nil for an
  override-hint is not ignored. That is: When an ordinary computed
  hint evaluates to nil, it is deemed not to apply, and the next
  available hint is consulted. But when an override-hint is
  evaluated, the result is always supplied for the next binding of
  the variable KEYWORD-ALIST, even if that result is nil. If you want
  an override-hint to be a no-op, return as the expression the
  variable KEYWORD-ALIST rather than an expression that evaluates to
  nil.

  This feature can be used in order to implement a form of additive
  hints. Suppose for example that you want a hint that turns off
  generalization. A simple but inadequate solution is:

    (add-default-hints '((quote (:do-not '(generalize)))))

  The problem is that if there is any explicit hint supplied for a
  given goal, then it will be the one selected, and the above will be
  ignored. But suppose that the explicit hint supplied is of the form
  (\"Subgoal x.y\" :do-not '(fertilize)). What we would really want in
  this case is to generate the hint for the indicated subgoal that
  binds :do-not to a list indicating that both fertilization _and_
  generalization are disabled for that goal. A solution is to merge,
  for example as follows. (The use of [prog2$] and [cw] is of course
  optional, included here to provide debug printing.)

    (add-override-hints
     '((let* ((tmp (assoc-keyword :do-not KEYWORD-ALIST))
              (new-keyword-alist
               (cond (tmp (list* :do-not
                                 `(cons 'generalize ,(cadr tmp))
                                 (remove-keyword :do-not KEYWORD-ALIST)))
                     (t (list* :do-not ''(generalize) KEYWORD-ALIST)))))
         (prog2$ (cw \"New: ~x0~|\" new-keyword-alist)
                 new-keyword-alist))))

  REMARKS

  (1) The utilities [add-override-hints], [add-override-hints!],
  [set-override-hints], [set-override-hints!],
  [remove-override-hints], and [remove-override-hints!] are also
  available, in complete analogy to their default-hints versions.

  (2) The community book hints/basic-tests.lisp illustrates the use of
  override-hints and illuminates a number of corner cases; search in
  that file for ``Test override-hints.''

  (3) The community book hints/merge-hint.lisp provides support for
  merging hints that might be useful for writers of override-hint
  expressions (see the examples at the end of that file).

  (4) Override-hints are used in the processing of :BACKTRACK hints
  (see [hints]).


Subtopics

  [Add-override-hints]
      Add to the [override-hints]

  [Add-override-hints!]
      Add non-[local]ly to the [override-hints]

  [Remove-override-hints]
      Delete from the list of [override-hints]

  [Remove-override-hints!]
      Delete non-[local]ly from the list of [override-hints]

  [Set-override-hints]
      Set the [override-hints]

  [Set-override-hints!]
      Set the [override-hints] non-[local]ly")
 (OVERVIEW_OF_THE_EXPANSION_OF_ENDP_IN_THE_BASE_CASE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Overview of the Expansion of ENDP in the Base Case

  Subgoal *1/1 is the Base Case of our induction. It simplifies to
  Subgoal *1/1' by expanding the ENDP term in the hypothesis, just as
  we saw in the earlier proof of Subgoal *1/2.")
 (OVERVIEW_OF_THE_EXPANSION_OF_ENDP_IN_THE_INDUCTION_STEP
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Overview of the Expansion of ENDP in the Induction Step

  In this message the system is saying that Subgoal *1/2 has been
  rewritten to the Subgoal *1/2', by expanding the definition of
  endp. This is an example of simplification, one of the main proof
  techniques used by the theorem prover.

  Click [here] if you would like to step through the simplification of
  Subgoal *1/2.")
 (OVERVIEW_OF_THE_FINAL_SIMPLIFICATION_IN_THE_BASE_CASE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Overview of the Final Simplification in the Base Case

  The But is our signal that the goal is proved.

  Click [here] to step through the proof. It is very simple.")
 (OVERVIEW_OF_THE_PROOF_OF_A_TRIVIAL_CONSEQUENCE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Overview of the Proof of a Trivial Consequence

  [{IMAGE}]

  {IMAGE}

    ACL2 !>(defthm trivial-consequence
             (equal (app (app (app (app x1 x2) (app x3 x4)) (app x5 x6)) x7)
                    (app x1 (app (app x2 x3) (app (app x4 x5) (app x6 x7))))))

    [ACL2 Warning] [Subsume] in ( DEFTHM TRIVIAL-CONSEQUENCE ...):  The previously
    added rule ASSOCIATIVITY-OF-APP subsumes the newly proposed :REWRITE
    rule TRIVIAL-CONSEQUENCE, in the sense that the old rule rewrites a
    more general target.  Because the new rule will be tried first, it
    may nonetheless find application.

    By the simple :rewrite rule [ASSOCIATIVITY-OF-APP] we reduce the conjecture
    to

    Goal'
    (EQUAL (APP X1
                (APP X2
                     (APP X3 (APP X4 (APP X5 (APP X6 X7))))))
           (APP X1
                (APP X2
                     (APP X3 (APP X4 (APP X5 (APP X6 X7))))))).

    But we reduce the conjecture to T, by primitive type reasoning.

    Q.E.D.

    Summary
    Form:  ( DEFTHM TRIVIAL-CONSEQUENCE ...)
    Rules: ((:REWRITE ASSOCIATIVITY-OF-APP)
            (:FAKE-RUNE-FOR-TYPE-SET NIL))
    Warnings:  [Subsume]
    Time:  0.20 seconds (prove: 0.02, print: 0.00, other: 0.18)
     TRIVIAL-CONSEQUENCE

  {IMAGE}

  You might explore the links before moving on.

  [{IMAGE}]")
 (OVERVIEW_OF_THE_SIMPLIFICATION_OF_THE_BASE_CASE_TO_T
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Overview of the Simplification of the Base Case to T

  [{IMAGE}]

    [Subgoal *1/1]
    (IMPLIES (ENDP A)
             (EQUAL (APP (APP A B) C)
                    (APP A (APP B C)))).

    By the simple :definition ENDP we reduce the conjecture to

    Subgoal *1/1'
    (IMPLIES (NOT (CONSP A))
             (EQUAL (APP (APP A B) C)
                    (APP A (APP B C)))).

    [But] simplification reduces this to T, using the :definition APP and
    primitive type reasoning.

  [{IMAGE}]")
 (OVERVIEW_OF_THE_SIMPLIFICATION_OF_THE_INDUCTION_CONCLUSION
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Overview of the Simplification of the Induction Conclusion

  In this message the system is saying that Subgoal *1/2' has been
  rewritten to T using the rules noted. The word ``But'' at the
  beginning of the sentence is a signal that the goal has been
  proved.

  Click [here] to step through the proof of Subgoal *1/2'.")
 (OVERVIEW_OF_THE_SIMPLIFICATION_OF_THE_INDUCTION_STEP_TO_T
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Overview of the Simplification of the Induction Step to T

  [{IMAGE}]

    [Subgoal *1/2]
    (IMPLIES (AND (NOT (ENDP A))
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             (EQUAL (APP (APP A B) C)
                    (APP A (APP B C)))).

    By the simple :definition [ENDP] we reduce the conjecture to

    Subgoal *1/2'
    (IMPLIES (AND (CONSP A)
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             (EQUAL (APP (APP A B) C)
                    (APP A (APP B C)))).

    [But] simplification reduces this to T, using the :definition APP, the
    :rewrite rules CDR-CONS and CAR-CONS and primitive type reasoning.

  [{IMAGE}]")
 (P!
  (LD)
  "To pop up (at least) one level of ACL2's command loop

  Logically speaking, (p!) = nil. If you are already at the top level
  of the ACL2 command loop, rather than being in a subsidiary call of
  [ld], then the keyword then a call of (p!) returns nil and has no
  other effect.

  Otherwise, (p!) is evaluated inside a call of [ld] that was made
  inside ACL2's command loop. In that case, the current computation
  is aborted and treating as causing an error, and control returns to
  the superior call of ld.

  Here is a more detailed description of the effect of (p!) when not at
  the top level of the ACL2 command loop. The current call of LD is
  treated as though ld-error-action is :RETURN! (the default; here we
  ignore the case (:exit N)) and hence immediately returns control to
  the superior call of [ld]. If all calls of [ld] were made with the
  default ld-error-action of :RETURN!, then all superior calls of ld
  will then complete until you are back at top level of the ACL2
  loop. For more information, see [ld-error-action].

  If you are at an ACL2 prompt (as opposed to a raw Lisp break), then
  you may type :p! in place of (p!); see [keyword-commands].")
 (PACKAGE (POINTERS) "See [packages].")
 (PACKAGE-REINCARNATION-IMPORT-RESTRICTIONS
  (PACKAGES)
  "Re-defining undone [defpkg]s

  Suppose (defpkg \"pkg\" imports) is the most recently executed
  successful definition of \"pkg\" in this ACL2 session and that it has
  since been undone, as by :[ubt]. Any future attempt in this session
  to define \"pkg\" as a package must specify an identical imports
  list.

  The restriction stems from the need to implement the reinstallation
  of saved logical [world]s as in error recovery and the :[oops]
  [command]. Suppose that the new [defpkg] attempts to import some
  symbol, a::sym, not imported by the previous definition of \"pkg\".
  Because it was not imported in the original package, the symbol
  pkg::sym, different from a::sym, may well have been created and may
  well be used in some saved [world]s. Those saved [world]s are
  Common Lisp objects being held for you ``behind the scenes.'' In
  order to import a::sym into \"pkg\" now we would have to unintern
  pkg::sym, rendering those saved [world]s ill-formed. It is because
  of saved [world]s that we do not actually clear out a package when
  it is undone.

  At one point we thought it was sound to allow the new [defpkg] to
  import a subset of the old. But that is incorrect. Suppose the old
  definition of \"pkg\" imported a::sym but the new one does not.
  Suppose we allowed that and implemented it simply by setting the
  imports of \"pkg\" to the new subset. Then consider the conjecture
  (eq a::sym pkg::sym). This ought not be a theorem because we did
  not import a::sym into \"pkg\". But in fact in AKCL it is a theorem
  because pkg::sym is read as a::sym because of the old imports.")
 (PACKAGES
  (PROGRAMMING)
  "Collections of symbols that act as namespaces.

Packages are collections of symbols. They can be used to avoid name
conflicts when working on large ACL2 projects. See
[working-with-packages] for the best practices in setting up and
using packages.


Subtopics

  [*ACL2-exports*]
      Symbols that are often imported into new [packages] to provide easy
      access to ACL2 functionality.

  [*common-lisp-symbols-from-main-lisp-package*]
      Symbols that are often imported into new packages to provide easy
      access to Common Lisp functionality.

  [ACL2-user]
      A package the ACL2 user may prefer

  [Defpkg]
      Define a new symbol package

  [Hidden-death-package]
      Handling [defpkg] [events] that are [local]

  [Hidden-defpkg]
      Handling defpkg events that are local

  [In-package]
      Select current package

  [Intern]
      Create a new symbol in a given package

  [Intern$]
      Create a new symbol in a given package

  [Intern-in-package-of-symbol]
      Create a symbol with a given name

  [Managing-ACL2-packages]
      User-contributed documentation on packages

  [Package-reincarnation-import-restrictions]
      Re-defining undone [defpkg]s

  [Pkg-imports]
      List of symbols imported into a given package

  [Pkg-witness]
      Return a specific symbol in the indicated package

  [Sharp-bang-reader]
      Package prefix that is not restricted to symbols

  [Symbol-package-name]
      The name of the package of a symbol (a string)")
 (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS
  (ACL2-TUTORIAL)
  "Pages Written Especially for the Tours

  The ACL2 Home Page is generated from ACL2's online documentation
  strings. (How else could we achieve the total integration of ACL2's
  online documentation with the home page?) This page is just an
  artifact of the structure of our documentation strings: each string
  must belong to a ``major section'' of the documentation database.
  This page is not structured to be used by a person browsing via the
  Web. It contains, in an arbitrary order, the pages written
  specificially for the Web user.

  Furthermore, browsing the pages below as text, in particular using
  the ACL2 :DOC command, is often unsatisfying because because of the
  lack of support for displaying gif files or for going ``back'' to a
  node just visited. If you wish to look at the pages below, we
  strongly recommend that you do so via a HTML-based Web browser.
  Indeed, you should simply visit ACL2's Home Page and take one of
  the Tours.

  Generally, the topics listed above will not be of use to the ACL2
  user.


Subtopics

  [A_Flying_Tour_of_ACL2]
      A Flying Tour of ACL2

  [A_Sketch_of_How_the_Rewriter_Works]
      A Sketch of How the Rewriter Works

  [A_Tiny_Warning_Sign]
      A Tiny Warning Sign

  [A_Trivial_Proof]
      A Trivial Proof

  [A_Typical_State]
      A Typical State

  [A_Walking_Tour_of_ACL2]
      A Walking Tour of ACL2

  [ACL2_Characters]
      ACL2 Characters

  [ACL2_Conses_or_Ordered_Pairs]
      ACL2 Conses or Ordered Pairs

  [ACL2_Strings]
      ACL2 Strings

  [ACL2_Symbols]
      ACL2 Symbols

  [ACL2_System_Architecture]
      ACL2 System Architecture

  [ACL2_as_an_Interactive_Theorem_Prover]
      ACL2 as an Interactive Theorem Prover

  [ACL2_as_an_Interactive_Theorem_Prover_{cont}]
      ACL2 as an Interactive Theorem Prover (cont)

  [ACL2_is_an_Untyped_Language]
      ACL2 is an Untyped Language

  [About_Models]
      About Models

  [About_Types]
      About Types

  [About_the_ACL2_Home_Page]
      About the ACL2 Home Page

  [About_the_Admission_of_Recursive_Definitions]
      About the Admission of Recursive Definitions

  [About_the_Prompt]
      About the Prompt

  [An_Example_Common_Lisp_Function_Definition]
      An Example Common Lisp Function Definition

  [An_Example_of_ACL2_in_Use]
      An Example of ACL2 in Use

  [Analyzing_Common_Lisp_Models]
      Analyzing Common Lisp Models

  [Common_Lisp]
      Common Lisp

  [Common_Lisp_as_a_Modeling_Language]
      Common Lisp as a Modeling Language

  [Conversion]
      Conversion to Uppercase

  [Corroborating_Models]
      Corroborating Models

  [Evaluating_App_on_Sample_Input]
      Evaluating App on Sample Input

  [Flawed_Induction_Candidates_in_App_Example]
      Flawed Induction Candidates in App Example

  [Free_Variables_in_Top-Level_Input]
      Free Variables in Top-Level Input

  [Functions_for_Manipulating_these_Objects]
      Functions for Manipulating these Objects

  [Guards_in_ACL2]
      Guards

  [Guessing_the_Type_of_a_Newly_Admitted_Function]
      Guessing the Type of a Newly Admitted Function

  [Guiding_the_ACL2_Theorem_Prover]
      Guiding the ACL2 Theorem Prover

  [Hey_Wait!__Is_ACL2_Typed_or_Untyped{Q}]
      Hey Wait! Is ACL2 Typed or Untyped?

  [How_Long_Does_It_Take_to_Become_an_Effective_User{Q}]
      How Long Does It Take to Become an Effective User?

  [How_To_Find_Out_about_ACL2_Functions]
      How To Find Out about ACL2 Functions

  [How_To_Find_Out_about_ACL2_Functions_{cont}]
      How To Find Out about ACL2 Functions (cont)

  [Modeling_in_ACL2]
      Modeling in ACL2

  [Models_in_Engineering]
      Models in Engineering

  [Models_of_Computer_Hardware_and_Software]
      Models of Computer Hardware and Software

  [Name_the_Formula_Above]
      Name the Formula Above

  [Nontautological_Subgoals]
      Prover output omits some details

  [Numbers_in_ACL2]
      Numbers in ACL2

  [On_the_Naming_of_Subgoals]
      On the Naming of Subgoals

  [Other_Requirements]
      Other Requirements

  [Overview_of_the_Expansion_of_ENDP_in_the_Base_Case]
      Overview of the Expansion of ENDP in the Base Case

  [Overview_of_the_Expansion_of_ENDP_in_the_Induction_Step]
      Overview of the Expansion of ENDP in the Induction Step

  [Overview_of_the_Final_Simplification_in_the_Base_Case]
      Overview of the Final Simplification in the Base Case

  [Overview_of_the_Proof_of_a_Trivial_Consequence]
      Overview of the Proof of a Trivial Consequence

  [Overview_of_the_Simplification_of_the_Base_Case_to_T]
      Overview of the Simplification of the Base Case to T

  [Overview_of_the_Simplification_of_the_Induction_Conclusion]
      Overview of the Simplification of the Induction Conclusion

  [Overview_of_the_Simplification_of_the_Induction_Step_to_T]
      Overview of the Simplification of the Induction Step to T

  [Perhaps]
      Perhaps

  [Popping_out_of_an_Inductive_Proof]
      Popping out of an Inductive Proof

  [Proving_Theorems_about_Models]
      Proving Theorems about Models

  [Revisiting_the_Admission_of_App]
      Revisiting the Admission of App

  [Rewrite_Rules_are_Generated_from_DEFTHM_Events]
      Rewrite Rules are Generated from DEFTHM Events

  [Running_Models]
      Running Models

  [Subsumption_of_Induction_Candidates_in_App_Example]
      Subsumption of Induction Candidates in App Example

  [Suggested_Inductions_in_the_Associativity_of_App_Example]
      Suggested Inductions in the Associativity of App Example

  [Symbolic_Execution_of_Models]
      Symbolic Execution of Models

  [The_Admission_of_App]
      The Admission of App

  [The_Associativity_of_App]
      The Associativity of App

  [The_Base_Case_in_the_App_Example]
      The Base Case in the App Example

  [The_End_of_the_Flying_Tour]
      The End of the Flying Tour

  [The_End_of_the_Proof_of_the_Associativity_of_App]
      The End of the Proof of the Associativity of App

  [The_End_of_the_Walking_Tour]
      The End of the Walking Tour

  [The_Event_Summary]
      The Event Summary

  [The_Expansion_of_ENDP_in_the_Induction_Step_{Step_0}]
      The Expansion of ENDP in the Induction Step (Step 0)

  [The_Expansion_of_ENDP_in_the_Induction_Step_{Step_1}]
      The Expansion of ENDP in the Induction Step (Step 1)

  [The_Expansion_of_ENDP_in_the_Induction_Step_{Step_2}]
      The Expansion of ENDP in the Induction Step (Step 2)

  [The_Falling_Body_Model]
      The Falling Body Model

  [The_Final_Simplification_in_the_Base_Case_{Step_0}]
      The Final Simplification in the Base Case (Step 0)

  [The_Final_Simplification_in_the_Base_Case_{Step_1}]
      The Final Simplification in the Base Case (Step 1)

  [The_Final_Simplification_in_the_Base_Case_{Step_2}]
      The Final Simplification in the Base Case (Step 2)

  [The_Final_Simplification_in_the_Base_Case_{Step_3}]
      The Final Simplification in the Base Case (Step 3)

  [The_First_Application_of_the_Associativity_Rule]
      The First Application of the Associativity Rule

  [The_Induction_Scheme_Selected_for_the_App_Example]
      The Induction Scheme Selected for the App Example

  [The_Induction_Step_in_the_App_Example]
      The Induction Step in the App Example

  [The_Instantiation_of_the_Induction_Scheme]
      The Instantiation of the Induction Scheme

  [The_Justification_of_the_Induction_Scheme]
      The Justification of the Induction Scheme

  [The_Proof_of_the_Associativity_of_App]
      The Proof of the Associativity of App

  [The_Q.E.D._Message]
      The Q.E.D. Message

  [The_Rules_used_in_the_Associativity_of_App_Proof]
      The Rules used in the Associativity of App Proof

  [The_Simplification_of_the_Induction_Conclusion_{Step_0}]
      The Simplification of the Induction Conclusion (Step 0)

  [The_Simplification_of_the_Induction_Conclusion_{Step_1}]
      The Simplification of the Induction Conclusion (Step 1)

  [The_Simplification_of_the_Induction_Conclusion_{Step_10}]
      The Simplification of the Induction Conclusion (Step 10)

  [The_Simplification_of_the_Induction_Conclusion_{Step_11}]
      The Simplification of the Induction Conclusion (Step 11)

  [The_Simplification_of_the_Induction_Conclusion_{Step_12}]
      The Simplification of the Induction Conclusion (Step 12)

  [The_Simplification_of_the_Induction_Conclusion_{Step_2}]
      The Simplification of the Induction Conclusion (Step 2)

  [The_Simplification_of_the_Induction_Conclusion_{Step_3}]
      The Simplification of the Induction Conclusion (Step 3)

  [The_Simplification_of_the_Induction_Conclusion_{Step_4}]
      The Simplification of the Induction Conclusion (Step 4)

  [The_Simplification_of_the_Induction_Conclusion_{Step_5}]
      The Simplification of the Induction Conclusion (Step 5)

  [The_Simplification_of_the_Induction_Conclusion_{Step_6}]
      The Simplification of the Induction Conclusion (Step 6)

  [The_Simplification_of_the_Induction_Conclusion_{Step_7}]
      The Simplification of the Induction Conclusion (Step 7)

  [The_Simplification_of_the_Induction_Conclusion_{Step_8}]
      The Simplification of the Induction Conclusion (Step 8)

  [The_Simplification_of_the_Induction_Conclusion_{Step_9}]
      The Simplification of the Induction Conclusion (Step 9)

  [The_Summary_of_the_Proof_of_the_Trivial_Consequence]
      The Summary of the Proof of the Trivial Consequence

  [The_Theorem_that_App_is_Associative]
      The Theorem that App is Associative

  [The_Time_Taken_to_do_the_Associativity_of_App_Proof]
      The Time Taken to do the Associativity of App Proof

  [The_Tours]
      The Tours

  [The_WARNING_about_the_Trivial_Consequence]
      The WARNING about the Trivial Consequence

  [Undocumented_Topic]
      Undocumented Topic

  [Using_the_Associativity_of_App_to_Prove_a_Trivial_Consequence]
      Using the Associativity of App to Prove a Trivial Consequence

  [What_Is_ACL2{Q}]
      What Is ACL2?

  [What_is_Required_of_the_User{Q}]
      What is Required of the User?

  [What_is_a_Mathematical_Logic{Q}]
      What is a Mathematical Logic?

  [What_is_a_Mechanical_Theorem_Prover{Q}]
      What is a Mechanical Theorem Prover?

  [What_is_a_Mechanical_Theorem_Prover{Q}_{cont}]
      What is a Mechanical Theorem Prover? (cont)

  [You_Must_Think_about_the_Use_of_a_Formula_as_a_Rule]
      You Must Think about the Use of a Formula as a Rule")
 (PAIRLIS
  (LISTS ALISTS)
  "See [pairlis$]

  The Common Lisp language allows its pairlis function to construct an
  alist in any order! So we have to define our own version: See
  [pairlis$].")
 (PAIRLIS$
  (LISTS ALISTS ACL2-BUILT-INS)
  "Zipper together two lists

  The Common Lisp language allows its [pairlis] function to construct
  an alist in any order! So we have to define our own version,
  pairlis$. It returns the list of pairs obtained by [cons]ing
  together successive respective members of the given lists until the
  first list runs out. (Hence in particular, if the second argument
  is nil then each element of the first argument is paired with nil.)

  The [guard] for pairlis$ requires that its arguments are true lists.

  Function: <pairlis$>

    (defun pairlis$ (x y)
           (declare (xargs :guard (and (true-listp x) (true-listp y))))
           (mbe :logic (cond ((endp x) nil)
                             (t (cons (cons (car x) (car y))
                                      (pairlis$ (cdr x) (cdr y)))))
                :exec (pairlis$-tailrec x y nil)))")
 (PAND
  (PARALLEL-PROGRAMMING ACL2-BUILT-INS)
  "Parallel, Boolean version of [and]

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism],
  and see [parallel-programming], which has a disclaimer.

    Example Forms:
    (pand (subsetp-equal x y)
          (subsetp-equal y x))

    (pand (declare
           (granularity
            (and (> (length x) 500)
                 (> (length y) 500))))
           (subsetp-equal x y)
           (subsetp-equal y x))

    General Form:
    (pand (declare (granularity expr)) ; optional granularity declaration
          arg1 ... argN)

  where N >= 0 and each argi and expr are arbitrary terms.

  Pand evaluates its arguments in parallel. It returns a Boolean
  result: nil if any argument evaluates to nil, else t. Note that
  pand always returns a Boolean result, even though and can return a
  non-nil value other than t, namely the value of its last argument.
  (A moment's reflection will make it clear that in order for [por]
  to parallelize efficiently, it needs to return a Boolean value; so
  pand returns a Boolean value for consistency with [por].)

  Another difference between pand and [and] is that for a call of pand,
  even if an argument evaluates to nil, a subsequent argument may be
  evaluated. Consider the following example (where cw prints a
  string; see [cw]).

    (defun bar ()
      (pand (equal (make-list 100000) nil) ; evaluates to nil
            (cw \"hello world~%\")))

  When (bar) is evaluated, the above arguments of pand can execute in
  parallel, causing ``hello world'' to be printed to the terminal. If
  we had used and rather than pand, then since (equal (make-list
  100000) nil) evaluates to nil, the above call of [cw] would be
  avoided and no such printing would take place. Even with pand, such
  printing might not take place, depending on resources, timing of
  thread creation, and whether or not parallel execution is enabled
  (see [set-parallel-execution]).

  Note that unlike the case for [and], the definition of pand does not
  provide (consp x) as a [guard] to (car x) in the call of pand
  below:

    (defun h (x)
      (declare (xargs :guard t))
      (pand (consp x) (equal (car x) 'foo)))

  As a result, [guard] verification will fail for the above definition.
  If pand were replaced by and, then [guard] verification would
  succeed.

  See [parallelism-tutorial] for another example. Also see
  [parallelism-at-the-top-level] for restrictions on evaluating
  parallelism primitives from within the ACL2 top-level loop. Finally
  see [early-termination] to read how pand can offer more efficiency
  than [and] by avoiding evaluation of some of its arguments.")
 (PARALLEL (PARALLELISM)
           "Evaluating forms in parallel

  See [parallelism].")
 (PARALLEL-EXECUTION
  (PARALLEL-PROGRAMMING)
  "For ACL2(p): configure parallel execution

  See [set-parallel-execution] for how to configure parallel execution
  for calls of [plet], [pargs], [pand], [por] (but not
  [spec-mv-let]).")
 (PARALLEL-PROGRAMMING
  (PARALLELISM)
  "Parallel programming in ACL2(p)

  Here we document support for parallel programming in ACL2(p), an
  experimental extension of ACL2; also see [parallelism].

  One of ACL2's strengths lies in its ability to execute industrial
  models efficiently. The ACL2 source code provides an experimental
  parallel execution capability that can increase the speed of
  explicit evaluation, including simulator runs using such models,
  and it can also decrease the time required for proofs that make
  heavy use of the evaluation of ground terms.

  The parallelism primitives are [plet], [pargs], [pand], [por], and
  [spec-mv-let]. [Pand] and [por] terminate early when an argument is
  found to evaluate to nil or non-nil, respectively, thus potentially
  improving on the efficiency of lazy evaluation. [Spec-mv-let] is a
  modification of [mv-let] that supports speculative and parallel
  execution.

  Of the above five parallelism primitives, all but [spec-mv-let] allow
  for limiting parallel execution (spawning of so-called ``threads'')
  depending on resource availability. Specifically, the primitives
  allow specification of a size condition to control the
  [granularity] under which threads are allowed to spawn. You can use
  such [granularity] declarations in recursively-defined functions to
  implement data-dependent parallelism in their execution.

  We recommend that in order to learn to use the parallelism
  primitives, you begin by reading examples: see
  [parallelism-tutorial]. That section will direct you to further
  documentation topics.

  In addition to providing parallel programming primitives, ACL2(p)
  also provides the ability to execute the main ACL2 proof process in
  parallel. See [set-waterfall-parallelism] for further details.

  Disclaimer. The parallelism primitives have been designed for
  executing purely functional code, but some ACL2 functions do
  interesting things ``under the hood'' in order to achieve their
  effects. For example, [hons] primitives such as [hons-wash] may not
  have the intended effect when executed under the parallelism
  primitives.


Subtopics

  [Deflock]
      Define a wrapper macro that provides mutual exclusion in ACL2(p)

  [Early-termination]
      Early termination for [pand] and [por].

  [Error-triples-and-parallelism]
      How to avoid error triples in ACL2(p)

  [Granularity]
      Limit the amount of parallelism

  [Pand]
      Parallel, Boolean version of [and]

  [Parallel-execution]
      For ACL2(p): configure parallel execution

  [Parallelism-at-the-top-level]
      Parallel execution in the ACL2 top-level loop

  [Parallelism-performance]
      Performance issues for parallel execution

  [Parallelism-tutorial]
      A tutorial on how to use the parallelism library.

  [Pargs]
      Parallel evaluation of arguments in a function call

  [Plet]
      Parallel version of [let]

  [Por]
      Parallel, Boolean version of [or]

  [Spec-mv-let]
      Modification of [mv-let] supporting speculative and parallel
      execution

  [With-output-lock]
      Provides a mutual-exclusion mechanism for performing output in
      parallel")
 (PARALLEL-PROOF
  (PARALLELISM)
  "Parallel proof in ACL2(p)

  Here we document support for parallel proof in ACL2(p), an
  experimental extension of ACL2; also see [parallelism], and for
  parallel programming in particular, see [parallel-programming].


Subtopics

  [ACL2p-key-checkpoints]
      Key checkpoints in ACL2(p)

  [Default-total-parallelism-work-limit]
      For ACL2(p): returns the default value for global
      total-parallelism-work-limit

  [Parallel-pushing-of-subgoals-for-induction]
      Consequences of how parallelized proofs of subgoals are pushed for
      induction

  [Unsupported-waterfall-parallelism-features]
      Proof features not supported with waterfall-parallelism enabled

  [Waterfall-parallelism]
      For ACL2(p): configuring the parallel execution of the waterfall

  [Waterfall-printing]
      For ACL2(p): configuring the printing within the parallelized
      waterfall")
 (PARALLEL-PUSHING-OF-SUBGOALS-FOR-INDUCTION
  (PARALLEL-PROOF)
  "Consequences of how parallelized proofs of subgoals are pushed for
  induction

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].

  The following discussion, concerning the naming of subgoals pushed
  for proof by induction and the timeliness of aborting when two or
  more goals are pushed for proof by induction, only applies when
  waterfall parallelism is enabled (see [set-waterfall-parallelism]).

  When two sibling subgoals (e.g. 4.5 and 4.6) both push goals to be
  proved by induction (e.g., 4.6 pushes *1 and 4.5 pushes *2), a name
  is assigned to the second pushed subgoal (e.g., *2) as if the first
  push hasn't happened (e.g., *2 is mistakenly called *1). In such a
  case, we say what the name _could_ be. The following non-theorem
  illustrates how this works.

    (set-waterfall-parallelism :full)
    (thm (equal (append (car (cons x x)) y z) (append x x y)))

  There is another consequence of the way the parallelized waterfall
  pushes subgoals for proof by induction. Without waterfall
  parallelism enabled, ACL2 sometimes decides to abort instead of
  pushing a goal for later proof by induction, preferring instead to
  induct on the original conjecture. But with waterfall parallelism
  enabled, the prover no longer necessarily immediately aborts to
  prove the original conjecture. Suppose for example that sibling
  subgoals, Subgoal 4.6 and Subgoal 4.5, each push a subgoal for
  induction. If the waterfall is performing the proof of each of
  these subgoals in parallel, the proof will no longer abort
  immediately after the second push occurs, that is at Subgoal 4.5.
  As a result, the prover will continue through Subgoal 4.4, Subgoal
  4.3, and beyond. It is not until the results of combining the proof
  results of Subgoal 4.6 with the results from the remaining sibling
  subgoals (4.5, 4.4, and so on), that the proof attempt will abort
  and revert to prove the original conjecture by induction. This
  example illustrates behavior that is rather like the case that
  :[otf-flg] is t, in the sense that the abort does not happen
  immediately, but also rather like the case that :[otf-flg] is nil,
  in the sense that the abort does occur before getting to Subgoal 3.")
 (PARALLELISM
  (ACL2)
  "Experimental extension for parallel execution and proofs

  This documentation topic relates to an experimental extension of
  ACL2, ACL2(p), created initially by David L. Rager. See
  [compiling-ACL2p] for how to build an executable image that
  supports parallel execution. Also see community books directory
  books/parallel/ for examples. For a completely different sort of
  parallelism, at the system level, see [provisional-certification].

  IMPORTANT NOTE. We hope and expect that every evaluation result is
  correctly computed by ACL2(p), and that every formula proved using
  ACL2(p) is a theorem of the ACL2 logic (and in fact is provable
  using ACL2). However, we do not guarantee these properties. Since
  ACL2(p) is intended to be an aid in efficient evaluation and proof
  development, we focus less on ironclad soundness and more on
  providing an efficient and working implementation. Nevertheless, if
  you encounter a case where ACL2(p) computes an incorrect result, or
  produces a proof where ACL2 fails to do so (and this failure is not
  discussed in [unsupported-waterfall-parallelism-features]), please
  notify the implementors.

  The ACL2 source code provides experimental parallel execution and
  proof capabilities. For example, one of ACL2's strengths lies in
  its ability to simulate industrial models efficiently, and it can
  also decrease the time required for proofs about such models both
  by making use of parallel evaluation and by dispatching proof
  subgoals in parallel.

  While we aim to support Clozure Common Lisp (CCL), Steel Bank Common
  Lisp (SBCL), and Lispworks, SBCL and Lispworks both currently
  sometimes experience problems when evaluating the ACL2 proof
  process (the ``waterfall'') in parallel. Therefore, CCL is the
  recommend Lisp for anyone that wants to use parallelism and isn't
  working on fixing those problems.


Subtopics

  [Compiling-ACL2p]
      Compiling ACL2(p)

  [Cpu-core-count]
      The number of cpu cores

  [Parallel]
      Evaluating forms in parallel

  [Parallel-programming]
      Parallel programming in ACL2(p)

  [Parallel-proof]
      Parallel proof in ACL2(p)

  [Parallelism-build]
      Building an ACL2 executable with parallel execution enabled

  [Set-parallel-execution]
      For ACL2(p): enabling parallel execution for four parallelism
      primitives

  [Set-total-parallelism-work-limit]
      For ACL2(p): set thread limit for parallelism primitives

  [Set-total-parallelism-work-limit-error]
      For ACL2(p): control the action taken when the thread limit is
      exceeded

  [Set-waterfall-parallelism]
      For ACL2(p): configuring the parallel execution of the waterfall

  [Set-waterfall-parallelism-hacks-enabled]
      For ACL2(p): enable waterfall-parallelism hacks

  [Set-waterfall-parallelism-hacks-enabled!]
      For ACL2(p): enabling waterfall parallelism hacks

  [Set-waterfall-printing]
      For ACL2(p): configuring the printing that occurs within the
      parallelized waterfall

  [Unsupported-parallelism-features]
      ACL2 features not supported in ACL2(p)

  [Waterfall-parallelism-for-book-certification]
      For ACL2(p): using waterfall parallelism during book certification")
 (PARALLELISM-AT-THE-TOP-LEVEL
  (PARALLEL-PROGRAMMING)
  "Parallel execution in the ACL2 top-level loop

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].

  Calls of parallelism primitives made explicitly in the ACL2 top-level
  loop, as opposed to inside function bodies, will never cause
  parallel execution. Such calls will either execute with serial
  execution or will cause an error; see [set-parallel-execution]. For
  a way around this restriction, see [top-level].

  Consider for example the following call of [pargs] in the ACL2
  top-level loop. Instead of executing pargs, ACL2 macroexpands away
  this call, leaving us with serial execution of the arguments to the
  [cons] call, or else causes an error (see
  [set-parallel-execution]). If there is no error, then

    (pargs (cons (expensive-fn-1 4) (expensive-fn-2 5)))

  expands into:

    (cons (expensive-fn-1 4) (expensive-fn-2 5))

  One trivial way to enable parallel execution of a form is to surround
  it with a call to macro [top-level]. Consider the following
  example.

    (top-level (pargs (cons (expensive-fn-1 4) (expensive-fn-2 5))))

  Then in an executable image that supports parallel execution --- see
  [compiling-ACL2p] for instructions on how to build such an
  executable --- (expensive-fn-1 4) and (expensive-fn-2 5) can
  evaluate in parallel.

  A second way to enable parallel execution of a form is to place it
  inside a function body. For example, consider the following
  definition.

    (defun foo (x y)
      (pargs (cons (expensive-fn-1 x) (expensive-fn-2 y))))

  Then in an executable image that supports parallel execution,
  submission of the form (foo 4 5) can cause parallel execution of
  (expensive-fn-1 4) and (expensive-fn-2 5).

  Note that [guard]s need not be verified in order to obtain [parallel]
  execution. The only restrictions on parallel execution are to use
  an ACL2 executable supporting it, to avoid calling parallelism
  primitives directly in the top-level loop, to have sufficient
  resources (especially, threads) available, and to avoid explicitly
  disabling parallel execution (see [set-parallel-execution]).")
 (PARALLELISM-BUILD
  (PARALLELISM)
  "Building an ACL2 executable with parallel execution enabled

  See [compiling-ACL2p].")
 (PARALLELISM-PERFORMANCE
  (PARALLEL-PROGRAMMING)
  "Performance issues for parallel execution

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].

  See [granularity] for an important construct that limits the spawning
  of parallel computations, which can be important when a computation
  is too short-lived to warrant a separate thread.

  There are times in which parallelism provides no speedup because of
  garbage collection in the underlying Lisp implementation. The
  following example illustrates this phenomenon. If you change the
  [granularity] declaration so that the depth bound is 3, 4, or
  larger instead of 2, you may still find no speedup. In all cases
  you may find that parallelism results in a significantly greater
  time spent in garbage collection.

    (include-book \"finite-set-theory/osets/sets\" :dir :system)
    (defun set::pmergesort-exec (x depth)
        (declare (xargs :mode :program))
        (cond ((endp x) nil)
              ((endp (cdr x)) (set::insert (car x) nil))
              (t (mv-let (part1 part2)
                         (set::split-list x nil nil)
                         (pargs
                          (declare (granularity (< depth 2)))
                          (set::union (set::pmergesort-exec part1
                                                              (1+ depth))
                                       (set::pmergesort-exec part2
                                                              (1+ depth))))))))
    (defconst *x* (reverse (fromto 1 400000)))
    (time$ (length (set::pmergesort-exec *x* 0)))
    (set-parallel-execution nil)
    (time$ (length (set::pmergesort-exec *x* 0)))")
 (PARALLELISM-TUTORIAL
  (PARALLEL-PROGRAMMING)
  "A tutorial on how to use the parallelism library.

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].

  In this topic we introduce the ACL2 parallelism primitives using the
  example of a doubly-recursive Fibonacci function, whose basic
  definition is as follows. See [parallelism] for a very high-level
  summary of the parallelism capability described here, and see
  [compiling-ACL2p] for how to build an executable image that
  supports parallel execution. Here, we assume that such an
  executable is being used.

  Serial Fibonacci

    (defun fib (x)
      (declare (xargs :guard (natp x)))
      (cond ((or (zp x) (<= x 0)) 0)
            ((= x 1) 1)
            (t (+ (fib (- x 1)) (fib (- x 2))))))

  Introducing [Pargs]

  A simple way to introduce parallelism into this function definition
  is to wrap the addition expression with a call of [pargs], and the
  arguments to the addition will be computed in parallel whenever
  resources are available. As a result, we end up with a very similar
  and thus intuitive function definition. Note that we replaced [+]
  by [binary-+], since [pargs] expects a function call, not a macro
  call.

    (defun pfib (x)
      (declare (xargs :guard (natp x)))
      (cond ((or (zp x) (<= x 0)) 0)
            ((= x 1) 1)
            (t (pargs (binary-+ (pfib (- x 1))
                                (pfib (- x 2)))))))

  Introducing the Granularity Problem

  After you submit the above two versions of the Fibonacci function,
  test them with the following forms.

    (time$ (fib 10))
    (time$ (pfib 10))

  Now increase the argument by increments of 5 to 10 until you find
  your curiosity satisfied or your patience wearing thin. You can
  interrupt evaluation if necessary and return to the ACL2 loop. You
  will immediately notice that you have not increased execution
  speed, at least not by much, by introducing parallelism.

  First, consider the computation of (pfib 4). Assuming resources are
  available, (pfib 4) will create a thread for computing (pfib 3) and
  another thread for (pfib 2). It is easy to imagine that setting up
  each thread takes much longer than the entire computation of (fib
  4).

  Second, we must realize that if we have two threads available for
  computing (fib 10), then the evaluation of (fib 8) will probably
  complete before the evaluation of (fib 9). Once (fib 8) finishes,
  parallelism resources will become available for the next recursive
  call made on behalf of (fib 9). If for example that call is (fib
  3), we will waste a lot of cycles just handing work to the thread
  that does this relatively small computation. We need a way to
  ensure that parallelism resources are only used on problems of a
  \"large\" size. Ensuring that only \"large\" problems are spawned is
  called the ``granularity problem.''

  In summary: We want to tell ACL2 that it can evaluate the arguments
  of [pargs] in parallel only when the parameter of pfib is greater
  than some threshold. Our tests using CCL have suggested that 27 is
  a reasonable threshold.

  Explicit Programming for the Granularity Problem

  One way to avoid the granularity problem is to duplicate code as
  follows.

    (defun pfib (x)
      (declare (xargs :guard (natp x)))
      (cond ((or (zp x) (<= x 0)) 0)
            ((= x 1) 1)
            (t (if (> x 27) ; the granularity test
                   (pargs (binary-+ (pfib (- x 1))
                                    (pfib (- x 2))))
                 (binary-+ (pfib (- x 1))
                           (pfib (- x 2)))))))

  Duplicating code is fundamentally a bad design principle, because it
  can double the work for future maintenance. A ``granularity form''
  is an expression

    (declare (granularity <form>))

  that can allow threads to be spawned (without duplicating code)
  whenever the evaluation of <form> results in a non-nil value. It
  may be placed inside any call of a parallelism primitive, in a
  position documentated separately for each primitive. Here is a
  definition of pfib using this feature for a call of the parallelism
  primitive [pargs].

    (defun pfib (x)
      (declare (xargs :guard (natp x)))
      (cond ((or (zp x) (<= x 0)) 0)
            ((= x 1) 1)
            (t (pargs
                (declare (granularity (> x 27)))
                (binary-+ (pfib (- x 1))
                          (pfib (- x 2)))))))

  Test each version as follows (or substitute your own natural number
  for 33).

    (time$ (fib 33))
    (time$ (pfib 33))

  Another Granularity Issue Related to Thread Limitations

  Our implementation of parallelism primitives has the property that
  once a thread is assigned a computation, that assignment stays in
  effect until the computation is complete. In particular, if a
  thread encounters a parallelism primitive that spawns child
  threads, the parent thread stays assigned, waiting until the child
  computations complete before it can continue its own computation.
  In the meantime, the parent thread reduces the number of additional
  threads that Lisp can provide by 1, rather than being reassigned to
  do other work.

  How can this lack of reassignment affect the user? Consider, for
  example, the application of a recursive function to a long list.
  Imagine that this function is written so that the body contains a
  recursive call, for example as (pargs (process (car x)) (recur (cdr
  x))). Each such [pargs] call that spawns child work must wait for
  its children, one of which is the work of evaluating (recur (cdr
  x)), to complete. There is an ACL2 limit on how much pending work
  can be in the system, limiting the number of [pargs] calls that can
  result in parallel execution. For example, if the ACL2 limit is k
  and each call of [pargs] actually spawns threads for evaluating its
  arguments, then after k cdrs there will be no further parallel
  execution.

  Possible solutions may include reworking of algorithms (for example
  to be tree-based rather than list-based) or using appropriate
  granularity forms. We hope that future implementations will allow
  thread ``re-deployment'' in order to mitigate this problem. This
  problem applies to [plet], [pargs], [pand], [por], and
  [spec-mv-let].

  Introducing [Plet]

  We can use a [let] binding to compute the recursive calls of fib and
  then add the bound variables together, as follows.

    (defun fib (x)
      (declare (xargs :guard (natp x)))
      (cond ((or (zp x) (<= x 0)) 0)
            ((= x 1) 1)
            (t (let ((a (fib (- x 1)))
                     (b (fib (- x 2))))
                 (+ a b)))))

  By using the parallelism primitive [plet], we can introduce
  parallelism much as we did using [pargs], with an optional
  granularity form, as follows.

    (defun pfib (x)
      (declare (xargs :guard (natp x)))
      (cond ((or (zp x) (<= x 0)) 0)
            ((= x 1) 1)
            (t (plet
                (declare (granularity (> x 27)))
                ((a (pfib (- x 1)))
                 (b (pfib (- x 2))))
                (+ a b)))))

  Notice that this time, we were able to use + rather than being forced
  to use binary-+. Unlike [pargs], which expects a function call (not
  a macro call), [plet] allows macros at the top level of its body.

  Introducing [Pand] (By Way of a Tree Validation Example)

  Consider ``genetic trees'' that contains leaves of DNA elements, in
  the sense that each tip is one of the symbols A, G, C, or T. First
  we define the function valid-tip which recognizes whether a tip
  contains one of these symbols.

    (defun valid-tip (tip)
      (declare (xargs :guard t))
      (or (eq tip 'A)
          (eq tip 'G)
          (eq tip 'C)
          (eq tip 'T)))

  Now we define a function that traverses the tree, checking that every
  tip is valid.

    (defun valid-tree-serial (tree)
      (declare (xargs :guard t))
      (if (atom tree)
          (valid-tip tree)
        (and (valid-tree-serial (car tree))
             (valid-tree-serial (cdr tree)))))

  We also define a parallel version.

    (defun valid-tree-parallel (tree)
      (declare (xargs :guard t))
      (if (atom tree)
          (valid-tip tree)
        (pand (valid-tree-parallel (car tree))
              (valid-tree-parallel (cdr tree)))))

  Before we can time the functions, we need to create test trees. We
  have found that test trees need to be approximately 1 gigabyte
  before we clearly see speedup, and we make them asymmetric to
  demonstrate the ability of our implementation to adapt to
  asymmetric data. We can create the trees with the execution of the
  following forms.

    (defun make-valid-binary-tree (x)
      (declare (xargs :mode :program))
      (if (< x 0)
          (cons (cons 'C 'G) (cons 'A 'T))
        (cons (make-valid-binary-tree (- x 2)) ; 2 to make asymmetric
              (make-valid-binary-tree (- x 1)))))

    (defconst *valid-tree* (make-valid-binary-tree 30)) ; takes awhile
    (defconst *invalid-tree* (cons *valid-tree* nil)) ; nil is invalid tip

  We can time our functions with the forms:

    (time$ (valid-tree-serial *valid-tree*))
    (time$ (valid-tree-parallel *valid-tree*))

  Unfortunately, the serial version runs faster than the parallelism
  version; however, there is more to this story.

  Demonstrating Early Termination with an Invalid Tree

  Now observe this magic:

    (time$ (valid-tree-serial   *invalid-tree*))
    (time$ (valid-tree-parallel *invalid-tree*))

  The serial version took awhile, while the parallel version finished
  almost immediately. The test for validation was split into testing
  the [car] and the [cdr] of the *invalid-tree* root, and since the
  cdr was equal to nil, its test returned immediately. This immediate
  return quickly interrupted the computation associated with the car,
  and returned the result.

  Granularity with [Pand]

  We can also define a parallel version with a granularity form:

    (defun valid-tree-parallel (tree depth)
      (declare (xargs :guard (natp depth)))
      (if (atom tree)
          (valid-tip tree)
        (pand
         (declare (granularity (< depth 5)))
         (valid-tree-parallel (car tree) (1+ depth))
         (valid-tree-parallel (cdr tree) (1+ depth)))))

  We can test this form by executing our previous forms. You will
  probably find some speedup on a machine with several cores
  available, but more speedup can likely be obtained with an
  expensive test on the leaves in place of valid-tip.

    (time$ (valid-tree-serial   *valid-tree*))
    (time$ (valid-tree-parallel *valid-tree* 0))

  Introducing [Por]

  [Por] can be used in the same way as [pand], but with early
  termination occurring when an argument evaluates to a non-nil
  value, in which case the value returned is t. Finally, [por] also
  supports the use of a [granularity] form.")
 (PARGS
  (PARALLEL-PROGRAMMING ACL2-BUILT-INS)
  "Parallel evaluation of arguments in a function call

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism],
  and see [parallel-programming], which has a disclaimer.

    Example Forms:
    (pargs (binary-+ (fibonacci (- x 1)) (fibonacci (- x 2))))

    (pargs (declare (granularity (> x 35)))
           (binary-+ (fibonacci (- x 1)) (fibonacci (- x 2))))

    General Form:
    (pargs (declare (granularity expr)) ; optional granularity declaration
           (f arg1 ... argN))

  where N >= 0 and each argi and expr are arbitrary terms. Logically,
  pargs is just the identity macro, in the sense that the above forms
  can logically be replaced by (f arg1 ... argN). However, this pargs
  form may parallelize the evaluation of arguments arg1 through argN
  before applying function f to those results. If the above
  [granularity] declaration is present, then its expression (expr
  above) is first evaluated, and if the result is nil, then such
  parallelism is avoided. Even if parallelism is not thus avoided,
  parallelism may be limited by available resources.

  Since macros can change expressions in unexpected ways, it is illegal
  to call pargs on a form that is a macro call. To parallelize
  computation of arguments to a macro, see [plet].

  See [parallelism-at-the-top-level] for restrictions on evaluating
  parallelism primitives from within the ACL2 top-level loop.")
 (PATHNAME
  (BOOKS-REFERENCE)
  "Introduction to filename conventions in ACL2

  The notion of pathname objects from Common Lisp is not supported in
  ACL2, nor is the function pathname. However, ACL2 supports file
  operations, using conventions for naming files based on those of
  the Unix (trademark of AT&T) operating system, so that the
  character / is used to terminate directory names. Some file names
  are ``absolute'' (complete) descriptions of a file or directory;
  others are ``relative'' to the current working directory or to the
  connected book directory (see [cbd]). We emphasize that even for
  users of Windows-based systems or Macintosh computers, ACL2 file
  names are in the Unix style. We will call these ACL2 pathnames,
  often omitting the ``ACL2.''

  Pathnames starting with the directory separator (/) or the tilde
  character (~) are absolute pathnames. All other pathnames are
  relative pathnames. An exception is in the Microsoft Windows
  operating system, where it is illegal for the pathname to start
  with a tilde character but the drive may be included, e.g.,
  \"c:/home/smith/acl2/book-1.lisp\". In fact, the drive must be
  included in the portcullis of a book; see [portcullis]. Note also
  that some host Common Lisps will not support pathnames starting
  with \"~\", for example ~smith, though ACL2 will generally support
  those starting with \"~/\" regardless of the host Common Lisp.

  Consider the following examples. The filename string

    \"/home/smith/acl2/book-1.lisp\"

  is an absolute pathname, with top-level directory \"home\", under that
  the directory \"smith\" and then the directory \"acl2\", and finally,
  within that directory the file \"book-1.lisp\". If the connected book
  directory is \"/home/smith/\" (see [cbd]), then the filename string
  above also corresponds to the relative filename string
  \"acl2/book1.lisp\".

  Finally, we note that (on non-Windows systems) the pathname \"~\" and
  pathnames starting with \"~/\" are illegal in books being certified.
  Otherwise, a subsidiary [include-book] form would have a different
  meaning at certification time than at a later time when the
  certified book is included by a different user.")
 (PATTERNED-CONGRUENCE
  (RULE-CLASSES)
  "Removing restrictions on classic [congruence] rules

  This topic assumes familiarity with the basics of congruence rules;
  see [congruence].

  We begin our discussion by showing some patterned congruence rules
  and using them to illustrate some terminology.

    Example forms:

    ; ``Shallow'' patterned congruence rule:
    (implies (e1 y1 y2)
             (e2 (f1 3 y1 (cons x x))
                 (f1 3 y2 (cons x x))))

    ; ``Deep'' patterned congruence rule:
    (implies (e1 y1 y2)
             (e2 (mv-nth 1 (foo x y1 z))
                 (mv-nth 1 (foo x y2 z))))

    ; ``Deep'' patterned congruence rule:
    (implies (e1 y1 y2)
             (e2 (mv-nth 1 (foo x (g y1) z))
                 (mv-nth 1 (foo x (g y2) z))))

  In the example forms above, e1 and e2 are known equivalence
  relations, which (as for classic congruence rules) we call the
  ``inner'' and ``outer'' equivalences. The examples above are not
  classic, because the ``function symbol'' of the rule --- f1 in the
  first example, mv-nth in the second and third examples --- is not
  being applied to distinct variables. The first example is called
  ``shallow'' because the ``variable'' of the rule, y1, is a
  top-level argument of the ``lhs'' of the rule, which is the first
  call of f1; the others do not have this property, as y1 is buried
  under further function calls.

  We invite you to browse the community book
  demos/patterned-congruences.lisp, which provides several examples
  of patterned congruence rules and their use, as well as several
  examples of formulas that are illegal as patterned congruence rules
  for various reasons.

  We now define the class of patterned congruence rules. The general
  form of a patterned congruence rule is

    (implies (equiv1 x y)
             (equiv2 lhs rhs)),

  where the rule is not classic (see [congruence]) and the following
  conditions hold. Equiv1 and equiv2 are known equivalence relations,
  which (as in the classic case) we call the ``inner'' and ``outer''
  equivalences, respectively. The terms lhs and rhs are function
  calls, and we call these the lhs and rhs of the rule, respectively.
  The variable x occurs in lhs and the variable y occurs in rhs.
  These must be the only occurrences of x and y in either lhs or rhs,
  and rhs must be the result of substituting y for x in lhs. None of
  the following may occur as a function symbol of lhs (or,
  equivalently, rhs): if, implies, equal, or a [lambda].

  Patterned congruence rules are used, much like classic congruence
  rules, by the ACL2 rewriter to determine which equivalence
  relations to maintain as it dives into a term. Recall (see
  [congruence]) that if it suffices for the rewriter to maintain e2
  when rewriting a term, then it suffices to maintain e1 when
  rewriting an argument of that term provided there is an applicable
  congruence rule with outer equivalence e2 and inner equivalence e1.
  An analogous principle holds for patterned congruence rules, which
  by the way consider refinements of the outer equivalence just as is
  done by classic congruence rules. But there is a new wrinkle
  because the lhs of a patterned congruence rule is a function call
  that can have non-variable arguments. Consider the following
  events.

    (defun e1 (x y)
      (equal x y))

    (defequiv e1)

    (defun f10 (x)
      (list 3 x x))

    (defun f11 (x y)
      (declare (ignore y))
      x)

    (defthm e1-implies-iff-f11-cong-2
      (implies (e1 y1 y2)
               (iff (f11 (f10 x) y1)
                    (f11 (f10 x) y2)))
      :rule-classes (:congruence))

    (in-theory (disable f11 (:t f11) e1))

  The following proof fails, because the indicated call of f10 expands
  before the rewriter is applied to b2 --- otherwise b2 would rewrite
  to b1 because (e1 b1 b2) is known in that context and by the rule
  above, it suffices to maintain e1 when rewriting b2.

    (thm (implies (e1 b1 b2)
                  (iff (f11 (f10 a)
                            b1)
                       (f11 (f10 a) ; expands before b2 is rewritten
                            b2))))

  On the other hand, the following succeeds because the rewrite
  discussed above does indeed take place when the indicated call of
  f10 does not expand.

    (thm
      (implies (e1 b1 b2)
               (iff (f11 (f10 a)
                         b1)
                    (f11 (f10 a) ; does not expand
                         b2)))
      :hints ((\"Goal\" :in-theory (disable f10))))

  This inherent sequentiality of matching is important for soundness,
  as is illustrated by examples using the function some-consp in the
  aforementioned community book, demos/patterned-congruences.lisp.

  The example above illustrates the following point: as the rewriter
  dives into a term, then when matching is attempted using a
  patterned congruence rule, rewriting has already taken place to the
  left of the current subterm. By contrast, note that this pass
  through the rewriter will not yet have completed rewriting of terms
  to the right of the current subterm when matching a patterned
  congruence rule.

  Patterned congruence rules are used primarily during the process of
  rewriting. In particular, unlike classic congruence rules, they are
  not used to do equality substitution at the goal level. The
  simplest way to understand this point may be with the following
  trivial example.

    (defstub foo (x y z) t)

    (thm (implies (equal u (* a b))
                  (foo u u b)))

  The theorem fails, of course, but what is interesting is that ACL2
  simplifies it by replacing the variable u by the term (* a b)
  throughout the goal and then dropping the equality, to produce the
  following goal.

    (FOO (* A B) (* A B) B)

  This sort of substitution can also be made when equal is replaced by
  a known equivalence relation, if a classic congruence rule for foo
  justifies the substitution. But that is not the case for our
  implementation of patterned congruence rules.

  The discussion above is intended to suffice for effective use of
  patterned congruence rules. If you are interested in their
  implementation, we invite you to read the long comment entitled
  ``Essay on Patterned Congruences and Equivalences'' in ACL2 source
  file rewrite.lisp.")
 (PBT
  (HISTORY)
  "Print the [command]s back through a [command] descriptor

    Examples:
    :pbt :max      ; print back through the most recent command
    :pbt :x        ; print back through the most recent command
    :pbt fn        ; print back through the introduction of fn
    :pbt 5         ; print back through the fifth command executed
    :pbt (:x -4)   ; print back through the most recent five commands

  See [command-descriptor].

  Pbt takes one argument, a [command] descriptor, and prints the
  [command]s from :max (aka :x) through the one described. See
  [command-descriptor] for a description of what a [command]
  descriptor is. See [pc] for a description of the format used to
  display [command]s. Pbt will print the [command]s that [ubt] will
  undo.")
 (PC
  (HISTORY)
  "Print the [command] described by a [command] descriptor

    Examples:
    :pc 3    ; print the third command executed
    :pc :max ; print the most recent command
    :pc :x   ; print the most recent command
    :pc fn   ; print the command that introduced fn

  See [command-descriptor].

  Pc takes one argument, a [command] descriptor, and prints the
  [command] identified by that descriptor, doing so in full unless
  the [ld-evisc-tuple] is non-nil, in which case it abbreviates using
  that evisc-tuple; see [evisc-tuple]. See [command-descriptor]. For
  example:

    ACL2 !>:pc foo
     LVd     52 (DEFUN FOO (X) X)

  Pc always prints a space first, followed by four (possibly blank)
  [characters] (``LVd'' above) explained below. Then pc prints the
  [command] number, a number uniquely identifying the [command]'s
  position in the sequence of [command]s since the beginning of the
  user's session. Finally, the [command] itself is printed.

  While pc always prints a space first, some [history] [command]s, for
  example :[pcs] and :[pe], use the first column of output to delimit
  a region of [command]s or to point to a particular event (perhaps
  as modified using [extend-pe-table]) within a [command].

  For example, :pcs 52 54 will print something like

    /LVd     52 (DEFUN FOO (X) X)
     LV      53 (DEFUN BAR (X) (CONS X X))
    \\        54 (DEFTHM FOO-BAR (EQUAL (CAR (BAR X)) (FOO X)))
              : ...
            127 (DEFUN LATEST (X) X)

  Here, the two slash [characters] in the first column are intended to
  suggest a bracket delimiting [command]s 52 through 54. The last
  [command] printed by [pcs] is always the most recent [command],
  i.e., the [command] at :here, and is separated from the rest of the
  display by an elipsis if some [command]s are omitted.

  Similarly, the :[pe] [command] will print a particular event (perhaps
  as modified using [extend-pe-table]) within a [command] block and
  will indicate that event by printing a ``[>]'' in the first column.
  The symbol is intended to be an arrow pointing at the event in
  question.

  For example, :[pe] true-listp-app might print:

             1 (INCLUDE-BOOK \"list-book\")
                \\
    >           (DEFTHM TRUE-LISTP-APP
                        (EQUAL (TRUE-LISTP (APP A B)) (TRUE-LISTP B)))

  using the arrow to indicate the event itself. The slash printed to
  connect the [command], [include-book], with the event, [defthm], is
  intended to suggest a tree branch indicating that the event is
  inferior to (and part of) the [command].

  The mysterious [characters] sometimes preceding a [command] have the
  following interpretations. The first two have to do with the
  function symbols introduced by the [command] and are blank if no
  symbols were introduced.

  At any time we can classify our function symbols into disjoint sets,
  which we will here name with [characters]. The ``P'' functions are
  those in :[program] mode. The ``L'' functions are those in :[logic]
  mode whose [guard]s have not been verified. The ``V'' functions are
  those in :[logic] mode whose [guard]s have been verified. You may
  also see the use of (lower-case) ``v'' to indicate functions
  introduced by [encapsulate]. Note that [verify-termination] and
  [verify-guards] cause function symbols to be reclassified. If a
  [command] introduces function symbols then the first mysterious
  character indicates the class of the symbols at the time of
  introduction and the second character indicates the current class
  of the symbols (if the current class is different from the
  introductory class).

  Thus, the display

    PLd     52 (DEFUN FOO (X) X)

  tells us that [command] 52 introduced a :[program] function but that
  some [command] after 52 changed its mode to :[logic] and that the
  [guard]s of foo have not been verified. That is, foo's termination
  has been verified even though it was not verified as part of the
  [command] that introduced foo. Had a subsequent [command] verified
  the [guard]s of foo, the display would contain a V where the L is.

  The display

    P d     52 (DEFUN FOO (X) X)

  indicates that foo was introduced in :[program] mode and still is in
  that mode.

  The third character indicates the [enable]d/[disable]d status of the
  [rune]s introduced by the [command]. If the status character is
  blank then all the [rune]s (if any) introduced are [enable]d. If
  the status character is ``D'' then some [rune]s were introduced and
  they are all [disable]d. If the status character is ``d'' then at
  least one, but not all, of the [rune]s introduced is [disable]d.
  Thus, in the display

    L d     52 (DEFUN FOO (X) X)

  we see that some [rune] introduced by [command] 52 is [disable]d. As
  noted in the documentation for [rune], a [defun] [command]
  introduces many [rune]s, e.g., the axiomatic definition rule,
  (:definition fn), the executable counterpart rule,
  (:executable-counterpart fn), and [type-prescription]s,
  (:type-prescription fn). The display above does not say which of
  the [rune]s based on foo is [disable]d, but it does tell us one of
  them is; see [disabledp] for how to obtain the disabled runes for a
  given function symbol.

  Remark for users of the [break-rewrite] utility. Inside the :[brr]
  loop, the status character shows whether rules are disabled at the
  current point of the proof that is currently underway, rather than
  whether rules are disabled globally. For example, if you break
  while the prover is working on Subgoal 3, and the [hints] supplied
  for the proof specify (\"Subgoal 3\" :in-theory (disable foo)), then
  regardless of whether or not rules associated with foo are enabled
  globally, the status character indicates whether they are enabled
  while processing Subgoal 3.

  Finally, a fourth character is printed, indicating whether functions
  are [memoize]d. A symbol may be memoized if it is a function symbol
  that is not constrained (i.e., introduced by [defchoose] or in the
  [signature] of an [encapsulate] event). If the command introduces
  no symbol that may be memoized, then a space is printed. Otherwise,
  if every memoizable symbol is memoized, an ``M'' is printed.
  Otherwise, an ``m'' is printed.")
 (PCB
  (HISTORY)
  "Print the [command] block described by a [command] descriptor

    Examples:
    :pcb :max ; print the most recent command block
    :pcb :x   ; print the most recent command block
    :pcb fn   ; print the command block that introduced fn
    :pcb 5    ; print the fifth command block

  See [command-descriptor].

  Pcb takes one argument, a [command] descriptor, and prints in an
  abbreviated format the [command] block of the [command] described.
  See [command-descriptor] for details of [command] descriptors. See
  [pc] for description of the format in which [command]s are
  displayed. The [command] block of a [command] consists of the
  [command] itself and all of the [events] it created. If the
  [command] created a single event and that event is in fact the
  [command] (i.e., if the [command] typed was just an event such as a
  [defun] or [defthm] rather than a macro that expanded to some event
  forms), then pcb just prints the [command] (unless the event is
  replaced using [extend-pe-table]). Pcb sketches [command] and all
  of the [events] it created, rather than printing them fully. If you
  wish to see just the [command], in its entirety, use [pc]. If you
  wish to see one of the [events] within the block, in its entirety,
  use [pe]. If you wish to see the [command] sketched and all of the
  [events] it created, in their entirety, use [pcb!].")
 (PCB!
  (HISTORY)
  "Print in full the [command] block described by a [command] descriptor

    Examples:
    :pcb! :max ; print the most recent command block
    :pcb! :x   ; print the most recent command block
    :pcb! fn   ; print the command block that introduced fn
    :pcb! 5    ; print the fifth command block

  See [command-descriptor].

  Pcb! takes one argument, a [command] descriptor, and prints the
  [command] block of the [command] described. Unlike [pcb], pcb!
  prints the event forms in full (see [pcb] for details) --- unless
  the [ld-evisc-tuple] is non-nil, in which case it abbreviates using
  that evisc-tuple; see [evisc-tuple].")
 (PCS
  (HISTORY)
  "Print the sequence of [command]s between two [command] descriptors

    Examples:
    :pcs 1 5              ; print commands 1 through 5
    :pcs 5 1              ; same as above
    :pcs :x (:x -3)       ; print the 3 most recently executed commands
    :pcs fn assoc-of-fn   ; print the commands between the one that introduced
                          ; fn and the one that introduced assoc-of-fn

  Pcs takes two arguments, both of which are [command] descriptors, and
  prints the [command]s between them with [pc]. The order of the two
  descriptors is irrelevant. See [command-descriptor] for a
  description of [command] descriptors. See [pc] for a description of
  the format in which [command]s are displayed.

  For a related utility that simply returns a sequence of commands, see
  [get-command-sequence].")
 (PE
  (HISTORY)
  "Print the events named by a logical name

    Example:
    :pe fn   ; sketches the command that introduced fn and
             ; prints in full the event within it that created fn.

  See [logical-name].

  Pe takes one argument, a logical name, and prints the event
  corresponding to the name, doing so in full unless the
  [ld-evisc-tuple] is non-nil, in which case it abbreviates using
  that evisc-tuple; see [evisc-tuple]. Pe also sketches the [command]
  responsible for that event if the [command] is different from the
  event itself. See [pc] for a description of the format used to
  display a [command]. To remind you that the event is inferior to
  the [command], i.e., you can only undo the entire [command], not
  just the event, the event is indented slightly from the [command]
  and a slash (meant to suggest a tree branch) connects them.

  If the given logical name corresponds to more than one event, then
  :pe will print the above information for every such event. Here is
  an example of such behavior.

    ACL2 !>:pe nth
          -4270  (ENCAPSULATE NIL ...)
                 \\
    >V            (VERIFY-TERMINATION NTH)

    Additional events for the logical name NTH:
     PV   -4949  (DEFUN NTH (N L)
                        \"Documentation available via :doc\"
                        (DECLARE (XARGS :GUARD (AND (INTEGERP N)
                                                    (>= N 0)
                                                    (TRUE-LISTP L))))
                        (IF (ENDP L)
                            NIL
                            (IF (ZP N)
                                (CAR L)
                                (NTH (- N 1) (CDR L)))))
    ACL2 !>

  If you prefer to see only the formula for the given name, for example
  if it is part of a large [mutual-recursion], see [pf].

  See [extend-pe-table] for a way to specify a form to be printed in
  place of the actual event. To avoid such replacement, see [pe!].")
 (PE!
  (HISTORY)
  "Print events as with [pe] but ignoring the [pe-table]

  This alternative to [pe] temporarily clears the [pe-table] so that
  original [events] are displayed.")
 (PE-TABLE (POINTERS)
           "See [extend-pe-table].")
 (PEEK-CHAR$ (POINTERS) "See [io].")
 (PERHAPS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Perhaps

  The theorem prover's proof is printed in real time. At the time it
  prints ``Perhaps'' it does not know the proof will succeed.")
 (PF
  (HISTORY)
  "Print the formula corresponding to the given name

    Examples:
    :pf (:definition fn) ; prints the definition of fn as an equality
    :pf fn               ; same as above

    :pf (:rewrite foo)   ; prints the statement of the rewrite rule foo
    :pf foo              ; same as above

  pf takes one argument, an event name or a [rune], and prints the
  formula associated with name. If the argument is the name of a
  macro associated with a function name by [macro-aliases-table],
  then the function name is used as the argument.")
 (PKG-IMPORTS
  (PACKAGES)
  "List of symbols imported into a given package

  Completion Axiom (completion-of-pkg-imports):

    (equal (pkg-imports x)
           (if (stringp x)
               (pkg-imports x)
             nil))

  [Guard] for (pkg-imports x):

    (stringp x)

  (Pkg-imports pkg) returns a duplicate-free list of all symbols
  imported into pkg, which should be the name of a package known to
  ACL2. For example, suppose \"MY-PKG\" was created by

    (defpkg \"MY-PKG\" '(ACL2::ABC LISP::CAR)).

  Then (pkg-imports \"MY-PKG\") equals the list (ACL2::ABC LISP::CAR).

  If pkg is not a string, then (pkg-imports pkg) is nil. If pkg is a
  string but not the name of a package known to ACL2, then the value
  of the form (pkg-imports pkg) is unspecified, and it evaluation
  will fail to yield a value. By ``the symbols imported into pkg'' we
  mean the symbols imported into pkg by the [defpkg] event that
  introduced pkg. There are no imports for built-in packages except
  for the \"ACL2\" package, which imports the symbols in the list value
  of the constant *common-lisp-symbols-from-main-lisp-package*. In
  particular, this is the case for the \"COMMON-LISP\" package. Users
  familiar with Common Lisp may find this surprising, since in actual
  Common Lisp implementations it is often the case that many symbols
  in that package are imported from other packages. However, ACL2
  treats all symbols in the constant
  *common-lisp-symbols-from-main-lisp-package* as having a
  [symbol-package-name] of \"COMMON-LISP\", as though they were not
  imported. ACL2 admits a symbol imported into in the \"COMMON-LISP\"
  package only if it belongs to that list: any attempt to read any
  other symbol imported into the \"COMMON-LISP\" package, or to produce
  such a symbol with [intern$] or [intern-in-package-of-symbol], will
  cause an error.

  The following axioms formalize properties of pkg-imports discussed
  above (use :[pe] to view them).

    symbol-package-name-intern-in-package-of-symbol
    intern-in-package-of-symbol-is-identity
    symbol-listp-pkg-imports
    no-duplicatesp-pkg-imports
    completion-of-pkg-imports")
 (PKG-WITNESS
  (PACKAGES ACL2-BUILT-INS)
  "Return a specific symbol in the indicated package

  For any string pkg that names a package currently known to ACL2,
  (pkg-witness pkg) is a symbol in that package whose [symbol-name]
  is the value of constant *pkg-witness-name*. Logically, this is the
  case even if the package is not currently known to ACL2. However,
  if pkg-witness is called on a string that is not the name of a
  package known to ACL2, a hard Lisp error will result.

  (Pkg-witness pkg) has a guard of (and (stringp pkg) (not (equal pkg
  \"\"))). If pkg is not a string, then (pkg-witness pkg) is equal to
  (pkg-witness \"ACL2\")")
 (PL
  (HISTORY)
  "Print the rules for the given name or term

    Examples:
    :pl foo     ; prints rules that rewrite some call of foo
    :pl (+ x y) ; prints rules that rewrite (+ x y)

  Also see [pl2], which restricts output to rules that you specify for
  a given term.

  Pl takes one argument, which should be a symbol or a term.

  First suppose that the argument is a symbol. Then it should be either
  a function symbol or else a macro alias for a function symbol (see
  [macro-aliases-table]), which is treated as the corresponding
  function symbol. In this case :pl displays rules that apply to
  terms whose top function symbol is the one specified, specifically,
  rules of class :[rewrite], :[definition], :[meta], :[linear],
  :[type-prescription], :[forward-chaining], :[elim], and
  :[induction].

  Otherwise the argument should be a term (in user syntax, so that for
  example macros are permitted). In this case, :pl displays the
  :[rewrite], :[definition], and :meta rules that rewrite the
  specified term, followed by the applicable :[type-prescription]
  rules. Each rule is displayed with additional information, such as
  the hypotheses that remain after applying some simple techniques to
  discharge them that are likely to apply in any context. Note that
  for :[meta] rules, only those are displayed that meet two
  conditions: the application of the metafunction returns a term
  different from the input term, and if there is a hypothesis
  metafunction then it also returns a term. (A subtlety: In the case
  of extended metafunctions (see [extended-metafunctions]), a trivial
  metafunction context is used for the application of the
  metafunction.)

  Note that some rule classes are not handled by :pl. In particular, if
  you want to see all :[clause-processor] rules, issue the command
  :print-clause-processor-rules, and for trusted clause-processors,
  (table trusted-clause-processor-table); see [clause-processor] and
  see [define-trusted-clause-processor].")
 (PL2
  (HISTORY)
  "Print rule(s) for the given form

    Examples:
    :pl2 (+ x y) nil ; prints rules that apply to (+ x y)
    :pl2 (+ x y) foo ; prints rules named foo that apply to (+ x y)
    :pl2 (+ x y) (:rewrite foo) ; if the rule with rune (:rewrite foo) applies
                                ;   to (+ x y), then print it
    :pl2 (+ x y) (:type-prescription foo)
                                ; as above, but for the indicated
                                ;   type-prescription rule

  Pl2 takes two arguments. The first is a term. The second is either
  nil or a ``rule-id'' that is either a symbol or a [rune]. The
  result is to print rules of class :[rewrite], :[definition], :meta,
  :[linear], and :[type-prescription] that apply to the given term.
  Indeed, :pl2 prints exactly what is printed by applying :[pl] to
  the first argument --- see [pl] --- except that if the second
  argument is not nil then it is used to filter the rules printed, as
  follows.

      If the rule-id is a symbol, then only rules whose name is that symbol
      will be printed.

      If the rule-id is a [rune], then at most one rule will be printed:
      the rule named by that rune (if the rule would be printed by
      :[pl]).")
 (PLET
  (PARALLEL-PROGRAMMING ACL2-BUILT-INS)
  "Parallel version of [let]

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism],
  and see [parallel-programming], which has a disclaimer.

    Example Forms:
    (plet ((a (fibonacci (- x 1)))
           (b (fibonacci (- x 2))))
          (+ a b))

    (plet (declare (granularity (> x 35)))
          ((a (fibonacci (- x 1)))
           (b (fibonacci (- x 2))))
          (+ a b))

    General Form:
    (plet (declare (granularity expr)) ; optional granularity declaration
          ((var1 val1)
           ...
           (varN valN))
          (declare ...) ... (declare ...) ; optional declarations
          body)

  The syntax of plet is identical to the syntax of [let], except that
  plet permits an optional granularity declaration in the first
  argument position; see [granularity]. In the logic a call of plet
  macroexpands to the corresponding call of [let], where the
  granularity declaration (if any) is dropped.

  Plet cause the evaluation of each vali above to be done in parallel
  before processing the body. If the above [granularity] declaration
  is present, then its expression (expr above) is first evaluated,
  and if the result is nil, then such parallelism is avoided. Even if
  parallelism is not thus avoided, parallelism may be limited by
  available resources.

  See [parallelism-at-the-top-level] for restrictions on evaluating
  parallelism primitives from within the ACL2 top-level loop.")
 (PLUSP
  (NUMBERS ACL2-BUILT-INS)
  "Test whether a number is positive

  (Plusp x) is true if and only if x > 0.

  The [guard] of plusp requires its argument to be a rational ([real],
  in ACL2(r)) number.

  Plusp is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <plusp>

    (defun plusp (x)
           (declare (xargs :guard (real/rationalp x)))
           (> x 0))")
 (POINTERS
  (DOCUMENTATION)
  "Links pointing to relevant documentation topics


Subtopics

  [&allow-other-keys]
      See [macro-args].

  [&body]
      See [macro-args].

  [&key]
      See [macro-args].

  [&optional]
      See [macro-args].

  [&rest]
      See [macro-args].

  [&whole]
      See [macro-args].

  [Accumulated-persistence-oops]
      See [accumulated-persistence].

  [ACL2s]
      See [ACL2-sedan].

  [Add-ld-keyword-alias]
      See [ld-keyword-aliases].

  [Add-ld-keyword-alias!]
      See [ld-keyword-aliases].

  [Add-to-set-eq]
      See [add-to-set].

  [Add-to-set-eql]
      See [add-to-set].

  [Add-to-set-equal]
      See [add-to-set].

  [Apropos]
      See [finding-documentation].

  [Assoc-eq]
      See [assoc].

  [Assoc-equal]
      See [assoc].

  [Backchain-limit-rw]
      See [hints] for keyword :backchain-limit-rw.

  [Backtrack]
      See [hints] for keyword :backtrack.

  [Book-makefiles]
      See [books-certification].

  [By]
      See [hints] for keyword :by.

  [Cases]
      See [hints] for keyword :cases.

  [Certifying-books]
      See [books-certification].

  [Check-invariant-risk]
      See [set-check-invariant-risk].

  [Close-input-channel]
      See [io].

  [Close-output-channel]
      See [io].

  [Default-verify-guards-eagerness]
      See [set-verify-guards-eagerness].

  [Delete-assoc-eq]
      See [delete-assoc].

  [Delete-assoc-equal]
      See [delete-assoc].

  [Do-not-induct]
      See [hints] for keyword :do-not-induct.

  [Dynamically-monitor-rewrites]
      See [dmr].

  [Expand]
      See [hints] for keyword :expand.

  [External-format]
      See [character-encoding].

  [Fake-rune]
      See [rune].

  [Fast-alist]
      See [fast-alists].

  [Fms!-to-string]
      See [printing-to-strings].

  [Fms-to-string]
      See [printing-to-strings].

  [Fmt!-to-string]
      See [printing-to-strings].

  [Fmt-to-string]
      See [printing-to-strings].

  [Fmt1!-to-string]
      See [printing-to-strings].

  [Fmt1-to-string]
      See [printing-to-strings].

  [Fncall-term]
      See [meta-extract].

  [Forced]
      See [force].

  [Gcs]
      See [get-command-sequence].

  [Get-check-invariant-risk]
      See [set-check-invariant-risk].

  [Get-output-stream-string$]
      See [io].

  [Getting-started]
      See [ACL2-tutorial].

  [Guard-hints]
      See [xargs] for keyword :guard-hints.

  [Guard-msg-table]
      See [set-guard-msg].

  [Guards]
      See [guard].

  [Hands-off]
      See [hints] for keyword :hands-off.

  [If-intro]
      See [splitter].

  [Ignorable]
      See [declare].

  [Ignore]
      See [declare].

  [Immed-forced]
      See [splitter].

  [Induct]
      See [hints] for keyword :induct.

  [Inline]
      See [defun-inline].

  [Intersection-eq]
      See [intersection$].

  [Intersection-equal]
      See [intersection$].

  [Intersectp-eq]
      See [intersectp].

  [Intersectp-equal]
      See [intersectp].

  [Iprint]
      See [set-iprint].

  [Iprinting]
      See [set-iprint].

  [Keyword]
      See [keywordp].

  [Lambda]
      See [term].

  [Measure]
      See [xargs] for keyword :measure.

  [Measure-theorem]
      See [termination-theorem].

  [Member-eq]
      See [member].

  [Member-equal]
      See [member].

  [Memoization]
      See [memoize].

  [Meta-extract-contextual-fact]
      See [meta-extract].

  [Meta-extract-formula]
      See [meta-extract].

  [Meta-extract-global-fact]
      See [meta-extract].

  [Meta-extract-global-fact+]
      See [meta-extract].

  [Meta-extract-rw+-term]
      See [meta-extract].

  [Mode]
      See [xargs] for keyword :mode.

  [No-duplicatesp-eq]
      See [no-duplicatesp].

  [No-duplicatesp-equal]
      See [no-duplicatesp].

  [No-thanks]
      See [hints] for keyword :no-thanks.

  [Non-executable]
      See [xargs] for keyword :non-executable.

  [Nonlinearp]
      See [hints] for keyword :nonlinearp.

  [Normalize]
      See [xargs] for keyword :normalize.

  [Observation-cw]
      See [observation].

  [Open-input-channel]
      See [io].

  [Open-input-channel-p]
      See [io].

  [Open-output-channel]
      See [io].

  [Open-output-channel-p]
      See [io].

  [Optimize]
      See [declare].

  [Package]
      See [packages].

  [Pe-table]
      See [extend-pe-table].

  [Peek-char$]
      See [io].

  [Position-eq]
      See [position].

  [Position-equal]
      See [position].

  [Print-object$]
      See [io].

  [Print-summary-user]
      See [finalize-event-user].

  [Proof-supporters-alist]
      See [dead-events].

  [Put-assoc-eq]
      See [put-assoc].

  [Put-assoc-eql]
      See [put-assoc].

  [Put-assoc-equal]
      See [put-assoc].

  [Rassoc-eq]
      See [rassoc].

  [Rassoc-equal]
      See [rassoc].

  [Read-byte$]
      See [io].

  [Read-char$]
      See [io].

  [Read-object]
      See [io].

  [Regression]
      See [books-certification].

  [Remove-duplicates-eq]
      See [remove-duplicates].

  [Remove-duplicates-equal]
      See [remove-duplicates].

  [Remove-eq]
      See [remove].

  [Remove-equal]
      See [remove].

  [Remove1-eq]
      See [remove1].

  [Remove1-equal]
      See [remove1].

  [Reorder]
      See [hints] for keyword :reorder.

  [Reset-print-control]
      See [print-control].

  [Restrict]
      See [hints] for keyword :restrict.

  [Rw-cache]
      See [set-rw-cache-state].

  [Saving-and-restoring]
      See [save-exec].

  [Set-accumulated-persistence]
      See [accumulated-persistence].

  [Set-difference-eq]
      See [set-difference$].

  [Set-difference-equal]
      See [set-difference$].

  [Set-ld-keyword-aliases]
      See [ld-keyword-aliases].

  [Set-ld-keyword-aliases!]
      See [ld-keyword-aliases].

  [Set-ld-redefinition-action]
      See [ld-redefinition-action].

  [Set-ld-skip-proofs]
      See [ld-skip-proofsp].

  [Set-ld-skip-proofsp]
      See [ld-skip-proofsp].

  [Set-let*-abstraction]
      See [set-let*-abstractionp].

  [Set-non-linear]
      See [set-non-linearp].

  [Set-print-circle]
      See [print-control].

  [Set-print-escape]
      See [print-control].

  [Set-print-length]
      See [print-control].

  [Set-print-level]
      See [print-control].

  [Set-print-lines]
      See [print-control].

  [Set-print-readably]
      See [print-control].

  [Set-print-right-margin]
      See [print-control].

  [Set-ruler-extenders]
      See [ruler-extenders].

  [Set-serialize-character]
      See [with-serialize-character].

  [Show-accumulated-persistence]
      See [accumulated-persistence].

  [Single-threaded-objects]
      See [stobj].

  [Split-types]
      See [xargs] for keyword :split-types.

  [Stable-under-simplificationp]
      See [computed-hints].

  [Stobj-let]
      See [nested-stobjs].

  [Stobjs]
      See [xargs] for keyword :stobjs.

  [Subsetp-eq]
      See [subsetp].

  [Subsetp-equal]
      See [subsetp].

  [Trust-tag]
      See [defttag].

  [Ttag]
      See [defttag].

  [Type]
      Disambiguation page for type-related concepts.

  [Typespec-check]
      See [meta-extract].

  [Union-eq]
      See [union$].

  [Union-equal]
      See [union$].

  [Untranslate]
      See [user-defined-functions-table].

  [Untranslate-preprocess]
      See [user-defined-functions-table].

  [Use]
      See [hints] for keyword :use.

  [Verify-guards-eagerness]
      See [set-verify-guards-eagerness].

  [Waterfall]
      See [hints-and-the-waterfall].

  [Write-byte$]
      See [io].")
 (POPPING_OUT_OF_AN_INDUCTIVE_PROOF
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Popping out of an Inductive Proof

  Recall that our induction scheme (click [here] to revisit it) had two
  cases, the induction step (Subgoal *1/2) and the base case (Subgoal
  *1/1). Both have been proved!")
 (POR
  (PARALLEL-PROGRAMMING ACL2-BUILT-INS)
  "Parallel, Boolean version of [or]

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism],
  and see [parallel-programming], which has a disclaimer.

    Example Forms:
    (por (subsetp-equal x y)
         (subsetp-equal y x))

    (por (declare
          (granularity
           (and (> (length x) 500)
                (> (length y) 500))))
          (subsetp-equal x y)
          (subsetp-equal y x))

    General Form:
    (por (declare (granularity expr)) ; optional granularity declaration
         arg1 ... argN)

  where N >= 0 and each argi and expr are arbitrary terms.

  Por evaluates its arguments in parallel. It returns a Boolean result:
  t if any argument evaluates to non-nil, else nil. Note that while
  [or] returns the first non-nil value from evaluating its arguments
  left-to-right (if any such value is not nil) [por] always returns a
  Boolean result, in support of efficiency (see [early-termination])
  in light of the nondeterministic order in which argument values are
  returned.

  Another difference between por and [or] is that for a call of por,
  even if the an argument's value is not nil, a subsequent argument
  may be evaluated. See [pand] for a discussion of the analogous
  property of pand. In particular, [guard]s generated from calls of
  por may not assume for an argument that the preceding arguments
  evaluated to nil.

  See [parallelism-tutorial] for another example. Also see
  [parallelism-at-the-top-level] for restrictions on evaluating
  parallelism primitives from within the ACL2 top-level loop. Finally
  see [early-termination] to read how por can offer more efficiency
  than [or] by avoiding evaluation of some of its arguments.")
 (PORTCULLIS
  (BOOKS-TOUR)
  "The gate guarding the entrance to a certified book

  The certificate (see [certificate] for general information) of a
  certified file is divided into two parts, a portcullis and a
  [keep]. These names come from castle lore. The portcullis of a
  castle is an iron grate that slides up through the ceiling of the
  tunnel-like entrance. The portcullis of a book ensures that
  [include-book] does not start to read the book until the
  appropriate context has been created.

  Technically, the portcullis consists of the [version] number of the
  certifying ACL2, a list of [command]s used to create the
  ``certification [world]'' and an alist specifying the check sums of
  all the [books] included in that [world]. The portcullis is
  constructed automatically by [certify-book] from the [world] in
  which [certify-book] is called, but that [world] must have certain
  properties described below. After listing the properties we discuss
  the issues in a more leisurely manner.

  Each [command] in the portcullis must be either a [defpkg] form or an
  embedded event form (see [embedded-event-form]).

  Consider a book to be certified. The book is a file containing event
  forms. Suppose the file contains references to such symbols as
  my-pkg::fn and acl2-arith::cancel, but that the book itself does
  not create the packages. Then a hard Lisp error would be caused
  merely by the attempt to read the expressions in the book. The
  corresponding [defpkg]s cannot be written into the book itself
  because the book must be compilable and Common Lisp compilers
  differ on the rules concerning the inline definition of new
  packages. The only safe course is to make all [defpkg]s occur
  outside of compiled files.

  More generally, when a book is certified it is certified within some
  logical [world]. That ``certification [world]'' contains not only
  the necessary [defpkg]s but also, perhaps, function and constant
  definitions and maybe even references to other [books]. When
  [certify-book] creates the [certificate] for a file it recovers
  from the certification [world] the [command]s used to create that
  [world] from the initial ACL2 [world]. Those [command]s become part
  of the portcullis for the certified book. In addition,
  [certify-book] records in the portcullis the check sums (see
  [check-sum]) of all the [books] included in the certification
  [world].

  [Include-book] presumes that it is impossible even to read the
  contents of a certified book unless the portcullis can be
  ``raised.'' To raise the portcullis we must be able to execute
  (possibly redundantly, but certainly without error), all of the
  [command]s in the portcullis and then verify that the [books] thus
  included were identical to those used to build the certification
  [world] (up to check sum). This raising of the portcullis must be
  done delicately since [defpkg]s are present: we cannot even read a
  [command] in the portcullis until we have successfully executed the
  previous ones, since packages are being defined.

  Clearly, a book is most useful if it is certified in the most
  elementary extension possible of the initial logic. If, for
  example, your certification [world] happens to contain a [defpkg]
  for \"MY-PKG\" and the function foo, then those definitions become
  part of the portcullis for the book. Every time the book is
  included, those names will be defined and will have to be either
  new or redundant (see [redundant-events]). But if those names were
  not necessary to the certification of the book, their presence
  would unnecessarily restrict the utility of the book.

  See [keep] to continue the guided tour of [books].")
 (POSITION
  (LISTS STRINGS ACL2-BUILT-INS)
  "Position of an item in a string or a list

    General Forms:
    (position x seq)
    (position x seq :test 'eql)   ; same as above (eql as equality test)
    (position x seq :test 'eq)    ; same, but eq is equality test
    (position x seq :test 'equal) ; same, but equal is equality test

  (Position x seq) is the least index (zero-based) of the element x in
  the string or list seq, if x is an element of seq. Otherwise
  (position x seq) is nil. The optional keyword, :TEST, has no effect
  logically, but provides the test (default [eql]) used for comparing
  x with items of seq.

  The [guard] for a call of position depends on the test. In all cases,
  the second argument must satisfy [stringp] or [true-listp]. If the
  test is [eql], then either the first argument must be suitable for
  [eql] (see [eqlablep]) or the second argument must satisfy
  [eqlable-listp]. If the test is [eq], then either the first
  argument must be a symbol or the second argument must satisfy
  [symbol-listp].

  See [equality-variants] for a discussion of the relation between
  position and its variants:

      (position-eq x seq) is equivalent to (position x seq :test 'eq);

      (position-equal x seq) is equivalent to (position x seq :test
      'equal).

  In particular, reasoning about any of these primitives reduces to
  reasoning about the function position-equal.

  Position is defined by Common Lisp. See any Common Lisp documentation
  for more information.

  Function: <position-equal>

    (defun position-equal (item lst)
           (declare (xargs :guard (or (stringp lst) (true-listp lst))))
           (if (stringp lst)
               (position-ac item (coerce lst 'list) 0)
               (position-equal-ac item lst 0)))

  Function: <position-equal-ac>

    (defun position-equal-ac (item lst acc)
           (declare (xargs :guard (and (true-listp lst)
                                       (acl2-numberp acc))))
           (cond ((endp lst) nil)
                 ((equal item (car lst)) acc)
                 (t (position-equal-ac item (cdr lst)
                                       (1+ acc)))))")
 (POSITION-EQ (POINTERS)
              "See [position].")
 (POSITION-EQUAL (POINTERS)
                 "See [position].")
 (POSP
  (NUMBERS ACL2-BUILT-INS)
  "A recognizer for the positive integers

  (posp x) is logically equivalent to (not (zp x)) (see [zp]) and also
  to (and (natp x) (not (equal x 0))).

  The community book [arithmetic/natp-posp] has some lightweight rules
  for reasoning about posp and natp, and is included in the
  [arithmetic-1] library. For a somewhat heavier and more
  comprehensive alternative, you may wish to instead see the
  [arith-equivs] book.

  Function: <posp>

    (defun posp (x)
           (declare (xargs :guard t))
           (and (integerp x) (< 0 x)))")
 (POST-INDUCTION-KEY-CHECKPOINTS
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Reading post-induction key checkpoints

  Each post-induction key checkpoint is a theorem if and only if the
  original conjecture was a theorem. The reason is that each subgoal
  produced by induction concludes with the original formula and
  simplification preserves equivalence.

  So if you see a post-induction key checkpoint that is not a theorem,
  stop looking at the checkpoints! Your original conjecture is not a
  theorem! Fix it.

  If you're convinced all the post-induction conjectures are theorems,
  ask whether each has the hypotheses you'd need to prove it. If the
  case analysis feels inappropriate or induction hypotheses seem to
  be missing, then ACL2 might have done the wrong induction. Find the
  induction scheme it did by reading the first induction message
  printed after the conjecture was submitted. If it is wrong, then
  extend ACL2's induction analysis or tell ACL2 what induction to do,
  as explained shortly.

  But before you decide the induction hypothesis is missing, look
  closely for contradictions among the hypotheses of the checkpoint
  formula. For example, perhaps one of the hypotheses is (MEMBER e x)
  and another is (NOT (MEMBER e' x')) where e, x, e', and x' are
  possibly complicated expressions.

  Is it possible that e and e' are equal and x and x' are equal? If so,
  then the two hypotheses are contradictory and the checkpoint would
  be proved if you could find rules that would simplify those
  expressions to their common forms. So look for theorems about those
  subexpressions.

  Or maybe you can get e and e' to reduce to some common d but but find
  that x and x' are really different. Then ask whether

    (implies (member d x) (member d x'))

  If you could prove that, the key checkpoint would be proved. Of
  course, you may need other hypotheses from the checkpoint to state
  your theorems.

  If you have been working your way through the tutorial introduction
  to the theorem prover, use your browser's Back Button now to
  [introduction-to-key-checkpoints].")
 (PPROGN
  (PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "Evaluate a sequence of forms that return [state]

    Example Form:
    (pprogn
     (cond ((or (equal (car l) #\\) (equal (car l) slash-char))
            (princ$ #\\ channel state))
           (t state))
     (princ$ (car l) channel state)
     (mv (cdr l) state))

  The convention for pprogn usage is to give it a non-empty sequence of
  forms, each of which (except possibly for the last) returns state
  (see [state]) as its only value. The [state] returned by each but
  the last is passed on to the next. The value or values of the last
  form are returned as the value of the pprogn.

  If you are using single-threaded objects you may wish to define an
  analogue of this function for your own [stobj].

  General Form:

    (PPROGN form1
            form2
            ...
            formk
            result-form)

  This general form is equivalent, via macro expansion, to:

    (LET ((STATE form1))
         (LET ((STATE form2))
              ...
              (LET ((STATE formk))
                   result-form)))")
 (PR
  (HISTORY)
  "Print the rules stored by the event with the given name

    Examples:

    :pr fn ; prints the rules from the definition of fn (including any
           ; :type-prescription rule and :definition rule)

    :pr assoc-append ; if assoc-append is a rewrite rule, prints that rule

  Also see [pr!], which is similar but works at the command level
  instead of at the event level, and see [pl], which displays all
  rewrite rules for calls of fn, not just those introduced at
  definition time.

  Pr takes one argument, a logical name, and prints the rules
  associated with it. In each case it prints the rune, the current
  enabled/disabled status, and other appropriate fields from the
  rule. It may be helpful to read the documentation for various kinds
  of rules in order to understand the information printed by this
  command. For example, the information printed for a linear rule
  might be:

    Rune:     (:LINEAR ABC)
    Enabled:  T
    Hyps:     ((CONSP X))
    Concl:    (< (ACL2-COUNT (CAR X)) (ACL2-COUNT X))
    Max-term: (ACL2-COUNT (CAR X))
    Backchain-limit-lst:    (3)

  The hyps and concl fields for this rule are fairly self-explanatory,
  but it is useful to see [linear] to learn about maximal terms
  (which, as one might guess, are stored under ``Max-term'').

  Currently, this function does not print congruence rules or
  equivalence rules.

  The expert user might also wish to use [find-rules-of-rune]. See
  [find-rules-of-rune].")
 (PR!
  (HISTORY)
  "Print rules stored by the command with a given command descriptor

    Examples:

    :pr! fn ; prints the rules from the definition of fn (including any
            ; :type-prescription rule and :definition rule), as well as all other
            ; rules created by the command that created by fn (which could be
            ; many rules if, for example, fn was defined by an include-book
            ; command).

    :pr! :max ; prints all the rules stored by the most recent command

  Also see [pr], which is similar but works at the event level instead
  of at the command level.

  [Pr] takes one argument, a command descriptor, and prints the rules
  created by the corresponding event. In each case it prints the
  rune, the current enabled/disabled status, and other appropriate
  fields from the rule. See [pr] for further details.")
 (PRACTICE-FORMULATING-STRONG-RULES
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "A few simple checkpoints suggesting strong rules

  Consider these definitions:

    (defun rev (x)
      (if (endp x)
          nil
          (append (rev (cdr x)) (list (car x)))))

    (defun nats-below (j)
      (if (zp j)
          '(0)
          (cons j (nats-below (- j 1)))))

  We assume you are familiar with such ACL2 built-ins as append,
  member, subsetp and true-listp. When we use throw-away names like
  FOO, BAR, and MUM below we mean to suggest some arbitrary function
  you shouldn't think about! We're just trying to train your eye to
  ignore irrelevant things.

  Below are some terms that should suggest rewrite rules to you.
  Imagine that each of these terms occurs in some Key Checkpoint.
  What rules come to mind? Try to think of the strongest rules you
  can.

  Term 1:
  (TRUE-LISTP (APPEND (FOO A) (BAR B)))

  Answers: See [practice-formulating-strong-rules-1]

  Term 2:
  (TRUE-LISTP (REV (FOO A)))

  Answers: See [practice-formulating-strong-rules-2]

  Term 3:
  (MEMBER (FOO A) (APPEND (BAR B) (MUM C)))

  Answers: See [practice-formulating-strong-rules-3]

  Term 4:
  (SUBSETP (APPEND (FOO A) (BAR B)) (MUM C))

  Answers: See [practice-formulating-strong-rules-4]

  Term 5:
  (SUBSETP (FOO A) (APPEND (BAR B) (MUM C)))

  Answers: See [practice-formulating-strong-rules-5]

  Term 6:
  (MEMBER (FOO A) (NATS-BELOW (BAR B)))

  Answers: See [practice-formulating-strong-rules-6]

  We recommend doing all of these little exercises. When you're
  finished, use your browser's Back Button to return to
  [strong-rewrite-rules].")
 (PRACTICE-FORMULATING-STRONG-RULES-1
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Rules suggested by (TRUE-LISTP (APPEND (FOO A) (BAR B)))

  What rules come to mind when looking at the following subterm of a
  Key Checkpoint? Think of strong rules (see [strong-rewrite-rules]).

    (TRUE-LISTP (APPEND (FOO A) (BAR B)))

  Obviously, you must think about the conditions under which (APPEND x
  y) returns a true-list. Recall that APPEND concatentates x and y,
  with y being the terminal sublist. Its definition is equivalent to

    (defun append (x y)
      (if (endp x)
          y
          (cons (car x)
                (append (cdr x) y))))

  Technical Note: Append is really a macro that permits you to write
  calls of append with more than two arguments.

  In a sense, append ``expects'' its arguments to be lists ending in
  nil, so-called true-listps. (Such expectations are formalized in
  ACL2 by the notion of the ``[guard]'' [{ICON}] of the function, but
  we strongly recommend not investigating guards until you're good at
  using the system.)

  New users frequently start every new theorem by listing all their
  expectations on the arguments of functions in the problem. For
  example, if the new user wants to make some statement about when
  (append x y) is a true-listp, it is not uncommon for him or her
  first to write:

    (implies (and (true-listp x)
                  (true-listp y))
             ...)

  to get ``comfortable.'' Then, thinking about when (append x y) is a
  true-listp is easy: it always returns a true-listp. It's always a
  true-listp.'' This thinking produces the theorem:

    (defthm true-listp-append-really-weak
      (implies (and (true-listp x)
                    (true-listp y))
               (true-listp (append x y))))

  You'll note we gave it a name suggesting it is ``really weak.''

  One sense in which it is weak is that it has an unnecessary
  hypothesis. If y is a true-listp, then (append x y) is too, whether
  x is a true-listp or not. In ACL2, all functions are total.
  Logically speaking, it doesn't matter whether endp expects its
  argument to be a true-listp or not, it behaves. (Append x y) either
  returns y or a cons whose second argument is generated by append.
  Thus, if y is a true-listp, the answer is too. So here is an
  improved version of the rule:

    (defthm true-listp-append-weak
      (implies (true-listp y)
               (true-listp (append x y))))

  We still think of it as ``weak'' because it has a hypothesis that
  limits its applicability.

  The strong version of the rule is

    (defthm true-listp-append-strong
      (equal (true-listp (append x y))
             (true-listp y))).

  That is, append returns a true-listp precisely when its second
  argument is a true-listp. We recommend that the strong version be
  made a :[rewrite] [{ICON}] rule.

  The weak version of the rule allows us to reduce (TRUE-LISTP (APPEND
  x y)) to true if we can show that (TRUE-LISTP y) is true. But
  suppose (TRUE-LISTP y) is actually false. Then (TRUE-LISTP (APPEND
  x y)) would not simplify under the weak version of the rule. But
  under the strong version it would simplify to NIL.

  Technical Note: The weak version of the rule is a useful
  :[type-prescription] [{ICON}] rule. The type mechanism cannot
  currently exploit the strong version of the rule.

  The strategy of ``getting comfortable'' by adding a bunch of
  hypotheses before you know you need them is not conducive to
  creating strong rules. We tend to state the main relationship that
  we intuit about some function and then add the hypotheses we need
  to make it true. In this case, there were no necessary hypotheses.
  But if there are, we first identify them and then we ask ``what can
  I say about the function if these hypotheses aren't true?'' and try
  to strengthen the statement still further.

  Use your browser's Back Button now to return to
  [practice-formulating-strong-rules].")
 (PRACTICE-FORMULATING-STRONG-RULES-2
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Rules suggested by (TRUE-LISTP (REV (FOO A)))

  What rules come to mind when looking at the following subterm of a
  Key Checkpoint? Think of strong rules (see [strong-rewrite-rules]).

    (TRUE-LISTP (REV (FOO A)))

  The definition of rev in this problem is

    (defun rev (x)
      (if (endp x)
          nil
          (append (rev (cdr x)) (list (car x)))))

  Since the definition terminates with an endp test and otherwise cdrs
  the argument, the author of rev was clearly expecting x to be a
  true-listp. (Indeed, the ``[guard]'' [{ICON}] for rev must include
  (true-listp x) since that is endp's guard.) So you're naturally
  justified in limiting your thoughts about (rev x) to x that are
  true-lists. This gives rise to the theorem:

    (defthm true-listp-rev-weak
      (implies (true-listp x)
               (true-listp (rev x))))

  This is the kind of thinking illustrated in the earlier append
  example (see [practice-formulating-strong-rules-1]), and, to
  paraphrase Z in Men in Black, it exemplifies ``everything we've
  come to expect from years of training with typed languages.''

  But logically speaking, the definition of rev does not require x to
  be a true-listp. It can be any object at all: ACL2 functions are
  total. Rev either returns nil or the result of appending a
  singleton list onto the right end of its recursive result. That
  call of append always returns a true-listp since the singleton list
  is a true list. (See [practice-formulating-strong-rules-1].)

  So this is a theorem and a very useful :[rewrite] [{ICON}] rule:

    (defthm true-listp-rev-strong
      (true-listp (rev x))).

  Use your browser's Back Button now to return to
  [practice-formulating-strong-rules].")
 (PRACTICE-FORMULATING-STRONG-RULES-3
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Rules suggested by (MEMBER (FOO A) (APPEND (BAR B) (MUM C)))

  What rules come to mind when looking at the following subterm of a
  Key Checkpoint? Think of strong rules (see [strong-rewrite-rules]).

    (MEMBER (FOO A) (APPEND (BAR B) (MUM C)))

  Since (append x y) contains all the members of x and all the members
  of y, e is a member of (append x y) precisely when e is a member of
  x or of y. So a strong statement of this is:

    (defthm member-append-strong-false
      (equal (member e (append x y))
             (or (member e x)
                 (member e y))))

  However, this is not a theorem because member is not Boolean. (Member
  e x), for example, returns the first tail of x that starts with e,
  or else nil. To see an example of this formula that evaluates to
  nil, let

    e = 3
    x = '(1 2 3)
    y = '(4 5 6).

  Then the left-hand side, (member e (append x y)) evaluates to (3 4 5
  6) while the right-hand side evaluates to (3).

  However, the two sides are propositionally equivalent (both either
  nil or non-nil together). So this is a useful :[rewrite] [{ICON}]
  rule:

    (defthm member-append-strong
      (iff (member e (append x y))
           (or (member e x)
               (member e y)))).

  It tells the system that whenever it encounters an instance of
  (MEMBER e (APPEND x y)) in a propositional occurrence (where only
  its truthvalue is relevant), it should be replaced by this
  disjunction of (MEMBER e x) and (MEMBER e y).

  The following two formulas are true but provide much weaker rules and
  we would not add them:

    (implies (member e x) (member e (append x y)))

    (implies (member e y) (member e (append x y)))

  because they each cause the system to backchain upon seeing (MEMBER e
  (APPEND x y)) expressions and will not apply unless one of the two
  side-conditions can be established.

  There is a rewrite rule that is even stronger than
  member-append-strong. It is suggested by the counterexample, above,
  for the EQUAL version of the rule.

    (defthm member-append-really-strong
      (equal (member e (append x y))
             (if (member e x)
                 (append (member e x) y)
                 (member e y))))

  While member-append-strong only rewrites member-append expressions
  occurring propositionally, the -really-strong version rewrites
  every occurrence.

  However, this rule will be more useful than member-append-strong only
  if you have occurrences of member in non-propositional places. For
  example, suppose you encountered a term like:

    (CONS (MEMBER e (APPEND x y)) z).

  Then the -strong rule does not apply but the -really-strong rule
  does.

  Furthermore, the -really-strong rule, by itself, is not quite as good
  as the -strong rule in propositional settings! For example, if you
  have proved the -really-strong rule, you'll notice that the system
  still has to use induction to prove

    (IMPLIES (MEMBER E A)
             (MEMBER E (APPEND B A))).

  The -really-strong rule would rewrite it to

    (IMPLIES (MEMBER E A)
             (IF (MEMBER E A)
                 (APPEND (MEMBER E A) B)
                 (MEMBER E B)))

  which would further simplify to

    (IMPLIES (MEMBER E A)
             (APPEND (MEMBER E A) B))

  What lemma does this suggest? The answer is the rather odd:

    (implies x (append x y))

  which rewrites propositional occurrences of (APPEND x y) to T if x is
  non-nil. This is an inductive fact about append.

  A problem with the -really-strong rule is that it transforms even
  propositional occurrences of member into mixed propositional and
  non-propositional occurrences.

    (defthm member-append-really-strong
      (equal (member e (append x y))      ; <-- even if this is a propositional occurrence
             (if (member e x)
                 (append (member e x) y)  ; <-- the member in here is not!
                 (member e y))))

  So if you are using the -really-strong lemma in a situation in which
  all your member expressions are used propositionally, you'll
  suddenly find yourself confronted with non-propositional uses of
  member.

  Our advice is not to use the -really-strong version unless your
  application is inherently using member in a non-propositional way.

  Use your browser's Back Button now to return to
  [practice-formulating-strong-rules].")
 (PRACTICE-FORMULATING-STRONG-RULES-4
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Rules suggested by (SUBSETP (APPEND (FOO A) (BAR B)) (MUM C))

  What rules come to mind when looking at the following subterm of a
  Key Checkpoint? Think of strong rules (see [strong-rewrite-rules]).

    (SUBSETP (APPEND (FOO A) (BAR B)) (MUM C))

  When is (append x y) a subset of z? When everything in x is in z and
  everything in y is in z. We would make it a rewrite rule:

    (defthm subsetp-append-1-strong
      (equal (subsetp (append x y) z)
             (and (subsetp x z)
                  (subsetp y z))))

  We put the ``-1-'' in the name because there is a comparable theorem
  for when the append is in the second argument of the subsetp; see
  [practice-formulating-strong-rules-5].

  This strong rule is better than the conditional rule;

    (defthm subsetp-append-1-weak
      (implies (and (subsetp x z)
                    (subsetp y z))
               (subsetp (append x y) z)))

  for all the usual reasons.

  Use your browser's Back Button now to return to
  [practice-formulating-strong-rules].")
 (PRACTICE-FORMULATING-STRONG-RULES-5
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Rules suggested by (SUBSETP (FOO A) (APPEND (BAR B) (MUM C)))

  What rules come to mind when looking at the following subterm of a
  Key Checkpoint? Think of strong rules (see [strong-rewrite-rules]).

    (SUBSETP (FOO A) (APPEND (BAR B) (MUM C)))

  When is x a subset of (append y z)? Clearly it is if x is a subset of
  y or x is a subset of z. We could write that:

    (defthm subsetp-append-2-weak
      (implies (or (subsetp x y)
                   (subsetp x z))
               (subsetp x (append y z))))

  The rule generated from this is: ``if you ever encounter (an instance
  of) (SUBSETP x (APPEND y z)), backchain to the or above and try to
  establish it. If you can establish it, replace the target by T.''

  This does not fully characterize the situation though. For example,
  '(1 2 3 4) is a subset of (append '(1 3) '(2 4)) without being a
  subset of either argument of the append.

  However, no obvious equivalence comes to mind -- indeed, to express
  any of the ideas floating around here requires defining and
  introducing more functions, which is not recommended unless those
  functions are already in the problem.

  For example, if you defined the concept of ``set-minus'' so that
  (set-minus x y) consists of those elements of x not in y, then you
  could prove:

    (defthm subset-append-2-strong-but-messy
      (equal (subsetp x (append y z))
             (and (subsetp (set-minus x z) y)
                  (subsetp (set-minus x y) z))))

  But this rewrite rule would ``trade'' append away and introduce
  set-minus. That might be a good strategy if set-minus were already
  in the problem. But if it were not, it might not be. We wouldn't
  recommend this rule unless it were helpful in normalizing the
  expressions in the problem.

  We recommend sticking with the weak version of the rule,

    (defthm subsetp-append-2-weak
      (implies (or (subsetp x y)
                   (subsetp x z))
               (subsetp x (append y z)))).

  This illustrates the fact that sometimes there is no strong version
  of a rule!

  Use your browser's Back Button now to return to
  [practice-formulating-strong-rules].")
 (PRACTICE-FORMULATING-STRONG-RULES-6
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Rules suggested by (MEMBER (FOO A) (NATS-BELOW (BAR B)))

  What rules come to mind when looking at the following subterm of a
  Key Checkpoint? Think of strong rules (see [strong-rewrite-rules]).

    (MEMBER (FOO A) (NATS-BELOW (BAR B)))

  The definition of NATS-BELOW is

    (defun nats-below (j)
      (if (zp j)
          '(0)
          (cons j (nats-below (- j 1)))))

  Thus, (nats-below 7) is (7 6 5 4 3 2 1 0). So when is k a member of
  (nats-below j)?

  The weakest version is

    (defthm member-nats-below-weak
      (implies (and (natp k)
                    (natp j)
                    (<= k j))
               (member k (nats-below j))))

  But clearly we could improve this to:

    (defthm member-nats-below-weak-better
      (implies (and (natp k)
                    (natp j))
               (iff (member k (nats-below j))
                    (<= k j))))

  or even

    (defthm member-nats-below-weak-better
      (implies (natp j)
               (iff (member k (nats-below j))
                    (and (natp k)
                         (<= k j)))))

  Clearly though, we'd like to get rid of the (natp j) hypothesis and
  the neatest plausible version is:

    (defthm member-nats-below-weak-neatest
      (iff (member k (nats-below j))
           (and (natp j)
                (natp k)
                (<= k j))))

  But it is not a theorem! For example, if j is -1 and k is 0, then the
  left-hand side above returns t, because (nats-below j) is (0), but
  the right-hand side is nil.

  But this suggests a strategy for dealing with necessary hypotheses,
  like (natp j). We can move them into an IF on the right-hand side!
  Something like this might be a useful rewrite rule:

    (iff (member k (nats-below j))
         (if (natp j)
             (and (natp k)
                  (<= k j))
             ...)).

  We know, from member-nats-below-weak-better, that if (natp j) is
  true, the member is equivalent to (and (natp k) (<= k j)). So now
  consider what we know if (natp j) is false. If we can think of some
  term it's equivalent to and that term is simpler than the member
  expression, we have a strong rule.

  But by inspection of the definition of nats-below, we see that when
  (natp j) is false, (nats-below j) is the list (0) because (zp j) is
  t. That is, nats-below treats all non-natural arguments like they
  were 0. Thus, when (natp j) is false, (member k (nats-below j)) is
  (member k '(0)), which is (equal k 0).

  So the strong version is

    (defthm member-nats-below-strong
       (iff (member k (nats-below j))
            (if (natp j)
                (and (natp k)
                     (<= k j))
                (equal k 0))))

  This is a great :[rewrite] [{ICON}] rule. It gets rid of the member
  and nats-below and introduces arithmetic.

  This example illustrates the idea of putting an if on the
  right-hand-side of the equivalence. Many users tend to limit
  themselves to propositional forms inside iff or to simple
  expressions inside of equal. But it is quite natural to use if to
  express what the answer is: if j is a natural, then k is in
  (nats-below j) precisely if k is a natural less than or equal to j;
  if j is not a natural, then k is in (nats-below j) precisely if k
  is 0.

  Use if to lay out the cases you must consider, if you can think of a
  simpler, equivalent expression for every possible case.

  Use your browser's Back Button now to return to
  [practice-formulating-strong-rules].")
 (PRIMITIVE
  (PROGRAMMING ACL2-BUILT-INS)
  "Primitive functions built into ACL2 without definitions

  The ACL2 [ground-zero] [theory] includes axioms about some built-in
  functions that are not given explicit definitions, such as [<],
  [car], and [symbolp]. We sometimes call such functions primitives.
  The built-in constant *primitive-formals-and-guards* is an alist
  that associates each primitive with its list of formals and its
  [guard]; that is, each element of that alist is of the form (name
  formals guard). The value of this constant is displayed below.

  Definition: <*primitive-formals-and-guards*>

    (defconst *primitive-formals-and-guards*
              '((acl2-numberp (x) 't)
                (bad-atom<= (x y)
                            (if (bad-atom x) (bad-atom y) 'nil))
                (binary-* (x y)
                          (if (acl2-numberp x)
                              (acl2-numberp y)
                              'nil))
                (binary-+ (x y)
                          (if (acl2-numberp x)
                              (acl2-numberp y)
                              'nil))
                (unary-- (x) (acl2-numberp x))
                (unary-/ (x)
                         (if (acl2-numberp x)
                             (not (equal x '0))
                             'nil))
                (< (x y)
                   (if (rationalp x) (rationalp y) 'nil))
                (car (x)
                     (if (consp x) 't (equal x 'nil)))
                (cdr (x)
                     (if (consp x) 't (equal x 'nil)))
                (char-code (x) (characterp x))
                (characterp (x) 't)
                (code-char (x)
                           (if (integerp x)
                               (if (< x '0) 'nil (< x '256))
                               'nil))
                (complex (x y)
                         (if (rationalp x) (rationalp y) 'nil))
                (complex-rationalp (x) 't)
                (coerce (x y)
                        (if (equal y 'list)
                            (stringp x)
                            (if (equal y 'string)
                                (character-listp x)
                                'nil)))
                (cons (x y) 't)
                (consp (x) 't)
                (denominator (x) (rationalp x))
                (equal (x y) 't)
                (if (x y z) 't)
                (imagpart (x) (acl2-numberp x))
                (integerp (x) 't)
                (intern-in-package-of-symbol
                     (str sym)
                     (if (stringp str) (symbolp sym) 'nil))
                (numerator (x) (rationalp x))
                (pkg-imports (pkg) (stringp pkg))
                (pkg-witness (pkg)
                             (if (stringp pkg)
                                 (not (equal pkg '\"\"))
                                 'nil))
                (rationalp (x) 't)
                (realpart (x) (acl2-numberp x))
                (stringp (x) 't)
                (symbol-name (x) (symbolp x))
                (symbol-package-name (x) (symbolp x))
                (symbolp (x) 't)))")
 (PRINC$
  (IO ACL2-BUILT-INS)
  "Print an atom

  Use princ$ to do basic printing of atoms (i.e., other than cons
  pairs). In particular, princ$ prints a string without the
  surrounding double-quotes and without escaping double-quote
  characters within the string. Note that princ$ is sensitive to the
  print-base, print-radix, and print-case; see [set-print-base-radix]
  and see [set-print-case]. Princ$ returns [state].

    Examples:
    ACL2 !>(princ$ \"Howdy ho\" (standard-co state) state)
    Howdy ho<state>
    ACL2 !>(pprogn (princ$ \"Howdy ho\" (standard-co state) state)
                   (newline (standard-co state) state))
    Howdy ho
    <state>
    ACL2 !>(princ$ \"ab\\\"cd\" *standard-co* state)
    ab\"cd<state>
    ACL2 !>
    ACL2 !>(princ$ 17 *standard-co* state)
    17<state>
    ACL2 !>(set-print-base 16 state) ; might be nicer to use set-print-base-radix
    <state>
    ACL2 !>(princ$ 17 *standard-co* state)
    11<state>
    ACL2 !>(set-print-radix t state)
    <state>
    ACL2 !>(princ$ 17 *standard-co* state)
    #x11<state>
    ACL2 !>(princ$ 'xyz *standard-co* state)
    XYZ<state>
    ACL2 !>(set-print-case :downcase state)
    <state>
    ACL2 !>(princ$ 'xyz *standard-co* state)
    xyz<state>
    ACL2 !>

  The [guard] for (princ$ x channel state) is essentially as follows;
  see [io] for an explanation of guards of certain built-in functions
  that take [state], such as princ$.

    (and (or (acl2-numberp x)
             (characterp x)
             (stringp x)
             (symbolp x))
         (state-p1 state-state)
         (symbolp channel)
         (open-output-channel-p1 channel :character state-state))

  See [fmt] for more sophisticated printing routines, and see [io] for
  general information about input and output.")
 (PRINT-BASE-P
  (IO ACL2-BUILT-INS)
  "Recognizer for print bases that are understood by functions such as
  [explode-nonnegative-integer] and [explode-atom].

  Function: <print-base-p>

    (defun print-base-p (print-base)
           (declare (xargs :guard t))
           (and (member print-base '(2 8 10 16))
                t))")
 (PRINT-CONTROL
  (IO)
  "Advanced controls of ACL2 printing

  See [io] for a summary of printing in ACL2. Here we document some
  advanced ways to control what is printed by ACL2's primary printing
  routines.

  See [set-print-base-radix], [set-print-base], [set-print-radix], and
  [set-print-case] for discussions of the most common ways to control
  what is printed. Indeed, these are the only ways to control the
  behavior of [princ$] and prin1$.

  See [set-fmt-hard-right-margin] for how to set the right margin for
  prover output and, more generally, all output from formatted
  printing functions (see [fmt]). Note that set-print-right-margin,
  mentioned below, does not affect such printing.

  The rest of this topic is for advanced users of ACL2. We refer to
  Common Lisp behavior, as described in any good Common Lisp
  documentation.

  Print-control variables. [Set-print-base], [set-print-radix], and
  [set-print-case] assign to corresponding so-called ``[state] global
  variables'' 'print-base, 'print-radix, and 'print-case, which can
  be accessed using the expressions (@ print-base), (@ print-radix),
  and (@ print-case), respectively; see [assign]. Here is a table
  showing all print-control variables, their setters, and their
  defaults. Also see [set-print-base-radix].

    print-base          set-print-base          10
    print-case          set-print-case          :upcase
    print-circle        set-print-circle        nil
      [but see remark on print-circle-files, below]
    print-escape        set-print-escape        t
    print-length        set-print-length        nil
    print-level         set-print-level         nil
    print-lines         set-print-lines         nil
    print-pretty        set-print-pretty        nil
    print-radix         set-print-radix         nil
    print-readably      set-print-readably      nil
    print-right-margin  set-print-right-margin  nil

  Each ACL2 print-control variable print-xxx can correspond in function
  to Common Lisp variable *PRINT-XXX*. Specifically, the evaluation
  of forms (set-print-base t), (set-print-radix t), and
  (set-print-case t) affects ACL2 printing functions in much the same
  way that setting to t Common Lisp variables *PRINT-BASE*,
  *PRINT-RADIX*, and *PRINT-CASE*, respectively, affects Common Lisp
  printing. The same is true for print-escape, except that this does
  not affect [princ$] or prin1$, which correspond to Common Lisp
  functions princ and prin1: princ treats *PRINT-ESCAPE* as nil while
  prin1 treats *PRINT-ESCAPE* as t. Moreover, all print-control
  variables not mentioned in this paragraph are set to their defaults
  in [princ$] and prin1$, as indicated by ACL2 constant
  *print-control-defaults*, except that print-readably is set to nil
  in princ$.

  [Fmt] and its related functions are sensitive to state globals
  'print-base, 'print-radix, 'print-case, 'print-escape, and
  'print-readably, in analogy with Common Lisp functions that don't
  fix *PRINT-ESCAPE* or *PRINT-READABLY*. But the [fmt] functions do
  not respect settings of other print-control variables; for example,
  they act as though 'print-circle is nil. Since ACL2 output is
  produced using the same underlying print routines as the [fmt]
  functions, it also is insensitive to all print-control variables
  except for the five above. To control the print-level and
  print-length used for producing ACL2 output, see [set-evisc-tuple].

  [Print-object$] is sensitive to all of the print-control variables.

  Evaluate (reset-print-control) to restore all print-control variables
  to their original settings, as stored in constant
  *print-control-defaults*.

  (Remark on print-circle-files: ACL2 typically binds 'print-circle to
  t before writing [certificate] files, or auxiliary files that are
  compiled when [make-event] forms are present in a book, or files in
  support of :[comp] commands. This binding allows for structure
  sharing that can keep these files from growing large. End of
  Remark.)

  (Remark for those using ACL2 built on CLtL1 (non-ANSI) Gnu Common
  Lisp (GCL): Note that Common Lisp variables *PRINT-LINES*,
  *PRINT-MISER-WIDTH*, *PRINT-READABLY*, *PRINT-PPRINT-DISPATCH*, and
  *PRINT-RIGHT-MARGIN* do not have any effect for such GCL versions.)")
 (PRINT-GV
  (GUARD DEBUGGING)
  "Print a form whose evaluation caused a guard violation

  By default, ACL2 checks input constraints on functions, known as
  [guard]s. When guards are violated, an informative message is
  printed; but sometimes it is useful to investigate why the guard
  check fails. The utility print-gv is provided for that purpose.
  (Alternatively, you may prefer to avoid guards entirely with
  (set-guard-checking :none); see [set-guard-checking].)

    Example Forms:
    (print-gv)
    :print-gv ; same as above
    (print-gv ; same as above, showing all system defaults
     :conjunct nil
     :evisc-tuple (print-gv-evisc-tuple)
     :substitute nil)
    (print-gv :evisc-tuple (evisc-tuple 4 4 nil nil))
    (print-gv :evisc-tuple (evisc-tuple 4 4 nil nil))
    (print-gv :evisc-tuple (evisc-tuple 4 ; print-level
                                        5 ; print-length
                                        (world-evisceration-alist state nil)
                                        nil ; hiding-cars
                                        ))

    General Form:
    (print-gv :evisc-tuple x)

  where the keyword arguments are optional. These arguments have the
  following effects and system defaults, but note that the defaults
  can be changed by the user; see [set-print-gv-defaults].

  The :conjunct argument is nil by default, indicating that a form is
  to be displayed whose evaluation represents the [guard] evaluation
  that produced nil. A value of t indicates that ACL2 should parse
  the guard into conjuncts, and display the conjunct that actually
  evaluated to nil. It does this by evaluating each conjunct in turn
  until one produces a result of nil.

  The :evisc-tuple argument should be an [evisc-tuple]. Its default is
  the value of the expression (print-gv-evisc-tuple), which specifies
  hiding only the ACL2 logical [world], so that the symbol <world> is
  printed instead of the actual world. See [evisc-tuple] for a
  discussion of evisc-tuples.

  The :substitute argument is nil by default, indicating that the
  displayed form uses [flet], which avoids duplicate occurrences of
  actual parameters. A value of t indicates that ACL2 should instead
  substitute those actuals into the guard.

  Again, the user can change these defaults; see
  [set-print-gv-defaults].

  To see how one might use print-gv, consider the following definition.

    (defun foo (x)
      (declare (xargs :guard (and (integerp x)
                                  (posp (+ -2 x))
                                  (posp (+ 3 x))
                                  (posp (+ -4 x)))))
      x)

  Now suppose we evaluate a call of foo and obtain a guard violation.

    ACL2 !>(foo 1)


    ACL2 Error in TOP-LEVEL:  The guard for the function call (FOO X),
    which is (AND (INTEGERP X) (POSP (+ -2 X)) (POSP (+ 3 X)) (POSP (+ -4 X))),
    is violated by the arguments in the call (FOO 1).
    See :DOC set-guard-checking for information about suppressing this
    check with (set-guard-checking :none), as recommended for new users.
    To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.

  Let us investigate this guard failure. First we use print-gv to
  obtain a form that represents our guard violation. Just for fun,
  we'll check that it indeed evaluates to nil.

    ACL2 !>:print-gv

    (FLET ((FOO{GUARD} (X)
                       (DECLARE (IGNORABLE X))
                       (AND (INTEGERP X)
                            (POSP (+ -2 X))
                            (POSP (+ 3 X))
                            (POSP (+ -4 X)))))
          (FOO{GUARD} 1))

    ACL2 !>(FLET ((FOO{GUARD} (X)
                      (DECLARE (IGNORABLE X))
                      (AND (INTEGERP X)
                           (POSP (+ -2 X))
                           (POSP (+ 3 X))
                           (POSP (+ -4 X)))))
                 (FOO{GUARD} 1))
    NIL

  This form doesn't tell us which of the four conjuncts actually
  evaluated to nil. We can fix that by using the :conjunct keyword
  argument.

    ACL2 !>(print-gv :conjunct t)

    Showing guard conjunct (#2 of 4) that evaluates to nil:

    (FLET ((FOO{GUARD} (X) (POSP (+ -2 X)))) (FOO{GUARD} 1)).

    ACL2 !>

  But here's another way to analyze the guard failure. Let's change
  [and] to [list] in the result of :print-gv, to see which conjuncts
  are false. Of course, the user can massage the guard form in any
  way that might be helpful.

    ACL2 !>(FLET ((FOO{GUARD} (X)
                      (DECLARE (IGNORABLE X))
                      (list (INTEGERP X)
                            (POSP (+ -2 X))
                            (POSP (+ 3 X))
                            (POSP (+ -4 X)))))
                 (FOO{GUARD} 1))
    (T NIL T NIL)
    ACL2 !>

  The NIL results show that the second and fourth conjuncts of the
  guard were false in our particular case.

  The following hack will give you access in raw Lisp to the form
  printed by (print-gv). After a guard violation, just submit the
  following form to raw Lisp.

    (print-gv1 (wormhole-data (cdr (assoc 'ev-fncall-guard-er-wormhole
                                          *wormhole-status-alist*)))
               nil ; conjunct
               nil ; substitute
               'top state)

  If you use local [stobj]s (see [with-local-stobj]) or stobj fields of
  stobjs, you may need to edit the output of print-gv in order to
  evaluate it. Consider the following example.

    (defstobj st fld)

    (defun g (x st)
      (declare (xargs :guard (consp x) :stobjs st)
               (ignore x))
      (fld st))

    (defun test ()
      (with-local-stobj
       st
       (mv-let (result st)
               (mv (g 3 st) st)
               result)))

    (test)

  Then :print-gv yields the result shown below.

    (FLET ((G{GUARD} (X ST)
                     (DECLARE (IGNORABLE X ST))
                     (AND (STP ST) (CONSP X))))
          (G{GUARD} 3 |<some-stobj>|))

  In this example you could replace ``|<some-stobj>|'' by ``st'' to
  obtain a result of nil. But similar cases may require the use of a
  local stobj that is no longer available, in which case you may need
  to be creative in order to take advantage of :print-gv. Here is
  such an example.

    (defstobj st2 fld2)

    (defun g2 (st2)
      (declare (xargs :guard (null (fld2 st2)) :stobjs st2))
      (mv 0 st2))

    (defun test2 ()
      (with-local-stobj
       st2
       (mv-let (result st2)
               (let ((st2 (update-fld2 17 st2)))
                 (g2 st2))
               result)))

    (test2)

  In this case, :print-gv yields the following.

    (FLET ((G2{GUARD} (ST2)
                      (DECLARE (IGNORABLE ST2))
                      (AND (ST2P ST2) (NULL (FLD2 ST2)))))
          (G2{GUARD} |<some-stobj>|))

  But if you replace ``|<some-stobj>|'' by ``st'', the guard holds; it
  is only the local stobj, which is no longer available, that
  produced a guard violation (because its field had been updated to a
  cons).

    ACL2 !>(FLET ((G2{GUARD} (ST2)
                             (DECLARE (IGNORABLE ST2))
                             (AND (ST2P ST2) (NULL (FLD2 ST2)))))
                 (G2{GUARD} st2))
    T
    ACL2 !>

  Finally, we note that while print-gv is a utility for debugging guard
  violations, in contrast, see [guard-debug] for a utility to assist
  in debugging failed proofs arising from guard verification.


Subtopics

  [Set-print-gv-defaults]
      Set default keyword values for [print-gv]")
 (PRINT-OBJECT$ (POINTERS) "See [io].")
 (PRINT-SUMMARY-USER (POINTERS)
                     "See [finalize-event-user].")
 (PRINTING-TO-STRINGS
  (IO)
  "Printing to strings instead of files or standard output

  Each of ACL2's formatted printing functions, FM*, has an analoguous
  macro FM*-TO-STRING indicated below. These functions do not include
  a channel or [state] as an argument, and FM*-TO-STRING returns the
  string that FM* would print to the state, in place of state; see
  [fmt]. The legal keyword arguments are described below.

    General Forms:                                 result
    (fms-to-string string alist &key ...)          ; string
    (fmt-to-string string alist &key ...)          ; (mv col string)
    (fmt1-to-string string alist column &key ...)  ; (mv col string)
    (fms!-to-string string alist &key ...)         ; string
    (fmt!-to-string string alist &key ...)         ; (mv col string)
    (fmt1!-to-string string alist column &key ...) ; (mv col string)

  The legal keyword arguments are as follows. They are all optional
  with a default of nil.

      Evisc-tuple is evaluated, and corresponds exactly to the evisc-tuple
      argument of the corresponding FM* function; see [fmt].

      Fmt-control-alist should typically evaluate to an alist that maps
      print-control variables to values; see [print-control]. Any
      alist mapping variables to values is legal, however. By default
      the print controls are set according to the value of constant
      *fmt-control-defaults*; fmt-control-alist overrides these
      defaults. For example, *fmt-control-defaults* sets the right
      margin just as it is set in the initial ACL2 [state], by
      binding fmt-soft-right-margin and fmt-hard-right-margin to
      their respective defaults of *fmt-soft-right-margin-default*
      and *fmt-hard-right-margin-default*. The following example
      shows how you can override those defaults, in this case
      arranging to print flat by setting the right margin to a large
      number.

        (fmt-to-string \"~x0\"
                       (list (cons #\\0 (make-list 30)))
                       :fmt-control-alist
                       `((fmt-soft-right-margin . 10000)
                         (fmt-hard-right-margin . 10000)))

      Iprint is typically nil, but t is also a legal value. See
      [set-iprint] for the effect of value t, which however is local
      to this call of a FM*-TO-STRING function; the behavior if
      iprinting afterwards is not affected by this call. In
      particular, you will not be able to look at the values of
      iprint tokens printed by this call, so the value t is probably
      of limited utility at best.

  Also see [io] for a discussion of the utility
  get-output-stream-string$, which allows for accumulating the
  results of more than one printing call into a single string but
  requires the use of [state].")
 (PROFILE
  (EVENTS)
  "Turn on profiling for one function

  NOTE: An alternative to this utility, which has significantly less
  functionality but doesn't use [hons-enabled] features of ACL2, may
  be found in community book books/misc/profiling.lisp. See
  [hons-and-memoization] for a general discussion of [memoization],
  on which this profile utility is built, and the related features of
  hash consing and applicative hash tables.

  Profile can be useful in Common Lisp debugging and performance
  analysis, including examining the behavior of ACL2 functions.

    Example:
    (profile 'fn)       ; keep count of the calls of fn
    (profile 'fn        ; as above, with with some memoize options
             :trace t
             :forget t)
    (memsum) ; report statistics on calls of memoized functions (e.g., fn)
    (clear-memoize-statistics) ; clear memoization (and profiling) statistics

  Evaluation of (profile 'fn) redefines fn so that a count will be kept
  of the calls of FN. The information recorded may be displayed, for
  example, by invoking ([memoize-summary]) or (equivalently)
  (memsum). If you wish to gather fresh statistics for the evaluation
  of a top-level form, see [clear-memoize-statistics].

  Profile is just a macro that calls [memoize] to do its work. Profile
  gives the two keyword parameters :condition and :recursive of
  [memoize] the value nil. Other keyword parameters for memoize,
  which must not include :condition, :condition-fn, or :recursive,
  are passed through. To eliminate profiling, use [unmemoize]; for
  example, to eliminate profiling for function fn, evaluate
  (unmemoize 'fn).

  You may find raw Lisp functions profile-all and profile-acl2 to be
  useful. These may be found in file
  centaur/memoize/old/profile-raw.lsp distributed with the
  [community-books].")
 (PROG2$
  (PROGN$ ACL2-BUILT-INS)
  "Execute two forms and return the value of the second one

  See [hard-error], see [illegal], and see [cw] for examples of
  functions to call in the first argument of prog2$. Also see
  [progn$] for an extension of prog2$ that handles than two
  arguments.

  Semantically, (Prog2$ x y) equals y; the value of x is ignored.
  However, x is first evaluated for side effect. Since the ACL2
  [programming] language is applicative, there can be no logical
  impact of evaluating x. However, x may involve a call of a function
  such as [hard-error] or [illegal], which can cause so-called ``hard
  errors'', or a call of [cw] to perform output.

  Here is a simple, contrived example using [hard-error]. The intention
  is to check at run-time that the input is appropriate before
  calling function bar.

    (defun foo-a (x)
      (declare (xargs :guard (consp x)))
      (prog2$
       (or (good-car-p (car x))
           (hard-error 'foo-a
                       \"Bad value for x: ~p0\"
                       (list (cons #\\0 x))))
       (bar x)))

  The following similar function uses [illegal] instead of hard-error.
  Since illegal has a guard of nil, [guard] verification would
  guarantee that the call of illegal below will never be made (at
  least when guard checking is on; see [set-guard-checking]).

    (defun foo-b (x)
      (declare (xargs :guard (and (consp x) (good-car-p (car x)))))
      (prog2$
       (or (good-car-p (car x))
           (illegal 'foo-b
                    \"Bad value for x: ~p0\"
                    (list (cons #\\0 x))))
       (bar x)))

  We conclude with a simple example using [cw] from the ACL2 sources.

    (defun print-terms (terms iff-flg wrld)

    ; Print untranslations of the given terms with respect to iff-flg, following
    ; each with a newline.

    ; We use cw instead of the fmt functions because we want to be able to use this
    ; function in print-type-alist-segments (used in brkpt1), which does not return
    ; state.

      (if (endp terms)
          terms
        (prog2$
         (cw \"~q0\" (untranslate (car terms) iff-flg wrld))
         (print-terms (cdr terms) iff-flg wrld))))")
 (PROGN
  (EVENTS)
  "Evaluate some [events]

    Example Form:
    (progn (defun foo (x) x)
           (defmacro my-defun (&rest args)
             (cons 'defun args))
           (my-defun bar (x) (foo x)))

    General form:
    (progn event1 event2 ... eventk)

  where k >= 0 and each eventi is a legal embedded event form (see
  [embedded-event-form]). Each event is printed (by default) and
  evaluated, in sequence. If any event fails, the entire progn call
  is deemed to have failed, and the logical [world] is rolled back to
  what it was immediately before the progn call was evaluated. A
  utility is provided to assist in debugging failures of such
  execution; see [redo-flat].

  NOTE: If the eventi above are not all legal embedded event forms (see
  [embedded-event-form]), consider using [er-progn] or (with great
  care!) [progn!] instead. If your goal is simply to execute a
  sequence of top-level forms that are not necessarily all legal
  embedded event forms, consider using ld instead; see [ld].

  For a related event form that does allow introduction of
  [constraint]s and [local] [events], see [encapsulate].

  ACL2 does not allow the use of progn in definitions. Instead, the
  macro [er-progn] can be used for sequencing [state]-oriented
  operations; see [er-progn] and see [state]. If you are using
  single-threaded objects (see [stobj]) you may wish to define a
  version of [er-progn] that cascades the object through successive
  changes. ACL2's [pprogn] is the state analogue of such a macro.")
 (PROGN!
  (EVENTS)
  "Evaluate some forms, not necessarily [events]

  WARNING! This event is intended for advanced users who, in essence,
  want to build extensions of ACL2. See see [defttag], in particular,
  the ``WARNING'' there, and see the warning about [stobj]s at the
  end of this documentation topic.

  Progn! can be used like [progn], even in [books]. But unlike [progn],
  progn! does not require its constituent forms to be [events] (see
  [embedded-event-form]), except that the first form cannot be a
  symbol unless it is :state-global-bindings (advanced feature,
  described below). However, see [make-event] for a ``Restriction to
  the Top Level'' that still applies under a call of progn!.

  Because progn! allows non-events, it differs from progn in another
  important respect: progn! is illegal unless there is an active
  ttag; see [defttag].

  See community book [hacker] for two macros, [with-raw-mode] and
  [with-redef-allowed], each defined in terms of progn!, that allow
  arbitrary forms in contexts that would normally require legal
  embedded event forms.

  Given a form (progn! form1 form2 ... formk), ACL2 will evaluate each
  formi in turn (for i from 1 to k). If a form returns more than one
  value (see [mv]) where the first value returned is not nil, then no
  later form will be evaluated and the result returned by the progn!
  call will be (mv erp val state) for some non-nil value erp,
  signifying an error (see [ld-error-triples]). Otherwise the
  evaluation is considered to have succeeded, and will continue with
  later forms. The value returned by a call of progn! with no such
  error is of the form (mv nil v state), where v depends on the last
  form as follows. If the last form evaluates to a single value, then
  v is that value, except if the value is a [stobj], say ST, then v
  is the symbol REPLACED-ST. Otherwise the last form evaluates to
  some (mv nil x ...), and v is x unless after the final form's
  evaluation we are in raw-mode (see [set-raw-mode]), in which case
  the progn! call returns nil (so that ACL2 can at least print the
  result --- imagine Lisp returning a pathname object from a load
  call, for example).

  The normal undoing mechanism does not generally apply to forms within
  a progn! that are not legal ACL2 [events] (see
  [embedded-event-form]). In particular, note that a non-[local] call
  of progn! in an [encapsulate] event will generally be evaluated
  twice: once on each pass. This fact is worth keeping in mind if you
  are using progn! to change the state of the system; ask yourself if
  it is acceptable to apply that state-changing operation more than
  once.

  Please note that progn! may differ from [progn] in the following
  sense: definitions within a call of progn! might not be compiled.
  For example, consider the following book.

    (in-package \"ACL2\")
    (defttag :test)
    (progn  (defun f1 (x) x))
    (progn! (defun f2 (x) x))

  If the underlying Lisp is GCL 2.6.7, then after including this
  certified book (where the default certification took place,
  creating a compiled file), then f1 is a compiled function but f2 is
  not. For other Lisps supported by ACL2, both f1 and f2 are
  compiled, though we are not sure that every function under every
  call of progn! would similarly be compiled.

  We now describe, for system hackers only, a sophisticated extension
  of progn! not mentioned above: support for keyword argument
  :state-global-bindings. If the first argument of progn! is this
  keyword, then the second argument is treated as a list of bindings
  as expected by ACl2 system function [state-global-let*]. Thus, in
  the ACL2 loop,

    (progn! :state-global-bindings bindings form1 form2 ... formk)

  is treated as follows:

    (progn! (state-global-let* bindings (progn! form1 form2 ... formk)))

  However, in raw Lisp the former is just:

    (progn form1 form2 ... formk)

  Thus, one should use the :state-global-bindings argument with care,
  since the behavior in the ACL2 loop can differ from that in Common
  Lisp. The intention is that one bind only [state] global variables
  that are relevant to evaluation of the forms within the ACL2 loop
  and are harmlessly ignored for evaluation of those forms in raw
  Lisp. Here is a typical sort of example, as [state] global
  ld-redefinition-action is not relevant to the evaluation of [defun]
  in raw Lisp.

    (progn! (remove-untouchable 'ld-redefinition-action nil)
            (progn! :state-global-bindings
                    ((ld-redefinition-action '(:doit . :overwrite)))
                    (defun foo (x)
                      (cons x x)))
            (push-untouchable 'ld-redefinition-action nil))

  Finally, we point out a pitfall of progn! related to [stobj]s. The
  following book can cause a hard Lisp error, depending on the host
  Common Lisp, when certified with a non-nil value for compile-flg
  (see [certify-book]).

    (in-package \"ACL2\")
    (defstobj st fld)
    (defttag :my-ttag)
    (progn! (update-fld 3 st))

  The problem is that the [stobj] variable st is not known to raw Lisp.
  The compilation problem disappears if the last form above is
  replaced with the following two forms.

    (include-book \"hacking/hacker\" :dir :system)
    (with-raw-mode (update-fld 3 *the-live-st*))")
 (PROGN$
  (BASICS ACL2-BUILT-INS)
  "Execute a sequence of forms and return the value of the last one

  This macro expands to a corresponding nest of calls of prog2$; see
  [prog2$]. The examples below show how this works: the first case
  below is typical, but we conclude with two special cases.

    ACL2 !>:trans1 (progn$ (f1 x) (f2 x) (f3 x))
     (PROG2$ (F1 X) (PROG2$ (F2 X) (F3 X)))
    ACL2 !>:trans1 (progn$ (f1 x) (f2 x))
     (PROG2$ (F1 X) (F2 X))
    ACL2 !>:trans1 (progn$ (f1 x))
     (F1 X)
    ACL2 !>:trans1 (progn$)
     NIL
    ACL2 !>


Subtopics

  [Prog2$]
      Execute two forms and return the value of the second one")
 (PROGRAM
  (DEFUN-MODE)
  "To set the default [defun-mode] to :[program]

    Example:
    ACL2 !>:program
    ACL2 p!>

  Typing the keyword :program sets the default [defun-mode] to
  :program.

  Functions defined in :program mode are logically undefined but can be
  executed on constants outside of deductive contexts. See
  [defun-mode].

  Calls of the following macros are ignored (skipped) when in :program
  mode.

    local
    verify-guards
    verify-termination
    defaxiom
    defthm
    deftheory
    in-theory
    in-arithmetic-theory
    regenerate-tau-database
    theory-invariant
    defchoose

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.

  See [defun-mode] for a discussion of the [defun-mode]s available and
  what their effects on the logic are. See [default-defun-mode] for a
  discussion of how the default [defun-mode] is used. This event is
  equivalent to (table acl2-defaults-table :defun-mode :program), and
  hence is [local] to any [books] and [encapsulate] [events] in which
  it occurs. See [ACL2-defaults-table].

  Recall that the top-level form :program is equivalent to (program);
  see [keyword-commands]. Thus, to change the default [defun-mode] to
  :program in a book, use (program), which is an embedded event form,
  rather than :program, which is not a legal form for [books]. See
  [embedded-event-form].

  See [program-wrapper] for how to use program-mode functions to avoid
  expensive [guard] checks.


Subtopics

  [Program-wrapper]
      Avoiding expensive guard checks using [program]-mode functions")
 (PROGRAM-WRAPPER
  (PROGRAM PROGRAMMING ADVANCED-FEATURES)
  "Avoiding expensive guard checks using [program]-mode functions

  Application programs can benefit from the avoidance of expensive
  [guard] checks, as illustrated by the following contrived example.
  In this example, imagine that expensive-guard is a [guard] that is
  expensive to evaluate, and that expensive-update is a function that
  you want to run in a context where you know the guard is true, so
  you want to avoid the expense of evaluating that guard. Then when
  you call expensive-update-wrapper, the call will be evaluated
  directly in raw Lisp, hence without any subsidiary guard-checking
  for the function expensive-update.

    (defun fib (n)
      (declare (xargs :guard (natp n)))
      (if (zp n)
          0
        (if (eql n 1)
            1
          (+ (fib (- n 1))
             (fib (- n 2))))))

    (defun expensive-guard (n)
      (declare (xargs :guard t))
      (and (natp n)
           (natp (fib n))))

    (defstobj st (fld :type integer :initially 0))

    (defun expensive-update (n st)
      (declare (xargs :stobjs st
                      :guard (expensive-guard n)))
      (update-fld n st))

    (defun expensive-update-wrapper (n st)
      (declare (xargs :stobjs st :mode :program))
      (expensive-update n st))

  Remark. The example was chosen to illustrates an additional point: a
  potential slowdown due to what could be called ``invariant-risk''.
  This is might not be a significant issue in practice, so you may
  wish to stop reading here unless you suspect a possibly significant
  performance hit related to warnings like the following.

    ACL2 Warning [Invariant-risk] in EXPENSIVE-UPDATE-WRAPPER:  Invariant-
    risk has been detected for a call of function EXPENSIVE-UPDATE-WRAPPER
    (as possibly leading to an ill-guarded call of UPDATE-FLD); see :DOC
    invariant-risk.

  You can use [set-check-invariant-risk] either simply to avoid this
  warning or, at the (perhaps small) risk of unsoundness, also to
  avoid the potential slowdown.

    (set-check-invariant-risk t)   ; no change except to avoid the warning
    (set-check-invariant-risk nil) ; risk unsoundness but gain some speed

  See [set-check-invariant-risk].

  To understand the issue, consider the case that a [stobj] updater
  (such as update-fld above) is called on ill-guarded arguments. In
  that case the resulting ACL2 [state] could be ill-formed. For
  example, consider the call (expensive-update-wrapper nil st). That
  call leads logically to the call (update-fld nil st), which
  violates the invariant that (fld st) is an integer, as specified by
  the :type in the [defstobj] form above. ACL2 takes measures to
  prevent this mistake by checking guards on stobj updaters. The
  resulting slowdown might be trivial; for example, the following
  (legal) call runs virtually instantaneously after executing
  (set-check-invariant-risk nil).

    (expensive-update-wrapper 40 st)

  We conclude with a technical note about how the implementation
  handles calls of [program]-mode functions with ``invariant-risk'',
  that is, for which ACL2 considers it possible for such a call to
  lead to a call of a [stobj] updater that has a non-trivial [guard].
  We need to avoid such updates whose guard is violated; but guards
  aren't checked in raw Lisp. In the top-level loop, every function
  call (f t1 ... tk) is essentially replaced by (ec-call (f t1 ...
  tk)) before its evaluation, resulting in a corresponding call of
  the so-called executable-counterpart of f, sometimes called the
  ``*1* function'' for f, or ``*1*f''. Normally, if f is a
  [program]-mode function, then the body of *1*f leads directly to a
  call of f. But if f has invariant-risk, then in most cases (with
  exceptions including so-called ``safe mode'' as well as the case
  that (set-guard-checking :all) has been executed), a call of *1*f
  will lead to evaluation of a modified body of f, where each call of
  an invariant-risk function has essentially been wrapped in ec-call.
  The explanation above is a simplification; for example, it does not
  describe how ``*1* code'' generation is modified for [logic]-mode
  functions with invariant-risk. To see exactly what is generated,
  evaluate (trace! (oneify-cltl-code :native t)) immediately before
  submitting the definition.")
 (PROGRAMMING
  (ACL2)
  "Programming in ACL2

  This [documentation] topic is a parent topic under which we include
  documentation topics for built-in functions, macros, and special
  forms, as well as topics for notions important to programming with
  ACL2. If you don't find what you're looking for, see the Index or
  see individual topics that may be more directly appropriate; for
  example, see [events] for top-level event constructors like
  [defun]. A subtopic, [ACL2-built-ins], contains as subtopics
  (displayed in a flat list) most of the topics in the
  [documentation] hierarchy that appear under this `programming'
  topic.

  Also see [debugging] for utilities that can aid in programming.


Subtopics

  [ACL2-built-ins]
      ''Catch-all'' topic for built-in ACL2 functions

  [Alists]
      Operations on association lists, which bind keys to values.

  [Arrays]
      ACL2 arrays and operations on them

  [Basics]
      Basic control structures for [programming] like [if] and [cond],
      binding operators like [let] and [flet], multiple-value
      constructs like [mv], and so forth.

  [Characters]
      Characters in ACL2 and operations on them

  [Compilation]
      Compiling ACL2 functions

  [Conses]
      A cons is an ordered pair. In ACL2, data structures like [lists],
      [alists], etc., are made up of conses.

  [Declare]
      Extra declarations that can occur in function definitions, [let]
      bindings, and so forth.

  [Defabbrev]
      A convenient form of macro definition for simple expansions

  [Defconst]
      Define a constant

  [Defmacro]
      Define a macro

  [Defpkg]
      Define a new symbol package

  [Defun]
      Define a function symbol

  [Equality-variants]
      Versions of a function using different equality tests

  [Errors]
      Support for causing runtime errors, breaks, assertions, etc.

  [Fast-alists]
      Alists with hidden hash tables for faster execution

  [Get-internal-time]
      Runtime vs. realtime in ACL2 timings

  [Guard]
      Restricting the domain of a function

  [Hons]
      ([hons] x y) returns a [normed] object equal to ([cons] x y).

  [Io]
      Input/output facilities in ACL2

  [Irrelevant-formals]
      Formals that are used but only insignificantly

  [Lists]
      Lists of objects, the classic Lisp data structure.

  [Mbe]
      Attach code for execution

  [Memoize]
      Turn on memoization for a specified function

  [Mutual-recursion]
      Define some mutually recursive functions

  [Numbers]
      Numbers in ACL2 and operations on them

  [Packages]
      Collections of symbols that act as namespaces.

  [Primitive]
      Primitive functions built into ACL2 without definitions

  [Program-wrapper]
      Avoiding expensive guard checks using [program]-mode functions

  [Programming-with-state]
      Programming using the von Neumannesque ACL2 [state] object

  [Redefining-programs]
      An explanation of why we restrict redefinitions

  [Set-check-invariant-risk]
      Potential slowdown for [program]-mode updates to [stobj]s or
      [arrays]

  [Set-duplicate-keys-action]
      Control action for macro calls with duplicate keyword arguments

  [Sleep]
      Sleep for some number of seconds

  [State]
      The von Neumannesque ACL2 state object

  [Stobj]
      Single-threaded objects or ``von Neumann bottlenecks''

  [Strings]
      Strings are atomic objects that contain character sequences, like
      \"Hello World\".

  [Symbols]
      Symbols in ACL2 and operations on them

  [System-utilities]
      List of system-level programming utilities

  [Time$]
      Time an evaluation

  [Unmemoize]
      Turn off memoization for the specified function")
 (PROGRAMMING-KNOWLEDGE-TAKEN-FOR-GRANTED
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Background knowledge in ACL2 programming for theorem prover tutorial

  This brief review of the programming language is presented as a
  sequence of questions and answers meant to test your knowledge of
  the ACL2 programming language. If you want a gentle introduction to
  the programming language, see
  {http://www.cs.utexas.edu/users/moore/publications/gentle-intro-to-acl2-programming.html
  |
  http://www.cs.utexas.edu/users/moore/publications/gentle-intro-to-acl2-programming.html}.

  Before we get started with the programming drill, let us remind you
  that all we're interested in here is the language, not the
  ``program development environment.'' It's impossible to program in
  ACL2 or any other language without a decent environment, one that
  at the very least includes a way to prepare and edit files of
  programs. The two most popular program development environments
  among ACL2 users are [Emacs] [{ICON}] and the Eclipse-based
  [ACL2-Sedan] [{ICON}]. The Sedan provides the most support for the
  new user, including real-time syntax checking and a facility for
  testing among many other features. But in this drill we're not
  interested in the program development environment, we're interested
  in your understanding of the ACL2 language.

  Q: What do you think this command does?

    (defun rev (x)
      (if (endp x)
          nil
          (append (rev (cdr x)) (list (car x)))))

  A: It defines a function named rev that takes one argument, treats it
  like a list, and reverses the order of the elements in that list.
  To figure this out from the definition, you have to know that
  append concatenates two lists. Logically speaking, the defun of rev
  adds the axiom:

    (rev x)
    =
    (if (endp x)
        nil
        (append (rev (cdr x)) (list (car x)))),

  implicitly quantified for all x.

  Q: Given the defun of rev above, what are the formal parameters? What
  is the body of the definition? Write down a call of append that
  occurs in the body of rev. What are the actuals of that call? A:
  The formals of rev is the list of variables after the first rev in
  the defun, namely (x). We say x is the first (and only) formal
  here. The body of rev is the entire if-expression. The only call of
  append in the body is

    (append (rev (cdr x)) (list (car x)))

  and the actuals of that call are, respectively, (rev (cdr x)) and
  (list (car x)).

  Q: What do you get if you evaluate (rev '(a b c d))? A: (D C B A).

  Q: How did rev change the case of the elements, e.g., lowercase a was
  in the input list but uppercase A was in the output? A: This is a
  trick question. Rev doesn't change the case of the elements. ACL2
  is case-insensitive when dealing with symbols. The symbol a is read
  in as the symbol A. Thus, when writing function names, for example,
  we can write rev, Rev, REV, or even ReV and always be referring to
  the function REV. By default, ACL2 prints symbols in uppercase.

  Q: What does (rev '((a b c) \"Abc\" \"a\" b #\\c)) return? A: (#\\c B \"a\"
  \"Abc\" (A B C)). If you thought the answer was any of these, then
  you need to think or read more carefully:

    (#\\C B \"A\" \"ABC\" (A B C))

    (#\\C B \"A\" \"ABC\" (C B A))

  The first wrong answer above is wrong because Lisp is ``case
  insensitive'' only for symbols, not for character objects like #\\c
  (the lowercase character c) or for strings. Furthermore, \"A\" is a
  string, not a symbol; it is different from A. The second wrong
  answer above is wrong because rev does not go into the individual
  elements of the list, it just reverses the order of the elements.
  So it doesn't change the element (A B C) to (C B A).

  Q: In the question about what (rev '(a b c d)) returns, we put a
  quote mark before the (a b c d) but not before the answer, (D C B
  A). Why? A: The phrase ``x evaluates to y'' treats x as a term to
  be evaluated and y as an object. (Rev '(a b c d)) is a term to be
  evaluated and denotes a call of the function rev on the value of
  the argument term '(a b c d). The value of that argument term is
  the object (a b c d). The value of the call of rev is the object (d
  c b a). If you have an object, obj, and you wish to create a term
  whose value is obj, then you put a quote mark in front of it, 'obj.

  Q: Can rev be applied to something other than a list? A: Yes, every
  ACL2 function can be applied to any object. ACL2 is an untyped
  programming language: every variable ranges over the entire
  universe of objects. In normal usage, rev is applied to lists but
  there is nothing about the syntax of the language that prevents it
  being applied to non-lists.

  Q: So what does (rev 23) evaluate to? A: Nil.

  Q: Why? A: Because (endp 23) is t, because endp is defined:

    (defun endp (x) (not (consp x)))

  Thus, if rev is applied to anything that is not a cons, it returns
  nil.

  Q: So what does (rev '(a b c . d)) evaluate to? A: (c b a). To
  explain why requires demonstrating that you know what (a b c . d)
  means. It is the object computed by evaluating:

    (cons 'a
          (cons 'b
                (cons 'c
                      'd))).

  That is, it is a list whose ``terminal marker'' is the atom D. Rev
  treats that list exactly as it treats the nil-terminated list of
  the same elements, (a b c), because (endp 'D) = (endp nil) = t.

  Q: What does (rev 1 2 3) evaluate to? A: That's a trick question. Rev
  takes one argument, not three. So (rev 1 2 3) is an ill-formed
  term.

  Q: What does (rev '(a b c . d . nil)) evaluate to? A: That is a trick
  question. There is no such object. In Lisp's ``dot notation'' every
  dot must be followed by a well-formed object and then a close
  parenthesis. Usually that ``well-formed object'' is an atom. If it
  is not an atom, i.e., if it is a cons, then the entire expression
  could have been written without that dot. For example, (a b c . (d
  e)) is an object, but it could be written (a b c d e).

  Q: Do (rev (rev x)) and x always evaluate to the same object? A: No.
  (Rev (rev 23)) evaluates to nil, not 23.

  Q: Do (rev (rev x)) and x always evaluate to the same object when x
  is a cons? A: No. (rev (rev '(a b c . d))) evaluates to (a b c),
  not (a b c . d).

  Q: When are (rev (rev x)) and x equal? A: When the terminal marker of
  x is nil.

  Q: Can you define a Lisp function that recognizes nil-terminated
  lists? A: Yes, but it is not necessary for the user to define that
  concept because Common Lisp provides such a function which is
  logically defined as follows:

    (defun true-listp (x)
      (if (consp x)
          (true-listp (cdr x))
          (equal x nil))).

  This can be paraphrased: (true-listp x) means that if x is a cons,
  its cdr is a true-listp and if x is not a cons, it must be nil.
  Thus, (true-listp '(a b c)) is t and (true-listp '(a b c . d)) is
  nil.

  Q: Can you write a Lisp formula that says ``If z is a nil-terminated
  list then reversing the result of reversing z is z''?

  A: Yes:

    (implies (true-listp z)
             (equal (rev (rev z)) z)).

  Q: Is this all there is to ACL2 programming? A: No! ACL2 provides
  many other features. For a full list of all the primitive functions
  in ACL2 see [programming] [{ICON}]. Some highlights for the
  beginner are mentioned below, but all of the links below ought to
  be tagged with the [{ICON}] sign.

  * [list]: build a nil-terminated list from the values of n terms,
  e.g., (list x (+ 1 x) (+ 2 x)) returns (3 4 5) if x is 3.

  * [list*]: build a non-nil terminated list of n objects from the
  values of n+1 terms, e.g., (list* x (+ 1 x) (+ 2 x) (* -1 x))
  returns the list (3 4 5 . -3) if x is 3.

  * [and], [or], [not], [implies], [iff]: The propositional
  connectives. And and or are allowed to take a varying number of
  arguments, e.g., (and p q r) is just an abbreviation for (and p
  (and q r)). In Lisp, and returns nil if any of its arguments
  evaluates to nil; otherwise it returns the value of the last
  argument! Thus, (and t t 3) returns 3! If you object to the idea
  that and is not Boolean, don't give it non-Boolean arguments!
  Similarly, or returns the value of the first argument that
  evaluates to non-nil, or nil if they all evaluate to nil. Both and
  and or can be thought of as ``lazy'' in that they don't always have
  to evaluate all their arguments. This is really accomplished by
  treating and and or as abbrevations for if nests.

  * [+], [*], [-], [/], [floor], [mod], [<], [<=], [>=], [>]: the Lisp
  elementary arithmetic operators. Both + and * allow varying numbers
  of arguments. All the arithmetic operators default non-numeric
  arguments to 0. If you don't like the idea that (+ 1 2 t) is 3,
  don't ask + to add t to something!

  * [natp], [integerp], [rationalp], [characterp], [stringp],
  [symbolp], [consp]: the recognizers for the primitive data types.
  The first three recognize subsets of the ACL2 numeric universe. The
  naturals are a subset of the integers, the integers are a subset of
  the rationals, and the rationals are a subset of the objects
  recognized by [ACL2-numberp], which also includes the
  [complex-rationalp]s. The other recognizers listed above recognize
  characters, strings, symbols, and conses.

  * [cond]: a convenient way to write a cascading nest of ifs, e.g.,

    (cond ((not (natp x)) 'non-natural)
          ((equal x 0) 'zero)
          ((evenp x) 'positive-even)
          (t 'positive-odd))

  abbreviates

    (if (not (natp x))
        'non-natural
        (if (equal x 0)
            'zero
            (if (evenp x)
                'positive-even
                'positive-odd))).

  * [case]: a convenient way to case split on the identity of an
  object.

    (case key
      (non-natural -1)
      (zero 0)
      ((positive-even positive-odd) 'positive-natural)
      (otherwise 'unknown))

  abbreviates

    (cond ((eql key 'non-natural) -1)
          ((eql key 'zero) 0)
          ((member key '(positive-even positive-odd))
           'positive-natural)
          (t 'unknown)).

  * user defined macros: using [defmacro] [{ICON}] you can introduce
  your own abbreviations. We recommend you not do this until you're
  good at list processing since macros are functions that build
  objects representing terms.

  * [mutual-recursion]: allows you to define mutually-recursive
  functions.

  * [mv] and [mv-let]: allow functions to return ``multiple-values''.
  In Lisp, such functions return vectors of values, the vectors are
  represented as lists of values, but the implementations are
  generally more efficient. For example, (mv x y z) returns a
  ``vector'' consisting of the values of x, y, and z.

    (mv-let (a b c)
            (foo x)
            (bar a b c x))

  evaluates (foo x), treats the result as a vector of three values,
  binds the variables a, b, and c to those three values, and
  evaluates and returns (bar a b c x).

  ACL2 also provides many other features, such as single-threaded
  objects which may be ``destructively modified'' (see [stobj]
  [{ICON}], including a very special single-threaded object that
  records the [state] [{ICON}] of the ACL2 system), file input and
  output (see [io] [{ICON}]), applicative arrays (see [arrays]
  [{ICON}]) and property lists (see [getprop] [{ICON}]) and other
  facilities necessary for it to be a practical programming language.
  However, we strongly recommend that as a new user you stay away
  from these features until you are good at proving theorems about
  elementary list processing!

  If this little drill made sense to you, you know enough of the
  programming language to get started. Use your browser's Back Button
  now to return to [introduction-to-the-theorem-prover].

  If you are uncomfortable with ACL2 programming, we recommend that you
  study
  {http://www.cs.utexas.edu/users/moore/publications/gentle-intro-to-acl2-programming.html
  |
  http://www.cs.utexas.edu/users/moore/publications/gentle-intro-to-acl2-programming.html}
  and
  {http://www.cs.utexas.edu/users/moore/publications/acl2-programming-exercises1.html
  |
  http://www.cs.utexas.edu/users/moore/publications/acl2-programming-exercises1.html}.

  However, we strongly recommend that you first invest in learning
  either the [Emacs] or Eclipse-based [ACL2-Sedan] program
  development environments, since it is foolish to try to learn how
  to program in a stand-alone read-eval-print loop!

  While getting started, many users find the Hyper-Card a handy index
  into the documentation for the ACL2 language:

  {http://www.cs.utexas.edu/users/moore/publications/hyper-card.html |
  http://www.cs.utexas.edu/users/moore/publications/hyper-card.html}

  Once you are comfortable with the ACL2 programming language, use your
  browser's Back Button to return to
  [introduction-to-the-theorem-prover].")
 (PROGRAMMING-WITH-STATE
  (STATE PROGRAMMING)
  "Programming using the von Neumannesque ACL2 [state] object

  This [documentation] section introduces some common techniques for
  programming using the ACL2 state object. A prerequisite is thus a
  basic understanding of that object; see [state]. We hope this
  section is useful, and we invite suggestions for improvements and
  additions.

  A supplement to this section is the ACL2 source code, which uses most
  (and probably all) of the techniques discussed here. That code is
  thus a source of many examples, which can serve as ``templates'' to
  guide one's own programming with state.

  Recall that ``ACL2'' stands for ``A Computational Logic for
  Applicative Common Lisp''. In particular, the language is
  applicative: there are no global variables or side effects. For
  many purposes this does not feel restrictive; for example, an ACL2
  user who is programming in raw Lisp may well be more comfortable
  coding a factorial function applicatively, using recursion, rather
  than using iteration with repeated assignment to the same variable.

  However, there are situations that call for reading or modifying the
  system state, such as performing input and output, signalling
  errors, saving information from one computation for use in a later
  one, or reading and updating system-level or environmental data.
  This section provides an introductory guide for writing functions
  that traffic in state. We emphasize that this guide is intended as
  an introduction; more complete documentation may often be found by
  following links to documentation of individual utilities, and
  again, more examples may be found by searching the ACL2 source code
  for uses of the functions and macros mentioned below. The rest of
  this section is organized as follows.

    ENABLING PROGRAMMING WITH STATE
    STATE GLOBALS AND THE ACL2 LOGICAL WORLD
    A REMARK ON GUARDS
    ERRORS AND ERROR TRIPLES
    SEQUENTIAL PROGRAMMING
    BINDING VARIABLES USING ERROR TRIPLES
    BINDING STATE GLOBAL VARIABLES
    INPUT AND OUTPUT
    TIMINGS
    ENVIRONMENT AND SYSTEM
    REMARKS ON EVENTS AND LD
    ADVANCED TOPICS

  ENABLING PROGRAMMING WITH STATE

  In order to submit a definition that takes [state] as a formal
  parameter, you must either declare state as a :[stobj] (see
  [xargs]) or first evaluate the following form at the top level:
  (set-state-ok t).

  Consider for example the following trivial definition.

    (defun foo (state)
      (mv 3 state))

  If you submit the above definition in a fresh ACL2 session, you will
  get this error message.

    ACL2 Error in ( DEFUN FOO ...):  The variable symbol STATE should not
    be used as a formal parameter of a defined function unless you are
    aware of its unusual status and the restrictions enforced on its use.
    See :DOC set-state-ok.

  If first you evaluate (set-state-ok t), you can admit the above
  definition. Alternatively, you can declare state as a :[stobj], as
  follows.

    (defun foo (state)
      (declare (xargs :stobjs state))
      (mv 3 state))

  A difference in the two approaches is that for the latter, a [guard]
  proof obligation is generated by default. See the section below
  entitled ``A remark on guards''.

  STATE GLOBALS AND THE ACL2 LOGICAL WORLD

  Recall (see [state]) that one of the fields of the ACL2 state object
  is the global-table, which logically is an alist associating
  symbols, known as ``state globals'' or ``state global variables'',
  with values. But no such alist actually exists in the
  implementation. Instead, ACL2 provides utilities for reading state
  globals --- see [@] and see [f-get-global] --- and utilities for
  writing them --- see [assign] and see [f-put-global]. The following
  log shows how they work; further explanation follows below.

    ACL2 !>(assign my-var (+ 3 4))
     7
    ACL2 !>(@ my-var)
    7
    ACL2 !>(f-put-global 'my-var (+ 1 5) state)
    <state>
    ACL2 !>(f-get-global 'my-var state)
    6
    ACL2 !>

  Note that the first result is indented by one space. This is ACL2's
  way to indicate that the [assign] expression returned an ``error
  triple'' and that no error was signalled. We discuss error triples
  in more detail below; also see [error-triple].

  As illustrated above, the output signatures of the utilities for
  assigning to state globals differ from each other as follows:
  [f-put-global] returns state, but [assign] returns an error triple
  (mv nil val state) where val is the value assigned to the state
  global. The output signatures of the utilities for reading, @ and
  f-get-global, are identical. In fact, the form (f-get-global
  'my-var state) is the single-step macroexpansion of the form (@
  my-var), as can be confirmed using [trans1].

    ACL2 !>:trans1 (@ my-var)
     (F-GET-GLOBAL 'MY-VAR STATE)
    ACL2 !>

  State globals are useful for conveying persistent state information.
  Consider for example the utility [set-inhibit-output-lst]. The form
  (set-inhibit-output-lst '(prove proof-tree)) is approximately
  equivalent to (assign inhibit-output-lst '(prove proof-tree)). We
  say ``approximately'' because set-inhibit-output-lst additionally
  does some error checking to insure that all the tokens in the new
  list are legal. When deciding whether to print output, the ACL2
  system reads the value of state global variable inhibit-output-lst.

  A particularly useful state global is current-acl2-world, whose value
  is the ACL2 logical [world]. Because the ACL2 world is commonly
  accessed in applications that use the ACL2 state, ACL2 provides a
  function that returns the world: (w state) = (f-get-global
  'current-acl2-world state). While it is common to read the world,
  only functions set-w and set-w! are available to write the world,
  but these are untouchable and these should generally be avoided
  except by system implementors (pl[remove-untouchable]).

  A REMARK ON GUARDS

  For a function definition (see [defun]), if state is specified as a
  [stobj] as with the form (declare (xargs :stobjs state)), then the
  [guard] for that function is considered to include the condition
  (state-p state). By default, [guard] verification will then be
  performed.

  We can illustrate this point by modifying the example above as
  follows, to read the value of state global gag-mode.

    (defun foo (state)
      (declare (xargs :stobjs state))
      (f-get-global 'gag-mode state))

  If you try this in a fresh ACL2 session, the proof will fail with the
  following key checkpoint, which says that the state global gag-mode
  is bound in the global-table of the state.

    (IMPLIES (STATE-P1 STATE)
             (ASSOC-EQUAL 'GAG-MODE (NTH 2 STATE)))

  How can we deal with this proof failure? One way is simply to ignore
  the issue by defining the function in :[program] mode, as follows.

    (defun foo (state)
      (declare (xargs :stobjs state
                      :mode :program))
      (f-get-global 'gag-mode state))

  Perhaps a better way is to strengthen the guard to assert that the
  indicated state global is bound, as follows.

    (defun foo (state)
      (declare (xargs :guard (boundp-global 'gag-mode state)
                      :stobjs state))
      (f-get-global 'gag-mode state))

  Also see [guard-miscellany] for a discussion of how guards are
  generated from [xargs] fields of [declare] forms, specifically, for
  keywords :guard and :stobjs.

  ERRORS AND ERROR TRIPLES

  When evaluation returns three values, where the first two are
  ordinary objects and the third is the ACL2 state, the result may be
  called an ``error triple''. (Whether it is treated as an error
  triple depends on the programmer.) Error triples are often denoted
  (mv erp val state), and common ACL2 programming idioms treat erp as
  a flag indicating whether an error is being signalled and val as
  the ``value'' computed. Also see [error-triple].

  Even ACL2 users who are not programmers encounter error triples,
  because these are the values returned by evaluation of ACL2
  [events]. Consider the following log, where the only user input is
  the defun form following the [prompt].

    ACL2 !>(defun foo (x) x)

    Since FOO is non-recursive, its admission is trivial.  We observe that
    the type of FOO is described by the theorem (EQUAL (FOO X) X).

    Summary
    Form:  ( DEFUN FOO ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     FOO
    ACL2 !>

  All output above results from explicit calls of output functions,
  except for the next-to-last line, which contains FOO. Notice the
  single-space indentation preceding FOO. That space indicates that
  in fact, the value returned by evaluation of the defun form is the
  error triple whose error flag is nil and whose computed value is
  FOO. By default, ACL2 prints any error triple (mv nil val state) by
  inserting a space before printing val. You can change the default
  by setting state global [ld-post-eval-print] to t; notice how the
  same result is printed below.

    ACL2 !>:u
              0:x(EXIT-BOOT-STRAP-MODE)
    ACL2 !>(set-ld-post-eval-print t state)
    (NIL T <state>)
    ACL2 !>(defun foo (x) x)

    Since FOO is non-recursive, its admission is trivial.  We observe that
    the type of FOO is described by the theorem (EQUAL (FOO X) X).

    Summary
    Form:  ( DEFUN FOO ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
    (NIL FOO <state>)
    ACL2 !>

  The way error triples are printed by ld is controlled not only by
  state global ld-post-eval-print, but also by state global
  ld-error-triples. These are examples of ``ld specials''; see [ld],
  see [ld-post-eval-print], and see [ld-error-triples].

  It is so common to produce an error triple whose first (error flag)
  component is nil that ACL2 provides a handy macro, value, for this
  purpose. Thus, (value <expression>) is equivalent to (mv nil
  <expression> state). Also see [value-triple] for a similar
  construct that is a legal event form.

  We turn now to the topic of errors. The macro [er] ``causes'' an
  error, but there are really two quite different kinds of errors:
  ``soft'' and ``hard'' errors. We use the term ``soft error'' to
  refer to a form that returns an error triple (mv erp val state) for
  which erp is non-nil. Soft errors do not interrupt the normal flow
  of evaluation: the error triple is returned to the caller which
  interprets the erp flag and val as directed by the programmer.
  Macros discussed below make it convenient to think about soft
  errors as short-circuiting the computation. Hard errors, on the
  other hand, do actually rip control away from the current
  evaluation and return it to the top-level loop. Logically speaking,
  expressions that cause hard errors return nil in the error case,
  but the nil is never seen in actual evaluation because control does
  not return to the caller.

  Note that the function [abort!], which you can invoke by typing
  :[a!], always returns to the top level. Note that ACL2 can prove
  that (abort!) returns nil but that this cannot be confirmed by
  computation.

    ACL2 !>(thm (equal (abort!) nil))

    Q.E.D.

    Summary
    Form:  ( THM ...)
    Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL)
            (:TYPE-PRESCRIPTION ABORT!))
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

    Proof succeeded.
    ACL2 !>(equal (abort!) nil)
    Abort to ACL2 top-level
    ...
    ACL2 !>

  (What actually happens with a hard error, including non-default
  cases, is a bit subtle; most readers will probably want to skip
  this paragraph. The read-eval-print loop implemented by [ld] is
  implemented by a call of the ACL2 evaluator function, trans-eval,
  on each input form. If a hard error occurs during evaluation of an
  input form, its trans-eval call will return with a soft error.
  [Ld], in turn handles that soft error appropriately; see
  [ld-error-action].)

  The most common way to signal errors is the macro [er], which prints
  a formatted error message and returns a soft or hard error as
  specified by the call. Note however that soft errors are signalled
  using :[program] mode functions.

  Since the output signatures of soft and hard errors are different ---
  hard errors ``return'' a single value while soft errors return a
  triple --- mixing them in an expression requires embedding the hard
  error form in (an irrelevant) triple, as illustrated below. All
  branches of the expression must produce an error triple if any
  branch does.

    ACL2 !>(defun chk-find-or-abort (e x state)
             (declare (xargs :mode :program))
             (if (endp x)
                 (value                          ; Note use of VALUE!
                   (er hard 'chk-find-or-abort
                       \"Did not find ~x0!\"
                        e))
                 (if (not (integerp (car x)))
                     (er soft 'chk-find-or-abort
                         \"Non-integer, ~x0, in list!\"
                         (car x))
                     (if (eql (car x) e)
                         (value x)
                         (chk-find-or-abort e (cdr x) state)))))

    Summary
    Form:  ( DEFUN CHK-FIND-OR-ABORT ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     CHK-FIND-OR-ABORT
    ACL2 !>(chk-find-or-abort 3 '(1 2 3 4 5) state)
     (3 4 5)
    ACL2 !>(chk-find-or-abort 3 '(1 A 3 4 5) state)

    ACL2 Error in CHK-FIND-OR-ABORT:  Non-integer, A, in list!

    ACL2 !>(chk-find-or-abort 3 '(1 2 4 5) state)

    HARD ACL2 ERROR in CHK-FIND-OR-ABORT:  Did not find 3!
    ...
    ACL2 !>

  See [er] for further discussion of errors. For some other individual
  topics related to errors see [assert$], see [break-on-error], see
  [error1], see [hard-error], see [illegal], and see
  [ld-error-triples].

  In the next section we discuss soft errors further, in the context of
  programming.

  SEQUENTIAL PROGRAMMING

  This section describes handy ways to modify state in steps, using
  macros that implement a sequence of [let] or [mv-let] bindings. For
  example, suppose you want to assign the values 1 and 2 to two state
  globals one-var and two-var, respectively. Because of ACL2's
  syntactic restrictions on [state], it is not legal simply to write
  (f-put-global 'two-var 2 (f-put-global 'one-var 1 state)). However,
  [let] comes to the rescue as follows.

    (let ((state (f-put-global 'one-var 1 state)))
      (let ((state (f-put-global 'two-var 2 state)))
        state))

  It is so common to bind state successively in such a manner that ACL2
  provides a macro, [pprogn], for this purpose. Thus, an equivalent
  solution to the problem above is

    (pprogn (f-put-global 'one-var 1 state)
            (f-put-global 'two-var 2 state)
            state)

  or, more simply, as follows.

    (pprogn (f-put-global 'one-var 1 state)
            (f-put-global 'two-var 2 state))

  See [pprogn]. Note that the last form is allowed to return multiple
  values; the only requirement on the last form is that its value
  include state.

  It is also common to update the state using a sequence of forms such
  that each returns an error triple, where the intention is for
  evaluation to short-circuit immediately if a soft error is
  encountered. Suppose <expr1> and <expr2> are expressions that
  return error triples, where the state components of the error
  triples might be updated, and one wishes to evaluate <expr1> and
  then <expr2>, returning the (multiple) values returned by <expr2>
  unless the error triple returned by <expr1> is a soft error, in
  which case that error triple is returned. One can of course do so
  as follows.

    (mv-let (erp val state)
            <expr1>
            (cond (erp (mv erp val state))
                  (t <expr2>)))

  But ACL2 provides a handy macro, [er-progn], for this purpose. The
  following code is equivalent to the code just above.

    (er-progn <expr1> <expr2>)

  See [er-progn] for more details. Note that unlike [pprogn], the
  return [signature] for the last expression must be the same as that
  of the others: an error triple.

  Let's consider how to use pprogn and er-progn together. In the
  following example f1 and f2 both return state, while each of g1 and
  g2 returns an error triple. The following code modifies state by
  executing these in the order f1, g1, f2, and finally g2, returning
  (mv nil val state) where val is the value component of the error
  triple returned by g2 --- except we return a soft error if g1 or g2
  returns a soft error.

    (pprogn (f1 x state)
            (er-progn (g1 x state)
                      (pprogn (f2 x state)
                              (g2 x state))))

  Finally, consider the [events] [progn] and [progn!]. These have
  similar behavior to that of [er-progn]. However, [progn] and
  [progn!] may only be used in event contexts, for example at the top
  level or immediately underneath a call of [encapsulate] or [progn],
  while [er-progn] has no such restriction. So when writing code, use
  er-progn rather than [progn] or [progn!]. In particular, the body
  of a [defun] must not have any calls of progn (or of progn!
  either), and the same restriction holds for any code to be
  executed, such as the body of a [make-event] form.

  BINDING VARIABLES USING ERROR TRIPLES

  In this section we discuss the macro er-let*, which is a variant of
  the special form, [let*], that is useful when programming with
  state.

  The macro er-let* is useful when binding variables to the value
  components of error triples. It is actually quite similar to
  er-progn, described above, except that er-let* binds variables.
  First consider the following example.

    (er-let* ((x1 (f1 state))
              (x2 (f2 x1 state)))
      (value (cons x1 x2)))

  The code just above is essentially equivalent to writing the
  following.

    (mv-let (erp x1 state)
            (f1 state)
            (cond (erp (mv erp x1 state))
                  (t (mv-let (erp x2 state)
                             (f2 x1 state)
                             (cond (erp (mv erp x2 state))
                                   (t (value (cons x1 x2))))))))

  As suggested by the example above, er-let* has the same syntax as
  let*, except that declarations are not supported. (But note that
  ignore declarations are not needed; all variables that are bound
  are also used, at least in the error case. Consider replacing (cons
  x1 x2) by nil in the example displayed immediately above, and note
  that x1 and x2 are still used.) However, unlike let*, er-let*
  requires that for each binding (var expr), the expression expr must
  evaluate to an error triple and, moreover, it requires that the
  second argument (the ``body'') of er-let* must evaluate to an error
  triple. If one of the variable expressions (e.g., the f1 and f2
  calls above) signals an error, its error triple is returned as the
  value of the er-let*.

  Of course, soft errors can be ``caught'' by using [mv-let] instead of
  er-let* and simply ignoring the error flag or, more generally, by
  returning a non-erroneous error triple even if the error flag was
  on.

  BINDING STATE GLOBAL VARIABLES

  In this section we introduce a utility, [state-global-let*], that is
  an analogue of let* for state global variables. Consider the
  following example.

    (state-global-let*
     ((inhibit-output-lst (add-to-set-eq 'summary (@ inhibit-output-lst))))
     (thm (equal x x)))

  This form binds state global variable inhibit-output-lst to the
  result of adding the symbol, summary, to the current value of that
  state global. Thus (see [set-inhibit-output-lst]), the usual
  summary is not printed when evaluating this call of [thm].

  See [state-global-let*] for more complete [documentation].

  INPUT AND OUTPUT

  In ACL2, most input and output involves the ACL2 state. See [io].

  TIMINGS

  For how to obtain the time elapsed since the start of the ACL2
  session, see [read-run-time].

  For a utility for saving times into the ACL2 state and for printing
  those saved times, see the community book misc/save-time.lisp.

  To time an evaluation (though this really isn't about state), see
  [time$].

  ENVIRONMENT AND SYSTEM

  Next, we mention briefly some ways in which ACL2 interacts with its
  environment using the ACL2 state.

  For how to read and write environment variables, see [getenv$] and
  see [setenv$].

  For how to run a command in the host operating system, see [sys-call]
  and [sys-call+].

  REMARKS ON EVENTS AND LD

  In general, undefined or surprising behavior may occur when using
  ACL2 [events] or calling [ld] in your programs. In some cases ACL2
  enforces restrictions against these uses. We strongly discourage
  using [ld] in programs, as it has been designed to be called only
  at the top level of a read-eval-print loop. However, you may wish
  to read or write [ld] specials in your programs; see [ld].

  There is also a restriction on contexts in which [make-event] may be
  called: it may only be called in a context where an event is
  expected, such as the top level, in a book, or as an argument of
  [encapsulate] or [progn]. The reason is that ACL2 does very subtle
  and careful tracking of [make-event] expansions; and it is only
  able to do this in event contexts, where it is able to carry out
  such tracking accurately.

  ADVANCED TOPICS

  ACL2 provides the function trans-eval to evaluate an arbitrary form
  (after translating it to a [term], i.e., into internal form). For
  more information, we refer to reader to comments in the definition
  of trans-eval in the ACL2 source code. There are also many examples
  of its use in the ACL2 sources.

  For a function that provides the true absolute filename, with soft
  links resolved, see [canonical-pathname].

  For a function that returns a check-sum on the characters in a
  channel, see [check-sum].

  To obtain a random number, see [random$].

  If you are programming in raw-mode (see [set-raw-mode]) or in raw
  Lisp, use the variable *the-live-state* in place of the variable
  state.

  We invite suggestions for additional advanced topics.


Subtopics

  [@]
      Get the value of a global variable in [state]

  [Assign]
      Assign to a global variable in [state]

  [Canonical-pathname]
      The true absolute filename, with soft links resolved

  [Cbd]
      Connected book directory string

  [Er-progn]
      Perform a sequence of state-changing ``error triples''

  [Error-triple]
      A common ACL2 programming idiom

  [F-get-global]
      Get the value of a global variable in [state]

  [F-put-global]
      Assign to a global variable in [state]

  [Getenv$]
      Read an environment variable

  [Last-prover-steps]
      The number of prover steps most recently taken

  [Oracle-apply]
      Call a function argument on the given list of arguments

  [Oracle-apply-raw]
      Call a function argument on the given list of arguments, no
      restrictions

  [Oracle-funcall]
      Call a function argument on the remaining arguments

  [Pprogn]
      Evaluate a sequence of forms that return [state]

  [Read-ACL2-oracle]
      Pop the oracle field of the state

  [Read-run-time]
      Read elapsed runtime

  [Setenv$]
      Set an environment variable

  [State-global-let*]
      Bind [state] global variables

  [With-live-state]
      Allow a reference to state in raw Lisp")
 (PROMPT
  (LD)
  "The prompt printed by [ld]

  The prompt printed by ACL2 conveys information about various
  ``modes.'' See [default-print-prompt] and see [ld-prompt] for
  details.

  The prompt during raw Lisp breaks is, with most Common Lisp
  implementations, adjusted by ACL2 to include the string \"[RAW
  LISP\"], in order to reminder users not to submit ACL2 forms there;
  see [breaks]. For Lisps that seem to use the same code for printing
  prompts at the top-level as in [breaks], the top-level prompt is
  similarly adjusted. For Lisps with the above prompt adjustment, The
  following forms may be executed in raw Lisp (i.e., after typing
  :q).

    (install-new-raw-prompt) ; install prompt with [RAW LISP] as described above
    (install-old-raw-prompt) ; revert to original prompt from host Common Lisp")
 (PROOF-CHECKER
  (ACL2 DEBUGGING)
  "An interactive tool for controlling ACL2's proof processes.

  Call this up with (verify ...).

  This is an interactive system for checking ACL2 theorems, or at least
  exploring their proofs. One enters it using the VERIFY command (see
  [verify]), and then invokes commands at the resulting prompt to
  operate on a stack of goals, starting with the single goal that was
  supplied to VERIFY. The final command (or ``instruction'') can be
  an exit command, which can print out a [defthm] event if the goal
  stack is empty; see [proof-checker-commands], in particular the
  exit command. That resulting defthm event includes an
  :[instructions] parameter, which directs replay of the
  proof-checker commands (for example during certification of a book
  containing that event; see [books]).

  If you exit the proof-checker interactive loop, you may re-enter that
  session at the same point using the command (verify), i.e., with no
  arguments. The commands save and retrieve may be invoked to manage
  more than one session.

  The proof-checker can be invoked on a specific subgoal, and the
  resulting :instructions can be given as a hint to the theorem
  prover for that subgoal. See [instructions].

  A tutorial is available on the world-wide web:
  {http://www.cs.utexas.edu/users/kaufmann/tutorial/rev3.html |
  http://www.cs.utexas.edu/users/kaufmann/tutorial/rev3.html}.
  The tutorial illustrates more than just the proof-checker. The
  portion relevant to the proof-checker may be accessed directly:
  {http://www.cs.utexas.edu/users/kaufmann/tutorial/rev3.html#slide29
  |
  http://www.cs.utexas.edu/users/kaufmann/tutorial/rev3.html#slide29}

  See [set-evisc-tuple] for how to arrange that output is printed in
  abbreviated form. In general, the proof-checker uses the :TERM
  [evisc-tuple] described in that documentation.

  Individual proof-checker commands are documented in subsection
  [proof-checker-commands].


Subtopics

  [Define-pc-help]
      Define a macro command whose purpose is to print something

  [Define-pc-macro]
      Define a proof-checker macro command

  [Define-pc-meta]
      Define a proof-checker meta command

  [Dive-into-macros-table]
      Right-associated function information for the [proof-checker]

  [Instructions]
      Instructions to the proof checker

  [Macro-command]
      Compound command for the proof-checker

  [Proof-checker-commands]
      List of commands for the proof-checker

  [Retrieve]
      Re-enter a (specified) [proof-checker] state

  [Toggle-pc-macro]
      Change an ordinary macro command to an atomic macro, or vice-versa

  [Unsave]
      Remove a [proof-checker] state

  [Verify]
      Enter the interactive proof checker")
 (PROOF-CHECKER-COMMANDS
  (PROOF-CHECKER)
  "List of commands for the proof-checker

  This documentation section contains documentation for individual
  commands that can be given inside the interactive [proof-checker]
  loop that is entered using [verify].


Subtopics

  [ACL2-pc::=]
      (atomic macro) attempt an equality (or equivalence) substitution

  [ACL2-pc::ACL2-wrap]
      (macro) same as (lisp x)

  [ACL2-pc::add-abbreviation]
      (primitive) add an abbreviation

  [ACL2-pc::al]
      (macro) same as apply-linear

  [ACL2-pc::apply-linear]
      (primitive) apply a linear rule

  [ACL2-pc::bash]
      (atomic macro) call the ACL2 theorem prover's simplifier

  [ACL2-pc::bdd]
      (atomic macro) prove the current goal using bdds

  [ACL2-pc::bk]
      (atomic macro) move backward one argument in the enclosing term

  [ACL2-pc::bookmark]
      (macro) insert matching ``bookends'' comments

  [ACL2-pc::casesplit]
      (primitive) split into two cases

  [ACL2-pc::cg]
      (macro) change to another goal.

  [ACL2-pc::change-goal]
      (primitive) change to another goal.

  [ACL2-pc::cl-proc]
      (macro) same as clause-processor

  [ACL2-pc::claim]
      (atomic macro) add a new hypothesis

  [ACL2-pc::clause-processor]
      (atomic macro) use a clause-processor

  [ACL2-pc::comm]
      (macro) display instructions from the current interactive session

  [ACL2-pc::commands]
      (macro) display instructions from the current interactive session

  [ACL2-pc::comment]
      (primitive) insert a comment

  [ACL2-pc::contradict]
      (macro) same as contrapose

  [ACL2-pc::contrapose]
      (primitive) switch a hypothesis with the conclusion, negating both

  [ACL2-pc::demote]
      (primitive) move top-level hypotheses to the conclusion

  [ACL2-pc::dive]
      (primitive) move to the indicated subterm

  [ACL2-pc::do-all]
      (macro) run the given instructions

  [ACL2-pc::do-all-no-prompt]
      (macro) run the given instructions, halting once there is a
      ``failure''

  [ACL2-pc::do-strict]
      (macro) run the given instructions, halting once there is a
      ``failure''

  [ACL2-pc::doc]
      (macro) access documentation inside the proof-checker

  [ACL2-pc::drop]
      (primitive) drop top-level hypotheses

  [ACL2-pc::dv]
      (atomic macro) move to the indicated subterm

  [ACL2-pc::elim]
      (atomic macro) call the ACL2 theorem prover's elimination process

  [ACL2-pc::equiv]
      (primitive) attempt an equality (or congruence-based) substitution

  [ACL2-pc::ex]
      (macro) exit after possibly saving the state

  [ACL2-pc::exit]
      (meta) exit the interactive proof-checker

  [ACL2-pc::expand]
      (primitive) expand the current function call without simplification

  [ACL2-pc::fail]
      (macro) cause a failure

  [ACL2-pc::finish]
      (macro) require completion of instructions; save error if inside
      :[hints]

  [ACL2-pc::forwardchain]
      (atomic macro) forward chain from an implication in the hyps

  [ACL2-pc::free]
      (atomic macro) create a ``free variable''

  [ACL2-pc::geneqv]
      (macro) show the generated equivalence relation maintained at the
      current subterm

  [ACL2-pc::generalize]
      (primitive) perform a generalization

  [ACL2-pc::goals]
      (macro) list the names of goals on the stack

  [ACL2-pc::help]
      (macro) proof-checker help facility

  [ACL2-pc::hyps]
      (macro) print the hypotheses

  [ACL2-pc::illegal]
      (macro) illegal instruction

  [ACL2-pc::in-theory]
      (primitive) set the current proof-checker theory

  [ACL2-pc::induct]
      (atomic macro) generate subgoals using induction

  [ACL2-pc::lemmas-used]
      (macro) print the runes (definitions, lemmas, ...) used

  [ACL2-pc::lisp]
      (meta) evaluate the given form in Lisp

  [ACL2-pc::negate]
      (macro) run the given instructions, and ``succeed'' if and only if
      they ``fail''

  [ACL2-pc::nil]
      (macro) used for interpreting control-d

  [ACL2-pc::noise]
      (meta) run instructions with output

  [ACL2-pc::nx]
      (atomic macro) move forward one argument in the enclosing term

  [ACL2-pc::orelse]
      (macro) run the first instruction; if (and only if) it ``fails'',
      run the second

  [ACL2-pc::p]
      (macro) prettyprint the current term

  [ACL2-pc::p-top]
      (macro) prettyprint the conclusion, highlighting the current term

  [ACL2-pc::pl]
      (macro) print the rules for a given name

  [ACL2-pc::pp]
      (macro) prettyprint the current term

  [ACL2-pc::pr]
      (macro) print the rules for a given name

  [ACL2-pc::print]
      (macro) print the result of evaluating the given form

  [ACL2-pc::print-all-concs]
      (macro) print all the conclusions of (as yet unproved) goals

  [ACL2-pc::print-all-goals]
      (macro) print all the (as yet unproved) goals

  [ACL2-pc::print-main]
      (macro) print the original goal

  [ACL2-pc::pro]
      (atomic macro) repeatedly apply promote

  [ACL2-pc::promote]
      (primitive) move antecedents of conclusion's implies term to
      top-level hypotheses

  [ACL2-pc::protect]
      (macro) run the given instructions, reverting to existing state upon
      failure

  [ACL2-pc::prove]
      (primitive) call the ACL2 theorem prover to prove the current goal

  [ACL2-pc::pso]
      (macro) print the most recent proof attempt from inside the
      proof-checker

  [ACL2-pc::pso!]
      (macro) print the most recent proof attempt from inside the
      proof-checker

  [ACL2-pc::psog]
      (macro) print the most recent proof attempt from inside the
      proof-checker

  [ACL2-pc::put]
      (macro) substitute for a ``free variable''

  [ACL2-pc::quiet]
      (meta) run instructions without output

  [ACL2-pc::r]
      (macro) same as rewrite

  [ACL2-pc::reduce]
      (atomic macro) call the ACL2 theorem prover's simplifier

  [ACL2-pc::reduce-by-induction]
      (macro) call the ACL2 prover without induction, after going into
      induction

  [ACL2-pc::remove-abbreviations]
      (primitive) remove one or more abbreviations

  [ACL2-pc::repeat]
      (macro) repeat the given instruction until it ``fails''

  [ACL2-pc::repeat-rec]
      (macro) auxiliary to repeat

  [ACL2-pc::replay]
      (macro) replay one or more instructions

  [ACL2-pc::restore]
      (meta) remove the effect of an UNDO command

  [ACL2-pc::retain]
      (atomic macro) drop all but the indicated top-level hypotheses

  [ACL2-pc::retrieve]
      (macro) re-enter the proof-checker

  [ACL2-pc::rewrite]
      (primitive) apply a rewrite rule

  [ACL2-pc::run-instr-on-goal]
      (macro) auxiliary to THEN

  [ACL2-pc::run-instr-on-new-goals]
      (macro) auxiliary to then

  [ACL2-pc::runes]
      (macro) print the runes (definitions, lemmas, ...) used

  [ACL2-pc::s]
      (primitive) simplify the current subterm

  [ACL2-pc::s-prop]
      (atomic macro) simplify propositionally

  [ACL2-pc::save]
      (macro) save the proof-checker state (state-stack)

  [ACL2-pc::sequence]
      (meta) run the given list of instructions according to a multitude
      of options

  [ACL2-pc::show-abbreviations]
      (macro) display the current abbreviations

  [ACL2-pc::show-linears]
      (macro) display the applicable [linear] rules

  [ACL2-pc::show-rewrites]
      (macro) display the applicable [rewrite] rules

  [ACL2-pc::show-type-prescriptions]
      (macro) display the applicable [type-prescription] rules

  [ACL2-pc::skip]
      (macro) ``succeed'' without doing anything

  [ACL2-pc::sl]
      (atomic macro) simplify with lemmas

  [ACL2-pc::sls]
      (macro) same as SHOW-LINEARS

  [ACL2-pc::split]
      (atomic macro) split the current goal into cases

  [ACL2-pc::sr]
      (macro) same as SHOW-REWRITES

  [ACL2-pc::st]
      (macro) same as SHOW-TYPE-PRESCRIPTIONS

  [ACL2-pc::succeed]
      (macro) run the given instructions, and ``succeed''

  [ACL2-pc::th]
      (macro) print the top-level hypotheses and the current subterm

  [ACL2-pc::then]
      (macro) apply one instruction to current goal and another to new
      subgoals

  [ACL2-pc::top]
      (atomic macro) move to the top of the goal

  [ACL2-pc::type-alist]
      (macro) display the [type-alist] from the current context

  [ACL2-pc::undo]
      (meta) undo some instructions

  [ACL2-pc::unsave]
      (macro) remove a proof-checker state

  [ACL2-pc::up]
      (primitive) move to the parent (or some ancestor) of the current
      subterm

  [ACL2-pc::use]
      (atomic macro) use a lemma instance

  [ACL2-pc::wrap]
      (atomic macro) execute the indicated instructions and combine all
      the new goals

  [ACL2-pc::wrap-induct]
      (atomic macro) same as induct, but create a single goal

  [ACL2-pc::wrap1]
      (primitive) combine goals into a single goal

  [ACL2-pc::x]
      (atomic macro) expand and (maybe) simplify function call at the
      current subterm

  [ACL2-pc::x-dumb]
      (atomic macro) expand function call at the current subterm, without
      simplifying")
 (PROOF-OF-WELL-FOUNDEDNESS
  (ORDINALS)
  "A proof that [o<] is well-founded on [o-p]s

  The soundness of ACL2 rests in part on the well-foundedness of [o<]
  on [o-p]s. This can be taken as obvious if one is willing to grant
  that those concepts are simply encodings of the standard
  mathematical notions of the ordinals below epsilon-0 and its
  natural ordering relation. But it is possible to prove that [o<] is
  well-founded on [o-p]s without having to assert any connection to
  the ordinals and that is what we do here. The community book
  books/ordinals/proof-of-well-foundedness carries out the proof
  outlined below in ACL2, using only that the natural numbers are
  well-founded.

  Before outlining the above mentioned proof, we note that in the
  analogous documentation page of ACL2 Version_2.7, there is a proof
  of the well-foundedness of e0-ord-< on e0-ordinalps, the less-than
  relation and recognizer for the old ordinals (that is, for the
  ordinals appearing in ACL2 up through that version). Manolios and
  Vroon have given a proof in ACL2 Version_2.7 that the current
  ordinals (based on [o<] and [o-p]) are order-isomorphic to the old
  ordinals (based on e0-ord-< and e0-ordinalp). Their proof
  establishes that switching from the old ordinals to the current
  ordinals preserves the soundness of ACL2. For details see their
  paper:

    Manolios, Panagiotis & Vroon, Daron.
    Ordinal arithmetic in ACL2.
    Kaufmann, Matt, & Moore, J Strother (eds).
    Fourth International Workshop on the ACL2 Theorem
    Prover and Its Applications (ACL2-2003),
    July, 2003.
    See {http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/ | http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/}.

  We now give an outline of the above mentioned proof of
  well-foundedness. We first observe three facts about [o<] on
  ordinals that have been proved by ACL2 using only structural
  induction on lists. These theorems can be proved by hand.

    (defthm transitivity-of-o<
      (implies (and (o< x y)
                    (o< y z))
               (o< x z))
      :rule-classes nil)

    (defthm non-circularity-of-o<
      (implies (o< x y)
               (not (o< y x)))
      :rule-classes nil)

    (defthm trichotomy-of-o<
      (implies (and (o-p x)
                    (o-p y))
               (or (equal x y)
                   (o< x y)
                   (o< y x)))
      :rule-classes nil)

  These three properties establish that [o<] orders the [o-p]s. To put
  such a statement in the most standard mathematical nomenclature, we
  can define the macro:

    (defmacro o<= (x y)
      `(not (o< ,y ,x)))

  and then establish that o<= is a relation that is a simple, complete
  (i.e., total) order on ordinals by the following three lemmas,
  which have been proved:

    (defthm antisymmetry-of-o<=
      (implies (and (o-p x)
                    (o-p y)
                    (o<= x y)
                    (o<= y x))
               (equal x y))
      :rule-classes nil
      :hints ((\"Goal\" :use non-circularity-of-o<)))

    (defthm transitivity-of-o<=
      (implies (and (o-p x)
                    (o-p y)
                    (o<= x y)
                    (o<= y z))
               (o<= x z))
      :rule-classes nil
      :hints ((\"Goal\" :use transitivity-of-o<)))

    (defthm trichotomy-of-o<=
      (implies (and (o-p x)
                    (o-p y))
               (or (o<= x y)
                   (o<= y x)))
      :rule-classes nil
      :hints ((\"Goal\" :use trichotomy-of-o<)))

  Crucially important to the proof of the well-foundedness of [o<] on
  [o-p]s is the concept of ordinal-depth, abbreviated od:

    (defun od (l)
      (if (o-finp l)
          0
        (1+ (od (o-first-expt l)))))

  If the od of an [o-p] x is smaller than that of an [o-p] y, then x is
  [o<] y:

    (defun od-1 (x y)
      (if (o-finp x)
          (list x y)
        (od-1 (o-first-expt x) (o-first-expt y))))

    (defthm od-implies-ordlessp
      (implies (and (o-p x)
                    (< (od x) (od y)))
               (o< x y))
      :hints ((\"Goal\"
               :induct (od-1 x y))))

  Remark. A consequence of this lemma is the fact that if s = s(1),
  s(2), ... is an infinite, [o<] descending sequence of [o-p]s, then
  od(s(1)), od(s(2)), ... is a ``weakly'' descending sequence of
  non-negative integers: od(s(i)) is greater than or equal to
  od(s(i+1)).

  Lemma Main. For each non-negative integer n, [o<] well-orders the set
  of [o-p]s with od less than or equal to n .

    Base Case.  n = 0.  The o-ps with 0 od are the non-negative
    integers.  On the non-negative integers, o< is the same as <.

    Induction Step.  n > 0.  We assume that o< well-orders the
    o-ps with od less than n.

      If o< does not well-order the o-ps with od less than or equal to n,
      consider, D, the set of infinite, o< descending sequences of o-ps of od
      less than or equal to n.  The first element of a sequence in D has od n.
      Therefore, the o-first-expt of the first element of a sequence in D has od
      n-1.  Since o<, by IH, well-orders the o-ps with od less than n, the set
      of o-first-expts of first elements of the sequences in D has a minimal
      element, which we denote by B and which has od of n-1.

      Let k be the minimum integer such that for some infinite, o< descending
      sequence s of o-ps with od less than or equal to n, the first element of s
      has an o-first-expt of B and an o-first-coeff of k.  Notice that k is
      positive.

      Having fixed B and k, let s = s(1), s(2), ... be an infinite, o<
      descending sequence of o-ps with od less than or equal to n such that s(1)
      has a o-first-expt of B and an o-first-coeff of k.

      We show that each s(i) has a o-first-expt of B and an o-first-coeff of
      k. For suppose that s(j) is the first member of s either with o-first-expt
      B and o-first-coeff m (m neq k) or with o-first-expt B' and o-first-coeff
      B' (B' neq B). If (o-first-expt s(j)) = B', then B' has od n-1 (otherwise,
      by IH, s would not be infinite) and B' is o< B, contradicting the
      minimality of B. If 0 < m < k, then the fact that the sequence beginning
      at s(j) is infinitely descending contradicts the minimality of k. If m >
      k, then s(j) is greater than its predecessor; but this contradicts the
      fact that s is descending.

      Thus, by the definition of o<, for s to be a decreasing sequence of o-ps,
      (o-rst s(1)), (o-rst s(2)), ... must be a decreasing sequence. We end by
      showing this cannot be the case. Let t = t(1), t(2), ... be an infinite
      sequence of o-ps such that t(i) = (o-rst s(i)). Then t is infinitely
      descending. Furthermore, t(1) begins with an o-p B' that is o< B. Since t
      is in D, t(1) has od n, therefore, B' has od n-1. But this contradicts the
      minimality of B. Q.E.D.

  Theorem. [o<] well-orders the [o-p]s. Proof. Every infinite, o<
  descending sequence of [o-p]s has the property that each member has
  od less than or equal to the od, n, of the first member of the
  sequence. This contradicts Lemma Main. Q.E.D.")
 (PROOF-SUPPORTERS-ALIST (POINTERS)
                         "See [dead-events].")
 (PROOF-TREE
  (DEBUGGING)
  "Proof tree displays

  A view of ACL2 proofs may be obtained by way of ``proof tree
  displays,'' which appear in proof output (see [proofs-co]) when
  proof-tree output is enabled (see below) When ACL2 starts a proof
  and proof-tree output is enabled, the proof output begins with the
  following string.

    << Starting proof tree logging >>

  Then for each goal encountered during the proof, a corresponding
  proof tree display (as described below) is printed into the proof
  output: first the characters in the constant string
  *proof-tree-start-delimiter* are printed, then the proof tree
  display, and finally the characters in the constant string
  *proof-tree-end-delimiter*.

  External tools may present proof tree displays in a separate window.
  In particular, a tool distributed with the ACL2 community books
  customizes the emacs environment to provide window-based proof tree
  displays together with commands for traversing the proof
  transcript; see the discussion of ``ACL2 proof-tree support'' in
  file emacs/emacs-acl2.el distributed with ACL2.

  The command :start-proof-tree enables proof-tree output, while
  :stop-proof-tree disables proof-tree output; see [start-proof-tree]
  and see [stop-proof-tree].

  Here is an example of a proof tree display, with comments. Lines
  marked with ``c'' are considered ``checkpoints,'' i.e., goals whose
  scrutiny may be of particular value.

    ( DEFTHM PLUS-TREE-DEL ...)    ;currently proving PLUS-TREE-DEL
       1 Goal preprocess   ;\"Goal\" creates 1 subgoal by preprocessing
       2 |  Goal' simp     ;\"Goal'\" creates 2 subgoals by simplification
    c  0 |  |  Subgoal 2 PUSH *1   ;\"Subgoal 2\" pushes \"*1\" for INDUCT
    ++++++++++++++++++++++++++++++ ;first pass thru waterfall completed
    c  6 *1 INDUCT                 ;Proof by induction of \"*1\" has
         |  <5 more subgoals>      ; created 6 top-level subgoals.  At
                                   ; this point, one of those 6 has been
                                   ; proved, and 5 remain to be proved.
                                   ; We are currently working on the
                                   ; first of those 5 remaining goals.

  See [proof-tree-examples] for many examples that contain proof tree
  displays. But first, we summarize the kinds of lines that may
  appear in a proof tree display. The simplest form of a proof tree
  display is a header showing the current event, followed by list of
  lines, each having one of the following forms.

    n <goal> <process> ...

  Says that the indicated goal created n subgoals using the indicated
  process. Here ``...'' refers to possible additional information.

    c   n <goal> <process> ...

  As above, but calls attention to the fact that this goal is a
  ``checkpoint'' in the sense that it may be of particular interest.
  Some displays may overwrite ``c'' with ``>'' to indicate the
  current checkpoint being shown in the proof transcript.

    |  <goal> ...
    |  |  <k subgoals>

  Indicates that the goal just above this line, which is pointed to by
  the rightmost vertical bar (``|''), has k subgoals, none of which
  have yet been processed.

    |  <goal> ...
    |  |  <k more subgoals>

  As above, except that some subgoals have already been processed.

    ++++++++++++++++++++++++++++++

  Separates successive passes through the ``waterfall''. Thus, this
  ``fencepost'' mark indicates the start of a new proof by induction
  or of a new forcing round.

  See [proof-tree-examples] for detailed examples. See
  [checkpoint-forced-goals] to learn how to mark goals as checkpoints
  that [force] the creation of goals in forcing rounds. Finally, see
  [proof-tree-details] for some points not covered elsewhere.


Subtopics

  [Checkpoint-forced-goals]
      Cause forcing goals to be checkpointed in proof trees

  [Proof-tree-details]
      Proof tree details not covered elsewhere

  [Proof-tree-examples]
      Proof tree example

  [Start-proof-tree]
      Start displaying proof trees during proofs

  [Stop-proof-tree]
      Stop displaying proof trees during proofs")
 (PROOF-TREE-DETAILS
  (PROOF-TREE)
  "Proof tree details not covered elsewhere

  See [proof-tree] for an introduction to proof trees, and for a list
  of related topics. Here we present some details not covered
  elsewhere.

  1. When proof tree display is enabled (because the command
  :[stop-proof-tree] has not been executed, or has been superseded by
  a later :[start-proof-tree] command), then time summaries will
  include the time for proof tree display. This time includes the
  time spent computing with proof trees, such as the pruning process
  described briefly above. Even when proof trees are not displayed,
  such as when their display is turned off in the middle of a proof,
  this time will be printed if it is not 0.

  2. When a goal is given a :bye in a proof (see [hints]), it is
  treated for the purpose of proof tree display just as though it had
  been proved.

  3. Several [state] global variables affect proof tree display. (@
  proof-tree-indent) is initially the string \"| \": it is the string
  that is laid down the appropriate number of times to effect
  indentation. (@ proof-tree-buffer-width) is initially the value of
  (fmt-soft-right-margin state), and is used to prevent printing of
  the annotation ``([force]d ...)'' in any greater column than this
  value. However, (assign proof-tree-buffer-width nil) to avoid any
  such suppression. Finally, (@ checkpoint-processors) is a list of
  processors from the constant list *preprocess-clause-ledge*,
  together with :induct. You may remove elements of (@
  checkpoint-processors) to limit which processes are considered
  checkpoints, but note that this can affect what is printed by
  gag-mode (see [set-gag-mode]).

  4. When :[otf-flg] is not set to t in a proof, and the prover then
  decides to revert to the original goal and prove it by induction,
  the proof tree display will reflect this fact as shown here:

    c  0 |  |  Subgoal 2 PUSH (reverting)

  5. The usual [failure] message is printed as part of the prooftree
  display when a proof has failed.")
 (PROOF-TREE-EXAMPLES
  (PROOF-TREE)
  "Proof tree example

  See [proof-tree] for an introduction to proof trees, and for a list
  of related topics. Here we present a detailed example followed by a
  shorter example that illustrates proof by induction.

  Consider the [guard] proof for the definition of a function
  cancel_equal_plus; the body of this definition is of no importance
  here. The first proof tree display is:

    ( DEFUN CANCEL_EQUAL_PLUS ...)
      18 Goal preprocess
         |  <18 subgoals>

  This is to be read as follows.

      At this stage of the proof we have encountered the top-level goal,
      named \"Goal\", which generated 18 subgoals using the
      ``preprocess'' process. We have not yet begun to work on those
      subgoals.

  The corresponding message from the ordinary prover output is:

      By case analysis we reduce the conjecture to the following 18
      conjectures.

  Note that the field just before the name of the goal (\"Goal\"), which
  here contains the number 18, indicates the number of cases
  (children) created by the goal using the indicated process. This
  number will remain unchanged as long as this goal is displayed.

  The next proof tree display is:

    ( DEFUN CANCEL_EQUAL_PLUS ...)
      18 Goal preprocess
       1 |  Subgoal 18 simp
         |  |  <1 subgoal>
         |  <17 more subgoals>

  which indicates that at this point, the prover has used the
  simplification (``simp'') process on Subgoal 18 to create one
  subgoal (``<1 subgoal>''). The vertical bar (``|'') below ``Subgoal
  18'', accompanied by the line below it, signifies that there are 17
  siblings of Subgoal 18 that remain to be processed.

  The next proof tree displayed is:

    ( DEFUN CANCEL_EQUAL_PLUS ...)
      18 Goal preprocess
       1 |  Subgoal 18 simp
    c  2 |  |  Subgoal 18' ELIM
         |  |  |  <2 subgoals>
         |  <17 more subgoals>

  Let us focus on the fourth line of this display:

    c  2 |  |  Subgoal 18' ELIM

  The ``c'' field marks this goal as a ``checkpoint'', i.e., a goal
  worthy of careful scrutiny. In fact, any goal that creates children
  by a process other than ``preprocess'' or ``simp'' is marked as a
  checkpoint. In this case, the destructor-elimination (``[elim]'')
  process has been used to create subgoals of this goal. The
  indentation shows that this goal, Subgoal 18', is a child of
  Subgoal 18. The number ``2'' indicates that 2 subgoals have been
  created (by [elim]). Note that this information is consistent with
  the line just below it, which says ``<2 subgoals>''.

  Finally, the last line of this proof tree display,

    |  <17 more subgoals>

  is connected by vertical bars (``|'') up to the string \"Subgoal 18\",
  which suggests that there are 17 immediate subgoals of Goal
  remaining to process after Subgoal 18. Note that this line is
  indented one level from the second line, which is the line for the
  goal named \"Goal\". The display is intended to suggest that the
  subgoals of Goal that remain to be proved consist of Subgoal 18
  together with 17 more subgoals.

  The next proof tree display differs from the previous one only in
  that now, Subgoal 18' has only one more subgoal to be processed.

    ( DEFUN CANCEL_EQUAL_PLUS ...)
      18 Goal preprocess
       1 |  Subgoal 18 simp
    c  2 |  |  Subgoal 18' ELIM
         |  |  |  <1 more subgoal>
         |  <17 more subgoals>

  Note that the word ``more'' in ``<1 more subgoal>'' tells us that
  there was originally more than one subgoal of Subgoal 18. In fact
  that information already follows from the line above, which (as
  previously explained) says that Subgoal 18' originally created 2
  subgoals.

  The next proof tree display occurs when the prover completes the
  proof of that ``1 more subgoal'' referred to above.

    ( DEFUN CANCEL_EQUAL_PLUS ...)
      18 Goal preprocess
         |  <17 more subgoals>

  Then, Subgoal 17 is processed and creates one subgoal, by
  simplification:

    ( DEFUN CANCEL_EQUAL_PLUS ...)
      18 Goal preprocess
       1 |  Subgoal 17 simp
         |  |  <1 subgoal>
         |  <16 more subgoals>

  ... and so on.

  Later in the proof one might find the following successive proof tree
  displays.

    ( DEFUN CANCEL_EQUAL_PLUS ...)
      18 Goal preprocess
         |  <9 more subgoals>

    ( DEFUN CANCEL_EQUAL_PLUS ...)

      18 Goal preprocess
       0 |  Subgoal 9 simp (FORCED)
         |  <8 more subgoals>

  These displays tell us that Subgoal 9 simplified to t (note that the
  ``0'' shows clearly that no subgoals were created), but that some
  rule's hypotheses were [force]d. Although this goal is not
  checkpointed (i.e., no ``c'' appears on the left margin), one can
  cause such goals to be checkpointed; see [checkpoint-forced-goals].

  In fact, the proof tree displayed at the end of the ``main
  proof''(the 0-th forcing round) is as follows.

    ( DEFUN CANCEL_EQUAL_PLUS ...)
      18 Goal preprocess
       0 |  Subgoal 9 simp (FORCED)
       0 |  Subgoal 8 simp (FORCED)
       0 |  Subgoal 7 simp (FORCED)
       0 |  Subgoal 6 simp (FORCED)
       0 |  Subgoal 4 simp (FORCED)
       0 |  Subgoal 3 simp (FORCED)

  This is followed by the following proof tree display at the start of
  the forcing round.

      18 Goal preprocess
       0 |  Subgoal 9 simp (FORCED [1]Subgoal 4)
       0 |  Subgoal 8 simp (FORCED [1]Subgoal 6)
       0 |  Subgoal 7 simp (FORCED [1]Subgoal 1)
       0 |  Subgoal 6 simp (FORCED [1]Subgoal 3)
       0 |  Subgoal 4 simp (FORCED [1]Subgoal 5)
       0 |  Subgoal 3 simp (FORCED [1]Subgoal 2)
    ++++++++++++++++++++++++++++++
       6 [1]Goal FORCING-ROUND
       2 |  [1]Subgoal 6 preprocess
         |  |  <2 subgoals>
         |  <5 more subgoals>

  This display shows which goals to ``blame'' for the existence of each
  goal in the forcing round. For example, Subgoal 9 is to blame for
  the creation of [1]Subgoal 4.

  Actually, there is no real goal named \"[1]Goal\". However, the line

    6 [1]Goal FORCING-ROUND

  appears in the proof tree display to suggest a ``parent'' of the six
  top-level goals in that forcing round. As usual, the numeric field
  before the goal name contains the original number of children of
  that (virtual, in this case) goal --- in this case, 6.

  In our example proof, Subgoal 6 eventually gets proved, without doing
  any further forcing. At that point, the proof tree display looks as
  follows.

    ( DEFUN CANCEL_EQUAL_PLUS ...)
      18 Goal preprocess
       0 |  Subgoal 9 simp (FORCED [1]Subgoal 4)
       0 |  Subgoal 7 simp (FORCED [1]Subgoal 1)
       0 |  Subgoal 6 simp (FORCED [1]Subgoal 3)
       0 |  Subgoal 4 simp (FORCED [1]Subgoal 5)
       0 |  Subgoal 3 simp (FORCED [1]Subgoal 2)
    ++++++++++++++++++++++++++++++
       6 [1]Goal FORCING-ROUND
         |  <5 more subgoals>

  Notice that the line for Subgoal 8,

    0 |  Subgoal 8 simp (FORCED [1]Subgoal 6)

  no longer appears. That is because the goal [1]Subgoal 6 has been
  proved, along with all its children; and hence, the proof of
  Subgoal 8 no longer depends on any further reasoning.

  The final two proof tree displays in our example are as follows.

    ( DEFUN CANCEL_EQUAL_PLUS ...)
      18 Goal preprocess
       0 |  Subgoal 7 simp (FORCED [1]Subgoal 1)
    ++++++++++++++++++++++++++++++
       6 [1]Goal FORCING-ROUND
       2 |  [1]Subgoal 1 preprocess
       1 |  |  [1]Subgoal 1.1 preprocess
       1 |  |  |  [1]Subgoal 1.1' simp
    c  3 |  |  |  |  [1]Subgoal 1.1'' ELIM
         |  |  |  |  |  <1 more subgoal>

    ( DEFUN CANCEL_EQUAL_PLUS ...)
    <<PROOF TREE IS EMPTY>>

  The explanation for the empty proof tree is simple: once [1]Subgoal
  1.1.1 was proved, nothing further remained to be proved. In fact,
  the much sought-after ``Q.E.D.'' appeared shortly after the final
  proof tree was displayed.

  Let us conclude with a final, brief example that illustrates proof by
  induction. Partway through the proof one might come across the
  following proof tree display.

    ( DEFTHM PLUS-TREE-DEL ...)
       1 Goal preprocess
       2 |  Goal' simp
    c  0 |  |  Subgoal 2 PUSH *1
         |  |  <1 more subgoal>

  This display says that in the attempt to prove a theorem called
  plus-tree-del, preprocessing created the only child Goal' from
  Goal, and Goal' simplified to two subgoals. Subgoal 2 is
  immediately pushed for proof by induction, under the name ``*1''.
  In fact if Subgoal 1 simplifies to t, then we see the following
  successive proof tree displays after the one shown above.

    ( DEFTHM PLUS-TREE-DEL ...)
       1 Goal preprocess
       2 |  Goal' simp
    c  0 |  |  Subgoal 2 PUSH *1

    ( DEFTHM PLUS-TREE-DEL ...)
       1 Goal preprocess
       2 |  Goal' simp
    c  0 |  |  Subgoal 2 PUSH *1
    ++++++++++++++++++++++++++++++
    c  6 *1 INDUCT
         |  <5 more subgoals>

  The separator ``+++++...'' says that we are beginning another trip
  through the waterfall. In fact this trip is for a proof by
  induction (as opposed to a forcing round), as indicated by the word
  ``INDUCT''. Apparently *1.6 was proved immediately, because it was
  not even displayed; a goal is only displayed when there is some
  work left to do either on it or on some goal that it brought
  (perhaps indirectly) into existence.

  Once a proof by induction is completed, the ``PUSH'' line that refers
  to that proof is eliminated (``pruned''). So for example, when the
  present proof by induction is completed, the line

    c  0 |  |  Subgoal 2 PUSH *1

  is eliminated, which in fact causes the lines above it to be
  eliminated (since they no longer refer to unproved children).
  Hence, at that point one might expect to see:

    ( DEFTHM PLUS-TREE-DEL ...)
    <<PROOF TREE IS EMPTY>>

  However, if the proof by induction of *1 necessitates further proofs
  by induction or a forcing round, then this ``pruning'' will not yet
  be done.")
 (PROOFS-CO
  (IO ACL2-BUILT-INS)
  "The proofs character output channel

  Proofs-co is an [ld] special (see [ld]). The accessor is (proofs-co
  state) and the updater is (set-proofs-co val state). Proofs-co must
  be an open character output channel. It is to this channel that
  [defun], [defthm], and the other event [command]s print their
  commentary.

  ``Proofs-co'' stands for ``proofs character output.'' The initial
  value of proofs-co is the same as the value of [*standard-co*] (see
  [*standard-co*]).")
 (PROPER-CONSP
  (LISTS ACL2-BUILT-INS)
  "Recognizer for proper (null-terminated) non-empty lists

  Proper-consp is the function that checks whether its argument is a
  non-empty list that ends in nil. Also see [true-listp].

  Function: <proper-consp>

    (defun proper-consp (x)
           (declare (xargs :guard t))
           (and (consp x) (true-listp x)))")
 (PROPS
  (WORLD)
  "Print the ACL2 properties on a symbol

    Example:
    :props assoc-eq

  Props takes one argument, a symbol, and prints all of the properties
  that are on that symbol in the ACL2 [world].")
 (PROTECT-MEMOIZE-STATISTICS
  (MEMOIZE)
  "Ensure the integrity of memoization statistics even upon aborts

  Example Forms:

    (f-put-global 'protect-memoize-statistics t state)
    (assign protect-memoize-statistics t) ; same effect as above

  By default, if calls of [memoize]d functions are aborted, then
  statistics reported by [memsum] for those calls will often be
  incorrect. Since aborts are relatively rare, this seems a
  reasonable default, since avoiding such inaccuracy incurs some
  additional computation time. However, evaluation of either of the
  forms above will arrange that for functions memoized after such
  evaluation, the accuracy of the statistics will not be adversely
  affected by aborts (again, at the expense of some additional
  computation time).

  Once again: evaluation of a form displayed above only affects
  behavior for future calls of [memoize], not for functions already
  memoized at the time of that form's evaluation (unless the function
  is subsequently [unmemoize]d and then once again [memoize]d).

  To revert to the default state in which performance is preferred to
  accuracy of memoization statistics after aborts, evaluate either of
  the following forms.

    (f-put-global 'protect-memoize-statistics nil state)
    (assign protect-memoize-statistics nil) ; same effect as above

  The following demo illustrates the effect of assigning to
  protect-memoize-statistics.

    (defun foo (n)
      (declare (xargs :guard (natp n)))
      (progn$
       (sleep n)
       n))

    ; OPTIONALLY:
    (assign protect-memoize-statistics t)

    (memoize 'foo)

    (clear-memoize-statistics) ; for good measure
    (memsum) ; should have nothing to report
    (foo 1)
    (memsum) ; reports 1 call, 1 second

    ; Now: submit this and then abort with an interrupt it after about 3 seconds.
    (foo 15)

    ; See explanation below.
    (memsum)

  If the ``OPTIONAL'' form above is omitted, we get the default
  behavior: the statistics from [memsum] will show 2 calls of foo
  taking only took 1 second total, for an average of only 0.5
  seconds, because no time was recorded for the aborted call.
  However, if the ``OPTIONAL'' form above is included, then you will
  see statistics that look accurate.")
 (PROVER-OUTPUT
  (ACL2)
  "Methods for controlling the output produced by ACL2 during proofs and
  in other situations.


Subtopics

  [Finalize-event-user]
      User-supplied code to complete [events], e.g., with extra summary
      output

  [Gag-mode]
      Verbosity of proof output

  [Get-event-data]
      Obtain data stored after at the conclusion of an event

  [Initialize-event-user]
      User-supplied code to initiate [events]

  [Pso]
      Show the most recently saved output

  [Pso!]
      Show the most recently saved output, including [proof-tree] output

  [Psof]
      Show the most recently saved output

  [Psog]
      Show the most recently saved output in [gag-mode]

  [Set-duplicate-keys-action!]
      Non-[local] version of [set-duplicate-keys-action]

  [Set-gag-mode]
      Modify the nature of proof output

  [Set-inhibit-output-lst]
      Control output

  [Set-inhibit-warnings]
      Control warnings

  [Set-inhibit-warnings!]
      Control warnings non-[local]ly

  [Set-inhibited-summary-types]
      Control which parts of the summary are printed

  [Set-let*-abstractionp]
      To shorten many prettyprinted clauses

  [Set-print-clause-ids]
      Cause subgoal numbers to be printed when 'prove output is inhibited

  [Set-raw-proof-format]
      Print runes as lists in proof output from simplification

  [Set-raw-warning-format]
      Print some warnings in a ``raw'', s-expression format

  [Warnings]
      Warnings emitted by the ACL2 proof process

  [With-output]
      Suppressing or turning on specified output for an event")
 (PROVING_THEOREMS_ABOUT_MODELS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Proving Theorems about Models

  [{IMAGE}]

  But ACL2 is a logic. We can prove theorems about the model.

  {IMAGE}

    Theorem.  MC 'mult is a multiplier
    (implies (and (natp x)
                  (natp y))
             (equal (lookup 'z (mc (s 'mult x y) (mclk x)))
                    (* x y))).

  This theorem says that a certain program running on the mc machine
  will correctly multiply any two natural numbers.

  It is a statement about an infinite number of test cases!

  We know it is true about the model because we proved it.

  Of course, models of actual machines usually only accept a finite
  number of different inputs. For example, engineers at Advanced
  Micro Devices (AMD), Centaur, and IBM have ACL2 models of floating
  point units that operate on double precision IEEE floating point
  numbers. These are finite models. But the size of their inputs is
  sufficiently large that they are verified by the same mathematical
  methods used to prove theorems about infinite state systems like
  our little mc.

  [{IMAGE}]")
 (PROVISIONAL-CERTIFICATION
  (BOOKS-CERTIFICATION)
  "Certify a book in stages for improved book-level parallelism

  Provisional certification is a process that can increase parallelism
  when certifying books in parallel, typically using `make', when
  certifying a collection of [books]. We got this idea from Jared
  Davis, who developed rudimentary provisional certification schemes
  first at Rockwell Collins and later for his `Milawa' project. Our
  design has also benefited from conversations with Sol Swords.

  Warning: as of November 2014, enabling provision certification via
  the ACL2_PCERT flag can not be reliably enabled at the Makefile
  level (as is shown below). See {Github Issue 255 |
  https://github.com/acl2/acl2/issues/255} for more information.

  To invoke provisional certification, see [books-certification]. For
  example, you could issue the following command.

    ACL2_PCERT=t cert.pl -j 4 `find . -name '*.lisp'`

  Alternatively, see [books-certification-classic] for a discussion of
  classic ACL2 `make'-based certification (which may disappear in a
  future ACL2 release); here we extend those instructions to show how
  to use provisional certification. (Also, you may wish to look at
  community books file books/system/pcert/Makefile for an example.)
  We begin by describing a few ways to do that. A simple way is to
  add the line `ACL2_PCERT=t' to a `make' command that you use for
  book certification, for example as follows.

    make -j 4 ACL2_PCERT=t

  The following works too, in a bash shell.

    (export ACL2_PCERT=t ; time make -j 4)

  Alternatively, add the line

    ACL2_PCERT ?= t

  to the Makefile residing in the directory, placed above the line that
  specifies the `include' of file Makefile-generic. A successful
  `make' will result in creating the desired [certificate] (.cert)
  files.

  Warning: If you put the line ``ACL2_PCERT ?= t'' below the include of
  Makefile-generic, it might have no effect. For example, try editing
  community books file books/system/pcert/Makefile by moving the line
  ``ACL2_PCERT ?= t'' to the bottom of the file, and watch ``make
  top.cert'' fail to invoke provisional certification.

  The description above may be sufficient for you to use provisional
  certification. We provide additional documentation below for the
  reader who wants to understand more about this process, for example
  when not using `make'. Below we assume prior familiarity with
  [books], in particular [certify-book] and [include-book]. The
  remainder of this [documentation] topic is divided into sections:
  Summary, Correctness Claim and Issues, Combining Pcertify and
  Convert into Pcertify+, and Further Information.

  Summary

  Recall that certification of a book, bk, produces a [certificate]
  file bk.cert. The provisional certification process produces this
  file as well, but as the last of the following three steps. All of
  these steps are carried out by calls of [certify-book] using its
  :pcert keyword argument. We typically call these steps
  ``procedures'', to distinguish them from the steps of an individual
  call of [certify-book].

    * The ``Pcertify'' procedure (sometimes called the ``Create''
      procedure) is invoked by calling [certify-book] with keyword
      argument :pcert :create. It produces a file bk.pcert0,
      sometimes called the ``.pcert0'' file (pronounced ``dot pee
      cert zero''). Proofs are skipped during this procedure, which
      can be viewed as an elaborate syntax check, augmented by
      compilation if specified (as it is by default).
    * The ``Convert'' procedure is invoked by calling [certify-book] with
      keyword argument :pcert :convert. It creates file bk.pcert1
      from bk.pcert0, by doing proofs for all events in bk.lisp. Note
      that the third argument (the `compile-flg' argument) is ignored
      by such a call of certify-book unless its value is :all (either
      explicitly or by way of environment variable ACL2_COMPILE_FLG).
      A subtlety is that if there is a compiled file at least as
      recent as the corresponding .pcert0 file, then that compiled
      file's write date will be updated to the current time at the
      end of this procedure. The usual [local-incompatibility] check
      at the end of [certify-book] is omitted for the Convert
      procedure, since it was performed towards the end of the Create
      procedure.
    * The ``Complete'' procedure is invoked by calling [certify-book] with
      keyword argument :pcert :complete. It checks that every
      included book (including every one that is [local]ly included)
      has a .cert file that is at least as recent as the
      corresponding book. The effect is to move bk.pcert1 to bk.cert.
      Note that all arguments of certify-book other than the :pcert
      argument are ignored for this procedure, other than for some
      trivial argument checking.

  You can combine the Pcertify and Convert procedures into a single
  procedure, Pcertify+, which may be useful for books that contain
  expensive [include-book] [events] but do few proofs. We defer
  discussion of that feature to the section below, ``Combining
  Pcertify and Convert into Pcertify+''.

  The main idea of provisional certification is to break sequential
  dependencies caused by [include-book], that is, so that a book's
  proofs are carried out even when it includes books (sometimes
  called ``sub-books'') that have not themselves been fully
  certified. For example, suppose that a proof development consists
  of books A.lisp, B.lisp, and C.lisp, where file A.lisp contains the
  form (include-book \"B\") and file B.lisp contains the form
  (include-book \"C\"). Normally one would first certify C, then B, and
  finally, A. However, the provisional certification process can
  speed up the process on a multi-core machine, as follows: the
  Pcertify (pronounced ``pee certify'') procedure respects this order
  but (one hopes) is fast since proofs are skipped; the Convert
  procedure essentially completes the certification in parallel by
  doing proofs and creating .pcert1 files based on .pcert0 files; and
  the Complete procedure respects book order when quickly renaming
  .pcert1 files to .cert files. In our example, the steps would be as
  follows, but note that we need not finish all Pcertify steps before
  starting some Convert steps, nor need we finish all Convert steps
  before starting some Complete steps, as explained further below.

    * Pcertify books \"C\", \"B\",and then \"A\", sequentially, skipping proofs
      but doing compilation.
    * Do proofs in parallel for the books using the Convert procedure,
      where each book relies on the existence of its own .pcert0 file
      as well as a .cert, .pcert0, or .pcert1 file for each of its
      included sub-books. Write out a .pcert1 file for the book when
      the proof succeeds.
    * Rename the .pcert1 file to a corresponding .cert file when a .cert
      file exists and is up-to-date for each included book.

  The Convert step can begin for bk.lisp any time after bk.pcert0 is
  built. The Complete step can begin for this book any time after
  bk.pcert1 and every sub-bk.cert are built, for sub-bk a sub-book of
  bk.

  The new procedures --- Pcertify, Convert, and Complete --- are
  invoked by supplying a value for the keyword argument :pcert of
  [certify-book], namely :create, :convert, or :complete,
  respectively. Typically, and by default, the compile-flg argument
  of [certify-book] is t for the Pcertify procedure, so that
  [compilation] can take full advantage of parallelism. This argument
  is treated as nil for the other procedures except when its value is
  :all in the Convert procedure, as mentioned above.

  For those who use [make-event], we note that expansion is done in the
  Pcertify procedure; the later steps use the expansion resulting
  from that procedure. The reason is that although a call of
  [make-event] is similar to a macro call, a difference is that the
  expansion of a make-event form can depend on the [state].
  Therefore, we insist on doing such an expansion only once, so that
  all books involved agree on the expansion. We say more about
  make-event below.

  Correctness Claim and Issues

  The Basic Claim for certification is the same whether or not the
  provisional certification process is employed: all books should be
  certified from scratch, with no files written to the directories of
  the books except by ACL2. Moreover, no trust tags should be used
  (see [defttag]), or else it is the responsibility of the user to
  investigate every occurrence of ``TTAG NOTE'' that is printed to
  standard output.

  But common practice is to certify a set of books in stages: certify a
  few books, fix some books, re-certify changed books, certify some
  more books, and so on. In practice, we expect this process to be
  sound even though it does not meet the preconditions for the Basic
  Claim above. In particular, we expect that the use of checksums in
  [certificate]s will make it exceedingly unlikely that a book is
  still treated as certified after any events in the book or any
  sub-book, or any [portcullis] [command]s of the book or any
  sub-book, have been modified.

  Provisional certification makes it a bit easier for a determined user
  to subvert correctness. For example, the Complete procedure only
  checks write dates to ensure that each sub-book's .cert file is no
  older than the corresponding .lisp file, but it does not look
  inside .cert files of sub-books; in particular it does not look at
  their checksum information. Of course, the automatic dependency
  analysis provided by classic ACL2 `make'-based certification avoids
  accidental problems of this sort. And, checksum information will
  indeed be applied at [include-book] time, at least for sub-books
  included non-[local]ly.

  In short: while we believe that the provisional certification process
  can be trusted, we suggest that for maximum trust, it is best for
  all books in a project to be certified from scratch without the
  provisional certification process.

  Combining Pcertify and Convert into Pcertify+

  You can combine the Pcertify and Convert procedure into a single
  procedure, Pcertify+, which may be useful for books that contain
  expensive [include-book] [events] but do few proofs. If you are
  using `make' to do provisional certification as described above,
  just set `make' variable ACL2_BOOKS_PCERT_ARG_T to the list of
  books for which you want the Pcertify+ procedure performed instead
  of separate Pcertify and Convert procedures. Either of two common
  methods may be used to set this variable, as illustrated below for
  the case that books sub.lisp and mid.lisp are the ones on which you
  want Pcertify+ performed. One method is to add the following to
  your directory's Makefile, above the include of Makefile-generic.

    ACL2_BOOKS_PCERT_ARG_T = sub mid

  Alternatively, you can specify the desired books on the command line,
  for example as follows.

    make -j 4 ACL2_BOOKS_PCERT_ARG_T='sub mid'

  Note that the books are given without their .lisp extensions.

  At the ACL2 level, the Pcertify+ procedure is performed when the
  value t is supplied to the :pcert keyword argument of
  [certify-book]. Thus, :pcert t can be thought of as a combination
  of :pcert :create and :pcert :convert. However, what ACL2 actually
  does is to perform the Pcertify step without skipping proofs, and
  at the end of the certify-book run, it writes out both the .pcert0
  and .pcert1 file, with essentially the same contents. (We say
  ``essentially'' because the implementation writes :PCERT-INFO
  :PROVED to the end of the .pcert0 file, but not to the .pcert1
  file.)

  Further Information

  Some errors during provisional certification cannot be readily
  solved. For example, if there are circular directory dependencies
  (for example, some book in directory D1 includes some book in
  directory D2 and vice-versa), then classic ACL2 `make'-based
  certification will quite possibly fail. For another example,
  perhaps your directory's Makefile is awkward to convert to one with
  suitable dependencies. When no fix is at hand, it might be best
  simply to avoid provisional certification. If you are using classic
  ACL2 `make'-based certification, you can simply add the following
  line to your directory's Makefile, or use ``ACL2_PCERT= '' on the
  `make' command line, to avoid provisional certification.

    override ACL2_PCERT =

  We invite anyone who has troubleshooting tips to contact the ACL2
  developers with suggestions for adding such tips to this section.

  Our next remark is relevant only to users of [make-event], and
  concerns the interaction of that utility with state global
  [ld-skip-proofsp]. Normally, the global value of [ld-skip-proofsp]
  is unchanged during make-event expansion, except that it is bound
  to nil when the make-event form has a non-nil :check-expansion
  argument. But during the Pcertify procedure (not the Pcertify+
  procedure), [ld-skip-proofsp] is always bound to nil at the start
  of make-event expansion. To see why, consider for example the
  community book books/make-event/proof-by-arith.lisp. This book
  introduces a macro, proof-by-arith, that expands to a call of
  [make-event]. This make-event form expands by trying to prove a
  given theorem using a succession of included arithmetic books,
  until the proof succeeds. Now proofs are skipped during the
  Pcertify procedure, and if proofs were also skipped during
  make-event expansion within that procedure, the first arithmetic
  book's [include-book] form would always be saved because the
  theorem's proof ``succeeded'' (as it was skipped!). Of course, the
  theorem's proof could then easily fail during the Convert step. If
  you really want to inhibit proofs during make-event expansion in
  the Pcertify step, consider using a form such as the following:
  (state-global-let* ((ld-skip-proofsp nil)) ...).

  Finally, we describe what it means for there to be a valid
  [certificate] file for including a certified book. Normally, this
  is a file with extension .cert. However, if that .cert file does
  not exist, then ACL2 looks for a .pcert0 file instead; and if that
  also does not exist, it looks for a .pcert1 file. (To see why does
  the .pcert0 file take priority over the .pcert1 file, note that the
  Convert procedure copies a .pcert0 file to a .pcert1 file, so both
  might exist --- but the .pcert1 file might be incomplete if copying
  is in progress.) Once the candidate certificate file is thus
  selected, it must be valid in order for the book to be considered
  certified (see [certificate]). For the certificate file as chosen
  above, then in order for a compiled file to be loaded, it must be
  at least as recent as that certificate file.

  Again, as discussed above, a .pcert0 or .pcert1 file may serve as a
  valid certificate file when the .cert file is missing. But when
  that happens, a warning may be printed that a ``provisionally
  certified'' book has been included. No such warning occurs if
  environment variable ACL2_PCERT has a non-empty value, or if that
  warning is explicitly inhibited (see [set-inhibit-warnings] and see
  [set-inhibit-output-lst]).")
 (PSEUDO-TERMP
  (TERM ACL2-BUILT-INS)
  "A predicate for recognizing term-like s-expressions

    Example Forms:
    (pseudo-termp '(car (cons x 'nil)))      ; has value t
    (pseudo-termp '(car x y z))              ; also has value t!
    (pseudo-termp '(delta (h x)))            ; has value t
    (pseudo-termp '(delta (h x) . 7))        ; has value nil (not a true-listp)
    (pseudo-termp '((lambda (x) (car x)) b)) ; has value t
    (pseudo-termp '(if x y 123))             ; has value nil (123 is not quoted)
    (pseudo-termp '(if x y '123))            ; has value t

  If x is the quotation of a term, then (pseudo-termp x) is t. However,
  if x is not the quotation of a term it is not necessarily the case
  that (pseudo-termp x) is nil.

  See [term] for a discussion of the various meanings of the word
  ``term'' in ACL2. In its most strict sense, a term is either a
  legal variable symbol, a quoted constant, or the application of an
  n-ary function symbol or closed lambda-expression to n terms. By
  ``legal variable symbol'' we exclude constant symbols, such as t,
  nil, and *ts-rational*. By ``quoted constants'' we include 't (aka
  (quote t)), 'nil, '31, etc., and exclude constant names such as t,
  nil and *ts-rational*, unquoted constants such as 31 or 1/2, and
  ill-formed quote expressions such as (quote 3 4). By ``closed
  lambda expression'' we exclude expressions, such as (lambda (x)
  (cons x y)), containing free variables in their bodies. Terms typed
  by the user are translated into strict terms for internal use in
  ACL2.

  The predicate termp checks this strict sense of ``term'' with respect
  to a given ACL2 logical world; See [world]. Many ACL2 functions,
  such as the rewriter, require certain of their arguments to satisfy
  termp. However, as of this writing, termp is in :[program] mode and
  thus cannot be used effectively in conjectures to be proved.
  Furthermore, if regarded simply from the perspective of an
  effective [guard] for a term-processing function, termp checks many
  irrelevant things. (Does it really matter that the variable symbols
  encountered never start and end with an asterisk?) For these
  reasons, we have introduced the notion of a ``pseudo-term'' and
  embodied it in the predicate pseudo-termp, which is easier to
  check, does not require the logical [world] as input, has :[logic]
  mode, and is often perfectly suitable as a [guard] on
  term-processing functions.

  A pseudo-termp is either a symbol, a true list of length 2 beginning
  with the word quote, the application of an n-ary pseudo-lambda
  expression to a true list of n pseudo-terms, or the application of
  a symbol to a true list of n pseudo-termps. By an ``n-ary
  pseudo-lambda expression'' we mean an expression of the form
  (lambda (v1 ... vn) pterm), where the vi are symbols (but not
  necessarily distinct legal variable symbols) and pterm is a
  pseudo-termp.

  Metafunctions may use pseudo-termp as a [guard].")
 (PSO
  (PROVER-OUTPUT)
  "Show the most recently saved output

  Evaluate :pso in order to print output that was generated in an
  environment where output was being saved; see [set-saved-output]
  for details. However, [proof-tree] output will be suppressed; use
  :[pso!] if you want that output to be printed as well.

  Also see [psog], for printing saved output in [gag-mode].")
 (PSO!
  (PROVER-OUTPUT)
  "Show the most recently saved output, including [proof-tree] output

  Evaluate :pso! in order to print output that was generated in an
  environment where output was being saved; see [set-saved-output]
  for details. Note that [proof-tree] will be included; use :[pso] if
  you want that output to be suppressed.

  Also see [psog], for printing saved output in [gag-mode].")
 (PSOF
  (PROVER-OUTPUT)
  "Show the most recently saved output

  For a similar utility, see [pso]. Like :pso, the :psof command prints
  output that was generated in an environment where output was being
  saved, typically [gag-mode]; also see [set-saved-output]. But
  unlike :pso, :psof takes a filename argument and saves output to
  that file, instead of to the terminal. For large proofs, :[psof]
  may complete more quickly than :[pso]. Note that as with :pso,
  [proof-tree] output will be suppressed.

  The first line of output from :psof directs the Emacs editor to use
  auto-revert mode. You can change the frequency of auto-reverting
  the buffer connected to a file by evaluating a suitable command in
  Emacs. For example, the command (setq auto-revert-interval .1)
  arranges for auto-revert mode to update as needed every 1/10 of a
  second.")
 (PSOG
  (PROVER-OUTPUT)
  "Show the most recently saved output in [gag-mode]

  Evaluate :psog in order to print output in [gag-mode] that was
  generated in an environment where output was being saved; see
  [set-saved-output] for details.

  Also see [pso] and see [pso!] for printing the full output.")
 (PSTACK
  (DEBUGGING)
  "Seeing what the prover is up to

    General Forms:
    (pstack)      ; inspect break
    (pstack t)    ; inspect break, printing all calls in abbreviated form
    (pstack :all) ; as above, but only abbreviating the ACL2 world

  When the form (pstack) is executed during a break from a proof, or at
  the end of a proof that the user has aborted, a ``process stack''
  (or ``prover stack'') will be printed that gives some idea of what
  the theorem prover has been doing. Moreover, by evaluating
  (verbose-pstack t) before starting a proof (see [verbose-pstack])
  one can get trace-like information about prover functions,
  including time summaries, printed to the screen during a proof.
  This feature is currently quite raw and may be refined considerably
  as time goes on, based on user suggestions. For example, the usual
  control of printing given by [set-inhibit-output-lst] is irrelevant
  for printing the pstack.

  The use of (pstack t) or (pstack :all) should only be used by those
  who are comfortable looking at functions in the ACL2 source code.
  Otherwise, simply use (pstack).

  Entries in the pstack include the following (listed here
  alphabetically, except for the first).

  preprocess-clause, simplify-clause, etc. (in general,xxx-clause):
  top-level processes in the prover ``waterfall''

  clausify: splitting a goal into subgoals

  ev-fncall: evaluating a function on explicit arguments

  ev-fncall-meta: evaluating a metafunction

  forward-chain: building a context for the current goal using
  [forward-chaining] rules

  induct: finding an induction scheme

  pop-clause: getting the next goal to prove by induction

  process-assumptions: creating forcing rounds

  remove-built-in-clauses: removing built-in clauses (see
  [built-in-clause])

  process-equational-polys: deducing interesting equations

  remove-trivial-equivalences: removing trivial equalities (and
  equivalences) from the current goal

  rewrite-atm: rewriting a top-level term in the current goal

  setup-simplify-clause-pot-lst: building the linear arithmetic
  database for the current goal

  strip-branches, subsumption-replacement-loop: subroutines of clausify

  waterfall: top-level proof control


Subtopics

  [Verbose-pstack]
      Seeing what the prover is up to (for system hackers)")
 (PUFF
  (HISTORY)
  "Replace a compound [command] by its immediate subevents

    Example Forms:
    ACL2 !>:puff :max
    ACL2 !>:puff :x
    ACL2 !>:puff 15
    ACL2 !>:puff \"book\"

    General Form:
    :puff cd

  where cd is a [command] descriptor (see [command-descriptor]) for a
  ``puffable'' [command] (see below). Puff replaces the [command] at
  cd by the immediate subevents of the [command], executed as
  [command]s. Puff then prints, using [pcs], the puffed region.

  We consider puff to be a sort of hack; it is generally robust and
  sound, but that is not guaranteed. If any existing ACL2 event
  resulted from puff, ACL2 considers proofs to have been skipped, and
  thus [certify-book] is disallowed until such events have been
  undone (see [ubt]).

  A ``puffable'' [command] is an [encapsulate] [command], an
  [include-book] command, or any command other than those consisting
  of a single primitive event. For example, since [defun] is a
  primitive event, a [defun] command is not puffable. But a macro
  form that expands into one or more [events] is puffable. The only
  primitive events that are puffable are calls of [encapsulate] or
  [include-book]. In this sense, [make-event] is not considered
  primitive --- that is, it can be puffed --- and moreover, an
  immediate subevent that is a call of make-event is generally
  replaced by its expansion (see [make-event]). A puffable [command]
  contains (interesting) subevents, namely, the events in the body of
  the [encapsulate], in the file of the book included, or in the
  [command] block.

  The puff [command] ``lifts'' the immediate subevents of the indicated
  [command] so that they become [command]s themselves. The [command]
  [puff*] recursively puffs the newly introduced [command]s. See
  [puff*], which also gives an example illustrating both puff and
  [puff*]. Puff undoes the [command] at cd and replaces it by its
  immediate subevents. Thus, in general the length of the [history]
  grows when a puff [command] is executed. If puff causes an error
  (see below), the logical [world] remains unchanged from its initial
  configuration.

  The intended use of puff is to allow the user access to the [events]
  ``hidden'' inside compound [command]s. For example, while trying to
  prove some theorem, p, about a constrained function, fn, one might
  find that the [encapsulate], cd, that introduced fn failed to
  include an important [constraint], q. Without puff, the only way to
  proceed is to undo back through cd, create a suitable [encapsulate]
  that proves and exports q as well as the old [constraint]s,
  re-execute the new [encapsulate], re-execute the [events] since cd,
  and then try p again. Unfortunately, it may be hard to prove q and
  additional [events] may have to be inserted into the [encapsulate]
  to prove it. It may also be hard to formulate the ``right'' q,
  i.e., one that is provable in the [encapsulate] and provides the
  appropriate facts for use in the proof of p.

  Using puff, the user can erase the [encapsulate] at cd, replacing it
  by the [events] in its body. Now the formerly constrained function,
  fn, is defined as its witness. The user can experiment with
  formulations and proofs of q suitable for p. Of course, to get into
  the ultimately desired [state] --- where fn is constrained rather
  than defined and q is exported by an [encapsulate] at cd --- the
  user must ultimately undo back to cd and carry out the more tedious
  program described above. But by using puff it is easier to
  experiment.

  Similar applications of puff allow the user of a book to expose the
  top-level [events] in the book as though they had all been typed as
  [command]s. The user might then ``partially undo'' the book,
  keeping only some of the events in it.

  Puff operates as follows. First, it determines the list of immediate
  subevents of the [command] indicated by cd. It causes an error if
  there is only one subevent and that subevent is identical to the
  [command] --- i.e., if the [command] at cd is a primitive. Next,
  puff undoes back through the indicated [command]. This not only
  erases the [command] at cd but all the [command]s executed after
  it. Finally, puff re-executes the subevents of (the now erased) cd
  followed by all the [command]s that were executed afterwards.

  Observe that the [command]s executed after cd will generally have
  higher [command] numbers than they did before the puff. For
  example, suppose 100 [command]s have been executed and that :puff
  80 is then executed. Suppose [command] 80 contains 5 immediate
  subevents (i.e., is an encapsulation of five [events]). Then, after
  puffing, [command] 80 is the first event of the puffed [command],
  [command] 81 is the second, and so on; 104 [command]s appear to
  have been executed.

  When puffing an [encapsulate] or [include-book], the [local]
  [command]s are executed. Note that this will replace constrained
  functions by their witnesses.

  Here are some details and small exceptions.

    * An [encapsulate] command generated by the macro
      [define-trusted-clause-processor] is not puffable.
    * An attempt to puff an [include-book] command may fail for a book that
      has been modified, as describe late in this documentation
      topic.
    * The puff of an an [include-book] command for an uncertified book will
      simply expose the contents of the book. However, if the book is
      certified then the puff will replace each event by its
      [make-event] expansion. Moreover, any such expansion that is
      [local] will be ignored; similarly for local make-event
      expansions in [encapsulate] commands. This will result in an
      error if the elided event is necessary to support later events
      in the puff of the command.

  Finally, we note that it is an error to puff in the presence of
  [include-book] [events] for certified books that have been altered
  since they were included. (Note that this restriction only applies
  to [include-book], not to [certify-book].) To be specific, suppose
  \"arith\" is a certified book that has been included in a session.
  Suppose that after \"arith\" was included, the source file is
  modified. (This might happen if the user of \"arith\" is not its
  author and the author happens to be working on a new version of
  \"arith\" during the same time period.) Now suppose the user tries to
  puff the [command] that included \"arith\". The attempt to obtain the
  subevents in \"arith\" will discover that the check sum of \"arith\"
  has changed and an error will be caused. No change is made in the
  logical [world]. A similar error is caused if, in this same
  situation, the user tries to puff any command that occurred before
  the inclusion of \"arith\"! That is, puff may cause an error and
  leave the [world] unchanged even if the [command] puffed is not one
  involving the modified book. This happens because in order to
  reconstruct the [world] after the puffed [command], puff must
  obtain the [events] in the book and if the book's source file has
  changed there is no assurance that the reconstructed [world] is the
  one the user intends.

  Warning: We do not detect changes to uncertified [books] that have
  been included and are then puffed or re-included! The act of
  including an uncertified book leaves no trace of the check sum of
  the book. Furthermore, the act prints a warning message disclaiming
  soundness. In light of this, :puff quietly ``re-''executes the
  current contents of the book.")
 (PUFF*
  (HISTORY)
  "Replace a compound [command] by its subevents

    Example Forms:
    ACL2 !>:puff* :max
    ACL2 !>:puff* :x
    ACL2 !>:puff* 15
    ACL2 !>(puff* 15) ; same as just above
    ACL2 !>(puff* 15 t) ; same as just above, but keep partial results
    ACL2 !>:puff* \"book\"

    General Forms:
    :puff* cd
    (puff* 'cd) ; argument can be any expression evaluating to cd
    (puff* 'cd b) ; where b is t or nil

  where cd is a [command] descriptor (see [command-descriptor]) for a
  ``puffable'' [command]. See [puff] for the definition of
  ``puffable'' and for a description of the basic act of ``puffing''
  a [command]. In particular, see [puff] for a discussion of a sense
  in which puff, and hence puff*, should be viewed as a hack. Puff*
  is just the recursive application of [puff]. Puff* prints the
  region [puff]ed, using [pcs].

  To [puff] a [command] is to replace it by its immediate subevents,
  each of which is executed as a [command]. To puff* a [command] is
  to replace the [command] by each of its immediate subevents and
  then to puff* each of the puffable [command]s among the newly
  introduced ones.

  For example, suppose \"ab\" is a book containing the following

    (in-package \"ACL2\")
    (include-book \"a\")
    (include-book \"b\")

  Suppose that book \"a\" only contained [defun]s for the functions a1
  and a2 and that \"b\" only contained [defun]s for b1 and b2.

  Now consider an ACL2 [state] in which only two [command]s have been
  executed, the first being (include-book \"ab\") and the second being
  (include-book \"c\"). Thus, the relevant part of the display produced
  by :[pbt] 1 would be:

    1 (INCLUDE-BOOK \"ab\")
    2 (INCLUDE-BOOK \"c\")

  Call this [state] the ``starting [state]'' in this example, because
  we will refer to it several times.

  Suppose :puff 1 is executed in the starting [state]. Then the first
  [command] is replaced by its immediate subevents and :pbt 1 would
  show:

    1 (INCLUDE-BOOK \"a\")
    2 (INCLUDE-BOOK \"b\")
    3 (INCLUDE-BOOK \"c\")

  Contrast this with the execution of :puff* 1 in the starting [state].
  Puff* would first [puff] (include-book \"ab\") to get the [state]
  shown above. But then it would recursively puff* the puffable
  [command]s introduced by the first [puff]. This continues
  recursively as long as any [puff] introduced a puffable [command].
  The end result of :puff* 1 in the starting [state] is

    1 (DEFUN A1 ...)
    2 (DEFUN A2 ...)
    3 (DEFUN B1 ...)
    4 (DEFUN B2 ...)
    5 (INCLUDE-BOOK \"c\")

  Observe that when puff* is done, the originally indicated [command],
  (include-book \"ab\"), has been replaced by the corresponding
  sequence of primitive [events]. Observe also that puffable
  [command]s elsewhere in the [history], for example, [command] 2 in
  the starting [state], are not affected (except that their [command]
  numbers grow as a result of the splicing in of earlier [command]s).

  If there is an error during execution of puff*, then the logical
  [world] is reverted to its value before that execution, unless the
  optional Boolean second argument is t, in which case the result is
  preserved from the succesful :puff commands executed before the
  erroneous one.")
 (PUSH-UNTOUCHABLE
  (DEFTTAG)
  "Add name or list of names to the list of untouchable symbols

    Examples:
    (push-untouchable my-var nil)
    (push-untouchable set-mem t)

    General Form:
    (push-untouchable name{s} fn-p)

  where name{s} is a non-nil symbol or a non-nil true list of symbols,
  and fn-p is any value (but generally nil or t). If name{s} is a
  symbol it is treated as the singleton list containing that symbol.
  The effect of this event is to union the given symbols into the
  list of ``untouchable variables'' in the current world if fn-p is
  nil, else to union the symbols into the list of ``untouchable
  functions''. This event is redundant if every symbol listed is
  already a member of the appropriate untouchables list (variables or
  functions).

  There is a further restriction on which function names may be made
  untouchable: If a function symbol, g, may be introduced into a
  proof by a metatheorem (via the metafunction or the hypothesis
  metafunction) or by a clause processor and the metatheorem or
  clause processor has a :[well-formedness-guarantee] then g may not
  be made untouchable.

  When a symbol is on the untouchables list it is syntactically illegal
  for any event to call a function or macro of that name, if fn-p is
  non-nil, or to change the value of a state global variable of that
  name, if fn-p is nil. Thus, the effect of pushing a function
  symbol, name, onto untouchables is to prevent any future event from
  using that symbol as a function or macro, or as a state global
  variable (according to fn-p). This is generally done to ``fence
  off'' some primitive function symbol from ``users'' after the
  developer has used the symbol freely in the development of some
  higher level mechanism.

  Also see [remove-untouchable].")
 (PUT-ASSOC
  (ALISTS ACL2-BUILT-INS)
  "Modify an association list by associating a value with a key

    General Forms:
    (put-assoc name val alist)
    (put-assoc name val alist :test 'eql)   ; same as above (eql as equality test)
    (put-assoc name val alist :test 'eq)    ; same, but eq is equality test
    (put-assoc name val alist :test 'equal) ; same, but equal is equality test

  (Put-assoc name val alist) returns an alist that is the same as the
  list alist, except that the first pair in alist with a [car] of
  name is replaced by (cons name val), if there is one. If there is
  no such pair, then (cons name val) is added at the end. Note that
  the order of the keys occurring in alist is unchanged (though a new
  key may be added).

  The [guard] for a call of put-assoc depends on the test. In all
  cases, the last argument must satisfy [alistp]. If the test is
  [eql], then either the first argument must be suitable for [eql]
  (see [eqlablep]) or the last argument must satisfy
  [eqlable-alistp]. If the test is [eq], then either the first
  argument must be a symbol or the last argument must satisfy
  [symbol-alistp].

  See [equality-variants] for a discussion of the relation between
  put-assoc and its variants:

      (put-assoc-eq name val alist) is equivalent to (put-assoc name val
      alist :test 'eq);

      (put-assoc-equal name val alist) is equivalent to (put-assoc name val
      alist :test 'equal).

  In particular, reasoning about any of these primitives reduces to
  reasoning about the function put-assoc-equal.

  Function: <put-assoc-equal>

    (defun put-assoc-equal (name val alist)
           (declare (xargs :guard (alistp alist)))
           (cond ((endp alist) (list (cons name val)))
                 ((equal name (caar alist))
                  (cons (cons name val) (cdr alist)))
                 (t (cons (car alist)
                          (put-assoc-equal name val (cdr alist))))))")
 (PUT-ASSOC-EQ (POINTERS)
               "See [put-assoc].")
 (PUT-ASSOC-EQL (POINTERS)
                "See [put-assoc].")
 (PUT-ASSOC-EQUAL (POINTERS)
                  "See [put-assoc].")
 (PUTPROP
  (WORLD ACL2-BUILT-INS)
  "Update fast property lists

    General form:
    (putprop symbol key value world-alist)

  See community book books/misc/getprop.lisp for an example that
  illustrates the use of ACL2 utilities [getprop] and putprop to take
  advantage of under-the-hood Lisp (hashed) property lists.

  Function: <putprop>

    (defun putprop (symb key value world-alist)
           (declare (xargs :guard (and (symbolp symb)
                                       (symbolp key)
                                       (plist-worldp world-alist))))
           (cons (cons symb (cons key value))
                 world-alist))")
 (Q
  (LP)
  "Quit ACL2 (type :q) --- reenter with (lp)

    Example:
    ACL2 !>:Q

  The keyword command :q typed at the top-level of the ACL2 loop will
  terminate the loop and return control to the Common Lisp top-level
  (or, more precisely, to whatever program invoked [lp]). To reenter
  the ACL2 loop, execute (acl2::lp) in Common Lisp. You will be in
  the same state as you were when you exited with :q, unless during
  your stay in Common Lisp you messed the data structures
  representating the ACL2 [state] (including files, property lists,
  and single-threaded objects).

  Unlike all other keyword commands, typing :q is not equivalent to
  invoking the function q. There is no function q.")
 (QUANTIFIER-TUTORIAL
  (DEFUN-SK)
  "A Beginner's Guide to Reasoning about Quantification in ACL2

  The initial version of this tutorial was written by Sandip Ray.
  Additions and revisions are welcome. Sandip has said:

      ``This is a collection of notes that I wrote to remind myself of how
      to reason about quantifiers when I just started. Most users
      after they have gotten the hang of quantifiers probably will
      not need this and will be able to use their intuitions to guide
      them in the process. But since many ACL2 users are not used to
      quantification, I am hoping that this set of notes might help
      them to think clearly while reasoning about quantifiers in
      ACL2.''

  Many ACL2 papers start with the sentence ``ACL2 is a quantifier-free
  first-order logic of recursive functions.'' It is true that the
  syntax of ACL2 is quantifier-free; every formula is assumed to be
  universally quantified over all free variables in the formula. But
  the logic in fact does afford arbitrary first-order quantification.
  This is obtained in ACL2 using a construct called defun-sk. See
  [defun-sk].

  Many ACL2 users do not think in terms of [quantifiers]. The focus is
  almost always on defining recursive functions and reasoning about
  them using induction. That is entirely justified, in fact, since
  proving theorems about recursive functions by induction plays to
  the strengths of the theorem prover. Nevertheless there are
  situations where it is reasonable and often useful to think in
  terms of quantifiers. However, reasoning about quantifiers requires
  that you get into the mindset of thinking about theorems in terms
  of quantification. This note is about how to do this effectively
  given ACL2's implementation of quantification. This does not
  discuss [defun-sk] in detail, but merely shows some examples. A
  detailed explanation of the implementation is in the ACL2
  [documentation] (see [defun-sk]); also see
  [conservativity-of-defchoose].

  [Note: Quantifiers can be used for some pretty cool things in ACL2.
  Perhaps the most interesting example is the way of using
  quantifiers to introduce arbitrary tail-recursive equations; see
  the paper ``Partial Functions in ACL2'' by Panagiotis Manolios and
  J Strother Moore. This note does not address applications of
  quantifiers, but merely how you would reason about them once you
  think you want to use them.]

  Assume that you have some function P. I have just left P as a unary
  function stub below, since I do not care about what P is.

    (defstub P (*) => *)

  Now suppose you want to specify the concept that ``there exists some
  x such that (P x) holds''. ACL2 allows you to write that directly
  using quantifiers.

    (defun-sk exists-P () (exists x (P x)))

  If you submit the above form in ACL2 you will see that the theorem
  prover specifies two functions exists-p and exists-p-witness, and
  exports the following constraints:

    1.  (defun exists-P () (P (exists-P-witness)))
    2.  (defthm exists-P-suff (implies (p x) (exists-p)))

  Here exists-P-witness is a new function symbol in the current ACL2
  theory. What do the constraints above say? Notice the constraint
  exists-p-suff. It says that if you can provide any x such that (P
  x) holds, then you know that exists-p holds. Think of the other
  constraint (definition of exists-p) as going the other way. That
  is, it says that if exists-p holds, then there is some x, call it
  (exists-p-witness), for which P holds. Notice that nothing else is
  known about exists-p-witness than the two constraints above.

  [Note: exists-p-witness above is actually defined in ACL2 using a
  special form called defchoose. See [defchoose]. This note does not
  talk about defchoose. So far as this note is concerned, think of
  exists-p-witness as a new function symbol that has been generated
  somehow in ACL2, about which nothing other than the two facts above
  is known.]

  Similarly, you can talk about the concept that ``for all x (P x)
  holds.'' This can be specified in ACL2 by the form:

    (defun-sk forall-P () (forall x (P x)))

  This produces the following two constraints:

    1.  (defun forall-P () (P (forall-p-witness)))
    2.  (defthm forall-p-necc (implies (not (P x)) (not (forall-p))))

  To understand these, think of for-all-p-witness as producing some x
  which does not satisfy P, if such a thing exists. The constraint
  forall-p-necc merely says that if forall-p holds then P is
  satisfied for every x. (To see this more clearly, just think of the
  contrapositive of the formula shown.) The other constraint
  (definition of forall-p) implies that if forall-p does not hold
  then there is some x, call it (forall-p-witness), which does not
  satisfy P. To see this, just consider the following formula which
  is immediately derivable from the definition.

    (implies (not (forall-p)) (not (P (forall-witness))))

  The description above suggests that to reason about quantifiers, the
  following Rules of Thumb, familiar to most any student of logic,
  are useful.

      RT1: To prove (exists-p), construct some object A such that P holds
      for A and then use exists-P-suff.

      RT2: If you assume exists-P in your hypothesis, use the definition of
      exists-p to know that P holds for exists-p-witness. To use this
      to prove a theorem, you must be able to derive the theorem
      based on the hypothesis that P holds for something, whatever
      the something is.

      RT3: To prove forall-P, prove the theorem (P x) (that is, that P
      holds for an arbitrary x), and then simply instantiate the
      definition of forall-p, that is, show that P holds for the
      witness.

      RT4: If you assume forall-p in the hypothesis of the theorem, see how
      you can prove your conclusion if indeed you were given (P x) as
      a theorem. Possibly for the conclusion to hold, you needed that
      P holds for some specific set of x values. Then use the theorem
      forall-p-necc by instantiating it for the specific x values you
      care about.

  Perhaps the above is too terse. In the remainder of the note, we will
  consider several examples of how this is done to prove theorems in
  ACL2 that involve quantified notions.

  Let us consider two trivial theorems. Assume that for some unary
  function r, you have proved (r x) as a theorem. Let us see how you
  can prove that (1) there exists some x such that (r x) holds, and
  (2) for all x (r x) holds.

  We first model these things using [defun-sk]. Below, r is simply some
  function for which (r x) is a theorem.

    (encapsulate
     (((r *) => *))
     (local (defun r (x) (declare (ignore x)) t))
     (defthm r-holds (r x)))

    (defun-sk exists-r () (exists x (r x)))
    (defun-sk forall-r () (forall x (r x)))

  ACL2 does not have too much reasoning support for quantifiers. So in
  most cases, one would need :use hints to reason about quantifiers.
  In order to apply :use [hints], it is preferable to keep the
  function definitions and theorems disabled.

    (in-theory (disable exists-r exists-r-suff forall-r forall-r-necc))

  Let us now prove that there is some x such that (r x) holds. Since we
  want to prove exists-r, we must use exists-r-suff by RT1. We do not
  need to construct any instance here since r holds for all x by the
  theorem above.

    (defthm exists-r-holds
      (exists-r)
      :hints ((\"Goal\" :use ((:instance exists-r-suff)))))

  Let us now prove the theorem that for all x, (r x) holds. By RT3, we
  must be able to prove it by definition of forall-r.

    (defthm forall-r-holds
      (forall-r)
      :hints ((\"Goal\" :use ((:instance (:definition forall-r))))))

  [Note: Probably no ACL2 user in his or her right mind would prove the
  theorems exists-r-holds and forall-r-holds above. The theorems
  shown are only for demonstration purposes.]

  For the remainder of this note we will assume that we have two
  stubbed out unary functions M and N, and we will look at proving
  some quantified properties of these functions.

    (defstub M (*) => *)
    (defstub N (*) => *)

  Let us now define the predicates all-M, all-N, ex-M, and ex-N
  specifying the various quantifications.

    (defun-sk all-M () (forall x (M x)))
    (defun-sk all-N () (forall x (N x)))
    (defun-sk some-M () (exists x (M x)))
    (defun-sk some-N () (exists x (N x)))

    (in-theory (disable all-M all-N all-M-necc all-N-necc))
    (in-theory (disable some-M some-N some-M-suff some-N-suff))

  Let us prove the classic distributive properties of quantification:
  the distributivity of universal quantification over conjunction,
  and the distributivity of existential quantification over
  disjunction. We can state these properties informally in ``pseudo
  ACL2'' notation as follows:

    1.  (exists x: (M x)) or (exists x: (N x)) <=> (exists x: (M x) or (N x))
    2.  (forall x: (M x)) and (forall: x (N x)) <=> (forall x: (M x) and (N x))

  To make these notions formal we of course need to define the formulas
  at the right-hand sides of 1 and 2. So we define some-MN and all-MN
  to capture these concepts.

    (defun-sk some-MN () (exists x (or (M x) (N x))))
    (defun-sk all-MN () (forall x (and (M x) (N x))))

    (in-theory (disable all-MN all-MN-necc some-MN some-MN-suff))

  First consider proving property 1. The formal statement of this
  theorem would be: (iff (some-MN) (or (some-M) (some-N))).

  How do we prove this theorem? Looking at RT1-RT4 above, note that
  they suggest how one should reason about quantification when one
  has an ``implication''. But here we have an ``equivalence''. This
  suggests another rule of thumb.

      RT5: Whenever possible, prove an equivalence involving quantifiers by
      proving two implications.

  Let us apply RT5 to prove the theorems above. So we will first prove:
  (implies (some-MN) (or (some-M) (some-N)))

  How can we prove this? This involves assuming a quantified predicate
  (some-MN), so we must use RT2 and apply the definition of some-MN.
  Since the conclusion involves a disjunction of two quantified
  predicates, by RT1 we must be able to construct two objects A and B
  such that either M holds for A or N holds for B, so that we can
  then invoke some-M-suff and some-N-suff to prove the conclusion.
  But now notice that if some-MN is true, then there is already an
  object, in fact some-MN-witness, such that either M holds for it,
  or N holds for it. And we know this is the case from the definition
  of some-MN! So we will simply prove the theorem instantiating
  some-M-suff and some-N-suff with this witness. The conclusion is
  that the following event will go through with ACL2.

    (defthm le1
      (implies (some-MN)
               (or (some-M) (some-N)))
      :rule-classes nil
      :hints ((\"Goal\"
                :use ((:instance (:definition some-MN))
                      (:instance some-M-suff
                                 (x (some-MN-witness)))
                      (:instance some-N-suff
                                 (x (some-MN-witness)))))))

  This also suggests the following rule of thumb:

      RT6: If a conjecture involves assuming an existentially quantified
      predicate in the hypothesis from which you are trying to prove
      an existentially quantified predicate, use the witness of the
      existential quantification in the hypothesis to construct the
      witness for the existential quantification in the conclusion.

  Let us now try to prove the converse of le1, that is: (implies (or
  (some-M) (some-N)) (some-MN))

  Since the hypothesis is a disjunction, we will just prove each case
  individually instead of proving the theorem by a :cases hint. So we
  prove the following two lemmas.

    (defthm le2
      (implies (some-M) (some-MN))
      :rule-classes nil
      :hints ((\"Goal\"
                :use ((:instance (:definition some-M))
                      (:instance some-MN-suff
                                 (x (some-M-witness)))))))

    (defthm le3
      (implies (some-N) (some-MN))
      :rule-classes nil
      :hints ((\"Goal\"
                :use ((:instance (:definition some-N))
                      (:instance some-MN-suff
                                 (x (some-N-witness)))))))

  Note that the hints above are simply applications of RT6 as in le1.
  With these lemmas, of course the main theorem is trivial.

    (defthmd |some disjunction|
      (iff (some-MN) (or (some-M) (some-N)))
      :hints ((\"Goal\"
                :use ((:instance le1)
                      (:instance le2)
                      (:instance le3)))))

  Let us now prove the distributivity of universal quantification over
  conjunction, that is, the formula: (iff (all-MN) (and (all-M)
  (all-N)))

  Applying RT5, we will again decompose this into two implications. So
  consider first the one-way implication: (implies (and (all-M)
  (all-N)) (all-MN)).

  Here we get to assume all-M and all-N. Thus by RT4 we can use
  all-M-necc and all-N-necc to think as if we are given the formulas
  (M x) and (N x) as theorems. The conclusion here is also a
  universal quantification, namely we have to prove all-MN. Then RT3
  tells us to proceed as follows. Take any object y. Try to find an
  instantiation z of the hypothesis that implies (and (M y) (N y)).
  Then instantiate y with all-MN-witness. Note that the hypothesis
  lets us assume (M x) and (N x) to be theorems. Thus to justify we
  need to instantiate x with y, and in this case, therefore, with
  all-MN-witness. To make the long story short, the following event
  goes through with ACL2:

    (defthm lf1
       (implies (and (all-M) (all-N))
                (all-MN))
        :rule-classes nil
        :hints ((\"Goal\"
                  :use ((:instance (:definition all-MN))
                        (:instance all-M-necc (x (all-MN-witness)))
                        (:instance all-N-necc (x (all-MN-witness)))))))

  This suggests the following rule of thumb which is a dual of RT6:

      RT7: If a conjecture assumes some universally quantified predicate in
      the hypothesis and its conclusion asserts a universallly
      quantified predicate, then instantiate the ``necessary
      condition'' (forall-mn-necc) of the hypothesis with the witness
      of the conclusion to prove the conjecture.

  Applying RT7 now we can easily prove the other theorems that we need
  to show that universal quantification distributes over conjunction.
  Let us just go through this motion in ACL2.

    (defthm lf2
      (implies (all-MN)
               (all-M))
      :rule-classes nil
      :hints ((\"Goal\"
                :use ((:instance (:definition all-M))
                      (:instance all-MN-necc
                                 (x (all-M-witness)))))))

    (defthm lf3
      (implies (all-MN)
               (all-N))
      :rule-classes nil
      :hints ((\"Goal\"
                :use ((:instance (:definition all-N))
                      (:instance all-MN-necc
                                 (x (all-N-witness)))))))

    (defthmd |all conjunction|
      (iff (all-MN)
           (and (all-M) (all-N)))
     :hints ((\"Goal\" :use ((:instance lf1)
                           (:instance lf2)
                           (:instance lf3)))))

  The rules of thumb for universal and existential quantification
  should make you realize the duality of their use. Every reasoning
  method about universal quantification can be cast as a way of
  reasoning about existential quantification, and vice versa. Whether
  you reason using universal and existential quantifiers depends on
  what is natural in a particular context. But just for the sake of
  completeness let us prove the duality of universal and existential
  quantifiers. So what we want to prove is the following:

    3.  (forall x (not (M x))) = (not (exists x (M x)))

  We first formalize the notion of (forall x (not (M x))) as a
  quantification.

    (defun-sk none-M () (forall x (not (M x))))
    (in-theory (disable none-M none-M-necc))

  So we now want to prove: (equal (none-M) (not (some-M))).

  As before, we should prove this as a pair of implications. So let us
  prove first: (implies (none-M) (not (some-M))).

  This may seem to assert an existential quantification in the
  conclusion, but rather, it asserts the negation of an existential
  quantification. We are now trying to prove that something does not
  exist. How do we do that? We can show that nothing satisfies M by
  just showing that (some-M-witness) does not satisfy M. This
  suggests the following rule of thumb:

      RT8: When you encounter the negation of an existential quantification
      think in terms of a universal quantification, and vice-versa.

  Ok, so now applying RT8 and RT3 you should be trying to apply the
  definition of some-M. The hypothesis is just a pure (non-negated)
  universal quantification so you should apply RT4. A blind
  application lets us prove the theorem as below.

    (defthm nl1
      (implies (none-M) (not (some-M)))
      :rule-classes nil
      :hints ((\"Goal\"
                :use ((:instance (:definition some-M))
                      (:instance none-M-necc (x (some-M-witness)))))))

  How about the converse implication? I have deliberately written it as
  (implies (not (none-M)) (some-M)) instead of switching the
  left-hand and right-hand sides of nl1, which would have been
  equivalent. Again, RH8 tells us how to reason about it, in this
  case using RH2, and we succeed.

    (defthm nl2
      (implies (not (none-M)) (some-M))
      :rule-classes nil
      :hints ((\"Goal\"
                :use ((:instance (:definition none-M))
                      (:instance some-M-suff (x (none-M-witness)))))))

  So finally we just go through the motions of proving the equality.

    (defthmd |forall not = not exists|
      (equal (none-M) (not (some-M)))
      :hints ((\"Goal\"
                :use ((:instance nl1)
                      (:instance nl2)))))

  Let us now see if we can prove a slightly more advanced theorem which
  can be stated informally as: If there is a natural number x which
  satisfies M, then there is a least natural number y that satisfies
  M.

  [Note: Any time I have had to reason about existential quantification
  I have had to do this particular style of reasoning and state that
  if there is an object satisfying a predicate, then there is also a
  ``minimal'' object satisfying the predicate.]

  Let us formalize this concept. We first define the concept of
  existence of a natural number satisfying x.

    (defun-sk some-nat-M () (exists x (and (natp x) (M x))))
    (in-theory (disable some-nat-M some-nat-M-suff))

  We now talk about what it means to say that x is the least number
  satisfying M.

    (defun-sk none-below (y)
      (forall r (implies (and (natp r) (< r y)) (not (M r))))))
    (in-theory (disable none-below none-below-necc))

    (defun-sk min-M () (exists y (and (M y) (natp y) (none-below y))))
    (in-theory (disable min-M min-M-suff))

  The predicate none-below says that no natural number less than y
  satisfies M. The predicate min-M says that there is some natural
  number y satisfying M such that none-below holds for y.

  So the formula we want to prove is: (implies (some-nat-M) (min-M)).

  Since the formula requires that we prove an existential
  quantification, RT1 tells us to construct some object satisfying
  the predicate over which we are quantifying. We should then be able
  to instantiate min-M-suff with this object. That predicate says
  that the object must be the least natural number that satisfies M.
  Since such an object is uniquely computable if we know that there
  exists some natural number satisfying M, let us just write a
  recursive function to compute it. This function is least-M below.

    (defun least-M-aux (i bound)
      (declare (xargs :measure (nfix (- (1+ bound) i))))
      (cond ((or (not (natp i))
                 (not (natp bound))
                 (> i bound))
             0)
           ((M i) i)
           (t (least-M-aux (+ i 1) bound))))

    (defun least-M (bound) (least-M-aux 0 bound))

  Let us now reason about this function as one does typically. So we
  prove that this object is indeed the least natural number that
  satisfies M, assuming that bound is a natural number that satisfies
  M.

    (defthm least-aux-produces-an-M
      (implies (and (natp i)
                    (natp bound)
                    (<= i bound)
                    (M bound))
               (M (least-M-aux i bound))))

    (defthm least-<=bound
      (implies (<= 0 bound)
               (<= (least-M-aux i bound) bound)))

    (defthm least-aux-produces-least
      (implies (and (natp i)
                    (natp j)
                    (natp bound)
                    (<= i j)
                    (<= j bound)
                    (M j))
                (<= (least-M-aux i bound) j)))

    (defthm least-aux-produces-natp
      (natp (least-M-aux i bound)))

    (defthmd least-is-minimal-satisfying-m
      (implies (and (natp bound)
                    (natp i)
                     (< i (least-M bound)))
               (not (M i)))
      :hints ((\"Goal\"
                :in-theory (disable least-aux-produces-least least-<=bound)
                :use ((:instance least-<=bound
                                 (i 0))
                      (:instance least-aux-produces-least
                                 (i 0)
                                 (j i))))))

    (defthm least-has-m
      (implies (and (natp bound)
                    (m bound))
               (M (least-M bound))))

    (defthm least-is-natp
      (natp (least-M bound)))

  So we have done that, and hopefully this is all that we need about
  least-M. So we disable everything.

    (in-theory (disable least-M natp))

  Now of course we note that the statement of the conjecture we are
  interested in has two quantifiers, an inner forall (from
  none-below) and an outer exists (from min-M). Since ACL2 is not
  very good with quantification, we hold its hands to reason with the
  quantifier part. So we will first prove something about the forall
  and then use it to prove what we need about the exists.

      RT9: When you face nested quantifiers, reason about each nesting
      separately.

  So what do we want to prove about the inner quantifier? Looking
  carefully at the definition of none-below we see that it is saying
  that for all natural numbers r < y, (M r) does not hold. Well, how
  would we want to use this fact when we want to prove our final
  theorem? We expect that we will instantiate min-M-suff with the
  object (least-M bound) where we know (via the outermost existential
  quantifier) that M holds for bound, and we will then want to show
  that none-below holds for (least-M bound). So let us prove that for
  any natural number (call it bound), none-below holds for (least-M
  bound). For the final theorem we only need it for natural numbers
  satisfying M, but note that from the lemma
  least-is-minimal-satisfying-m we really do not need that bound
  satisfies M.

  So we are now proving: (implies (natp bound) (none-below (least-M
  bound))).

  Well since this is a standard case of proving a universally
  quantified predicate, we just apply RT3. We have proved that for
  all naturals i < (least-M bound), i does not satisfy M (lemma
  least-is-minimal-satisfying-M), so we merely need the instantiation
  of that lemma with none-below-witness of the thing we are trying to
  prove, that is, (least-M bound). The theorem below thus goes
  through.

    (defthm least-is-minimal
      (implies (natp bound)
               (none-below (least-M bound)))
      :hints ((\"Goal\"
                :use ((:instance (:definition none-below)
                                 (y (least-M bound)))
                      (:instance least-is-minimal-satisfying-m
                                 (i (none-below-witness (least-M bound))))))))

  Finally we are in the outermost existential quantifier, and are in
  the process of applying min-M-suff. What object should we
  instantiate it with? We must instantiate it with (least-M bound)
  where bound is an object which must satisfy M and is a natural. We
  have such an object, namely (some-nat-M-witness) which we know have
  all these qualities given the hypothesis. So the proof now is just
  RT1 and RT2.

    (defthm |minimal exists|
      (implies (some-nat-M) (min-M))
      :hints ((\"Goal\"
                :use ((:instance min-M-suff
                                 (y (least-M (some-nat-M-witness))))
                      (:instance (:definition some-nat-M))))))

  If you are comfortable with the reasoning above, then you are
  comfortable with quantifiers and probably will not need these notes
  any more. In my opinion, the best way of dealing with ACL2 is to
  ask yourself why you think something is a theorem, and the rules of
  thumb above are simply guides to the questions that you need to ask
  when you are dealing with quantification.

  Here are a couple of simple exercises for you to test if you
  understand the reasoning process.

  Exercise 1. Formalize and prove the following theorem. Suppose there
  exists x such that (R x) and suppose that all x satisfy (P x). Then
  prove that there exists x such that (P x) & (R x). (See
  {http://www.cs.utexas.edu/users/moore/acl2/contrib/quantifier-exercise-1-solution.html
  |
  http://www.cs.utexas.edu/users/moore/acl2/contrib/quantifier-exercise-1-solution.html}
  for a solution.)

  Exercise 2. Recall the example just before the preceding exercise,
  where we showed that if there exists a natural number x satisfying
  M then there is another natural number y such that y satisfies M
  and for every natural number z < y, z does not. What would happen
  if we remove the restriction of x, y, and z being naturals? Of
  course, we will not talk about < any more, but suppose you use a
  total order on all ACL2 objects such as [<<]. More concretely,
  consider the definition of some-M above. Let us now define two
  other functions:

    (include-book \"misc/total-order\" :dir :system)

    (defun-sk none-below-2 (y)
      (forall r (implies (<< r y) (not (M r)))))

    (defun-sk min-M2 () (exists y (and (M y) (none-below-2 y))))

  The question is whether (implies (some-M) (min-M2)) is a theorem. Can
  you prove it? Can you disprove it?")
 (QUANTIFIERS
  (DEFUN-SK)
  "Issues about quantification in ACL2

  ACL2 supports first-order quantifiers [exists] and [forall] by way of
  the [defun-sk] event. However, proof support for quantification is
  quite limited. Therefore, you may prefer using recursion in place
  of defun-sk when possible (following common ACL2 practice).

  For example, the notion ``every member of x has property p'' can be
  defined either with recursion or explicit quantification, but
  proofs may be simpler when recursion is used. We illustrate this
  point with two proofs of the same informal claim, one of which uses
  recursion which the other uses explicit quantification. Notice that
  with recursion, the proof goes through fully automatically; but
  this is far from true with explicit quantification (especially
  notable is the ugly hint).

  The informal claim for our examples is: If every member a of each of
  two lists satisfies the predicate (p a), then this holds of their
  [append]; and, conversely.

  See [quantifiers-using-recursion] for a solution to this example
  using recursion.

  See [quantifiers-using-defun-sk] for a solution to this example using
  [defun-sk]. Also See [quantifiers-using-defun-sk-extended] for an
  elaboration on that solution.

  But perhaps first, see [defun-sk] for an ACL2 utility to introduce
  first-order quantification in a direct way. Examples of the use of
  defun-sk are also available: see [defun-sk-example] and see
  [Tutorial4-Defun-Sk-Example] for basic examples, and see
  [quantifier-tutorial] for a more complete, careful beginner's
  introduction that takes you through typical kinds of
  quantifier-based reasoning in ACL2.


Subtopics

  [Quantifiers-using-defun-sk]
      Quantification example

  [Quantifiers-using-defun-sk-extended]
      Quantification example with details

  [Quantifiers-using-recursion]
      Recursion for implementing quantification")
 (QUANTIFIERS-USING-DEFUN-SK
  (QUANTIFIERS)
  "Quantification example

  See [quantifiers] for the context of this example. It should be
  compared to a corresponding example in which a simpler proof is
  attained by using recursion in place of explicit quantification;
  see [quantifiers-using-recursion].

    (in-package \"ACL2\")

    ; We prove that if every member A of each of two lists satisfies the
    ; predicate (P A), then this holds of their append; and, conversely.

    ; Here is a solution using explicit quantification.

    (defstub p (x) t)

    (defun-sk forall-p (x)
      (forall a (implies (member a x)
                         (p a))))

    (defthm member-append
      (iff (member a (append x1 x2))
           (or (member a x1) (member a x2))))

    (defthm forall-p-append
      (equal (forall-p (append x1 x2))
             (and (forall-p x1) (forall-p x2)))
      :hints ((\"Goal\" ; ``should'' disable forall-p-necc, but no need
               :use
               ((:instance forall-p-necc
                           (x (append x1 x2))
                           (a (forall-p-witness x1)))
                (:instance forall-p-necc
                           (x (append x1 x2))
                           (a (forall-p-witness x2)))
                (:instance forall-p-necc
                           (x x1)
                           (a (forall-p-witness (append x1 x2))))
                (:instance forall-p-necc
                           (x x2)
                           (a (forall-p-witness (append x1 x2))))))))

  Also see [quantifiers-using-defun-sk-extended] for an elaboration on
  this example.")
 (QUANTIFIERS-USING-DEFUN-SK-EXTENDED
  (QUANTIFIERS)
  "Quantification example with details

  See [quantifiers-using-defun-sk] for the context of this example.

    (in-package \"ACL2\")

    ; We prove that if every member A of each of two lists satisfies the
    ; predicate (P A), then this holds of their append; and, conversely.

    ; Here is a solution using explicit quantification.

    (defstub p (x) t)

    (defun-sk forall-p (x)
      (forall a (implies (member a x)
                         (p a))))

    ; The defun-sk above introduces the following axioms.  The idea is that
    ; (FORALL-P-WITNESS X) picks a counterexample to (forall-p x) if there is one.

    ;   (DEFUN FORALL-P (X)
    ;     (LET ((A (FORALL-P-WITNESS X)))
    ;          (IMPLIES (MEMBER A X) (P A))))
    ;
    ;   (DEFTHM FORALL-P-NECC
    ;     (IMPLIES (NOT (IMPLIES (MEMBER A X) (P A)))
    ;              (NOT (FORALL-P X)))
    ;     :HINTS ((\"Goal\" :USE FORALL-P-WITNESS)))

    ; The following lemma seems critical.

    (defthm member-append
      (iff (member a (append x1 x2))
           (or (member a x1) (member a x2))))

    ; The proof of forall-p-append seems to go out to lunch, so we break into
    ; directions as shown below.

    (defthm forall-p-append-forward
      (implies (forall-p (append x1 x2))
               (and (forall-p x1) (forall-p x2)))
      :hints ((\"Goal\" ; ``should'' disable forall-p-necc, but no need
               :use
               ((:instance forall-p-necc
                           (x (append x1 x2))
                           (a (forall-p-witness x1)))
                (:instance forall-p-necc
                           (x (append x1 x2))
                           (a (forall-p-witness x2)))))))

    (defthm forall-p-append-reverse
      (implies (and (forall-p x1) (forall-p x2))
               (forall-p (append x1 x2)))
      :hints ((\"Goal\"
               :use
               ((:instance forall-p-necc
                           (x x1)
                           (a (forall-p-witness (append x1 x2))))
                (:instance forall-p-necc
                           (x x2)
                           (a (forall-p-witness (append x1 x2))))))))

    (defthm forall-p-append
      (equal (forall-p (append x1 x2))
             (and (forall-p x1) (forall-p x2)))
      :hints ((\"Goal\" :use (forall-p-append-forward
                            forall-p-append-reverse))))")
 (QUANTIFIERS-USING-RECURSION
  (QUANTIFIERS)
  "Recursion for implementing quantification

  The following example illustrates the use of recursion as a means of
  avoiding proof difficulties that can arise from the use of explicit
  quantification (via [defun-sk]). See [quantifiers] for more about
  the context of this example.

    (in-package \"ACL2\")

    ; We prove that if every member A of each of two lists satisfies the
    ; predicate (P A), then this holds of their append; and, conversely.

    ; Here is a solution using recursively-defined functions.

    (defstub p (x) t)

    (defun all-p (x)
      (if (atom x)
          t
        (and (p (car x))
             (all-p (cdr x)))))

    (defthm all-p-append
      (equal (all-p (append x1 x2))
             (and (all-p x1) (all-p x2))))")
 (QUICK-AND-DIRTY-SUBSUMPTION-REPLACEMENT-STEP
  (DEBUGGING)
  "(advanced topic) controlling a heuristic in the prover's clausifier

  This topic is probably only of interest to those who are undertaking
  particularly complex proof developments.

  The ACL2 prover's handling of propositional logic uses a heuristic
  that we believe might cause the prover to slow down significantly
  or even to trigger a stack overflow. However, we believe these
  negative effects are only felt on very large formulas --- formulas
  that are likely to cause similar degradation of many other parts of
  ACL2.

  The following two events turn off that heuristic (by eliminating
  calls to source function
  quick-and-dirty-subsumption-replacement-step, after which this
  [documentation] topic is named).

    (defun quick-and-dirty-srs-off (cl1 ac)
      (declare (ignore cl1 ac)
               (xargs :mode :logic :guard t))
      nil)

    (defattach quick-and-dirty-srs quick-and-dirty-srs-off)

  However, if you feel the need to try this out, please remember that
  the proof is likely to fail anyway since other parts of ACL2 will
  probably be stressed. A more basic problem with your proof strategy
  may exist: the formulas are getting extraordinarily large. A common
  approach for avoiding such problem include disabling functions (see
  [in-theory]). Other less common approaches might help if you are
  sufficiently desperate, such as defining your own IF function to
  use in place of the built-in IF.

  If you do find an example for which the above two events provide
  significant benefit, we (the ACL2 implementors) would be interested
  in hearing about it.

  To turn the heuristic back on:

    (defattach quick-and-dirty-srs quick-and-dirty-srs-builtin)")
 (QUIT (GOOD-BYE)
       "Quit entirely out of Lisp

  Same as [good-bye].")
 (QUOTE
  (BASICS ACL2-BUILT-INS)
  "Create a constant

  The form (quote x) evaluates to x. See any Common Lisp documentation.
  Also see [unquote].


Subtopics

  [Unquote]
      Obtain the object being quoted")
 (R-EQLABLE-ALISTP
  (ALISTS ACL2-BUILT-INS)
  "Recognizer for a true list of pairs whose [cdr]s are suitable for
  [eql]

  The predicate r-eqlable-alistp tests whether its argument is a
  [true-listp] of [consp] objects whose [cdr]s all satisfy
  [eqlablep].

  Function: <r-eqlable-alistp>

    (defun r-eqlable-alistp (x)
           (declare (xargs :guard t))
           (cond ((atom x) (equal x nil))
                 (t (and (consp (car x))
                         (eqlablep (cdr (car x)))
                         (r-eqlable-alistp (cdr x))))))")
 (R-SYMBOL-ALISTP
  (ALISTS ACL2-BUILT-INS)
  "Recognizer for association lists with symbols as values

  (R-symbol-alistp x) is true if and only if x is a list of pairs of
  the form (cons key val) where val is a [symbolp].

  Function: <r-symbol-alistp>

    (defun r-symbol-alistp (x)
           (declare (xargs :guard t))
           (cond ((atom x) (equal x nil))
                 (t (and (consp (car x))
                         (symbolp (cdr (car x)))
                         (r-symbol-alistp (cdr x))))))")
 (RANDOM$
  (STATE NUMBERS ACL2-BUILT-INS)
  "Obtain a random value

    Example:
    (random$ 10 state) ==> (mv 7 <state>)

  (Random$ limit state), where limit is a positive integer, returns a
  random non-negative integer together with a new [state]. Logically,
  it simply returns the first element of a list that is a field of
  the ACL2 [state], called the acl2-oracle (see [read-ACL2-oracle]),
  together with the new state resulting from removing that element
  from that list. (Except, if that element is not in range as
  specified above, then 0 is returned.) However, random$ actually
  invokes a Common Lisp function to choose the integer returned.
  Quoting from the Common Lisp HyperSpec(TM),
  {http://www.lispworks.com/documentation/HyperSpec/Front |
  http://www.lispworks.com/documentation/HyperSpec/Front}: ``An
  approximately uniform choice distribution is used... each of the
  possible results occurs with (approximate) probability 1/limit.''

  Consider enabling rules natp-random$ and random$-linear if you want
  to reason about random$.

  Function: <random$>

    (defun random$ (limit state)
           (declare (type (integer 1 *) limit)
                    (xargs :stobjs state))
           (mv-let (erp val state)
                   (read-acl2-oracle state)
                   (mv (cond ((and (null erp)
                                   (natp val)
                                   (< val limit))
                              val)
                             (t 0))
                       state)))")
 (RASSOC
  (ALISTS ACL2-BUILT-INS)
  "Look up value in association list

    General Forms:
    (rassoc x alist)
    (rassoc x alist :test 'eql)   ; same as above (eql as equality test)
    (rassoc x alist :test 'eq)    ; same, but eq is equality test
    (rassoc x alist :test 'equal) ; same, but equal is equality test

  (Rassoc x alist) is the first member of alist whose [cdr] is x, or
  nil if no such member exists. (rassoc x alist) is thus similar to
  (assoc x alist), the difference being that it looks for the first
  pair in the given alist whose [cdr], rather than [car], is [eql] to
  x. See [assoc]. The optional keyword, :TEST, has no effect
  logically, but provides the test (default [eql]) used for comparing
  x with the [cdr]s of successive elements of lst.

  The [guard] for a call of rassoc depends on the test. In all cases,
  the second argument must satisfy [alistp]. If the test is [eql],
  then either the first argument must be suitable for [eql] (see
  [eqlablep]) or the second argument must satisfy [r-eqlable-alistp].
  If the test is [eq], then either the first argument must be a
  symbol or the second argument must satisfy [r-symbol-alistp].

  See [equality-variants] for a discussion of the relation between
  rassoc and its variants:

      (rassoc-eq x lst) is equivalent to (rassoc x lst :test 'eq);

      (rassoc-equal x lst) is equivalent to (rassoc x lst :test 'equal).

  In particular, reasoning about any of these primitives reduces to
  reasoning about the function rassoc-equal.

  Function: <rassoc-equal>

    (defun rassoc-equal (x alist)
           (declare (xargs :guard (alistp alist)))
           (cond ((endp alist) nil)
                 ((equal x (cdr (car alist)))
                  (car alist))
                 (t (rassoc-equal x (cdr alist)))))

  Rassoc is defined by Common Lisp. See any Common Lisp documentation
  for more information.")
 (RASSOC-EQ (POINTERS) "See [rassoc].")
 (RASSOC-EQUAL (POINTERS)
               "See [rassoc].")
 (RATIONAL-LISTP
  (NUMBERS LISTS ACL2-BUILT-INS)
  "Recognizer for a true list of rational numbers

  The predicate rational-listp tests whether its argument is a true
  list of rational numbers.

  Function: <rational-listp>

    (defun rational-listp (l)
           (declare (xargs :guard t))
           (cond ((atom l) (eq l nil))
                 (t (and (rationalp (car l))
                         (rational-listp (cdr l))))))")
 (RATIONALP
  (NUMBERS ACL2-BUILT-INS)
  "Recognizer for rational numbers (ratios and integers)

  (rationalp x) is true if and only if x is an rational number.")
 (READ-ACL2-ORACLE
  (PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "Pop the oracle field of the state

  ACL2 has a mutable `state' that contains a number of fields; see
  [state]. One of these fields is a list, called the acl2-oracle
  field. There are no constraints on the elements of this list; thus,
  you will not be able to prove anything about those elements.
  However, as a convenience, ACL2 permits you to evaluate the form
  (read-acl2-oracle state), which returns the multiple value (mv nil
  nil state).

  The ACL2 implementation uses read-acl2-oracle, but you will likely
  find this function to be useless unless you do advanced, scurrilous
  things using trust tags (see [defttag]).

  The following definition is the logical definition of
  read-acl2-oracle, but as explained above does not really
  characterize its behavior under the hood.

  Function: <read-acl2-oracle>

    (defun read-acl2-oracle (state-state)
           (declare (xargs :guard (state-p1 state-state)))
           (mv (null (acl2-oracle state-state))
               (car (acl2-oracle state-state))
               (update-acl2-oracle (cdr (acl2-oracle state-state))
                                   state-state)))")
 (READ-BYTE$ (POINTERS) "See [io].")
 (READ-CHAR$ (POINTERS) "See [io].")
 (READ-FILE-INTO-STRING
  (IO)
  "The contents of a file as a string

  When this function is passed a valid filename (and the ACL2 [state]),
  it generally returns the contents of the file as a string.
  Otherwise, it returns nil.

    Example Form:

    (read-file-into-string \"foo.lisp\" state)

    General Form:

    (read-file-into-string filename state)

  where filename is a string, which is typically the name of a file.

  This function provides functionality that can be obtained through the
  usual [io] routines provided by ACL2, as shown by the sequence of
  definitions below. However, under-the-hood raw Lisp code provides
  an implementation that not only is efficient, but also does not
  return [state]. Note that the use of [with-local-state] in the
  definition of subroutine read-file-into-string2 does not require a
  trust tag (see [defttag]) because that function is defined by ACL2,
  not in a book.

  A minor detail is that the constant *read-file-into-string-bound*
  (see the definition below) is a strict upper bound on the size of a
  file for which a non-nil result may be returned. However, a given
  implementation might return nil for smaller file sizes as well.

  There are two checks to guarantee that read-file-into-string is truly
  a function --- that is, it returns the same value for two calls
  with the same inputs. One check ensures that the write date of the
  file has not changed between two such calls; otherwise ACL2 will
  cause a raw Lisp error of the following form.

    ************ ABORTING from raw Lisp ***********
    Error:  Illegal consecutive reads from file \"MY-FILE\".
    See :DOC read-file-into-string.
    ***********************************************

  The other check ensures that the write date of the file has not
  changed while the second call is in progress. For simplicity, ACL2
  actually makes this check even for the first call. When the check
  fails the corresponding raw Lisp error is of the following form.

    ************ ABORTING from raw Lisp ***********
    Error:  Illegal attempt to call READ-FILE-INTO-STRING concurrently with some write to that file!
    See :DOC read-file-into-string.
    ***********************************************

  The first of these errors can actually occur when the second read is
  performed by [open-input-channel] of type :character. But we expect
  all such errors to be rare, since they only occur when there are
  two reads to the same file with an intervening external write, in
  the case that the two ACL2 states have the same file-clock field
  (see [state]). That field is updated any time a channel is opened
  or closed.

  We close by showing the relevant ACL2 definitions, not including the
  special raw Lisp (under the hood) code in the definition of
  read-file-into-string2.

  Function: <read-file-into-string1>

    (defun
     read-file-into-string1
     (channel state ans bound)
     (declare (xargs :stobjs state
                     :guard (and (symbolp channel)
                                 (open-input-channel-p channel
                                                       :character state)
                                 (character-listp ans)
                                 (natp bound))))
     (cond
      ((zp bound) (mv nil state))
      (t
       (mv-let
           (val state)
           (read-char$ channel state)
           (cond ((not (characterp val))
                  (mv (coerce (reverse ans) 'string)
                      state))
                 (t (read-file-into-string1 channel state (cons val ans)
                                            (1- bound))))))))

  Definition: <*read-file-into-string-bound*>

    (defconst *read-file-into-string-bound*
              (1- (ash 1 60)))

  Function: <read-file-into-string2>

    (defun
     read-file-into-string2 (filename state)
     (declare (xargs :stobjs state
                     :guard (stringp filename)))
     (let*
      ((st (coerce-state-to-object state)))
      (mv-let
       (erp val)
       (with-local-state
        (mv-let
         (erp val state)
         (let
          ((state (coerce-object-to-state st)))
          (mv-let
           (chan state)
           (open-input-channel filename
                               :character state)
           (cond
            ((or (null chan) (not (state-p state)))
             (mv nil nil state))
            (t
             (pprogn
              (f-put-global 'guard-checking-on
                            t state)
              (mv-let (val state)
                      (ec-call (read-file-into-string1
                                    chan state
                                    nil *read-file-into-string-bound*))
                      (pprogn (ec-call (close-input-channel chan state))
                              (mv nil val state))))))))
         (mv erp val)))
       (declare (ignore erp))
       val)))

  Function: <read-file-into-string>

    (defun read-file-into-string (filename state)
           (declare (xargs :stobjs state
                           :guard (stringp filename)))
           (and (mbt (stringp filename))
                (read-file-into-string2 filename state)))")
 (READ-OBJECT (POINTERS) "See [io].")
 (READ-RUN-TIME
  (PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "Read elapsed runtime

  By default, (read-run-time state) returns (mv runtime state), where
  runtime is the elapsed runtime in seconds since the start of the
  current ACL2 session and state is the resulting ACL2 [state]. But
  read-run-time can be made to return elapsed realtime (wall clock
  time) instead; see [get-internal-time].

  The logical definition probably won't concern many users, but for
  completeness, we say a word about it here. That definition uses the
  function [read-ACL2-oracle], which modifies state by popping the
  value to return from its acl2-oracle field.

  Function: <read-run-time>

    (defun
       read-run-time (state-state)
       (declare (xargs :guard (state-p1 state-state)))
       (mv (cond ((or (null (acl2-oracle state-state))
                      (not (rationalp (car (acl2-oracle state-state)))))
                  0)
                 (t (car (acl2-oracle state-state))))
           (update-acl2-oracle (cdr (acl2-oracle state-state))
                               state-state)))")
 (READER
  (MISCELLANEOUS)
  "Reading expressions in the ACL2 read-eval-print loop

  The ACL2 read-eval-print loop reads expressions much like they are
  read in any Common Lisp read-eval-print loop. For example, you may
  use the single tick symbol (') for quote and also the backquote
  symbol (`) with its escapes, comma (,) and comma-atsign (,@). See
  any Common Lisp reference or tutorial.

  ACL2-specific reader macros include its reading of expressions in a
  specified package (using #! --- see [sharp-bang-reader]), its
  restriction of read-time evaluation to constants introduced by
  [defconst] (using #. --- see [sharp-dot-reader]), and the ability
  to put underscores in numeric constants (using #u --- see
  [sharp-u-reader]).

  See [set-iprint] for how to make ACL2 print expressions like #@2#
  that can be read back in.

  Strictly speaking, there is nothing special about how the reader
  handles [keyword]s in the input. But see [keyword-commands] for how
  ACL2 may interpret a top-level keyword command.

  We conclude this topic with a log that illustrates features discussed
  above. Comments of the form {{..}} have been inserted manually.

    ACL2 !>(defconst *c* (+ 3 4))

    Summary
    Form:  ( DEFCONST *C* ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     *C*
    ACL2 !>'(a #.*c* 17)
    ;{{See :doc sharp-dot-reader.
    ;  Notice that #.*c* is read as the value of *c*, thus,
    ;  as 7 rather than as (+ 3 4).}}
    (A 7 17)
    ACL2 !>'(a #.(+ 5 6) 17)
    ;{{But this is not legal in ACL2, as #. must be followed by
    ;  a known constant symbol.}}

    ***********************************************
    ************ ABORTING from raw Lisp ***********
    Error:  ACL2 supports #. syntax only for #.*a*, where *a* has been
    defined by DEFCONST.  Thus the form #.(+ 5 6) is illegal.
    ***********************************************

    ;{{Additional output here has been omitted in this log.}}
    ACL2 !>(defpkg \"FOO\" nil)

    Summary
    Form:  ( DEFPKG \"FOO\" ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     \"FOO\"
    ACL2 !>#!foo'(a b c)
    ;{{See :doc sharp-bang-reader.  The prefix \"#!foo\" causes
    ;  the s-expression after it to be read into the \"FOO\" package.}}
    (FOO::A FOO::B FOO::C)
    ACL2 !>#x100a
    ;{{As in Common Lisp, \"#x\" causes the digits after it to be read in hex.}}
    4106
    ACL2 !>#ux10_0a
    ;{{The \"#u\" prefix allows underscores in the numeral after it.  Those
    ;  underscores are ignored, but can improve readability.}}
    4106
    ACL2 !>(set-iprint t)
    ;{{See :DOC set-print.  This causes \"#@1#\" below to be printed.}}

    ACL2 Observation in SET-IPRINT:  Iprinting has been enabled.
    ACL2 !>(set-evisc-tuple (evisc-tuple 3   ; print-level
                                         4   ; print-length
                                         nil ; alist
                                         nil ; hiding-cars
                                         )
                            :sites :ld)
    ;{{Abbreviate the printing of top-level evaluation results.
    ;  See :doc set-evisc-tuple.}}
     (:LD)
    ACL2 !>(make-list 10)
    (NIL NIL NIL NIL . #@1#)
    ACL2 !>'#@1#
    ;{{Note that the reader replaces #@1# with the value that was stored there.}}
    (NIL NIL NIL NIL . #@2#)
    ACL2 !>(without-evisc '(NIL NIL NIL NIL . #@1#))
    ;{{See :doc without-evisc.}}
    (NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)
    ACL2 !>(set-evisc-tuple nil :sites :ld)
     (:LD)
    ACL2 !>(let ((x '(3 4)))
             `(a b ,x c))
    ;{{As in Common Lisp, backquote can be escaped by comma.}}
    (A B (3 4) C)
    ACL2 !>(let ((x '(3 4)))
             `(a b ,@x c))
    ;{{As in Common Lisp, backquote can be escaped by comma-atsign, which
    ;  splices its value into the list.}}
    (A B 3 4 C)
    ACL2 !>


Subtopics

  [Fancy-string-reader]
      A friendly syntax for strings literals that have backslashes and
      quotes.

  [Sharp-bang-reader]
      Package prefix that is not restricted to symbols

  [Sharp-dot-reader]
      Read-time evaluation of constants

  [Sharp-u-reader]
      Allow underscore characters in numbers")
 (REAL
  (ACL2)
  "ACL2(r) support for real numbers

  ACL2 supports rational numbers but not real numbers. However,
  starting with Version 2.5, a variant of ACL2 called ``ACL2(r)''
  supports the real numbers by way of non-standard analysis. ACL2(r)
  was conceived and first implemented by Ruben Gamboa in his Ph.D.
  dissertation work, supervised by Bob Boyer with active
  participation by Matt Kaufmann.

  ACL2(r) has the same source files as ACL2. After you download ACL2,
  you can build ACL2(r) by executing the following command on the
  command line in your acl2-sources directory, replacing <your_lisp>
  with a path to your Lisp executable:

    make large-acl2r LISP=<your_lisp>

  This will create an executable in your acl2-sources directory named
  saved_acl2r.

  Note that if you download [community-books] as tarfiles, then you
  will automatically be obtaining the books to be certified with
  ACL2(r). They can be certified from your acl2-sources directory,
  shown here as <DIR>:

    make regression ACL2=<DIR>/saved_acl2r

  To check that you are running ACL2(r), see if the prompt includes the
  string ``(r)'', e.g.:

    ACL2(r) !>

  Or, look at (@ acl2-version) and see if ``(r)'' is a substring.

  In ACL2 (as opposed to ACL2(r)), when we say ``real'' we mean
  ``rational.''

  Caution: ACL2(r) should be considered experimental: although we
  (Kaufmann and Moore) have carefully completed Gamboa's integration
  of the reals into the ACL2 source code, our primary concern has
  been to ensure unchanged behavior when ACL2 is compiled in the
  default manner, i.e., without the non-standard extensions. As for
  every release of ACL2, at the time of a release we are unaware of
  soundness bugs in ACL2 or ACL2(r).

  There is only limited documentation on the non-standard features of
  ACL2(r). We hope to provide more documentation for such features in
  future releases. Please feel free to query the authors if you are
  interested in learning more about ACL2(r). Gamboa's dissertation
  may also be helpful.


Subtopics

  [I-close]
      ACL2(r) test for whether two numbers are infinitesimally close

  [I-large]
      ACL2(r) recognizer for infinitely large numbers

  [I-limited]
      ACL2(r) recognizer for limited numbers

  [I-small]
      ACL2(r) recognizer for infinitesimal numbers

  [Real-listp]
      ACL2(r) recognizer for a true list of real numbers

  [Standard-part]
      ACL2(r) function mapping limited numbers to standard numbers

  [Standardp]
      ACL2(r) recognizer for standard objects")
 (REAL-LISTP
  (REAL LISTS ACL2-BUILT-INS)
  "ACL2(r) recognizer for a true list of real numbers

  The predicate real-listp tests whether its argument is a true list of
  real numbers. This predicate is only defined in ACL2(r) (see
  [real]).")
 (REAL/RATIONALP
  (NUMBERS ACL2-BUILT-INS)
  "Recognizer for rational numbers (including real number in ACL2(r))

  For most ACL2 users, this is a macro abbreviating [rationalp]. In
  ACL2(r) (see [real]), this macro abbreviates the predicate realp,
  which holds for real numbers as well (including rationals). Most
  ACL2 users can ignore this macro and use [rationalp] instead, but
  many community books use real/rationalp so that these books will be
  suitable for ACL2(r) as well.")
 (REALFIX
  (NUMBERS ACL2-BUILT-INS)
  "Coerce to a real number

  Realfix simply returns any real number argument unchanged, returning
  0 on a non-real argument. Also see [nfix], see [ifix], see [rfix],
  and see [fix] for analogous functions that coerce to a natural
  number, an integer, a rational, and a number, respectively.

  Realfix has a [guard] of t.

  Function: <realfix>

    (defun realfix (x)
           (declare (xargs :guard t))
           (if (real/rationalp x) x 0))")
 (REALPART
  (NUMBERS ACL2-BUILT-INS)
  "Real part of a complex number

  Completion Axiom (completion-of-realpart):

    (equal (realpart x)
           (if (acl2-numberp x)
               (realpart x)
             0))

  [Guard] for (realpart x):

    (acl2-numberp x)")
 (REBUILD
  (LD)
  "A convenient way to reconstruct your old [state]

    Examples:
    ACL2 !>(rebuild \"project.lisp\")
    ACL2 !>(rebuild \"project.lisp\" t)
    ACL2 !>(rebuild \"project.lisp\" t :dir :system)
    ACL2 !>(rebuild \"project.lisp\" :all)
    ACL2 !>(rebuild \"project.lisp\" :query)
    ACL2 !>(rebuild \"project.lisp\" 'lemma-22)

  Rebuild allows you to assume all the [command]s in a given file or
  list, supplied in the first argument. Because rebuild processes an
  arbitrary sequence of [command]s with [ld-skip-proofsp] t, it is
  unsound! However, if each of these [command]s is in fact
  admissible, then processing them with rebuild will construct the
  same logical [state] that you would be in if you typed each
  [command] and waited through the proofs again. Thus, rebuild is a
  way to reconstruct a [state] previously obtained by proving your
  way through the [command]s.

  The second, optional argument to rebuild is a ``filter'' (see
  [ld-pre-eval-filter]) that lets you specify which [command]s to
  process. You may specify t, :all, :query, or a new logical name. t
  and :all both mean that you expect the entire file or list to be
  processed. :query means that you will be asked about each [command]
  in turn. A new name means that all [command]s will be processed as
  long as the name is new, i.e., rebuild will stop processing
  [command]s immediately after executing a [command] that introduces
  name. Rebuild will also stop if any [command] causes an error. You
  may therefore wish to plant an erroneous form in the file, e.g.,
  (mv t nil state), (see [ld-error-triples]), to cause rebuild to
  stop there. The form (i-am-here) is such a pre-defined form. If you
  do not specify a filter, rebuild will query you for one.

  Inspection of the definition of rebuild, e.g., via :[pc] rebuild-fn,
  will reveal that it is just a glorified call to the function [ld].
  See [ld] if you find yourself wishing that rebuild had additional
  functionality.

  If you supply the above ``filter'' argument, then you may also supply
  the keyword argument :dir, which is then passed to ld; see [ld].")
 (REDEF
  (LD)
  "A common way to set [ld-redefinition-action]

    Example and General Form:
    ACL2 !>:redef

  This command sets [ld-redefinition-action] to '(:query . :overwrite).

  This command allows redefinition of functions and other [events]
  without undoing, but with a query that requires the user to
  acknowledge that the redefinition is intentional. To avoid that
  query, see [redef!] or for more options, see
  [ld-redefinition-action].")
 (REDEF!
  (LD)
  "A common way to set [ld-redefinition-action]

    Example and General Form:
    ACL2 !>:redef!

  This command sets [ld-redefinition-action] to '(:warn! . :overwrite).

  This command allows redefinition of functions and other [events]
  without undoing, but with a warning. The command :[redef] is
  similar, but queries the user first before doing the redefinition.
  For more related options, see [ld-redefinition-action].")
 (REDEF+
  (LD)
  "System hacker's redefinition [command]

    Example and General Form:
    ACL2 !>:redef+
    ACL2 p!>

  This [command] is intended only for system hackers, not typical
  users. It sets [ld-redefinition-action] to '(:warn! . :overwrite),
  sets the default [defun-mode] to :[program], and invokes
  [set-state-ok] with value t. It also introduces (defttag :redef+),
  so that redefinition of system functions will be permitted; see
  [defttag]. Finally, it removes as untouchable (see
  [push-untouchable]) all variables and functions.

  WARNING: If the form (redef+) is used in a book, then including the
  book can leave you in a state in which dangerous actions are
  allowed, specifically: redefinition, and access to functions and
  variables normally prohibited because they are untouchable. To
  avoid this problem, insert the form ([redef-]) into your book after
  (redef+).

  To see the code for redef+, evaluate :trans1 (redef+). This [command]
  is intended for those who are modifying ACL2 source code
  definitions. Thus, note that even system functions can be redefined
  with a mere warning. Be careful!")
 (REDEF-
  (LD)
  "Turn off system hacker's redefinition [command]

    Example and General Form:
    ACL2 !>:redef-
    ACL2 p!>

  This macro, for system hackers only, is a convenient way to reverse
  the effects of :redef+. See [redef+]. We do not guarantee that
  :redef- will restore everything one might expect to its state
  before the earlier :redef+. To see exactly what :redef- does, look
  at its code, for example by evaluating :trans1 (redef-)")
 (REDEFINED-NAMES
  (WORLD)
  "To collect the names that have been redefined

    Example and General Forms:
    (redefined-names state)

  This function collects names that have been redefined in the current
  ACL2 [state]. :[Program] mode functions that were reclassified to
  :[logic] functions are not collected, since such reclassification
  cannot imperil soundness because it is allowed only when the new
  and old definitions are identical.

  Thus, if (redefined-names state) returns nil then no unsafe
  definitions have been made, regardless of [ld-redefinition-action].
  See [ld-redefinition-action].

  WARNING: This function does not report names that are not explicitly
  redefined in the current logical [world]. Consider for example:

    (encapsulate
     ()
     (defun foo () t)
     (local (defun foo () nil))
     (defthm foo-prop
       (equal (foo) nil)
       :rule-classes nil))

  If you attempt to call [certify-book] in the resulting world, ACL2
  will appropriately refuse to do the certification:

    ACL2 Error in (CERTIFY-BOOK \"foo\" ...):  At least one command in the
    current ACL2 world was executed while the value of state global variable
    'LD-REDEFINITION-ACTION was not nil:

      (DEFUN FOO NIL T)

    Certification is therefore not allowed in this world.  You can use
    :ubt to undo back through this command; see :DOC ubt.

  However, since the local redefinition of foo is gone in the
  certification world, (redefined-names state) will return nil.
  (Technical aside, to be ignored except for those interested in
  implementation details: ACL2 inhibits certify-book in this example
  because the definition of foo is the value of (global-val
  'redef-seen (w state)).)")
 (REDEFINING-PROGRAMS
  (PROGRAMMING)
  "An explanation of why we restrict redefinitions

  ACL2 does not in general allow the redefinition of functions because
  logical inconsistency can result: previously stored theorems can be
  rendered invalid if the axioms defining the functions involved are
  changed. However, to permit prototyping of both :[program] and
  :[logic] mode systems, ACL2 permits redefinition if the user has
  accepted logical responsibility for the consequences by setting
  [ld-redefinition-action] to an appropriate non-nil value. The
  refusal of ACL2 to support the unrestricted redefinition of
  :[program] mode functions may appear somewhat capricious. After
  all, what are the logical consequences of changing a definition if
  no axioms are involved?

  Three important points should be made before we discuss redefinition
  further.

  The first is that ACL2 does support redefinition (of both :[program]
  and :[logic] functions) when [ld-redefinition-action] is non-nil.

  The second is that a ``redefinition'' that does not change the mode,
  formals, guards, type declarations, stobjs, or body of a function
  is considered redundant and is permitted even when
  [ld-redefinition-action] is nil. We recognize and permit redundant
  definitions because it is not uncommon for two distinct [books] to
  share identical function definitions. When determining whether the
  body of a function is changed by a proposed redefinition, we
  actually compare the untranslated versions of the two bodies. See
  [term]. For example, redundancy is not recognized if the old body
  is (list a b) and the new body is (cons a (cons b nil)). We use the
  untranslated bodies because of the difficulty of translating the
  new body in the presence of the old syntactic information, given
  the possibility that the redefinition might attempt to change the
  [signature] of the function, i.e., the number of formals, the
  number of results, or the position of single-threaded objects in
  either.

  The third important point is that a ``redefinition'' that preserves
  the formals, guard, types, stobjs, and body but changes the mode
  from :[program] to :[logic] is permitted even when
  [ld-redefinition-action] is nil. That is what [verify-termination]
  does.

  This note addresses the temptation to allow redefinition of
  :[program] functions in situations other than the three described
  above. Therefore, suppose [ld-redefinition-action] is nil and
  consider the cases.

  Case 1. Suppose the new definition attempts to change the formals or
  more generally the [signature] of the function. Accepting such a
  redefinition would render ill-formed other :[program] functions
  which call the redefined function. Subsequent attempts to evaluate
  those callers could arbitrarily damage the Common Lisp image. Thus,
  redefinition of :[program] functions under these circumstances
  requires the user's active approval, as would be sought with
  [ld-redefinition-action] '(:query . :overwrite).

  Case 2. Suppose the new definition attempts to change the body (even
  though it preserves the [signature]). At one time we believed this
  was acceptable and ACL2 supported the quiet redefinition of
  :[program] mode functions in this circumstance. However, because
  such functions can be used in macros and redundancy checking is
  based on untranslated bodies, this turns out to be unsound! (Aside:
  Perhaps this is not an issue if the function takes [state] or a
  user-defined [stobj] argument; but we do not further consider this
  distinction.) Such redefinition is therefore now prohibited. We
  illustrate such an unsoundness below. Let foo-thm1.lisp be a book
  with the following contents.

    (in-package \"ACL2\")
    (defun p1 (x) (declare (xargs :mode :program)) (list 'if x 't 'nil))
    (defmacro p (x) (p1 x))
    (defun foo (x) (p x))
    (defthm foo-thm1 (iff (foo x) x) :rule-classes nil)

  Note that the macro form (p x) translates to (if x t nil). The
  :[program] function p1 is used to generate this translation. The
  function foo is defined so that (foo x) is (p x) and a theorem
  about foo is proved, namely, that (foo x) is true iff x is true.

  Now let foo-thm2.lisp be a book with the following contents.

    (in-package \"ACL2\")
    (defun p1 (x) (declare (xargs :mode :program)) (list 'if x 'nil 't))
    (defmacro p (x) (p1 x))
    (defun foo (x) (p x))
    (defthm foo-thm2 (iff (foo x) (not x)) :rule-classes nil)

  In this book, the :[program] function p1 is defined so that (p x)
  means just the negation of what it meant in the first book, namely,
  (if x nil t). The function foo is defined identically --- more
  precisely, the untranslated body of foo is identical in the two
  [books], but because of the difference between the two versions of
  the :[program] function p1 the axioms defining the two foos are
  different. In the second book we prove the theorem that (foo x) is
  true iff x is nil.

  Now consider what would happen if the [signature]-preserving
  redefinition of :[program] functions were permitted and these two
  [books] were included. When the second book is included the
  redefinition of p1 would be permitted since the [signature] is
  preserved and p1 is just a :[program]. But then when the
  redefinition of foo is processed it would be considered redundant
  and thus be permitted. The result would be a logic in which it was
  possible to prove that (foo x) is equivalent to both x and (not x).
  In particular, the following sequence leads to a proof of nil:

    (include-book \"foo-thm1\")
    (include-book \"foo-thm2\")
    (thm nil :hints ((\"Goal\" :use (foo-thm1 foo-thm2))))

  It might be possible to loosen the restrictions on the redefinition
  of :[program] functions by allowing [signature]-preserving
  redefinition of :[program] functions not involved in macro
  definitions. Alternatively, we could implement definition
  redundancy checking based on the translated bodies of functions
  (though that is quite problematic). Barring those two changes, we
  believe it is necessary simply to impose the same restrictions on
  the redefinition of :[program] mode functions as we do on :[logic]
  mode functions.")
 (REDO-FLAT
  (DEBUGGING)
  "Redo on failure of a [progn], [encapsulate], or [certify-book]

  When one submits an [encapsulate], [progn], or [certify-book] command
  and there is a failure, ACL2 restores its logical [world] as though
  the command had not been run. But sometimes one would like to debug
  the failure by re-executing all sub-events that succeeded up to the
  point of failure, and then re-executing the failed sub-event. Said
  differently, imagine that the [events] under an encapsulate, progn,
  or certify-book form were flattened into a list of events that were
  then submitted to ACL2 up to the point of failure. This would put
  us in the state in which the original failed event had failed, so
  we could now replay that failed event and try modifying it, or
  first proving additional events, in order to get it admitted.

  Redo-flat is provided for this purpose. Consider the following
  (rather nonsensical) example, in which the [defun] of f3 fails (the
  body is y but the formal parameter list is (x)).

    (encapsulate
     ()
     (defun f1 (x) x)
     (encapsulate ()
                  (local (defthm hack (equal (car (cons x y)) x))))
     (encapsulate ()
                  (local (defthm hack (equal (+ x y) (+ y x)))))
     (encapsulate ()
                  (make-event '(defun f2 (x) x))
                  (progn (defthm foo (equal x x) :rule-classes nil)
                         (defun f3 (x) y)))
     (defun f4 (x) x)
     (defun f5 (x) y))

  After this attempt fails, you can evaluate the following form.

    (redo-flat)

  This will first lay down a [deflabel] event, (deflabel r), so that
  you can eventually remove your debugging work with (:ubt! r). Then
  the successful sub-events that preceded the failure will be
  executed with proofs skipped (so that this execution is fast).
  Then, the failed event will be executed. Finally, a :[pbt] command
  is executed so that you can see a summary of the events that
  executed successfully.

  You can eliminate some of the steps above by supplying keyword
  values, as follows.

    (redo-flat
     :succ  succ ; Skip the successful sub-events if val is nil.
     :fail  fail ; Skip the failed sub-event if val is nil.
     :label lab  ; Skip deflabel if lab or succ is nil, else use (deflabel lab).
     :pbt   val  ; Skip the final :pbt if val, lab, or succ is nil.
     )

  Also, you can avoid skipping proofs for the successful sub-events by
  supplying keyword :succ-ld-skip-proofsp with a valid value for
  ld-skip-proofsp; see [ld-skip-proofsp]. For example, you might want
  to execute (redo-flat :succ-ld-skip-proofsp nil) if you use the
  must-fail utility from community book make-event/eval.lisp, since
  for example (must-fail (thm (equal x y))) normally succeeds but
  would cause an error if proofs are skipped. For another example:
  you may wish to do proofs when re-running certain [make-event]
  forms, for example, when the expansion is (:OR expr1 expr2) and the
  proof initially succeeds for expr2 rather than expr1 (see
  [make-event]).

  If you prefer only to see the successful and failed sub-events,
  without any events being re-executed, you may evaluate the
  following form instead.

    (redo-flat :show t)

  For the example above, this command produces the following output.

    List of events preceding the failure:

    ((DEFUN F1 (X) X)
     (ENCAPSULATE NIL
                  (LOCAL (DEFTHM HACK (EQUAL (CAR (CONS X Y)) X))))
     (ENCAPSULATE NIL
                  (LOCAL (DEFTHM HACK (EQUAL (+ X Y) (+ Y X)))))
     (MAKE-EVENT '(DEFUN F2 (X) X))
     (DEFTHM FOO (EQUAL X X)
             :RULE-CLASSES NIL))

    Failed event:

    (DEFUN F3 (X) Y)
    ACL2 !>

  Redo-flat uses a scheme that should not cause spurious name conflicts
  for [local] events. Above, it is mentioned that events are
  ``flattened''; now we clarify this notion. Each sub-event that
  succeeds and is an [encapsulate] or [progn] is left intact. Only
  such events that fail are replaced by their component events. Thus,
  in the example above, there is no conflict between the two [local]
  sub-events named ``hack,'' because these are contained in
  successful encapsulate sub-events, which are therefore not
  flattened. The [progn] and two [encapsulate] events surrounding the
  definition of f3 are, however, flattened, because that definition
  failed to be admitted.

  Normally, redo-flat will have the desired effect even if you
  interrupted a proof (with control-c). However, redo-flat will not
  produce the desired result after an interrupt if you have enabled
  the debugger using (set-debugger-enable t),")
 (REDUNDANT-ENCAPSULATE
  (ENCAPSULATE)
  "Redundancy of [encapsulate] [events]

  For this [documentation] topic we assume familiarity with encapsulate
  events and the notion of redundancy for [events]; see [encapsulate]
  and see [redundant-events].

  The typical way for an encapsulate event to be redundant is when a
  syntactically identical encapsulate has already been executed under
  the same [default-defun-mode], [default-ruler-extenders], and
  [default-verify-guards-eagerness]. But more generally, the
  encapsulate events need not be syntactically identical; for
  example, it suffices that they agree when the contents of [local]
  sub-events are ignored. Detailed criteria for redundancy are given
  below, but let us first look at a consequence of the point just
  made about ignoring the contents of [local] sub-events. Consider
  the following sequence of two events.

    (encapsulate
     ()
     (defun f (x) x)
     (local (defthm f-identity
              (equal (f x) x))))

    (encapsulate
     ()
     (defun f (x) x)
     (local (defthm false-claim
              (equal (f x) (not x)))))

  You might be surprised to learn that the second is actually
  redundant, even though false-claim is clearly not a theorem;
  indeed, its negation is a theorem! The following two points may
  soften the blow. First, this behavior is as specified above (and is
  specified more precisely below): the contents of [local] events are
  ignored when checking redundancy of [encapsulate] events. Second,
  this behavior is sound, because the logical meaning of an
  [encapsulate] event is taken from the events that it exports, which
  do not include events that are [local] to the encapsulate event.

  Some users, however, want to use [encapsulate] events for testing in
  a way that is thwarted by this ignoring of [local] sub-events.
  Consider the following sort of example.

    (encapsulate ()
                 (local (defthm test1 ...)))

    (encapsulate ()
                 (local (defthm test2 ...)))

  Fortunately, in this case both test1 and test2 will be evaluated. To
  see why, first note that when a completed [encapsulate] event with
  empty [signature] has introduced no sub-[events], then it has no
  effect at all on the logical [world]. Thus, the first encapsulate
  event is not stored in the world; so, the second encapsulate event
  is not redundant, since it is executed in a world that contains no
  trace of the first encapsulate event.

  Also see community books misc/eval.lisp, make-event/eval-check.lisp,
  and make-event/eval-tests.lisp for more ways to test in books.

  Here are detailed criteria for redundancy of [encapsulate] [events].
  First, based on a heuristic (but rather thorough) check, the
  proposed (new) encapsulate event must be seen as possibly
  introducing a new name, for example because one of its sub-events,
  perhaps after some macroexpansion, is an invocation of [defun],
  [defthm], or of certain other events that could introduce a name,
  including [make-event]. Second, the two [world]s in which each
  encapsulate event is evaluated must have the same
  [default-defun-mode]s, the same [default-ruler-extenders], and the
  same [default-verify-guards-eagerness]. Third, the existing and
  proposed encapsulate [events] must contain the same [signature]s
  and the same number of top-level sub-events; let k be that number.
  Finally: for each i < k, the ith top-level events E1 and E2 from
  the earlier and proposed encapsulates must be related in one of the
  following ways.

    * E1 and E2 are equal; or
    * E1 is of the form (record-expansion E2 ...); or else
    * E1 and E2 are equal after replacing each sub-event of E1 with its
      [make-event] expansion and replacing each [local] sub-event of
      E1 or E2 by (local (value-triple :elided)). Here, a sub-event
      of an event E is defined to be either E itself, or a sub-event
      of a constituent event of E in the case that E is a call of
      [skip-proofs], [with-output], [with-prover-time-limit],
      [with-prover-step-limit], record-expansion, [time$], [progn],
      [progn!], or [encapsulate] itself.")
 (REDUNDANT-EVENTS
  (EVENTS)
  "Allowing a name to be introduced ``twice''

  Sometimes an event will announce that it is ``redundant'', meaning
  that the the form is not evaluated because ACL2 determines that its
  effect is already incorporated into the logical [world]. Thus, when
  this happens, no change to the logical [world] takes place. This
  feature permits two independent [books], each of which defines some
  name, to be included sequentially provided they use exactly the
  same definition.

  Note that by the definition above, a form can have no effect on the
  logical [world] yet not be considered to be redundant. Here is an
  example of such a form.

    (value-triple (cw \"Hello world.~%\"))

  When are two [logical-name] definitions considered ``the same''? It
  depends upon the kind of name being defined. We consider these
  below in alphabetical order. See also the Notes below.

  A [defabsstobj] is redundant if there is already an identical
  defabsstobj event in the logical [world].

  A [defattach] event is never redundant. Note that it doesn't define
  any name.

  A [defaxiom] or [defthm] event is redundant if there is already an
  axiom or theorem of the given name and either the two [events] are
  syntactically identical, or both the formula (after macroexpansion)
  and the resulting [rule-classes] are syntactically identical. Note
  that because of the second of these two criteria, a [defaxiom] can
  make a subsequent [defthm] redundant, and a [defthm] can make a
  subsequent [defaxiom] redundant as well.

  A [defconst] is redundant if the name is already defined either with
  a syntactically identical defconst event or one that defines it to
  have the same value.

  A [deflabel] event is never redundant. This means that if you have a
  [deflabel] in a book and that book has been included (without
  error), then references to that label denote the point in [history]
  at which the book introduced the label. See the note about shifting
  logical names, below.

  A [defmacro] event is redundant if there is already a macro defined
  with the same name and syntactically identical arguments, [guard],
  and body.

  A [defpkg] event is redundant if a package of the same name with
  exactly the same imports has been defined.

  A [defstobj] event is redundant if there is already a defstobj event
  with the same name that has exactly the same field descriptors (see
  [defstobj]), in the same order, and with the same :renaming value
  if :renaming is supplied for either event.

  A [defthm] event is redundant according to the criteria given above
  in the discussion of defaxiom.

  A [deftheory] is never redundant. The ``natural'' notion of
  equivalent [deftheory] forms is that the names and values of the
  two theory expressions are the same. But since most theory
  expressions are sensitive to the context in which they occur, it
  seems unlikely to us that two [deftheory]s coming from two
  sequentially included [books] will ever have the same values. So we
  prohibit redundant theory definitions. If you try to define the
  same theory name twice, you will get a ``name in use'' error.

  A [defun], [defuns], or [mutual-recursion] event is redundant if for
  each function to be introduced, there has already been introduced a
  function with the same name, formals, and body (before
  macroexpansion), and with the same values [declare]d for the
  :[guard], :[measure], types, :[ruler-extenders], :non-executable,
  :[stobj]s, and :[split-types], provided that the [defun-mode]s are
  appropriate (see the ``Note About Appropriate Modes'' below).
  Moreover, the order of the combined :[guard] and type declarations
  must be the same in both cases. Exceptions and clarifications:

   1. The ruler-extenders are checked with respect to the appropriate
      [default-ruler-extenders].
   2. It is permissible for one definition to have a :[guard] of t and the
      other to have no explicit guard (hence, the guard is implicitly
      t).
   3. The :measure check is avoided if the old definition is non-recursive
      (and not defined within a [mutual-recursion]) or we are
      skipping proofs (for example, during [include-book]).
      Otherwise, the new definition may have a :measure of (:? v1 ...
      vk), where (v1 ... vk) enumerates the variables occurring in
      the measure stored for the old definition.
   4. If either the old or new event is a [mutual-recursion] event, then
      redundancy requires that both are [mutual-recursion] events
      that define the same set of function symbols.

  An [encapsulate] event is most commonly redundant when a
  syntactically identical [encapsulate] has already been executed
  under the same [default-defun-mode], [default-ruler-extenders], and
  [default-verify-guards-eagerness]. The full criterion for
  redundancy of encapsulate events is more complex, for example
  ignoring contents of [local] [events]; see [redundant-encapsulate].

  An [in-theory] event is never redundant. Note that it doesn't define
  any name.

  An [include-book] event is redundant if the book has already been
  included.

  A call of [make-event] is never redundant, as its argument is always
  evaluated to obtain the make-event expansion. However, that
  expansion may of course be redundant.

  A [mutual-recursion] event is redundant according to the criteria in
  the discussion above for the case of a defun event.

  A [progn] event is never redundant: its subsidiary [events] are
  always considered. Of course, its sub-events may themselves be
  redundant. If all of its sub-events are redundant --- or more
  generally, if none of the sub-events changes the logical [world]
  --- then the progn event also won't change the world.

  A [push-untouchable] event is redundant if every name supplied is
  already a member of the corresponding list of untouchable symbols.

  A [regenerate-tau-database] event is never redundant. Note that it
  doesn't define any name.

  A [remove-untouchable] event is redundant if no name supplied is a
  member of the corresponding list of untouchable symbols.

  A [reset-prehistory] event is redundant if it does not cause any
  change.

  A [set-body] event is redundant if the indicated body is already the
  current body.

  A [table] event not define any name. It is redundant when it sets the
  value already associated with a key of the table, or when it sets
  an entire table (using keyword :clear) to its existing value; see
  [table].

  A [verify-guards] event is redundant if the function has already had
  its [guard]s verified.

  Note About Built-in (Predefined) Functions and Macros:

  Redundancy is restricted for built-in macros and functions that have
  special raw Lisp code. Such redundancy is only legal in the context
  of [local]. This restriction is needed for soundness, for technical
  reasons omitted here (details may be found in a long comment about
  redundant-events in source function
  chk-acceptable-defuns-redundancy).

  Note About Appropriate Modes:

  Suppose a function is being redefined and that the formals, guards,
  types, stobjs, and bodies are identical. When are the modes
  (:[program] or :[logic]) ``appropriate?'' Identical modes are
  appropriate. But what if the old mode was :program and the new mode
  is :logic? This is appropriate, provided the definition meets the
  requirements of the logical definitional principle. That is, you
  may redefine ``redundantly'' a :program mode function as a :logic
  mode function provide the measure conjectures can be proved. This
  is what [verify-termination] does. Now consider the reverse style
  of redefinition. Suppose the function was defined in :logic mode
  and is being identically redefined in :program mode. ACL2 will
  treat the redefinition as redundant, provided the appropriate
  criteria are met (as though it were in :logic mode).

  Note About Shifting Logical Names:

  Suppose a book defines a function fn and later uses fn as a logical
  name in a theory expression. Consider the value of that theory
  expression in two different sessions. In session A, the book is
  included in a [world] in which fn is not already defined, i.e., in
  a [world] in which the book's definition of fn is not redundant. In
  session B, the book is included in a [world] in which fn is already
  identically defined. In session B, the book's definition of fn is
  redundant. When fn is used as a logical name in a theory
  expression, it denotes the point in [history] at which fn was
  introduced. Observe that those points are different in the two
  sessions. Hence, it is likely that theory expressions involving fn
  will have different values in session A than in session B.

  This may adversely affect the user of your book. For example, suppose
  your book creates a theory via [deftheory] that is advertised just
  to contain the names generated by the book. But suppose you compute
  the theory as the very last event in the book using:

    (set-difference-theories (universal-theory :here)
                             (universal-theory fn))

  where fn is the very first event in the book and happens to be a
  [defun] event. This expression returns the advertised set if fn is
  not already defined when the book is included. But if fn were
  previously (identically) defined, the theory is larger than
  advertised.

  The moral of this is simple: when building [books] that other people
  will use, it is best to describe your [theories] in terms of
  logical names that will not shift around when the [books] are
  included. The best such names are those created by [deflabel].

  Note About Unfortunate Redundancies.

  Notice that our syntactic criterion for redundancy of [defun]
  [events] may not allow redefinition to take effect unless there is
  a syntactic change in the definition. The following example shows
  how an attempt to redefine a function can fail to make any change.

    (set-ld-redefinition-action '(:warn . :overwrite) state)
    (defmacro mac (x) x)
    (defun foo (x) (mac x))
    (defmacro mac (x) (list 'car x))
    (set-ld-redefinition-action nil state)
    (defun foo (x) (mac x)) ; redundant, unfortunately; foo does not change
    (thm (equal (foo 3) 3)) ; succeeds, showing that redef of foo didn't happen

  The call of macro mac was expanded away before storing the first
  definition of foo for the theorem prover. Therefore, the new
  definition of mac does not affect the expansion of foo by the
  theorem prover, because the new definition of foo is ignored.

  One workaround is first to supply a different definition of foo, just
  before the last definition of foo above. Then that final definition
  will no longer be redundant. However, as a courtesy to users, we
  strengthen the redundancy check for function definitions when
  redefinition is active. If in the example above we remove the form
  (set-ld-redefinition-action nil state), then the problem goes away:

    (set-ld-redefinition-action '(:warn . :overwrite) state)
    (defmacro mac (x) x)
    (defun foo (x) (mac x))
    (defmacro mac (x) (list 'car x))
    (defun foo (x) (mac x)) ; no longer redundant
    (thm (equal (foo 3) 3)) ; fails, as we would like

  To summarize: If a [defun] form is submitted that meets the usual
  redundancy criteria, then it may be considered redundant even if a
  macro called in the definition has since been redefined. The
  analogous problem applie to constants, i.e., symbols defined by
  [defconst] that occur in the definition body. However, if
  redefinition is currently active the problem goes away: that is,
  the redundancy check is strengthened to check the ``translated''
  body, in which macro calls and constants defined by [defconst] are
  expanded away.

  The above discussion for [defun] forms applies to [defconst] forms as
  well. However, for [defmacro] forms ACL2 always checks translated
  bodies, so such bogus redundancy does not occur.

  Here is more complex example illustrating the limits of redefinition,
  based on one supplied by Grant Passmore.

    (defun n3 () 0)
    (defun n4 () 1)
    (defun n5 () (> (n3) (n4))) ; body is normalized to nil
    (thm (equal (n5) nil)) ; succeeds, trivially
    (set-ld-redefinition-action '(:warn . :overwrite) state)
    (defun n3 () 2)
    (thm (equal (n5) nil)) ; still succeeds, sadly

  We may expect the final [thm] call to fail because of the following
  reasoning: (n5) = (> (n3) (n4)) = (> 2 1) = t. Unfortunatly, the
  body of n5 was simplified (``normalized'') to nil when n5 was
  admitted, so the redefinition of n3 is ignored during the final thm
  call. (Such normalization can be avoided; see the brief discussion
  of :normalize in the documentation for [defun].) So, given this
  unfortunate situation, one might expect at this point simply to
  redefine n5 using the same definition as before, in order to pick
  up the new definition of n3. Such ``redefinition'' would, however,
  be redundant, for the same reason as in the previous example: no
  syntactic change was made to the definition. Even with redefinition
  active, there is no change in the body of n5, even with macros and
  constants (defined by [defconst]) expanded; there are none such!
  The same workaround applies as before: redefine n5 to be something
  different, and then redefine n5 again to be as desired.

  A related phenomenon can occur for [encapsulate]. As explained above,
  an encapsulate event is redundant if it is identical to one already
  in the database. (But a weaker condition applies in general; see
  [redundant-encapsulate].) Consider then the following contrived
  example.

    (defmacro mac (x) x)
    (encapsulate () (defun foo (x) (mac x)))
    (set-ld-redefinition-action '(:warn . :overwrite) state)
    (defmacro mac (x) (list 'car x))
    (encapsulate () (defun foo (x) (mac x)))

  The last encapsulate event is redundant because it meets the
  criterion for redundancy: it is identical to the earlier
  encapsulate event. Even though redefinition is active, and hence
  ACL2 ``should'' be able to see that the new [defun] of foo is not
  truly redundant, nevertheless the criterion for redundancy of
  [encapsulate] allows the new encapsulate form to be redundant.

  A workaround can be to add something trivial to the encapsulate, for
  example:

    (encapsulate ()
      (deflabel try2) ; ``Increment'' to try3 next time, and so on.
      (defun foo (x) x))


Subtopics

  [Set-enforce-redundancy]
      Require most events to be redundant")
 (REFINEMENT
  (RULE-CLASSES)
  "Record that one equivalence relation refines another

  See [rule-classes] for a general discussion of rule classes,
  including how they are used to build rules from formulas and a
  discussion of the various keywords in a rule class description.

    Example:
    (defthm bag-equal-refines-set-equal
      (implies (bag-equal x y)
               (set-equal y x))
      :rule-classes :refinement)

  Also see [defrefinement].

    General Form:
    (implies (equiv1 x y) (equiv2 x y))

  Equiv1 and equiv2 must be known equivalence relations. The effect of
  such a rule is to record that equiv1 is a refinement of equiv2.
  This means that equiv1 :[rewrite] rules may be used while trying to
  maintain equiv2. See [equivalence] for a general discussion of the
  issues.

  The macro form (defrefinement equiv1 equiv2) is an abbreviation for a
  [defthm] of rule-class :refinement that establishes that equiv1 is
  a refinement of equiv2. See [defrefinement].

  Suppose we have the :[rewrite] rule

    (bag-equal (append a b) (append b a))

  which states that [append] is commutative modulo bag-equality.
  Suppose further we have established that bag-equality refines
  set-equality. Then when we are simplifying [append] expressions
  while maintaining set-equality we use [append]'s commutativity
  property, even though it was proved for bag-equality.

  Equality is known to be a refinement of all equivalence relations.
  The transitive closure of the refinement relation is maintained, so
  if set-equality, say, is shown to be a refinement of some third
  sense of equivalence, then bag-equality will automatially be known
  as a refinement of that third equivalence.

  :refinement lemmas cannot be disabled. That is, once one equivalence
  relation has been shown to be a refinement of another, there is no
  way to prevent the system from using that information. Of course,
  individual :[rewrite] rules can be disabled.

  More will be written about this as we develop the techniques.")
 (REGENERATE-TAU-DATABASE
  (EVENTS INTRODUCTION-TO-THE-TAU-SYSTEM)
  "Regenerate the tau database relative to the current enabled theory

    General Form:
    (regenerate-tau-database)

  The tau database is regenerated by scanning the current logical world
  and re-processing every rule-generating event in it relative to the
  current enabled theory and current tau auto mode settings. See
  [introduction-to-the-tau-system] for background details.

  This command was intended to allow the user to remove a fact from the
  tau database, by regenerating the database without the fact. But as
  the following discussion highlights, regenerate-tau-database does
  not really solve the problem. We regard it as a placeholder for a
  more sophisticated mechanism. However, we have trouble
  understanding why a user might wish to remove a fact from the
  database and are awaiting further user experiences before designing
  the more sophisticated mechanism.

  Suppose, for example, that you wanted to remove a signature rule
  provided by some rule with name rune. You could disable rune and
  regenerate the database. We discuss why you might --- or might not
  --- want to do this later. But suppose you did it. Unfortunately,
  the database you get will not be just like the one you started with
  minus the signature rule. The reason is that the database you
  started with was generated incrementally and the current theory
  might have evolved. To take a simple example, your starting
  database might have included a rule that has been disabled since it
  was first added. Thus, the part of your starting database built
  before the disabling was constructed with the rule enabled and the
  part built afterwards has the rule disabled. You are unlikely to
  get the same database whether you enable or disable that rule now.

  You might hope that the avoidance of in-theory events would eliminate
  the problem but it does not because even the [ground-zero] theory
  is constructed incrementally from the ``pre-history'' commands used
  to boot up ACL2. Those pre-history commands include some global
  in-theory commands. Since every session starts from the ground-zero
  state, the starting database is already ``infected'' with global
  in-theory commands.

  The reason we hope that it will not be necessary to remove tau facts
  is that the tau system is designed merely to be fast and benign
  (see Design Philosophy in [introduction-to-the-tau-system]). The
  tau system's coverage should grows monotonically with the addition
  of rules. According to this understanding of tau, adding a
  signature rule, for example, may allow tau to prove some additional
  goals but will not prevent it from proving goals it could prove
  previously. If this is understanding of tau is accurate, we see no
  fundamental reason to support the removal of a fact. This, of
  course, ignores the possibility that the user wishes to explore
  alternative proof strategies or measure performance.

  We welcome user observations and experience on this issue.")
 (REGRESSION (POINTERS)
             "See [books-certification].")
 (RELEASE-NOTES
  (ABOUT-ACL2)
  "Pointers to what has changed

  This section of the online [documentation] contains notes on the
  changes that distinguish successive released versions of ACL2.

  The current version of ACL2 is the value of the constant (@
  acl2-version).


Subtopics

  [Note-2-0]
      ACL2 Version 2.0 (July, 1997) Notes

  [Note-2-1]
      ACL2 Version 2.1 (December, 1997) Notes

  [Note-2-2]
      ACL2 Version 2.2 (August, 1998) Notes

  [Note-2-3]
      ACL2 Version 2.3 (October, 1998) Notes

  [Note-2-4]
      ACL2 Version 2.4 (August, 1999) Notes

  [Note-2-5]
      ACL2 Version 2.5 (June, 2000) Notes

  [Note-2-5{r}]
      ACL2 Version 2.5(r) (June, 2000) Notes

  [Note-2-6]
      ACL2 Version 2.6 (November, 2001) Notes

  [Note-2-6{r}]
      ACL2 Version 2.6(r) (November, 2001) Notes

  [Note-2-7]
      ACL2 Version 2.7 (November, 2002) Notes

  [Note-2-7{r}]
      ACL2 Version 2.7(r) (November, 2002) Notes

  [Note-2-8]
      ACL2 Version 2.8 (March, 2004) Notes

  [Note-2-8{r}]
      ACL2 Version 2.8(r) (March, 2003) Notes

  [Note-2-9]
      ACL2 Version 2.9 (October, 2004) Notes

  [Note-2-9{r}]
      ACL2 Version 2.9(r) (October, 2004) Notes

  [Note-2-9-1]
      ACL2 Version 2.9.1 (December, 2004) Notes

  [Note-2-9-2]
      ACL2 Version 2.9.2 (April, 2005) Notes

  [Note-2-9-3]
      ACL2 Version 2.9.3 (August, 2005) Notes

  [Note-2-9-4]
      ACL2 Version 2.9.4 (February, 2006) Notes

  [Note-2-9-5]
      Changes in Version 3.0 since Version 2.9.4

  [Note-3-0]
      ACL2 Version 3.0 (June, 2006) Notes

  [Note-3-0{r}]
      ACL2 Version 3.0(r) (June, 2006) Notes

  [Note-3-0-1]
      ACL2 Version 3.0.1 (August, 2006) Notes

  [Note-3-0-1{r}]
      ACL2 Version 3.0.1(r) (August, 2006) Notes

  [Note-3-0-2]
      ACL2 Version 3.0.2 (December, 2006) Notes

  [Note-3-1]
      ACL2 Version 3.1 (December, 2006) Notes

  [Note-3-1{r}]
      ACL2 Version 3.1(r) (December, 2006) Notes

  [Note-3-2]
      ACL2 Version 3.2 (April, 2007) Notes

  [Note-3-2{r}]
      ACL2 Version 3.2(r) (April, 2007) Notes

  [Note-3-2-1]
      ACL2 Version 3.2.1 (June, 2007) Notes

  [Note-3-2-1{r}]
      ACL2 Version 3.2.1(r) (June, 2007) Notes

  [Note-3-3]
      ACL2 Version 3.3 (November, 2007) Notes

  [Note-3-3{r}]
      ACL2 Version 3.3(r) (November, 2007) Notes

  [Note-3-4]
      ACL2 Version 3.4 (August, 2008) Notes

  [Note-3-4{r}]
      ACL2 Version 3.4(r) (August, 2008) Notes

  [Note-3-5]
      ACL2 Version 3.5 (May, 2009) Notes

  [Note-3-5{r}]
      ACL2 Version 3.5(r) (May, 2009) Notes

  [Note-3-6]
      ACL2 Version 3.6 (August, 2009) Notes

  [Note-3-6{r}]
      ACL2 Version 3.6(r) (August, 2009) Notes

  [Note-3-6-1]
      ACL2 Version 3.6.1 (September, 2009) Notes

  [Note-4-0]
      ACL2 Version 4.0 (July, 2010) Notes

  [Note-4-0{r}]
      ACL2 Version 4.0(r) (July, 2010) Notes

  [Note-4-1]
      ACL2 Version 4.1 (September, 2010) Notes

  [Note-4-1{r}]
      ACL2 Version 4.1(r) (September, 2010) Notes

  [Note-4-2]
      ACL2 Version 4.2 (January, 2011) Notes

  [Note-4-2{r}]
      ACL2 Version 4.2(r) (January, 2011) Notes

  [Note-4-3]
      ACL2 Version 4.3 (July, 2011) Notes

  [Note-4-3{r}]
      ACL2 Version 4.3(r) (July, 2011) Notes

  [Note-5-0]
      ACL2 Version 5.0 (August, 2012) Notes

  [Note-6-0]
      ACL2 Version 6.0 (December, 2012) Notes

  [Note-6-1]
      ACL2 Version 6.1 (February, 2013) Notes

  [Note-6-2]
      ACL2 Version 6.2 (June, 2013) Notes

  [Note-6-3]
      ACL2 Version 6.3 (October, 2013) Notes

  [Note-6-4]
      ACL2 Version 6.4 (January, 2014) Notes

  [Note-6-5]
      ACL2 Version 6.5 (August, 2014) Notes

  [Note-7-0]
      ACL2 Version 7.0 (January, 2015) Notes

  [Note-7-1]
      ACL2 Version 7.1 (May, 2015) Notes

  [Note-7-2]
      ACL2 Version 7.2 (January, 2016) Notes

  [Note1]
      Acl2 Version 1.1 Notes

  [Note2]
      Acl2 Version 1.2 Notes

  [Note3]
      Acl2 Version 1.3 Notes

  [Note4]
      Acl2 Version 1.4 Notes

  [Note5]
      Acl2 Version 1.5 Notes

  [Note6]
      Acl2 Version 1.6 Notes

  [Note7]
      ACL2 Version 1.7 (released October 1994) Notes

  [Note8]
      ACL2 Version 1.8 (May, 1995) Notes

  [Note8-update]
      ACL2 Version 1.8 (Summer, 1995) Notes

  [Note9]
      ACL2 Version 1.9 (Fall, 1996) Notes")
 (REM
  (NUMBERS ACL2-BUILT-INS)
  "Remainder using [truncate]

    ACL2 !>(rem 14 3)
    2
    ACL2 !>(rem -14 3)
    -2
    ACL2 !>(rem 14 -3)
    2
    ACL2 !>(rem -14 -3)
    -2
    ACL2 !>(rem -15 -3)
    0
    ACL2 !>

  (Rem i j) is that number k for which (* j (truncate i j)) added to k
  equals i.

  The [guard] for (rem i j) requires that i and j are rational ([real],
  in ACL2(r)) numbers and j is non-zero.

  Rem is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Function: <rem>

    (defun rem (x y)
           (declare (xargs :guard (and (real/rationalp x)
                                       (real/rationalp y)
                                       (not (eql y 0)))))
           (- x (* (truncate x y) y)))")
 (REMOVE
  (LISTS ACL2-BUILT-INS)
  "Remove all occurrences

    General Forms:
    (remove x lst)
    (remove x lst :test 'eql)   ; same as above (eql as equality test)
    (remove x lst :test 'eq)    ; same, but eq is equality test
    (remove x lst :test 'equal) ; same, but equal is equality test

  (Remove x lst) is equal to lst if x is not a member of lst, else is
  the result of removing all occurrences of x from lst. The optional
  keyword, :TEST, has no effect logically, but provides the test
  (default [eql]) used for comparing x with successive elements of
  lst.

  Also see [remove1].

  The [guard] for a call of remove depends on the test. In all cases,
  the second argument must satisfy [true-listp]. If the test is
  [eql], then either the first argument must be suitable for [eql]
  (see [eqlablep]) or the second argument must satisfy
  [eqlable-listp]. If the test is [eq], then either the first
  argument must be a symbol or the second argument must satisfy
  [symbol-listp].

  See [equality-variants] for a discussion of the relation between
  remove and its variants:

      (remove-eq x lst) is equivalent to (remove x lst :test 'eq);

      (remove-equal x lst) is equivalent to (remove x lst :test 'equal).

  In particular, reasoning about any of these primitives reduces to
  reasoning about the function remove-equal.

  Function: <remove-equal>

    (defun remove-equal (x l)
           (declare (xargs :guard (true-listp l)))
           (cond ((endp l) nil)
                 ((equal x (car l))
                  (remove-equal x (cdr l)))
                 (t (cons (car l)
                          (remove-equal x (cdr l))))))

  Remove is defined by Common Lisp. See any Common Lisp documentation
  for more information.")
 (REMOVE-BINOP
  (MACROS)
  "Remove the association of a function name with a macro name

  The form (remove-binop macro-fn) is an abbreviation for the form
  (remove-macro-fn macro-fn). See [remove-macro-fn].")
 (REMOVE-CUSTOM-KEYWORD-HINT
  (EVENTS)
  "Remove a custom keyword hint

    Example Forms:
    (remove-custom-keyword-hint :my-hint)

    General Form:
    (remove-custom-keyword-hint keyword)

  where keyword is a [keywordp].

  For an explanation of how custom keyword hints are processed, see
  [custom-keyword-hints]; also see [add-custom-keyword-hint].

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.")
 (REMOVE-DEFAULT-HINTS
  (DEFAULT-HINTS)
  "Remove from the default hints

    Examples:
    (remove-default-hints '((computed-hint-1 clause)
                            (computed-hint-2 clause
                                             stable-under-simplificationp)))

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  It is [local] to the book or [encapsulate] form in which it occurs
  (see [remove-default-hints!] for a corresponding non-[local]
  event).

    General Form:
    (remove-default-hints lst)

  where lst is a list. Generally speaking, the elements of lst should
  be suitable for use as [computed-hints]. Also see
  [add-default-hints].

  If some elements of the given list do not belong to the existing
  default hints, they will simply be ignored by this event.

  Also See [set-default-hints], see [add-default-hints], and see
  [default-hints].

  Finally, note that the effects of set-default-hints,
  [add-default-hints], and [remove-default-hints] are [local] to the
  book in which they appear. Thus, users who include a book with such
  forms will not have their default hints affected by such forms. In
  order to export the effect of setting the default hints, use
  [set-default-hints!], [add-default-hints!], or
  [remove-default-hints!].")
 (REMOVE-DEFAULT-HINTS!
  (DEFAULT-HINTS)
  "Remove from the default hints non-[local]ly

  Please see [remove-default-hints], which is the same as
  remove-default-hints! except that the latter is not [local] to the
  [encapsulate] or the book in which it occurs. Probably
  [remove-default-hints] is to be preferred unless you have a good
  reason for wanting to export the effect of this event outside the
  enclosing [encapsulate] or book.")
 (REMOVE-DIVE-INTO-MACRO
  (DIVE-INTO-MACROS-TABLE)
  "Removes association of [proof-checker] diving function with macro
  name

    Example:
    (remove-dive-into-macro logand)

  This feature undoes the effect of [add-dive-into-macro], which is
  used so that the [proof-checker]'s DV command and numeric diving
  commands (e.g., 3) will dive properly into subterms. Please see
  [add-dive-into-macro] and especially see [dive-into-macros-table].")
 (REMOVE-DUPLICATES
  (LISTS STRINGS ACL2-BUILT-INS)
  "Remove duplicates from a string or a list

    General Forms:
    (remove-duplicates x)
    (remove-duplicates x :test 'eql)   ; same as above (eql as equality test)
    (remove-duplicates x :test 'eq)    ; same, but eq is equality test
    (remove-duplicates x :test 'equal) ; same, but equal is equality test

  (Remove-duplicates x) returns the result of deleting duplicate
  elements from the beginning of the list or string x. For example,
  (remove-duplicates '(1 2 3 2 4)) is equal to '(1 3 2 4). The
  optional keyword, :TEST, has no effect logically, but provides the
  test (default [eql]) used for comparing x with successive elements
  of lst.

  The [guard] for a call of remove-duplicates depends on the test. In
  all cases, the argument must satisfy [stringp] or [true-listp]. If
  the test is [eql], then the argument must satisfy either [stringp]
  or [eqlable-listp]. If the test is [eq], then the argument must
  satisfy [symbol-listp].

  The relation between remove-duplicates and its variants is related to
  the usual pattern for equality variants; see [equality-variants].
  However, the possibility of a string argument changes the usual
  pattern a bit. As one might expect:

      (remove-duplicates-eq lst) is equivalent to (remove-duplicates lst
      :test 'eq).

  However, remove-duplicates-equal is defined without consideration of
  strings, for backward compatibility with versions of ACL2 through
  Version_4.2. The macro remove-duplicates-logic has been introduced
  to model the behavior of remove-duplicates even on strings; use
  :[pe] if you wish to see its definition. So we can say the
  following.

      (remove-duplicates-logic lst) is equivalent to (remove-duplicates lst
      :test 'equal); and

      (remove-duplicates-logic lst) is equal to (remove-duplicates-equal
      lst) when lst is not a string.

  In particular, when the argument is not a string, reasoning about any
  of these primitives reduces to reasoning about the function
  remove-duplicates-equal.

  Function: <remove-duplicates-equal>

    (defun remove-duplicates-equal (l)
           (declare (xargs :guard (true-listp l)))
           (cond ((endp l) nil)
                 ((member-equal (car l) (cdr l))
                  (remove-duplicates-equal (cdr l)))
                 (t (cons (car l)
                          (remove-duplicates-equal (cdr l))))))

  Remove-duplicates is defined by Common Lisp. See any Common Lisp
  documentation for more information.")
 (REMOVE-DUPLICATES-EQ (POINTERS)
                       "See [remove-duplicates].")
 (REMOVE-DUPLICATES-EQUAL (POINTERS)
                          "See [remove-duplicates].")
 (REMOVE-EQ (POINTERS) "See [remove].")
 (REMOVE-EQUAL (POINTERS)
               "See [remove].")
 (REMOVE-INVISIBLE-FNS
  (LOOP-STOPPER)
  "Make some unary functions no longer invisible

    Examples:
    (remove-invisible-fns (binary-+ unary-- foo)
    (remove-invisible-fns (+ unary-- foo)

  The setting above has makes unary functions [unary--] and foo no
  longer ``invisible'' for the purposes of applying permutative
  :[rewrite] rules to [binary-+] trees.

    General Form:
    (remove-invisible-fns top-fn unary-fn1 ... unary-fnk)

  where top-fn is a function symbol and the unary-fni are unary
  function symbols, or more generally, these are all macro aliases
  for function symbols (see [macro-aliases-table]).

  See [add-invisible-fns] and also see [invisible-fns-table] and see
  [set-invisible-fns-table].")
 (REMOVE-MACRO-ALIAS
  (MACROS)
  "Remove the association of a function name with a macro name

    Example:
    (remove-macro-alias append)

    General Form:
    (remove-macro-alias macro-name)

  See [macro-aliases-table] for a discussion of macro aliases; also see
  [add-macro-alias]. This form sets [macro-aliases-table] to the
  result of deleting the key macro-name from that [table]. If the
  name does not occur in the [table], then this form still generates
  an event, but the event has no real effect.")
 (REMOVE-MACRO-FN
  (MACROS)
  "Remove the association of a function name with a macro name

    Example:
    (remove-macro-fn binary-append)

    General Form:
    (remove-macro-fn macro-fn)

  See [add-macro-fn] for a discussion of how to associate a macro name
  with a function name. This form sets [untrans-table] to the result
  of deleting the association of a macro name with the given binary
  function name. If the function name has no such association, then
  this form still generates an event, but the event has no real
  effect.")
 (REMOVE-NTH-ALIAS
  (NTH-ALIASES-TABLE)
  "Remove a symbol alias for printing of [nth]/[update-nth] terms

    Example:
    (remove-nth-alias append)

    General Form:
    (remove-nth-alias alias-name)

  See [nth-aliases-table] for further discussion; also see
  [add-nth-alias]. This form sets [nth-aliases-table] to the result
  of deleting the key alias-name from that [table]. If the name does
  not occur in the [table], then this form still generates an event,
  but the event has no real effect.")
 (REMOVE-OVERRIDE-HINTS
  (OVERRIDE-HINTS)
  "Delete from the list of [override-hints]

  See [override-hints] for a discussion of override-hints. Here we
  describe how to delete from the list of override-hints. Note that
  the effects of remove-override-hints [events] are [local] to the
  [books] or encapsulate [events] in which they reside; see
  [remove-override-hints!] to avoid that restriction. Also see
  [add-override-hints] and see [set-override-hints].

    General Form:
    (remove-override-hints form)

  where form should evaluate to a list of computed hint forms. The
  effect of this event is to set the list of [override-hints] to the
  result of deleting each element of the evaluation result from the
  [override-hints], if that element indeed belongs to the
  override-hints; no check is made that these elements are actually
  elements of the existing override-hints.")
 (REMOVE-OVERRIDE-HINTS!
  (OVERRIDE-HINTS)
  "Delete non-[local]ly from the list of [override-hints]

  Remove-override-hints! is the same as [remove-override-hints], except
  that the former is not [local] to [books] or [encapsulate] [events]
  in which it occurs. See [remove-override-hints]; also see
  [add-override-hints] and see [set-override-hints].")
 (REMOVE-RAW-ARITY
  (SET-RAW-MODE)
  "Remove arity information for raw mode

  Technical note: This macro is a no-op, and is not necessary, when
  ACL2 is built with #-acl2-mv-as-values.

  The form (remove-raw-arity fn) undoes the effect of an earlier
  (remove-raw-arity fn val). See [add-raw-arity].")
 (REMOVE-UNTOUCHABLE
  (DEFTTAG)
  "Remove names from lists of untouchable symbols

    Example Forms:
    (remove-untouchable my-var nil) ; then state global my-var is not untouchable
    (remove-untouchable set-mem t)  ; then function set-mem is not untouchable

  Also see [push-untouchable].

  This documentation topic is directed at those who build systems on
  top of ACL2. We first describe a means for removing restrictions
  related to so-called ``untouchables'': functions (or macros) that
  cannot be called, or state global variables that cannot be modified
  or unbound, without intervention that requires an active trust tag
  (see [defttag]). Then we describe the remove-untouchable event.

  We begin by discussing untouchable state global variables
  temp-touchable-vars and temp-touchable-fns, which initially have
  value nil. These can often be used in place of remove-untouchable.
  When the value is t, no variable (respectively, no function or
  macro) is treated as untouchable, regardless of the set of initial
  untouchables or the remove-untouchable or [push-untouchable]
  [events] that have been admitted. Otherwise the value of each of
  these two variables is a [symbol-listp], and no member of this list
  is treated as an untouchable variable (in the case of
  temp-touchable-vars) or as an untouchable function or macro (in the
  case of temp-touchable-fns). These two state global variables can
  be set by set-temp-touchable-vars and set-temp-touchable-fns,
  respectively, provided there is an active trust tag (see
  [defttag]). Here is an illustrative example. This macro executes
  the indicated forms in a context where there are no untouchable
  variables, but requires an active trust tag when invoked.

    (defmacro with-all-touchable (&rest forms)
      `(progn!
        :state-global-bindings
        ((temp-touchable-vars t set-temp-touchable-vars))
        (progn! ,@forms)))

  An equivalent version, which however is not recommended since
  [state-global-let*] may have surprising behavior in raw Lisp, is as
  follows.

    (defmacro with-all-touchable (&rest forms)
      `(progn!
        (state-global-let*
         ((temp-touchable-vars t set-temp-touchable-vars))
         (progn! ,@forms))))

  Finally, the value t for temp-touchable-vars removes the requirement
  that built-in state globals cannot be made unbound (with
  makunbound-global).

  We now turn to the remove-untouchable event, in case the approach
  above is for some reason not adequate. This event is illegal by
  default, since it can be used to provide access to ACL2 internal
  functions and data structures that are intentionally made
  untouchable for the user. If you want to call it, you must first
  create an active trust tag; see [defttag].

    General Form:
    (remove-untouchable name{s} fn-p)

  where name{s} is a non-nil symbol or a non-nil true list of symbols,
  and fn-p is any value (but generally nil or t). If name{s} is a
  symbol it is treated as the singleton list containing that symbol.
  The effect of this event is to remove the given symbols from the
  list of ``untouchable variables'' in the current world if fn-p is
  nil, else to remove the symbols into the list of ``untouchable
  functions''. This event is redundant if no symbol listed is a
  member of the appropriate untouchables list (variables or
  functions).")
 (REMOVE1
  (LISTS ACL2-BUILT-INS)
  "Remove first occurrences, testing using [eql]

    General Forms:
    (remove1 x lst)
    (remove1 x lst :test 'eql)   ; same as above (eql as equality test)
    (remove1 x lst :test 'eq)    ; same, but eq is equality test
    (remove1 x lst :test 'equal) ; same, but equal is equality test

  (Remove1 x lst) is equal to lst if x is not a member of lst, else is
  the result of removing the first occurrences of x from lst. The
  optional keyword, :TEST, has no effect logically, but provides the
  test (default [eql]) used for comparing x with successive elements
  of lst.

  Also see [remove].

  The [guard] for a call of remove1 depends on the test. In all cases,
  the second argument must satisfy [true-listp]. If the test is
  [eql], then either the first argument must be suitable for [eql]
  (see [eqlablep]) or the second argument must satisfy
  [eqlable-listp]. If the test is [eq], then either the first
  argument must be a symbol or the second argument must satisfy
  [symbol-listp].

  See [equality-variants] for a discussion of the relation between
  remove1 and its variants:

      (remove1-eq x lst) is equivalent to (remove1 x lst :test 'eq);

      (remove1-equal x lst) is equivalent to (remove1 x lst :test 'equal).

  Function: <remove1-equal>

    (defun remove1-equal (x l)
           (declare (xargs :guard (true-listp l)))
           (cond ((endp l) nil)
                 ((equal x (car l)) (cdr l))
                 (t (cons (car l)
                          (remove1-equal x (cdr l))))))

  In particular, reasoning about any of these primitives reduces to
  reasoning about the function remove1-equal.")
 (REMOVE1-EQ (POINTERS) "See [remove1].")
 (REMOVE1-EQUAL (POINTERS)
                "See [remove1].")
 (REORDER (POINTERS)
          "See [hints] for keyword :reorder.")
 (RESET-FC-REPORTING
  (FORWARD-CHAINING-REPORTS)
  "Reset the forward-chaining tracking state to its initial
  configuration

    Example:  (reset-fc-reporting)

  This function erases all forward chaining tracking criteria and sets
  the on-the-fly reporting flag to nil. The next time you set the
  criteria (see [set-fc-criteria]) the short form of reports, in
  which only the caller and the fc-report number is printed, will
  appear in your proof logs.

  See [forward-chaining-reports] for details.")
 (RESET-KILL-RING
  (HISTORY)
  "Save memory by resetting and perhaps resizing the kill ring used by
  [oops]

  By default, ACL2 holds on to old logical [world]s when you undo
  [command]s (see [ubt]), as documented elswhere; see [oops]. You can
  free up memory by deleting those old worlds using reset-kill-ring.

    Examples:
    (reset-kill-ring t state)   ; replace each element of the kill ring by nil
    (reset-kill-ring 2 state)   ; create a new kill ring of '(nil nil)
    (reset-kill-ring 0 state)   ; create a new kill ring that is empty
    (reset-kill-ring nil state) ; just return the length of the kill ring

    General form:
    (reset-kill-ring n state)

  where n evaluates either to t, to nil, or to a nonnegative integer (a
  [natp]). If n evaluates to t, it is treated as the length of the
  current kill ring. If n is nil, then the length k of the current
  kill ring is returned as a value triple (mv nil k state). If n is a
  [natp], then the kill ring is replaced with a list of n nils.

  In particular, use (reset-kill-ring 0 state) to avoid saving any old
  logical [world]s, at the cost of disabling the effect of the [oops]
  [command].")
 (RESET-LD-SPECIALS
  (LD)
  "Restores initial settings of the [ld] specials

    Examples:
    (reset-ld-specials t)
    (reset-ld-specials nil)

  Roughly speaking, the [ld] specials are certain [state] global
  variables, such as [current-package], [ld-prompt], and
  [ld-pre-eval-filter], which are managed by [ld] as though they were
  local variables. These variables determine the channels on which
  [ld] reads and prints and control many options of [ld]. See [ld]
  for the details on what the [ld] specials are.

  This function, reset-ld-specials, takes one Boolean argument, flg.
  The function resets all of the [ld] specials to their initial,
  top-level values, except for the three channel variables,
  [standard-oi], [standard-co], and [proofs-co], which are reset to
  their initial values only if flg is non-nil. Of course, if you are
  in a recursive call of [ld], then when you exit that call, the [ld]
  specials will be restored to the values they had at the time [ld]
  was called recursively. To see what the initial values are, inspect
  the value of the constant *initial-ld-special-bindings*.")
 (RESET-PREHISTORY
  (HISTORY)
  "Reset the prehistory

    Examples:
    (reset-prehistory)     ; restart command numbering at 0
    (reset-prehistory nil) ; same as above
    (reset-prehistory t)   ; as above except also disable ubt-prehistory

    General Forms:
    (reset-prehistory)
    (reset-prehistory permanent-p)

  where permanent-p is t or nil. After execution of this command, ACL2
  will change the numbering provided by its [history] utilities so
  that this reset-prehistory command (or the top-level compound
  [command] containing it, which for example might be an
  [include-book]) is assigned the number 0. The only way to undo this
  command is with command [ubt-prehistory]. However, even that is
  disallowed if permanent-p is t.

  Note that the second argument of [certify-book], which specifies the
  number of commands in the certification world (i.e., since
  ground-zero), is not sensitive to reset-prehistory; rather, it
  expects the number of commands since ground-zero. To see such
  commands, :[pbt] :start.

  A reset-prehistory event for which parameter permanent-p has the
  default value of nil is always skipped when any of the following
  conditions holds: during [certify-book]; during [include-book] or
  the second pass of [encapsulate] (indeed, whenever [ld] special
  '[ld-skip-proofsp] has value 'include-book); or when state global
  'skip-reset-prehistory has a non-nil value. Thus, we avoid
  resetting the history numbering to 0 when including or certifying a
  book, since that would probably not be what was intended.

  See [ubt-prehistory] for how to undo a reset-prehistory command that
  does not have a permanent-p of t.")
 (RESET-PRINT-CONTROL (POINTERS)
                      "See [print-control].")
 (RESIZE-LIST
  (STOBJ ACL2-BUILT-INS)
  "List resizer in support of stobjs

  (Resize-list lst n default-value) takes a list, lst, and a desired
  length, n, for the result list, as well as a default-value to use
  for the extra elements if n is greater than the length of lst.

  Resize-list has a guard of t. This function is called in the body of
  function, resize-<a> where <a> is an array field of a [stobj]. See
  [stobj] and see [defstobj].

  Function: <resize-list>

    (defun resize-list (lst n default-value)
           (declare (xargs :guard t))
           (if (and (integerp n) (> n 0))
               (cons (if (atom lst) default-value (car lst))
                     (resize-list (if (atom lst) lst (cdr lst))
                                  (1- n)
                                  default-value))
               nil))")
 (REST
  (NTH ACL2-BUILT-INS)
  "Rest ([cdr]) of the list

  In the logic, rest is just a macro for [cdr].

  Rest is a Common Lisp function. See any Common Lisp documentation for
  more information.

  Macro: <rest>

    (defmacro rest (x) (list 'cdr x))")
 (RESTORE-MEMOIZATION-SETTINGS
  (MEMOIZE)
  "Restore the saved memoization settings

  For background on memoization, see [memoize].

    General Form:
    (restore-memoization-settings)

  Calls of this macro restore the memoization settings saved by
  [save-and-clear-memoization-settings].")
 (RESTRICT (POINTERS)
           "See [hints] for keyword :restrict.")
 (RETRIEVE
  (PROOF-CHECKER)
  "Re-enter a (specified) [proof-checker] state

    Examples:
    (retrieve associativity-of-permutationp)
    retrieve

    General Form:
    (retrieve &optional name)

  See [ACL2-pc::retrieve], or use (help retrieve) inside the
  interactive [proof-checker] loop. Also see [unsave].")
 (RETURN-LAST
  (BASICS ACL2-BUILT-INS)
  "Return the last argument, perhaps with side effects

  Return-last is an ACL2 function that returns its last argument. It is
  used to implement common utilities such as [prog2$] and [time$].
  For most users, this may already be more than one needs to know
  about return-last; for example, ACL2 tends to avoid printing calls
  of return-last in its output, printing calls of [prog2$] or [time$]
  (or other such utilities) instead.

  If you encounter a call of return-last during a proof, then you may
  find it most useful to consider return-last simply as a function
  defined by the following equation.

    (equal (return-last x y z) z)

  It may also be useful to know that unlike other ACL2 functions,
  return-last can take a multiple value as its last argument, in
  which case this multiple value is returned. The following contrived
  definition illustrates this point.

    ACL2 !>(defun foo (fn x y z)
             (return-last fn x (mv y z)))

    Since FOO is non-recursive, its admission is trivial.  We observe that
    the type of FOO is described by the theorem
    (AND (CONSP (FOO FN X Y Z)) (TRUE-LISTP (FOO FN X Y Z))).  We used
    primitive type reasoning.

    (FOO * * * *) => (MV * *).

    Summary
    Form:  ( DEFUN FOO ...)
    Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
     FOO
    ACL2 !>(foo 'bar 3 4 5)
    (4 5)
    ACL2 !>(mv-let (a b)
                   (foo 'bar 3 4 5)
                   (cons b a))
    (5 . 4)
    ACL2 !>

  Most readers would be well served to avoid reading the rest of this
  documentation of return-last. For reference, however, below we
  document it in some detail. We include some discussion of its
  evaluation, in particular its behavior in raw Lisp, because we
  expect that most who read further are working with raw Lisp code
  (and trust tags).

  Return-last is an ACL2 function that can arise from macroexpansion of
  certain utilities that return their last argument, which may be a
  multiple value. Consider for example the simplest of these,
  [prog2$]:

    ACL2 !>:trans1 (prog2$ (cw \"Some CW printing...~%\") (+ 3 4))
     (RETURN-LAST 'PROGN
                  (CW \"Some CW printing...~%\")
                  (+ 3 4))
    ACL2 !>

  Notice that a call of prog2$ macroexpands to a call of return-last in
  which the first argument is (quote progn). Although return-last is
  a function in the ACL2 world, it is implemented ``under the hood''
  as a macro in raw Lisp, as the following log (continuing the
  example above) illustrates.

    ACL2 !>:q

    Exiting the ACL2 read-eval-print loop.  To re-enter, execute (LP).
    ? (macroexpand-1 '(RETURN-LAST 'PROGN
                                    (CW \"Some CW printing...~%\")
                                    (+ 3 4)))
    (PROGN (LET ((*AOKP* T)) (CW \"Some CW printing...~%\")) (+ 3 4))
    T
    ?

  Thus, the original prog2$ call generates a corresponding call of
  progn in raw Lisp, which in turn causes evaluation of each argument
  and returns whatever is returned by evaluation of the last (second)
  argument.

  Remark for those who use [defattach]. The binding of *aokp* to t is
  always included for the second argument as shown except when the
  first argument is of the form (QUOTE M) where M is a macro, or
  (less important) when the first argument is a symbol or a cons
  whose car is QUOTE. This binding allows ACL2 to use attachments in
  the second argument of return-last (hence, in the first argument of
  [prog2$]), even in contexts such as proofs in which attachments are
  normally not allowed.

  In general, a form (return-last (quote F) X Y) macroexpands to (F X
  Y), where F is defined in raw Lisp to return its last argument. The
  case that F is progn is a bit misleading, because it is so simple.
  More commonly, macroexpansion produces a call of a macro defined in
  raw Lisp that may produce side effects. Consider for example the
  ACL2 utility [with-guard-checking], which is intended to change the
  [guard]-checking mode to the indicated value (see
  [with-guard-checking]).

    ACL2 !>(with-guard-checking :none (car 3)) ; no guard violation
    NIL
    ACL2 !>:trans1 (with-guard-checking :none (car 3))
     (WITH-GUARD-CHECKING1 (CHK-WITH-GUARD-CHECKING-ARG :NONE)
                           (CAR 3))
    ACL2 !>:trans1 (WITH-GUARD-CHECKING1 (CHK-WITH-GUARD-CHECKING-ARG :NONE)
                                         (CAR 3))
     (RETURN-LAST 'WITH-GUARD-CHECKING1-RAW
                  (CHK-WITH-GUARD-CHECKING-ARG :NONE)
                  (CAR 3))
    ACL2 !>:q

    Exiting the ACL2 read-eval-print loop.  To re-enter, execute (LP).
    ? [RAW LISP] (macroexpand-1
                  '(RETURN-LAST 'WITH-GUARD-CHECKING1-RAW
                                 (CHK-WITH-GUARD-CHECKING-ARG :NONE)
                                 (CAR 3)))
    (WITH-GUARD-CHECKING1-RAW (CHK-WITH-GUARD-CHECKING-ARG :NONE) (CAR 3))
    T
    ? [RAW LISP] (pprint
                  (macroexpand-1
                   '(WITH-GUARD-CHECKING1-RAW
                     (CHK-WITH-GUARD-CHECKING-ARG :NONE)
                     (CAR 3))))

    (LET ((ACL2_GLOBAL_ACL2::GUARD-CHECKING-ON
           (CHK-WITH-GUARD-CHECKING-ARG :NONE)))
      (DECLARE (SPECIAL ACL2_GLOBAL_ACL2::GUARD-CHECKING-ON))
      (CAR 3))
    ? [RAW LISP]

  The above raw Lisp code binds the state global variable
  guard-checking-on to :none, as chk-with-guard-checking-arg is just
  the identity function except for causing a hard error for an
  illegal input.

  The intended use of return-last is that the second argument is
  evaluated first in a normal manner, and then the third argument is
  evaluated in an environment that may depend on the value of the
  second argument. (For example, the macro [with-prover-time-limit]
  macroexpands to a call of return-last with a first argument of
  'WITH-PROVER-TIME-LIMIT1-RAW, a second argument that evaluates to a
  numeric time limit, and a third argument that is evaluated in an
  environment where the theorem prover is restricted to avoid running
  longer than that time limit.) Although this intended usage model is
  not strictly enforced, it is useful to keep in mind in the
  following description of how calls of return-last are handled by
  the ACL2 evaluator.

  When a form is submitted in the top-level loop, it is handled by
  ACL2's custom evaluator. That evaluator is specified to respect the
  semantics of the expression supplied to it: briefly put, if an
  expression E evaluates to a value V, then the equality (equal E
  (quote V)) should be a theorem. Notice that this specification does
  not discuss the side-effects that may occur when evaluating a call
  of return-last, so we discuss that now. Suppose that the ACL2
  evaluator encounters the call (return-last 'fn expr1 expr2). First
  it evaluates expr1. If this evaluation succeeds without error, then
  it constructs an expression of the form (fn *x* ev-form), where *x*
  is a Lisp variable bound to the result of evaluating expr1 and
  ev-form is a call of the evaluator for expr2. (Those who want
  implementation details are invited to look at function
  ev-rec-return-last in ACL2 source file translate.lisp.) There are
  exceptions if fn is progn, ec-call1-raw, with-guard-checking1-raw,
  or mbe1-raw, but the main idea is the same: do a reasonable job
  emulating the behavior of a raw-Lisp call of return-last.

  The following log shows how a [time$] call can generate a call of the
  evaluator for the last argument of return-last (arguent expr2,
  above). We use :[trans1] to show single-step macroexpansions, which
  indicate how a call of [time$] expands to a call of return-last.
  The implementation actually binds the Lisp variable
  *RETURN-LAST-ARG3* to expr2 before calling the ACL2 evaluator,
  ev-rec.

    ACL2 !>:trans1 (time$ (+ 3 4))
     (TIME$1 (LIST 0 NIL NIL NIL NIL)
             (+ 3 4))
    ACL2 !>:trans1 (TIME$1 (LIST 0 NIL NIL NIL NIL)
                           (+ 3 4))
     (RETURN-LAST 'TIME$1-RAW
                  (LIST 0 NIL NIL NIL NIL)
                  (+ 3 4))
    ACL2 !>(time$ (+ 3 4))
    ; (EV-REC *RETURN-LAST-ARG3* ...) took
    ; 0.00 seconds realtime, 0.00 seconds runtime
    ; (1,120 bytes allocated).
    7
    ACL2 !>

  We now show how things can go wrong in other than the ``intended
  use'' case described above. In the example below, the macro mac-raw
  is operating directly on the syntactic representation of its first
  argument, which it obtains of course as the second argument of a
  return-last call. Again this ``intended use'' of return-last
  requires that argument to be evaluated and then only its result is
  relevant; its syntax is not supposed to matter. We emphasize that
  only top-level evaluation depends on this ``intended use''; once
  evaluation is passed to Lisp, the issue disappears. We illustrate
  below how to use the [top-level] utility to avoid this issue; see
  [top-level]. The example uses the utility defmacro-last to
  ``install'' special handling of the raw-Lisp macro mac-raw by
  return-last; later below we discuss defmacro-last.

    ACL2 !>(defttag t)

    TTAG NOTE: Adding ttag :T from the top level loop.
     T
    ACL2 !>(progn!
             (set-raw-mode t)
             (defmacro mac-raw (x y)
               `(progn (print (quote ,(cadr x)))
                       (terpri) ; newline
                       ,y)))

    Summary
    Form:  ( PROGN! (SET-RAW-MODE T) ...)
    Rules: NIL
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
     NIL
    ACL2 !>(defmacro-last mac)
    [[ ... output omitted ... ]]
     RETURN-LAST-TABLE
    ACL2 !>(return-last 'mac-raw '3 nil)

    ***********************************************
    ************ ABORTING from raw Lisp ***********
    Error:  Fault during read of memory address #x120000300006
    ***********************************************

    If you didn't cause an explicit interrupt (Control-C),
    then the root cause may be call of a :program mode
    function that has the wrong guard specified, or even no
    guard specified (i.e., an implicit guard of t).
    See :DOC guards.

    To enable breaks into the debugger (also see :DOC acl2-customization):
    (SET-DEBUGGER-ENABLE T)
    ACL2 !>(top-level (return-last 'mac-raw '3 nil))

    3
    NIL
    ACL2 !>

  We next describe how to extend the behavior of return-last. This
  requires an active trust tag (see [defttag]), and is accomplished
  by extending a [table] provided by ACL2, see [return-last-table].
  Rather than using [table] [events] directly for this purpose, it is
  probably more convenient to use a macro, defmacro-last. We describe
  the community book books/misc/profiling.lisp in order to illustrate
  how this works. The events in that book include the following,
  which are described below.

    (defttag :profiling)

    (progn!
     (set-raw-mode t)
     (load (concatenate 'string (cbd) \"profiling-raw.lsp\")))

    (defmacro-last with-profiling)

  The first event introduces a trust tag. The second loads a file into
  raw Lisp that defines a macro, with-profiling-raw, which can do
  profiling for the form to be evaluated. The third introduces an
  ACL2 macro with-profiling, whose calls expand into calls of the
  form (return-last (quote with-profiling-raw) & &). The third event
  also extends [return-last-table] so that these calls will expand in
  raw Lisp to calls of with-profiling-raw.

  The example above illustrates the following methodology for
  introducing a macro that returns its last argument but produces
  useful side-effects with raw Lisp code.

      (1) Introduce a trust tag (see [defttag]).

      (2) Using [progn!], load into raw Lisp a file defining a macro,
      RAW-NAME, that takes two arguments, returning its last (second)
      argument but using the first argument to produce desired side
      effects during evaluation of that last argument.

      (3) Evaluate the form (defmacro-last NAME :raw RAW-NAME). This will
      introduce NAME as an ACL2 macro that expands to a corresponding
      call of RAW-NAME (see (2) above) in raw Lisp. The specification
      of keyword value of :raw as RAW-NAME may be omitted if RAW-NAME
      is the result of modifying the symbol NAME by suffixing the
      string \"-RAW\" to the [symbol-name] of NAME.

  WARNING: Not every use of return-last can be soundly evaluated
  outside a function body. The reason is that ACL2's evaluator,
  ev-rec, recurs through terms that are presented in the top-level
  loop, and handles return-last calls in a special manner: basically,
  the call of ev-rec on the form (return-last 'mac-raw x y) leads to
  evaluation of a macro call of the form (mac-raw *return-last-arg2*
  (ev-rec ...)), where *return-last-arg2* is a global variable bound
  to the result of evaluating x with ev-rec. Consider the following
  example.

    (defttag t)
    (set-raw-mode-on state)
    (defmacro mac-raw (str y) ; print message is an atom
     `(let ((result (consp ,y))
            (str ,str))
        (or result
            (prog2$ (fmx ,str ',y)
                    nil))))
    (set-raw-mode-off state)
    (defmacro-last mac)
    ; Horrible error:
    (mac \"Not a cons: ~x0~%\" 17)
    ; Works, but probably many would consider it awkward to use top-level:
    (top-level (mac \"Not a cons: ~x0~%\" 17))

  In such cases we suggest supplying keyword :top-level-ok nil to the
  call of defmacro-last, for example:

    (defmacro-last mac :top-level-ok nil)

  Then any attempt to call mac at the top level, as opposed to inside a
  function body, will cause a clean error before evaluation begins.

  It is useful to explore what is done by defmacro-last.

    ACL2 !>:trans1 (defmacro-last with-profiling)
     (PROGN (DEFMACRO WITH-PROFILING (X Y)
                      (LIST 'RETURN-LAST
                            (LIST 'QUOTE 'WITH-PROFILING-RAW)
                            X Y))
            (TABLE RETURN-LAST-TABLE 'WITH-PROFILING-RAW
                   'WITH-PROFILING))
    ACL2 !>:trans1 (with-profiling '(assoc-eq fgetprop rewrite) (mini-proveall))
     (RETURN-LAST 'WITH-PROFILING-RAW
                  '(ASSOC-EQ FGETPROP REWRITE)
                  (MINI-PROVEALL))
    ACL2 !>:q

    Exiting the ACL2 read-eval-print loop.  To re-enter, execute (LP).
    ? [RAW LISP] (macroexpand-1
                  '(RETURN-LAST 'WITH-PROFILING-RAW
                                 '(ASSOC-EQ FGETPROP REWRITE)
                                 (MINI-PROVEALL)))
    (WITH-PROFILING-RAW '(ASSOC-EQ FGETPROP REWRITE) (MINI-PROVEALL))
    T
    ? [RAW LISP]

  To understand the macro with-profiling-raw you could look at the
  community book loaded above: books/misc/profiling-raw.lsp.

  We mentioned above that ACL2 tends to print calls of [prog2$] or
  [time$] (or other such utilities) instead of calls of return-last.
  Here we elaborate that point. ACL2's `untranslate' utility treats
  (return-last (quote F) X Y) as (G X Y) if F corresponds to the
  symbol G in return-last-table. However, it is generally rare to
  encounter such a term during a proof, since calls of return-last
  are generally expanded away early during a proof.

  Calls of return-last that occur in code --- forms submitted in the
  top-level ACL2 loop, and definition bodies other than those marked
  as [non-executable] (see [defun-nx]) --- have the following
  restriction: if the first argument is of the form (quote F), then F
  must be an entry in return-last-table. There are however four
  exceptions: the following symbols are considered to be keys of
  return-last-table even if they are no longer associated with
  non-nil values, say because of a [table] event with keyword :clear.

      * progn, associated with [prog2$]
      * mbe1-raw, associated with mbe1, a version of mbe
      * ec-call1-raw, associated with ec-call1 (a variant of [ec-call])
      * with-guard-checking1-raw, associated with with-guard-checking1 (a
      variant of [with-guard-checking])

  Note that because of its special status, it is illegal to trace
  return-last.

  We conclude by warning that as a user, you take responsibility for
  not compromising the soundness or error handling of ACL2 when you
  define a macro in raw Lisp and especially when you install it as a
  key of [return-last-table], either directly or (more likely) using
  defmacro-last. In particular, be sure that you are defining a macro
  of two arguments that always returns the value of its last
  argument, returning the complete multiple value if that last
  argument evaluates to a multiple value.

  The following is correct, and illustrates care taken to return
  multiple values.

    :q
    (defmacro my-time1-raw (val form)
      (declare (ignore val))
      `(let  ((start-time (get-internal-run-time))
              (result (multiple-value-list ,form))
              (end-time (get-internal-run-time)))
         (format t \"Total time: ~s~%\"
                 (float (/ (- end-time start-time)
                           internal-time-units-per-second)))
         (values-list result)))
    (lp)
    (defttag t)
    (defmacro-last my-time1)
    (defmacro my-time (form)
      `(my-time1 nil ,form))

  Then for example:

    ACL2 !>(my-time (equal (make-list 1000000) (make-list 1000000)))
    Total time: 0.12
    T
    ACL2 !>

  But if instead we provide the following more naive implementation, of
  the above raw Lisp macro, the above evaluation can produce an
  error, for example if the host Lisp is CCL.

    (defmacro my-time1-raw (val form)
        (declare (ignore val))
        `(let  ((start-time (get-internal-run-time))
                (result ,form)
                (end-time (get-internal-run-time)))
           (format t \"Total time: ~s~%\"
                   (float (/ (- end-time start-time)
                             internal-time-units-per-second)))
           result)) ; WRONG -- need multiple values returned!

  Here is a second, similar example. This time we'll start with the
  error; can you spot it?

    (defttag t)
    (progn!
     (set-raw-mode t)
     (defmacro foo-raw (x y)
       `(prog1
            ,y
          (cw \"Message showing argument 1: ~x0~%\" ,x))))
    (defmacro-last foo)

  We then can wind up with a hard Lisp error:

    ACL2 !>(foo 3 (mv 4 5))
    Message showing argument 1: 3

    ***********************************************
    ************ ABORTING from raw Lisp ***********
    Error:  value NIL is not of the expected type REAL.
    ***********************************************

    If you didn't cause an explicit interrupt (Control-C),
    then the root cause may be call of a :program mode
    function that has the wrong guard specified, or even no
    guard specified (i.e., an implicit guard of t).
    See :DOC guards.

    To enable breaks into the debugger (also see :DOC acl2-customization):
    (SET-DEBUGGER-ENABLE T)
    ACL2 !>

  Here is a corrected version of the above macro. The point here is
  that prog1 returns a single value, while our-multiple-value-prog1
  returns all the values that are returned by its first argument.

    (progn!
     (set-raw-mode t)
     (defmacro foo-raw (x y)
       `(our-multiple-value-prog1 ;; better
         ,y
         (cw \"Message showing argument 1: ~x0~%\" ,x))))

  Function: <return-last>

    (defun return-last (fn eager-arg last-arg)
           (declare (ignore fn eager-arg)
                    (xargs :guard (if (equal fn 'mbe1-raw)
                                      (equal last-arg eager-arg)
                                      t)))
           last-arg)


Subtopics

  [Return-last-table]
      Install special raw Lisp behavior")
 (RETURN-LAST-TABLE
  (RETURN-LAST)
  "Install special raw Lisp behavior

  Please first see [return-last] for relevant background.

  This [table] is for advanced users only, and requires an active trust
  tag (see [defttag]). We recommend that you do not modify this table
  directly, but instead use the macro defmacro-last. Here we augment
  that discussion with some highly technical observations that can
  probably be ignored if you use defmacro-last.

  This [table] has a :guard requiring that each key be a symbol defined
  in raw Lisp, generally as a macro, and requiring that each non-nil
  value be associated either with a symbol that names a macro defined
  in ACL2, or else with a list of one element containing such a
  symbol. The table can only be modified when there is an active
  trust tag; see [defttag]. If a key is associated with the value
  nil, then that key is treated as though it were not in the table.

  Note that keys of this table are not eligible to be bound by [flet].
  The current value of this table may be obtained by evaluating the
  form (table-alist 'return-last-table (w state)). The built-in
  constant *initial-return-last-table* holds the initial value of
  this table.")
 (REVAPPEND
  (LISTS ACL2-BUILT-INS)
  "Concatentate the [reverse] of one list to another

  (Revappend x y) [concatenate]s the [reverse] of the list x to y,
  which is also typically a list.

  The following theorem characterizes this English description.

    (equal (revappend x y)
           (append (reverse x) y))

  Hint: This lemma follows immediately from the definition of [reverse]
  and the following lemma.

    (defthm revappend-append
      (equal (append (revappend x y) z)
             (revappend x (append y z))))

  The [guard] for (revappend x y) requires that x is a true list.

  Revappend is defined in Common Lisp. See any Common Lisp
  documentation for more information.

  Function: <revappend>

    (defun revappend (x y)
           (declare (xargs :guard (true-listp x)))
           (if (endp x)
               y (revappend (cdr x) (cons (car x) y))))")
 (REVERSE
  (LISTS STRINGS ACL2-BUILT-INS)
  "Reverse a list or string

  (Reverse x) is the result of reversing the order of the elements of
  the list or string x.

  The [guard] for reverse requires that its argument is a true list or
  a string.

  Reverse is defined in Common Lisp. See any Common Lisp documentation
  for more information.

  Function: <reverse>

    (defun reverse (x)
           (declare (xargs :guard (or (true-listp x) (stringp x))))
           (cond ((stringp x)
                  (coerce (revappend (coerce x 'list) nil)
                          'string))
                 (t (revappend x nil))))")
 (REVISITING_THE_ADMISSION_OF_APP
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Revisiting the Admission of App

  [{IMAGE}]

  Here is the definition of app again with certain parts highlighted.
  If you are taking the Walking Tour, please read the text carefully
  and click on each of the links below, except those marked [{ICON}].
  Then come back here.

  {IMAGE}

    [ACL2 !>](defun app (x y)
      (cond ((endp x) y)
            (t (cons (car x)
                     (app (cdr x) y)))))

    The [admission] of APP is trivial, using the
    relation [o<] [{ICON}] (which is known to be well-founded on
    the domain recognized by [o-p] [{ICON}]) and the measure
    ([ACL2-count] [{ICON}] X).  We [observe] that the
    [type] of APP is described by the theorem (OR
    (CONSP (APP X Y)) (EQUAL (APP X Y) Y)).  We used primitive type
    reasoning.

    [Summary]
    Form:  ( DEFUN APP ...)
    Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))
    Warnings:  None
    Time:  0.03 seconds (prove: 0.00, print: 0.00, other: 0.03)
     APP

  {IMAGE}

  [{IMAGE}]")
 (REWRITE
  (RULE-CLASSES)
  "Make some :rewrite rules (possibly conditional ones)

  See [rule-classes] for a general discussion of rule classes,
  including how they are used to build rules from formulas and a
  discussion of the various keywords in a rule class description.

  This doc topic discusses the rule-class :rewrite. If you want a
  general discussion of how rewriting works in ACL2 and some guidance
  on how to construct effective rewrite rules, see
  [introduction-to-rewrite-rules-part-1] and then see
  [introduction-to-rewrite-rules-part-2].

    Examples:

    (defthm plus-commutes                 ; Replace (+ a b) by (+ b a) provided
      (equal (+ x y) (+ y x)))            ; certain heuristics approve the
                                          ; permutation.

    (defthm plus-commutes                 ; equivalent to the above
      (equal (+ x y) (+ y x))
      :rule-classes ((:rewrite :corollary (equal (+ x y) (+ y x))
                               :loop-stopper ((x y binary-+))
                               :match-free :all)))

    (defthm append-nil                    ; Replace (append a nil) by a, if
      (implies (true-listp x)             ; (true-listp a) rewrites to t.
               (equal (append x nil) x)))

    (defthm append-nil                    ; as above, but with defaults and
      (implies (true-listp x)             ; a backchain limit
               (equal (append x nil) x))
      :rule-classes ((:rewrite :corollary (implies (true-listp x)
                                                   (equal (append x nil) x))
                               :backchain-limit-lst (3) ; or equivalently, 3
                               :match-free :all)))

    (defthm member-append                 ; Replace (member e (append b c)) by
      (implies                            ; (or (member e b) (member e c) in
       (and                               ; contexts in which propositional
        (true-listp x)                    ; equivalence is sufficient, provided
        (true-listp y))                   ; b and c are true-lists.
       (iff (member e (append x y))
            (or (member e x) (member e y)))))

    General Form:
    (and ...
         (implies (and ...hi...)
                  (implies (and ...hk...)
                           (and ...
                                (equiv lhs rhs)
                                ...)))
         ...)

  Note: One :rewrite rule class object might create many rewrite rules
  from the :[corollary] formula. To create the rules, we first
  translate the formula, expanding all macros (see [trans]) and also
  removing [guard-holders]. Next, we eliminate all lambdas; one may
  think of this step as simply substituting away every [let], [let*],
  and [mv-let] in the formula. We then flatten the [and] and
  [implies] structure of the formula; for example, if the hypothesis
  or conclusion is of the form (and (and term1 term2) term3), then we
  replace that by the ``flat'' term (and term1 term2 term3). (The
  latter is actually an abbreviation for the right-associated term
  (and term1 (and term2 term3)).) The result is a conjunction of
  formulas, each of the form

    (implies (and h1 ... hn) concl)

  where no hypothesis is a conjunction and concl is neither a
  conjunction nor an implication. If necessary, the hypothesis of
  such a conjunct may be vacuous. We then further coerce each concl
  into the form (equiv lhs rhs), where equiv is a known [equivalence]
  relation, by replacing any concl not of that form by (iff concl t).
  A concl of the form (not term) is considered to be of the form (iff
  term nil). By these steps we reduce the given :[corollary] to a
  sequence of conjuncts, each of which is of the form

    (implies (and h1 ... hn)
             (equiv lhs rhs))

  where equiv is a known [equivalence] relation. See [equivalence] for
  a general discussion of the introduction of new [equivalence]
  relations. At this point, we check whether lhs and rhs are the same
  term; if so, we cause an error, since this rule will loop. (But
  this is just a basic check; the rule could loop in other cases, for
  example if rhs is an instance of lhs; see [loop-stopper].)

  We create a :rewrite rule for each such conjunct, if possible, and
  otherwise cause an error. It is possible to create a rewrite rule
  from such a conjunct provided lhs is not a variable, a quoted
  constant, a [let]-expression, a lambda application, or an
  [if]-expression.

  A :rewrite rule is used when any instance of the lhs occurs in a
  context in which the [equivalence] relation is an admissible
  [congruence] relation. First, we find a substitution that makes lhs
  equal to the target term. Then we attempt to relieve the
  instantiated hypotheses of the rule. Hypotheses that are fully
  instantiated are relieved by recursive rewriting. Hypotheses that
  contain ``free variables'' (variables not assigned by the unifying
  substitution) are relieved by attempting to guess a suitable
  instance so as to make the hypothesis equal to some known
  assumption in the context of the target. If the hypotheses are
  relieved, and certain restrictions that prevent some forms of
  infinite regress are met (see [loop-stopper]), the target is
  replaced by the instantiated rhs, which is then recursively
  rewritten.

  ACL2's rewriting process has undergone some optimization. In
  particular, when a term t1 is rewritten to a new term t2, the
  rewriter is then immediately applied to t2. On rare occasions you
  may find that you do not want this behavior, in which case you may
  wish to use a trick involving [hide]; see [meta], near the end of
  that documentation.

  In another optimization, when the hypotheses and right-hand side are
  rewritten, ACL2 does not really first apply the substitution and
  then rewrite; instead, it as it rewrites those terms it looks up
  the already rewritten values of the bound variables. Sometimes you
  may want those bindings rewritten again, e.g., because the
  variables occur in slots that admit additional equivalence
  relations. See double-rewrite.

  See [introduction-to-rewrite-rules-part-1] and see
  [introduction-to-rewrite-rules-part-2] for an extended discussion
  of how to create effective rewrite rules.


Subtopics

  [Backchain-limit]
      Limiting the effort expended on relieving hypotheses

  [Bind-free]
      To bind free variables of a rewrite, definition, or linear rule

  [Case-split]
      Like force but immediately splits the top-level goal on the
      hypothesis

  [Double-rewrite]
      Cause a term to be rewritten twice

  [Force]
      Identity function used to force a hypothesis

  [Free-variables]
      Free variables in rules

  [Hide]
      Hide a term from the rewriter

  [Loop-stopper]
      Limit application of permutative rewrite rules

  [Rewrite-stack-limit]
      Limiting the stack depth of the ACL2 rewriter

  [Set-rw-cache-state]
      Set the default rw-cache-state

  [Set-rw-cache-state!]
      Set the default rw-cache-state non-[local]ly

  [Simple]
      :[definition] and :[rewrite] rules used in preprocessing

  [Syntaxp]
      Attach a heuristic filter on a rule")
 (REWRITE-STACK-LIMIT
  (REWRITE)
  "Limiting the stack depth of the ACL2 rewriter

  ACL2 users can create rules of class :[rewrite] (see [rule-classes])
  that have the potential of causing an infinite loop in the ACL2
  rewriter. This could lead to Lisp stack overflows and even
  segmentation faults. For this reason, the depth of certain calls of
  functions in the ACL2 rewriter is limited by default using the
  value of the form (rewrite-stack-limit (w state)). To see the limit
  in action, execute the following forms.

    (defthm app-assoc-1
      (equal (append (append x y) z)
             (append x y z)))
    (defthm app-assoc-2
      (equal (append x y z)
             (append (append x y) z)))
    (thm (equal (append a b c) xxx)
         ; try without these hints to see a slightly different error message
         :hints ((\"Goal\" :do-not '(preprocess))))

  The ensuing error message shows a stack of one greater than the value
  of (rewrite-stack-limit (w state)), which by default is the value
  of the constant *default-rewrite-stack-limit*. The error message
  also explains how to use :[brr] t and ([cw-gstack]) to find looping
  rewrite rules.

  This limit can be changed; see [set-rewrite-stack-limit].

  For a related limit, see [backchain-limit].


Subtopics

  [Set-rewrite-stack-limit]
      Sets the rewrite stack depth used by the rewriter")
 (REWRITE_RULES_ARE_GENERATED_FROM_DEFTHM_EVENTS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Rewrite Rules are Generated from DEFTHM Events

  [{IMAGE}]

  By reading the documentation of [defthm] [{ICON}] (and especially of
  its :[rule-classes] [{ICON}] argument) you would learn that when we
  submitted the command

    (defthm associativity-of-app
      (equal (app (app a b) c)
             (app a (app b c))))

  we not only command the system to prove that app is an associative
  function but

    * we commanded it to use that fact as a rewrite rule.

  That means that every time the system encounters a term of the form

    (app (app x y) z)

  it will replace it with

    (app x (app y z))!

  [{IMAGE}]")
 (RFIX
  (NUMBERS ACL2-BUILT-INS)
  "Coerce to a rational number

  Rfix simply returns any rational number argument unchanged, returning
  0 on a non-rational argument. Also see [nfix], see [ifix], see
  [realfix], and see [fix] for analogous functions that coerce to a
  natural number, an integer, a real, and a number, respectively.

  Rfix has a [guard] of t.

  Function: <rfix>

    (defun rfix (x)
           (declare (xargs :guard t))
           (if (rationalp x) x 0))")
 (ROUND
  (NUMBERS ACL2-BUILT-INS)
  "Division returning an integer by rounding off

    Example Forms:
    ACL2 !>(round 14 3)
    5
    ACL2 !>(round -14 3)
    -5
    ACL2 !>(round 14 -3)
    -5
    ACL2 !>(round -14 -3)
    5
    ACL2 !>(round 13 3)
    4
    ACL2 !>(round -13 3)
    -4
    ACL2 !>(round 13 -3)
    -4
    ACL2 !>(round -13 -3)
    4
    ACL2 !>(round -15 -3)
    5
    ACL2 !>(round 15 -2)
    -8

  (Round i j) is the result of taking the quotient of i and j and
  rounding off to the nearest integer. When the quotient is exactly
  halfway between consecutive integers, it rounds to the even one.

  The [guard] for (round i j) requires that i and j are rational
  ([real], in ACL2(r)) numbers and j is non-zero.

  Round is a Common Lisp function. See any Common Lisp documentation
  for more information. However, note that unlike Common Lisp, the
  ACL2 round function returns only a single value,

  Function: <round>

    (defun
         round (i j)
         (declare (xargs :guard (and (real/rationalp i)
                                     (real/rationalp j)
                                     (not (eql j 0)))))
         (let ((q (* i (/ j))))
              (cond ((integerp q) q)
                    ((>= q 0)
                     (let* ((fl (floor q 1)) (remainder (- q fl)))
                           (cond ((> remainder 1/2) (+ fl 1))
                                 ((< remainder 1/2) fl)
                                 (t (cond ((integerp (* fl (/ 2))) fl)
                                          (t (+ fl 1)))))))
                    (t (let* ((cl (ceiling q 1))
                              (remainder (- q cl)))
                             (cond ((< (- 1/2) remainder) cl)
                                   ((> (- 1/2) remainder) (+ cl -1))
                                   (t (cond ((integerp (* cl (/ 2))) cl)
                                            (t (+ cl -1))))))))))")
 (RULE-CLASSES
  (ACL2)
  "Adding rules to the database

    Example Form (from community book finite-set-theory/total-ordering.lisp):
    (defthm <<-trichotomy
      (implies (and (ordinaryp x)
                    (ordinaryp y))
               (or (<< x y)
                   (equal x y)
                   (<< y x)))
      :rule-classes
      ((:rewrite :corollary
                 (implies (and (ordinaryp x)
                               (ordinaryp y)
                               (not (<< x y))
                               (not (equal x y)))
                          (<< y x)))))

    General Form:
    a true list of rule class objects as defined below

    Special Cases:
    a symbol abbreviating a single rule class object

  When [defthm] is used to prove a named theorem, rules may be derived
  from the proved formula and stored in the database. The user
  specifies which kinds of rules are to be built, by providing a list
  of rule class names or, more generally, rule class objects, which
  name the kind of rule to build and optionally specify various
  attributes of the desired rule. The rule class names are
  :[rewrite], :[built-in-clause], :[clause-processor],
  :[compound-recognizer], :[congruence], :[definition], :[elim],
  :[equivalence], :[forward-chaining], :[generalize], :[induction],
  :[linear], :[meta], :[refinement], :[tau-system],
  :[type-prescription], :[type-set-inverter], and
  :[well-founded-relation]. Some classes require the
  user-specification of certain class-specific attributes. Each class
  of rule affects the theorem prover's behavior in a different way,
  as discussed in the corresponding documentation topic. In this
  topic we discuss the various attributes that may be attached to
  rule classes.

  Note that not all [events] generate rules. For example, a [defthm]
  event that specifies :rule-classes nil does not generate a rule.
  Similarly, a [defchoose] event generates an axiom that can be
  referenced by name in :use [hints], but it does not generate a
  rule.

  A rule class object is either one of the :class keywords or else is a
  list of the form shown below. Those fields marked with ``(!)'' are
  required when the :class is as indicated.

    (:class
      :COROLLARY term
      :TRIGGER-FNS (fn1 ... fnk)   ; provided :class = :META (!)
      :WELL-FORMEDNESS-GUARANTEE x ; provided :class = :META
                                           or :class = :CLAUSE-PROCESSOR
      :TRIGGER-TERMS (t1 ... tk)   ; provided :class = :FORWARD-CHAINING
                                   ;       or :class = :LINEAR
      :TYPE-SET n                  ; provided :class = :TYPE-SET-INVERTER
      :TYPED-TERM term             ; provided :class = :TYPE-PRESCRIPTION
      :CLIQUE (fn1 ... fnk)        ; provided :class = :DEFINITION
      :CONTROLLER-ALIST alist      ; provided :class = :DEFINITION
      :INSTALL-BODY directive      ; provided :class = :DEFINITION
      :LOOP-STOPPER alist          ; provided :class = :REWRITE
      :PATTERN term                ; provided :class = :INDUCTION (!)
      :CONDITION term              ; provided :class = :INDUCTION
      :SCHEME term                 ; provided :class = :INDUCTION (!)
      :MATCH-FREE all-or-once      ; provided :class = :REWRITE
                                   ;       or :class = :LINEAR
                                   ;       or :class = :FORWARD-CHAINING
      :BACKCHAIN-LIMIT-LST limit   ; provided :class = :REWRITE
                                   ;       or :class = :META
                                   ;       or :class = :LINEAR
                                   ;       or :class = :TYPE-PRESCRIPTION
      :HINTS hints                 ; provided instrs = nil
      :INSTRUCTIONS instrs         ; provided  hints = nil
      :OTF-FLG flg)

  When rule class objects are provided by the user, most of the fields
  are optional and their values are computed in a context sensitive
  way. When a :class keyword is used as a rule class object, all
  relevant fields are determined contextually. Each rule class object
  in :rule-classes causes one or more rules to be added to the
  database. The :class keywords are documented individually under the
  following names. Note that when one of these names is used as a
  :class, it is expected to be in the keyword package (i.e., the
  names below should be preceded by a colon but the ACL2
  [documentation] facilities do not permit us to use keywords below).

  See also [force], [case-split], [syntaxp], and [bind-free] for
  ``pragmas'' one can wrap around individual hypotheses of certain
  classes of rules to affect how the hypothesis is relieved.

  Before we get into the discussion of rule classes, let us return to
  an important point. In spite of the large variety of rule classes
  available, at present we recommend that new ACL2 users rely almost
  exclusively on (conditional) rewrite rules. A reasonable but
  slightly bolder approach is to use :[type-prescription] and
  :[forward-chaining] rules for ``type-theoretic'' rules, especially
  ones whose top-level function symbol is a common one like
  [true-listp] or [consp]; see [type-prescription] and see
  [forward-chaining]. However, the rest of the rule classes are
  really not intended for widespread use, but rather are mainly for
  experts.

  We expect that we will write more about the question of which kind of
  rule to use. For now: when in doubt, use a :[rewrite] rule.

  :Rule-classes is an optional keyword argument of the [defthm] (and
  [defaxiom]) event. In the following, let name be the name of the
  event and let thm be the formula to be proved or added as an axiom.

  If :rule-classes is not specified in a [defthm] (or [defaxiom])
  event, it is as though what was specified was to make one or more
  :[rewrite] rules, i.e., as though :rule-classes ((:rewrite)) had
  been used. Use :rule-classes nil to specify that no rules are to be
  generated.

  If :rule-classes class is specified, where class is a non-nil symbol,
  it is as though :rule-classes ((class)) had been used. Thus,
  :rule-classes :[forward-chaining] is equivalent to :rule-classes
  ((:forward-chaining)).

  We therefore now consider :rule-classes as a true list. If any
  element of that list is a keyword, replace it by the singleton list
  containing that keyword. Thus, :rule-classes (:rewrite :elim) is
  the same as :rule-classes ((:rewrite) (:elim)).

  Each element of the expanded value of :rule-classes must be a true
  list whose [car] is one of the rule class keyword tokens listed
  above, e.g., :[rewrite], :[elim], etc., and whose [cdr] is a
  ``keyword alist'' alternately listing keywords and values. The
  keywords in this alist must be taken from those shown below. They
  may be listed in any order and most may be omitted, as specified
  below.

      :[Corollary] --- its value, term, must be a term. If omitted, this
      field defaults to thm. The :[corollary] of a rule class object
      is the formula actually used to justify the rule created and
      thus determines the form of the rule. Nqthm provided no similar
      capability: each rule was determined by thm, the theorem or
      axiom added. ACL2 permits thm to be stated ``elegantly'' and
      then allows the :[corollary] of a rule class object to specify
      how that elegant statement is to be interpreted as a rule. For
      the rule class object to be well-formed, its (defaulted)
      :[corollary], term, must follow from thm. Unless term follows
      trivially from thm using little more than propositional logic,
      the formula (implies thm term) is submitted to the theorem
      prover and the proof attempt must be successful. During that
      proof attempt the values of :[hints], :[instructions], and
      :[otf-flg], as provided in the rule class object, are provided
      as arguments to the prover. Such auxiliary proofs give the sort
      of output that one expects from the prover. However, as noted
      above, corollaries that follow trivially are not submitted to
      the prover; thus, such corollaries cause no prover output.

      Note that before term is stored, all calls of macros in it are
      expanded away. See [trans].

      :[Hints], :[instructions], :[otf-flg] --- the values of these fields
      must satisfy the same restrictions placed on the fields of the
      same names in [defthm]. These values are passed to the
      recursive call of the prover used to establish that the
      :[corollary] of the rule class object follows from the theorem
      or axiom thm.

      :[Type-set] --- this field may be supplied only if the :class is
      :[type-set-inverter]. When provided, the value must be a
      type-set, an integer in a certain range. If not provided, an
      attempt is made to compute it from the corollary. See
      [type-set-inverter].

      :Typed-term --- this field may be supplied only if the :class is
      :[type-prescription]. When provided, the value is the term for
      which the :[corollary] is a type-prescription lemma. If no
      :typed-term is provided in a :[type-prescription] rule class
      object, we try to compute heuristically an acceptable term. See
      [type-prescription].

      :Trigger-terms --- this field may be supplied only if the :class is
      :[forward-chaining] or :[linear]. When provided, the value is a
      list of terms, each of which is to trigger the attempted
      application of the rule. If no :trigger-terms is provided, we
      attempt to compute heuristically an appropriate set of
      triggers. See [forward-chaining] or see [linear].

      :Trigger-fns --- this field must (and may only) be supplied if the
      :class is :[meta]. Its value must be a list of function symbols
      (except that a macro alias can stand in for a function symbol;
      see [add-macro-alias]). Terms with these symbols trigger the
      application of the rule. See [meta].

      :Well-formedness-guarantee --- this field may be supplied only if the
      :class is :[meta] or :[clause-processor]. Its value must be of
      one of the following forms:

        [1]  thm-name1                ; :META or :CLAUSE-PROCESSOR rules
        [2]  (thm-name1)              ; :META rules
        [3]  (thm-name1 thm-name2)    ; :META rules

      where thm-name1 and thm-name2 are the names of previously proved
      theorems establishing that the results of applying the
      metafunction(s) or clause-processor will be syntactically
      well-formed. See :[meta] and :[clause-processor] for details of
      the required forms of these well-formedness theorems. Forms [1]
      and [2] may be used for :meta rules where no hypothesis
      metafunction is involved. Form [3] must be used for :meta rules
      with hypothesis metafunctions; that is, if you provide a
      well-formedness guarantee for a metatheorem with a hypothesis
      metafunction you must guarantee the well-formedness of both the
      metafunction (with thm-name1) and the hypothesis metafunction
      (with thm-name2). Form [1] must be used for :clause-processor
      rules. In the absence of a proper :well-formedness-guarantee
      the well-formedness of the output of a both kinds of rules is
      checked every time the rule is fired. These checks are skipped
      when a proper :well-formedness-guarantee is provided or when
      overridden as described in [set-skip-meta-termp-checks].

      :Clique and :controller-alist --- these two fields may only be
      supplied if the :class is :[definition]. If they are omitted,
      then ACL2 will attempt to guess them. Suppose the :[corollary]
      of the rule is (implies hyp (equiv (fn a1 ... an) body)). The
      value of the :clique field should be a true list of function
      symbols, and if non-nil must include fn. These symbols are all
      the members of the mutually recursive clique containing this
      definition of fn. That is, a call of any function in :clique is
      considered a ``recursive call'' for purposes of the expansion
      heuristics. The value of the :controller-alist field should be
      an alist that maps each function symbol in the :clique to a
      list of t's and nil's of length equal to the arity of the
      function. For example, if :clique consists of just two symbols,
      fn1 and fn2, of arities 2 and 3 respectively, then ((fn1 t nil)
      (fn2 nil t t)) is a legal value of :controller-alist. The value
      associated with a function symbol in this alist is a ``mask''
      specifying which argument slots of the function ``control'' the
      recursion for heuristic purposes. Sloppy choice of :clique or
      :controller-alist can result in infinite expansion and stack
      overflow.

      :Install-body --- this field may only be supplied if the :class is
      :[definition]. Its value must be t, nil, or the default,
      :normalize. A value of t or :normalize will cause ACL2 to
      install this rule as the new body of the function being
      ``defined'' (fn in the paragraph just above); hence this
      definition will be installed for future :expand [hints].
      Furthermore, if this field is omitted or the value is
      :normalize, then this definition will be simplified using the
      so-called ``normalization'' procedure that is used when
      processing definitions made with [defun]. You must explicitly
      specify :install-body nil in the following cases: fn (as above)
      is a member of the value of constant
      *definition-minimal-theory*, the arguments are not a list of
      distinct variables, equiv (as above) is not [equal], or there
      are free variables in the hypotheses or right-hand side (see
      [free-variables]). However, supplying :install-body nil will
      not affect the rewriter's application of the :definition rule,
      other than to avoid using the rule to apply :expand hints. If a
      definition rule equates (f a1 ... ak) with body but there are
      hypotheses, hyps, then :expand [hints] will replace terms (f
      term1 ... termk) by corresponding terms (if hyps body (hide (f
      term1 ... termk))).

      :[Loop-stopper] --- this field may only be supplied if the class is
      :[rewrite]. Its value must be a list of entries each consisting
      of two variables followed by a (possibly empty) list of
      function symbols, for example ((x y binary-+) (u v foo bar)).
      It will be used to restrict application of rewrite rules by
      requiring that the list of instances of the second variables
      must be ``smaller'' than the list of instances of the first
      variables in a sense related to the corresponding functions
      listed; see [loop-stopper]. The list as a whole is allowed to
      be nil, indicating that no such restriction shall be made. Note
      that any such entry that contains a variable not being
      instantiated, i.e., not occurring on the left side of the
      rewrite rule, will be ignored. However, for simplicity we
      merely require that every variable mentioned should appear
      somewhere in the corresponding :[corollary] formula.

      :Pattern, :Condition, :Scheme --- the first and last of these fields
      must (and may only) be supplied if the class is :[induction].
      :Condition is optional but may only be supplied if the class is
      :[induction]. The values must all be terms and indicate,
      respectively, the pattern to which a new induction scheme is to
      be attached, the condition under which the suggestion is to be
      made, and a term which suggests the new scheme. See
      [induction].

      :Match-free --- this field must be :all or :once and may be supplied
      only if the :class is either :[rewrite], :[linear], or
      :[forward-chaining]. (This field is not implemented for other
      rule classes, including the :[type-prescription] rule class.)
      See [free-variables] for a description of this field. Note:
      Although this field is intended to be used for controlling
      retries of matching free variables in hypotheses, it is legal
      to supply it even if there are no such free variables. This can
      simplify the automated generation of rules, but note that when
      :match-free is supplied, the warning otherwise provided for the
      presence of free variables in hypotheses will be suppressed.

      :Backchain-limit-lst --- this field may be supplied only if the
      :class is either :[rewrite], :[meta], :[linear], or
      :[type-prescription]. It is further required either only one
      rule is generated from the formula or, at least, every such
      rule has the same list of hypotheses. The value for
      :backchain-limit-lst must be nil; a non-negative integer; or,
      except in the case of :[meta] rules, a true list each element
      of which is either nil or a non-negative integer. If it is a
      list, its length must be equal to the number of hypotheses of
      the rule and each item in the list is the ``backchain limit''
      associated with the corresponding hypothesis. If
      backchain-limit-lst is a non-negative integer, it is defaulted
      to a list of the appropriate number of repetitions of that
      integer. The backchain limit of a hypothesis is used to limit
      the effort that ACL2 will expend when relieving the hypothesis.
      If it is NIL, no new limits are imposed; if it is an integer,
      the hypothesis will be limited to backchaining at most that
      many times. Note that backchaining may be further limited by a
      global backchain-limit; see [backchain-limit] for details. For
      different ways to reign in the rewriter, see
      [rewrite-stack-limit] and see [set-prover-step-limit]. Jared
      Davis has pointed out that you can set the :backchain-limit-lst
      to 0 to avoid any attempt to relieve [force]d hypotheses, which
      can lead to a significant speed-up in some cases.

  Once thm has been proved (in the case of [defthm]) and each rule
  class object has been checked for well-formedness (which might
  require additional proofs), we consider each rule class object in
  turn to generate and add rules. Let :class be the class keyword
  token of the ith class object (counting from left to right).
  Generate the [rune] (:class name . x), where x is nil if there is
  only one class and otherwise x is i. Then, from the :[corollary] of
  that object, generate one or more rules, each of which has the name
  (:class name . x). See the :[doc] entry for each rule class to see
  how formulas determine rules. Note that it is in principle possible
  for several rules to share the same name; it happens whenever a
  :[corollary] determines more than one rule. This in fact only
  occurs for :[rewrite], :[linear], and :[forward-chaining] class
  rules and only then if the :[corollary] is essentially a
  conjunction. (See the documentation for [rewrite], [linear], or
  [forward-chaining] for details.)


Subtopics

  [Backchaining]
      Attempting to relieve the hypotheses of a rule

  [Built-in-clause]
      To build a clause into the simplifier

  [Clause-processor]
      Make or apply a :clause-processor rule (goal-level simplifier)

  [Compound-recognizer]
      Make a rule used by the typing mechanism

  [Congruence]
      The relations to maintain while simplifying arguments

  [Corollary]
      The corollary formula of a [rune]

  [Default-backchain-limit]
      Specifying the backchain limit for a rule

  [Definition]
      Make a rule that acts like a function definition

  [Elim]
      Make a destructor elimination rule

  [Equivalence]
      Mark a relation as an equivalence relation

  [Executable-counterpart]
      A rule for computing the value of a function

  [Forward-chaining]
      Make a rule to forward chain when a certain trigger arises

  [Free-variables]
      Free variables in rules

  [Generalize]
      Make a rule to restrict generalizations

  [Guard-holders]
      Remove trivial calls from a [term]

  [Induction]
      Make a rule that suggests a certain induction

  [Linear]
      Make some arithmetic inequality rules

  [Meta]
      Make a :meta rule (a hand-written simplifier)

  [Patterned-congruence]
      Removing restrictions on classic [congruence] rules

  [Refinement]
      Record that one equivalence relation refines another

  [Rewrite]
      Make some :rewrite rules (possibly conditional ones)

  [Tau-system]
      Make a rule for the ACL2 ``type checker''

  [Type-prescription]
      Make a rule that specifies the type of a term

  [Type-set-inverter]
      Exhibit a new decoding for an ACL2 type-set

  [Well-formedness-guarantee]
      Guarantee that a metafunction or clause-processor returns a
      well-formed answer

  [Well-founded-relation]
      Show that a relation is well-founded on a set")
 (RULE-NAMES
  (THEORIES)
  "How rules are named.

    Examples:
    (:rewrite assoc-of-app)
    (:linear delta-aref . 2)
    (:definition length)
    (:executable-counterpart length)

  See [rune].")
 (RULER-EXTENDERS
  (DEFUN)
  "Control for ACL2's termination and induction analyses

  Introduction

  Consider the following recursive definition, which returns a list of
  threes of length one more than the length of x.

    (defun f (x)
      (cons 3
            (if (consp x)
                (f (cdr x))
              nil)))

  One might expect ACL2's termination analysis to admit this function,
  since we know that (cdr x) is ``smaller'' than x if (consp x) is
  true. (By default, ACL2's notion of ``smaller'' is ordinary
  natural-number <, and the argument x is measured by applying
  function acl2-count to x.) However, that termination analysis does
  not consider [if] tests, like (consp x) above, when they occur
  under calls of functions other than IF, such as CONS in the case
  above.

  One way to overcome this problem is to ``lift'' the IF test to the
  top level, as follows.

    (defun f (x)
      (if (consp x)
          (cons 3 (f (cdr x)))
        (cons 3 nil)))

  But another way to overcome the problem is to tell ACL2 to extend its
  termination (and induction) analysis through calls of cons, as
  follows.

    (defun f (x)
      (declare (xargs :ruler-extenders (cons)))
      (cons 3
            (if (consp x)
                (f (cdr x))
              nil)))

  You may even wish to provide value :all instead of an explicit list
  of ruler-extenders, so that no function call blocks the termination
  analysis:

    (defun f (x)
      (declare (xargs :ruler-extenders :all))
      (cons 3
            (if (consp x)
                (f (cdr x))
              nil)))

  Alternatively, you can omit the XARGS :RULER-EXTENDERS form, instead
  modifying the global default set of ruler-extenders:

    (set-ruler-extenders :all)

    ; or, for example:
    (set-ruler-extenders '(cons return-last))

  You can call the function [default-ruler-extenders] as follows to see
  the current global default set of ruler-extenders:

    (default-ruler-extenders (w state))

  We conclude this introduction by considering the handling of LET
  expressions by termination analysis. Consider the following
  example.

    (defun fact (n)
      (the (integer 1 *)
           (if (posp n)
               (* n (fact (1- n)))
             1)))

  ACL2 treats the call of [the] in the body of this definition as
  follows.

    (let ((var (if (posp n)
                   (* n (fact (1- n)))
                 1)))
      (if (and (integerp var) (<= 1 var))
          var
        <some_error>))

  A [let] expression, in turn, is treated as a [lambda] application:

    ((lambda (var)
       (if (if (integerp var)
               (not (< var 1))
             nil)
           var
         <some_error>))
     (if (posp n)
         (* n (fact (1- n)))
       1))

  Notice that the [posp] test, which governs the recursive call of
  fact, is inside an argument of a function application, namely the
  application of the LAMBDA expression. So by default, ACL2 will not
  consider this [posp] test in its termination analysis. The keyword
  :LAMBDAS in the list of ruler-extenders denotes all calls of lambda
  expressions, much as the inclusion of CONS in the ruler-extenders
  denotes all calls of CONS. The following definition is thus
  accepted by ACL2.

    (defun fact (n)
      (declare (xargs :ruler-extenders (:lambdas)))
      (the (integer 1 *)
           (if (posp n)
               (* n (fact (1- n)))
             1)))

  As a convenience, ACL2 allows the symbol :lambdas in place of
  (:lambdas), and in fact the former will also include the default
  ruler-extenders: [return-last] (which comes from macroexpansion of
  calls of [prog2$], [ec-call], and others) and [mv-list].

  IMPORTANT REMARKS. (1) Notice that the argument to
  set-ruler-extenders is evaluated, but the argument to
  :RULER-EXTENDERS in XARGS is not evaluated. (2) Do not put macro
  names in your list of ruler-extenders. For example, if you intend
  that + should not block the termination analysis, in analogy to
  cons in the example above, then the list of ruler-extenders should
  include binary-+, not +. Of course, if you use :all then this is
  not an issue, but see the next remark. (3) Also please note that by
  taking advantage of the ruler-extenders, you may be complicating
  the induction scheme stored for the function, whose computation
  takes similar advantage of the additional IF structure that you are
  specifying.

  Below we describe the notion of ruler-extenders in detail, as well as
  how to set its default using set-ruler-extenders.

  Details

  We begin by discussing how to set the ruler-extenders by using the
  macro set-ruler-extenders; below we will discuss the use of keyword
  :ruler-extenders in [xargs] [declare] forms.

    Examples:
    (set-ruler-extenders :basic) ; return to default
    (set-ruler-extenders *basic-ruler-extenders*) ; same as immediately above
    (set-ruler-extenders :all) ; every governing IF test rules a recursive call
    (set-ruler-extenders :lambdas) ; LET does not block termination analysis
    (set-ruler-extenders (cons :lambdas *basic-ruler-extenders*))
                                   ; same as immediately above
    (set-ruler-extenders '(f g)) ; termination analysis goes past calls of f, g

    General Form:
    (set-ruler-extenders val)

  where val evaluates to one of :basic, :all, :lambdas, or a true list
  of symbols containing no keyword other than, optionally, :lambdas.

  When a recursive definition is submitted to ACL2 (in :[logic] mode),
  the recursion must be proved to terminate; see [defun]. More
  precisely, ACL2 explores the [if] structure of the body of the
  definition to accumulate the tests that ``rule'' any given
  recursive call. The following example reviews how this works.
  Suppose that f has already been defined.

    (defun g (x y)
      (declare (xargs :measure (+ (acl2-count x) (acl2-count y))))
      (if (consp x)
          (g (cdr x) y)
        (if (consp y)
            (f (g x (cdr y)))
          (f (list x y)))))

  ACL2 makes the following response to this proposed definition. Notice
  that the :measure proposed above must be proved to be an ACL2
  ordinal --- that is, to satisfy O-P --- and that the arguments to
  each recursive call must be smaller (in the sense of that measure
  and O<, which here reduces to the ordinary < relation) than the
  formals under the assumption of the ruling IF tests. The first
  IMPLIES term below thus corresponds to the recursive call (g (cdr
  x) y), while the second corresponds to the recursive call (g x (cdr
  y)).

    For the admission of G we will use the relation O< (which is known
    to be well-founded on the domain recognized by O-P) and the measure
    (+ (ACL2-COUNT X) (ACL2-COUNT Y)).  The non-trivial part of the measure
    conjecture is

    Goal
    (AND (O-P (+ (ACL2-COUNT X) (ACL2-COUNT Y)))
         (IMPLIES (CONSP X)
                  (O< (+ (ACL2-COUNT (CDR X)) (ACL2-COUNT Y))
                      (+ (ACL2-COUNT X) (ACL2-COUNT Y))))
         (IMPLIES (AND (NOT (CONSP X)) (CONSP Y))
                  (O< (+ (ACL2-COUNT X) (ACL2-COUNT (CDR Y)))
                      (+ (ACL2-COUNT X) (ACL2-COUNT Y))))).

  Now consider the following alternate version of the above definition.

    (defun g (x y)
      (declare (xargs :measure (+ (acl2-count x) (acl2-count y))))
      (if (consp x)
          (g (cdr x) y)
        (f (if (consp y)
               (g x (cdr y))
             (list x y)))))

  The first test, (consp x), still rules the first recursive call, (g
  (cdr x) y). And the negation of that test, namely (not (consp x)),
  still rules the second recursive call (g x (cdr y)). But the call
  of f blocks the top-down exploration of the IF structure of the
  body of g, so (consp y) does not rule that second recursive call,
  which (again) is (g x (cdr y)). As a result, ACL2 fails to admit
  the above definition.

  Set-ruler-extenders is provided to overcome the sort of blocking
  described above. Suppose for example that the following event is
  submitted:

    (set-ruler-extenders '(f))

  Then the alternate definition of g above is admissible, because the
  call of f no longer blocks the top-down exploration of the IF
  structure of the body of g: that is, (consp y) becomes a ruler of
  the recursive call (g x (cdr y)). In this case, we say that f is a
  ``ruler-extender''. The same result obtains if we first submit

    (set-ruler-extenders :all)

  as this removes all function calls as blockers of the top-down
  analysis. In other words, with :all it is the case that for every
  recursive call, every test argument of a superior call of IF
  contributes a ruler of that recursive call.

  ACL2 handles [let] (and [let*]) expressions by translating them to
  LAMBDA expressions (see [term]). The next examples illustrates
  termination analysis involving such expressions. First consider the
  following (admittedly inefficient) definition.

    (defun fact (n)
      (let ((k (if (natp n) n 0)))
        (if (equal k 0)
            1
          (* k (fact (+ -1 k))))))

  ACL2 translates the body of this definition to a LAMBDA application,
  essentially:

    ((lambda (k)
       (if (equal k 0)
           1
         (* k (fact (+ -1 k)))))
     (if (natp n) n 0))

  As with the application of any function other than IF, the top-down
  termination analysis does not dive into arguments: the LAMBDA
  blocks the continuation of the analysis into its argument. But
  here, the argument of the LAMBDA is (if (natp n) n 0), which has no
  recursive calls to consider anyhow. What is more interesting: ACL2
  does continue its termination analysis into the body of the LAMBDA,
  in an environment binding the LAMBDA formals to its actuals. In
  this case, the termination analysis thus continues into the term

    (if (equal k 0)
        1
      (* k (fact (+ -1 k))))

  in the environment that binds k to the term (if (natp n) n 0). Thus,
  the proof obligation is successfully discharged, as reported by
  ACL2:

    For the admission of FACT we will use the relation O< (which is known
    to be well-founded on the domain recognized by O-P) and the measure
    (ACL2-COUNT N).  The non-trivial part of the measure conjecture is

    Goal
    (IMPLIES (NOT (EQUAL (IF (NATP N) N 0) 0))
             (O< (ACL2-COUNT (+ -1 (IF (NATP N) N 0)))
                 (ACL2-COUNT N))).
    .....
    Q.E.D.

    That completes the proof of the measure theorem for FACT.

  But now consider the following definition, in which the recursion
  takes place inside the argument of the LAMBDA rather than inside
  the LAMBDA body.

    (defun app (x y)
      (let ((result (if (endp x)
                        y
                      (cons (car x)
                            (app (cdr x) y)))))
        (if (our-test result)
            result
          0)))

  Writing the body in LAMBDA notation:

    ((lambda (result)
       (if (our-test result)
           result
         0))
     (if (endp x)
         y
       (cons (car x)
             (app (cdr x) y))))

  By default, the LAMBDA call blocks the top-down termination analysis
  from proceeding into the term (if (endp x) ...). To solve this, one
  can submit the event:

    (set-ruler-extenders :lambdas)

  The above definition of app is then admitted by ACL2, because the
  termination analysis is no longer blocked by the LAMBDA call.

  The example just above illustrates that the heuristically-chosen
  measure is suitably sensitive to the ruler-extenders. Specifically:
  that measure is the application of acl2-count to the first formal
  parameter of the function that is tested along every branch of the
  relevant IF structure (as determined by the rulers) and occurs as a
  proper subterm at the same argument position in every recursive
  call. The heuristics for choosing the controller-alist for a
  [definition] rule are similarly sensitive to the ruler-extenders
  (see [definition]).

  The remarks above for [defun] [events] are equally applicable when a
  definition sits inside a [mutual-recursion] event, except of course
  that in this case, a ``recursive call'' is a call of any function
  being defined by that [mutual-recursion] event.

  Rules of class :[definition] are sensitive to set-ruler-extenders in
  analogy to the case of defun [events].

  This macro generates a call (table acl2-defaults-table
  :ruler-extenders val) and hence is [local] to any [books] and
  [encapsulate] [events] in which it occurs. See
  [ACL2-defaults-table]. The current list of ruler-extenders may be
  obtained as

    (cdr (assoc-eq :ruler-extenders
         (table-alist 'acl2-defaults-table (w state))))

  or more conveniently, as:

    (default-ruler-extenders (w state))

  Note that evaluation of (set-ruler-extenders lst), where lst
  evaluates to a list, does not necessarily include the default
  ruler-extenders --- i.e., those included for the argument, :basic
  --- which are the elements of the list constant
  *basic-ruler-extenders*, namely [return-last] and [mv-list]. You
  may, of course, include these explicitly in your list argument.

  We conclude our discussion by noting that the set of ruler-extenders
  can affect the induction scheme that is stored with a recursive
  definition. The community book
  books/misc/misc2/ruler-extenders-tests.lisp explains how induction
  schemes are derived in this case. Consider the following example.

    (defun tree-of-nils-p (x)
      (if (consp x)
          (and (tree-of-nils-p (car x))
               (tree-of-nils-p (cdr x)))
        (null x)))

  The above definition generates the following induction scheme. Note
  that (and u v) expands to (if u v nil), which explains why the term
  (tree-of-nils-p (car x)) rules the recursive call (tree-of-nils-p
  (cdr x)), resulting in the hypothesis (tree-of-nils-p (car x)) in
  the final conjunct below.

    (AND (IMPLIES (NOT (CONSP X)) (:P X))
         (IMPLIES (AND (CONSP X)
                       (NOT (TREE-OF-NILS-P (CAR X)))
                       (:P (CAR X)))
                  (:P X))
         (IMPLIES (AND (CONSP X)
                       (TREE-OF-NILS-P (CAR X))
                       (:P (CAR X))
                       (:P (CDR X)))
                  (:P X)))

  Now consider the following variant of the above definition, in which
  a call of the function identity blocks the termination analysis.

    (defun tree-of-nils-p (x)
      (if (consp x)
          (identity (and (tree-of-nils-p (car x))
                         (tree-of-nils-p (cdr x))))
        (null x)))

  This time the induction scheme is as follows, since only the
  top-level IF test contributes rulers to the termination analysis.

    (AND (IMPLIES (NOT (CONSP X)) (:P X))
         (IMPLIES (AND (CONSP X)
                       (:P (CAR X))
                       (:P (CDR X)))
                  (:P X)))

  But now suppose we first designate identity as a ruler-extender.

    (set-ruler-extenders '(identity))

  Then the induction scheme generated for the both of the above
  variants of tree-of-nils-p is the one shown for the first variant,
  which is reasonable because both definitions now produce
  essentially the same termination analysis.


Subtopics

  [Default-ruler-extenders]
      The default [ruler-extenders] for [defun]'d functions")
 (RUNE
  (THEORIES)
  "A rule name

    Examples:
    (:rewrite assoc-of-app)
    (:linear delta-aref . 2)
    (:definition length)
    (:executable-counterpart length)

  Note: This topic discusses a basic notion of ``rule name'', or
  ``rune'' for short. Users often use abbrevitions for runes; for
  example, a [theory] expression (DISABLE APPEND) abbreviates the
  following set of runes: {(:DEFINITION BINARY-APPEND), (:INDUCTION
  BINARY-APPEND)}. See [theories] for a discussion of so-called
  ``runic designators'', which include expressions like APPEND (as
  above) as well as (APPEND) (for the executable-counterpart of
  BINARY-APPEND. Runic designators can also be ``runic
  abbreviations'' such as (:d APPEND), (:e APPEND), (:i APPEND), and
  (:t APPEND), which designate the definition,
  executable-counterpart, induction, and type-prescription rules for
  BINARY-APPEND. For a complete description of runic designators, see
  [theories]; we return now to the more basic notion of a rune.

  Background: The theorem prover is driven from a database of rules.
  The most common rules are :[rewrite] rules, which cause the
  simplifier to replace one term with another. [Events] introduce
  rules into the database. For example, a [defun] event may introduce
  runes for symbolically replacing a function call by its
  instantiated body, for evaluating the function on constants, for
  determining the type of a call of the function, and for the
  induction scheme introduced upon defining the function. [Defthm]
  may introduce several rules, one for each of the :[rule-classes]
  specified (where one rule class is specified if :[rule-classes] is
  omitted, namely, :rewrite).

  Every rule in the system has a name. Each name is a structured object
  called a ``rune,'' which is short for ``rule name''. Runes are
  always of the form (:token symbol . x), where :token is some
  keyword symbol indicating what kind of rule is named, symbol is the
  event name that created the rule (and is called the ``base symbol''
  of the rune), and x is either nil or a natural number that makes
  the rule name distinct from that of rules generated by other
  [events] or by other :[rule-classes] within the same event.

  For example, an event of the form

    (defthm name thm
      :rule-classes ((:REWRITE :COROLLARY term1)
                     (:REWRITE :COROLLARY term2)
                     (:ELIM    :COROLLARY term3)))

  typically creates three rules, each with a unique rune. The runes are

    (:REWRITE name . 1), (:REWRITE name . 2), and (:ELIM name).

  However, a given formula may create more than one rule, and all rules
  generated by the same :corollary formula will share the same rune.
  Consider the following example.

    (defthm my-thm
      (and (equal (foo (bar x)) x)
           (equal (bar (foo x)) x)))

  This is treated identically to the following.

    (defthm my-thm
      (and (equal (foo (bar x)) x)
           (equal (bar (foo x)) x))
      :rule-classes ((:rewrite
                      :corollary
                      (and (equal (foo (bar x)) x)
                           (equal (bar (foo x)) x)))))

  In either case, two rules are created: one rewriting (foo (bar x)) to
  x, and one rewriting (bar (foo x)) to x. However, only a single
  rune is created, (:REWRITE MY-THM), because there is only one rule
  class. But now consider the following example.

    (defthm my-thm2
      (and (equal (foo (bar x)) x)
           (equal (bar (foo x)) x))
      :rule-classes ((:rewrite
                      :corollary
                      (and (equal (foo (bar x)) x)
                           (equal (bar (foo x)) x)))
                     (:rewrite
                      :corollary
                      (and (equal (foo (bar (foo x))) (foo x))
                           (equal (bar (foo (bar x))) (bar x))))))

  This time there are four rules created. The first two rules are as
  before, and are assigned the rune (:REWRITE MY-THM . 1). The other
  two rules are similarly generated for the second :corollary, and
  are assigned the rune (:REWRITE MY-THM . 2).

  The function [corollary] will return the [corollary] term associated
  with a given rune in a given [world]. Example:

    (corollary '(:TYPE-PRESCRIPTION DIGIT-TO-CHAR) (w state))

  However, the preferred way to see the corollary term associated with
  a rune or a name is to use :pf; see [pf].

  The [defun] event creates as many as four rules. (:definition fn) is
  the rune given to the equality axiom defining the function, fn.
  (:executable-counterpart fn) is the rune given to the rule for
  computing fn on known arguments. A type prescription rule may be
  created under the name (:type-prescription fn), and an [induction]
  rule may be created under the name (:induction fn).

  Runes may be individually [enable]d and [disable]d, according to
  whether they are included in the current theory. See [theories].
  Thus, it is permitted to [disable] (:elim name), say, while
  enabling the other rules derived from name. Similarly, (:definition
  fn) may be [disable]d while (:executable-counterpart fn) and the
  type prescriptions for fn are [enable]d.

  Associated with most runes is the formula justifying the rule named.
  This is called the ``[corollary] formula'' of the rune and may be
  obtained via the function [corollary], which takes as its argument
  a rune and a property list [world]. Also see [pf]. The [corollary]
  formula for (:rewrite name . 1) after the [defthm] event above is
  term1. The corollary formulas for (:definition fn) and
  (:executable-counterpart fn) are always identical: the defining
  axiom. Some runes, e.g., (:definition car), do not have corollary
  formulas. [Corollary] returns nil on such runes. In any case, the
  corollary formula of a rune, when it is non-nil, is a theorem and
  may be used in the :use and :by [hints].

  Note: The system has built-in rules that, for regularity, ought to
  have names but don't because they can never be [disable]d. One such
  rule is that implemented by the [linear] arithmetic package.
  Because many of our subroutines are required by their calling
  conventions to return the justifying rune, we have invented the
  notion of ``fake runes.'' Fake runes always have the base symbol
  nil, use a keyword token that includes the phrase ``fake-rune'',
  and are always [enable]d. Here is the list of fake runes.

      ((:fake-rune-for-linear nil)
       (:fake-rune-for-type-set nil))

  Occasionally the system will print a fake rune where a rune is
  expected. For example, when (:FAKE-RUNE-FOR-LINEAR NIL) is reported
  among the rules used in a proof, it is an indication that the
  linear arithmetic package was used. However, fake runes are not
  allowed in [theories], they cannot be [enable]d or [disable]d, and
  they do not have associated [corollary] formulas. In short, despite
  the fact that the user may sometimes see fake runes printed, they
  should never be typed.


Subtopics

  [Find-rules-of-rune]
      Find the rules named rune")
 (RUNNING_MODELS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Running Models

  [{IMAGE}]

  Suppose the machine being modeled is some kind of arithmetic unit.
  Suppose the model can be initialized so as to multiply x times y
  and leave the answer in z. Then if we initialize s to multiply with
  x=5 and y=7 and run the machine long enough, we can read the answer
  35 in the final state. {IMAGE}

  Because ACL2 is a programming language, our model can be run or
  executed.

  If you defined the model in ACL2 and then typed

    (lookup 'z (mc (s 'mult 5 7) 29))

  then ACL2 would compute 35. (Here we assume that the function s
  creates a state ready to run a given application on given inputs x
  and y.) You can emulate or test the model of your machine.

  This is obvious because ACL2 is Common Lisp; and Common Lisp is a
  programming language.

  [{IMAGE}]")
 (RW-CACHE (POINTERS)
           "See [set-rw-cache-state].")
 (SAVE-AND-CLEAR-MEMOIZATION-SETTINGS
  (MEMOIZE)
  "Save and remove the current memoization settings

  For background on memoization, see [memoize].

    General Form:
    (save-and-clear-memoization-settings)

  Calls of this macro achieve two changes. The first copies the current
  memoization settings into an ACL2 [table], and the second
  unmemoizes all functions that were memoized by calls of [memoize].
  Also see [restore-memoization-settings].")
 (SAVE-EXEC
  (INTERFACING-TOOLS COMMAND-LINE)
  "Save an executable image and a wrapper script

  Save-exec saves your ACL2 state so that you can immediately re-start
  later in that same state. This utility can be useful for a project
  with [books] to be included every time ACL2 is started (see
  [build::using-extended-ACL2-images]), to avoid time taken to run
  [include-book]. Another use of save-exec is to save an executable
  that takes command-line arguments beyond those normally passed to
  the host Lisp executable. All arguments of a call of save-exec are
  evaluated.

    Examples:

    ; Save an executable script named my-saved_acl2, with the indicated message
    ; added to the start-up banner:
    (save-exec \"my-saved_acl2\"
               \"This saved image includes Version 7 of Project Foo.\")

    ; Same as above, but instead with a generic comment in the start-up banner:
    (save-exec \"my-saved_acl2\" nil)

    ; Arrange that the generated script passes the indicated arguments to be
    ; processed by the Lisp (ACL2) executable (where this example is specific to
    ; the case that CCL is the host Lisp):
    (save-exec \"my-saved_acl2\" nil
               :host-lisp-args \"--no-init -Z 256M\")

    ; Arrange that the generated script passes along the indicated arguments
    ; to Lisp (ACL2), but that they are not processed by Lisp other than to
    ; record the additional arguments (see (6) below).
    (save-exec \"my-saved_acl2\" nil
               :inert-args \"abc xyz -i foo\")

    ; Combining the preceding two examples:
    (save-exec \"my-saved_acl2\" nil
               :host-lisp-args \"--no-init -Z 256M\"
               :inert-args \"abc xyz -i foo\")

    ; Arrange that ACL2 evaluates (with LD) the three forms shown.
    ; In this example, the THM form fails, but that does not stop the definition
    ; of BAR from being evaluated: LD continues on, just as the top-level loop
    ; lets you continue after a failure.
    (save-exec \"my-acl2\" \"test\"
               :init-forms
               '((defun foo (x) (reverse x))
                 (thm (equal (foo x) x))
                 (defun bar (x) x)))

    ; Essentially as just above, except that the call of LD returns after the THM
    ; failure, so BAR does not get defined.
    (save-exec \"my-acl2\" \"test\"
               :init-forms
               '((ld '((defun foo (x) (reverse x))
                       (thm (equal (foo x) x))
                       (defun bar (x) x))
                     :ld-pre-eval-print t :ld-verbose nil)))

    ; Immediately exit the ACL2 read-eval-print loop after starting up.
    (save-exec \"my-acl2\" nil
               :return-from-lp t)

    ; Immediately exit the ACL2 read-eval-print loop after starting up and
    ; defining function FOO in the logic.
    (save-exec \"my-acl2\" \"Start with foo defined.\"
               :return-from-lp '(with-output
                                 :off :all
                                 (defun foo (x) x)))

    ; Immediately exit the ACL2 read-eval-print loop after starting up and
    ; defining variable xxx in raw Lisp.
    (save-exec \"my-acl2\" \"Start with xxx defined.\"
               :return-from-lp '(with-output
                                 :off :all
                                 (ld '((set-raw-mode-on!)
                                       (defvar xxx (make-list 10))
                                       (set-raw-mode nil)
                                       (u)))))

  Each example above generates a file named \"my-saved_acl2\". That file
  is quite similar in form to the script generated when building ACL2
  directly from source code; details are below. For example, here are
  the contents of that generated file if the host Lisp is CCL (but
  where dates and pathnames are specific to one's environment). Here,
  we break lines using `\\', but the exec command is actually on a
  single line.

    #!/bin/sh

    # Saved August 16, 2013  23:06:49
    #  then August 17, 2013  11:01:56

    export CCL_DEFAULT_DIRECTORY=\"/projects/acl2/lisps/ccl/15542/ccl\"
    exec \"/projects/ccl/lx86cl64\" -I \"/u/smith/my-saved_acl2.lx86cl64\" \\
         -Z 64M -K ISO-8859-1 -e \"(acl2::acl2-default-restart)\" \\
         --no-init -Z 256M \\
         -- \\
         abc xyz -i foo \\
         \"$@\"

    General Form:
    (save-exec exec-filename extra-startup-string
               :host-lisp-args host-lisp-args
               :inert-args inert-args
               :return-from-lp return-from-lp
               :init-forms init-forms)

  where the keyword arguments are optional, and arguments are as
  follows.

      Exec-filename is the filename of the proposed executable.

      Extra-startup-string is a non-empty string to be printed after the
      normal ACL2 startup message when you start up the saved image.
      However, extra-startup-string is allowed to be nil, in which
      case a generic string will be printed instead.

      Host-lisp-args can be nil (the default), but if it is a non-nil
      value, then it is a string to be inserted into the command line
      in the saved script, specifying additional arguments that are
      to be processed by the host Lisp executable. (Note for SBCL
      only: these are runtime options; for toplevel options, see (8)
      below.)

      Inert-args can be nil (the default), but if it is a non-nil value,
      then it is a string to be inserted into the command line in the
      saved script, specifying additional arguments that are not to
      be processed by the host Lisp executable.

  Return-from-lp and init-forms are nil by default. Regardless of their
  value, ACL2 starts up and enters its read-eval-print loop in the
  usual way; see [lp]. Normally you'll stay inside that loop, but if
  return-from-lp or init-forms is not nil, then the indicated forms
  are evaluated in the ACL2 read-eval-print loop: a single form in
  the case of return-from-lp, and a list of forms in the case of
  init-forms. (Essentially, the [ld] special [standard-oi] is
  provided to a call of [ld] as a list with the indicated forms on
  the front.) Moreover, if the case of return-from-lp, the loop is
  exited after evaluation of the form, leaving you in raw Lisp.
  Evaluation of return-from-lp is done with [ld] options that
  minimize output (also see [with-output] to minimize output).
  Suggestion: let return-from-lp be t if you simply want to exit the
  read-eval-print loop at startup, without evaluating any
  (nontrivial) form.

  NOTE: It is illegal to supply non-nil values for both :return-from-lp
  and :init-forms. But if you add (value :q) to the end of your list
  of :init-forms, and your other forms do not result in an error,
  then you will be left in raw Lisp (as was presumably intended if
  you were planning to use :return-from-lp).

  The remainder of this documentation focuses on the options other than
  return-from-lp and init-forms.

  Details:

  (1) You must first exit the ACL2 read-eval-print loop, typically by
  executing :q, before evaluating a save-exec call; otherwise an
  error occurs.

  (2) The image will be saved so that in the new image, the raw Lisp
  package and the package in the ACL2 read-eval-print loop (see [lp])
  will be the same as their respective values at the time save-exec
  is called.

  (3) Save-exec generates a small script file (e.g., \"my-saved_acl2\" in
  the examples above), similar in form (see (4) below) to the script
  generated when building ACL2 directly from source code, but with a
  comment line indicating the time at which the new script is
  written. Save-exec also saves an associated binary file. The binary
  file's name is obtained by putting a suffix on the script filename;
  for example, if the host Lisp is GCL running on a Linux or Darwin
  (MacOS) system, then that binary file has the name
  my-saved_acl2.gcl in the examples above.

  (4) If inert-args is nil (for example if keyword :inert-args is
  omitted), then when the generated ACL2 script is invoked with
  command line arguments, those arguments will be passed to the host
  Lisp; otherwise they will not. Thus for the example above, suppose
  we invoke the generated script as follows.

    my-saved_acl2 -a bcd -e fgh

  If my-saved_acl2 was generated using a save-exec command with a
  non-nil value specified for keyword :inert-args, then the arguments
  ``-a bcd -e fgh'' will not be passed to the host Lisp; otherwise,
  they will be. Note that for ACL2 executable scripts generated by an
  ordinary ACL2 build from sources, the latter case (i.e., without
  inert-args) takes place.

  (5) The generated script, which specifies execution with /bin/sh,
  will generally contain a line of one of the following forms. (But
  for SBCL, see (8) below.) In the examples that follow, ACL2_options
  is a suitable list of command-line arguments given to the ACL2
  executable. The quoted string \"$@\" is intended to allow the user to
  pass additional command-line arguments to that executable.

      If host-lisp-args and inert-args are omitted (or nil):

        exec <lisp_executable> <ACL2_options> \"$@\"

      More generally, host-lisp-args is inserted immediately after
      <ACL2_options>, but only if it is non-nil (hence a string). If
      inert-args is nil, we thus get:

        exec <lisp_executable> <ACL2_options> host-lisp-args \"$@\"

      If host-lisp-args redefines a value from <ACL2_options>, then it is
      up to the host lisp which value to use. For example,
      experiments show that in CCL, if -Z appears twice, each with a
      legal value, then the second value is the one that is used
      (i.e. it does indeed override the original value written out by
      ACL2 in <ACL2_options>. But experiments also show that in
      LispWorks, where ``-init -'' is included in <ACL2_options>,
      then inclusion of ``-init foo.lisp'' in host-lisp-args is
      ignored.

      The remaining cases below are for a non-nil value of inert-args. In
      each case, if host-lisp-args is nil then it should be omitted
      from the displayed command.

      If inert-args is t then an additional argument, `--', indicates that
      when ACL2 is given command line arguments, these should not be
      processed by the host Lisp (other than recording them; see (6)
      below):

        exec <lisp_executable> <ACL2_options> host-lisp-args -- \"$@\"

      If inert-args is a string then the result is similar to the above,
      except that inert-args is added immediately after `--':

        exec <lisp_executable> <ACL2_options> host-lisp-args -- inert-args \"$@\"

  (6) See [oslib::argv] for a utility that returns a list of all
  inert-args from an invocation of ACL2. See also [getopt] for a
  convenient way to parse these arguments.

  (7) Suppose that you invoke an ACL2 script, say \"my-saved_acl2\", that
  was generated by save-exec, and then optionally evaluate some
  forms. Then you may save a new ACL2 script with save-exec. The new
  script will contain comment lines that extend comment lines in
  \"my-saved_acl2\" with a new write date, but otherwise will be
  identical to the script that would have been generated by executing
  the new save-exec call after invoking the original ACL2 executable
  (built directly from ACL2 sources) instead of \"my-saved_acl2\". In
  other words, the options added by the earlier save-exec call that
  created \"my-saved_acl2\" are discarded by the new save-exec call.
  However, the .core file will built on top of the .core file that
  was consulted when \"my-saved_acl2\" was invoked.

  (8) The following note pertains only to the case that the host Lisp
  is SBCL. For SBCL, the scripts written are analogous to, but
  slightly different from, those shown above. Please note that for
  SBCL, the host-lisp-args are what the SBCL manual calls ``runtime
  options''. For SBCL only, an extra keyword argument,
  :toplevel-args, may be used for specifying what the SBCL manual
  calls ``toplevel options. As with :host-lisp-args, this value,
  toplevel-args, should be nil (the default) or a string. Here is an
  example.

    (save-exec \"my-saved_acl2\" nil
               :host-lisp-args \"--dynamic-space-size 12000\"
               :toplevel-args \"--eval '(print \\\"HELLO\\\")'\"
               :inert-args \"--my-option my-value\")

  The script generated by this example call of save-exec contains a
  line such as the following (with the same convention for `\\' as
  before)

    exec \"/projects/sbcl-1.1.7-x86-64-linux/src/runtime/sbcl\" \\
         --dynamic-space-size 2000 --control-stack-size 8 \\
         --core \"/u/smith/my-saved_acl2.core\" --dynamic-space-size 12000 \\
         --end-runtime-options \\
         --no-userinit --eval '(acl2::sbcl-restart)' \\
         --eval '(print \"HELLO\")' \\
         --end-toplevel-options \\
         --my-option my-value \\
         \"$@\"

  In general, the generated script is of one of the following forms
  (with the same convention for `\\' as before).

      For the case that inert-args is nil:

        exec <lisp_executable> \\
             <ACL2_runtime_options> host-lisp-args --end-runtime-options \\
             <ACL2_toplevel_options> host-lisp-args \\
             \"$@\"

      For the case that inert-args is non-nil:

        exec <lisp_executable> \\
             <ACL2_runtime_options> host-lisp-args --end-runtime-options \\
             <ACL2_toplevel_options> host-lisp-args --end-toplevel-options \\
             inert-args \"$@\"

  Notice that as before, when the generated script is invoked (for
  example, at the shell), additional command-line arguments provided
  at that time are passed to Lisp if and only if inert-args is nil.
  For SBCL, when they are passed to Lisp they are passed as toplevel
  options, not as runtime options.")
 (SAVING-AND-RESTORING (POINTERS)
                       "See [save-exec].")
 (SEARCH
  (LISTS STRINGS ACL2-BUILT-INS)
  "Search for a string or list in another string or list

    Example Forms:
    (search \"cd\" \"Cdabcdefcde\")                   ; = 4, index of first match
    (search \"cd\" \"Cdabcdefcde\" :test 'equal)      ; same as above
    (search \"cd\" \"Cdabcdefcde\" :from-end t)       ; = 8, index of last match
    (search \"cd\" \"Cdabcdefcde\" :start1 1)         ; = 1
    (search \"cd\" \"Cdabcdefcde\" :start2 5)         ; = 8
    (search \"cd\" \"Cdabcdefcde\" :test 'char-equal) ; = 0 (case-insensitive)
    (search \"ac\" \"Cdabcdefcde\")                   ; = nil
    (search '(a b) '(9 8 a b 7 6))                    ; = 2

    General Form:
    (search seq1 seq2 &key from-end test start1 start2 end1 end2)

  Search indicates whether one string or list occurs as a (contiguous)
  subsequence of another string or list, respectively. It returns nil
  if no such match is found; otherwise it returns the (zero-based)
  index of the first match by default, but a non-nil value of keyword
  argument :from-end causes it to return the last match. The :test is
  equal by default. The other legal value for :test is char-equal,
  which can be given only for two strings, in which case the match is
  case-insensitive. Finally, values of :start1 and :end1 for the
  first sequence, and of :start2 and :end2 for the second sequence,
  bound the portion of the respective sequence used for deciding on a
  match, though the index returned is always an index into the second
  sequence as a whole.

  The [guard] for calls of search is given by a function,
  search-fn-guard, which has the following requirements.

    * The two arguments much both satisfy [true-listp] or else must both be
      strings, which must consist of standard characters (see
      [standard-char-p]) if the :test is [char-equal].
    * The :test must evaluate to one of the symbols [equal] or
      [char-equal], where the latter is only allowed if the (first)
      two arguments are strings.
    * The values of :start1, :start2, :end1, and :end2 must all be natural
      numbers, where if omitted they default to 0, 0, the length len1
      of the first argument, and the length len2 of the second
      argument, respectively.
    * If start1 is the value of :start1, defaulting as described just
      above, and similarly for the other start and end keywords and
      for lengths len1 and len2 as described just above, then: start1
      <= end1 <= len1 and start2 <= end2 <= len2.

  Search is a Common Lisp function (actually, a macro in ACL2). See any
  Common Lisp documentation for more information.


Definition

  Macro: <search>

    (defmacro
     search
     (seq1 seq2 &key from-end (test ''equal)
           (start1 '0)
           (start2 '0)
           (end1 'nil end1p)
           (end2 'nil end2p))
     (cons
      'search-fn
      (cons
       seq1
       (cons
        seq2
        (cons
         from-end
         (cons
          test
          (cons
              start1
              (cons start2
                    (cons end1
                          (cons end2
                                (cons end1p (cons end2p 'nil))))))))))))

  Function: <search-fn>

    (defun
     search-fn
     (seq1 seq2 from-end test
           start1 start2 end1 end2 end1p end2p)
     (declare
      (xargs
          :guard (search-fn-guard seq1 seq2 from-end test
                                  start1 start2 end1 end2 end1p end2p)))
     (let*
      ((end1 (if end1p end1 (length seq1)))
       (end2 (if end2p end2 (length seq2)))
       (seq1 (subseq seq1 start1 end1)))
      (mv-let
       (seq1 seq2)
       (cond ((eq test 'char-equal)
              (mv (string-downcase seq1)
                  (string-downcase seq2)))
             (t (mv seq1 seq2)))
       (and (<= (- end1 start1) (- end2 start2))
            (cond (from-end (search-from-end seq1 seq2 start2 end2 nil))
                  (t (search-from-start seq1 seq2 start2 end2)))))))

  Function: <search-from-end>

    (defun
       search-from-end
       (seq1 seq2 start2 end2 acc)
       (declare (xargs :guard (and (or (true-listp seq1) (stringp seq1))
                                   (or (true-listp seq2) (stringp seq2))
                                   (integerp start2)
                                   (<= 0 start2)
                                   (integerp end2)
                                   (<= end2 (length seq2))
                                   (<= (+ start2 (length seq1)) end2))))
       (cond ((or (not (integerp end2))
                  (not (integerp start2)))
              nil)
             (t (let* ((bound2 (+ start2 (length seq1)))
                       (matchp (equal seq1 (subseq seq2 start2 bound2)))
                       (new-acc (if matchp start2 acc)))
                      (cond ((>= bound2 end2) new-acc)
                            (t (search-from-end seq1 seq2 (1+ start2)
                                                end2 new-acc)))))))

  Function: <search-from-start>

    (defun
       search-from-start
       (seq1 seq2 start2 end2)
       (declare (xargs :guard (and (or (true-listp seq1) (stringp seq1))
                                   (or (true-listp seq2) (stringp seq2))
                                   (integerp start2)
                                   (<= 0 start2)
                                   (integerp end2)
                                   (<= end2 (length seq2))
                                   (<= (+ start2 (length seq1)) end2))))
       (let ((bound2 (+ start2 (length seq1))))
            (cond ((or (not (integerp end2))
                       (not (integerp start2)))
                   nil)
                  ((equal seq1 (subseq seq2 start2 bound2))
                   start2)
                  ((>= bound2 end2) nil)
                  (t (search-from-start seq1 seq2 (1+ start2)
                                        end2)))))")
 (SECOND
  (NTH ACL2-BUILT-INS)
  "Second member of the list

  See any Common Lisp documentation for details.")
 (SERIALIZE
  (IO)
  "Routines for saving ACL2 objects to files, and later restoring them

  We thank Jared Davis for contributing the ``serialization'' routines
  for saving ACL2 objects in files for later loading.

  We implement some routines for writing arbitrary ACL2 objects to
  files, and for loading those files later. We usually call these
  \".sao\" files, which stands for (S)erialized (A)CL2 (O)bject.

  Our serialization scheme uses a compact, binary format that preserves
  structure sharing in the original object. We optimize for read
  performance.


Subtopics

  [Serialize-alternatives]
      Historic alternatives to the [serialize] routines.

  [Serialize-in-books]
      Using serialization efficiently in books

  [Serialize-read]
      Read a serialized ACL2 object from a file

  [Serialize-write]
      Write an ACL2 object into a file

  [With-serialize-character]
      Control output mode for print-object$")
 (SERIALIZE-ALTERNATIVES
  (SERIALIZE)
  "Historic alternatives to the [serialize] routines.

  Routines compact-print-file and compact-read-file were previously
  built into ACL2. Another option was to use the hons-archive
  library. These tools were deprecated and ultimately removed from
  ACL2. If for some reason you need to use them, see
  [community-books] SVN revisions prior to 1314.")
 (SERIALIZE-IN-BOOKS
  (SERIALIZE)
  "Using serialization efficiently in books

  Our serialize scheme was developed in order to allow very large ACL2
  objects to be loaded into books. Ordinarily this is carried out
  using [serialize-read] within a [make-event], e.g.,

    (make-event (mv-let (obj state)
                        (serialize-read \"my-file\")
                        (value `(defconst *my-file* ',obj))))

  But this scheme is not particularly efficient.

  During [certify-book], the actual call of serialize-read is carried
  out, and this is typically pretty fast. But then a number of
  possibly inefficient things occur.

      - The ACL2 function bad-lisp-object is run on the resulting object.
      This is memoized for efficiency, but may still take
      considerable time when the file is very large.

      - The checksum of the resulting object is computed. This is also
      memoized, but as before may still take some time.

      - The object that was just read is then written into book.cert,
      essentially with [serialize-write]. This can take some time,
      and results in large certifiate files.

  Then, during [include-book], the make-event expansion of is loaded.
  This is now basically just a serialize-read.

  The moral of the story is that using serialize will only help your
  certify-book time, and it only impacts a portion of the overall
  time.

  To avoid this overhead, we have developed an UNSOUND alternative to
  serialize-read, which is available only by loading an additional
  book. So, if the above scheme is not performing well for you, you
  may wish to see [unsound-read].")
 (SERIALIZE-READ
  (SERIALIZE ACL2-BUILT-INS)
  "Read a serialized ACL2 object from a file

  General form:

    (serialize-read filename
                    [:hons-mode {:always, :never, :smart}]   ; :smart by default
                    [:verbosep  {t, nil}])                   ; nil by default
     -->
    (mv obj state)

  In the logic this is an oracle read.

  Under the hood, we try to read and return a serialized object from a
  file that was presumably created by [serialize-write]. On success
  we return the contents of the file. Any failures (e.g., file not
  found, bad file contents, etc.) will result in a hard Lisp error.

  The filename should be a string that gives the path to the file.

  The hons-mode controls how whether to use [hons] or [cons] to restore
  the object. The default mode is :smart, which means that conses
  that were [normed] at the time of the file's creation should be
  restored with hons. But you can override this and insist that hons
  is to :always or :never be used, instead.

  Why would you use :never? If your object previously had a lot of
  honses, but you no longer have any need for them to be normed, then
  using :never may sometimes be a lot faster since it can avoid hons
  calls. On the other hand, if you are going to [hons-copy] some part
  of the file's contents, then it is likely faster to use :smart or
  :always instead of first creating normal conses and then copying
  them to build honses.

  The :verbosep flag just controls whether to print some low-level
  details related to timing and memory usage as the file is being
  read.")
 (SERIALIZE-WRITE
  (SERIALIZE ACL2-BUILT-INS)
  "Write an ACL2 object into a file

  General form:

    (serialize-write filename obj
                     [:verbosep  {t, nil}])    ; nil by default
     -->
    state

  In the logic this carries out an oracle read.

  Under the hood, we try to save obj into the file indicated by
  filename, which must be a string. The object can later be recovered
  with [serialize-read]. We just return state, and any failures
  (e.g., file not openable) will result in a hard Lisp error.

  Writing objects to disk is generally slower than reading them back in
  since some analysis is required to convert an object into our
  [serialize]d object format.

  The verbosep flag just says whether to print some low-level details
  related to timing and memory usage as the file is being written.")
 (SET-ABSSTOBJ-DEBUG
  (DEFABSSTOBJ)
  "Obtain debugging information upon atomicity violation for an abstract
  stobj

  This [documentation] topic assumes familiarity with abstract stobjs.
  See [defabsstobj].

  Below we explain what is meant by an error message such as the
  following.

    ACL2 Error in CHK-ABSSTOBJ-INVARIANTS:  Possible invariance violation
    for an abstract stobj!  See :DOC set-absstobj-debug, and PROCEED AT
    YOUR OWN RISK.

  The use of (set-absstobj-debug t) will make this error message more
  informative, as follows, at the cost of slower execution --- but in
  practice, the slowdown may be negligible (more on that below).

    ACL2 Error in CHK-ABSSTOBJ-INVARIANTS:  Possible invariance violation
    for an abstract stobj!  See :DOC set-absstobj-debug, and PROCEED AT
    YOUR OWN RISK.  Evaluation was aborted under a call of abstract stobj
    export UPDATE-FLD-NIL-BAD.

  You may be best off starting a new ACL2 session if you see one of the
  errors above. But you can continue at your own risk. With a trust
  tag (see [defttag]), you can even fool ACL2 into thinking nothing
  is wrong, and perhaps you can fix up the abstract stobj so that
  indeed, nothing really is wrong. See the community book
  books/misc/defabsstobj-example-4.lisp for how to do that. That book
  also documents the :always keyword and a special value for the
  first argument, :RESET.

    Examples:
    (set-absstobj-debug t)                 ; obtain extra debug info, as above
    (set-absstobj-debug t :event-p t)      ; same as above
    (set-absstobj-debug t
                        :on-skip-proofs t) ; as above, but even in include-book
    (set-absstobj-debug t :event-p nil)    ; returns one value, not error triple
    (set-absstobj-debug nil)               ; avoid extra debug info (default)

    General Form:
    (set-absstobj-debug val
                        :event-p        event-p        ; default t
                        :always         always         ; default nil
                        :on-skip-proofs on-skip-proofs ; default nil
                        )

  where the keyword arguments are optional with defaults as indicated
  above, and all supplied arguments are evaluated except for
  on-skip-proofsp, which must be Boolean (if supplied). Keyword
  arguments are discussed at the end of this topic.

  Recall (see [defabsstobj]) that for any exported function whose :EXEC
  function might (according to ACL2's heuristics) modify the concrete
  stobj non-atomically, one must specify :PROTECT t. This results in
  extra code generated for the exported function, which provides a
  check that atomicity was not actually violated by a call of the
  exported function. The extra code might slow down execution, but
  perhaps only negligibly in typical cases. If you can tolerate a bit
  extra slow-down, then evaluate the form (set-absstobj-debug t).
  Subsequent such errors will provide additional information, as in
  the example displayed earlier in this documentation topic.

  Finally we document the keyword arguments, other than :ALWAYS, which
  is discussed in a book as mentioned above. When the value of
  :EVENT-P is true, which it is by default, the call of
  set-absstobj-debug will expand to an event. That event is a call of
  [value-triple]. In that case, :ON-SKIP-PROOFS is passed to that
  call so that set-absstobj-debug has an effect even when proofs are
  being skipped, as during [include-book]. That behavior is the
  default; that is, :ON-SKIP-PROOFS is nil by default. Also see
  [value-triple]. The value of keyword :ON-SKIP-PROOFS must always be
  either t or nil, but other than that, it is ignored when EVENT-P is
  nil.")
 (SET-ACCUMULATED-PERSISTENCE (POINTERS)
                              "See [accumulated-persistence].")
 (SET-BACKCHAIN-LIMIT
  (BACKCHAIN-LIMIT)
  "Sets the backchain-limit used by the type-set and rewriting
  mechanisms

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  Moreover, its effect is to set the [ACL2-defaults-table], and hence
  its effect is [local] to the book or [encapsulate] form containing
  it; see [ACL2-defaults-table].

  This event sets the global [backchain-limit] used by the ACL2
  type-set and rewriting mechanisms. Its value may be a cons whose
  car and cdr are each either nil or a non-negative integer. Its
  value x may also be nil or a non-negative integer, which is treated
  as a cons whose car and cdr are both x.

  The car is used to limit backchaining used by the ACL2 type-set
  mechanism, while the cdr is used to limit backchaining used by the
  rewriting mechanism. See [backchain-limit] for details about how
  backchain-limits are used. Rewrite backchain limits may also be
  installed at the level of hints; see [hints] for a discussion of
  :backchain-limit-rw.

    :set-backchain-limit nil  ; do not impose any additional limits
    :set-backchain-limit 0    ; allow only type-set reasoning for rewriting
                              ; hypotheses
    :set-backchain-limit 500  ; allow backchaining to a depth of no more
                              ; than 500 for rewriting hypotheses
    (set-backchain-limit 500) ; same as above
    :set-backchain-limit (500 500)
                              ; same as above
    (set-backchain-limit '(500 500))
                              ; same as above
    (set-backchain-limit '(3 500))
                              ; allow type-set backchaining to a depth of no more
                              ; than 3 and rewriter backchaining to a depth of no
                              ; more than 500

  The default limit is (nil nil).")
 (SET-BODY
  (DEFINITION EVENTS)
  "Set the definition body

    Examples:
    (set-body foo (:definition foo)) ; restore original definition of foo
    (set-body foo foo) ; same as just above
    (set-body foo my-foo-def) ; use my-foo-def for the body of foo
    (set-body foo (:definition my-foo-def)) ; same as just above

  Rules of class :[definition] can install a new definition body, used
  for example by :expand [hints]. See [definition] and also see
  [hints] for a detailed discussion of the :install-body fields of
  :[definition] rules and their role in :expand hints.

  There may be several such definitions, but by default, the latest one
  is used by :expand hints. Although the :with keyword may be used in
  :expand hints to override this behavior locally (see [hints]), it
  may be convenient to install a definition for expansion other than
  the latest one --- for example, the original definition. Set-body
  may be used for this purpose.

    General Form:
    (set-body function-symbol rule-name)

  where rule-name is either a :definition [rune] or is a function
  symbol, sym, which represents the rune (:definition sym).

  You can view all definitions available for expansion; see
  [show-bodies].")
 (SET-BOGUS-DEFUN-HINTS-OK
  (DEFUN)
  "Allow unnecessary (xargs :hints ...).

    General Forms:
    (set-bogus-defun-hints-ok t)
    (set-bogus-defun-hints-ok nil)
    (set-bogus-defun-hints-ok :warn)

  By default, ACL2 causes an error when the keyword :[hints] is
  supplied in an [xargs] [declare] form for a non-recursive
  definition (see [defun]). This behavior can be defeated with
  (set-bogus-defun-hints-ok t), or if you still want to see a warning
  in such cases, (set-bogus-defun-hints-ok :warn).")
 (SET-BOGUS-MUTUAL-RECURSION-OK
  (MUTUAL-RECURSION)
  "Allow unnecessary ``mutual recursion''

    Examples:
    (set-bogus-mutual-recursion-ok t)
    (set-bogus-mutual-recursion-ok nil)
    (set-bogus-mutual-recursion-ok :warn)

  By default, ACL2 checks that when a ``clique'' of more than one
  function is defined simultaneously (using [mutual-recursion] or
  [defuns]), then every body calls at least one of the functions in
  the ``clique.'' Below, we refer to definitional events that fail
  this check as ``bogus'' mutual recursions. The check is important
  because ACL2 does not store induction schemes for functions defined
  with other functions in a [mutual-recursion] or [defuns] event.
  Thus, ACL2 may have difficulty proving theorems by induction that
  involve such functions. Moreover, the check can call attention to
  bugs, since users generally intend that their mutual recursions are
  not bogus.

  Nevertheless, there are times when it is advantageous to allow bogus
  mutual recursions, for example when they are generated
  mechanically, even at the expense of losing stored induction
  schemes. The first example above allows bogus mutual recursion. The
  second example disallows bogus mutual recursion; this is the
  default. The third example allows bogus mutual recursion, but
  prints an appropriate warning.

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  Moreover, its effect is to set the [ACL2-defaults-table], and hence
  its effect is [local] to the book or [encapsulate] form containing
  it; see [ACL2-defaults-table].

    General Form:
    (set-bogus-mutual-recursion-ok flg)

  where flg is either t, nil, or :warn.")
 (SET-CASE-SPLIT-LIMITATIONS
  (MISCELLANEOUS)
  "Set the case-split-limitations

    Examples:
    (set-case-split-limitations '(500 100))
    (set-case-split-limitations 'nil)
    (set-case-split-limitations '(500 nil))

  The first of these prevents clausify from trying the
  subsumption/replacement (see below) loop if more than 500 clauses
  are involved. It also discourages the clause simplifier from
  splitting into more than 100 cases at once.

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  Moreover, its effect is to set the [ACL2-defaults-table], and hence
  its effect is [local] to the book or [encapsulate] form containing
  it; see [ACL2-defaults-table].

  See [hints] for discussion of a related hint,
  :case-split-limitations. Also see [splitter] for information about
  reports on rules that may be responsible for case splits.

    General Form:
    (set-case-split-limitations lst)

  where lst is either nil (denoting a list of two nils), or a list of
  length two, each element of which is either nil or a natural
  number. When nil is used as an element, it is treated as positive
  infinity. The default setting is (500 100).

  The first number specifies the maximum number of clauses that may
  participate in the ``subsumption/replacement'' loop. Because of the
  expensive nature of that loop (which compares every clause to every
  other in a way that is quadratic in the number of literals in the
  clauses), when the number of clauses exceeds about 1000, the system
  tends to ``go into a black hole,'' printing nothing and not even
  doing many garbage collections (because the subsumption/replacement
  loop does not create new clauses so much as it just tries to delete
  old ones). The initial setting is lower than the threshold at which
  we see noticeably bad performance, so you probably will not see
  this behavior unless you have raised or disabled the limit.

  Why raise the subsumption/replacement limit? The
  subsumption/replacement loop cleans up the set of subgoals produced
  by the simplifier. For example, if one subgoal is

    (implies (and p q r) s)            [1]

  and another is

    (implies (and p (not q) r) s)      [2]

  then the subsumption/replacement loop would produce the single
  subgoal

    (implies (and p r) s)              [3]

  instead. This cleanup process is simply skipped when the number of
  subgoals exceeds the subsumption/replacement limit. But each
  subgoal must nonetheless be proved. The proofs of [1] and [2] are
  likely to duplicate much work, which is only done once in proving
  [3]. So with a low limit, you may find the system quickly produces
  a set of subgoals but then takes a long time to prove that set.
  With a higher limit, you may find the set of subgoals to be
  ``cleaner'' and faster to prove.

  Why lower the subsumption/replacement limit? If you see the system go
  into a ``black hole'' of the sort described above (no output, and
  few garbage collections), it could due to the
  subsumption/replacement loop working on a large set of large
  subgoals. You might temporarily lower the limit so that it begins
  to print the uncleaned set of subgoals. Perhaps by looking at the
  output you will realize that some function can be disabled so as to
  prevent the case explosion. Then raise or disable the limit again!

  The second number in the case-split-limitations specifies how many
  case splits the simplifier will allow before it begins to shut down
  case splitting. In normal operation, when a literal rewrites to a
  nest of IFs, the system simplifies all subsequent literals in all
  the contexts generated by walking through the nest in all possible
  ways. This can also cause the system to ``go into a black hole''
  printing nothing except garbage collection messages. This ``black
  hole'' behavior is different from than mentioned above because
  space is typically being consumed at a prodigious rate, since the
  system is rewriting the literals over and over in many different
  contexts.

  As the simplifier sweeps across the clause, it keeps track of the
  number of cases that have been generated. When that number exceeds
  the second number in case-split-limitations, the simplifier stops
  rewriting literals. The remaining, unrewritten, literals are copied
  over into the output clauses. IFs in those literals are split out,
  but the literals themselves are not rewritten. Each output clause
  is then attacked again, by subsequent simplification, and
  eventually the unrewritten literals in the tail of the clause will
  be rewritten because the earlier literals will stabilize and stop
  producing case splits.

  The default setting of 100 is fairly low. We have seen successful
  proofs in which thousands of subgoals were created by a
  simplification. By setting the second number to small values, you
  can force the system to case split slowly. For example, a setting
  of 5 will cause it to generate ``about 5'' subgoals per
  simplification.

  You can read about how the simplifier works in the book
  Computer-Aided Reasoning: An Approach (Kaufmann, Manolios, Moore);
  also see [introduction-to-the-theorem-prover] for a detailed
  tutorial on using the ACL2 prover. If you think about it, you will
  see that with a low case limit, the initial literals of a goal are
  repeatedly simplified, because each time a subgoal is simplified we
  start at the left-most subterm. So when case splitting prevents the
  later subterms from being fully split out, we revisit the earlier
  terms before getting to the later ones. This can be good. Perhaps
  it takes several rounds of rewriting before the earlier terms are
  in normal form and then the later terms rewrite quickly. But it
  could happen that the earlier terms are expensive to rewrite and do
  not change, making the strategy of delayed case splits less
  efficient. It is up to you.

  Sometimes the simplifier produces more clauses than you might expect,
  even with case-split-limitations in effect. As noted above, once
  the limit has been exceeded, the simplifier does not rewrite
  subsequent literals. But IFs in those literals are split out
  nonetheless. Furthermore, the enforcement of the limit is -- as
  described above -- all or nothing: if the limit allows us to
  rewrite a literal then we rewrite the literal fully, without regard
  for limitations, and get as many cases as ``naturally'' are
  produced. It quite often happens that a single literal, when
  expanded, may grossly exceed the specified limits.

  If the second ``number'' is nil and the simplifier is going to
  produce more than 1000 clauses, a ``helpful little message'' to
  this effect is printed out. This output is printed to the system's
  ``comment window'' not the standard proofs output.")
 (SET-CBD
  (BOOKS-REFERENCE)
  "To set the connected book directory

    Example Forms:
    ACL2 !>:set-cbd \"/usr/home/smith/\"
    ACL2 !>:set-cbd \"my-acl2/books\"

  See [cbd] for a description of the connected book directory.

    General Form:
    (set-cbd str)

  where str is a nonempty string that represents the desired directory
  (see [pathname]). This command sets the connected book directory
  (see [cbd]) to the string representing the indicated directory.
  Thus, this command may determine which files are processed by
  [include-book] and [certify-book] [command]s typed at the
  top-level. However, the [cbd] is also temporarily set by those two
  book processing [command]s.

  IMPORTANT: Pathnames in ACL2 are in the Unix (trademark of AT&T)
  style. That is, the character ``/'' separates directory components
  of a pathname, and pathnames are absolute when they start with this
  character, and relative otherwise. See [pathname].")
 (SET-CHECK-INVARIANT-RISK
  (PROGRAMMING ADVANCED-FEATURES GUARD DEBUGGING)
  "Potential slowdown for [program]-mode updates to [stobj]s or [arrays]

  See [invariant-risk] for a brief introduction to the notion of
  invariant-risk, and see [program-wrapper] for a more detailed
  discussion. Briefly put, if a syntactic analysis suggests that the
  call of a :[program] mode function can lead to an ill-guarded call
  of a [stobj] updater or of certain built-ins, notably [aset1] or
  [aset2], then ACL2 considers such a call to be an ``invariant-risk
  call''. There are four different ways that ACL2 can handle such a
  call, corresponding to four different values of the
  ``invariant-risk mode'', which is the value obtained by evaluating
  (get-check-invariant-risk state). The default invariant-risk mode
  is :WARNING: in that mode, ACL2 prints a warning when encountering
  a topmost invariant-risk call and uses a slower mode of execution
  in order to avoid ill-guarded calls as discussed above. Mode T has
  the same behavior, but without the warning. Mode :ERROR causes a
  break when encountering a topmost invariant-risk call; the Lisp
  should give you the option of continuing (as though the mode were
  T) or aborting, as you choose. Finally, mode NIL --- which can only
  be set when there is an active trust tag (see [defttag]) --- avoids
  any special treatment for invariant-risk calls: there is no slower
  mode of execution, but rather, execution passes directly to raw
  Lisp (see [program-wrapper]).

  ACL2 provides a utility, set-check-invariant-risk, for changing the
  invariant-risk mode. The simplest case is when that utility is only
  called with one argument, in which case, that argument becomes the
  new invariant-risk mode, as follows.

    (set-check-invariant-risk :ERROR)   ; new mode is :ERROR
    (set-check-invariant-risk :WARNING) ; new mode is :WARNING (the default)
    (set-check-invariant-risk T)        ; new mode is T
    (set-check-invariant-risk NIL)      ; new mode is NIL

  As noted above, there must be an active trust tag in order to set the
  invariant-risk mode to NIL. However, ACL2 arranges automatically to
  create a temporary trust tag when invoking set-check-invariant-risk
  on an expression that is other than one of the symbols :ERROR,
  :WARNING, or T.

  An environment variable, ACL2_CHECK_INVARIANT_RISK, provides a
  convenient way to evaluate one of these forms automatically when
  ACL2 is invoked. When that environment variable has a value other
  than the empty string, the value is converted to a symbol after
  converting to upper-case with the function [string-upcase], and
  then corresponding call is make automatically (after loading the
  [ACL2-customization] file, if any).

    \"error\", \":error\" ==> (set-check-invariant-risk :ERROR)
    \"warning\", \":warning\" ==> (set-check-invariant-risk :WARNING)
    \"t\" ==> (set-check-invariant-risk T)
    \"nil\" ==> (set-check-invariant-risk NIL)

  Whether by direct user evaluation or environment variable, these
  calls simply set a certain global parameter, 'check-invariant-risk
  (technicaly, a [state] global variable). However, they are not
  embedded event forms (see [embedded-event-form]: they cannot appear
  at the top level of books, [encapsulate] [events], or [progn]
  events. A non-nil second (optional) argument causes an
  [ACL2-defaults-table] entry to be made, associating the key
  :check-invariant-risk with the invariant-risk mode. Thus, the
  following forms are embedded event forms. Notice the new ``mode'',
  :CLEAR, which behaves as though removing the key
  :check-invariant-risk from the [ACL2-defaults-table].

    (set-check-invariant-risk :ERROR   t)
    (set-check-invariant-risk :WARNING t)
    (set-check-invariant-risk t        t)
    (set-check-invariant-risk NIL      t)
    (set-check-invariant-risk :CLEAR t) ; avoid using table to determine mode

  As before, the value NIL requires an active trust tag; but unlike
  before, ACL2 does not create a temporary trust tag, but instead
  expect the user to have done so already. Note also that changes to
  the acl2-defaults-table are automatically local to a book or
  [encapsulate] event in which they occur; [ACL2-defaults-table].
  Therefore, do not surround the forms just above with [local].

  When the [ACL2-defaults-table] associates the key
  :check-invariant-risk with any value (as in the calls above) other
  than :CLEAR, then the invariant-risk mode is actually the
  ``minimum'' of that value and the value of the global parameter,
  'check-invariant-risk, where the modes are ordered from greatest to
  least as shown in the displays above. An [observation] is printed
  when the new mode does not change: for example, if you start your
  ACL2 session by evaluating (set-check-invariant-risk :ERROR t),
  then the invariant-risk mode will be the minimum of the existing
  (default) value of :WARNING and the proposed value (newly stored in
  the acl2-defaults-table of :ERROR; that minimum is :WARNING, so the
  mode will remain :WARNING and an [observation] will be printed to
  that effect. You can see all the relevant mode values as follows.

    ; current invariant-risk mode (:WARNING by default):
    (get-check-invariant-risk state)

    ; invariant-risk mode stored in global parameter 'check-invariant-risk:
    (@ check-invariant-risk)

    ; invariant-risk mode stored in the acl2-defaults-table:
    (table acl2-defaults-table :check-invariant-risk)

  The following log illustrates the interaction of the two ways of
  setting the invariant-risk mode (state global and table).

    ACL2 !>(set-check-invariant-risk :error t)

    ACL2 Observation in SET-CHECK-INVARIANT-RISK:  No change is being made
    in the value computed by (GET-CHECK-INVARIANT-RISK STATE).  This happens
    when the value of state global 'check-invariant-risk is less than the
    new table value; see :DOC set-check-invariant-risk.
     :ERROR
    ACL2 !>(get-check-invariant-risk state)
    :WARNING
    ACL2 !>(@ check-invariant-risk)
    :WARNING
    ACL2 !>(set-check-invariant-risk :error)
     :ERROR
    ACL2 !>(@ check-invariant-risk)
    :ERROR
    ACL2 !>(get-check-invariant-risk state)
    :ERROR
    ACL2 !>(set-check-invariant-risk t t)
     T
    ACL2 !>(get-check-invariant-risk state)
    T
    ACL2 !>(set-check-invariant-risk :warning)

    ACL2 Observation in SET-CHECK-INVARIANT-RISK:  No change is being made
    in the value computed by (GET-CHECK-INVARIANT-RISK STATE), because
    the new value of state global 'check-invariant-risk is greater than
    the table value; see :DOC set-check-invariant-risk.
     :WARNING
    ACL2 !>(get-check-invariant-risk state)
    T
    ACL2 !>(set-check-invariant-risk :clear t)
     :CLEAR
    ACL2 !>(get-check-invariant-risk state)
    :WARNING
    ACL2 !>

  Note that the handling of an invariant-risk call of a function, f,
  depends on the current invariant-risk mode, not on the mode in
  place when f was defined.

  It might not be obvious how a given function call could lead to an
  ill-guarded call of a [stobj] updater or of a primitive with
  invariant-risk such as [aref1]. It should be reasonably
  straightforward to write a utility that provides this information;
  contact the ACL2 implementors if you want assistance in writing
  such a utility.


Subtopics

  [Invariant-risk]
      Potential slowdown for [program]-mode updates to [stobj]s or
      [arrays]")
 (SET-CHECKPOINT-SUMMARY-LIMIT
  (SET-GAG-MODE)
  "Control printing of key checkpoints upon a proof's failure

  See [set-gag-mode] for a discussion of key checkpoints.

    Examples:

    ; (Default) When a proof fails, print all key checkpoints before
    ; induction but at most 3 key checkpoints after induction:
    (set-checkpoint-summary-limit (nil . 3))

    ; When a proof fails, print at most 3 key checkpoints before
    ; induction but all 3 key checkpoints after induction:
    (set-checkpoint-summary-limit (3 . nil))

    ; When a proof fails, print at most 3 key checkpoints before
    ; induction and at most 5 key checkpoints after induction:
    (set-checkpoint-summary-limit (3 . 5))

    ; When a proof fails, print at most 3 key checkpoints before
    ; induction and at most 3 key checkpoints after induction:
    (set-checkpoint-summary-limit (3 . 3))
    ; or equivalently,
    (set-checkpoint-summary-limit 3)

    ; When a proof fails, print all key checkpoints:
    (set-checkpoint-summary-limit (nil . nil))
    ; or equivalently,
    (set-checkpoint-summary-limit nil)

    ; When a proof fails, print no information at all about key checkpoints:
    (set-checkpoint-summary-limit t)

    General Forms:
    (set-checkpoint-summary-limit (n1 . n2))
    (set-checkpoint-summary-limit n)
    (set-checkpoint-summary-limit t)

  where each of n1 and n2 is a natural number or nil. For the second
  form, n can be a natural number or nil and is treated as (n . n).
  The value t inhibits all printing of checkpoint summary
  information. The values n1 and n2 determine printing of key
  checkpoints generated before the first induction and generated
  after the first induction, respectively, where at most n1 or n2
  (respectively) such key checkpoints are printed unless the value is
  nil, in which case there is no limitation.

  The argument x for set-checkpoint-summary-limit, as described above,
  may be quoted, i.e. supplied as 'x or (quote x). Thus, you may use
  the keyword form (see [keyword-commands]) if you prefer, for
  example:

    :set-checkpoint-summary-limit (nil . 3)")
 (SET-COMPILE-FNS
  (COMPILATION)
  "Have each function compiled as you go along.

    Example Forms:
    (set-compile-fns t)    ; new functions compiled after DEFUN
    (set-compile-fns nil)  ; new functions not compiled after DEFUN

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.

  Also see [comp], because it may be more efficient in some Common
  Lisps to compile many functions at once rather than to compile each
  one as you go along.

    General Form:
    (set-compile-fns term)

  where term is a variable-free term that evaluates to t or nil. This
  macro is equivalent to

    (table acl2-defaults-table :compile-fns term)

  and hence is [local] to any [books] and [encapsulate] [events] in
  which it occurs; see [ACL2-defaults-table]. However, unlike the
  above simple call of the [table] event function (see [table]), no
  output results from a set-compile-fns event.

  Set-compile-fns may be thought of as an event that merely sets a flag
  to t or nil. The flag's effect is felt when functions are defined,
  as with [defun]. If the flag is t, functions are automatically
  compiled after they are defined, as are their executable
  counterparts (see [executable-counterpart]). Otherwise, functions
  are not automatically compiled. Exception: The flag has no effect
  when explicit compilation is suppressed; see [compilation].

  Because set-compile-fns is an event, the old value of the flag is
  restored when a set-compile-fns event is undone.

  Even when :set-compile-fns t has been executed, functions are not
  individually compiled when processing an [include-book] event. If
  you wish to include a book of compiled functions, we suggest that
  you first certify it with the [compilation] flag set (see
  [certify-book]) or else compile the book by supplying the
  appropriate load-compiled-file argument to [include-book]. More
  generally, [compilation] via set-compile-fns is suppressed when the
  [state] global variable [ld-skip-proofsp] has value
  '[include-book].")
 (SET-COMPILER-ENABLED
  (COMPILATION)
  "Disable [compilation].

  For a thorough discussion of this utility, see [compilation].
  Probably its most common use is the following, in order to prohibit
  [include-book] from attempting to include compiled files:

    (set-compiler-enabled nil state)")
 (SET-DEBUGGER-ENABLE
  (DEBUGGING)
  "Control whether Lisp errors and breaks invoke the Lisp debugger

    Forms (see below for explanations and GCL exceptions):

    (set-debugger-enable t)         ; enable breaks into the raw Lisp debugger
    (set-debugger-enable :break)    ; same as above
    :set-debugger-enable t          ; same as above
    (set-debugger-enable :break-bt) ; as above, but print a backtrace first
    (set-debugger-enable :bt-break) ; as above, but print a backtrace first
    (set-debugger-enable :bt)       ; print a backtrace but do not enter debugger
    (set-debugger-enable :never)    ; disable all breaks into the debugger
    (set-debugger-enable nil)       ; disable debugger except when calling break$

  Introduction. Suppose we define foo in :[program] mode to take the
  [car] of its argument. This can cause a raw Lisp error. ACL2 will
  then return control to its top-level loop unless you enable the
  Lisp debugger, as shown below (except: the error message can take
  quite a different form in non-ANSI GCL).

    ACL2 !>(defun foo (x) (declare (xargs :mode :program)) (car x))

    Summary
    Form:  ( DEFUN FOO ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     FOO
    ACL2 !>(foo 3)
    ***********************************************
    ************ ABORTING from raw Lisp ***********
    Error:  Attempt to take the car of 3 which is not listp.
    ***********************************************

    If you didn't cause an explicit interrupt (Control-C),
    then the root cause may be call of a :program mode
    function that has the wrong guard specified, or even no
    guard specified (i.e., an implicit guard of t).
    See :DOC guards.

    To enable breaks into the debugger (also see :DOC acl2-customization):
    (SET-DEBUGGER-ENABLE T)
    ACL2 !>(SET-DEBUGGER-ENABLE T)
    <state>
    ACL2 !>(foo 3)
    Error: Attempt to take the car of 3 which is not listp.
      [condition type: TYPE-ERROR]

    Restart actions (select using :continue):
     0: Abort entirely from this (lisp) process.
    [Current process: Initial Lisp Listener]
    [1] ACL2(1): [RAW LISP]

  Details. ACL2 usage is intended to take place inside the ACL2
  read-eval-print loop (see [lp]). Indeed, in most Lisp
  implementations ACL2 comes up inside that loop, as evidenced by the
  prompt:

    ACL2 !>

  However, one can occasionally hit a raw Lisp error. Here is the above
  example again, this time for a GCL implementation, which
  unfortunately gives a slightly less aesthetic report.

    ACL2 !>(foo 3)

    Error: 3 is not of type LIST.
    Fast links are on: do (si::use-fast-links nil) for debugging
    Error signalled by CAR.
    Backtrace: funcall > system:top-level > lisp:lambda-closure > lp > acl2_*1*_acl2::foo > foo > car > system:universal-error-handler > system::break-level-for-acl2 > let* > UNLESS
    ACL2 !>

  Here, the user has defined foo in :[program] mode, with an implicit
  [guard] of t. The ACL2 evaluator therefore called the Lisp
  evaluator, which expected nil or a [consp] argument to [car].

  By default, ACL2 will return to its top-level loop (at the same level
  of [ld]) when there is a raw Lisp error, as though a call of [er]
  with flag HARD has been evaluated. If instead you want to enter the
  raw Lisp debugger in such cases, evaluate the following form.

    (set-debugger-enable t)

  You can subsequently return to the default behavior with:

    (set-debugger-enable nil)

  Either way, you can enter the Lisp debugger from within the ACL2 loop
  by evaluating ([break$]). If you want break$ disabled, then
  evaluate the following, which disables entry to the Lisp debugger
  not only for Lisp errors but also when executing (break$).

    (set-debugger-enable :never)

  The discussion above also applies to interrupts (from Control-C) in
  some, but not all, host Common Lisps --- perhaps all except for
  non-ANSI GCL, where interrupts will likely always put you into the
  debugger.

  It remains to discuss options :break, :bt, :break-bt, and :bt-break.
  Option :break is synonymous with option t, while option :bt prints
  a backtrace. Options :break-bt and :bt-break are equivalent, and
  each has the combined effect of :bt and :break: a backtrace is
  printed and then the debugger is entered.

  Note that set-debugger-enable applies not only to raw Lisp errors,
  but also to ACL2 errors: those affected by [break-on-error].
  However, for ACL2 errors, entering the debugger is controlled only
  by break-on-error, not by set-debugger-enable. For ACL2 errors
  encountered after evaluating (break-on-error t), the
  set-debugger-enable values of :bt, :break-bt, and :bt-break will
  result in the same effect: in many host LIsps, this effect will be
  to cause a backtrace to be printed.

  Remark for Common Lisp hackers (except for the case that the host
  Lisp is non-ANSI GCL). You can customize the form of the backtrace
  printed by entering raw Lisp (with :q) and then redefining function
  print-call-history, whose definition immediately precedes that of
  break-on-error in ACL2 source file ld.lisp. Of course, all bets are
  off when defining any function in raw Lisp, but as a practical
  matter you are probably fine as long as your books are ultimately
  certified with an unmodified copy of ACL2. If you come up with
  improvements to print-call-history, please pass them along to the
  ACL2 implementors.")
 (SET-DEFAULT-BACKCHAIN-LIMIT
  (BACKCHAIN-LIMIT)
  "Sets the default backchain-limit used when admitting a rule

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  Moreover, its effect is to set the [ACL2-defaults-table], and hence
  its effect is [local] to the book or [encapsulate] form containing
  it; see [ACL2-defaults-table].

  This event sets the default [backchain-limit] used when a new
  [rewrite], [linear], [meta], or [type-prescription] rule is
  admitted. Its value may be a two-element list whose elements are
  each either nil or a non-negative integer. Its value x may also be
  nil or a non-negative integer, which is treated as the two element
  list (x x).

  The first element of the list is used to limit backchaining for a
  rule of class [type-prescription] while the second element is used
  to limit backchaining for the other three classes of rules
  mentioned above. See [backchain-limit] for details about how
  backchain-limits are used. The examples below assume that a new
  rule doesn't itself specify a value for :backchain-limit-lst.

    :set-default-backchain-limit nil  ; do not impose backchain limits for the
                                      ; rule
    :set-default-backchain-limit 0    ; allow only type-set reasoning for
                                      ; relieving a new rule's hypotheses
    :set-default-backchain-limit 500  ; allow backchaining through a new rewrite,
                                      ; linear, or meta rule's hypotheses to a
                                      ; depth of no more than 500
    (set-default-backchain-limit 500) ; same as above
    :set-default-backchain-limit (nil 500)
                                      ; same as above
    (set-default-backchain-limit '(nil 500))
                                      ; same as above
    (set-default-backchain-limit '(3 500))
                                      ; for a new :type-prescription rule, allow
                                      ; type-set backchaining to a depth
                                      ; of no more than 3; for a new
                                      ; rule of class :rewrite, :linear,
                                      ; or :meta, allow backchaining to
                                      ; a depth of no more than 50
    (set-default-backchain-limit '(nil 500))
                                      ; do not limit backchaining for a
                                      ; new :type-prescription rule; for
                                      ; a new rule of class :rewrite,
                                      ; :linear, or :meta, allow
                                      ; backchaining to a depth of no
                                      ; more than 50

  The initial default backchain-limit is nil.")
 (SET-DEFAULT-HINTS
  (DEFAULT-HINTS)
  "Set the default hints

    Examples:
    (set-default-hints '((computed-hint-1 clause)
                         (computed-hint-2 clause
                                          stable-under-simplificationp)))
    (set-default-hints nil)

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  It is [local] to the book or [encapsulate] form in which it occurs;
  see [set-default-hints!] for a corresponding non-[local] event.

    General Form:
    (set-default-hints lst)

  where lst is a list. Generally speaking, the elements of lst should
  be suitable for use as [computed-hints].

  Whenever a [defthm] or [thm] command is executed, the default hints
  are appended to the right of any explicitly provided :[hints] in
  the command. The same applies to [defun]s as well (:hints,
  :guard-hints, and (for ACL2(r)) :std-hints). The hints are then
  translated and processed just as though they had been explicitly
  included.

  Technically, we do not put restrictions on lst, beyond that it is a
  true list. It would be legal to execute

    (set-default-hints '((\"Goal\" :use lemma23)))

  with the effect that the given hint is added to subsequent hints
  supplied explicitly. An explicit \"Goal\" hint would, however, take
  priority, as suggested by the mention above of ``appended to the
  right.''

  Note that set-default-hints sets the default hints as specified. To
  add to or remove from the current default, see [add-default-hints]
  and see [remove-default-hints]. To see the current default hints,
  see [default-hints].

  Finally, note that the effects of set-default-hints,
  [add-default-hints], and [remove-default-hints] are [local] to the
  book in which they appear. Thus, users who include a book with such
  forms will not have their default hints affected by such forms. In
  order to export the effect of setting the default hints, use
  [set-default-hints!], [add-default-hints!], or
  [remove-default-hints!].

  For a related feature, which however is only for advanced system
  builders, see [override-hints].")
 (SET-DEFAULT-HINTS!
  (DEFAULT-HINTS)
  "Set the default hints non-[local]ly

  Please see [set-default-hints], which is the same as
  set-default-hints! except that the latter is not [local] to the
  [encapsulate] or the book in which it occurs. Probably
  [set-default-hints] is to be preferred unless you have a good
  reason for wanting to export the effect of this event outside the
  enclosing [encapsulate] or book.")
 (SET-DEFERRED-TTAG-NOTES
  (DEFTTAG)
  "Modify the verbosity of TTAG NOTE printing

    General Form:
    (set-deferred-ttag-notes val state)

  where val is t or nil.

  See [defttag] for a discussion of trust tags (ttags). By default, a
  ``TTAG NOTE'' is printed in order to indicate reliance on a ttag.
  When many such notes are printed, it may be desirable to avoid
  seeing them all. Upon evaluation of the form

    (set-deferred-ttag-notes t state)

  ACL2 will enter a deferred mode for the printing of ttag notes. In
  this mode, only the first ttag note is printed for each top-level
  command, and the remainder are summarized before the next top-level
  prompt (if any) is printed, hence before the next command is
  evaluated. That summary is merely a list of ttags, but the summary
  explains that the full ttag notes may be printed with the command
  (show-ttag-notes).

  Note that (show-ttag-notes) spares you duplicate ttag notes. If you
  want to see every ttag note as it would normally appear, for
  maximum security, do not evaluate the command
  (set-deferred-ttag-notes t state). You can undo the effect of this
  command, returning to an immediate mode for printing ttag notes, by
  evaluating:

    (set-deferred-ttag-notes nil state)")
 (SET-DIFFERENCE$
  (LISTS ACL2-BUILT-INS)
  "Elements of one list that are not elements of another

    General Forms:
    (set-difference$ l1 l2)
    (set-difference$ l1 l2 :test 'eql)   ; same as above (eql as equality test)
    (set-difference$ l1 l2 :test 'eq)    ; same, but eq is equality test
    (set-difference$ l1 l2 :test 'equal) ; same, but equal is equality test

  (Set-difference$ l1 l2) equals a list that contains the [member]s of
  l1 that are not [member]s of l2. More precisely, the resulting list
  is the same as one gets by deleting the members of l2 from l1,
  leaving the remaining elements in the same order as in l1. The
  optional keyword, :TEST, has no effect logically, but provides the
  test (default [eql]) used for comparing members of the two lists.

  The [guard] for a call of set-difference$ depends on the test. In all
  cases, both arguments must satisfy [true-listp]. If the test is
  [eql], then one of the arguments must satisfy [eqlable-listp]. If
  the test is [eq], then one of the arguments must satisfy
  [symbol-listp].

  See [equality-variants] for a discussion of the relation between
  set-difference$ and its variants:

      (set-difference-eq l1 l2) is equivalent to (set-difference$ l1 l2
      :test 'eq);

      (set-difference-equal l1 l2) is equivalent to (set-difference$ l1 l2
      :test 'equal).

  In particular, reasoning about any of these primitives reduces to
  reasoning about the function set-difference-equal.

  Function: <set-difference-equal>

    (defun
         set-difference-equal (l1 l2)
         (declare (xargs :guard (and (true-listp l1) (true-listp l2))))
         (cond ((endp l1) nil)
               ((member-equal (car l1) l2)
                (set-difference-equal (cdr l1) l2))
               (t (cons (car l1)
                        (set-difference-equal (cdr l1) l2)))))

  Set-difference$ is similar to the Common Lisp primitive
  set-difference. However, Common Lisp does not specify the order of
  elements in the result of a call of set-difference.")
 (SET-DIFFERENCE-EQ (POINTERS)
                    "See [set-difference$].")
 (SET-DIFFERENCE-EQUAL (POINTERS)
                       "See [set-difference$].")
 (SET-DIFFERENCE-THEORIES
  (THEORIES THEORY-FUNCTIONS)
  "Difference of two [theories]

    Example:
    (set-difference-theories (current-theory :here)
                             '(fact (fact)))

    General Form:
    (set-difference-theories th1 th2)

  where th1 and th2 are [theories] (see [theories]). To each of the
  arguments there corresponds a runic theory. This function returns
  the set-difference of those two runic [theories], represented as a
  list and ordered chronologically. That is, a [rune] is in the
  result iff it is in the first runic theory but not in the second.

  The standard way to ``disable'' a theory, lst, is: (in-theory
  (set-difference-theories (current-theory :here) lst)).

  This ``function'' is actually a macro that expands to a term
  mentioning the single free variable [world]. When theory
  expressions are evaluated by [in-theory] or the :[in-theory] hint,
  [world] is bound to the current ACL2 [world].")
 (SET-DUPLICATE-KEYS-ACTION
  (MACRO-ARGS MACROS PROGRAMMING ADVANCED-FEATURES)
  "Control action for macro calls with duplicate keyword arguments

    Example Forms:
    (set-duplicate-keys-action thm :warning)
    (set-duplicate-keys-action my-macro-1 nil)

    General Forms:
    (set-duplicate-keys-action name :error)
    (set-duplicate-keys-action name :warning)
    (set-duplicate-keys-action name nil)

  where name is a symbol, one that is generally expected to be the name
  of a macro.

  By default, an error occurs when ACL2 encounters a macro call with
  duplicate keys, for example (foo 3 :y 4 :y 5) where :y is a keyword
  argument of the macro, foo. However, the event
  (set-duplicate-keys-action name val) can be used to determine
  whether such duplicate keys cause an error, a warning, or neither,
  according to whether val is the keyword :error, :warning, or nil,
  respectively.

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  It is [local] to the book or [encapsulate] form in which it occurs;
  see [set-duplicate-keys-action!] for a corresponding non-[local]
  event. Indeed, (set-duplicate-keys-action ...) is equivalent to
  (local (set-duplicate-keys-action! ...)).")
 (SET-DUPLICATE-KEYS-ACTION!
  (PROVER-OUTPUT)
  "Non-[local] version of [set-duplicate-keys-action]

  Please see [set-duplicate-keys-action], which is the same as
  set-duplicate-keys-action! except that the latter is not [local] to
  the [encapsulate] or the book in which it occurs. Perhaps
  [set-duplicate-keys-action] is to be preferred unless you have a
  good reason for wanting to export the effect of this event outside
  the enclosing [encapsulate] or book.")
 (SET-ENFORCE-REDUNDANCY
  (REDUNDANT-EVENTS)
  "Require most events to be redundant

    General Forms:
    (set-enforce-redundancy nil)   ; do not require redundancy (default)
    (set-enforce-redundancy t)     ; most events (see below) must be redundant
    (set-enforce-redundancy :warn) ; warn for most non-redundant events

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.

    General Form:
    (set-enforce-redundancy flag)

  where flag is nil, t, or :warn, as indicated above. This macro is
  essentially equivalent to

    (table acl2-defaults-table :enforce-redundancy flag)

  and hence is [local] to any [books] and [encapsulate] [events] in
  which it occurs; see [ACL2-defaults-table]. However, unlike the
  above simple call of the [table] event function (see [table]), no
  output results from a set-enforce-redundancy event.

  Set-enforce-redundancy may be thought of as an event that merely sets
  a flag as indicated above, which determines whether most [events],
  including [defun] and [defthm] events, are allowed to be redundant;
  see [redundant-events]. The exceptions are [deflabel], [defpkg],
  [encapsulate], [include-book], [push-untouchable],
  [remove-untouchable], [set-body], and [table] [events]. Any other
  type of non-redundant event will cause an error if flag is t and a
  warning if flag is nil, except in the course of carrying out an
  [include-book] form.

  Note that because [table] [events] that set the [ACL2-defaults-table]
  are implicitly [local], set-enforce-redundancy events are ignored
  when including books. However, the presence of the event
  (set-enforce-redundancy t) in a book guarantees that its subsequent
  definitions and theorems are redundant. This can be a useful
  property to maintain in library development, as we now describe.

  An example of the use of this form can be found in the community
  [books] under directory books/rtl/rel4/. The intention in that
  directory has been to put all the gory details in subdirectories
  support/ and arithmetic/, so that the books in subdirectory lib/
  contain only the ``exported'' definitions and theorems. This
  approach is useful for human readability. Moreover, suppose we want
  to prove new theorems in lib/. Typically we wish to prove the new
  theorems using the existing books in lib/; however, our methodology
  demands that the proofs go into books in support/. If every theorem
  in lib/ is redundant, then we can develop the proofs in lib/ but
  then when we are done, move each book with such proofs into
  support/ as follows. In any such book, we first replace
  [include-book] forms referring to books in lib/ by [include-book]
  forms referring to corresponding books in support/ and/or
  arithmetic/. Then, we add suitable [in-theory] events to get us
  back into the original lib/ proof environment.

  The default behavior of the system is as though the
  :enforce-redundancy value is nil. The current behavior can be
  ascertained by evaluating the following form.

    (cdr (assoc-eq :enforce-redundancy (table-alist 'acl2-defaults-table wrld)))")
 (SET-EVISC-TUPLE
  (IO)
  "Control suppression of details when printing

  ACL2 output is generally printed in full. However, ACL2 can be
  directed to abbreviate, or ``eviscerate'', objects before printing
  them, though the use of a so-called ``evisc-tuple''. See
  [evisc-tuple] for a discussion of evisc-tuples. The utility
  set-evisc-tuple modifies certain global evisc-tuples, as explained
  below, to affect the extent to which ACL2 eviscerates objects
  during printing, for example during proof output or when printing
  top-level evaluation results.

    General Form:
    (set-evisc-tuple evisc-tuple  ; a legal evisc-tuple, or :DEFAULT
                    :iprint val   ; one of *iprint-actions*
                    :sites sites) ; either :ALL, or an element or a subset of
                                  ;   the list of legal sites (see below)

  where the value of :iprint is passed to [set-iprint], :sites :all
  abbreviates :sites '(:term :ld :trace :abbrev :gag-mode), and other
  documentation is provided below. Note that all arguments are
  evaluated.

  See [without-evisc] for how to avoid evisceration for ACL2 output.

  The following example illustrates an invocation of set-evisc-tuple
  that limits the print-level to 3 --- only three descents into list
  structures are permitted before eviscerating a subterm --- and
  limits the print-length to 4 --- only the first four elements of
  any list structure will be printed.

    ACL2 !>(set-evisc-tuple (evisc-tuple 3   ; print-level
                                         4   ; print-length
                                         nil ; alist
                                         nil ; hiding-cars
                                         )
                            :iprint :same ; better yet, T
                            :sites :all)
     (:TERM :LD :TRACE :ABBREV)
    ACL2 !>'((a b ((c d)) e f g) u v w x y)
    ((A B (#) E ...) U V W ...)
    ACL2 !>

  We recommend however using :iprint t so that eviscerated terms may be
  read back in; see [set-iprint]. Indeed, the :iprint argument is
  required as a reminder to the user to consider that issue, unless
  iprinting has been enabled at least once. If :sites or a required
  :iprint argument is omitted, however, ACL2 will query the user for
  the missing arguments rather than causing an error.

  ACL2 eviscerates by default only in a few cases, primarily in
  informational messages for errors, warnings, and queries (i.e., in
  the :EVISC case below). Users can modify the default behavior by
  supplying a suitable argument to set-evisc-tuple. The argument may
  be :default, which denotes the evisceration provided when ACL2
  starts up. Otherwise that argument is an evisc-tuple, which is
  either nil (no evisceration) or as described above. Moreover, there
  are four evisc-tuple ``evisceration contexts'', each with its own
  evisceration control. The value returned by set-evisc-tuple
  indicates the evisceration contexts whose evisc-tuple has been set.
  The evisceration contexts are as follows, all of which use a
  default value of nil for the hiding-cars. Accessors are also shown
  for retrieving the corresponding evisc-tuple.

    * :TERM --- used for printing terms. The accessor is (term-evisc-tuple
      flg state), where flg is ignored if set-evisc-tuple has been
      called for :term with value other than :default, and otherwise
      (hence initially): a flg of nil indicates an evisc-tuple of
      nil, and otherwise the term-evisc-tuple has a print-level of 3
      and print-length of 4.
    * :ABBREV --- used for printing informational messages for errors,
      warnings, and queries. Initially, the alist abbreviates the
      ACL2 world, print-level is 5, and print-level is 7. The
      accessor is (abbrev-evisc-tuple state).
    * :GAG-MODE --- used for printing induction schemes (and perhaps, in
      the future, for other printing) when [gag-mode] is on. If
      gag-mode is off, the value used for this [evisc-tuple] is
      (term-evisc-tuple nil state). But if gag-mode is on (i.e.,
      (gag-mode) evaluates to a non-nil value), then with one
      exception, the value is an evisc-tuple or nil, to be used in
      gag-mode for printing of induction schemes and, during proofs,
      the ``The non-trivial part of the guard conjecture''. The
      exceptional value is t, which indicates that in gag-mode, no
      printing of induction schemes should be and the guard
      conjecture should be printed using (term-evisc-tuple t state).
      The accessor is (gag-mode-evisc-tuple state).
    * :LD --- used by the ACL2 read-eval-print loop. The accessor is
      ([ld-evisc-tuple] state).
    * :TRACE --- used for printing [trace] output. No accessor is available
      (though in raw Lisp, (trace-evisc-tuple) returns the
      trace-evisc-tuple).

  Each context ectx also has an updater, (set-ectx-evisc-tuple val
  state), where val is a legal value for set-evisc-tuple as described
  above: :default or an [evisc-tuple] (possibly nil).

  Note that the [break-rewrite] commands and the [proof-checker]
  generally do their printing using the term-evisc-tuple.")
 (SET-FC-CRITERIA
  (FORWARD-CHAINING-REPORTS)
  "To set the tracking criteria for forward chaining reports

    Examples:
    (set-fc-criteria)                 ; shut off all tracking
    (set-fc-criteria nil)

    (set-fc-criteria t)               ; to track all forward chaining
    (set-fc-criteria (t t t))

    (set-fc-criteria
     ((:FORWARD-CHAINING LEMMA1)      ; track all uses of LEMMA1,
       t
       t)
      ((:FORWARD-CHAINING LEMMA2)     ; uses of LEMMA2 triggered
       (ALISTP (BASIC-MAPPER A B))    ; by this specific ALISTP term
       t)
      (t t (TRUE-LISTP (DLT D))))     ; and every rule deriving
                                      ; this TRUE-LISTP term.

    General Forms:
    (set-fc-criteria nil)
    (set-fc-criteria t)
    (set-fc-criteria triple1 triple2 ...)

  where each triple is of the form (rune inst-trigger inst-concl). If
  rune is non-t is must be a forward chaining [rune]. The other two
  components, inst-trigger and inst-concl, if non-t, must be terms.
  The list of all the triples supplied is called the ``criteria.'' In
  the form (set-fc-criteria nil), the criteria used is the empty list
  of triples. (Technically, supplying nil as a triple ``ought'' to be
  an error, but it is a more ``natural'' way to say the list of
  criteria is empty than to use the correct form (set-fc-criteria).)
  In the form (set-fc-criteria t) the criteria used is the list
  containing the single triple (t t t).

  This function sets the tracking criteria for forward chaining
  reporting. See [forward-chaining-reports] for a general discussion
  of tracking and reporting forward chaining activity.

  Think of the forward chaining criteria as a list of triples,
  representing a disjunction of conjunctions. The activation of a
  :[forward-chaining] rune by some triggering term in the current
  context satisfies the criteria if it satisfies one of the triples.
  To satisfy the triple (rune inst-trigger inst-concl), the
  activation must satisfy each component of the triple. Any t
  component is always satisfied. If rune is non-t it is satisfied if
  the activation is for the given rune. If inst-trigger is non-t, it
  is satisfied if the activation is triggered by the given term.
  (``Inst-trigger'' stands for ``instantiated trigger.'' It is not
  the trigger term of the rule but is supposed to be an instance of
  that term that you believe will arise in some proof attempt you are
  debugging -- an instance you want to ``watch'' as it fires the
  rule.) If inst-concl is non-t, it is satisfied if the activation
  could possibly derive the conclusion given. (Again, ``inst-concl''
  stands for ``instantiated conclusion'' and shows the term in your
  problem that you expect to be derived by forward chaining.)

  Note that if the criteria is empty, it is never satisfied, so
  tracking is turned off. If the criteria is the singleton list
  containing just the triple (t t t), then every activation satisfies
  it and so all :forward chaining rules are tracked.

  See [forward-chaining-reports] for details.")
 (SET-FC-REPORT-ON-THE-FLY
  (FORWARD-CHAINING-REPORTS)
  "To determine when forward-chaining reports are printed

    Examples:  (set-fc-report-on-the-fly t)
               (set-fc-report-on-the-fly nil)

  If the flag is set to t, forward chaining tracking reports are
  printed when forward chaining occurs. If the flag is set to nil,
  very short reports (giving just the caller and the report number)
  are printed during forward chaining but you can use [fc-report] to
  see the full report afterwards.

  Since nothing is tracked when the criteria is nil, this function also
  prints out the current criteria to remind you of what it is.

  The flag manipulated by this function does not shut off tracking. It
  only determines whether reports are printed on-the-fly or not. To
  shut off tracking [set-fc-criteria].

  See [forward-chaining-reports] for details.")
 (SET-FMT-HARD-RIGHT-MARGIN
  (IO ACL2-BUILT-INS)
  "Set the right margin for formatted output

  In this documentation topic we discuss setting of both a ``soft'' and
  a ``hard'' right margin.

    Example Forms:
    (set-fmt-soft-right-margin 55 state) ; set soft right margin to 55
    (set-fmt-hard-right-margin 68 state) ; set hard right margin to 68

  [Fmt] and related functions insert linebreaks when lines get too
  long. A linebreak is inserted at an aesthetically appropriate point
  once the column exceeds the value of (@ fmt-soft-right-margin). If
  however the column exceeds the value of (@ fmt-hard-right-margin),
  then a linebreak is soon inserted. Such a ``hard'' linebreak
  follows the insertion of a backslash (\\) character unless [fmt!],
  [fms!], or [fmt1!] is used, or state global write-for-read is true.")
 (SET-FMT-SOFT-RIGHT-MARGIN
  (IO ACL2-BUILT-INS)
  "Set the soft right margin for formatted output

  See [set-fmt-hard-right-margin] for a discussion of the soft and hard
  right margin for formatted output.")
 (SET-GAG-MODE
  (PROVER-OUTPUT)
  "Modify the nature of proof output

    Examples:

    :set-gag-mode t      ; enable gag-mode, suppressing most proof commentary
    (set-gag-mode t)     ; same as above
    :set-gag-mode :goals ; same as above, but print names of goals when produced
    :set-gag-mode nil    ; disable gag-mode

    General Forms:
    (set-gag-mode val)
    :set-gag-mode val

  where val is one of t, nil, or :goals.

  The basic idea of [gag-mode] is to avoid much of the verbose output
  from the theorem prover, leaving only output that is expected to be
  helpful. The first two forms below set gag-mode on, while the other
  turns it off; these may be placed in your ACL2 customization file;
  see [ACL2-customization].

    (set-gag-mode :goals) ; (default) avoid most prover output; show goal names
    (set-gag-mode t)      ; avoid most prover output; also, hide goal names
    (set-gag-mode nil)    ; allow prover output

  Gag-mode focuses attention on so-called ``key checkpoints''. By
  default, a checkpoint is a goal that cannot be simplified. (Below
  we discuss how to change this default.) A key checkpoint is a
  checkpoint that is not descended from another checkpoint.
  (Technical point: ``descended'' signifies that both goals are at
  the top level in the same forcing round, or are in the same proof
  by induction.) Successful ACL2 users generally focus their
  attention on key checkpoints, or less often, induction schemes. (To
  suppress or abbreviate induction schemes in gag-mode, see
  [set-evisc-tuple], specifically, the discussion of :GAG-MODE.) For
  a discussion of how to use ACL2 prover output in an effective
  manner, see [the-method], and see
  [introduction-to-the-theorem-prover] for a more detailed tutorial.
  In gag-mode, a key checkpoint is only displayed when ACL2 is unable
  to make any further progress on that goal or some descendent of it,
  other than with a proof by induction.

  Evaluation of set-gag-mode t enters gag-mode, so that only key
  checkpoints are printed. Evaluation of set-gag-mode :goals also
  enters gag-mode, but will additionally cause the name of a goal to
  be printed as soon as it is generated (by invoking
  [set-print-clause-ids]). The :goals setting is the default, and is
  useful for cases in which the prover spends very little of its time
  generating goals to be proved by induction, yet you want to see
  that it is making progress. For finer-grained feedback about the
  simplifier's activity, see [dmr].

  The current value of [gag-mode] is returned by a macro of the same
  name:

    (gag-mode) ; evaluates to t, nil, or :goals

  An alternative to gag-mode is to use proof-trees; see [proof-tree].
  With proof-trees it is not so important to avoid excessive prover
  output, since the proof-tree display provides structure that makes
  it easy to monitor proof attempts and navigate output for a proof
  that has failed or seems to be failing. Still, output can take time
  to print, so you may get better performance with gag-mode.

  The intention of gag-mode is to show you only the parts of a proof
  attempt that are relevant for debugging a failure; additional
  output is generally more likely to be distracting than truly
  helpful. But on occasion you may want to see the full proof output
  after an attempt made with gag-mode. This can be done provided
  proof output is not inhibited (see [set-inhibit-output-lst]) during
  the proof attempt; see [pso] and see [pso!]. Since set-gag-mode
  takes responsibility for the saving of output, related utility
  [set-saved-output] is disabled when gag-mode is active. Also note
  that calling set-gag-mode erases the currently saved output, if
  any.

  You may notice that gag-mode tends to print relatively little
  information about goals pushed for proof by sub-induction --- i.e.,
  a proof of *i.j, *i.j.k, etc. That feature emphasizes that
  unsuccessful sub-inductions should generally be avoided, not
  analyzed for ways to make them succeed. Instead, the key checkpoint
  that generated the goal pushed for this induction is more
  appropriate to analyze. In general, the ``higher level'' the
  checkpoint, the more worthy it is of attention. Thus, we suggest
  that look at the top-level checkpoints before looking at those
  labeled ``Key checkpoints under a top-level induction''.

  We conclude with remarks for advanced users.

  The notion of ``checkpoint'' can be modified by the user. The
  default, as discussed above, is for a checkpoint to be a goal that
  cannot be simplified. Put differently, a checkpoint is acted on by
  one of the processes in the value of the form (@
  checkpoint-processors); see [@]. Any or all of the symbols
  eliminate-destructors-clause, fertilize-clause, generalize-clause,
  or eliminate-irrelevance-clause can be removed from this value in
  order that invocation of the corresponding proof process does not
  cause its input goal to be labeled a checkpoint. For example, if
  you do not want destructor elimination to be treated differently
  from simplification for purposes of labeling checkpoints, you can
  evaluate the following form (see [assign]):

    (assign checkpoint-processors
            (remove 'eliminate-destructors-clause
                    (@ checkpoint-processors)))

  Note that the value of (@ checkpoint-processors) also affects the
  proof tree display; see [proof-tree-details]. End of Remark.)

  See [set-evisc-tuple], in particular the discussion there of
  :GAG-MODE, for how to influence slightly just what is printed in
  gag-mode.


Subtopics

  [Set-checkpoint-summary-limit]
      Control printing of key checkpoints upon a proof's failure

  [Set-saved-output]
      Save proof output for later display with :[pso] or :[pso!]")
 (SET-GC-STRATEGY
  (MISCELLANEOUS ACL2-BUILT-INS)
  "Set the garbage collection strategy (CCL only)

  Note: This macro has no effect unless the host Lisp is CCL.

    General Forms:

    (set-gc-strategy :egc)     ; the default: EGC is on, full GC is not delayed
    (set-gc-strategy :delay)   ; EGC is off, full GC is delayed
    (set-gc-strategy :current) ; same as replacing :current by the latest
                               ; strategy set (:egc or :delay)

    (set-gc-strategy strategy threshold)
                               ; Same as (set-gc-strategy strategy), but sets
                               ; threshold to the indicated number of bytes
                               ; (see below)

  Logically, (set-gc-strategy op) returns op. But in some host Lisps
  (currently CCL only), it changes how garbage collection is invoked.
  Exactly how that is done is best understood by reading the ACL2
  source code, starting with set-gc-strategy. Here we document what
  most users might want to know about this utility, assuming they are
  using CCL. We defer discussion of the optional second argument,
  threshold, to the end.

  Normally the default garbage collection strategy will probably be
  fine. That default has the ephemeral garbage collector (EGC)
  enabled. But in jobs that stress [hons], or perhaps memoization
  (see [memoize]) or [fast-alists], it might be useful to switch to a
  strategy that disables EGC but also significantly delays garbage
  collection. To switch to that delaying strategy:

    (set-gc-strategy :delay)

  Then, you can return to the default strategy, re-enabling EGC and no
  longer causing delays in garbage collection, as follows.

    (set-gc-strategy :egc)

  It is also legal to invoke (set-gc-strategy :current), which is
  equivalent to replacing :current by the current strategy; see
  [gc-strategy].

  If you want to change the gc-strategy during certification of a book,
  but not when including that book, you can place your call of
  set-gc-strategy inside [value-triple], for example as follows.

    (value-triple (set-gc-strategy :delay))

  The following variant causes the [gc-strategy] to be modified when
  including the book as well.

    (value-triple (set-gc-strategy :delay) :on-skip-proofs t)

  This capability might be extended to other host Lisps in the future,
  especially if ACL2 users provide suggestions for how to do so.

  Note that the default behavior can be changed to :delay at ACL2 build
  time, by setting Make variable ACL2_EGC_ON=nil when building an
  ACL2 executable.


The threshold argument

  When a second argument is supplied in a call of set-gc-strategy, it
  must be either nil, which is equivalent to supplying no second
  argument, or else a positive integer. This positive integer will be
  the ``GC threshold'' number of bytes CCL will try to ensure are
  available before the next full garbage collection. The default
  (i.e., the value used when the second argument is nil or is
  omitted) is the minimum of the following two values: 1/2 GB, and
  1/32 of physical memory (or 1/32 of 4 GB, if the physical memory
  cannot be determined). (Technical note: The GC threshold is stored
  in raw Lisp variable *gc-min-threshold*.)")
 (SET-GUARD-CHECKING
  (GUARD)
  "Control checking [guard]s during execution of top-level forms

  Detailed comments about the arguments of this function may be found
  elsewhere: see [guard-evaluation-table]. Here we provide an
  introduction to the use of set-guard-checking.

  New users are encouraged to execute one of the following forms in
  order to avoid evaluation errors due to [guard]s:

    (set-guard-checking :none)
    (set-guard-checking nil)

  The former avoids all guard-checking on user-defined functions and
  should generally work fine for new users, the only drawback being
  efficiency loss on compute-intensive problems. All settings other
  than :none check guards, but a value of nil allows evaluation to
  continue in the logic when guards fail (avoiding the raw Lisp
  definition in that case).

  You may put one of the above forms in the \"acl2-customization.lsp\"
  file in your current directory (see [cbd]) or your home directory;
  see [ACL2-customization].

  Note that [guard]s are not part of the ACL2 logic, and hence new
  users can completely ignore the notion of [guard] (and the rest of
  this documentation section after this paragraph!). For example,
  (car 3) and nil can be proved equal in the ACL2 logic, as follows,
  even though the [guard] on [car] requires its first argument to be
  a [cons] pair or nil.

    (thm (equal (car 3) nil))

  Moreover, unless your functions or top-level forms call built-in ACL2
  functions that are defined in :[program] mode, the following
  property will hold.

      Evaluation of (set-guard-checking :none) will allow evaluation of
      forms such as (car 3) to take place without error in the top
      level loop, not only when proving theorems.

  If you feel bold, then you may wish to read the rest of this
  documentation topic; also see [guard].

  See [guard-evaluation-table] for a succinct table, with associated
  discussion, that covers in detail the material presented in the
  rest of the present topic.

  The top-level ACL2 loop has a variable which controls which sense of
  execution is provided. To turn ``[guard] checking on,'' by which we
  mean that [guard]s are checked at runtime, execute the top-level
  form :set-guard-checking t. To allow guard violations, do
  :set-guard-checking nil, or do :set-guard-checking :none to turn
  off all guard-checking, so that raw Lisp definitions of
  user-defined functions are avoided unless their [guard] is t. The
  status of guard-checking is reflected in the [prompt].

    ACL2 !>

  means [guard] checking is on and

    ACL2 >

  means [guard] checking is off. The exclamation mark can be thought of
  as ``barring'' certain computations. The absence of the mark
  suggests the absence of error messages or unbarred access to the
  logical axioms. Thus, for example

    ACL2 !>(car 'abc)

  will signal an error, while

    ACL2 >(car 'abc)

  will return nil.

  We will return at the end of this documentation topic to discuss two
  other values, :all and :nowarn, for :set-guard-checking. We also
  note that evaluation of built-in :program mode functions always
  takes place in raw Lisp.

  Whether [guard]s are checked during evaluation is independent of the
  [default-defun-mode]. We note this simply because it is easy to
  confuse ``:[program] mode'' with ``evaluation in Common Lisp'' and
  thus with ``[guard] checking on;'' and it is easy to confuse
  ``:[logic] mode'' with ``evaluation in the logic'' and with
  ``[guard] checking off.'' But the [default-defun-mode] determines
  whether newly submitted definitions introduce programs or add
  logical axioms. That mode is independent of whether evaluation
  checks [guard]s or not. You can operate in :[logic] mode with
  runtime [guard] checking on or off. Analogously, you can operate in
  :[program] mode with runtime [guard] checking on or off.

  For further discussion on evaluation and guards see
  [guards-and-evaluation], in particular the exception for safe-mode
  in the ``Aside'' there. See [guard] for a general discussion of
  [guard]s.

  Now we fulfill our promise above to discuss two other values for
  :set-guard-checking:

    :set-guard-checking :nowarn
    :set-guard-checking :all

  The meaning of these values is perhaps best described by the
  following example provided by David Rager.

    ACL2 !>(defun my-test (expr)
             (declare (xargs :guard (true-listp expr)
                             :verify-guards nil))
             (if (atom expr)
                 expr
               (cons (my-test (car expr))
                     (my-test (cdr expr)))))

    The admission of MY-TEST is trivial, using the relation O< (which is
    known to be well-founded on the domain recognized by O-P) and the measure
    (ACL2-COUNT EXPR).  We could deduce no constraints on the type of MY-
    TEST.  However, in normalizing the definition we used primitive type
    reasoning.

    Summary
    Form:  ( DEFUN MY-TEST ...)
    Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))
    Warnings:  None
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
     MY-TEST
    ACL2 !>(my-test '(a b c))

    ACL2 Warning [Guards] in TOP-LEVEL:  Guard-checking will be inhibited
    on recursive calls of the executable counterpart (i.e., in the ACL2
    logic) of MY-TEST.  To check guards on all recursive calls:
      (set-guard-checking :all)
    To leave behavior unchanged except for inhibiting this message:
      (set-guard-checking :nowarn)

    (A B C)
    ACL2 !>

  If you think about evaluation of (my-test '(a b c)), you will see
  that it leads to the recursive call (my-test 'a), which one might
  expect to cause a guard violation since the symbol a is not a
  [true-listp]. However, as the warning above explains, we do not by
  default check guards on recursive calls. The reason is efficiency
  --- imagine a simple definition with a guard that is slow to
  evaluate. The values :nowarn and :all for :set-guard-checking have
  been introduced as ways of dealing with the above warning. The
  value :nowarn simply turns off the warning above. The value :all
  causes all guards to be checked, even on recursive calls and even
  on all calls of non-built-in :[program] mode functions --- unless,
  of course, a call is made of a function whose guard has been
  verified (see [verify-guards]), where the arguments satisfy the
  guard, in which case the corresponding call is made in raw Lisp
  without subsidiary guard-checking. We still say that
  ``guard-checking is on'' after :set-guard-checking is invoked with
  values t, :nowarn, and :all, otherwise (after value nil) we say
  ``guard-checking is off.

  For technical reasons, :all does not have its advertised effect in
  the case of built-in :[program]-mode functions. If you are
  interested in this technical detail, see the comment ``In the
  boot-strap world...'' in source function oneify-cltl-code.

  We conclude with a remark about the use of :set-guard-checking for
  experimenting with ACL2 as a logic or as a programming language. If
  one views ACL2 as a logic, one may wish to use :set-guard-checking
  :none, while if instead one views ACL2 as a functional programming
  language, one may wish to use :set-guard-checking :all. The
  following transcript illustrates this distinction by way of
  example. Specifically, (car 3) is equal to nil in the ACL2 logic,
  but may be viewed as a programming error. The default of
  :set-guard-checking t is problematic for learning ACL2 using
  :[program] mode functions, since one can get raw Lisp errors. In
  the example below, the raw Lisp error occurs because foo implicitly
  has a [guard] of t, hence (foo 3) is evaluated in raw Lisp, which
  leads to a raw Lisp call of c[(car 3)].

    ACL2 !>(defun foo (x)
             (declare (xargs :mode :program))
             (car x))

    Summary
    Form:  ( DEFUN FOO ...)
    Rules: NIL
    Warnings:  None
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
     FOO
    ACL2 !>(foo 3)
    Error: Attempt to take the car of 3 which is not listp.
      [condition type: TYPE-ERROR]

    Restart actions (select using :continue):
     0: Abort entirely from this (lisp) process.
    [Current process: Initial Lisp Listener]
    [1] ACL2(1): [RAW LISP] :pop
    ACL2 !>:set-guard-checking :none

    Turning off guard checking entirely.  To allow execution in raw Lisp
    for functions with guards other than T, while continuing to mask guard
    violations, :SET-GUARD-CHECKING NIL.  See :DOC set-guard-checking.

    ACL2 >(foo 3)
    NIL
    ACL2 >:set-guard-checking :all

    Turning guard checking on, value :ALL.

    ACL2 !>(foo 3)

    ACL2 Error in TOP-LEVEL:  The guard for the function symbol CAR, which
    is (OR (CONSP X) (EQUAL X NIL)), is violated by the arguments in the
    call (CAR 3).  See :DOC trace for a useful debugging utility.  See :DOC
    set-guard-checking for information about suppressing this check with
    (set-guard-checking :none), as recommended for new users.

    ACL2 !>")
 (SET-GUARD-MSG
  (GUARD DEBUGGING)
  "Specify what is printed when a [guard] is violated

  This is an advanced feature that may require considerable
  understanding of ACL2 programming. ACL2 provides default error
  messages for guard violations. However, ACL2 also provides a
  [table], guard-msg-table, that allows custom error messages for
  guard-checking failures. The macro set-guard-msg provides a
  convenient way to update this table. The keys of the table are
  symbols, which can be expected to be function symbols or names of
  macros. Each value is a (translated) [term] whose only free
  variables are world, args, and coda. When guard-checking fails, the
  term is evaluated to create a message suitable for \"~@\" formatted
  printing directives; see [fmt]. That evaluation is done with world
  bound to the current ACL2 logical [world], with args bound to the
  actual parameters of the call, and with coda bound to the message
  that would typically be printed by default at the end of a guard
  violation. (See ACL2 source function guard-er-message-coda for
  details, or simply experiment.)


Example

  Consider the following example.

    (defun foo (x)
     (declare (xargs :mode :program :guard (consp x)))
     (car x))

    (set-guard-msg foo (msg \"An error for call ~x0.\"
                            (cons 'foo args)))

  Corresponding output for a guard violation is as follows.

    ACL2 !>(foo 3)


    ACL2 Error in TOP-LEVEL:  An error for call (FOO 3).

    ACL2 !>

  Continuing in the same session, suppose we provide this fancier error
  message specification.

    (set-guard-msg foo
                   (msg \"An error for call ~x0 in a world of length ~x1.~@2\"
                        (cons 'foo args)
                        (length world) ; length of the current ACL2 world
                        coda))

  The corresponding error is shown below. Notice that the coda starts
  on a new line, with the same \"See :DOC ...\" message that one would
  see if the default error message were supplied for the same guard
  violation.

    ACL2 !>(foo 3)


    ACL2 Error in TOP-LEVEL:  An error for call (FOO 3) in a world of length
    98582.
    See :DOC set-guard-checking for information about suppressing this
    check with (set-guard-checking :none), as recommended for new users.
    To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.

    ACL2 !>

  The capability shown above for function symbols is also available for
  macro names. However, the variable, coda, should not be used for
  macro names.")
 (SET-IGNORE-OK
  (DECLARE DEFUN)
  "Allow unused formals and locals without an ignore or ignorable
  declaration

    Examples:
    (set-ignore-ok t)
    (set-ignore-ok nil)
    (set-ignore-ok :warn)

  The first example above allows unused formals and locals, i.e.,
  variables that would normally have to be [declare]d ignored or
  ignorable. The second example disallows unused formals and locals;
  this is the default. The third example allows them, but prints an
  appropriate warning.

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  Moreover, its effect is to set the [ACL2-defaults-table], and hence
  its effect is [local] to the book or [encapsulate] form containing
  it; see [ACL2-defaults-table].

    General Form:
    (set-ignore-ok flg)

  where flg is either t, nil, or :warn.

  One might find this event useful when one is generating function
  definitions by an automated procedure, when that procedure does not
  take care to make sure that all formals are actually used in the
  definitions that it generates.

  Note: Defun will continue to report irrelevant formals even if
  :set-ignore-ok has been set to t, unless you also use
  [set-irrelevant-formals-ok] to instruct it otherwise.")
 (SET-INHIBIT-OUTPUT-LST
  (PROVER-OUTPUT)
  "Control output

    Examples:
    (set-inhibit-output-lst '(warning))
    (set-inhibit-output-lst '(proof-tree prove proof-checker))
    (set-inhibit-output-lst *valid-output-names*) ; inhibit all prover output
    :set-inhibit-output-lst (proof-tree prove)

    General Form:
    (set-inhibit-output-lst lst)

  where lst is a form (which may mention [state]) that evaluates to a
  list of names, each of which is the name of one of the following
  ``kinds'' of output produced by ACL2.

    error          error messages
    warning        warnings other than those related to soundness
    warning!       warnings (of all degrees of importance)
    observation    observations
    prove          commentary produced by the theorem prover
    proof-checker  commentary produced by the proof-checker
    event          non-proof commentary produced by events such as defun
                   and encapsulate
    history        output from history commands such as :ubt and :pbt
    summary        the summary at the successful conclusion of an event
    proof-tree     proof-tree output

  It is possible to inhibit each kind of output by putting the
  corresponding name into lst. For example, if 'warning is included
  in (the value of) lst, then no warnings are printed except those
  related to soundness, e.g., the inclusion of an uncertified book.
  Note that [proof-tree] output is affected by
  set-inhibit-output-lst; see [proof-tree].

  Note that proof output can be controlled without inhibiting it using
  this utility, and indeed is already quite limited by default. See
  [set-gag-mode].

  See [with-output] for a variant of this utility that can be used in
  [books]. Also see [set-inhibit-warnings] for how to inhibit
  individual warning types and see [set-inhibited-summary-types] for
  how to inhibit individual parts of the summary.

  Printing of events on behalf of [certify-book] and [encapsulate] is
  inhibited when both 'event and 'prove belong to lst. Otherwise,
  printing of events is controlled by the [ld] special
  [ld-pre-eval-print].

  Note for advanced users. By including warning! in lst, you are
  automatically including warning as well: all warnings will be
  inhibited. This is not the case if you modify value of state global
  variable 'inhibit-output-lst directly (with [assign] or
  f-put-global); then, if you include warning! but not warning, then
  warnings not related to soundness will still be printed (which is
  probably not what was intended).")
 (SET-INHIBIT-WARNINGS
  (PROVER-OUTPUT)
  "Control warnings

    Examples:
    (set-inhibit-warnings \"theory\" \"use\")

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  It is [local] to the book or [encapsulate] form in which it occurs;
  see [set-inhibit-warnings!] for a corresponding non-[local] event.
  Indeed, (set-inhibit-warnings ...) is equivalent to (local
  (set-inhibit-warnings! ...)).

    General Form:
    (set-inhibit-warnings string1 string2 ...)

  where each string is considered without regard to case. This macro is
  equivalent to (local (table inhibit-warnings-table nil 'lst
  :clear)), where lst is the list of strings supplied. This macro is
  an event (see [table]), but no output results from a
  set-inhibit-warnings event.

  ACL2 prints warnings that may, from time to time, seem excessive to
  experienced users. Each warning is ``labeled'' with a string
  identifying the type of warning. Consider for example

    ACL2 Warning [Use] in ( THM ...):  It is unusual to :USE ....

  Here, the label is \"Use\". The argument list for set-inhibit-warnings
  is a list of such labels, each of which is a string. Any warning is
  suppressed if its label is a member of this list, where case is
  ignored. Thus, for example, the warning above will not be printed
  after a call of set-inhibit-warnings that contains the string,
  \"Use\" (or any string that is [string-equal] to \"Use\", such as \"use\"
  or \"USE\"). In summary: the effect of this event is to suppress any
  warning whose label is a member of the given argument list, where
  case is ignored.

  The list of currently inhibited warnings is the list of keys in the
  [table] named inhibit-warnings-table. (The values in the table are
  irrelevant.) One way to get that value is to get the result from
  evaluating the following form: (table-alist 'inhibit-warnings-table
  (w state)). Of course, if warnings are inhibited overall --- see
  [set-inhibit-output-lst] --- then this value is entirely
  irrelevant.")
 (SET-INHIBIT-WARNINGS!
  (PROVER-OUTPUT)
  "Control warnings non-[local]ly

  Please see [set-inhibit-warnings], which is the same as
  set-inhibit-warnings! except that the latter is not [local] to the
  [encapsulate] or the book in which it occurs. Probably
  [set-inhibit-warnings] is to be preferred unless you have a good
  reason for wanting to export the effect of this event outside the
  enclosing [encapsulate] or book.")
 (SET-INHIBITED-SUMMARY-TYPES
  (PROVER-OUTPUT)
  "Control which parts of the summary are printed

    Example:
    (set-inhibited-summary-types '(rules time))

  Note: This is not an event. Rather, it changes the [state], in
  analogy to [set-inhibit-output-lst].

    General Form:
    (set-inhibited-summary-types form)

  where form evaluates to a true-list of symbols, each of which is
  among the values of the constant *summary-types*, i.e.: header,
  form, rules, hint-events, warnings, time, steps, value, and
  splitter-rules. Each specified type inhibits printing of the
  corresponding portion of the summaries printed at the conclusions
  of [events], where header refers to an initial newline followed by
  the line containing just the word Summary.

  Note the distinction between rules and hint-events. Rules provides a
  record of automatic rule usage by the prover, while hint-events
  shows the names of events given to :USE or :BY [hints], as well as
  [clause-processor] functions given to :CLAUSE-PROCESSOR hints that
  have an effect on the proof.

  Also see [set-inhibit-output-lst]. Note that
  set-inhibited-summary-types has no effect when summary is one of
  the types inhibited by [set-inhibit-output-lst], because in that
  case none of the summary will be printed.

  To control summary types for a single event, see [with-output].")
 (SET-INVISIBLE-FNS-TABLE
  (LOOP-STOPPER)
  "Set the invisible functions table

    Examples:
    (set-invisible-fns-table ((binary-+ unary--)
                              (binary-* unary-/)
                              (unary-- unary--)
                              (unary-/ unary-/)))
    (set-invisible-fns-table t) ; restore original invisible-fns-table

  Among other things, the setting above has the effect of making
  [unary--] ``invisible'' for the purposes of applying permutative
  :[rewrite] rules to [binary-+] trees. Thus, arg and (unary-- arg)
  will be given the same weight and will be permuted so as to be
  adjacent. The form (invisible-fns-table (w state)) returns the
  current value of the invisible functions table.

  Also see [add-invisible-fns] and see [remove-invisible-fns] for
  events that add to and remove from the invisible functions table,
  while accounting for macro aliases (see [macro-aliases-table]).

    General Form:
    (set-invisible-fns-table alist)

  where alist is either t or a true list of pairs, each element of
  which is of the form (fn ufn1 ... ufnk), where fn is a function
  symbol and each ufni is a unary function symbol. When alist is t,
  the initial value of this table is used in its place. Modulo the
  replacement of alist by the default setting when alist is t, this
  macro is equivalent to

    (table invisible-fns-table nil 'alist :clear)

  which is also an event (see [table]).

  Note that set-invisible-fns-table does not evaluate its argument.
  However, you can call [table] directly for that purpose. For
  example,

    (set-invisible-fns-table ((binary-+ unary--)
                              (binary-* unary-/)
                              (unary-- unary--)
                              (unary-/ unary-/)))

  ie equivalent to the following; see [table].

    (table invisible-fns-table nil
           (quote ((binary-+ unary--)
                   (binary-* unary-/)
                   (unary-- unary--)
                   (unary-/ unary-/)))
           :clear)

  See [invisible-fns-table] for a description of the invisible
  functions table.")
 (SET-IPRINT
  (IO)
  "Control whether abbreviated output can be read back in

  The following log may be sufficient for you to see how to use
  set-iprint; more explanation is below. The example is taken from a
  session that used the [break-rewrite] utility, but familiarity with
  that utility is not necessary in order to understand this example.
  What it shows is that the form (set-iprint t) allows you to
  recover, using [without-evisc], output that had been hidden.

    ACL2 !>(thm (p y))

    (1 Breaking (:REWRITE AX) on (P Y):
    1 ACL2 >:eval

    1x (:REWRITE AX) failed because :HYP 1 rewrote to
    (EQUAL Y '(NIL NIL NIL NIL ...)).

    1 ACL2 >:a!
    Abort to ACL2 top-level
    Here is the current pstack [see :DOC pstack]:
    (REWRITE-ATM SIMPLIFY-CLAUSE WATERFALL)

    *** Note: No checkpoints to print. ***

    ACL2 Version 6.4.  Level 1.  Cbd \"u/smith/\".
    System books directory \"/u/smith/acl2/v6-4/books/\".
    Type :help for help.
    Type (good-bye) to quit completely out of ACL2.

    ACL2 !>(set-iprint t)

    ACL2 Observation in SET-IPRINT:  Iprinting has been enabled.
    ACL2 !>(thm (p y))

    (1 Breaking (:REWRITE AX) on (P Y):
    1 ACL2 >:eval

    1x (:REWRITE AX) failed because :HYP 1 rewrote to
    (EQUAL Y '(NIL NIL NIL NIL . #@2#)).

    1 ACL2 >(without-evisc '(EQUAL Y '(NIL NIL NIL NIL . #@2#)))
    (EQUAL Y
           '(NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
                 NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
                 NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
                 NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
                 NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
                 NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
                 NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
                 NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
                 NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
                 NIL NIL NIL NIL NIL NIL NIL NIL NIL))
    1 ACL2 >

  This concludes the introductory example.

  When ACL2 pretty-prints large expressions using formatted printing
  (see [fmt]), it may save time and space by printing tokens `#' or
  `...' in place of certain subexpressions. By default this only
  happens for a few settings such as error and warning messages; see
  [set-evisc-tuple] for controlling such elision in general. The full
  expression is unavailable to the user when `#' or `...' is printed,
  but that is easily solved by evaluating the form

    (set-iprint t)

  to enable a mode called ``iprinting''. Then, instead of printing `#'
  or `...', ACL2 prints `#@i#' for i = 1,2,3,... --- all in base 10.
  ACL2 can read back in such `#@i#' because under the hood, i is
  associated with its corresponding elided form. Thus the term
  ``iprint'' can be viewed as suggesting ``interactive print'' or
  ``index print''. We also think of ``iprint'' as suggesting ``i
  printing'', to suggest the printing of token `#@i#'. We call i the
  ``iprint index'' of that token.

  The following example should suffice to illustrate how to recover
  elided subexpressions. (Below this example we provide details that
  may be of interest only to advanced users.) Here we cause an error
  by defining a macro of one argument and then calling it with two
  arguments. By default, error messages abbreviate subexpressions
  deeper than level 5 with `#' and past the 7th element of a list
  with `...'. We see this behavior below.

    ACL2 !>(defmacro foo (x) x)

    Summary
    Form:  ( DEFMACRO FOO ...)
    Rules: NIL
    Warnings:  None
    Time:  0.02 seconds (prove: 0.00, print: 0.00, other: 0.02)
     FOO
    ACL2 !>(foo arg1 (a (b (c (d (e (f (g)))))) h i j k l m n))

    ACL2 Error in macro expansion:  Wrong number of args in macro expansion
    of (FOO ARG1 (A (B (C (D #))) H I J K L ...)).  (See :DOC set-iprint
    to be able to see elided values in this message.)

    ACL2 !>(set-iprint t)

    ACL2 Observation in SET-IPRINT:  Iprinting has been enabled.
    ACL2 !>(foo arg1 (a (b (c (d (e (f (g)))))) h i j k l m n))

    ACL2 Error in macro expansion:  Wrong number of args in macro expansion
    of (FOO ARG1 (A (B (C (D #@1#))) H I J K L . #@2#)).

    ACL2 !>(acl2-count '(FOO ARG1 (A (B (C (D #@1#))) H I J K L . #@2#)))
    23
    ACL2 !>

  Sometimes you may want to supply the abbreviated form not to compute
  with it, as in the [ACL2-count] example just above, but so that you
  can see it. The macro [without-evisc] eliminates elision during
  printing. Below we show two ways to use this utility: first, we use
  it to print the elided form, and then, we use it instead on the
  original input form to print the entire error message.

    ACL2 !>(without-evisc '(FOO ARG1 (A (B (C (D #@1#))) H I J K L . #@2#)))
    (FOO ARG1
         (A (B (C (D (E (F (G))))))
            H I J K L M N))
    ACL2 !>(without-evisc (foo arg1 (a (b (c (d (e (f (g)))))) h i j k l m n)))

    ACL2 Error in macro expansion:  Wrong number of args in macro expansion
    of (FOO ARG1 (A (B (C (D (E (F (G)))))) H I J K L M N)).

    ACL2 !>

  The documentation above probably suffices for most users. For those
  who want more details, below we detail all the ways to use the
  set-iprint utility.

    Example Forms:
    (set-iprint t)   ; enable iprinting (elision with #@i@)
    (set-iprint nil) ; disable iprinting

    General Form:
    (set-iprint action        ; t, nil, :reset, :reset-enable, or :same
                :soft-bound s ; initially  1000
                :hard-bound h ; initially 10000)

  where all arguments are optional, but ACL2 queries for action if it
  is omitted. We defer the explanations of :soft-bound and
  :hard-bound. The values for action are as follows:

      T --- Enable iprinting.

      NIL --- Disable iprinting.

      :RESET --- Reset iprinting to its initial disabled state, so that
      when enabled, the first index i for which `#@i# is printed will
      be 1. Note that all stored information for existing iprint
      indices will be erased.

      :RESET-ENABLE --- Reset iprinting as with :reset, and then enable
      iprinting.

      :SAME --- Make no change to the iprinting state (other than setting
      the :soft-bound and/or :hard-bound if specified, as explained
      below).

  Immediately after a top-level form is read, hence before it is
  evaluated, a check is made for whether the latest iprint index
  exceeds a certain bound, (iprint-soft-bound state) --- 1000, by
  default. If so, then the (iprint-last-index state) is set back to
  0. This soft bound can be changed to any positive integer k by
  calling set-iprint with :soft-bound k, typically (set-iprint :same
  :soft-bound k)].

  The above ``soft bound'' is applied once for each top-level form, but
  you may want finer control by applying a bound after the
  pretty-printing of each individual form (since many forms may be
  pretty-printed between successive evaluations of top-level forms).
  That bound is (iprint-hard-bound state), and can be set with the
  :hard-bound argument in analogy to how :soft-bound is set, as
  described above.

  A ``rollover'' is the detection that the soft or hard bound has been
  exceeded, along with a state update so that the next iprint index
  will be 1. When a rollover occurs, any index beyond the latest
  iprint index is no longer available for reading. At the top level
  of the ACL2 read-eval-print loop, this works as follows: ACL2 reads
  the next top-level form according to the current iprint state, then
  handles a rollover if the latest iprint index exceeded the current
  soft bound. The following log illustrates a rollover, which follows
  the description above.

    ACL2 !>(set-iprint t :soft-bound 3)

    ACL2 Observation in SET-IPRINT:  The soft-bound for iprinting has been
    set to 3.

    ACL2 Observation in SET-IPRINT:  Iprinting has been enabled.
    ACL2 !>(set-evisc-tuple (evisc-tuple 2 3 nil nil) :sites :ld)
     (:LD)
    ACL2 !>'((a b c d e f g) (a b c d e f g) (a b c d e f g))
    ((A B C . #@1#) (A B C . #@2#) (A B C . #@3#))
    ACL2 !>'((a b c d e f g) (a b c d e f g) (a b c d e f g))
    ((A B C . #@4#) (A B C . #@5#) (A B C . #@6#))
    ACL2 !>(without-evisc '((A B C . #@4#) (A B C . #@5#) (A B C . #@6#)))
    ((A B C D E F G)
     (A B C D E F G)
     (A B C D E F G))
    ACL2 !>'(1 2 3 4 5)
    (1 2 3 . #@1#)
    ACL2 !>'((a b c d e f g) (a b c d e f g) (a b c d e f g))
    ((A B C . #@2#) (A B C . #@3#) (A B C . #@4#))
    ACL2 !>(without-evisc '((A B C . #@4#) (A B C . #@5#) (A B C . #@6#)))
    ((A B C D E F G)
     (A B C D E F G)
     (A B C D E F G))
    ACL2 !>(without-evisc '((A B C . #@4#) (A B C . #@5#) (A B C . #@6#)))

    ***********************************************
    ************ ABORTING from raw Lisp ***********
    Error:  Out-of-bounds index in #@5#.  See :DOC set-iprint.
    ***********************************************

    If you didn't cause an explicit interrupt (Control-C),
    then the root cause may be call of a :program mode
    function that has the wrong guard specified, or even no
    guard specified (i.e., an implicit guard of t).
    See :DOC guards.

    To enable breaks into the debugger (also see :DOC acl2-customization):
    (SET-DEBUGGER-ENABLE T)
    ACL2 !>

  We conclude by mentioning two cases where iprinting and evisc-tuples
  are ignored. (1) This is typically the case when printing results
  in raw Lisp outside the ACL2 loop. To use iprinting and
  evisc-tuples in raw Lisp, use raw-mode; see [set-raw-mode]. In
  raw-mode, results that are ACL2 objects will be printed in the same
  way that ACL2 would print those results if not in raw-mode. (2)
  Iprinting and evisc-tuples are ignored by [print-object$], which
  however is sensitive to many settings that do not affect formatted
  ([fmt] etc.) printing; see [print-control].

  The reader interested in design and implementation issues considered
  during the addition of iprinting to ACL2 is invited to read the
  paper ``Abbreviated Output for Input in ACL2: An Implementation
  Case Study''; see the {proceedings of ACL2 Workshop 2009 |
  http://www.cs.utexas.edu/users/moore/acl2/workshop-2009/}.")
 (SET-IRRELEVANT-FORMALS-OK
  (DEFUN)
  "Allow irrelevant formals in definitions

    Examples:
    (set-irrelevant-formals-ok t)
    (set-irrelevant-formals-ok nil)
    (set-irrelevant-formals-ok :warn)

  The first example above allows irrelevant formals in definitions; see
  [irrelevant-formals]. The second example disallows irrelevant
  formals; this is the default. The third example allows irrelevant
  formals, but prints an appropriate warning.

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  Moreover, its effect is to set the [ACL2-defaults-table], and hence
  its effect is [local] to the book or [encapsulate] form containing
  it; see [ACL2-defaults-table].

    General Form:
    (set-irrelevant-formals-ok flg)

  where flg is either t, nil, or :warn.")
 (SET-LD-KEYWORD-ALIASES (POINTERS)
                         "See [ld-keyword-aliases].")
 (SET-LD-KEYWORD-ALIASES! (POINTERS)
                          "See [ld-keyword-aliases].")
 (SET-LD-REDEFINITION-ACTION (POINTERS)
                             "See [ld-redefinition-action].")
 (SET-LD-SKIP-PROOFS (POINTERS)
                     "See [ld-skip-proofsp].")
 (SET-LD-SKIP-PROOFSP (POINTERS)
                      "See [ld-skip-proofsp].")
 (SET-LET*-ABSTRACTION (POINTERS)
                       "See [set-let*-abstractionp].")
 (SET-LET*-ABSTRACTIONP
  (PROVER-OUTPUT)
  "To shorten many prettyprinted clauses

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  Moreover, its effect is to set the [ACL2-defaults-table], and hence
  its effect is [local] to the book or [encapsulate] form containing
  it; see [ACL2-defaults-table].

  When this flag is set to t, subterms that occur more than once in a
  clause are abstracted away with [let*], generally shortening the
  displayed size of the clauses. This flag only affects how clauses
  are printed. It does not change what terms the theorem prover
  manipulates.

    :set-let*-abstractionp t ;;; or, (set-let*-abstractionp t)

  will cause the prettyprinter to do ``let* abstraction'' on clauses
  before they are printed. The algorithm finds the maximal
  multiply-occuring subterm and extracts it, binding it to some new
  variable and replacing its occurrences by that variable. This
  produces a let* form. This process is iterated until no subterm
  occurs more than once. This process generally takes a little time,
  but less time than to print large clauses. The process can greatly
  reduce the amount of text produced by the prover.

  THIS ONLY AFFECTS HOW THE CLAUSES ARE PRINTED! The unabstracted
  clauses are manipulated by the theorem prover.

    :set-let*-abstractionp nil

  restores normal clause printing.

  The mode is stored in the defaults table, See [ACL2-defaults-table].
  Thus, the mode may be set locally in books.")
 (SET-MATCH-FREE-DEFAULT
  (FREE-VARIABLES)
  "Provide default for :match-free in future rules

    General Forms:
    (set-match-free-default :once)
    (set-match-free-default :all)
    (set-match-free-default nil)

  Note: This utility does not apply to [type-prescription] rules; for a
  related topic pertinent to such rules, see
  [free-variables-type-prescription].

  As described elsewhere (see [free-variables]), a [rewrite], [linear],
  or [forward-chaining] rule may have free variables in its
  hypotheses, and ACL2 can be directed either to try all bindings
  (``:all'') or just the first (``:once'') when relieving that
  hypothesis, as a basis for relieving subsequent hypotheses. This
  directing of :all or :once is generally provided by specifying
  either :match-free :once or :match-free :all in the :[rule-classes]
  of the rule. If neither of these is specified, then the most recent
  set-match-free-default is used by ACL2 to fill in this missing
  :match-free field. See [rule-classes]. Except: If the last
  set-match-free-default specifies nil, then ACL2 reverts to the
  behavior it had at start-up, as described in Remarks (2) and (3)
  below.

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  It uses the [ACL2-defaults-table], and hence its effect is [local]
  to the book or [encapsulate] form in which it occurs.

  Remarks.

  (1) The use of set-match-free-default has no effect on existing
  rules. In order to change the behavior of existing rules with
  respect to free-variable matching, see [add-match-free-override].

  (2) If you submit a [rewrite], [linear], or [forward-chaining] rule
  with a free variable in a hypothesis, and no default setting was
  previously specified with set-match-free-default or the default
  setting is nil, and the rule is not within a book being processed
  with [include-book], [certify-book], or [rebuild], then a warning
  or error is caused. In order to make this an error instead of a
  warning, see [set-match-free-error].

  (3) If you submit a [rewrite], [linear], or [forward-chaining] rule
  with a free variable in a hypothesis, and no default setting has
  been previously specified with set-match-free-default or the
  default setting is nil, and no error is caused (see (2) above),
  then the default :all is used.")
 (SET-MATCH-FREE-ERROR
  (FREE-VARIABLES)
  "Control error vs. warning when :match-free is missing

    Legal Forms:
    (set-match-free-error nil)
    :set-match-free-error nil
    (set-match-free-error t)
    :set-match-free-error t

  As described elsewhere (see [free-variables]), when a [rewrite],
  [linear], or [forward-chaining] rule has free variables in its
  hypotheses, the user can specify whether to try all bindings
  (``:all'') or just the first (``:once'') when relieving its
  hypotheses, as a basis for relieving subsequent hypotheses. This
  direction of :all or :once is generally provided by specifying
  either :match-free :once or :match-free :all in the :[rule-classes]
  of the rule.

  But suppose that neither of these is specified for such a rule.
  (Note: set-match-free-error is not relevant for [type-prescription]
  rules.) Also suppose that set-match-free-default has not specified
  a default of :once or :all (see [set-match-free-default]). In this
  case a warning will occur except when in the context of
  [include-book]. If you prefer to see an error in such cases, except
  in the context of [certify-book], execute (set-match-free-error t).
  If there is no error, then a default of :all is used.

  Note: This is NOT an event! Instead, set-match-free-error sets the
  state global 'match-free-error (see [state] and see [assign]).
  Thus, this form cannot be put into a book. If you are tempted to
  put it into a book, consider the fact that it really isn't needed
  there, since the absence of :match-free does not cause an error in
  the context of [certify-book] or [include-book]. If you still feel
  the need for such a form, consider using set-match-free-default to
  provide a default, at least within the scope of the current book
  (if any); see [set-match-free-default].")
 (SET-MEASURE-FUNCTION
  (DEFUN)
  "Set the default measure function symbol

    Examples:
    (set-measure-function nqthm::count)

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.

    General Form:
    (set-measure-function name)

  where name is a function symbol of one argument. This macro is
  equivalent to (table acl2-defaults-table :measure-function 'name),
  and hence is [local] to any [books] and [encapsulate] [events] in
  which it occurs; see [ACL2-defaults-table]. Although this is thus
  an event (see [table]), nevertheless no output results from a
  set-measure-function event.

  This event sets the default measure function to name. Subsequently,
  if a recursively defined function is submitted to [defun] with no
  explicitly given :measure argument, [defun] ``guesses'' the measure
  (name var), where name is the then current default measure function
  and var is the first formal found to be tested along every branch
  and changed in every recursive call.

  Note that if (table acl2-defaults-table :measure-function 'name) has
  its default value of nil, then the default measure function is
  [ACL2-count].")
 (SET-NON-LINEAR (POINTERS)
                 "See [set-non-linearp].")
 (SET-NON-LINEARP
  (NON-LINEAR-ARITHMETIC)
  "To turn on or off non-linear arithmetic reasoning

    Examples:
    (set-non-linearp t)
    (set-non-linearp nil)

  See [non-linear-arithmetic]. This event is equivalent to (table
  acl2-defaults-table :non-linearp <t-or-nil>), and hence is [local]
  to any [books] and [encapsulate] [events] in which it occurs; see
  [ACL2-defaults-table].

  The initial value is nil.")
 (SET-OVERRIDE-HINTS
  (OVERRIDE-HINTS)
  "Set the [override-hints]

  See [override-hints] for a discussion of override-hints. Here we
  describe how to set them. Note that the effects of
  set-override-hints [events] are [local] to the [books] or
  encapsulate [events] in which they reside; see
  [set-override-hints!] to avoid that restriction. Also see
  [add-override-hints] to add to the list of override-hints, rather
  than setting a new list and ignoring the present list.

    General Form:
    (set-override-hints form)

  where form evaluates to a list of computed hint forms. The effect of
  this event is to set the list of [override-hints] to the result of
  that evaluation.")
 (SET-OVERRIDE-HINTS!
  (OVERRIDE-HINTS)
  "Set the [override-hints] non-[local]ly

  Set-override-hints! is the same as [set-override-hints], except that
  the former is not [local] to [books] or [encapsulate] [events] in
  which it occurs. See [set-override-hints]; also see
  [add-override-hints].")
 (SET-PARALLEL-EXECUTION
  (PARALLELISM)
  "For ACL2(p): enabling parallel execution for four parallelism
  primitives

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].
  See [parallelism-tutorial] for an introduction to parallel
  execution in ACL2.

    General Forms:
    (set-parallel-execution nil) ; default for images not built for parallelism
    (set-parallel-execution t)   ; default for images built for parallelism
    (set-parallel-execution :bogus-parallelism-ok)

  Set-parallel-execution takes an argument that specifies the enabling
  or disabling of [parallel] execution for the primitives [pand],
  [por], [plet], and [pargs] (but not [spec-mv-let], whose parallel
  execution remains enabled). However, without using [top-level],
  calls of parallelism primitives made explicitly in the ACL2
  top-level loop, as opposed to inside function bodies, will never
  cause parallel execution; see [parallelism-at-the-top-level].
  Parallel execution is determined by the value of the argument to
  set-parallel-execution, as follows.

  Value t:
  All parallelism primitives used in bodies of function definitions
  are given the opportunity to execute in parallel. However, the use
  of parallelism primitives directly in the ACL2 top-level loop
  causes an error.

  Value :bogus-parallelism-ok:
  Parallel execution is enabled, as for value t. However, the use of
  parallelism primitives directly in the ACL2 top-level loop does not
  cause an error, but rather, simply results in serial execution for
  these primitives.

  Value nil:
  All parallelism primitives degrade to their serial equivalents,
  including their calls made directly in the ACL2 top-level loop.
  Thus, uses of parallelism primitives do not in themselves cause
  errors.")
 (SET-PRINT-BASE
  (IO ACL2-BUILT-INS)
  "Control radix in which numbers are printed

  Also see [set-print-base-radix] for a nice combined use of
  set-print-base and [set-print-radix].

  By default, integers and ratios are printed in base 10. ACL2 also
  supports printing in radix 2, 8, or 16 by calling set-print-base
  with the desired radix (base).

    (set-print-base 10 state) ; Default printing
    (set-print-base 16 state) ; Print integers and ratios in hex

  Here is a sample log.

    ACL2 !>(list 25 25/3)
    (25 25/3)
    ACL2 !>(set-print-base 16 state)
    <state>
    ACL2 !>(list 25 25/3)
    (19 19/3)
    ACL2 !>

  See [set-print-radix] for how to print the radix, for example,
  printing the decimal number 25 in print-base 16 as ``#x25'' rather
  than ``25''. Also see [print-control] for other user-settable print
  controls.

  Note: ACL2 [events] and some other top-level commands (for example,
  [thm], [verify], and history commands such as :pe and :pbt) set the
  print base to 10 during their evaluation. So [set-print-base] has
  no effect while these forms are being processed.")
 (SET-PRINT-BASE-RADIX
  (IO ACL2-BUILT-INS)
  "Control radix in which numbers are printed and printing of the radix

  See [set-print-base] and [set-print-radix] for detailed discussions
  of those functions. Set-print-base-radix combines their
  functionality by setting the radix (as is done by
  [set-print-base]), and then causing the radix to be printed (as is
  done by [set-print-radix]) exactly when the specified radix is not
  10.

  Here is a sample log.

    ACL2 !>(list 25 25/3)
    (25 25/3)
    ACL2 !>(set-print-base-radix 16 state)
    <state>
    ACL2 !>(list 25 25/3)
    (#x19 #x19/3)
    ACL2 !>(set-print-base-radix 10 state)
    <state>
    ACL2 !>(list 25 25/3)
    (25 25/3)
    ACL2 !>")
 (SET-PRINT-CASE
  (IO ACL2-BUILT-INS)
  "Control whether symbols are printed in upper case or in lower case

  By default, symbols are printed in upper case when vertical bars are
  not required, as specified by Common Lisp. As with Common Lisp,
  ACL2 supports printing in a \"downcase\" mode, where symbols are
  printed in lower case. Many printing functions (some details below)
  print characters in lower case for a symbol when the ACL2 [state]
  global variable print-case has value :downcase and vertical bars
  are not necessary for printing that symbol. (Thus, this state
  global functions in complete analogy to the Common Lisp global
  *print-case*.) The value print-case is returned by (print-case),
  and may be set using the function set-print-case as follows.

    (set-print-case :upcase   state) ; Default printing
    (set-print-case :downcase state) ; Print symbols in lower case when
                                     ; vertical bars are not required

  The ACL2 user can expect that the :downcase setting will have an
  effect for formatted output (see [fmt] and see [fms]) when the
  directives are ~p, ~P, ~q, or ~Q, for built-in functions princ$ and
  prin1$, and the ppr family of functions, and not for built-in
  function print-object$. For other printing functions, the effect of
  :downcase is unspecified.

  Also see [print-control] for other user-settable print controls.")
 (SET-PRINT-CIRCLE (POINTERS)
                   "See [print-control].")
 (SET-PRINT-CLAUSE-IDS
  (PROVER-OUTPUT)
  "Cause subgoal numbers to be printed when 'prove output is inhibited

    General Forms:
    (set-print-clause-ids t)
    :set-print-clause-ids t
    (set-print-clause-ids nil)
    :set-print-clause-ids nil

  This command affects output from the theorem prover only when 'prove
  output is inhibited (see [set-inhibit-output-lst]) or gag-mode is
  on (but in that case the :goals setting issues this command
  automatically; see [set-gag-mode]). Calling this macro with value t
  as shown above will cause subsequent proof attempts with 'prove
  output inhibited to print the subgoal number, so that you can see
  the progress of the proof; value nil reverts to the default
  behavior, where this is not the case. On a related note, we point
  out that you can cause output to be saved for later display; see
  [pso] and see [pso!].

  If 'prove output is inhibited or gag-mode is on, and if you issue
  (set-print-clause-ids t) (either explicitly or with (set-gag-mode
  :goals)), then you can restrict when subgoal numbers are printed.
  In the following example we restrict to subgoals that are no more
  than four inductions deep, no more than four casesplits deep, and
  no more than four single-subgoals deep. For additional relevant
  explanation, see [clause-identifier] and see [defattach].

    (defun print-clause-id-okp-level-4 (cl-id)
      (declare (xargs :mode :logic :guard (clause-id-p cl-id)))
      (and (<= (length (access clause-id cl-id :pool-lst))
               4)
           (<= (length (access clause-id cl-id :case-lst))
               4)
           (<= (access clause-id cl-id :primes)
               4)))

    (defattach print-clause-id-okp print-clause-id-okp-level-4)")
 (SET-PRINT-ESCAPE (POINTERS)
                   "See [print-control].")
 (SET-PRINT-GV-DEFAULTS
  (PRINT-GV GUARD DEBUGGING)
  "Set default keyword values for [print-gv]

    Example Forms:
    (set-print-gv-defaults :conjunct t)
    (set-print-gv-defaults :conjunct t :substitute t)
    (set-print-gv-defaults :evisc-tuple
                           (evisc-tuple 4   ; print-level
                                        5   ; print-length
                                        (world-evisceration-alist state nil)
                                        nil ; hiding-cars
                                        ))
    (set-print-gv-defaults :conjunct :restore
                           :substitute :restore
                           :evisc-tuple :restore)
    (set-print-gv-defaults)

    General Form:
    (set-print-gv-defaults :conjunct c
                           :substitute s
                           :evisc-tuple e)

  where any or all of c, s, and e may be the keyword, :restore, and
  otherwise: c and s are Boolean and e is an [evisc-tuple]. These
  forms set the defaults for the corresponding keyword arguments of
  the print-gv utility, where the value :restore restores the system
  defaults; see [print-gv]. Evaluation returns an [error-triple]
  whose value is an alist associating keywords with their current
  defaults. In particular, the call (set-print-gv-defaults) simply
  returns an error-triple with that alist as the value, without
  changing any defaults.

  Thus, for example, if you submit the form

    (set-print-gv :substitute t
                  :conjunct t
                  :evisc-tuple (evisc-tuple 3 4 nil nil))

  then subsequently, if you submit the form :print-gv or (print-gv) it
  would be interpreted as follows.

    (print-gv :substitute t
              :conjunct t
              :evisc-tuple (evisc-tuple 3 4 nil nil))

  Of course, you can override your defaults, so that for example if you
  subsequently submit the form (print-gv :substitute nil) or the form
  (print-gv :substitute nil :evisc-tuple (print-gv-evisc-tuple)),
  these would be equivalent to submitting the following forms,
  respectively.

    (print-gv :substitute nil
              :conjunct t
              :evisc-tuple (evisc-tuple 3 4 nil nil))
    (print-gv :substitute nil
              :conjunct t
              :evisc-tuple (print-gv-evisc-tuple))")
 (SET-PRINT-LENGTH (POINTERS)
                   "See [print-control].")
 (SET-PRINT-LEVEL (POINTERS)
                  "See [print-control].")
 (SET-PRINT-LINES (POINTERS)
                  "See [print-control].")
 (SET-PRINT-RADIX
  (IO ACL2-BUILT-INS)
  "Control printing of the radix for numbers

  Also see [set-print-base-radix] for a nice combined use of
  [set-print-base] and set-print-radix.

  See [set-print-base] for background on how the print base affects the
  printing of numbers. set-print-radix affects whether a radix
  indicated when a number is printed. The radix is not indicated by
  default, or after evaluating (set-print-radix nil state). But if
  set-print-radix is called with a first argument that evaluates to a
  nonnil value --- for example, (set-print-radix t state) --- then
  the radix is shown when printing. (This behavior is consistent with
  the handling of Common Lisp global *print-radix*.) The following
  log illustrates how this works.

    ACL2 !>(list 25 25/3)
    (25 25/3)
    ACL2 !>(set-print-base 16 state)
    <state>
    ACL2 !>(list 25 25/3)
    (19 19/3)
    ACL2 !>(set-print-radix t state)
    <state>
    ACL2 !>(list 25 25/3)
    (#x19 #x19/3)
    ACL2 !>(set-print-base 10 state)
    <state>
    ACL2 !>(list 25 25/3)
    (25. #10r25/3)
    ACL2 !>(set-print-radix nil state)
    <state>
    ACL2 !>(list 25 25/3)
    (25 25/3)
    ACL2 !>")
 (SET-PRINT-READABLY (POINTERS)
                     "See [print-control].")
 (SET-PRINT-RIGHT-MARGIN (POINTERS)
                         "See [print-control].")
 (SET-PROVER-STEP-LIMIT
  (MISCELLANEOUS)
  "Sets the step-limit used by the ACL2 prover

  This event provides a way to limit the number of so-called ``prover
  steps'' permitted for an event. See [with-prover-step-limit] for a
  way to specify the limit on prover steps for a single event, rather
  than globally. For a related utility based on time instead of
  prover steps, see [with-prover-time-limit]. For examples of how
  step limits work, see the community book
  books/misc/misc2/step-limits.lisp. For a utility that returns an
  indicator of the number of prover steps most recently taken, see
  [last-prover-steps].

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  Moreover, its effect is to set the [ACL2-defaults-table], and hence
  its effect is [local] to the book or [encapsulate] form containing
  it; see [ACL2-defaults-table].

    Example Forms:
    (set-prover-step-limit *default-step-limit*) ; no limit on prover steps
    (set-prover-step-limit nil)   ; abbreviation for the form just above
    (set-prover-step-limit 10000) ; allow at most 10,000 prover steps per event

    General Form:
    (set-prover-step-limit expr)

  where expr evaluates either to nil or else to a natural number not
  exceeding the value of *default-step-limit*. If that value is nil
  or the value of *default-step-limit*, then no default limit is
  placed on the number of prover ``steps'' (see below) during
  processing of an event. Otherwise, that value is the maximum number
  of prover steps permitted before an error occurs.

  This event specifies the limit on the number of ``steps'' counted by
  the ACL2 prover during processing of an event. Currently, a step is
  counted for each call of the system functions rewrite and
  expand-abbreviations. However, the steps counted may change in
  future releases of ACL2, so users would probably be well served by
  avoiding the assumption that only the above two calls are counted
  as prover steps.

  Depending on the computer you are using, you may have less than a
  half-hour of time before the number of prover steps exceeds the
  maximum step-limit, which is one less than the value of
  *default-step-limit*. Note however the exception stated above: if
  the ``limit'' is nil or is the value of *default-step-limit*, then
  no limit is imposed.

  There is at best a loose connection between the counting of steps and
  [with-prover-time-limit]. In particular, for a call of mfc-rw or
  any mfc- function (see [extended-metafunctions]), the steps taken
  during that call are forgotten when returning from that call.

  The limit is relevant for every event, as well as for calls of [thm]
  and [certify-book] --- and more generally, to any form that creates
  a ``summary context'' to print the usual event summary. The limit
  is also put in force when entering the [proof-checker]. A call of
  set-prover-step-limit applies to each subsequent form unless the
  call of set-prover-step-limit is within a summary context, in which
  case its effect disappears when exiting that summary context.

  The limit applies to each event, not just ``atomic'' events. Consider
  the following example.

    (set-prover-step-limit 500)

    (encapsulate
      ()
      (defthm lemma-1 ; takes 380 steps
        (equal (append (append x y) z) (append x y z))
        :rule-classes nil)
      (defthm lemma-2 ; would take 319 steps
        (equal (len (append x y)) (+ (len x) (len y)))
        :rule-classes nil))

  The first [defthm] event, lemma-1 takes 380 steps (as of this
  writing), as shown in the summary:

    Prover steps counted:  380
    LEMMA-1

  The second [defthm] event, lemma-2, takes 319 steps (as of this
  writing) when evaluated at the top level. However, in the context
  above, 380 steps of the available 500 steps (from the
  set-prover-step-limit event above) have already been taken under
  the above [encapsulate] event. Thus, when the number of steps would
  exceed 120, the proof of lemma-2 is aborted:

    ACL2 Error in STEP-LIMIT:  The prover step-limit, which is 120 in the
    current context, has been exceeded.  See :DOC set-prover-step-limit.

  The summary for lemma-2 reflects that situation:

    Prover steps counted:  More than 120

  The summary for the [encapsulate] event then indicates that the
  available steps for that event have also been exceeded:

    Prover steps counted:  More than 500

  The discussion above applies to any event that contains other events,
  hence applies similarly to [progn] events.

  For those who use [make-event], we note that prover steps in the
  expansion phase similarly contribute to the total number of steps
  counted. For example, suppose that the limit is 500 prover steps as
  above, and you submit (make-event EXPR), where 300 prover steps
  take place during evaluation of EXPR, producing event EV. Then
  evaluation of EV will cause an error if it takes more than 200
  prover steps. This observation actually can be used to count prover
  steps for sequences of forms that are not all legal [events] (see
  [embedded-event-form]), such as calls of [thm]. For example, a
  small built-in ACL2 test suite that includes [thm] forms can be run
  by evaluating the form (mini-proveall), and the steps can be
  counted as shown below. (Here we assume a fresh ACL2 session; an
  error would occur if first, we evaluate the event
  (set-prover-step-limit 500) displayed above.)

    ACL2 !>(make-event (er-progn (mini-proveall) (value '(value-triple nil))))
    [[... output omitted here ...]]
    Summary
    Form:  ( MAKE-EVENT (ER-PROGN ...))
    Rules: NIL
    Warnings:  Double-rewrite, Equiv, Subsume and Non-rec
    Time:  0.38 seconds (prove: 0.04, print: 0.29, other: 0.05)
    Prover steps counted:  41090
     NIL
    ACL2 !>


Subtopics

  [Last-prover-steps]
      The number of prover steps most recently taken")
 (SET-RAW-MODE
  (DEFTTAG)
  "Enter or exit ``raw mode,'' a raw Lisp environment

  Below we discuss raw-mode. In brief: The simplest way to turn
  raw-mode on is :SET-RAW-MODE-ON!, and to turn it off, :SET-RAW-MODE
  NIL. Also see [set-raw-mode-on!].

  ACL2 users often find its careful syntax checking to be helpful
  during code development. Sometimes it is even useful to do code
  development in :[logic] mode, where ACL2 can be used to check
  termination of (mutually) recursive functions, verify guards, or
  even prove properties of the functions.

  However, loading code using [include-book] is much slower than using
  Common Lisp load in raw Lisp, and in this sense ACL2 can get in the
  way of efficient execution. Unfortunately, it is error-prone to use
  ACL2 sources (or their compilations) in raw Lisp, primarily because
  a number of ACL2 primitives will not let you do so. Perhaps you
  have seen this error message when trying to do so:

    HARD ACL2 ERROR in ACL2-UNWIND-PROTECT:  Apparently you have tried
    to execute a form in raw Lisp that is only intended to be executed
    inside the ACL2 loop.

  Even without this problem it is important to enter the ACL2 loop (see
  [lp]), for example in order to set the [cbd] and (to get more
  technical) the readtable.

  ACL2 provides a ``raw mode'' for execution of raw Lisp forms. In this
  mode, [include-book] reduces essentially to a Common Lisp load.
  More generally, the ACL2 logical [world] is not routinely extended
  in raw mode (some sneaky tricks are probably required to make that
  happen). To turn raw mode off or on:

    :set-raw-mode t   ; turn raw mode on
    :set-raw-mode nil ; turn raw mode off

  The way you can tell that you are in raw mode is by looking at the
  prompt (see [default-print-prompt]), which uses a capital ``P''
  (suggesting something like program mode, but more so).

    ACL2 P>

  Typical benefits of raw mode are fast loading of source and compiled
  files and the capability to hack arbitrary Common Lisp code in an
  environment with the ACL2 sources loaded (and hence with ACL2
  primitives available). In addition, ACL2 hard errors will put you
  into the Lisp debugger, rather than returning you to the ACL2 loop,
  and this may be helpful for debugging; see [hard-error] and see
  [illegal], but also see [break-on-error]. However, it probably is
  generally best to avoid raw mode unless these advantages seem
  important. We expect the main benefit of raw mode to be in
  deployment of applications, where load time is much faster than the
  time required for a full-blown [include-book], although in certain
  cases the fast loading of books and treatment of hard errors
  discussed above may be useful during development.

  Raw mode is also useful for those who want to build extensions of
  ACL2. For example, the following form can be put into a certifiable
  book to load an arbitrary Common Lisp source or compiled file.

    (progn (defttag my-application)
           (progn! (set-raw-mode t)
                   (load \"some-file\")))

  Also see [include-raw] and [with-raw-mode]. See [defttag], and see
  [progn!].

  Below are several disadvantages to raw mode. These should discourage
  users from using it for general code development, as :[program]
  mode is generally preferable.

    * Forms are in essence executed in raw Lisp. Hence:
        * Syntax checking is turned off; and
        * Guard checking is completely disabled.

    * Table events, including [logic], are ignored, as are many other
      [events], including [defthm] and [comp].
    * Soundness claims are weakened for any ACL2 session in which raw mode
      was ever entered; see [defttag].
    * The normal undoing mechanism (see [ubt]) is not supported.
    * Unexpected behavior may occur when you return from raw-mode. For
      example, if you redefine a :logic mode function whose guards
      have not been verified, you will not see the change inside the
      ACL2 loop because there, the raw Common Lisp definition is only
      executed after guards have been verified; see
      [guards-and-evaluation] and see [guard-evaluation-table].

  We conclude with some details.

  Printing results. The rules for printing results are unchanged for
  raw mode, with one exception. If the value to be printed would
  contain any Lisp object that is not a legal ACL2 object, then the
  print routine is used from the host Lisp, rather than the usual
  ACL2 printing routine. The following example illustrates the
  printing used when an illegal ACL2 object needs to be printed.
  Notice how that ``command conventions'' are observed (see
  [ld-post-eval-print]); the ``[Note'' occurs one space over in the
  second example, and no result is printed in the third example.

    ACL2 P>(find-package \"ACL2\")
    [Note:  Printing non-ACL2 result.]
    #<The ACL2 package>
    ACL2 P>(mv nil (find-package \"ACL2\") state)
     [Note:  Printing non-ACL2 result.]
    #<The ACL2 package>
    ACL2 P>(mv t (find-package \"ACL2\") state)
    ACL2 P>(mv 3 (find-package \"ACL2\"))
    [Note:  Printing non-ACL2 result.]
    (3 #<The ACL2 package>)
    ACL2 P>

  If you have trouble with large structures being printed out, you
  might want to execute appropriate Common Lisp forms in raw mode,
  for example, (setq *print-length* 5) and (setq *print-level* 5).

  Include-book. The [events] [add-include-book-dir],
  [add-include-book-dir!], [delete-include-book-dir], and
  [delete-include-book-dir!] have been designed to work with raw
  mode. However, if you enter raw mode and then evaluate such forms,
  then the effects of these forms will disappear when you exit raw
  mode, in which case you can expect to see a suitable warning.
  Regarding include-book itself: it should work in raw mode as you
  might expect, at least if a compiled file or expansion file was
  created when the book was certified; see [certify-book].

  Packages. Raw mode disallows the use of [defpkg]. If you want to
  create a new package, first exit raw mode with :set-raw-mode nil;
  you can subsequently re-enter raw mode with :set-raw-mode t if you
  wish.


Subtopics

  [Add-raw-arity]
      Add arity information for raw mode

  [Remove-raw-arity]
      Remove arity information for raw mode")
 (SET-RAW-MODE-ON!
  (DEFTTAG)
  "Enter ``raw mode,'' a raw Lisp environment

  This is the same as ([set-raw-mode] t) except that it first
  introduces a so-called ``trust tag'' (``ttag'') so that
  set-raw-mode will be legal. See [defttag] for a discussion of ttags
  and how they affect [certify-book] and [include-book].

  See [set-raw-mode] for a discussion of raw-mode.")
 (SET-RAW-PROOF-FORMAT
  (PROVER-OUTPUT)
  "Print runes as lists in proof output from simplification

    General Forms:
    (set-raw-proof-format t)
    :set-raw-proof-format t
    (set-raw-proof-format nil)
    :set-raw-proof-format nil

  This command affects output from the theorem prover only when 'prove
  output is not inhibited (see [set-inhibit-output-lst]) and gag-mode
  is off (see [set-gag-mode]). Calling this macro with value t as
  shown above will cause simplification steps from proof output,
  including steps from preprocess (see [simple]), to print the list
  of runes used in a list format, rather than in the English proof
  commentary. This ``raw'' format can be handy when you want to use
  that list as a basis for [hints] that you construct for a
  subsequent proof attempt.

  To obtain the current raw-proof-format (t if that format is active,
  nil if not), evaluate (@ raw-proof-format).")
 (SET-RAW-WARNING-FORMAT
  (PROVER-OUTPUT)
  "Print some warnings in a ``raw'', s-expression format

    General Forms:
    (set-raw-warning-format t)
    :set-raw-warning-format t
    (set-raw-warning-format nil)
    :set-raw-warning-format nil

  This command affects 'warning (and 'warning!) output from the theorem
  prover when not inhibited (see [set-inhibit-output-lst]). Calling
  this macro with value t as shown above will cause warnings to be
  printed in a ``raw'', s-expression format, of the form (:WARNING
  warning-type alist). The following example shows a traditional
  warning message followed by its counterpart after evaluating
  (set-raw-warning-format t).

    ; default format
    ACL2 Warning [Subsume] in ( DEFTHM APP-COMMUTES ...):  A newly proposed
    :REWRITE rule generated from APP-COMMUTES probably subsumes the previously
    added :REWRITE rule APP-CONS, in the sense that the new rule will now
    probably be applied whenever the old rule would have been.

    ; raw format
    (:WARNING \"Subsume\"
              ((:CTX (DEFTHM . APP-COMMUTES))
               (:NEW-RULE APP-COMMUTES)
               (:RULE-CLASS-NEW :REWRITE)
               (:RULE-CLASS-OLD :REWRITE)
               (:SUBSUMED-RULES (APP-CONS))))

  As illustrated above, it is typical that in the raw format, the :CTX
  entry is first in the alist while the others are ordered
  alphabetically by key (e.g., :NEW-RULE precedes :RULE-CLASS-NEW
  alphabetically).

  To obtain the current raw-warning-format (t if that format is active,
  nil if not), evaluate (@ raw-warning-format).

  NOTE: Only a few commonly-occurring classes of warnings are shown
  differently in raw-warning-format.")
 (SET-REWRITE-STACK-LIMIT
  (REWRITE-STACK-LIMIT)
  "Sets the rewrite stack depth used by the rewriter

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.

    Example Forms:
    (set-rewrite-stack-limit 30)                            ; set to small limit
    :set-rewrite-stack-limit 30                             ; same as above
    (set-rewrite-stack-limit *default-rewrite-stack-limit*) ; the default
    (set-rewrite-stack-limit (1- (expt 2 28)))              ; maximum legal limit
    :set-rewrite-stack-limit nil         ; same as above -- essentially, no limit

  This event sets the maximum stack depth for calls of certain
  functions that implement the ACL2 rewriter; see
  [rewrite-stack-limit]. It must be a non-negative integer less than
  2^28. A call (set-rewrite-stack-limit limit) is equivalent to:

    (table acl2-defaults-table :rewrite-stack-limit limit).

  The use of [ACL2-defaults-table] ensures that this event's effect is
  implicitly [local] to the book or [encapsulate] form in which it
  occurs.

  For a different but somewhat related concept, see [backchain-limit].")
 (SET-RULER-EXTENDERS (POINTERS)
                      "See [ruler-extenders].")
 (SET-RW-CACHE-STATE
  (REWRITE)
  "Set the default rw-cache-state

  The ACL2 rewriter uses a data structure, called the rw-cache
  (rewriter cache), to save failed attempts to apply conditional
  [rewrite] rules. The regression suite has taken approximately 11%
  less time with this mechanism. The rw-cache is active by default
  but this event allows it to be turned off or modified. Note that
  this event is [local] to its context (from [encapsulate] or
  [include-book]). For a non-local version, use
  [set-rw-cache-state!].

    Example forms:
    (set-rw-cache-state :atom)     ; default: rw-cache cleared for each literal
                                   ;   (i.e., hypothesis or conclusion of a goal)
    (set-rw-cache-state nil)       ; rw-cache is inactive
    (set-rw-cache-state t)         ; rw-cache persists beyond each literal
    (set-rw-cache-state :disabled) ; rw-cache is inactive, but the rw-cache-state
                                   ;   transitions to state t after
                                   ;   simplification takes place

    General Form:
    (set-rw-cache-state val)

  where val evaluates to one of the four values shown in ``Example
  forms'' above. The default is :atom, which enables the rw-cache but
  clears it before rewriting a hypothesis or conclusion of any goal.
  The value t is provides more aggresive use of the rw-cache,
  basically preserving the rw-cache when there is a single subgoal.
  The value :disabled is the same as t, except that the rw-cache is
  initially inactive and only becomes active when some simplification
  has taken place. We have seen a few cases where value t will make a
  proof fail but :disabled does not.

  The following example illustrates the rw-cache in action. You will
  see a break during evaluation of the [thm] form. Type :eval and you
  will see a failed rewriting attempt. Type :go to continue, and at
  the next break type :eval again. This time you will see the same
  failed rewriting attempt, but this time labeled with a notation
  saying that the failure was cached earlier, which indicates that
  this time the rewriter did not even attempt to prove the hypothesis
  of the [rewrite] rule f1->f2.

    (defstub f1 (x) t)
    (defstub f2 (x) t)
    (defaxiom f1->f2
             (implies (f1 x) (equal (f2 x) t)))
    :brr t
    :monitor (:rewrite f1->f2) t
    (thm (equal (car (f2 a)) (cdr (f2 a))))

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.
  It is [local] to the book or [encapsulate] form in which it occurs
  (see [set-rw-cache-state!] for a corresponding non-[local] event).

  We also note that rw-cache-state changes may also be caused at the
  subgoal level; see [hints].

  We welcome you to experiment with different rw-cache states. If the
  more aggressive values of t and :disabled cause proofs to fail,
  then you can revert to the default of :atom or even turn off the
  rw-cache using (set-rw-cache-state nil). We don't expect users to
  need a deep knowledge of the rw-cache in order to do such
  experiments, but readers interested in details of the rw-cache
  implementation are invited to read the ``Essay on Rw-cache'' in the
  ACL2 source code.")
 (SET-RW-CACHE-STATE!
  (REWRITE)
  "Set the default rw-cache-state non-[local]ly

  Please see [set-rw-cache-state], which is the same as
  set-rw-cache-state! except that the latter is not [local] to the
  [encapsulate] or the book in which it occurs.")
 (SET-SAVED-OUTPUT
  (SET-GAG-MODE)
  "Save proof output for later display with :[pso] or :[pso!]

    Examples:
    (set-saved-output t t)    ; save proof output for later, but inhibit it now
    (set-saved-output t :all) ; save proof output for later, but inhibit all
                              ;   output (except WARNING!, for critical warnings,
                              ;   and ERROR, unless these are already inhibited)
    :set-saved-output t :all  ; same as the line above
    (set-saved-output t nil)  ; save proof output for later, but print it now too
    (set-saved-output nil t)  ; do not save proof output, and inhibit it
    (set-saved-output nil nil); do not save proof output or inhibit output
    (set-saved-output nil :same), (set-saved-output t :same)
                              ; save proof output or not, as indicated, but do
                              ;   not change which output is inhibited
    (set-saved-output nil :normal)
                              ; the behavior when ACL2 first starts up: do not
                              ;   save output, and only inhibit proof-tree output
    (set-saved-output t '(warning observation proof-tree prove))
                              ; save proof output for later, and inhibit the
                              ;   indicated kinds of output

    General Form:
    (set-saved-output save-flg inhibit-flg)

  Parameter save-flg is t to cause output to be saved for later display
  using pso or pso!; see [pso] and see [pso!], and see the
  documentation for [proof-checker] commands of the same names. Set
  save-flg to nil to turn off this feature; except, it always stays
  on in proof-checker sessions entered with [verify]. The other
  argument, inhibit-flg, controls whether output should be inhibited
  when it is created (normally, during a proof attempt). So a common
  combination is to set both arguments to t, to indicate that output
  should be suppressed for now but saved for printing with [pso] or
  [pso!]. The examples above give a good summary of the functionality
  for the second argument.

  Saved output is cleared at the start of every event, and also at the
  start of every [proof-checker] commands that invoke the prover.
  Note that interactive [proof-checker] commands, that is, from a
  proof-checker session entered with [verify], are always run with
  output saved.

  Also see [set-gag-mode]; and see [set-print-clause-ids], which causes
  subgoal numbers to be printed during proof attempts when output is
  inhibited.

  See [set-inhibit-output-lst] if you want to inhibit certain output
  from the prover but not other output (e.g., not the summary), and
  you don't want to save any output.")
 (SET-SERIALIZE-CHARACTER (POINTERS)
                          "See [with-serialize-character].")
 (SET-SKIP-META-TERMP-CHECKS
  (META CLAUSE-PROCESSOR)
  "Skip output checks for [meta] functions and [clause-processor]s

  WARNING: Use of this macro may render ACL2 unsound, which is why it
  requires a trust tag. If you obtained an error during application
  of a [meta]function, a hypothesis metafunction, or a
  [clause-processor], it might well be best to rewrite that function
  to avoid generating terms with the ``forbidden'' function calls
  described in that error message. However, judicious use of this
  macro can be useful during development; the rest of this topic
  describes its usage.

  The result of applying a [meta]function (or a hypothesis
  metafunction) must be a term. Similarly, the result of applying a
  [clause-processor] must be a list of clauses, where a clause is a
  list of terms. If these conditions fail, then an error occurs; see
  [term-table] for how one obtains some assistance towards avoiding
  such errors.

  By default, ACL2 actually enforces a stronger requirement: the
  resulting term or clause-list cannot contain any calls of
  ``forbidden'' function symbols: ones that would be illegal when
  submitting a theorem. These include function symbols that are
  untouchable (see [remove-untouchable]) as well as those that are
  keys of the alist *ttag-fns-and-macros*.

  These two checks --- that the results are terms and that they contain
  no calls of forbidden function symbols --- can be expensive for
  large terms. The macro set-skip-meta-termp-checks provides a way to
  avoid both checks. Since these checks can be critical for
  soundness, a trust tag (see [defttag]) must be active in order to
  invoke this macro unless the argument is nil. It might be best to
  avoid using this macro except to skip such checks that you have
  identified to be expensive, and to skip them only when using ACL2
  interactively (as opposed to doing batch certification jobs) ---
  though this macro might also be useful in determining when such
  checks are indeed expensive.

  There are two legal ways to call this macro, as follows. Note that
  the arguments are not evaluated.

    ; Skip all such checks:
    (set-skip-meta-termp-checks t)

    ; Skip such checks for functions fn1, ..., fnk (each of which is presumably a
    ; metafunction, hypothesis metafunction, or clause-processor):
    (set-skip-meta-termp-checks (fn1 ... fnk))

  A special case of the second form above is to perform all such
  checks: (set-skip-meta-termp-checks nil). No trust tag is required
  in this case.

  This macro actually generates a [local] [table] event, for the table
  skip-meta-termp-checks-table and its unique key, t. The macro
  [set-skip-meta-termp-checks] generates a corresponding non-[local]
  [table] event.

    ACL2 !>:trans1 (set-skip-meta-termp-checks (f g))
     (LOCAL (SET-SKIP-META-TERMP-CHECKS! (F G)))
    ACL2 !>:trans1 (set-skip-meta-termp-checks! (f g))
     (TABLE SKIP-META-TERMP-CHECKS-TABLE T '(F G))
    ACL2 !>

  It is probably good practice to use set-skip-meta-termp-checks rather
  than set-skip-meta-termp-checks!, except when there is a compelling
  reason to do otherwise.")
 (SET-SKIP-META-TERMP-CHECKS!
  (META CLAUSE-PROCESSOR)
  "Skip output checks non-[local]ly for [meta] functions and
  [clause-processor]s

  See [set-skip-meta-termp-checks].")
 (SET-SPLITTER-OUTPUT
  (SPLITTER)
  "Turn on or off reporting of rules that may have caused case splits

    Examples:
    (set-splitter-output t)   ; enable  reports of ``splitter'' rules (default)
    (set-splitter-output nil) ; disable reports of ``splitter'' rules

  After evaluation of the form (set-splitter-output t) (the default),
  then whenever prove output is not inhibited (see
  [set-inhibit-output-lst]), ACL2 will report [rewrite] and
  [definition] rules that may have reduced a goal to more than one
  subgoal. See [splitter] for how to interpret such reports. We call
  such rules ``splitter rules'' for the goal that is being split.
  This information can be useful in deciding how to eliminate large
  splits, for example of Goal into Subgoal 1000 through Subgoal 1, by
  disabling some splitter rules. If you want to avoid the printing of
  such information, you can put the form (set-splitter-output t) in
  your customization file; see [ACL2-customization].

  Note that this command does not change the ACL2 [world]; it only
  modifies the [state]. More precisely, it sets a state global to the
  indicated value. (See [state] for discussion of the
  ``global-table'' of the state.) When prove output is enabled (see
  [set-inhibit-output-lst]), the value of that state global is the
  value of the form ([splitter-output]); otherwise the value of that
  form is nil.

  Again, see [splitter] for the effects of turning on the reporting of
  splitter rules.")
 (SET-STATE-OK
  (STATE)
  "Allow the use of STATE as a formal parameter

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.

  In brief: The variable symbol [state] has an unusual status in ACL2.
  In order to use it, you either need to issue :set-state-ok t, as we
  explain below, or you need to declare it to be a [stobj], as
  explained elsewhere (see [declare-stobjs]). Now we explain in more
  detail.

  Because the variable symbol [state] denotes the ``current ACL2
  state,'' ACL2 treats the symbol very restrictively when it occurs
  as a formal parameter of a defined function. The novice user, who
  is unlikely to be aware of the special status of that symbol, is
  likely to be confused when error messages about STATE are printed
  in response to the innocent choice of that symbol as a formal
  variable. Therefore the top-level ACL2 loop can operate in a mode
  in which [state] is simply disallowed as a formal parameter.

  For a discussion of STATE, See [state] and see [stobj]. Roughly
  speaking, at the top-level, the ``current ACL2 state'' is denoted
  by the variable symbol STATE. Only the current state may be passed
  into a function expecting a state as an argument. Furthermore, the
  name of the formal parameter into which the current state is passed
  must be STATE and nothing but the current state may be passed into
  a formal of that name. Therefore, only certain access and change
  functions can use that formal --- namely those with a STATE formal
  --- and if any such function produces a new state it becomes the
  ``current state'' and must be passed along in the STATE position
  thereafter. Thus, ACL2 requires that the state be single-threaded.
  This, in turn, allows us to represent only one state at a time and
  to produce new states from it destructively in a von Neumaneque
  fashion. The syntactic restrictions on the variable STATE are
  enforced by the translate mechanism (see [trans] and see [term])
  when terms are read.

  To prevent the novice user from seeing messages prohibiting certain
  uses of the variable symbol STATE ACL2 has a mode in which it
  simply disallows the use of that symbol as a formal parameter. Use
  of the symbol causes a simple error message. The system is
  initially in that mode.

  To get out of that mode, execute:

    :set-state-ok t ;;; or, (set-state-ok t)

  It is not recommended that you do this until you have read the
  documentation of [state].

  To enter the mode in which use of state is prohibited as a formal
  parameter, do:

    :set-state-ok nil

  The mode is stored in the defaults table, See [ACL2-defaults-table].
  Thus, the mode may be set [local]ly in books.")
 (SET-TAU-AUTO-MODE
  (TAU-SYSTEM)
  "Turn on or off automatic (``greedy'') generation of :tau-system rules

    Examples:
    (set-tau-auto-mode t)      ; select automatic (``greedy'') mode
    (set-tau-auto-mode nil)    ; select manual mode

  This event is equivalent to (table acl2-defaults-table
  :tau-auto-modep <t-or-nil>), and hence is [local] to any [books]
  and [encapsulate] [events] in which it occurs; see
  [ACL2-defaults-table]. See [introduction-to-the-tau-system] for
  background details.

  The tau system gathers rules for its database in one of two ways:
  greedily or only at the explicit command of the user. ``Greedy''
  mode is officially called ``automatic mode'' and is the default.
  The other mode is called ``manual mode.''

  In automatic mode, all rules processed by ACL2 are also considered
  for inclusion in the tau database: if the :corollary of some proved
  theorem happens to fit into one of the forms described in
  :[tau-system], that rule is quietly added to the tau database
  regardless of what :[rule-classes] the user named for the
  :corollary. Of course, such rules are also stored in the ways named
  by the user. See the Design Philosophy section of
  [introduction-to-the-tau-system] for a discussion of why the tau
  system is greedy by default. More details are given on automatic
  mode after we explain manual mode.

  To more tightly control the rules available to the tau system, the
  user may select manual mode by executing (set-tau-auto-mode nil).
  In manual mode, the only events that create :tau-system rules are
  defthm events explicitly specifying the :[tau-system] rule class in
  the :[rule-classes] argument. Of course, for a :tau-system rule to
  be created from a proved formula (or its specified :corollary), the
  formula must be of the appropriate shape (syntactic form). See
  [tau-system]. In manual mode, if the :tau-system rule class is
  specified but the formula is not of an appropriate form an error is
  signalled. (Note: even in manual mode, monadic functions that are
  recognized as Boolean are classified as tau predicates; but no
  rules are created for them.)

  Returning to our discussion of automatic mode, a :[tau-system] rule
  may be created by any of the events below, provided the definition
  or formula proved is of an appropriate shape:

  (1) defun events introducing ``big switch'' or ``mv-nth synonyms,''

  (2) defun events creating type-prescription rules that may be also
  represented as ``signature rules'' of form 1, and

  (3) any defthm event with a non-nil :rule-classes argument if no
  :tau-system rule is among the rule classes and the formula proved
  is in the shape of any tau-system rule.

  Of course, events such as [defstobj] and [defevaluator] may also add
  rules to the tau database when they execute the [defun] and
  [defthm] events implicit in their descriptions. See [tau-system]
  for a description of the various shapes mentioned above.

  Note that any rule (of any rule class) created when the tau system is
  in manual mode is also created in automatic mode. For example, if
  an event would create a :DEFINITION, :TYPE-PRESCRIPTION,
  FORWARD-CHAINING, or :REWRITE rule when the tau system is in manual
  mode, then the event will create that same rule when the tau system
  is in automatic mode. Automatic mode just means that some
  additional :tau-system rules may be created.

  Of course, if a defthm event explicitly specifies a :tau-system rule
  class, then even if the tau system is in automatic mode, that tau
  rule is created from the proved formula (or the specified
  :corollary) or else an error is caused. But if the tau system is in
  automatic mode and a defthm event doesn't explicitly specify a
  :tau-system rule class, then the system quietly checks each
  specified :corollary --- or, in the absence of any :corollary, it
  checks the proved formula --- for whether it can be stored as a tau
  rule. If so, then the system stores a tau rule, in addition to
  storing the specified rule. Of course, no error is signalled if a
  proved formula of some non-:tau-system rule class fails to be of an
  appropriate shape for the tau system.

  In automatic mode, if the :rule-classes specified for defthm included
  several corollaries and any one of them is of class :tau-system
  then the only tau system rules created are those explicitly classed
  as :tau-system rules. For example, suppose a defthm has one
  :corollary stored as a :rewrite rule and another :corollary stored
  as a :tau-system rule. But suppose the :rewrite rule happens to
  also to fit the form of a :tau-system rule. Is it added to the tau
  database or not? The answer is no. If you have taken the trouble to
  specify :tau-system corollaries for an event, then those
  corollaries are the only ones stored as tau sytem rules from that
  event. Note that had both corollaries been classed as :rewrite
  rules (and been of acceptable :tau-system form) both would have
  also been made :tau-system rules. This also allows you be in
  automatic mode and state a :rewrite or other non-:tau-system rule
  and prevent it from being also made a tau system rule: just add a
  frivolous :tau-system :corollary like (booleanp (integerp x)).

  Recall that the use of tau rules is controlled by the rune
  (:EXECUTABLE-COUNTERPART TAU-SYSTEM). When that rune is disabled,
  no tau rules are used in proofs. However, the tau system continues
  to collect tau rules if the system is in automatic mode. Thus, if
  and when the tau system is re-enabled, rules automatically
  generated while the tau system was disabled will be used as usual
  by the tau system.

  Finally, note that defthm events with :rule-classes nil do not create
  :tau-system rules even if the formula proved is of an appropriate
  shape, regardless of whether the tau system is in automatic or
  manual mode.

  The macro [tau-status] provides a convenient way to enable/disable
  the :[executable-counterpart] of tau-system and/or to switch
  between manual and automatic modes. It may also be used to
  determine the current settings of those two flags.")
 (SET-TOTAL-PARALLELISM-WORK-LIMIT
  (PARALLELISM)
  "For ACL2(p): set thread limit for parallelism primitives

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].
  While the most common use of the limit described below is in
  parallel proof (see [parallel-proof]), it also applies to all
  parallelism primitives (see [parallel-programming]) except
  [spec-mv-let] --- though we expect that rather few programming
  applications will encouter this limit.

    General Forms:
    (set-total-parallelism-work-limit :none)     ; disable the limit
    (set-total-parallelism-work-limit <integer>) ; set limit to <integer>

  See [parallelism-tutorial], Section ``Another Granularity Issue
  Related to Thread Limitations'', for an explanation of how the host
  Lisp can run out of threads. Also see
  [set-total-parallelism-work-limit-error].

  If the underlying runtime system (the Operating System, the host
  Lisp, etc.) is unable to provide enough threads to finish executing
  the parallelism work given to it, the runtime system can crash in a
  very unpleasant manner (ranging from a Lisp error to completely
  freezing the machine). To avoid this unpleasantness, ACL2(p) will
  attempt to avoid creating so much parallelism that the runtime
  system crashes.

  ACL2 initially uses a conservative estimate to limit the number of
  threads. To tell ACL2(p) to use a different limit, call
  set-total-parallelism-work-limit with the new limit. For example,
  if the current default limit is 10,000, then to allow 13,000
  threads to exist, issue the following form at the top level.

    (set-total-parallelism-work-limit 13000)

  To disable this limit altogether, evaluate the following form:

    (set-total-parallelism-work-limit :none)

  The default value of total-parallelism-work-limit can be found by
  calling function default-total-parallelism-work-limit. If the
  default value is too high for your system please notify the ACL2
  maintainers with a limit that does work for your system, as they
  might then lower the default limit.")
 (SET-TOTAL-PARALLELISM-WORK-LIMIT-ERROR
  (PARALLELISM)
  "For ACL2(p): control the action taken when the thread limit is
  exceeded

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].

    General Forms:
    (set-total-parallelism-work-limit-error t)   ; cause error (default)
    (set-total-parallelism-work-limit-error nil) ; disable error and
                                                 ; continue serially

  See [parallelism-tutorial], Section ``Another Granularity Issue
  Related to Thread Limitations'', for an explanation of how the host
  Lisp can run out of threads. See [set-total-parallelism-work-limit]
  for further details, including an explanation of how to manage the
  limit that triggers this error.

  The value of state global total-parallelism-work-limit-error dictates
  what occurs when the underlying runtime system runs reaches a limit
  on the number of threads for parallel computation. By default, when
  this limit is reached, the ACL2(p) user will receive an error and
  computation will halt. At this point, the ACL2(p) user has the
  following options.

  (1) Remove the limit by evaluating the following form.

    (set-total-parallelism-work-limit :none)

  (2) Disable the error so that execution continues serially once the
  available thread resources have been exhausted.

    (set-total-parallelism-work-limit-error nil)

  (3) Increase the limit on number of threads that ACL2(p) is willing
  to create, in spite of potential risk (see
  [set-total-parallelism-work-limit]). In this case, the following
  query returns the current limit.

    (f-get-global 'total-parallelism-work-limit)

  Then to increase that limit, evaluate the following form:

    (set-total-parallelism-work-limit <new-integer-value>)

  For example, suppose that the value of total-parallelism-work-limit
  was originally 10,000. Then evaluation of the following form
  increases that limit to 13,000.

    (set-total-parallelism-work-limit 13000)")
 (SET-TRACE-EVISC-TUPLE
  (TRACE)
  "Set the trace evisc tuple

  A trace evisc-tuple, which is set by this utility, provides a means
  to restrict printing during tracing. See [evisc-tuple] for an
  introduction to evisc-tuples; also see [set-evisc-tuple] and see
  [set-iprint].

  By default the ACL2 [trace] mechanism, [trace$], automatically deals
  with stobjs, the logical world, and certain other large structures.
  See [trace$], in particular the documentation of trace$ option
  :hide. However, even with that default behavior you may want to
  restrict what is printed according to the print-level and
  print-length of an evisc-tuple; see [evisc-tuple].

    Examples:

    ; Set trace evisc tuple to a standard value, using current Lisp *print-level*
    ; and *print-length* variables:
    (set-trace-evisc-tuple t state)

    ; Set trace evisc tuple back to its default:
    (set-trace-evisc-tuple nil state)

    ; Set trace evisc tuple to restrict print-level to 3 and print-length to 4,
    ; while hiding the logical world and suitably printing stobjs even if trace$
    ; option ``:hide nil'' is used.  (Note: calling trace-evisceration-alist
    ; directly requires removing this function as `untouchable', which requires a
    ; trust tag; see [remove-untouchable].)
    (set-trace-evisc-tuple
     (evisc-tuple 3 4 (trace-evisceration-alist state) nil)
     state)

    General Forms:

    (set-trace-evisc-tuple nil state) ; trace evisc-tuple set to standard value
    (set-trace-evisc-tuple   t state) ; trace evisc-tuple set to hide the logical
                                      ;   world and deal with stobjs even when
                                      ;   trace$ option ``:hide nil'' is supplied
    (set-trace-evisc-tuple evisc-tuple state)
                                      ; tracing set to use indicated evisc-tuple

  See [trace$] for a discussion of ACL2 tracing. The [evisc-tuple] used
  by that trace utility is the one last installed by
  set-trace-evisc-tuple (or by [set-evisc-tuple] for the
  trace-evisc-tuple) --- initially to the default of nil --- unless
  overriden by trace option :evisc-tuple.

  Remark. If you use value t, then ACL2 will ensure that the logical
  world and stobjs are kept up-to-date in the trace evisc-tuple.")
 (SET-VERIFY-GUARDS-EAGERNESS
  (GUARD)
  "The eagerness with which [guard] verification is tried.

    Example Forms:                        try guard verification?
    (set-verify-guards-eagerness 0) ; no, unless :verify-guards t
    (set-verify-guards-eagerness 1) ; yes if a guard or type is supplied
    (set-verify-guards-eagerness 2) ; yes, unless :verify-guards nil

  Note: This is an event! It does not print the usual event summary but
  nevertheless changes the ACL2 logical [world] and is so recorded.

    General Form:
    (set-verify-guards-eagerness n)

  where n is a variable-free term that evaluates to 0, 1, or 2. This
  macro is essentially equivalent to

    (table acl2-defaults-table :verify-guards-eagerness n)

  and hence is [local] to any [books] and [encapsulate] [events] in
  which it occurs; see [ACL2-defaults-table]. However, unlike the
  above simple call of the [table] event function (see [table]), no
  output results from a set-verify-guards-eagerness event.

  Set-verify-guards-eagerness may be thought of as an event that merely
  sets a flag to 0, 1, or 2. The flag is used by certain [defun]
  [events] to determine whether [guard] verification is tried. The
  flag is irrelevant to those [defun] [events] in :[program] mode and
  to those [defun] [events] in which an explicit :[verify-guards]
  setting is provided among the [xargs]. In the former case, [guard]
  verification is not done because it can only be done when logical
  functions are being defined. In the latter case, the explicit
  :[verify-guards] setting determines whether [guard] verification is
  tried. So consider a :[logic] mode [defun] in which no
  :[verify-guards] setting is provided. Is [guard] verification
  tried? The answer depends on the eagerness setting as follows. If
  the eagerness is 0, [guard] verification is not tried. If the
  eagerness is 1, it is tried if and only if a guard is explicitly
  specified in the [defun], in the following sense: there is an xargs
  keyword :guard or :stobjs or a [type] declaration. If the eagerness
  is 2, [guard] verification is tried.

  The above remarks apply to [verify-termination] [events], according
  to whether guards are explicitly specified in the existing,
  corresponding :[program] mode definitions.

  The default behavior of the system is as though the
  :verify-guards-eagerness is 1. The current behavior can be
  ascertained by evaluating the form (default-verify-guards-eagerness
  (w state)).")
 (SET-WATERFALL-PARALLELISM
  (PARALLELISM)
  "For ACL2(p): configuring the parallel execution of the waterfall

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].

    General Forms:
    (set-waterfall-parallelism nil)        ; never parallelize (serial execution)
    (set-waterfall-parallelism :full)      ; always parallelize
    (set-waterfall-parallelism :top-level) ; parallelize top-level subgoals
    (set-waterfall-parallelism             ; parallelize if sufficient resources
      :resource-based)                     ;   (recommended setting)
    (set-waterfall-parallelism t)          ; alias for :resource-based
    (set-waterfall-parallelism             ; parallelize if sufficient resources
      :resource-and-timing-based           ;   and suggested by prior attempts
    (set-waterfall-parallelism             ; never parallelize but use parallel
      :pseudo-parallel)                    ;   code base (a debug mode)

  Set-waterfall-parallelism evaluates its argument, which specifies the
  enabling or disabling of the [parallel] execution of ACL2's main
  proof process, the waterfall.

  It also sets [state] global waterfall-printing to an appropriate
  value. See [set-waterfall-printing].

  Note that not all ACL2 features are supported when
  waterfall-parallelism is set to non-nil (see
  [unsupported-waterfall-parallelism-features]).

  A value of t is treated the same as a value of :resource-based and is
  provided for user convenience.

  :Resource-based waterfall parallelism typically achieves the best
  performance in ACL2(p), while maintaining system stability, so
  :resource-based (or equivalently, t) is the recommended value.

  A value of nil indicates that ACL2(p) should never prove subgoals in
  parallel.

  A value of :full indicates that ACL2(p) should always prove
  independent subgoals in parallel.

  A value of :top-level indicates that ACL2(p) should prove each of the
  top-level subgoals in parallel but otherwise prove subgoals in a
  serial manner. This mode is useful when the user knows that there
  are enough top-level subgoals, many of which take a non-trivial
  amount of time to be proved, such that proving them in parallel
  will result in a useful reduction in overall proof time.

  A value of :resource-based (or equivalently, t) indicates that
  ACL2(p) should use its built-in heuristics to determine whether CPU
  core resources are available for parallel execution. Note that
  ACL2(p) does not hook into the operating system to determine the
  workload on the machine. ACL2(p) works off the assumption that it
  is the only process using significant CPU resources, and it
  optimizes the amount of parallelism based on the number of CPU
  cores in the system. (Note that ACL2(p) knows how to obtain the
  number of CPU cores from the operating system in CCL, but that, in
  SBCL and in Lispworks, a constant is used instead).

  During the first proof attempt of a given conjecture, a value of
  :resource-and-timing-based results in the same behavior as with
  :resource-based. However, on subsequent proof attempts, the time it
  took to prove each subgoal will be considered when deciding whether
  to parallelize execution. If a particular theorem's proof is
  already achieving satisfactory speedup via :resource-based
  parallelism, there is no reason to try this setting. However, if
  the user wishes to experiment, the :resource-and-timing-based
  setting may improve performance. Note that since the initial run
  does not have the subgoal proof times available, this mode will
  never be better than the :resource-based setting for
  non-interactive theorem proving.

  A value of :pseudo-parallel results in using the parallel waterfall
  code, but with serial execution. This setting is useful for
  debugging the code base that supports parallel execution of the
  waterfall. For example, you may wish to use this mode if you are an
  ``ACL2 Hacker'' who would like to see comprehensible output from
  tracing (see [trace$]) the @par versions of the waterfall
  functions.

  Since [memoization] is not supported when waterfall parallelism is
  enabled (see [unsupported-waterfall-parallelism-features]), then
  when set-waterfall-parallelism is called with a non-nil value, all
  memoized functions are unmemoized. When set-waterfall-parallelism
  is again called with a nil value, those memoization settings are
  restored.

  Set-waterfall-parallelism is an embedded event form. However, a call
  of this macro will not affect waterfall-parallelism when including
  a certified book that contains that call. For such an effect, you
  may use the following [make-event] form; also see
  [non-parallel-book].

    (make-event (er-progn (set-waterfall-parallelism :full)
                          (value '(value-triple nil)))
                :check-expansion t)

  To enable waterfall parallelism for book certification using ACL2(p),
  see [waterfall-parallelism-for-book-certification].")
 (SET-WATERFALL-PARALLELISM-HACKS-ENABLED
  (PARALLELISM)
  "For ACL2(p): enable waterfall-parallelism hacks

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].

    General Forms:
    (set-waterfall-parallelism-hacks-enabled t)
    (set-waterfall-parallelism-hacks-enabled nil)

  Some features (e.g., [override-hints] and [clause-processor]s) of
  serial ACL2 are by default not available in ACL2(p) with waterfall
  parallelism enabled, because they offer a mechanism to modify
  [state] that is unsound. To allow or (once again) disallow the use
  the these features in ACL2(p), call
  set-waterfall-parallelism-hacks-enabled with argument t or nil,
  respectively.

  Set-waterfall-parallelism-hacks-enabled requires the use of a trust
  tag (see [defttag]). One can call
  [set-waterfall-parallelism-hacks-enabled!] instead, which will
  automatically install a trust tag named
  :waterfall-parallelism-hacks.

  See [error-triples-and-parallelism] for further related discussion.")
 (SET-WATERFALL-PARALLELISM-HACKS-ENABLED!
  (PARALLELISM)
  "For ACL2(p): enabling waterfall parallelism hacks

  See [set-waterfall-parallelism-hacks-enabled].")
 (SET-WATERFALL-PRINTING
  (PARALLELISM)
  "For ACL2(p): configuring the printing that occurs within the
  parallelized waterfall

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].

    General Forms:
    (set-waterfall-printing :full)    ; print everything
    (set-waterfall-printing :limited) ; print a subset that's thought to be useful
    (set-waterfall-printing :very-limited) ; print an even smaller subset

  Set-waterfall-printing evaluates its argument, which indicates how
  much printing should occur when executing ACL2 with the
  parallelized version of the waterfall. It only affects the printing
  that occurs when parallelism mode is enabled for the waterfall (see
  [set-waterfall-parallelism]).

  A value of :full is intended to print the same output as in serial
  mode. This output will be interleaved unless the
  waterfall-parallelism mode is one of nil or :pseudo-parallel.

  A value of :limited omits most of the output that occurs in the
  serial version of the waterfall. Instead, the proof attempt prints
  key checkpoints (see [ACL2p-key-checkpoints]). The value of
  :limited also prints messages that indicate which subgoal is
  currently being proved, along with the wall-clock time elapsed
  since the theorem began its proof; and if state global
  'waterfall-printing-when-finished has a non-nil value, then such a
  message will also be printed at the completion of each subgoal. The
  function print-clause-id-okp may receive an attachment to limit
  such printing; see [set-print-clause-ids]. Naturally, these subgoal
  numbers can appear out of order, because the subgoals can be proved
  in parallel.

  A value of :very-limited is treated the same as :limited, except that
  instead of printing subgoal numbers, the proof attempt prints a
  period (`.') each time it starts a new subgoal.

  Note that this form cannot be used at the top level of a book, or of
  a [progn] or [encapsulate] event. Here is a workaround for use in
  such contexts; of course, you may replace :very-limited with any
  other legal argument for set-waterfall-printing.

    (make-event (er-progn (set-waterfall-printing :very-limited)
                          (value '(value-triple nil))))

  (For more about event contexts and the use of make-event, see
  [make-event], in particular the section ``Restriction to Event
  Contexts.'')

  The following form has the effect described above, except that it
  will affect waterfall-printing even when including a certified book
  that contains it.

    (make-event (er-progn (set-waterfall-printing :very-limited)
                          (value '(value-triple nil)))
                :check-expansion t)

  Note that set-waterfall-printing is automatically called by
  [set-waterfall-parallelism].

  To enable the printing of information when a subgoal is finished,
  assign a non-nil value to global waterfall-printing-when-finished.
  This can be accomplished by entering the following at the top
  level:

    (f-put-global 'waterfall-printing-when-finished t state)")
 (SET-WELL-FOUNDED-RELATION
  (DEFUN)
  "Set the default well-founded relation

    Examples:
    (set-well-founded-relation lex2)

  provided lex2 has been proved to be a well-founded relation (see
  [well-founded-relation]). Note: This is an event! It does not print
  the usual event summary but nevertheless changes the ACL2 logical
  [world] and is so recorded.

    General Form:
    (set-well-founded-relation rel)

  where rel has been proved to be a well-founded relation on objects
  satisfying some predicate, mp; see [well-founded-relation]. This
  macro is equivalent to (table acl2-defaults-table
  :well-founded-relation 'rel), and hence is [local] to any [books]
  and [encapsulate] [events] in which it occurs; see
  [ACL2-defaults-table].

  This event sets the default well-founded relation to be that imposed
  on mp-measures by the relation rel. Subsequently, if a recursively
  defined function is submitted to [defun] with no explicitly given
  :[well-founded-relation] argument, [defun] uses the default
  relation, rel, and the associated domain predicate mp used in its
  well-foundedness theorem. That is, the termination conditions
  generated will require proving that the measure used by the [defun]
  is an mp-measure and that in every recursive call the measure of
  the arguments decreases according to rel.")
 (SET-WORMHOLE-DATA
  (WORMHOLE)
  "Sets the wormhole data object in a wormhole status object

    General Form:  (set-wormhole-data whs data)

  See [wormhole]. Whs should be a well-formed wormhole status; data is
  arbitrary. This function returns a new status with the same entry
  code as whs but with the new data. It avoids unnecessary consing if
  the data for whs is already set to data. This function does not
  affect state or a wormhole's hidden status. It just returns a
  (possibly) new status object suitable as the value of the lambda
  expressions in [wormhole-eval] and [wormhole].")
 (SET-WORMHOLE-ENTRY-CODE
  (WORMHOLE)
  "Sets the wormhole entry code in a wormhole status object

    General Form:  (set-wormhole-entry-code whs code)

  See [wormhole]. Whs should be a well-formed wormhole status and code
  should be :ENTER or :SKIP. This function returns a new status with
  the specified entry code but the same data as whs. It avoids
  unnecessary consing if the entry code for whs is already set to
  code. This function does not affect state or a wormhole's hidden
  status. It just returns a (possibly) new status object suitable as
  the value of the lambda expressions in [wormhole-eval] and
  [wormhole].")
 (SET-WRITE-ACL2X
  (BOOKS-REFERENCE)
  "Cause [certify-book] to write out a .acl2x file

    Example Forms:
    (set-write-acl2x nil state)
    (set-write-acl2x t state)
    (set-write-acl2x '(nil) state) ; same as just above, but allow inclusion of
                                   ; uncertified books during certify-book
    (set-write-acl2x '(t) state)
    (set-write-acl2x '(include-book-with-locals) state)

    General Form:
    (set-write-acl2x val state)

  where val evaluates to t, nil, or a one-element list whose element is
  a legal value for the global 'ld-skip-proofsp; see
  [ld-skip-proofsp]. The value returned is an error triple, which in
  the non-error case is (mv nil v state), where v is the value of val
  and state is the result of updating the input [state] by assigning
  state global 'write-acl2x the value v.

  The command (set-write-acl2x val state) assigns the value of val to
  the [state] global variable 'write-acl2x, affecting whether or not
  [certify-book] writes out a file with extension acl2x, called a
  ``.acl2x file'' and pronounced ``dot-acl2x file''. Such a file is
  read or written by [certify-book] when it is supplied with keyword
  argument :acl2x t. By default, such a call of certify-book reads a
  .acl2x file; but if the value of state global variable 'write-acl2x
  is not nil, then certify-book writes a .acl2x file (in which case
  it is illegal to specify a non-nil value for [certify-book] keyword
  argument :pcert). Consider for example (certify-book \"foo\" 0 nil
  :acl2x t). By default, this command reads file foo.acl2x, which
  supplies replacements for some forms in foo.lisp, as described
  later below. But if the value of state global 'write-acl2x is not
  nil, then instead, this certify-book command writes such a file
  foo.acl2x.

  Before we discuss the function of .acl2x files, we first explain more
  about how a non-nil value of [state] global 'write-acl2x affects
  the behavior of a command (certify-book ... :acl2x t ...). A
  significant effect on the behavior is that after processing events
  in the given book, ACL2 writes out a .acl2x file and then returns,
  skipping the other subsequent actions typically performed by
  [certify-book]: a [local-incompatibility] check, writing of a
  [certificate] file, and possibly [compilation]. Another effect is
  that proofs may be skipped when processing [events] assuming that
  the the certify-book command does not explicitly specify
  :skip-proofs-okp nil, as we now explain. A non-nil value of
  'write-acl2x should either be t or a one-element list (x), where x
  is a legal value for the [state] global 'ld-skip-proofsp (see
  [ld-skip-proofsp]). In both cases, certify-book will process
  [events] to write out a .acl2x file as described above. But in the
  latter (list) case, event processing will take place according to
  the value of x: in particular, proofs will be skipped when x is not
  nil, and if moreover x is the symbol include-book-with-locals, then
  only one pass will be made through each [encapsulate] form. A third
  effect of a non-nil value of 'write-acl2x, which is restricted to
  the list case, is that [include-book] events encountered during
  event processing are allowed to succeed on uncertified books,
  something that is prohibited during most calls of [certify-book].

  When [certify-book] is used to write out a .acl2x file, there is
  typically a subsequent run of [certify-book] that reads that file.
  Consider how this can work with a book foo.lisp. In the first call
  of certify-book, a file foo.acl2x is written that contains all
  [make-event] expansions, but foo.cert is not written. In the second
  call of certify-book, no [make-event] expansion typically takes
  place, because foo.acl2x supplies the expansions. The command
  (set-write-acl2x t state) should be evaluated before the first
  certification (though another legal non-nil value may be used in
  place of t), setting the value of [state] global 'write-acl2x to t,
  to enable writing of foo.acl2x; and the command (set-write-acl2x
  nil state) may be evaluated before the second run (though this is
  not necessary in a fresh ACL2 session) in order to complete the
  certification (writing out foo.cert) using foo.acl2x to supply the
  [make-event] expansions.

  When [Certify-book] is supplied with keyword argument :acl2x t it
  will read or write the book's .acl2x file; when supplied with
  :acl2x nil, it will not read or write that .acl2x file. The value
  of :acl2x is nil by default. The interaction of [certify-book] with
  the corresponding .acl2x file is as follows.

    o If :acl2x is t, then:
      - If set-write-acl2x has been (most recently) called with a value of
        t for its first argument,then ACL2 writes the corresponding
        .acl2x file.
      - If set-write-acl2x has been (most recently) called with a value of
        nil for its first argument, or not called at all, then ACL2 insists
        on a corresponding .acl2x file that is at least as recent as the
        corresponding .lisp file, causing an error otherwise.
     o If :acl2x is nil,then:
      - If set-write-acl2x has been (most recently) called with a value
        t for its first argument, or if argument :ttagsx is supplied,
        then an error occurs.
      - If the .acl2x file exists, then regardless of whether or how
        set-write-acl2x has been called, ACL2 ignores the .acl2x file
        but issues a warning about it.

  Suppose you use the two-runs approach: first write a .acl2x file,
  then certify using (reading) that .acl2x file. Then with scripts
  such as makefiles, then you may wish to provide a single
  [certify-book] command to use for both runs. For that purpose,
  [certify-book] supports the keyword argument :ttagsx. If this
  argument is supplied and write-acl2x is true, then this argument is
  treated as the :ttags argument, overriding a :ttags argument if
  present. That is, for the two runs, :ttagsx may be used to specify
  the trust tags used in the first certification while :ttags
  specifies the trust tags, if any (else :ttags may be omitted), used
  in the second certification. Note: If the argument :ttagsx is not
  supplied, then its value defaults to the (explicit or default)
  value of the :ttags argument.

  The built-in ACL2 Makefile support automatically generates suitable
  dependencies if you create a .acl2 file with a [certify-book] call
  matching the following regular expression, case-independent:

    (certify-book[^;]*:acl2x t

  For an example .acl2 file with a certify-book call matching the above
  pattern, see community books file
  books/make-event/double-cert-test-1.acl2.

  Note that [include-book] is generally not affected by
  set-write-acl2x, other than through the indirect effect on
  [certify-book]. More precisely: All expansions are stored in the
  [certificate] file, so when [include-book] is applied to a
  certified book, the .acl2x file is not consulted.

  An example of how to put this all together may be found in community
  book books/make-event/double-cert-test-1.lisp. There, we see the
  following form.

    (make-event
     (progn (defttag :my-ttag)
            (progn! (let ((val (sys-call \"pwd\" nil)))
                      (value (list 'defun 'foo () val))))))

  Imagine that in place of the binding computed using [sys-call], which
  by the way requires a trust tag, is some computation of your choice
  (such as reading forms from a file) that is used to construct your
  own event, in place of the [defun] event constructed above. The
  Makefile in that directory contains the following added dependency,
  so that file double-cert-test-1.acl2x will be created:

    double-cert-test-1.cert: double-cert-test-1.acl2x

  There is also the file double-cert-test-1.acl2 in that directory,
  which contains a single form as follows.

    (certify-book \"double-cert-test-1\" ? t :ttagsx :all :ttags nil)

  Thus, a call of `make' first creates file double-cert-test-1.acl2x,
  which uses the above :ttagsx argument in order to support the use
  of [defttag] during [make-event] expansion. Then, `make' goes on to
  cause a second certification in which no trust tags are involved.
  As a result, the parent book double-cert-test.lisp is ultimately
  certified without requiring any trust tags.

  The discussion above is probably sufficient for most users of the
  two-run approach it describes. We conclude with further details for
  those who want more information. Those who wish to see a yet
  lower-level explanation of how all this works are invited to read
  the comment in the ACL2 source code entitled ``Essay on .acl2x
  Files (Double Certification).

  Consider the .acl2x file produced by the first run as described
  above. It contains a single expression, which is an association
  list whose keys are all positive integers, which occur in
  increasing order. When the .acl2x file is present and at least as
  recent as the corresponding .lisp file, then for a subsequent
  [certify-book] with argument :acl2x t and the (default) value of
  nil for [state] global 'write-acl2x, that association list will be
  applied to the top-level events in the book, as follows. Suppose
  the entry (n . ev) belongs to the association list in the .acl2x
  file. Then n is a positive integer, and the nth top-level event in
  the book --- where the 0th event is the initial [in-package] form
  --- will be replaced by ev. In practice, ev is the [make-event]
  expansion created during certification for the nth top-level event
  in the book; and this will always be the case if the .acl2x file is
  created by [certify-book] after execution of the form
  (set-write-acl2x t state). However, you are welcome to associate
  indices manually with any [events] you wish into the alist stored
  in the .acl2x file.

  Note: Also see the community book make-event/acl2x-help.lisp for a
  useful utility that can be used to skip proofs during the writing
  of .acl2x files.")
 (SETENV$
  (PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "Set an environment variable

  (Setenv$ str val), where str and val are strings, sets the
  environment variable str to have value val, for subsequent read by
  getenv$ (see [getenv$]), and returns nil. Or, if this operation is
  not implemented for the host Common Lisp, an error will occur.

    Example:
    (setenv$ \"FOO\" \"BAR\")

  It may be surprising that setenv$ returns nil; indeed, it neither
  takes nor returns the ACL2 [state]. The reason is that [getenv$]
  takes responsibility for trafficking in [state]; it is defined in
  the logic using the function [read-ACL2-oracle], which (again, in
  the logic) does modify state, by popping an entry from its
  acl2-oracle field. [getenv$].

  As suggested above, a call of [getenv$] takes into account the most
  recent call of setenv$ on the same environment variable. It may
  also be the case that setenv$ modifies the environment of the
  underlying process; for example, we think this is probably the case
  for most invocations of ACL2 built on a host Lisp that is CCL,
  SBCL, or CMUCL, as well as others perhaps. If you want to rely on
  such behavior, however, we advise you to look at source code.

  Function: <setenv$>

    (defun setenv$ (str val)
           (declare (xargs :guard (and (stringp str) (stringp val))))
           (declare (ignore str val))
           nil)")
 (SEVENTH
  (NTH ACL2-BUILT-INS)
  "Seventh member of the list

  See any Common Lisp documentation for details.")
 (SHARP-BANG-READER
  (READER PACKAGES)
  "Package prefix that is not restricted to symbols

    Examples:

    ACL2 !>(defpkg \"FOO\" nil)

    Summary
    Form:  ( DEFPKG \"FOO\" ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     \"FOO\"
    ACL2 !>'#!foo(a b)
    (FOO::A FOO::B)
    ACL2 !>'#!foo(a #!acl2 b)
    (FOO::A B)
    ACL2 !>'#!foo(#!acl2 a b)
    (A FOO::B)
    ACL2 !>'#!foo(#!\"ACL2\" a b)
    (A FOO::B)
    ACL2 !>

  The ACL2 reader supports the syntax #!pkg-name expr where pkg-name is
  a string or symbol that names a package known to ACL2. As
  illustrated above, this syntax nests as one might expect. In the
  special case that expr is a symbol, #!pkg-name expr is equivalent
  to pkg-name::expr.")
 (SHARP-DOT-READER
  (READER DEFCONST)
  "Read-time evaluation of constants

    Example:

    ACL2 !>(defconst *a* '(a b c))

    Summary
    Form:  ( DEFCONST *A* ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     *A*
    ACL2 !>(quote (1 2 #.*a* 3 4))
    (1 2 (A B C) 3 4)
    ACL2 !>

  The ACL2 reader supports the syntax #.*a* where *a* was defined by
  [defconst]. In this case, the reader treats #.*a* as though it were
  reading the value of *a*. This feature can be useful in conjunction
  with the use of [evisc-table] to abbreviate large constants, so
  that the abbreviation can be read back in; see [evisc-table].

  Remarks.

  (1) The ACL2 reader only supports `#.' as described above, unlike
  Common Lisp. Older versions (preceding 3.5) used `#.' to abort, but
  that functionality is now carried out by (a!); see [a!]. For a
  related feature that only pops up one level, see [p!].

  (2) If you call [certify-book] on a book that contains a form
  `#.*foo*', the *foo* must already be defined in the [world] in
  which you issue the certify-book command. The reason is that
  certify-book reads the entire book before evaluating its forms.")
 (SHARP-U-READER
  (READER NUMBERS)
  "Allow underscore characters in numbers

    Example:

    ACL2 !>#ub1000_1000_1000_
    2184
    ACL2 !>#b100010001000
    2184
    ACL2 !>#uo1_1
    9
    ACL2 !>#o11
    9
    ACL2 !>#u34_5
    345
    ACL2 !>#u345
    345
    ACL2 !>345
    345
    ACL2 !>#ux12_a
    298
    ACL2 !>#ux12a
    298
    ACL2 !>#u x12a
    298
    ACL2 !>#x12a
    298
    ACL2 !>#u123_456/7_919
    123456/7919
    ACL2 !>

  The ACL2 reader supports the use of #ub, #uo, and #ux where one would
  otherwise write #b, #o, and #x, respectively (for binary, octal,
  and hexadecimal numerals), but where underscore characters (`_')
  are allowed but ignored. Also supported is the prefix #u in front
  of a an expression that is a decimal numeral except that underscore
  characteres are allowed but ignored.

  The precise specification of #u is as follows. The Lisp reader reads
  one expression after the #u. If the result is a number, then that
  number is returned by the reader. Otherwise the result must be a
  symbol whose name begins with one of the characters `B', `O', or
  `X', or else a decimal digit (one of the characters `0, 1, ...,
  9'). All underscores are removed from the name of that symbol to
  obtain a string and in the first three cases only, a `#' character
  is prepended to that string. The resulting string is then handed to
  the Lisp reader in order to obtain the final result, which must be
  a number or else an error occurs.")
 (SHOW-ACCUMULATED-PERSISTENCE (POINTERS)
                               "See [accumulated-persistence].")
 (SHOW-BDD
  (BDD)
  "Inspect failed BDD proof attempts

  Attempts to use BDDs (see [bdd]), using :[bdd] [hints], can fail for
  various reasons. Sometimes it is useful to explore such failures.
  To do so, one may simply execute the form

    (show-bdd)

  inside the ACL2 loop. The system's response is generally
  self-explanatory. Perhaps you have already seen show-bdd used in
  some examples (see [bdd-introduction] and see [if*]). Here we give
  some details about show-bdd.

  (Show-bdd) prints the goal to which the BDD procedure was applied and
  reports the number of nodes created during the [bdd] computation,
  followed by additional information depending on whether or not the
  computation ran to completion or aborted (for reasons explained
  elsewhere; see [bdd-algorithm]). If the computation did abort, a
  backtrace is printed that should be useful in understanding where
  the problem lies. Otherwise, (show-bdd) prints out ``falsifying
  constraints.'' This list of pairs associates [term]s with values
  and suggests how to construct a binding list for the variables in
  the conjecture that will falsify the conjecture. It also prints out
  the [term] that is the result of simplifying the input [term]. In
  each of these cases, parts of the object may be hidden during
  printing, in order to avoid creating reams of uninteresting output.
  If so, the user will be queried about whether he wishes to see the
  entire object (alist or [term]), which may be quite large. The
  following responses are legal:

      w --- Walk around the object with a structure editor

      t --- Print the object in full

      nil --- Do not print any more of the object

  Show-bdd actually has four optional arguments, probably rarely used.
  The general form is

    (show-bdd goal-name goal-ans falsifying-ans term-ans)

  where goal-name is the name of the goal on which the :[bdd] hint was
  used (or, nil if the system should find such a goal), goal-ans is
  the answer to be used in place of the query for whether to print
  the input goal in full, falsifying-ans is the answer to be used in
  place of the query for whether to print the falsifying constraints
  in full, and term-ans is the answer to be used in place of the
  query for whether to print the resulting [term] in full.")
 (SHOW-BODIES
  (DEFINITION)
  "Show the potential definition bodies

    Examples:
    (show-bodies foo)
    :show-bodies foo

  A definition made using [defun] installs a so-called ``body'' of a
  function symbol, as do certain :[definition] rules. Such bodies are
  used in a number of ways, including the application of :expand
  [hints]; see [definition], in particular the discussion of ``body''
  there, and see [hints] for a discussion of the :expand hint. Also
  see [set-body] for how to change which of the available definitions
  (among the original definition and appropriate :[definition] rules)
  is the one that provides the body. The show-bodies command displays
  the available such bodies in an appropriate format, starting with
  the one that is currently used as the body.

    General Forms:
    (show-bodies function-symbol)
    :show-bodies function-symbol")
 (SHOW-CUSTOM-KEYWORD-HINT-EXPANSION
  (CUSTOM-KEYWORD-HINTS)
  "Print out custom keyword hints when they are expanded

    Examples:
    (show-custom-keyword-hint-expansion t)
    (show-custom-keyword-hint-expansion nil)

    General Form:
    (show-custom-keyword-hint-expansion flg)

  If the value of flg is non-nil, then when custom keyword hints are
  expanded, the system prints the results of each expansion. This is
  sometimes useful for debugging custom keyword hints and, from time
  to time, may be useful in understanding how a custom hint affects
  some proof attempt.

  The default setting is nil.

  For an explanation of how custom keyword hints are processed, see
  [custom-keyword-hints].")
 (SHOW-FC-CRITERIA
  (FORWARD-CHAINING-REPORTS)
  "Print the forward-chaining tracking criteria

    Example:  (show-fc-criteria)

  This function prints the list of triples being used to determine what
  is tracked during forward chaining.

  See [forward-chaining-reports] for details.")
 (SIGNATURE
  (ENCAPSULATE)
  "How to specify the arity of a constrained function

  We start with a gentle introduction to signatures, where we pretend
  that there are no single-threaded objects (more on that below ---
  for now, if you don't know anything about single-threaded objects,
  that's fine!). Here are some simple examples of signatures.

    ((hd *) => *)
    ((pair * *) => *)
    ((foo * *) => (mv * * *))

  The first of these says that hd is a function of one argument, while
  the other two say that pair and foo are functions that each take
  two arguments. The first two say that hd and pair return a single
  value. The third says that foo returns three values, much as the
  following definition returns three values:

    (defun bar (x y)
      (mv y x (cons x y)))

  Corresponding ``old-style'' signatures are as follows. In each case,
  a function symbol is followed by a list of formal parameters and
  then either t, to denote a single value return, or (mv t t t), to
  denote a multiple value return (in this case, returning three
  values).

    (hd (x) t)
    (pair (x y) t)
    (foo (x y) (mv t t t))

  That concludes our gentle introduction. The documentation below is
  more general, for example covering single-threaded objects and
  keyword values such as :guard. When reading what follows below, it
  is sufficient to know about single-threaded objects (or ``stobjs'')
  that each has a unique symbolic name and that [state] is the name
  of the only built-in single-threaded object. All other stobjs are
  introduced by the user via [defstobj] or [defabsstobj]. An object
  that is not a single-threaded object is said to be ``ordinary.''
  For a discussion of single-threaded objects, see [stobj].

    Examples:
    ((hd *) => *)
    ((hd *) => * :formals (x) :guard (consp x))
    ((printer * state) => (mv * * state))
    ((mach * mach-state * state) => (mv * mach-state))

    General Form:
    ((fn ...) => *)
    ((fn ...) => stobj)
    or
    ((fn ...) => (mv ...))
    or for part1 and part2 as above,
    (part1 => part2 :kwd1 val1 ... :kwdn valn)

  where fn is the constrained function symbol, ... is a list of
  asterisks and/or the names of single-threaded objects, stobj is a
  single-threaded object name, and the optional :kwdi and :vali are
  as described below. ACL2 also supports an older style of signature,
  described below after we describe the preferred style.

  Signatures specify three syntactic aspects of a function symbol: (1)
  the ``arity'' or how many arguments the function takes, (2) the
  ``multiplicity'' or how many results it returns via MV, and (3)
  which of those arguments and results are single-threaded objects
  and which objects they are.

  A signature typically has the form ((fn x1 ... xn) => val). Such a
  signature has two parts, separated by the symbol ``=>''. The first
  part, (fn x1 ... xn), is suggestive of a call of the constrained
  function. The number of ``arguments,'' n, indicates the arity of
  fn. Each xi must be a symbol. If a given xi is the symbol ``*''
  then the corresponding argument must be ordinary. If a given xi is
  any other symbol, that symbol must be the name of a single-threaded
  object and the corresponding argument must be that object. No stobj
  name may occur twice among the xi.

  The second part, val, of a signature is suggestive of a term and
  indicates the ``shape'' of the output of fn. If val is a symbol
  then it must be either the symbol ``*'' or the name of a
  single-threaded object. In either case, the multiplicity of fn is 1
  and val indicates whether the result is ordinary or a stobj.
  Otherwise, val is of the form (mv y1 ... yk), where k > 1. Each yi
  must be either the symbol ``*'' or the name of a stobj. Such a val
  indicates that fn has multiplicity k and the yi indicate which
  results are ordinary and which are stobjs. No stobj name may occur
  twice among the yi, and a stobj name may appear in val only if
  appears among the xi.

  A signature may have the form ((fn x1 ... xn) => val . k), where k is
  a [keyword-value-listp], i.e., an alternating list of keywords and
  values starting with a keyword. In this case ((fn x1 ... xn) =>
  val) must be a legal signature as described above. The legal
  keywords in k are :GUARD and :FORMALS (except that for ACL2(r),
  also see the remark about :CLASSICALP later in this topic). The
  value following :FORMALS is to be the list of formal parameters of
  fn, which must be consistent with the parameters specified in (fn
  x1 ... xn): they must both specify the same arity (number of formal
  parameters) and the same [stobj] inputs. The value following :GUARD
  is a term that is to be the [guard] of fn. Note that this guard is
  never actually evaluated, and is not subject to the guard
  verification performed on functions introduced by [defun] (see
  [verify-guards]). Said differently: this guard need not itself have
  a guard of t. Indeed, the guard is only used for attachments; see
  [defattach]. Note that if :GUARD is supplied then :FORMALS must
  also be supplied (in order to relate the variables occurring in the
  guard to the parameters of fn). One final observation about guards:
  if the :GUARD keyword is omitted, then the guard defaults to T.

  Before ACL2 supported user-declared single-threaded objects there was
  only one single-threaded object: ACL2's built-in notion of [state].
  The notion of signature supported then gave a special role to the
  symbol state and all other symbols were considered to denote
  ordinary objects. ACL2 still supports the old form of signature,
  but it is limited to functions that operate on ordinary objects or
  ordinary objects and state.

    Old-Style General Form:
    (fn formals result . k)

  where fn is the constrained function symbol, formals is a suitable
  list of formal parameters for it, k is an optional
  [keyword-value-listp] (see below), and result is either a symbol
  denoting that the function returns one result or else result is an
  [mv] expression, (mv s1 ... sn), where n>1, each si is a symbol,
  indicating that the function returns n results. At most one of the
  formals may be the symbol STATE, indicating that corresponding
  argument must be ACL2's built-in [state]. If state appears in
  formals then state may appear once in result. All ``variable
  symbols'' other than state in old style signatures denote ordinary
  objects, regardless of whether the symbol has been defined to be a
  single-threaded object name!

  The optional k is as described above for newer-style signatures,
  except that the user is also allowed to declare which symbols
  (besides state) are to be considered single-threaded object names.
  Thus :STOBJS is also a legal keyword. The form

    (fn formals result ... :stobjs names ...)

  specifies that names is either the name of a single-threaded object
  or else is a list of such names. Every name in names must have been
  previously defined as a stobj via [defstobj] or [defabsstobj].

  As promised above, we conclude with a remark about an additional
  keyword, :CLASSICALP, that is legal for ACL2(r) (see [real]). The
  value of this keyword must be t (the default) or nil, indicating
  respectively whether fn is classical or not.")
 (SIGNED-BYTE-P
  (NUMBERS ACL2-BUILT-INS)
  "Recognizer for signed integers that fit in a specified bit width

  (Signed-byte-p bits x) is T when bits is a positive integer and x is
  a signed integer whose 2's complement representation fits in a
  bit-width of bits, i.e., -2^(bits-1) <= x < 2^(bits-1).

  Note that a [type-spec] of (signed-byte i) for a variable x in a
  function's [declare] form translates to a [guard] condition of
  (signed-byte-p i x).

  The [guard] for signed-byte-p is T.

  Function: <signed-byte-p>

    (defun signed-byte-p (bits x)
           (declare (xargs :guard t))
           (and (integerp bits)
                (< 0 bits)
                (integer-range-p (- (expt 2 (1- bits)))
                                 (expt 2 (1- bits))
                                 x)))")
 (SIGNUM
  (NUMBERS ACL2-BUILT-INS)
  "Indicator for positive, negative, or zero

  (Signum x) is 0 if x is 0, -1 if x is negative, and is 1 otherwise.

  The [guard] for signum requires its argument to be rational ([real],
  in ACL2(r)) number.

  Signum is a Common Lisp function. See any Common Lisp documentation
  for more information.

  From ``Common Lisp the Language'' page 206, we see a definition of
  signum in terms of [abs]. As explained elsewhere (see [abs]), the
  [guard] for [abs] requires its argument to be a rational ([real],
  in ACL2(r)) number; hence, we make the same restriction for signum.

  Function: <signum>

    (defun signum (x)
           (declare (xargs :guard (real/rationalp x)))
           (if (zerop x) 0 (if (minusp x) -1 1)))")
 (SIMPLE
  (REWRITE DEFINITION)
  ":[definition] and :[rewrite] rules used in preprocessing

    Example of simple rewrite rule:
    (equal (car (cons x y)) x)

    Examples of simple definition:
    (defun file-clock-p (x) (integerp x))
    (defun naturalp (x)
      (and (integerp x) (>= x 0)))

  The theorem prover output sometimes refers to ``simple'' definitions
  and rewrite rules. These rules can be used by the preprocessor,
  which is one of the theorem prover's ``processes'' understood by
  the :do-not hint; see [hints].

  The preprocessor expands certain definitions and uses certain rewrite
  rules that it considers to be ``fast''. There are two ways to
  qualify as fast. One is to be an ``abbreviation'', where a rewrite
  rule with no hypotheses or loop stopper is an ``abbreviation'' if
  the right side contains no more variable occurrences than the left
  side, and the right side does not call the functions [if], [not] or
  [implies]. Definitions and rewrite rules can both be abbreviations;
  the criterion for definitions is similar, except that the
  definition must not be recursive. The other way to qualify applies
  only to a non-recursive definition, and applies when its body is a
  disjunction or conjunction, according to a perhaps subtle criterion
  that is intended to avoid case splits.")
 (SINGLE-THREADED-OBJECTS (POINTERS)
                          "See [stobj].")
 (SIXTH
  (NTH ACL2-BUILT-INS)
  "Sixth member of the list

  See any Common Lisp documentation for details.")
 (SKIP-PROOFS
  (EVENTS)
  "Skip proofs for a given form --- a quick way to introduce unsoundness

    Example Form:
    (skip-proofs
      (defun foo (x)
        (if (atom x) nil (cons (car x) (foo (reverse (cdr x)))))))

    General Form:
    (skip-proofs form)

  where form is processed as usual except that the proof obligations
  usually generated are merely assumed.

  Normally form is an event; see [events]. If you want to put
  skip-proofs around more than one event, consider the following (see
  [progn]): (skip-proofs (progn event1 event2 ... eventk)).

  WARNING: Skip-proofs allows inconsistent [events] to be admitted to
  the logic. Use it at your own risk!

  Sometimes in the development of a formal model or proof it is
  convenient to skip the proofs required by a given event. By
  embedding the event in a skip-proofs form, you can avoid the proof
  burdens generated by the event, at the risk of introducing
  unsoundness. Below we list four illustrative situations in which
  you might find skip-proofs useful.

  1. The termination argument for a proposed function definition is
  complicated. You presume you could admit it, but are not sure that
  your definition has the desired properties. By embedding the
  [defun] event in a skip-proofs you can ``admit'' the function and
  experiment with theorems about it before undoing (see [ubt]) and
  then paying the price of its admission. Note however that you might
  still have to supply a measure. The set of formals used in some
  valid measure, known as the ``measured subset'' of the set of
  formals, is used by ACL2's induction heuristics and therefore needs
  to be suitably specified. You may wish to specify the special
  measure of (:? v1 ... vk), where (v1 ... vk) enumerates the
  measured subset.

  2. You intend eventually to verify the [guard]s for a definition but
  do not want to take the time now to pursue that. By embedding the
  [verify-guards] event in a skip-proofs you can get the system to
  behave as though the [guard]s were verified.

  3. You are repeatedly recertifying a book while making many
  experimental changes. A certain [defthm] in the book takes a very
  long time to prove and you believe the proof is not affected by the
  changes you are making. By embedding the [defthm] event in a
  skip-proofs you allow the theorem to be assumed without proof
  during the experimental recertifications.

  4. You are constructing a proof top-down and wish to defer the proof
  of a [defthm] until you are convinced of its utility. You can embed
  the defthm in a skip-proofs. Of course, you may find later (when
  you attempt prove the theorem) that the proposed defthm is not a
  theorem.

  Unsoundness or Lisp errors may result if the presumptions underlying
  a use of skip-proofs are incorrect. Therefore, skip-proofs must be
  considered a dangerous (though useful) tool in system development.

  Roughly speaking, a [defthm] embedded in a skip-proofs is essentially
  a [defaxiom], except that it is not noted as an axiom for the
  purposes of functional instantiation (see [lemma-instance]). But a
  skipped [defun] is much more subtle since not only is the
  definitional equation being assumed but so are formulas relating to
  termination and type. The situation is also difficult to
  characterize if the skip-proofs [events] are within the scope of an
  [encapsulate] in which constrained functions are being introduced.
  In such contexts no clear logical story is maintained; in
  particular, constraints aren't properly tracked for definitions. A
  proof script involving skip-proofs should be regarded as
  work-in-progress, not as a completed proof with some unproved
  assumptions. A skip-proofs event represents a promise by the author
  to admit the given event without further axioms. In other words,
  skip-proofs should only be used when the belief is that the proof
  obligations are indeed theorems in the existing ACL2 logical
  [world].

  ACL2 allows the certification of [books] containing skip-proofs
  [events] by providing the keyword argument :skip-proofs-okp t to
  the [certify-book] command. This is contrary to the spirit of
  certified [books], since one is supposedly assured by a valid
  [certificate] that a book has been ``blessed.'' But certification,
  too, takes the view of skip-proofs as ``work-in-progress'' and so
  allows the author of the book to promise to finish. When such
  [books] are certified, a warning to the author is printed,
  reminding him or her of the incurred obligation. When [books]
  containing skip-proofs are included into a session, a warning to
  the user is printed, reminding the user that the book is in fact
  incomplete and possibly inconsistent. This warning is in fact an
  error if :skip-proofs-okp is nil in the [include-book] form; see
  [include-book].

  We conclude with a technical note. Skip-proofs works by binding the
  [ld] special [ld-skip-proofsp] to t unless it is already bound to a
  non-nil value; see [ld-skip-proofsp].")
 (SLEEP
  (PROGRAMMING)
  "Sleep for some number of seconds

  The call (sleep n) returns nil. However, it takes approximately n
  seconds of real time for this call to return.

  The [guard] for sleep requires its argument to be a non-negative
  rational number.

  Sleep is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <sleep>

    (defun sleep (n)
           (declare (xargs :guard (and (rationalp n) (<= 0 n))))
           (declare (ignore n))
           nil)")
 (SLOW-ALIST-WARNING
  (FAST-ALISTS)
  "Warnings issued when [fast-alists] are used inefficiently

  Obtaining hash-table performance from [hons-get] requires one to
  follow a certain discipline. If this discipline is violated, you
  may see a \"slow alist warning\". This warning means that the alist
  you are extending or accessing does not have a valid hash table
  associated with it, and hence any accesses must be carried out with
  [hons-assoc-equal] instead of gethash.

  You can control whether or not you get a warning and, if so, whether
  or not a break (an error from which you can continue) ensues. For
  instance:

    (set-slow-alist-action :warning)  ; warn on slow access (default)
    (set-slow-alist-action :break)    ; warn and also call break$
    (set-slow-alist-action nil)       ; do not warn or break

  The above forms expand to [table] [events], so they can be embedded
  in [encapsulate]s and [books], wrapped in [local], and so on.")
 (SLOW-ARRAY-WARNING
  (ARRAYS)
  "A warning or error issued when [arrays] are used inefficiently

  If you use ACL2 [arrays] you may sometimes see a slow array warning.
  We explain below what that warning means and some likely
  ``mistakes'' it may signify.

  First, we note that you can control whether or not you get a warning
  and, if so, whether or not a break (error from which you can
  continue; see [break$]) ensues:

    (assign slow-array-action :warning) ; warn on slow array access (default)
    (assign slow-array-action :break)   ; warn as above, and then call break$
    (assign slow-array-action nil) ; do not warn or break on slow array access

  If you are using ACL2 arrays, then you probably care about
  performance, in which case it is probably best to avoid the nil
  setting. Below we assume the default behavior: a warning, but no
  break.

  The discussion in the documentation for [arrays] defines what we mean
  by the semantic value of a name. As noted there, behind the scenes
  ACL2 maintains the invariant that with some names there is
  associated a pair consisting of an ACL2 array alist, called the
  semantic value of the name, and an equivalent raw lisp array.
  Access to ACL2 array elements, as in (aref1 name alist i), is
  executed in constant time when the array alist is the semantic
  value of the name, because we can just use the corresponding raw
  lisp array to obtain the answer. [Aset1] and [compress1] modify the
  raw lisp array appropriately to maintain the invariant.

  If [aref1] is called on a name and alist, and the alist is not the
  then-current semantic value of the name, the correct result is
  computed but it requires linear time because the alist must be
  searched. When this happens, [aref1] prints a slow array warning
  message to the comment window. [Aset1] behaves similarly because
  the array it returns will cause the slow array warning every time
  it is used.

  From the purely logical perspective there is nothing ``wrong'' about
  such use of [arrays] and it may be spurious to print a warning
  message. But because [arrays] are generally used to achieve
  efficiency, the slow array warning often means the user's
  intentions are not being realized. Sometimes merely performance
  expectations are not met; but the message may mean that the
  functional behavior of the program is different than intended.

  Here are some ``mistakes'' that might cause this behavior. In the
  following we suppose the message was printed by [aset1] about an
  array named name. Suppose the alist supplied [aset1] is alist.

  (1) [Compress1] was never called on name and alist. That is, perhaps
  you created an alist that is an [array1p] and then proceeded to
  access it with [aref1] but never gave ACL2 the chance to create a
  raw lisp array for it. After creating an alist that is intended for
  use as an array, you must do (compress1 name alist) and pass the
  resulting alist' as the array.

  (2) Name is misspelled. Perhaps the array was compressed under the
  name 'delta-1 but accessed under 'delta1?

  (3) An [aset1] was done to modify alist, producing a new array,
  alist', but you subsequently used alist as an array. Inspect all
  (aset1 name ...) occurrences and make sure that the alist modified
  is never used subsequently (either in that function or any other).
  It is good practice to adopt the following syntactic style. Suppose
  the alist you are manipulating is the value of the local variable
  alist. Suppose at some point in a function definition you wish to
  modify alist with [aset1]. Then write

    (let ((alist (aset1 name alist i val))) ...)

  and make sure that the subsequent function body is entirely within
  the scope of the [let]. Any uses of alist subsequently will refer
  to the new alist and it is impossible to refer to the old alist.
  Note that if you write

    (foo (let ((alist (aset1 name alist i val))) ...)  ; arg 1
         (bar alist))                                  ; arg 2

  you have broken the rules, because in arg 1 you have modified alist
  but in arg 2 you refer to the old value. An appropriate rewriting
  is to lift the [let] out:

    (let ((alist (aset1 name alist alist i val)))
      (foo ...                                         ; arg 1
           (bar alist)))                               ; arg 2

  Of course, this may not mean the same thing.

  (4) A function which takes alist as an argument and modifies it with
  [aset1] fails to return the modified version. This is really the
  same as (3) above, but focuses on function interfaces. If a
  function takes an array alist as an argument and the function uses
  [aset1] (or a subfunction uses [aset1], etc.), then the function
  probably ``ought'' to return the result produced by [aset1]. The
  reasoning is as follows. If the array is passed into the function,
  then the caller is holding the array. After the function modifies
  it, the caller's version of the array is obsolete. If the caller is
  going to make further use of the array, it must obtain the latest
  version, i.e., that produced by the function.")
 (SOLUTION-TO-SIMPLE-EXAMPLE
  (ANNOTATED-ACL2-SCRIPTS)
  "Solution to a simple example

  To see a statement of the problem solved below, see
  [annotated-ACL2-scripts] (in particular the end of that topic).

  Here is a sequence of ACL2 [events] that illustrates the use of ACL2
  to make definitions and prove theorems. We will introduce the
  notion of the fringe of a tree, as well as the notion of a leaf of
  a tree, and then prove that the members of the fringe are exactly
  the leaves.

  We begin by defining the fringe of a tree, where we identify trees
  simply as [cons] structures, with [atom]s at the leaves. The
  definition is recursive, breaking into two cases. If x is a [cons],
  then the fringe of x is obtained by appending together the fringes
  of the [car] and [cdr] (left and right child) of x. Otherwise, x is
  an [atom] and its fringe is the one-element list containing only x.

    (defun fringe (x)
      (if (consp x)
          (append (fringe (car x))
                  (fringe (cdr x)))
        (list x)))

  Now that fringe has been defined, let us proceed by defining the
  notion of an atom appearing as a ``leaf'', with the goal of proving
  that the leaves of a tree are exactly the members of its fringe.

    (defun leaf-p (atm x)
      (if (consp x)
          (or (leaf-p atm (car x))
              (leaf-p atm (cdr x)))
        (equal atm x)))

  The main theorem is now as follows. Note that the rewrite rule below
  uses the equivalence relation [iff] (see [equivalence]) rather than
  [equal], since [member] returns the tail of the given list that
  begins with the indicated member, rather than returning a Boolean.
  (Use :pe member to see the definition of [member].)

    (defthm leaf-p-iff-member-fringe
      (iff (leaf-p atm x)
           (member-equal atm (fringe x))))")
 (SPEC-MV-LET
  (PARALLEL-PROGRAMMING ACL2-BUILT-INS)
  "Modification of [mv-let] supporting speculative and parallel
  execution

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism],
  and see [parallel-programming], which has a disclaimer.

    Example Form:
    (defun pfib-with-step-count (x)
      (declare (xargs :mode :program))
      (if (or (zp x) (< x 33))
          (fib-with-step-count x)
        (spec-mv-let
         (a cnt1)
         (pfib-with-step-count (- x 1))
         (mv-let (b cnt2)
                 (pfib-with-step-count (- x 2))
                 (if t
                     (mv (+ a b)
                         (+ 1 cnt1 cnt2))
                   (mv \"speculative result is always needed\"
                       -1))))))

    General Form:
    (spec-mv-let
     (v1 ... vn)  ; bind distinct variables
     <spec>       ; evaluate speculatively; return n values
     (mv-let      ; or, use mv?-let if k=1 below
      (w1 ... wk) ; bind distinct variables
      <eager>     ; evaluate eagerly
      (if <test>  ; use results from <spec> if true
          <typical-case> ; may mention v1 ... vn
        <abort-case>)))  ; does not mention v1 ... vn

  Our design of spec-mv-let is guided by its use in ACL2 source code to
  parallelize part of ACL2's proof process, in the experimental
  parallel extension of ACL2. The user can think of spec-mv-let as a
  speculative version of [mv-let]. (In ordinary ACL2, the semantics
  agree with this description but without speculative or parallel
  execution.)

  Evaluation of the above general form proceeds as suggested by the
  comments. First, <spec> is executed speculatively. Control then
  passes immediately to the [mv-let] call, without waiting for the
  result of evaluating <spec>. The variables (w1 ... wk) are bound to
  the result of evaluating <eager>, and then <test> is evaluated. If
  the value of <test> is true, then the values of (v1 ... vn) are
  needed, and <typical-case> blocks until they are available. If the
  value of <test> is false, then the values of (v1 ... vn) are not
  needed, and the evaluation of <spec> may be aborted.

  The calls to mv-let and to if displayed above in the General Form are
  an essential part of the design of spec-mv-let, and are thus
  required.

  The following definition of fib-with-step-count completes the example
  above:

    (defun fib-with-step-count (x)
    (declare (xargs :mode :program))
    (cond ((<= x 0)
           (mv 0 1))
          ((= x 1) (mv 1 1))
          (t (mv-let (a cnt1)
                     (fib-with-step-count (- x 1))
                     (mv-let (b cnt2)
                             (fib-with-step-count (- x 2))
                             (mv (+ a b)
                                 (+ 1 cnt1 cnt2)))))))")
 (SPECIAL-CASES-FOR-REWRITE-RULES
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Convenient short forms for rewrite rule formulas

  In principle, every rewrite rule is made from a formula of this
  shape:

    (IMPLIES (AND hyp1 ... hypk)
             (eqv lhs rhs))

  where eqv is either EQUAL or IFF and the result of expanding any
  abbreviations in lhs is the application of some function symbol
  other than IF.

  * In the special case where there is only one hyp term, i.e., k=1,
  the (AND hyp1) can be written hyp1.

  * In the special case where there are no hyp terms, k=0, the (AND)
  term is logically just T and the whole IMPLIES can be dropped; such
  a formula may be written as an unconditional EQUAL or IFF term.

  * If you build a rewrite rule from a formula that concludes with (NOT
  x), it is treated as though it were (EQUAL x NIL), which is
  logically equivalent to what you typed.

  * If you build a rewrite rule from a formula that concludes with an
  AND, ACL2 will build a rewrite rule for each conjunct of the AND.
  This is because

    (IMPLIES hyp (AND concl1 concl2))

  is propositionally equivalent to

    (AND (IMPLIES hyp concl1)
         (IMPLIES hyp concl2)).

  However, if you use an OR-expression as a hypothesis, ACL2 does not
  do the dual transformation. Thus, (IMPLIES (OR hyp1 hyp2) concl)
  generates one rewrite rule.

  * Finally, if you build a rewrite rule from a formula that does not
  conclude with an EQUAL, an IFF, a NOT, or an AND, but with some
  other term, say, lhs, then ACL2 acts like you typed (IFF lhs T),
  which is logically equivalent to what you typed.

  Thus, regardless of what you type, every rule has k hypotheses. For
  unconditional rules, k is 0 and the hypotheses are vacuously true.
  Whether or not you write an EQUAL or an IFF in the conclusion,
  every rule is either an equality or a propositional equivalence,
  every rule has a left-hand side, and every rule has a right-hand
  side.

  Use your browser's Back Button now to return to
  [introduction-to-rewrite-rules-part-1].")
 (SPECIFIC-KINDS-OF-FORMULAS-AS-REWRITE-RULES
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Advice about how to handle commonly occurring formulas as rewrite
  rules

  Below we give you some guidelines for handling specific, commonly
  occurring situations.

  * Associativity: If a function f is associative, prove

    (equal (f (f x y) z) (f x (f y z)))

  ACL2 will use this to flatten f-nests ``to the right.''

  * Commutativity: If a function f is commutative, prove both

    (equal (f x y) (f y x))

  and

    (equal (f x (f y z)) (f y (f x z)))

  ACL2's heuristics will use these rules to order the arguments
  alphabetically, so that (f B (f D (f A C))) becomes (f A (f B (f C
  D))).

  * Distributivity: If you have a pair of functions f and g so that (f
  x (g y z)) is (g (f x y) (f x z)) or some other form of
  distributivity is provable, arrange your rules to move the lighter
  function symbol up and the heavier one toward the variable symbols.
  For example, our arithmetic libraries drive multiplication through
  addition, producing sums of products rather than products of sums.

  * Identity and Other Laws: Prove the obvious identity and zero laws
  (or at least anticipate that you might need them down the road) so
  as to eliminate operators.

  * Get Rid of Tail Recursive Functions: A corollary to the above
  advice concerns tail recursive functions that use auxiliary
  variables. New users often define concepts using tail recursions,
  accumulating partial results in auxiliary variables, because
  creating such functions is similar to programming with while loops.
  Expert users will use tail recursion when necessary for execution
  efficiency. But tail recursive functions are messy to reason about:
  their auxiliary variables have to be properly initialized to make
  the functions compute the expected results, but to state
  inductively provable properties of tail recursive functions you
  must identify the invariants on those auxiliary variables. This
  problem tends not to happen with primitive recursive functions. A
  primitive recursive function is one that recurs down one variable
  and holds all the other variables constant in recursion. Most
  tail-recursive functions can be written elegantly as primitive
  recursive functions, though one might have to ignore the
  programmer's desire to make things efficient and define auxiliary
  functions to appropriately transform the value returned by the
  recursive call. The classic example is reverse defined in terms of
  the auxiliary function append versus reverse defined tail
  recursively with an accumulator. By introducing append you
  introduce a concept about which you can state lemmas and decompose
  the proofs of properties of reverse. So if your problem involves
  tail recursive functions with auxiliary variables, define the
  primitive recursive version, prove that the tail recursive function
  is equivalent to the primitive recursive one, and arrange the
  rewrite rule to eliminate the tail recursive function.

  * Get Rid of Mutually Recursive Functions: Similarly, if you have
  used mutual-recursion to introduce a clique of mutually recursive
  functions, f1, f2, ..., you will find that to reason about any one
  function in the nest you have to reason about all of them. Any
  mutually recursive function can be defined in a singly recursive
  way. So do that and then prove a rewrite rule that gets rid of all
  the mutually recursive functions by proving

    (and (equal (f1 ...) (g1 ...))
         (equal (f2 ...) (g2 ...))
         ...)

  where the gi are singly recursive. You may need to appeal to a trick
  to define the gi: define a singly recursive function that takes a
  flag argument and mimics whichever mutually recursive function the
  flag specifies. See [mutual-recursion] [{ICON}] and see
  [mutual-recursion-proof-example] [{ICON}].

  If you got to this documentation page from the tutorial discussion of
  rewrite rules, use your browser's Back Button now to return to
  [introduction-to-rewrite-rules-part-2].")
 (SPECIOUS-SIMPLIFICATION
  (MISCELLANEOUS)
  "Nonproductive proof steps

  Occasionally the ACL2 theorem prover reports that the current goal
  simplifies to itself or to a set including itself. Such
  simplifications are said to be ``specious'' and are ignored in the
  sense that the theorem prover acts as though no simplification were
  possible and tries the next available proof technique. Specious
  simplifications are almost always caused by forcing.

  The simplification of a formula proceeds primarily by the local
  application of :[rewrite], :[type-prescription], and other rules to
  its various subterms. If no rewrite rules apply, the formula cannot
  be simplified and is passed to the next ACL2 proof technique, which
  is generally the elimination of destructors. The experienced ACL2
  user pays special attention to such ``maximally simplified''
  formulas; the presence of unexpected terms in them indicates the
  need for additional rules or the presence of some conflict that
  prevents existing rules from working harmoniously together.

  However, consider the following interesting possibility: local
  rewrite rules apply but, when applied, reproduce the goal as one of
  its own subgoals. How can rewrite rules apply and reproduce the
  goal? Of course, one way is for one rule application to undo the
  effect of another, as when commutativity is applied twice in
  succession to the same term. Another kind of example is when two
  rules conflict and undermine each other. For example, under
  suitable hypotheses, (length x) might be rewritten to (+ 1 (length
  (cdr x))) by the :[definition] of [length] and then a :[rewrite]
  rule might be used to ``fold'' that back to (length x). Generally
  speaking the presence of such ``looping'' rewrite rules causes
  ACL2's simplifier either to stop gracefully because of heuristics
  such as that described in the documentation for [loop-stopper] or
  to cause a stack overflow because of indefinite recursion.

  A more insidious kind of loop can be imagined: two rewrites in
  different parts of the formula undo each other's effects ``at a
  distance,'' that is, without ever being applied to one another's
  output. For example, perhaps the first hypothesis of the formula is
  simplified to the second, but then the second is simplified to the
  first, so that the end result is a formula propositionally
  equivalent to the original one but with the two hypotheses
  commuted. This is thought to be impossible unless forcing or
  case-splitting occurs, but if those features are exploited (see
  [force] and see [case-split]) it can be made to happen relatively
  easily.

  Here is a simple example. Declare foo to be a function of one
  argument returning one result:

    (defstub p1 (x) t)

  Prove the following silly rule:

    (defthm bad
      (implies (case-split (p1 x))
               (p1 x)))

  Now suppose we try the following.

    (thm (p1 x))

  The [rewrite] rule bad will rewrite (p1 x) to t, but it will be
  unable to prove the hypothesis (case-split (p1 x)). As a result,
  the prover will spawn a new goal, to prove (p1 x). However, since
  this new goal is the same as the original goal, ACL2 will recognize
  the simplification as specious and consider the attempted
  simplification to have failed.

  In other words, despite the rewriting, no progress was made! In more
  common cases, the original goal may simplify to a set of subgoals,
  one of which includes the original goal.

  If ACL2 were to adopt the new set of subgoals, it would loop
  indefinitely. Therefore, it checks whether the input goal is a
  member of the output subgoals. If so, it announces that the
  simplification is ``specious'' and pretends that no simplification
  occurred.

  ``Maximally simplified'' formulas that produce specious
  simplifications are maximally simplified in a very technical sense:
  were ACL2 to apply every applicable rule to them, no progress would
  be made. Since ACL2 can only apply every applicable rule, it cannot
  make further progress with the formula. But the informed user can
  perhaps identify some rule that should not be applied and make it
  inapplicable by disabling it, allowing the simplifier to apply all
  the others and thus make progress.

  When specious simplifications are a problem it might be helpful to
  [disable] all forcing (including [case-split]s) and resubmit the
  formula to observe whether forcing is involved in the loop or not.
  See [force]. The commands

    ACL2 !>:disable-forcing
    and
    ACL2 !>:enable-forcing

  [disable] and [enable] the pragmatic effects of both force and
  case-split. If the loop is broken when forcing is [disable]d, then
  it is very likely some [force]d hypothesis of some rule is
  ``undoing'' a prior simplification. The most common cause of this
  is when we [force] a hypothesis that is actually false but whose
  falsity is somehow temporarily hidden (more below). To find the
  offending rule, compare the specious simplification with its
  non-specious counterpart and look for rules that were speciously
  applied that are not applied in the non-specious case. Most likely
  you will find at least one such rule and it will have a [force]d
  hypothesis. By disabling that rule, at least for the subgoal in
  question, you may allow the simplifier to make progress on the
  subgoal.")
 (SPLIT-TYPES (POINTERS)
              "See [xargs] for keyword :split-types.")
 (SPLITTER
  (DEBUGGING)
  "Reporting of rules whose application may have caused case splits

  The application of a rule to a term may cause a goal to simplify to
  more than one subgoal. A rule with such an application is called a
  ``splitter''. Here, we explain the output produced for splitters
  when proof output is enabled (see [set-inhibit-output-lst]) and
  such reporting is turned on (as it is by default) --- that is, when
  the value of ([splitter-output]) is true.

  See [set-splitter-output] for how to turn off, or on, the reporting
  of splitters. Also see [set-case-split-limitations] for information
  on how to control case splits. Note that since splitters are rule
  applications, splitter output is not generated for case splits that
  are caused by other than rules, such as the mere presence of calls
  of the function symbol, [if], in the goal.

  We begin by describing three types of splitters.

      if-intro: The rule application may have introduced a call of IF, in
      the sense discussed at the end below.

      case-split: For the application of a rule with hypothesis of the form
      (case-split <hyp>), <hyp> did not simplify to true or false.

      immed-forced: For the application of a rule with hypothesis of the
      form (force <hyp>), <hyp> did not simplify to true or false,
      where immediate-force-modep is enabled (see
      [immediate-force-modep]).

  These three annotations --- if-intro, case-split, and immed-forced
  --- may be used in proof output and summaries for describing rule
  applications, as discussed below. A fourth annotation, forced, may
  also be used in proof output to indicate the application of a rule
  with hypothesis of the form (force <hyp>) when <hyp> did not
  simplify to true or false, where immediate-force-modep is disabled
  (see [immediate-force-modep]). We don't consider such uses of
  [force] to be splitters, because they do not cause case splits
  (though they do produce goals to prove after lower-case ``q.e.d.''
  is printed); see [force].

  There are three kinds of output affected by splitters, illustrated in
  turn below using examples.

      (a) During the proof, [gag-mode] and raw proof format (see
      [set-raw-proof-format]) off
      (b) During the proof, [gag-mode] or raw proof format on
      (c) Summary

  Of course, (a) and (b) are skipped if proof output is inhibited, and
  (c) is skipped if summary output is inhibited; see
  [set-inhibit-output-lst].

  (a) During the proof, [gag-mode] and raw proof format (see
  [set-raw-proof-format]) off

  With [gag-mode] off (or when using :[pso], :[psof], or :[psog]) one
  normally gets an English commentary. The following output indicates
  that at least one application of each rule F and G is of type
  if-intro, at least one application of rules G and R1 are of type
  case-split, and at least one application of rule R3 is of type
  immed-forced. If [immediate-force-modep] is off then
  ``immed-forced'' would be replaced by ``forced''.

    This simplifies, using the :definitions F (if-intro), G (case-split and
    if-intro) and H and the :rewrite rules R1, R2 (case-split), and
    R3 (immed-forced), to the following two conjectures.

  Note that any such printing of ``forced'' is done even if
  (splitter-output) is false.

  (b) During the proof, [gag-mode] or raw proof format on

  With [gag-mode] or raw proof format (see [set-raw-proof-format]) on,
  the proof output is abbreviated. However, in these cases ``Splitter
  Notes'' are printed so that one can still get important information
  to help control large case splits (by disabling splitter rules as
  appropriate). These are printed at the point when a goal splits
  into subgoals. Here, for example, is the Splitter Note that
  corresponds to the output shown in (a) above. It shows the goal
  whose simplification has produced a split into more than one
  subgoal, and it shows how many subgoals have been created.

    Splitter note (see :DOC splitter) for Subgoal *1/2.2.1' (2 subgoals).
      case-split: ((:DEFINITION G) (:REWRITE R2))
      immed-forced: ((:REWRITE R3))
      if-intro: ((:DEFINITION G) (:DEFINITION F))

  No such splitter notes are printed for the use of [force] (when
  [immediate-force-modep] is off).

  (c) Summary

  Here is a possible summary corresponding to our running example. In
  the summary, ``Splitter rules'' is omitted if there are no splitter
  rules, and a splitter type is only mentioned if there is at least
  one corresponding splitter rule.

    Summary
    Form:  ( THM ...)
    Rules: ((:DEFINITION F)
            (:DEFINITION G)
            (:DEFINITION H)
            (:REWRITE R1)
            (:REWRITE R2)
            (:REWRITE R3))
    Splitter rules (see :DOC splitter):
      case-split: ((:DEFINITION G) (:REWRITE R2))
      immed-forced: ((:REWRITE R3))
      if-intro: ((:DEFINITION G) (:DEFINITION F))
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.00)
    Prover steps counted:  145

  No indication for ``forced'' is given for ``Splitter rules''. (As
  discussed earlier above, the [force]d hypotheses are not considered
  relevant for determining splitter rule applications unless
  [immediate-force-modep] is on.)

  We conclude by giving the criteria for a [rewrite] or [definition]
  rule application to be a splitter of type if-intro.

    * Reporting of splitter rules is on, i.e., the value of
      ([splitter-output]) is true.
    * At least two subgoals are created, even before considering subgoals
      generated by hypotheses that are calls of [case-split] or
      [force].
    * The term to which the rule is applied is at the top level, rather
      than being encountered when trying to establish the hypothesis
      of a rule.
    * The rule is a [rewrite] rule, a [definition] rule, or a [meta] rule.
    * There is a call of the function symbol IF in the right-hand side of
      the [rewrite] rule; or, in the case of a [definition] rule, in
      the body of the definition; or, in the case of a [meta] rule,
      in the result of applying the metafunction.
    * There is a call of the function symbol IF in the result of rewriting:
      the right-hand side (for a [rewrite] rule), the definition body
      (for a [definition] rule), or the metafunction application (for
      a [meta] rule).

  Any rule application meeting the above criteria will be considered a
  splitter of type if-intro, even if the call does not actually cause
  a case split. For example, if you are proving (implies (hyp x)
  (conc x)) and rule R rewrites (hyp x) to (if (h1 x) (h2 x) nil),
  which is really the term (and (h1 x) (h2 x)), then R may be
  labelled as a splitter rule. If you want to find the causes of
  case-splitting, the list of if-intro splitters can help you narrow
  your search, but may include irrelevant rules as well.

  Finally, note that you may see splits not attributed to splitters. We
  believe that this will be uncommon during simplification, though it
  can occur for example when a call of IF is in the body of a [let]
  expression, i.e., in a call of a [lambda] expression. But splits
  caused by other processes, notably destructor elimination (see
  [elim]), will typically not be attributed to splitters.


Subtopics

  [Set-splitter-output]
      Turn on or off reporting of rules that may have caused case splits

  [Splitter-output]
      Status for reporting of [splitter] rules")
 (SPLITTER-OUTPUT
  (SPLITTER)
  "Status for reporting of [splitter] rules

  See [splitter] for a discussion of splitter rules. See
  [set-splitter-output] for how to turn off, or on, the reporting of
  splitter rules. When splitter-output is off, because either prove
  output is inhibited (see [set-inhibit-output-lst]) or
  ([set-splitter-output] nil) has been invoked, then the value of
  (splitter-output) is nil. Otherwise, such reporting is on and the
  value is non-nil.")
 (STABLE-UNDER-SIMPLIFICATIONP (POINTERS)
                               "See [computed-hints].")
 (STANDARD-CHAR-LISTP
  (CHARACTERS LISTS ACL2-BUILT-INS)
  "Recognizer for a true list of standard characters

  (standard-char-listp x) is true if and only if x is a null-terminated
  list all of whose members are standard [characters]. See
  [standard-char-p].

  Standard-char-listp has a [guard] of t.

  Function: <standard-char-listp>

    (defun standard-char-listp (l)
           (declare (xargs :guard t))
           (cond ((consp l)
                  (and (characterp (car l))
                       (standard-char-p (car l))
                       (standard-char-listp (cdr l))))
                 (t (equal l nil))))")
 (STANDARD-CHAR-P
  (CHARACTERS ACL2-BUILT-INS)
  "Recognizer for standard characters

  (Standard-char-p x) is true if and only if x is a ``standard''
  character, i.e., a member of the list *standard-chars*. This list
  includes #\\Newline and #\\Space [characters], as well as the usual
  punctuation and alphanumeric [characters].

  Standard-char-p has a [guard] requiring its argument to be a
  character.

  Standard-char-p is a Common Lisp function. See any Common Lisp
  documentation for more information.

  Function: <standard-char-p>

    (defun standard-char-p (x)
           (declare (xargs :guard (characterp x)))
           (if (member x *standard-chars*) t nil))")
 (STANDARD-CO
  (IO ACL2-BUILT-INS)
  "The character output channel to which [ld] prints

  Standard-co is an [ld] special (see [ld]). The accessor is
  (standard-co state) and the updater is (set-standard-co val state).
  Standard-co must be an open character output channel. It is to this
  channel that [ld] prints the [prompt], the form to be evaluated,
  and the results. The event [command]s such as [defun], [defthm],
  etc., which print extensive commentary do not print to standard-co
  but rather to a different channel, [proofs-co], so that you may
  redirect this commentary while still interacting via standard-co.
  See [proofs-co].

  ``Standard-co'' stands for ``standard character output.'' The initial
  value of standard-co is the same as the value of [*standard-co*]
  (see [*standard-co*]).")
 (STANDARD-OI
  (IO ACL2-BUILT-INS)
  "The standard object input ``channel''

  Standard-oi is an [ld] special (see [ld]). The accessor is
  (standard-oi state) and the updater is (set-standard-oi val state).
  Standard-oi must be an open object input channel, a true list of
  objects, or a list of objects whose last [cdr] is an open object
  input channel. It is from this source that [ld] takes the input
  forms to process. When [ld] is called, if the value specified for
  standard-oi is a string or a list of objects whose last [cdr] is a
  string, then [ld] treats the string as a file name and opens an
  object input channel from that file, where the connected book
  directory (see [cbd]) is used to resolve relative pathnames. The
  channel opened by [ld] is closed by [ld] upon termination.

  ``Standard-oi'' stands for ``standard object input.'' The
  read-eval-print loop in [ld] reads the objects in standard-oi and
  treats them as forms to be evaluated. The initial value of
  standard-oi is the same as the value of [*standard-oi*] (see
  [*standard-oi*]).")
 (STANDARD-PART
  (REAL)
  "ACL2(r) function mapping limited numbers to standard numbers

  (Standard-part x) is, for a given [i-limited] number x, the unique
  real number infinitesimally close (see [i-close]) to x. This
  function is only defined in ACL2(r) (see [real]).")
 (STANDARD-STRING-ALISTP
  (ALISTS ACL2-BUILT-INS)
  "Recognizer for association lists with standard strings as keys

  (Standard-string-alistp x) is true if and only if x is a list of
  pairs of the form (cons key val) where key is a string all of whose
  characters are standard (see [standard-char-p]).

  Standard-string-alistp has a [guard] of t.

  Function: <standard-string-alistp>

    (defun
        standard-string-alistp (x)
        (declare (xargs :guard t))
        (cond ((atom x) (eq x nil))
              (t (and (consp (car x))
                      (stringp (car (car x)))
                      (standard-char-listp (coerce (car (car x)) 'list))
                      (standard-string-alistp (cdr x))))))")
 (STANDARDP
  (REAL)
  "ACL2(r) recognizer for standard objects

  (Standardp x) is true if and only if x is a ``standard'' object. This
  notion of ``standard'' comes from non-standard analysis and is
  discussed in Ruben Gamboa's dissertation. In brief, all the
  familiar objects are standard: e.g., the familiar real numbers are
  standard, but non-zero infinitesimals are not standard, and the
  familiar integers are standard, but not those that exceed every
  integer that you can express in the usual way (1, 2, 3, and so on).
  Similarly, the familiar lists are standard, but not so a list that
  contains a large number of integers, where ``large'' means more
  than the standard integers. The set of standard numbers is closed
  under the usual arithmetic operations, hence the sum of a standard
  number and a non-zero infinitesimal is not standard, though it is
  what is called ``limited'' (see [i-limited]).

  This predicate is only defined in ACL2(r) (see [real]).")
 (START-PROOF-TREE
  (PROOF-TREE)
  "Start displaying proof trees during proofs

  Also see [proof-tree] and see [stop-proof-tree]. Note that
  :start-proof-tree works by removing '[proof-tree] from the
  inhibit-output-lst; see [set-inhibit-output-lst].

  Explanations of proof tree displays may be found elsewhere: see
  [proof-tree]. In a nutshell: :start-proof-tree causes proof tree
  display to be turned on, once it has been turned off by
  :[stop-proof-tree].

  Do not attempt to invoke start-proof-tree during an interrupt in the
  middle of a proof.")
 (STARTUP
  (ACL2-TUTORIAL)
  "How to start using ACL2; the ACL2 [command] loop

  When you start up ACL2, you'll probably find yourself inside the ACL2
  [command] loop, as indicated by the following [prompt].

    ACL2 !>

  If not, you should type (LP). See [lp], which has a lot more
  information about the ACL2 [command] loop.

  You should now be in ACL2. The current ``[default-defun-mode]'' is
  :[logic]; the other mode is :[program], which would cause the
  letter p to be printed in the [prompt]. :[Logic] means that any
  function we define is not only executable but also is axiomatically
  defined in the ACL2 logic. See [defun-mode] and see
  [default-defun-mode]. For example we can define a function my-cons
  as follows. (You may find it useful to start up ACL2 and submit
  this and other [command]s below to the ACL2 [command] loop, as we
  won't include output below.)

    ACL2 !>(defun my-cons (x y) (cons x y))

  An easy theorem may then be proved: the [car] of (my-cons a b) is A.

    ACL2 !>(defthm car-my-cons (equal (car (my-cons a b)) a))

  You can place raw Lisp forms to evaluate at start-up into file
  acl2-init.lsp in your home directory, except on Windows systems.
  For example, if you put the following into acl2-init.lsp, then ACL2
  will print \"HI\" when it starts up.

    (print \"HI\")

  But be careful; all bets are off when you submit forms to raw Lisp,
  so this capability should only be used when you are hacking or when
  you are setting some Lisp parameters (e.g., (setq si::*notify-gbc*
  nil) to turn off garbage collection notices in GCL).

  Notice that unlike Nqthm, the theorem [command] is [defthm] rather
  than prove-lemma. See [defthm], which explains (among other things)
  that the default is to turn theorems into [rewrite] rules.

  Various keyword commands are available to query the ACL2 ``[world]'',
  or database. For example, we may view the definition of my-cons by
  invoking a command to print [events], as follows.

    ACL2 !>:pe my-cons

  Also see [pe]. We may also view all the lemmas that [rewrite] [term]s
  whose top function symbol is [car] by using the following command,
  whose output will refer to the lemma car-my-cons proved above.

    ACL2 !>:pl car

  Also see [pl]. Finally, we may print all the [command]s back through
  the initial [world] as follows.

    ACL2 !>:pbt 0

  See [history] for a list of commands, including these, for viewing
  the current ACL2 [world].

  Continue with the [documentation] for [annotated-ACL2-scripts] to see
  a simple but illustrative example in the use of ACL2 for reasoning
  about functions.")
 (STATE
  (PROGRAMMING)
  "The von Neumannesque ACL2 state object

  Note: If you are interested in programming with state, see
  [programming-with-state] after reading the information below.

  The ACL2 state object is used extensively in programming the ACL2
  system, and has been used in other ACL2 programs as well. However,
  most users, especially those interested in specification and
  verification (as opposed to programming per se), need not be aware
  of the role of the state object in ACL2, and will not write
  functions that use it explicitly. We say more about this point at
  the end of this documentation topic.

  The ACL2 state object is an example of a single-threaded object or
  [stobj]. ACL2 allows the user to define new single-threaded
  objects. Generally, ACL2 may need to access the ACL2 state but
  should not (cannot) change it except via a certain set of approved
  functions such as [defun] and [defthm]. If you need a state-like
  object to which you have complete rights, you may want a [stobj].

  Key to the idea of our state is the notion of single-threadedness.
  For an explanation, see [stobj]. The upshot of it is that state is
  a variable symbol with severe restrictions on its use, so that it
  can be passed into only certain functions in certain slots, and
  must be returned by those functions that ``modify'' it. Henceforth,
  we do not discuss single-threaded objects in general (which the
  user can introduce with [defstobj] and [defabsstobj]) but one in
  particular, namely ACL2's state object.

  The global table is perhaps the most visible portion of the state
  object. Using the interface functions @ and assign, a user may bind
  global variables to the results of function evaluations (much as an
  Nqthm user exploits the Nqthm utility r-loop). See [@], and see
  [assign]. A particularly interesting global is 'current-acl2-world,
  whose value is the ACL2 logical [world].

  ACL2 supports several facilities of a truly von Neumannesque state
  machine character, including file [io] and global variables.
  Logically speaking, the state is a true list of the 14 components
  described below. There is a ``current'' state object at the
  top-level of the ACL2 [command] loop. This object is understood to
  be the value of what would otherwise be the free variable state
  appearing in top-level input. When any [command] returns a state
  object as one of its values, that object becomes the new current
  state. But ACL2 provides von Neumann style speed for state
  operations by maintaining only one physical (as opposed to logical)
  state object. Operations on the state are in fact destructive. This
  implementation does not violate the applicative semantics because
  we enforce certain draconian syntactic rules regarding the use of
  state objects. For example, one cannot ``hold on'' to an old state,
  access the components of a state arbitrarily, or ``modify'' a state
  object without passing it on to subsequent state-sensitive
  functions.

  Every routine that uses the state facilities (e.g. does [io], or
  calls a routine that does [io]), must be passed a ``state object.''
  And a routine must return a state object if the routine modifies
  the state in any way. Rigid syntactic rules governing the use of
  state objects are enforced by the function translate, through which
  all ACL2 user input first passes. State objects can only be
  ``held'' in the formal parameter state, never in any other formal
  parameter and never in any structure (excepting a multiple-value
  return list field which is always a state object). State objects
  can only be accessed with the primitives we specifically permit.
  Thus, for example, one cannot ask, in code to be executed, for the
  length of state or the [car] of state. In the statement and proof
  of theorems, there are no syntactic rules prohibiting arbitrary
  treatment of state objects.

  Logically speaking, a state object is a true list whose members are
  as follows:

      Open-input-channels, an alist with keys that are symbols in package
      \"ACL2-INPUT-CHANNEL\". The value ([cdr]) of each pair has the
      form ((:header type file-name open-time) . elements), where
      type is one of :character, :byte, or :object and elements is a
      list of things of the corresponding type, i.e. characters,
      integers of type (mod 255), or lisp objects in our theory.
      File-name is a string. Open-time is an integer. See [io].

      Open-output-channels, an alist with keys that are symbols in package
      \"ACL2-OUTPUT-CHANNEL\". The value of a pair has the form
      ((:header type file-name open-time) . current-contents). See
      [io].

      Global-table, an alist associating symbols (to be used as ``global
      variables'') with values. See [@], and see [assign].

      T-stack, a list of arbitrary objects accessed and changed by the
      functions aref-t-stack and aset-t-stack.

      32-bit-integer-stack, a list of arbitrary 32-bit-integers accessed
      and changed by the functions aref-32-bit-integer-stack and
      aset-32-bit-integer-stack.

      Big-clock-entry, an integer, that is used logically to bound the
      amount of effort spent to evaluate a quoted form.

      Idates, a list of dates and times, used to implement the function
      print-current-idate, which prints the date and time.

      Acl2-oracle, a list of objects, used for example to implement the
      functions that let ACL2 report how much time was used, but
      inaccessible to the user. See [read-ACL2-oracle] and also see
      [with-prover-time-limit].

      File-clock, an integer that is increased on every file opening and
      closing, and is used to maintain the consistency of the [io]
      primitives.

      Readable-files, an alist whose keys have the form (string type time),
      where [string] is a file name and time is an integer. The value
      associated with such a key is a list of characters, bytes, or
      objects, according to type. The time field is used in the
      following way: when it comes time to open a file for input, we
      will only look for a file of the specified name and type whose
      time field is that of file-clock. This permits us to have a
      ``probe-file'' aspect to open-file: one can ask for a file,
      find it does not exist, but come back later and find that it
      does now exist.

      Written-files, an alist whose keys have the form (string type time1
      time2), where [string] is a file name, type is one of
      :character, :byte or :object, and time1 and time2 are integers.
      Time1 and time2 correspond to the file-clock time at which the
      channel for the file was opened and closed. This field is
      write-only; the only operation that affects this field is
      close-output-channel, which [cons]es a new entry on the front.

      Read-files, a list of the form (string type time1 time2), where
      [string] is a file name and time1 and time2 were the times at
      which the file was opened for reading and closed. This field is
      write only.

      Writeable-files, an alist whose keys have the form (string type
      time). To open a file for output, we require that the name,
      type, and time be on this list.

      List-all-package-names-lst, a list of true-listps. Roughly speaking,
      the [car] of this list is the list of all package names known
      to this Common Lisp right now and the [cdr] of this list is the
      value of this state variable after you look at its [car]. The
      function, list-all-package-names, which takes the state as an
      argument, returns the [car] and [cdr]s the list (returning a
      new state too). This essentially gives ACL2 access to what is
      provided by CLTL's list-all-packages. [Defpkg] uses this
      feature to ensure that the about-to-be-created package is new
      in this lisp. Thus, for example, in akcl it is impossible to
      create the package \"COMPILER\" with [defpkg] because it is on
      the list, while in Lucid that package name is not initially on
      the list.

      User-stobj-alist, an alist which associates user-defined
      single-threaded objects (see [stobj]) with their values.

  We recommend avoiding the use of the state object when writing ACL2
  code intended to be used as a formal model of some system, for
  several reasons. First, the state object is complicated and
  contains many components that are oriented toward implementation
  and are likely to be irrelevant to the model in question. Second,
  there is currently not much support for reasoning about ACL2
  functions that manipulate the state object, beyond their logical
  definitions. Third, the documentation about state is not as
  complete as one might wish.

  User-defined single-threaded objects offer the speed of state while
  giving the user complete access to all the fields. See [stobj].

  Again, if you are interested in programming with state see
  [programming-with-state].


Subtopics

  [Io]
      Input/output facilities in ACL2

  [Programming-with-state]
      Programming using the von Neumannesque ACL2 [state] object

  [Random$]
      Obtain a random value

  [Set-state-ok]
      Allow the use of STATE as a formal parameter

  [World]
      ACL2 property lists and the ACL2 logical database

  [Wormhole]
      [ld] without [state] --- a short-cut to a parallel universe")
 (STATE-GLOBAL-LET*
  (PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "Bind [state] global variables

  See [programming-with-state] for requisite background on programming
  with the ACL2 [state].

    Example Forms:
    (state-global-let*
     ((inhibit-output-lst *valid-output-names*))
     (thm (equal x x)))

    (state-global-let*
     ((fmt-hard-right-margin 1000 set-fmt-hard-right-margin)
      (fmt-soft-right-margin 1000 set-fmt-soft-right-margin))
     (mini-proveall))

    General Form:
    (state-global-let* ((var1 form1) ; or (var1 form1 set-var1)
                        ...
                        (vark formk) ; or (vark formk set-vark)
                       )
                       body)

  where: each vari is a variable; each formi is an expression whose
  value is a single ordinary object (i.e. not multiple values, and
  not [state] or any other [stobj]); set-vari, if supplied, is a
  function with [signature] ((set-vari * state) => state); and body
  is an expression that evaluates to an [error-triple]. Each formi is
  evaluated in order, starting with form1, and with each such binding
  the state global variable vari is bound to the value of formi,
  sequentially in the style of [let*]. More precisely, then meaning
  of this form is to set (in order) the global values of the
  indicated [state] global variables vari to the values of formi
  using [f-put-global], execute body, restore the vari to their
  previous values (but see the discussion of setters below), and
  return the triple produced by body (with its state as modified by
  the restoration). The restoration is guaranteed even in the face of
  aborts. The ``bound'' variables may initially be unbound in state
  and restoration means to make them unbound again.

  Still referring to the General Form above, let old-vali be the value
  of state global variable vari at the time vari is about to be
  assigned the value of formi. If set-vari is not supplied, then as
  suggested above, the following form is evaluated at the conclusion
  of the evaluation of the state-global-let* form, whether or not an
  error has occurred: (f-put-global 'vari 'old-vali state). However,
  if set-vari is supplied, then instead the form evaluated will be
  (set-vari 'old-vali state). This capability is particularly useful
  if vari is untouchable (see [push-untouchable]), since the above
  call of [f-put-global] is illegal.

  Note that the scope of the bindings of a state-global-let* form is
  the body of that form. This may seem obvious, but to drive the
  point home, let's consider the following example (see
  [set-print-base] and see [set-print-radix]).

    ACL2 !>(state-global-let* ((print-base 16 set-print-base)
                               (print-radix t set-print-radix))
                              (mv nil 10 state))
     10
    ACL2 !>

  Why wasn't the result printed as #xA? The reason is that the result
  was printed after evaluation of the entire form had completed. If
  you want to see #xA, do the printing in the scope of the bindings,
  for example as follows.

    ACL2 !>(state-global-let* ((print-base 16 set-print-base)
                               (print-radix t set-print-radix))
                              (pprogn (fms \"~x0~%\"
                                           (list (cons #0 10))
                                           *standard-co* state nil)
                                      (mv nil 10 state)))

    #xA
     10
    ACL2 !>")
 (STOBJ
  (PROGRAMMING)
  "Single-threaded objects or ``von Neumann bottlenecks''

  In ACL2, a ``single-threaded object'' is a data structure whose use
  is so syntactically restricted that only one instance of the object
  need ever exist and its fields can be updated by destructive
  assignments.

  Note: Novices are advised to avoid using single-threaded objects,
  perhaps instead using [std::defaggregate] or community book
  books/data-structures/structures.lisp. At the least, consider using
  ([set-verify-guards-eagerness] 0) to avoid [guard] verification.

  The documentation in this section is laid out in the form of a tour
  that visits the documented topics in a reasonable order. We
  recommend that you follow the tour the first time you read about
  stobjs. The list of all stobj topics is shown below. The tour
  starts immediately afterwards. Also see [defstobj] and, for
  so-called abstract stobjs, see [defabsstobj].

  As noted, a ``single-threaded object'' is a data structure whose use
  is so syntactically restricted that only one instance of the object
  need ever exist. Updates to the object must be sequentialized. This
  allows us to update its fields with destructive assignments without
  wrecking the axiomatic semantics of update-by-copy. For this
  reason, single-threaded objects are sometimes called ``von Neumann
  bottlenecks.''

  From the logical perspective, a single-threaded object is an ordinary
  ACL2 object, e.g., composed of integers and conses. Logically
  speaking, ordinary ACL2 functions are defined to allow the user to
  ``access'' and ``update'' its fields. Logically speaking, when
  fields in the object, obj, are ``updated'' with new values, a new
  object, obj', is constructed.

  But suppose that by syntactic means we could ensure that there were
  no more references to the ``old'' object, obj. Then we could create
  obj' by destructively modifying the memory locations involved in
  the representation of obj. The syntactic means is pretty simple but
  draconian: the only reference to obj is in the variable named OBJ.

  The consequences of this simple rule are far-reaching and require
  some getting used to. For example, if OBJ has been declared as a
  single-threaded object name, then the following consequences ensue
  (but see the discussion of congruent stobjs below for a slight
  relaxation).

    * OBJ is a top-level global variable that contains the current object,
      obj.
    * If a function uses the formal parameter OBJ, the only ``actual
      expression'' that can be passed into that slot is the variable
      OBJ, not merely a term that ``evaluates to an obj''; thus, such
      functions can only operate on the current object. So for
      example, instead of (FOO (UPDATE-FIELD1 3 ST)) write (LET ((ST
      (UPDATE-FIELD1 3 ST))) (FOO ST)).
    * The accessors and updaters have a formal parameter named OBJ, so by
      the rule just above, those functions can only be applied to the
      current object. The recognizer is the one exception to the
      rule: it may be applied either the OBJ or to an ordinary
      (non-stobj) object.
    * The ACL2 primitives, such as CONS, CAR and CDR, may not be applied to
      the variable OBJ. Thus, for example, obj may not be consed into
      a list (which would create another pointer to it) or accessed
      or copied via ``unapproved'' means.
    * The updaters return a ``new OBJ object'', i.e., obj'; thus, when an
      updater is called, the only variable which can hold its result
      is OBJ.
    * If a function calls an OBJ updater, it must return an OBJ object
      (either as the sole value returned, or in (mv ... OBJ ...); see
      [mv]).
    * When a top-level expression involving OBJ returns an OBJ object, that
      object becomes the new current value of OBJ.

  There are other functional languages supporting single-threadedness,
  for example Haskell's ``monads'' and Clean's ``uniqueness type
  system''. Of course, ACL2 provides a theorem prover that can prove
  theorems that involve such constructs.

  Note that the syntactic restrictions noted above are enforced only
  when single-threaded objects are encountered directly in the
  top-level loop or are used in function definitions; the accessor
  and update functions for single-threaded objects may be used
  without restriction in formulas to be proved. Since function
  evaluation is sometimes necessary during proofs, ACL2 must be able
  to evaluate these functions on logical constants representing the
  object, even when the constant is not ``the current object.'' Thus,
  ACL2 supports both the efficient von Neumann semantics and the
  clean applicative semantics, and uses the first in contexts where
  execution speed is paramount and the second during proofs.

  [Defstobj] and [defabsstobj] [events] introduce stobjs. See
  [defstobj] for more details about stobjs. In particular, a
  relatively advanced notion of ``congruent stobjs'' is discussed
  there. The idea is to allow a stobj, st2, of the same ``shape'' as
  a given stobj, st1, to be used in place of st1. Other [defstobj]
  keywords allow inlining and renaming of stobj accessors and
  updaters.

  But we are getting ahead of ourselves. To start the stobj tour, see
  [stobj-example-1].


Subtopics

  [Declare-stobjs]
      Declaring a formal parameter name to be a single-threaded object

  [Defabsstobj]
      Define a new abstract single-threaded object

  [Defstobj]
      Define a new single-threaded object

  [Nested-stobjs]
      Using [stobj]s that contain stobjs

  [Nth-aliases-table]
      A [table] used to associate names for nth/update-nth printing

  [Resize-list]
      List resizer in support of stobjs

  [Stobj-example-1]
      An example of the use of single-threaded objects

  [Stobj-example-1-defuns]
      The defuns created by the counters stobj

  [Stobj-example-1-implementation]
      The implementation of the counters stobj

  [Stobj-example-1-proofs]
      Some proofs involving the counters stobj

  [Stobj-example-2]
      An example of the use of arrays in single-threaded objects

  [Stobj-example-3]
      Another example of a single-threaded object

  [Update-nth-array]
      Update a stobj array

  [With-local-state]
      Locally bind state

  [With-local-stobj]
      Locally bind a single-threaded object")
 (STOBJ-EXAMPLE-1
  (STOBJ)
  "An example of the use of single-threaded objects

  Suppose we want to sweep a tree and (1) count the number of interior
  nodes, (2) count the number of tips and (3) keep a record of every
  tip we encounter that is an integer. We could use a single-threaded
  object as our ``accumulator''. Such an object would have three
  fields, one holding the number of nodes seen so far, one holding
  the number of tips, and one holding all the integer tips seen.

  The following event declares counters to be a single-threaded object.

    (defstobj counters
      (NodeCnt     :type integer :initially 0)
      (TipCnt      :type integer :initially 0)
      (IntTipsSeen :type t       :initially nil))

  It has three fields, NodeCnt, TipCnt, and IntTipsSeen. (As always in
  ACL2, capitalization is irrelevant in simple symbol names, so the
  first name could be written nodecnt or NODECNT, etc.) Those are the
  name of the accessor functions for the object. The corresponding
  update functions are named update-NodeCnt, update-TipCnt and
  update-IntTipsSeen.

  If you do not like the default function names chosen above, there is
  a feature in the [defstobj] event that allows you to specify other
  names.

  If you want to see the ACL2 definitions of all the functions defined
  by this event, look at [stobj-example-1-defuns].

  If, after this event, we evaluate the top-level ``global variable''
  counters in the ACL2 read-eval-print loop we get:

    ACL2 !>counters
    <counters>

  Note that the value printed is ``<counters>''. Actually, the value of
  counters in the logic is (0 0 NIL). But ACL2 always prints
  single-threaded objects in this non-informative way because they
  are usually so big that to do otherwise would be unpleasant.

  Had you tried to evaluate the ``global variable'' counters before
  declaring it a single-threaded object, ACL2 would have complained
  that it does not support global variables. So a lesson here is that
  once you have declared a new single-threaded object your top-level
  forms can reference it. In versions of ACL2 prior to Version 2.4
  the only variable enjoying this status was STATE. single-threaded
  objects are a straightforward generalization of the
  long-implemented von Neumann [state] feature of ACL2.

  We can access the fields of counters as with:

    ACL2 !>(NodeCnt counters)
    0
    ACL2 !>(IntTipsSeen counters)
    NIL

  and we can set the fields of counters as with:

    ACL2 !>(update-NodeCnt 3 counters)
    <counters>
    ACL2 !>(NodeCnt counters)
    3

  Observe that when we evaluate an expression that returns a counter
  object, that object becomes the ``current value'' of counters.

  Here is a function that ``converts'' the counters object to its
  ``ordinary'' representation:

    (defun show-counters (counters)
      (declare (xargs :stobjs (counters)))
      (list (NodeCnt counters)
            (TipCnt counters)
            (IntTipsSeen counters)))

  Observe that we must declare, at the top of the defun, that we mean
  to use the formal parameter counters as a single-threaded object!
  If we did not make this declaration, the body of show-counters
  would be processed as though counters were an ordinary object. An
  error would be caused because the accessors used above cannot be
  applied to anything but the single-threaded object counters. If you
  want to know why we insist on this declaration, see
  [declare-stobjs].

  When show-counters is admitted, the following message is printed:

    Since SHOW-COUNTERS is non-recursive, its admission is trivial.  We
    observe that the type of SHOW-COUNTERS is described by the theorem
    (AND (CONSP (SHOW-COUNTERS COUNTERS))
         (TRUE-LISTP (SHOW-COUNTERS COUNTERS))).
    We used primitive type reasoning.

    (SHOW-COUNTERS COUNTERS) => *.

    The guard conjecture for SHOW-COUNTERS is trivial to prove.
    SHOW-COUNTERS is compliant with Common Lisp.

  The line above containing the ``=>'' is called the ``signature'' of
  show-counters; it conveys the information that the first argument
  is the single-threaded object counters and the only result is an
  ordinary object. Here is an example of another signature:

    (PROCESSOR * * COUNTERS) => (MV * COUNTERS)

  which indicates that the function PROCESSOR (which we haven't shown
  you) takes three arguments, the third of which is the COUNTERS
  stobj, and returns two results, the second of which is the modified
  COUNTERS.

  Returning to the admission of show-counters above, the last sentence
  printed indicates that the [guard] conjectures for the function
  were proved. When some argument of a function is declared to be a
  single-threaded object via the xargs :stobj, we automatically add
  (conjoin) to the guard the condition that the argument satisfy the
  recognizer for that single-threaded object. In the case of
  show-counters the guard is (countersp counters).

  Here is an example of show-counters being called:

    ACL2 !>(show-counters counters)
    (3 0 NIL)

  This is what we would see had we set the NodeCnt field of the initial
  value of counters to 3, as we did earlier in this example.

  We next wish to define a function to reset the counters object. We
  could define it this way:

    (defun reset-counters (counters)
      (declare (xargs :stobjs (counters)))
      (let ((counters (update-NodeCnt 0 counters)))
        (let ((counters (update-TipCnt 0 counters)))
          (update-IntTipsSeen nil counters))))

  which ``successively'' sets the NodeCnt field to 0, then the TipCnt
  field to 0, and then the IntTipsSeen field to nil and returns the
  resulting object.

  However, the nest of let expressions is tedious and we use this
  definition instead. This definition exploits a macro, here named
  ``seq'' (for ``sequentially'') which evaluates each of the forms
  given, binding their results successively to the stobj name given.

    (defun reset-counters (counters)
      (declare (xargs :stobjs (counters)))
      (seq counters
           (update-NodeCnt 0 counters)
           (update-TipCnt 0 counters)
           (update-IntTipsSeen nil counters)))

  This definition is syntactically identical to the one above, after
  macro expansion. Our definition of seq is shown below and is not
  part of native ACL2.

    (defmacro seq (stobj &rest rst)
      (cond ((endp rst) stobj)
            ((endp (cdr rst)) (car rst))
            (t `(let ((,stobj ,(car rst)))
                 (seq ,stobj ,@(cdr rst))))))

  The signature printed for reset-counters is

    (RESET-COUNTERS COUNTERS) => COUNTERS.

  Here is an example.

    ACL2 !>(show-counters counters)
    (3 0 NIL)
    ACL2 !>(reset-counters counters)
    <counters>
    ACL2 !>(show-counters counters)
    (0 0 NIL)

  Here finally is a function that uses counters as a single-threaded
  accumulator to collect the desired information about the tree x.

    (defun sweep-tree (x counters)
      (declare (xargs :stobjs (counters)))
      (cond ((atom x)
             (seq counters
                  (update-TipCnt (+ 1 (TipCnt counters)) counters)
                  (if (integerp x)
                      (update-IntTipsSeen (cons x (IntTipsSeen counters))
                                      counters)
                    counters)))
            (t (seq counters
                    (update-NodeCnt (+ 1 (NodeCnt counters)) counters)
                    (sweep-tree (car x) counters)
                    (sweep-tree (cdr x) counters)))))

  We can paraphrase this definition as follows. If x is an atom, then
  increment the TipCnt field of counters and then, if x is an
  integer, add x to the IntTipsSeen field, and return counters. On
  the other hand, if x is not an atom, then increment the NodeCnt
  field of counters, and then sweep the car of x and then sweep the
  cdr of x and return the result.

  Here is an example of its execution. We have displayed the input tree
  in full dot notation so that the number of interior nodes is just
  the number of dots.

    ACL2 !>(sweep-tree '((((a . 1) . (2 . b)) . 3)
                         . (4 . (5 . d)))
                       counters)
    <counters>
    ACL2 !>(show-counters counters)
    (7 8 (5 4 3 2 1))
    ACL2 !>(reset-counters counters)
    <counters>
    ACL2 !>(show-counters counters)
    (0 0 NIL)

  The counters object has two integer fields and a field whose type is
  unrestricted. single-threaded objects support other types of
  fields, such as arrays. We deal with that in the [stobj-example-2].
  But we recommend that you first consider the implementation issues
  for the counters example (in [stobj-example-1-implementation]) and
  then consider the proof issues (in [stobj-example-1-proofs]).

  To continue the stobj tour, see [stobj-example-2].")
 (STOBJ-EXAMPLE-1-DEFUNS
  (STOBJ)
  "The defuns created by the counters stobj

  Consider the event shown in [stobj-example-1]:

    (defstobj counters
      (NodeCnt     :type integer :initially 0)
      (TipCnt      :type integer :initially 0)
      (IntTipsSeen :type t       :initially nil))

  Here is a complete list of the defuns added by the event.

  The careful reader will note that the counters argument below is not
  declared with the :stobjs xarg even though we insist that the
  argument be a stobj in calls of these functions. This ``mystery''
  is explained below.

    (defun NodeCntp (x)                 ;;; Recognizer for 1st field
      (declare (xargs :guard t :verify-guards t))
      (integerp x))

    (defun TipCntp (x)                  ;;; Recognizer for 2nd field
      (declare (xargs :guard t :verify-guards t))
      (integerp x))

    (defun IntTipsSeenp (x)             ;;; Recognizer for 3rd field
      (declare (xargs :guard t :verify-guards t) (ignore x))
      t)

    (defun countersp (counters)         ;;; Recognizer for object
      (declare (xargs :guard t :verify-guards t))
      (and (true-listp counters)
           (= (length counters) 3)
           (NodeCntp (nth 0 counters))
           (TipCntp (nth 1 counters))
           (IntTipsSeenp (nth 2 counters))
           t))

    (defun create-counters ()           ;;; Creator for object
      (declare (xargs :guard t :verify-guards t))
      (list '0 '0 'nil))

    (defun NodeCnt (counters)           ;;; Accessor for 1st field
      (declare (xargs :guard (countersp counters) :verify-guards t))
      (nth 0 counters))

    (defun update-NodeCnt (v counters)  ;;; Updater for 1st field
      (declare (xargs :guard
                      (and (integerp v)
                           (countersp counters))
                      :verify-guards t))
      (update-nth 0 v counters))

    (defun TipCnt (counters)            ;;; Accessor for 2nd field
      (declare (xargs :guard (countersp counters) :verify-guards t))
      (nth 1 counters))

    (defun update-TipCnt (v counters)   ;;; Updater for 2nd field
      (declare (xargs :guard
                      (and (integerp v)
                           (countersp counters))
                      :verify-guards t))
      (update-nth 1 v counters))

    (defun IntTipsSeen (counters)       ;;; Accessor for 3rd field
      (declare (xargs :guard (countersp counters) :verify-guards t))
      (nth 2 counters))

    (defun update-IntTipsSeen (v counters) ;;; Updater for 3rd field
      (declare (xargs :guard (countersp counters) :verify-guards t))
      (update-nth 2 v counters))

  Observe that there is a recognizer for each of the three fields and
  then a recognizer for the counters object itself. Then, for each
  field, there is an accessor and an updater.

  Observe also that the functions are guarded so that they expect a
  countersp for their counters argument and an appropriate value for
  the new field values.

  You can see all of the defuns added by a defstobj event by executing
  the event and then using the :pcb! command on the stobj name. E.g.,

    ACL2 !>:pcb! counters

  will print the defuns above.

  We now clear up the ``mystery'' mentioned above. Note, for example in
  TipCnt, that the formal counters is used. From the discussion in
  [stobj-example-1] it has been made clear that TipCnt can only be
  called on the counters object. And yet, in that same discussion it
  was said that an argument is so treated only if it it declared
  among the :stobjs in the definition of the function. So why doesn't
  TipCnt include something like (declare (xargs :stobjs (counters)))?

  The explanation of this mystery is as follows. At the time TipCnt was
  defined, during the introduction of the counters stobj, the name
  ``counters'' was not yet a single-threaded object. The introduction
  of a new single-threaded object occurs in three steps: (1) The new
  primitive recognizers, accessors, and updaters are introduced as
  ``ordinary functions,'' producing their logical axiomatizations.
  (2) The executable counterparts are defined in raw Lisp to support
  destructive updating. (3) The new name is declared a
  single-threaded object to ensure that all future use of these
  primitives respects the single-threadedness of the object. The
  functions defined as part of the introduction of a new
  single-threaded object are the only functions in the system that
  have undeclared stobj formals other than state.

  You may return to [stobj-example-1] here.")
 (STOBJ-EXAMPLE-1-IMPLEMENTATION
  (STOBJ)
  "The implementation of the counters stobj

  the event

    (defstobj counters
      (NodeCnt     :type integer :initially 0)
      (TipCnt      :type integer :initially 0)
      (IntTipsSeen :type t       :initially nil))

  discussed in [stobj-example-1], creates a Common Lisp object to
  represent the current value of counters. That object is created by
  evaluating either of the following ``raw'' (non-ACL2) Common Lisp
  forms:

    (create-counters)

    (vector (make-array 1 :element-type 'integer
                          :initial-element '0)
            (make-array 1 :element-type 'integer
                          :initial-element '0)
            'nil)

  and the value is stored in the Common Lisp global variable named
  *the-live-counters*.

  Thus, the counters object is an array of length three. The first two
  elements are arrays of size 1 and are used to hold the NodeCnt and
  TipCnt fields. The third element is the IntTipsSeen field. The
  first two fields are represented by arrays so that we can implement
  the integer type specification efficiently. Generally, integers are
  ``boxed'' in some Common Lisp implementations, for example, GCL.
  Creating a new integer requires creating a new box to put it in.
  But in some lisps, including GCL, the integers inside arrays of
  integers are not boxed.

  The function NodeCnt is defined in raw Lisp as:

    (defun NodeCnt (counters)
      (the integer
           (aref (the (simple-array integer (1))
                      (svref counters 0))
                 0)))

  Observe that the form (svref counters 0) is evaluated to get an array
  of size 1, which is followed by a call of aref to access the 0th
  element of that array.

  The function update-NodeCnt is defined in raw Lisp as:

    (defun update-NodeCnt (v counters)
      (declare (type integer v))
      (progn
       (setf (aref (the (simple-array integer (1))
                        (svref counters 0))
                   0)
             (the integer v))
       counters))

  Note that when this function is called, it does not create a new
  vector of length three, but ``smashes'' the existing one.

  One way to see all the raw Lisp functions defined by a given defstobj
  is to evaluate the defstobj event and then evaluate, in the ACL2
  loop, the expression (nth 4 (global-val 'cltl-command (w state))).
  Those functions that contain (DECLARE (STOBJ-INLINE-FN T)) will
  generate [defabbrev] forms because the :inline keyword of
  [defstobj] was supplied the value t. The rest will generate
  [defun]s.

  We now recommend that you look at [stobj-example-1-proofs].")
 (STOBJ-EXAMPLE-1-PROOFS
  (STOBJ)
  "Some proofs involving the counters stobj

  Consider again the event

    (defstobj counters
      (NodeCnt     :type integer :initially 0)
      (TipCnt      :type integer :initially 0)
      (IntTipsSeen :type t       :initially nil))

  discussed in [stobj-example-1], followed by the definition

    (defun reset-counters (counters)
      (declare (xargs :stobjs (counters)))
      (seq counters
           (update-NodeCnt 0 counters)
           (update-TipCnt 0 counters)
           (update-IntTipsSeen nil counters)))

  which, because of the seq macro in [stobj-example-1], is just
  syntactic sugar for

    (defun reset-counters (counters)
      (declare (xargs :stobjs (counters)))
      (let ((counters (update-NodeCnt 0 counters)))
        (let ((counters (update-TipCnt 0 counters)))
          (update-IntTipsSeen nil counters)))).

  Here is a simple theorem about reset-counters.

    (defthm reset-counters-is-constant
      (implies (countersp x)
               (equal (reset-counters x)
                      '(0 0 nil))))

  Before we talk about how to prove this theorem, note that the theorem
  is unusual in two respects.

  First, it calls reset-counters on an argument other than the variable
  counters! That is allowed in theorems; logically speaking, the
  stobj functions are indistinguishable from ordinary functions.
  Their use is syntactically restricted only in defuns, which might
  be compiled and run in raw Lisp. Those restrictions allow us to
  implement stobj modification destructively. But logically speaking,
  reset-counters and other stobj ``modifying'' functions just create
  new objects, constructively.

  Second, the theorem above explicitly provides the hypothesis that
  reset-counters is being applied to an object satisfying countersp.
  Such a hypothesis is not always required: reset-counters is total
  and will do something no matter what x is. But in this particular
  case, the result is not '(0 0 nil) unless x is, at least, a
  true-list of length three.

  To make a long story short, to prove theorems about stobj functions
  you behave in exactly the way you would to prove the same theorems
  about the same functions defined without the stobj features.

  How can we prove the above theorem? Unfolding the definition of
  reset-counters shows that (reset-counters x) is equal to

    (update-IntTipsSeen nil
      (update-TipCnt 0
        (update-NodeCnt 0 x)))

  which in turn is

    (update-nth 2 nil
     (update-nth 1 0
      (update-nth 0 0 x))).

  Opening up the definition of update-nth reduces this to

    (list* 0 0 nil (cdddr x)).

  This is clearly equal to '(0 0 nil), provided we know that (cdddr x)
  is nil.

  Unfortunately, that last fact requires a lemma. The most specific
  lemma we could provide is

    (defthm special-lemma-for-counters
      (implies (countersp x)
               (equal (cdddr x) nil)))

  but if you try to prove that lemma you will find that it requires
  some reasoning about len and true-listp. Furthermore, the special
  lemma above is of interest only for counters.

  The following lemma about len is the one we prefer.

    (defthm equal-len-n
      (implies (syntaxp (quotep n))
               (equal (equal (len x) n)
                      (if (integerp n)
                          (if (< n 0)
                              nil
                            (if (equal n 0)
                                (atom x)
                              (and (consp x)
                                   (equal (len (cdr x)) (- n 1)))))
                        nil))))

  This lemma will simplify any equality in which a len expression is
  equated to any explicitly given constant n, e.g., 3, reducing the
  equation to a conjunction of consp terms about the first n cdrs.

  If the above lemma is available then ACL2 immediately proves

    (defthm reset-counters-is-constant
      (implies (countersp x)
               (equal (reset-counters x)
                      '(0 0 nil))))

  The point is presumably well made: proving theorems about
  single-threaded object accessors and updaters is no different than
  proving theorems about other recursively defined functions on
  lists.

  As we have seen, operations on [stobj]s turn into definitions
  involving [nth] and [update-nth] in the logic. Here are two lemmas,
  both due to Matt Wilding, that are useful for simplifying terms
  involving nth and update-nth, which are therefore useful in
  reasoning about single-threaded objects.

    (defthm update-nth-update-nth-same
      (implies (equal (nfix i1) (nfix i2))
               (equal (update-nth i1 v1 (update-nth i2 v2 l))
                      (update-nth i1 v1 l))))

    (defthm update-nth-update-nth-diff
      (implies (not (equal (nfix i1) (nfix i2)))
               (equal (update-nth i1 v1 (update-nth i2 v2 l))
                      (update-nth i2 v2 (update-nth i1 v1 l))))
      :rule-classes ((:rewrite :loop-stopper ((i1 i2)))))

  We now recommend that you see [stobj-example-2].")
 (STOBJ-EXAMPLE-2
  (STOBJ)
  "An example of the use of arrays in single-threaded objects

  The following event

    (defstobj ms
      (pcn  :type integer                  :initially 0)
      (mem  :type (array integer (100000)) :initially -1)
      (code :type t                        :initially nil))

  introduces a single-threaded object named ms (which stands for
  ``machine state''). The object has three fields, a pcn or program
  counter, a mem or memory, and a code field.

  The mem field is occupied by an object initially of type (array
  integer (100000)). Logically speaking, this is a list of length
  100000, each element of which is an integer. But in the underlying
  implementation of the ms object, this field is occupied by a raw
  Lisp array, initially of size 100000.

  You might expect the above defstobj to define the accessor function
  mem and the updater update-mem. That does not happen!.

  The above event defines the accessor function memi and the updater
  update-memi. These functions do not access/update the mem field of
  the ms object; they access/update the individual elements of the
  array in that field.

  In particular, the logical definitions of the two functions are:

    (defun memi (i ms)
      (declare (xargs :guard
                      (and (msp ms)
                           (integerp i)
                           (<= 0 i)
                           (< i (mem-length ms)))))
      (nth i (nth 1 ms)))

    (defun update-memi (i v ms)
      (declare (xargs :guard
                      (and (msp ms)
                           (integerp i)
                           (<= 0 i)
                           (< i (mem-length ms))
                           (integerp v))))
      (update-nth-array 1 i v ms))

  For example, to access the 511th (0-based) memory location of the
  current ms you could evaluate:

    ACL2 !>(memi 511 ms)
    -1

  The answer is -1 initially, because that is the above-specified
  initial value of the elements of the mem array.

  To set that element you could do

    ACL2 !>(update-memi 511 777 ms)
    <ms>
    ACL2 !>(memi 511 ms)
    777

  The raw Lisp implementing these two functions is shown below.

    (defun memi (i ms)
      (declare (type (and fixnum (integer 0 *)) i))
      (the integer
           (aref (the (simple-array integer (*))
                      (svref ms 1))
                 (the (and fixnum (integer 0 *)) i))))

    (defun update-memi (i v ms)
      (declare (type (and fixnum (integer 0 *)) i)
               (type integer v))
      (progn
       (setf (aref (the (simple-array integer (*))
                        (svref ms 1))
                   (the (and fixnum (integer 0 *)) i))
             (the integer v))
       ms))

  If you want to see the raw Lisp supporting a defstobj, execute the
  defstobj and then evaluate the ACL2 form (nth 4 (global-val
  'cltl-command (w state))).

  To continue the stobj tour, see [stobj-example-3].")
 (STOBJ-EXAMPLE-3
  (STOBJ)
  "Another example of a single-threaded object

  The event

    (defstobj $s
      (x :type integer :initially 0)
      (a :type (array (integer 0 9) (3)) :initially 9 :resizable t))

  introduces a stobj named $S. The stobj has two fields, X and A. The A
  field is an array. The X field contains an integer and is initially
  0. The A field contains a list of integers, each between 0 and 9,
  inclusively. (Under the hood, this ``list'' is actually implemented
  as an array.) Initially, the A field has three elements, each of
  which is 9.

  This event introduces the following sequence of function definitions:

    (DEFUN XP (X) ...)               ; recognizer for X field
    (DEFUN AP (X) ...)               ; recognizer of A field
    (DEFUN $SP ($S) ...)             ; top-level recognizer for stobj $S
    (DEFUN CREATE-$S NIL ...)        ; creator for stobj $S
    (DEFUN X ($S) ...)               ; accessor for X field
    (DEFUN UPDATE-X (V $S) ...)      ; updater for X field
    (DEFUN A-LENGTH ($S) ...)        ; length of A field
    (DEFUN RESIZE-A (K $S) ...)      ; resizer for A field
    (DEFUN AI (I $S) ...)            ; accessor for A field at index I
    (DEFUN UPDATE-AI (I V $S) ...)   ; updater for A field at index I

  Here is the definition of $SP:

    (DEFUN $SP ($S)
      (DECLARE (XARGS :GUARD T :VERIFY-GUARDS T))
      (AND (TRUE-LISTP $S)
           (= (LENGTH $S) 2)
           (XP (NTH 0 $S))
           (AP (NTH 1 $S))
           T))

  This reveals that in order to satisfy $SP an object must be a true
  list of length 2 whose first element satisfies XP and whose second
  satisfies AP. By printing the definition of AP one learns that it
  requires its argument to be a true list, each element of which is
  an integer between 0 and 9.

  The initial value of stobj $S is given by zero-ary ``creator''
  function CREATE-$S. Creator functions may only be used in limited
  contexts. See [with-local-stobj].

  Here is the definition of UPDATE-AI, the updater for the A field at
  index I:

    (DEFUN UPDATE-AI (I V $S)
      (DECLARE (XARGS :GUARD
                      (AND ($SP $S)
                           (INTEGERP I)
                           (<= 0 I)
                           (< I (A-LENGTH $S))
                           (AND (INTEGERP V) (<= 0 V) (<= V 9)))
                      :VERIFY-GUARDS T))
      (UPDATE-NTH-ARRAY 1 I V $S))

  By definition (UPDATE-NTH-ARRAY 1 I V $S) is (UPDATE-NTH 1
  (UPDATE-NTH I V (NTH 1 $S)) $S). This may be a little surprising
  but should be perfectly clear.

  First, ignore the guard, since it is irrelevant in the logic. Reading
  from the inside out, (UPDATE-AI I V $S) extracts (NTH 1 $S), which
  is array a of $S. (Recall that [nth] is 0-based.) The next higher
  expression in the definition above, (UPDATE-NTH I V a),
  ``modifies'' a by setting its Ith element to V. Call this a'. The
  next higher expression, (UPDATE-NTH 1 a' $S), ``modifies'' $S by
  setting its 1st component to a'. Call this result $s'. Then $s' is
  the result returned by UPDATE-AI.

  So the first useful observation is that from the perspective of the
  logic, the type ``restrictions'' on stobjs are irrelevant. They are
  ``enforced'' by ACL2's guard mechanism, not by the definitions of
  the updater functions.

  As one might also imagine, the accessor functions do not really
  ``care,'' logically, whether they are applied to well-formed stobjs
  or not. For example, (AI I $S) is defined to be (NTH I (NTH 1 $S)).

  Thus, you will not be able to prove that (AI 2 $S) is an integer.
  That is,

    (integerp (AI 2 $S))

  is not a theorem, because $S may not be well-formed.

  Now (integerp (AI 2 $S)) will always evaluate to T in the top-level
  ACL2 command loop, because we insist that the current value of the
  stobj $S always satisfies $SP by enforcing the guards on the
  updaters, independent of whether guard checking is on or off; see
  [set-guard-checking]. But in a theorem $S is just another variable,
  implicitly universally quantified.

  So (integerp (AI 2 $S)) is not a theorem because it is not true when
  the variable $S is instantiated with, say,

    '(1 (0 1 TWO))

  because, logically speaking, (AI 2 '(1 (0 1 TWO))) evaluates to the
  symbol TWO. That is,

    (equal (AI 2 '(1 (0 1 TWO))) 'TWO)

  is true.

  However,

    (implies (and ($SP $S) (< 2 (A-LENGTH $S))) (integerp (AI 2 $S)))

  is a theorem. To prove it, you will have to prove a lemma about AP.
  The following will do:

    (defthm ap-nth
      (implies (and (AP x)
                    (integerp i)
                    (<= 0 i)
                    (< i (len x)))
               (integerp (nth i x)))).

  Similarly,

    (implies (and (integerp i)
                  (<= 0 i)
                  (< i (A-LENGTH $S))
                  (integerp v)
                  (<= 0 v)
                  (<= v 9))
             ($SP (UPDATE-AI i v $S)))

  is not a theorem until you add the additional hypothesis ($SP $S). To
  prove the resulting theorem, you will need a lemma such as the
  following.

    (defthm ap-update-nth
      (implies (and (AP a)
                    (integerp v)
                    (<= 0 v)
                    (<= v 9)
                    (integerp i)
                    (<= 0 i)
                    (< i (len a)))
               (AP (update-nth i v a))))

  The moral here is that from the logical perspective, you must provide
  the hypotheses that, as a programmer, you think are implicit on the
  structure of your stobjs, and you must prove their invariance. This
  is a good area for further support, perhaps in the form of a
  library of macros.

  Resizing Array Fields

  Recall the specification of the array field, A for the stobj $S
  introduced above:

    (a :type (array (integer 0 9) (3)) :initially 9 :resizable t)

  Logically, this field is a list, initially of length 3. Under the
  hood, this field is implemented using a Common Lisp array with 3
  elements. In some applications, one may wish to lengthen an array
  field, or even (to reclaim space) to shrink an array field. The
  [defstobj] event provides functions to access the current length of
  an array field and to change the array field, with default names
  obtained by suffixing the field name with ``LENGTH-'' or prefixing
  it with ``RESIZE-,'' respectively. The following log shows the uses
  of these fields in the above example.

    ACL2 !>(A-LENGTH $S)
    3
    ACL2 !>(RESIZE-A 10 $S) ; change length of A to 10
    <$s>
    ACL2 !>(A-LENGTH $S)
    10
    ACL2 !>(AI 7 $S)        ; new elements get value from :initially
    9
    ACL2 !>(RESIZE-A 2 $S)  ; truncate A down to first 2 elements
    <$s>
    ACL2 !>(A-LENGTH $S)
    2
    ACL2 !>(AI 7 $S)        ; error:  access past array bound

    ACL2 Error in TOP-LEVEL:  The guard for the function symbol AI, which
    is (AND ($SP $S) (INTEGERP I) (<= 0 I) (< I (A-LENGTH $S))), is violated
    by the arguments in the call (AI 7 $S).

    ACL2 !>

  Here are the definitions of the relevant functions for the above
  example; also see [resize-list].

    (DEFUN A-LENGTH ($S)
      (DECLARE (XARGS :GUARD ($SP $S) :VERIFY-GUARDS T))
      (LEN (NTH 1 $S)))

    (DEFUN RESIZE-A (K $S)
      (DECLARE (XARGS :GUARD ($SP $S) :VERIFY-GUARDS T))
      (UPDATE-NTH 1
                  (RESIZE-LIST (NTH 1 $S) K 9)
                  $S))

  It is important to note that the implementation of array resizing in
  ACL2 involves copying the entire array into a newly allocated space
  and thus can be quite costly if performed often. This approach was
  chosen in order to make array access and update as efficient as
  possible, with the suspicion that for most applications, array
  access and update are considerably more frequent than resizing
  (especially if the programmer is aware of the relative costs
  beforehand).

  It should also be noted that computations of lengths of stobj array
  fields should be fast (constant-time) in all or most Common Lisp
  implementations.

  Finally, if :resizable t is not supplied as shown above, then an
  attempt to resize the array will result in an error. If you do not
  intend to resize the array, it is better to omit the :resizable
  option (or to supply :resizable nil), since then the length
  function will be defined to return a constant, namely the initial
  length, which can simplify guard proofs (compare with the
  definition of A-LENGTH above).

  This completes the tour through the documentation of [stobj]s.
  However, you may now wish to read the documentation for the event
  that introduces a new single-threaded object; see [defstobj].")
 (STOBJ-LET (POINTERS)
            "See [nested-stobjs].")
 (STOBJS (POINTERS)
         "See [xargs] for keyword :stobjs.")
 (STOP-PROOF-TREE
  (PROOF-TREE)
  "Stop displaying proof trees during proofs

  Also see [proof-tree] and see [start-proof-tree]. Note that
  :stop-proof-tree works by adding '[proof-tree] to the
  inhibit-output-lst; see [set-inhibit-output-lst].

  Proof tree displays are explained in the documentation for
  [proof-tree]. :Stop-proof-tree causes proof tree display to be
  turned off.

  It is permissible to submit the form (stop-proof-tree) during a
  break. Thus, you can actually turn off proof tree display in the
  middle of a proof by interrupting ACL2 and submitting the form
  (stop-proof-tree) in raw Lisp.")
 (STRING
  (STRINGS ACL2-BUILT-INS)
  "[coerce] to a string

  (String x) [coerce]s x to a string.

  The [guard] for string requires its argument to be a string, a
  symbol, or a character.

    * If x is already a string, then it is returned unchanged.
    * If x is a symbol, then its [symbol-name] is returned.
    * If x is a character, the corresponding one-character string is
      returned.

  Note: this is a rather low-level operation that doesn't support
  coercing numbers or conses into strings. If you want to turn
  numbers into strings, see functions such as [str::natstr], or more
  generally the [str::numbers] functions. For conses, see the
  [str::pretty-printing] routines such as [str::pretty].

  String is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <string>

    (defun string (x)
           (declare (xargs :guard (or (stringp x)
                                      (symbolp x)
                                      (characterp x))))
           (cond ((stringp x) x)
                 ((symbolp x) (symbol-name x))
                 (t (coerce (list x) 'string))))")
 (STRING-APPEND
  (STRINGS ACL2-BUILT-INS)
  "[concatenate] two strings

  String-append takes two arguments, which are both strings (if the
  [guard] is to be met), and returns a string obtained by
  concatenating together the [characters] in the first string
  followed by those in the second. Also see [concatenate], noting
  that the macro call

    (concatenate 'string str1 str2).

  expands to the call

    (string-append str1 str2).

  Function: <string-append>

    (defun string-append (str1 str2)
           (declare (xargs :guard (and (stringp str1) (stringp str2))))
           (mbe :logic (coerce (append (coerce str1 'list)
                                       (coerce str2 'list))
                               'string)
                :exec (concatenate 'string str1 str2)))")
 (STRING-DOWNCASE
  (STRINGS ACL2-BUILT-INS)
  "In a given string, turn upper-case [characters] into lower-case

  For a string x, (string-downcase x) is the result of applying
  [char-downcase] to each character in x.

  The [guard] for string-downcase requires its argument to be a string
  containing only standard characters.

  String-downcase is a Common Lisp function. See any Common Lisp
  documentation for more information.

  Function: <string-downcase>

    (defun
       string-downcase (x)
       (declare
            (xargs :guard (and (stringp x)
                               (standard-char-listp (coerce x 'list)))))
       (coerce (string-downcase1 (coerce x 'list))
               'string))")
 (STRING-EQUAL
  (STRINGS ACL2-BUILT-INS)
  "String equality without regard to case

  For strings str1 and str2, (string-equal str1 str2) is true if and
  only str1 and str2 are the same except perhaps for the cases of
  their [characters].

  The [guard] on string-equal requires that its arguments are strings
  consisting of standard characters (see [standard-char-listp]).

  String-equal is a Common Lisp function. See any Common Lisp
  documentation for more information.

  Function: <string-equal>

    (defun
     string-equal (str1 str2)
     (declare
         (xargs :guard (and (stringp str1)
                            (standard-char-listp (coerce str1 'list))
                            (stringp str2)
                            (standard-char-listp (coerce str2 'list)))))
     (let ((len1 (length str1)))
          (and (= len1 (length str2))
               (string-equal1 str1 str2 0 len1))))")
 (STRING-LISTP
  (STRINGS LISTS ACL2-BUILT-INS)
  "Recognizer for a true list of strings

  The predicate string-listp tests whether its argument is a
  [true-listp] of strings.

  Function: <string-listp>

    (defun string-listp (x)
           (declare (xargs :guard t))
           (cond ((atom x) (eq x nil))
                 (t (and (stringp (car x))
                         (string-listp (cdr x))))))")
 (STRING-UPCASE
  (STRINGS ACL2-BUILT-INS)
  "In a given string, turn lower-case [characters] into upper-case

  For a string x, (string-upcase x) is the result of applying
  [char-upcase] to each character in x.

  The [guard] for string-upcase requires its argument to be a string
  containing only standard characters.

  String-upcase is a Common Lisp function. See any Common Lisp
  documentation for more information.

  Function: <string-upcase>

    (defun
       string-upcase (x)
       (declare
            (xargs :guard (and (stringp x)
                               (standard-char-listp (coerce x 'list)))))
       (coerce (string-upcase1 (coerce x 'list))
               'string))")
 (STRING<
  (STRINGS ACL2-BUILT-INS)
  "Less-than test for strings

  (String< str1 str2) is non-nil if and only if the string str1
  precedes the string str2 lexicographically, where character
  inequalities are tested using [char<]. When non-nil, (string< str1
  str2) is the first position (zero-based) at which the strings
  differ. Here are some examples.

    ACL2 !>(string< \"abcd\" \"abu\")
    2
    ACL2 !>(string< \"abcd\" \"Abu\")
    NIL
    ACL2 !>(string< \"abc\" \"abcde\")
    3
    ACL2 !>(string< \"abcde\" \"abc\")
    NIL

  The [guard] for string< specifies that its arguments are strings.

  String< is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <string<>

    (defun string< (str1 str2)
           (declare (xargs :guard (and (stringp str1) (stringp str2))))
           (string<-l (coerce str1 'list)
                      (coerce str2 'list)
                      0))")
 (STRING<=
  (STRINGS ACL2-BUILT-INS)
  "Less-than-or-equal test for strings

  (String<= str1 str2) is non-nil if and only if the string str1
  precedes the string str2 lexicographically or the strings are
  equal. When non-nil, (string<= str1 str2) is the first position
  (zero-based) at which the strings differ, if they differ, and
  otherwise is their common length. See [string<].

  The [guard] for string<= specifies that its arguments are strings.

  String<= is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <string<=>

    (defun string<= (str1 str2)
           (declare (xargs :guard (and (stringp str1) (stringp str2))))
           (if (equal str1 str2)
               (length str1)
               (string< str1 str2)))")
 (STRING>
  (STRINGS ACL2-BUILT-INS)
  "Greater-than test for strings

  (String> str1 str2) is non-nil if and only if str2 precedes str1
  lexicographically. When non-nil, (string> str1 str2) is the first
  position (zero-based) at which the strings differ. See [string<].

  String> is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <string>>

    (defun string> (str1 str2)
           (declare (xargs :guard (and (stringp str1) (stringp str2))))
           (string< str2 str1))")
 (STRING>=
  (STRINGS ACL2-BUILT-INS)
  "Less-than-or-equal test for strings

  (String>= str1 str2) is non-nil if and only if the string str2
  precedes the string str1 lexicographically or the strings are
  equal. When non-nil, (string>= str1 str2) is the first position
  (zero-based) at which the strings differ, if they differ, and
  otherwise is their common length. See [string>].

  The [guard] for string>= specifies that its arguments are strings.

  String>= is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <string>=>

    (defun string>= (str1 str2)
           (declare (xargs :guard (and (stringp str1) (stringp str2))))
           (if (equal str1 str2)
               (length str1)
               (string> str1 str2)))")
 (STRINGP
  (STRINGS ACL2-BUILT-INS)
  "Recognizer for strings

  (stringp x) is true if and only if x is a string.")
 (STRINGS
  (PROGRAMMING)
  "Strings are atomic objects that contain character sequences, like
  \"Hello World\".

  See the [std/strings] library for many additional string functions
  and lemmas about the built-in string functions.


Subtopics

  [Coerce]
      Coerce a character list to a string and a string to a list

  [Concatenate]
      Concatenate lists or strings together

  [Count]
      Count the number of occurrences of an item in a string or true-list

  [Length]
      Length of a string or proper list

  [Position]
      Position of an item in a string or a list

  [Remove-duplicates]
      Remove duplicates from a string or a list

  [Reverse]
      Reverse a list or string

  [Search]
      Search for a string or list in another string or list

  [String]
      [coerce] to a string

  [String-append]
      [concatenate] two strings

  [String-downcase]
      In a given string, turn upper-case [characters] into lower-case

  [String-equal]
      String equality without regard to case

  [String-listp]
      Recognizer for a true list of strings

  [String-upcase]
      In a given string, turn lower-case [characters] into upper-case

  [String<]
      Less-than test for strings

  [String<=]
      Less-than-or-equal test for strings

  [String>]
      Greater-than test for strings

  [String>=]
      Less-than-or-equal test for strings

  [Stringp]
      Recognizer for strings

  [Subseq]
      Subsequence of a string or list

  [Substitute]
      Substitute into a string or a list, using [eql] as test")
 (STRIP-CARS
  (ALISTS ACL2-BUILT-INS)
  "Collect up all first components of pairs in a list

  (strip-cars x) is the list obtained by walking through the list x and
  collecting up all first components ([car]s). This function is
  implemented in a tail-recursive way, despite its logical
  definition.

  (strip-cars x) has a [guard] of (alistp x).

  Function: <strip-cars>

    (defun strip-cars (x)
           (declare (xargs :guard (alistp x)))
           (cond ((endp x) nil)
                 (t (cons (car (car x))
                          (strip-cars (cdr x))))))")
 (STRIP-CDRS
  (ALISTS ACL2-BUILT-INS)
  "Collect up all second components of pairs in a list

  (strip-cdrs x) has a [guard] of (alistp x), and returns the list
  obtained by walking through the list x and collecting up all second
  components ([cdr]s). This function is implemented in a
  tail-recursive way, despite its logical definition.

  Function: <strip-cdrs>

    (defun strip-cdrs (x)
           (declare (xargs :guard (alistp x)))
           (cond ((endp x) nil)
                 (t (cons (cdr (car x))
                          (strip-cdrs (cdr x))))))")
 (STRONG-REWRITE-RULES
  (INTRODUCTION-TO-THE-THEOREM-PROVER)
  "Formulating good rewrite rules

  Suppose you notice the following term in a Key Checkpoint:

    (MEMBER (CAR A) (REV B)).

  You might think of two theorems for handling this term, which we'll
  call the ``weak'' and ``strong'' version of member-rev.

    (defthm member-rev-weak
      (implies (member e b)
               (member e (rev b)))).

    (defthm member-rev-strong
      (iff (member e (rev b))
           (member e b))).

  The ``strong'' version logically implies the ``weak'' version and so
  deserves the adjective. (Recall that ``p <---> q'' is just ``p --->
  q'' and ``q ---> p.'' So the strong version quite literally says
  everything the weak version does and then some.)

  But the ``strong'' version also produces a better rewrite rule. Here
  are the rules generated from these two formulas, phrased as
  directives to ACL2's simplifier:

  member-rev-weak: If you ever see an instance of (MEMBER e (REV b)),
  backchain to (MEMBER e b) (i.e., turn your attention to that term)
  and if you can show that it is true, replace (MEMBER e (REV b)) by
  T.

  member-rev-strong: If you ever see an instance of (MEMBER e (REV b)),
  replace it by (MEMBER e b).

  Technical Note: Actually, both rules concern propositional
  occurrences of the ``target'' expression, (MEMBER e (REV b)), i.e.,
  occurrences of the target in which its truthvalue is the only thing
  of relevance. (Recall that (MEMBER x y) returns the tail of y
  starting with x! Evaluate some simple MEMBER expressions, like
  (MEMBER 3 '(1 2 3 4 5)) to see what we mean.) Both theorems tell us
  about circumstances in which the target is non-NIL (i.e., ``true'')
  without telling us its identity. But ACL2 keeps track of when the
  target is in a propositional occurrence and can use such rules to
  rewrite the target to propositionally equivalent terms.

  So the strong version is better because it will always eliminate
  (MEMBER e (REV b)) in favor of (MEMBER e b). That simpler
  expression may be further reduced if the context allows it. But in
  any case, the strong version eliminates REV from the problem. The
  weak version only eliminates REV when a side-condition can be
  proved.

  While either version may permit us to prove the Key Checkpoint that
  ``suggested'' the rule, the strong version is a better rule to have
  in the database going forward.

  For example, suppose NATS-BELOW returns the list of natural numbers
  below its argument. Imagine two alternative scenarios in which a
  key checkpoint is about to arise involving this term:

    (MEMBER K (REV (NATS-BELOW J)))

  Scenario 1 is when you've got the strong version in your database: it
  will rewrite the key checkpoint term to

    (MEMBER K (NATS-BELOW J))

  and that's what you'll see in the printed checkpoint unless other
  rules reduce it further.

  Scenario 2 is when you have only the weak version in your database:
  the weak rule will attempt to reduce the term above to T and will,
  if there are sufficient rules and hypotheses about K's membership
  in (NATS-BELOW J). But if no such rules or hypotheses are
  available, you'll be confronted with a key checkpoint involving

    (MEMBER K (REV (NATS-BELOW J)))

  and it will not be obvious that the problem would go away if you
  could establish that K is in (NATS-BELOW J). Clearly, Scenario 1 is
  better.

  We recommend that you now practice formulating strong versions of
  rules suggested by terms you might see. See
  [practice-formulating-strong-rules].

  When you are finished with that, use your browser's Back Button to
  return to [introduction-to-key-checkpoints].")
 (SUBLIS
  (ALISTS ACL2-BUILT-INS)
  "Substitute an alist into a tree

  (Sublis alist tree) is obtained by replacing every leaf of tree with
  the result of looking that leaf up in the association list alist.
  However, a leaf is left unchanged if it is not found as a key in
  alist.

  Leaves are looked up using the function [assoc]. The [guard] for
  (sublis alist tree) requires (eqlable-alistp alist). This [guard]
  ensures that the [guard] for [assoc] will be met for each lookup
  generated by sublis.

  Sublis is defined in Common Lisp. See any Common Lisp documentation
  for more information.

  Function: <sublis>

    (defun sublis (alist tree)
           (declare (xargs :guard (eqlable-alistp alist)))
           (cond ((atom tree)
                  (let ((pair (assoc tree alist)))
                       (cond (pair (cdr pair)) (t tree))))
                 (t (cons (sublis alist (car tree))
                          (sublis alist (cdr tree))))))")
 (SUBSEQ
  (LISTS STRINGS ACL2-BUILT-INS)
  "Subsequence of a string or list

  For any natural numbers start and end, where start <= end <= (length
  seq), (subseq seq start end) is the subsequence of seq from index
  start up to, but not including, index end. End may be nil, in which
  case it is treated as though it is (length seq), i.e., we obtain
  the subsequence of seq from index start all the way to the end.

  The [guard] for (subseq seq start end) is that seq is a true list or
  a string, start and end are integers (except, end may be nil, in
  which case it is treated as (length seq) for the rest of this
  discussion), and 0 <= start <= end <= (length seq).

  Subseq is a Common Lisp function. See any Common Lisp documentation
  for more information. Note: In Common Lisp the third argument of
  subseq is optional, but in ACL2 it is required, though it may be
  nil as explained above.

  Function: <subseq>

    (defun
         subseq (seq start end)
         (declare (xargs :guard (and (or (true-listp seq) (stringp seq))
                                     (integerp start)
                                     (<= 0 start)
                                     (or (null end)
                                         (and (integerp end)
                                              (<= end (length seq))))
                                     (<= start (or end (length seq))))))
         (if (stringp seq)
             (coerce (subseq-list (coerce seq 'list)
                                  start (or end (length seq)))
                     'string)
             (subseq-list seq start (or end (length seq)))))")
 (SUBSETP
  (LISTS ACL2-BUILT-INS)
  "Test if every [member] of one list is a [member] of the other

    General Forms:
    (subsetp x y)
    (subsetp x y :test 'eql)   ; same as above (eql as equality test)
    (subsetp x y :test 'eq)    ; same, but eq is equality test
    (subsetp x y :test 'equal) ; same, but equal is equality test

  (Subsetp x y) is true if and only if every [member] of the list x is
  a member of the list y. The optional keyword, :TEST, has no effect
  logically, but provides the test (default [eql]) used for comparing
  members of the two lists.

  The [guard] for a call of subsetp depends on the test. In all cases,
  both arguments must satisfy [true-listp]. If the test is [eql],
  then one of the arguments must satisfy [eqlable-listp]. If the test
  is [eq], then one of the arguments must satisfy [symbol-listp].

  See [equality-variants] for a discussion of the relation between
  subsetp and its variants:

      (subsetp-eq x lst) is equivalent to (subsetp x lst :test 'eq);

      (subsetp-equal x lst) is equivalent to (subsetp x lst :test 'equal).

  In particular, reasoning about any of these primitives reduces to
  reasoning about the function subsetp-equal.

  Function: <subsetp-equal>

    (defun subsetp-equal (x y)
           (declare (xargs :guard (and (true-listp y) (true-listp x))))
           (cond ((endp x) t)
                 ((member-equal (car x) y)
                  (subsetp-equal (cdr x) y))
                 (t nil)))

  Subsetp is defined by Common Lisp. See any Common Lisp documentation
  for more information.")
 (SUBSETP-EQ (POINTERS) "See [subsetp].")
 (SUBSETP-EQUAL (POINTERS)
                "See [subsetp].")
 (SUBST
  (CONSES ACL2-BUILT-INS)
  "A single substitution into a tree

  (Subst new old tree) is obtained by substituting new for every
  occurence of old in the given tree.

  Equality to old is determined using the function [eql]. The [guard]
  for (subst new old tree) requires (eqlablep old), which ensures
  that the [guard] for [eql] will be met for each comparison
  generated by subst.

  Subst is defined in Common Lisp. See any Common Lisp documentation
  for more information.

  Function: <subst>

    (defun subst (new old tree)
           (declare (xargs :guard (eqlablep old)))
           (cond ((eql old tree) new)
                 ((atom tree) tree)
                 (t (cons (subst new old (car tree))
                          (subst new old (cdr tree))))))")
 (SUBSTITUTE
  (LISTS STRINGS ACL2-BUILT-INS)
  "Substitute into a string or a list, using [eql] as test

  (Substitute new old seq) is the result of replacing each occurrence
  of old in seq, which is a list or a string, with new.

  The guard for substitute requires that either seq is a string and new
  is a character, or else: seq is a [true-listp] such that either all
  of its members are [eqlablep] or old is eqlablep.

  Substitute is a Common Lisp function. See any Common Lisp
  documentation for more information. Since ACL2 functions cannot
  take keyword arguments (though macros can), the test used in
  substitute is eql.

  Function: <substitute>

    (defun
         substitute (new old seq)
         (declare (xargs :guard (or (and (stringp seq) (characterp new))
                                    (and (true-listp seq)
                                         (or (eqlablep old)
                                             (eqlable-listp seq))))))
         (if (stringp seq)
             (coerce (substitute-ac new old (coerce seq 'list)
                                    nil)
                     'string)
             (substitute-ac new old seq nil)))")
 (SUBSUMPTION_OF_INDUCTION_CANDIDATES_IN_APP_EXAMPLE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Subsumption of Induction Candidates in App Example

  After collecting induction suggestions from these three terms

    (app a b)

    (app b c)

    (app a (app b c))

  the system notices that the first and last suggest the same
  decomposition of a: case split on whether a is empty (i.e., (endp
  a)), and in the case where it is not empty, recursively process
  (cdr a). So we are left with two ideas about how to induct:

  Decompose a as we would to unwind (app a b).

  Decompose b as we would to unwind (app b c).")
 (SUBVERSIVE-INDUCTIONS
  (MISCELLANEOUS)
  "Why we restrict [encapsulate]d recursive functions

  See [subversive-recursions].")
 (SUBVERSIVE-RECURSIONS
  (MISCELLANEOUS)
  "Why we restrict [encapsulate]d recursive functions

  Subtleties arise when one of the ``constrained'' functions, f,
  introduced in the [signature] of an [encapsulate] event, is
  involved in the termination argument for a non-local recursively
  defined function, g, in that encapsulate. During the processing of
  the encapsulated events, f is locally defined to be some witness
  function, f'. Properties of f' are explicitly proved and exported
  from the encapsulate as the constraints on the undefined function
  f. But if f is used in a recursive g defined within the
  encapsulate, then the termination proof for g may use properties of
  f' --- the witness --- that are not explicitly set forth in the
  constraints stated for f.

  Such recursive g are said be ``subversive'' because if naively
  treated they give rise to unsound induction schemes or (via
  functional instantiation) recurrence equations that are impossible
  to satisfy. We illustrate what could go wrong below.

  Subversive recursions are not banned outright. Instead, they are
  treated as part of the constraint. That is, in the case above, the
  definitional equation for g becomes one of the constraints on f.
  This is generally a severe restriction on future functional
  instantiations of f. In addition, ACL2 removes from its knowledge
  of g any suggestions about legal inductions to ``unwind'' its
  recursion.

  What should you do? Often, the simplest response is to move the
  offending recursive definition, e.g., g, out of the encapsulate.
  That is, introduce f by constraint and then define g as an
  ``independent'' event. You may need to constrain ``additional''
  properties of f in order to admit g, e.g., constrain it to reduce
  some ordinal measure. However, by separating the introduction of f
  from the admission of g you will clearly identify the necessary
  constraints on f, functional instantiations of f will be simpler,
  and g will be a useful function which suggests inductions to the
  theorem prover.

  Note that the functions introduced in the [signature] should not even
  occur ancestrally in the termination proofs for non-local recursive
  functions in the encapsulate. That is, the constrained functions of
  an encapsulate should not be reachable in the dependency graph of
  the functions used in the termination arguments of recursive
  functions in encapsulate. If they are reachable, their definitions
  become part of the constraints.

  The following event illustrates the problem posed by subversive
  recursions.

    (encapsulate (((f *) => *))
      (local (defun f (x) (cdr x)))
      (defun g (x)
        (if (consp x) (not (g (f x))) t)))

  Suppose, contrary to how ACL2 works, that the encapsulate above were
  to introduce no constraints on f on the bogus grounds that the only
  use of f in the encapsulate is in an admissible function. We
  discuss the plausibility of this bogus argument in a moment.

  Then it would be possible to prove the theorem:

    (defthm f-not-identity
      (not (equal (f '(a . b)) '(a . b)))
      :rule-classes nil
      :hints ((\"Goal\" :use (:instance g (x '(a . b))))))

  simply by observing that if (f '(a . b)) were '(a . b), then (g '(a .
  b)) would be (not (g '(a . b))), which is impossible.

  But then we could functionally instantiate f-not-identity, replacing
  f by the identity function, to prove nil! This is bad.

    (defthm bad
      nil
      :rule-classes nil
      :hints
      ((\"Goal\" :use (:functional-instance f-not-identity (f identity)))))

  This sequence of events was legal in versions of ACL2 prior to
  Version 1.5. When we realized the problem we took steps to make it
  illegal. However, our steps were insufficient and it was possible
  to sneak in a subversive function (via mutual recursion) as late as
  Version 2.3.

  We now turn to the plausibility of the bogus argument above. Why
  might one even be tempted to think that the definition of g above
  poses no constraint on f? Here is a very similar encapsulate.

    (encapsulate (((f *) => *))
      (local (defun f (x) (cdr x)))
      (defun map (x)
        (if (consp x)
            (cons (f x) (map (cdr x)))
          nil)))

  Here map plays the role of g above. Like g, map calls the constrained
  function f. But map truly does not constrain f. In particular, the
  definition of map could be moved ``out'' of the encapsulate so that
  map is introduced afterwards. The difference between map and g is
  that the constrained function plays no role in the termination
  argument for the one but does for the other.

  As a ``user-friendly'' gesture, ACL2 implicitly moves map-like
  functions out of encapsulations; logically speaking, they are
  introduced after the encapsulation. This simplifies the constraint.
  When the constraint cannot be thus simplfied the user is advised,
  via the ``infected'' warning, to phrase the encapsulation in the
  simplest way possible.

  The lingering bug between Versions 1.5 and 2.3 mentioned above was
  due to our failure to detect the g-like nature of some functions
  when they were defined in mutually recursively cliques with other
  functions. The singly recursive case was recognized. The bug arose
  because our detection ``algorithm'' was based on the ``suggested
  inductions'' left behind by successful definitions. We failed to
  recall that mutually-recursive definitions do not, as of this
  writing, make any suggestions about inductions and so did not leave
  any traces of their subversive natures.

  We conclude by elaborating on the criterion ``involved in the
  termination argument'' mentioned at the outset. Suppose that
  function f is recursively defined in an [encapsulate], where the
  body of f has no ``ancestor'' among the functions introduced in the
  signature of that [encapsulate], i.e.: the body contains no call of
  a signature function, no call of a function whose body calls a
  signature function, and so on. Then ACL2 treats f as though it is
  defined in front of that encapsulate form; so f is not constrained
  by the encapsulate, and its definition is hence certainly not
  subversive in the sense discussed above. But suppose to the
  contrary that some function introduced in the signature is an
  ancestor of the body of f. Then the definition of f is subversive
  if moreover, its termination proof obligation has an ancestor among
  the signature functions. Now, that proof obligation involves terms
  from the first argument of selected calls of IF, as well as
  recursive calls; for a detailed discussion, see [ruler-extenders].
  The important point here is that for the recursive calls, only the
  arguments in ``measured'' positions are relevant to the termination
  proof obligation. Consider the following example.

    (encapsulate
     (((h *) => *))
     (local (defun h (n) n))
     (defun f (i n)
       (if (zp i)
           n
         (f (1- i) (h n)))))

  ACL2 heuristically picks the measure (acl2-count i) for the
  definition of f; thus, i is the only ``measured formal'' of f.
  Since i is the first formal of f, then for the recursive call of f,
  only the first argument contributes to the termination proof
  obligation: in this case, (1- i) but not (h n). Thus, even though h
  is a signature function, the definition of f is not considered to
  be subversive; an induction scheme is thus stored for f. (This
  restriction to measured formal positions of recursive calls, for
  determining subversive definitions, is new in Version_3.5 of ACL2.)")
 (SUGGESTED_INDUCTIONS_IN_THE_ASSOCIATIVITY_OF_APP_EXAMPLE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Suggested Inductions in the Associativity of App Example

  To find a plausible induction argument, the system studies the
  recursions exhibited by the terms in the conjecture.

  Roughly speaking, a call of a recursive function ``suggests'' an
  induction if the argument position decomposed in recursion is
  occupied by a variable.

  In this conjecture, three terms suggest inductions:

    (app a b)

    (app b c)

    (app a (app b c))

  The variable recursively decomposed is indicated in bold.")
 (SYMBOL-<
  (SYMBOLS ACL2-BUILT-INS)
  "Less-than test for symbols

  (symbol-< x y) is non-nil if and only if either the [symbol-name] of
  the symbol x lexicographially precedes the [symbol-name] of the
  symbol y (in the sense of [string<]) or else the [symbol-name]s are
  equal and the [symbol-package-name] of x lexicographically precedes
  that of y (in the same sense). So for example, (symbol-< 'abcd
  'abce) and (symbol-< 'acl2::abcd 'foo::abce) are true.

  The [guard] for symbol specifies that its arguments are symbols.

  Function: <symbol-<>

    (defun symbol-< (x y)
           (declare (xargs :guard (and (symbolp x) (symbolp y))))
           (let ((x1 (symbol-name x))
                 (y1 (symbol-name y)))
                (or (string< x1 y1)
                    (and (equal x1 y1)
                         (string< (symbol-package-name x)
                                  (symbol-package-name y))))))")
 (SYMBOL-ALISTP
  (ALISTS ACL2-BUILT-INS)
  "Recognizer for association lists with symbols as keys

  (Symbol-alistp x) is true if and only if x is a list of pairs of the
  form (cons key val) where key is a [symbolp].

  Function: <symbol-alistp>

    (defun symbol-alistp (x)
           (declare (xargs :guard t))
           (cond ((atom x) (eq x nil))
                 (t (and (consp (car x))
                         (symbolp (car (car x)))
                         (symbol-alistp (cdr x))))))")
 (SYMBOL-LISTP
  (SYMBOLS LISTS ACL2-BUILT-INS)
  "Recognizer for a true list of symbols

  The predicate symbol-listp tests whether its argument is a true list
  of symbols.

  Function: <symbol-listp>

    (defun symbol-listp (lst)
           (declare (xargs :guard t))
           (cond ((atom lst) (eq lst nil))
                 (t (and (symbolp (car lst))
                         (symbol-listp (cdr lst))))))")
 (SYMBOL-NAME
  (SYMBOLS ACL2-BUILT-INS)
  "The name of a symbol (a string)

  Completion Axiom (completion-of-symbol-name):

    (equal (symbol-name x)
           (if (symbolp x)
               (symbol-name x)
             \"\"))

  [Guard] for (symbol-name x):

    (symbolp x)")
 (SYMBOL-PACKAGE-NAME
  (SYMBOLS PACKAGES ACL2-BUILT-INS)
  "The name of the package of a symbol (a string)

  WARNING: While symbol-package-name behaves properly on all ACL2
  objects, it may give surprising results when called in raw Lisp.
  For more details see [pkg-imports], in particular the discussion
  there of the \"COMMON-LISP\" package.

  Completion Axiom (completion-of-symbol-package-name):

    (equal (symbol-package-name x)
           (if (symbolp x)
               (symbol-package-name x)
             \"\"))

  [Guard] for (symbol-package-name x):

    (symbolp x)

  Note: Symbol-package-name may diverge from the name of the symbol's
  package in raw Lisp, in the case that this package is the main Lisp
  package. For example, in GCL (symbol-package-name 'car) evaluates
  to \"COMMON-LISP\" even though the actual package name for the
  symbol, car, is \"LISP\".")
 (SYMBOLIC_EXECUTION_OF_MODELS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Symbolic Execution of Models

  [{IMAGE}]

  But ACL2 is more than a programming language.

  Initialize x to 5 and let y be any legal value.

  {IMAGE}

  Because ACL2 is a mathematical language, we can simplify the
  expression

    (lookup 'z (mc (s 'mult 5 y) 29))

  and get (+ y y y y y). This is symbolic execution because not all of
  the parameters are known.

  [{IMAGE}]")
 (SYMBOLP
  (SYMBOLS ACL2-BUILT-INS)
  "Recognizer for symbols

  (symbolp x) is true if and only if x is a symbol.


Subtopics

  [Intern]
      Create a new symbol in a given package

  [Intern$]
      Create a new symbol in a given package

  [Intern-in-package-of-symbol]
      Create a symbol with a given name")
 (SYMBOLS
  (PROGRAMMING)
  "Symbols in ACL2 and operations on them

  Symbols are a basic datatype in ACL2 and Common Lisp. Every symbol
  has two components: its name (see [symbol-name]) and its package
  name (see [symbol-package-name]).


Subtopics

  [Add-to-set]
      Add a symbol to a list

  [Keywordp]
      Recognizer for keywords

  [Symbol-<]
      Less-than test for symbols

  [Symbol-listp]
      Recognizer for a true list of symbols

  [Symbol-name]
      The name of a symbol (a string)

  [Symbol-package-name]
      The name of the package of a symbol (a string)

  [Symbolp]
      Recognizer for symbols")
 (SYNTAX
  (MISCELLANEOUS)
  "The syntax of ACL2 is that of Common Lisp

  For the details of ACL2 syntax, see CLTL. For examples of ACL2
  syntax, use :[pe] to print some of the ACL2 system code. For
  example:

    :pe assoc-equal
    :pe dumb-occur
    :pe var-fn-count
    :pe add-linear-variable-to-alist

  There is no comprehensive description of the ACL2 syntax yet, except
  that found in CLTL. Also see [term].")
 (SYNTAXP
  (REWRITE DEFINITION LINEAR META)
  "Attach a heuristic filter on a rule

  A call of syntaxp in the hypothesis of a :[rewrite], :[definition],
  or :[linear] rule is treated specially, as described below. Similar
  treatment is given to the evaluation of a :[meta] rule's hypothesis
  function call.

  For example, consider the :[rewrite] rule created from the following
  formula.

    Example:
    (IMPLIES (SYNTAXP (NOT (AND (CONSP X)
                                (EQ (CAR X) 'NORM))))
             (EQUAL (LXD X)
                    (LXD (NORM X)))).

  The syntaxp hypothesis in this rule will allow the rule to be applied
  to (lxd (trn a b)) but will not allow it to be applied to (lxd
  (norm a)).

    General Form:
    (SYNTAXP test)

  Syntaxp always returns t and so may be added as a vacuous hypothesis.
  However, when relieving the hypothesis, the test ``inside'' the
  syntaxp form is actually treated as a meta-level proposition about
  the proposed instantiation of the rule's variables and that
  proposition must evaluate to true (non-nil) to ``establish'' the
  syntaxp hypothesis.

  Note that the test of a syntaxp hypothesis does not, in general, deal
  with the meaning or semantics or values of the terms, but rather
  with their syntactic forms. In the example above, the syntaxp
  hypothesis allows the rule to be applied to every target of the
  form (lxd u), provided u is not of the form (norm v). Observe that
  without this syntactic restriction the rule above could loop,
  producing a sequence of increasingly complex targets (lxd a), (lxd
  (norm a)), (lxd (norm (norm a))), etc. An intuitive reading of the
  rule might be ``norm the argument of lxd unless it has already been
  normed.''

  Note also that a syntaxp hypothesis deals with the syntactic form
  used internally by ACL2, rather than that seen by the user. In some
  cases these are the same, but there can be subtle differences with
  which the writer of a syntaxp hypothesis must be aware. You can use
  :[trans] to display this internal representation.

  There are two types of syntaxp hypotheses. The simpler type may be a
  hypothesis of a :[rewrite], :[definition], or :[linear] rule
  provided test contains at least one variable but no free variables
  (see [free-variables]). In particular, test may not use [stobj]s;
  any stobj name will be treated as an ordinary variable. The case of
  :[meta] rules is similar to the above, except that it applies to
  the result of applying the hypothesis metafunction. (Later below we
  will describe the second type, an extended syntaxp hypothesis,
  which may use [state].)

  We illustrate the use of simple syntaxp hypotheses by slightly
  elaborating the example given above. Consider a :[rewrite] rule:

    (IMPLIES (AND (RATIONALP X)
                  (SYNTAXP (NOT (AND (CONSP X)
                                     (EQ (CAR X) 'NORM)))))
             (EQUAL (LXD X)
                    (LXD (NORM X))))

  How is this rule applied to (lxd (trn a b))? First, we form a
  substitution that instantiates the left-hand side of the conclusion
  of the rule so that it is identical to the target term. In the
  present case, the substitution replaces x with (trn a b).

    (LXD X) ==> (LXD (trn a b)).

  Then we backchain to establish the hypotheses, in order. Ordinarily
  this means that we instantiate each hypothesis with our
  substitution and then attempt to rewrite the resulting instance to
  true. Thus, in order to relieve the first hypothesis above, we
  rewrite

    (RATIONALP (trn a b)).

  If this rewrites to true, we continue.

  Of course, many users are aware of some exceptions to this general
  description of the way we relieve hypotheses. For example, if a
  hypothesis contains a ``free-variable'' --- one not bound by the
  current substitution --- we attempt to extend the substitution by
  searching for an instance of the hypothesis among known truths. See
  [free-variables]. [Force]d hypotheses are another exception to the
  general rule of how hypotheses are relieved.

  Hypotheses marked with syntaxp, as in (syntaxp test), are also
  exceptions. We instantiate such a hypothesis; but instead of
  rewriting the instantiated instance, we evaluate the instantiated
  test. More precisely, we evaluate test in an environment in which
  its variable symbols are bound to the quotations of the terms to
  which those variables are bound in the instantiating substitution.
  So in the case in point, we (in essence) evaluate

    (NOT (AND (CONSP '(trn a b)) (EQ (CAR '(trn a b)) 'NORM))).

  This clearly evaluates to t. When a syntaxp test evaluates to true,
  we consider the syntaxp hypothesis to have been established; this
  is sound because logically (syntaxp test) is t regardless of test.
  If the test evaluates to nil (or fails to evaluate because of
  [guard] violations) we act as though we cannot establish the
  hypothesis and abandon the attempt to apply the rule; it is always
  sound to give up.

  The acute reader will have noticed something odd about the form

    (NOT (AND (CONSP '(trn a b)) (EQ (CAR '(trn a b)) 'NORM))).

  When relieving the first hypothesis, (RATIONALP X), we substituted
  (trn a b) for X; but when relieving the second hypothesis, (SYNTAXP
  (NOT (AND (CONSP X) (EQ (CAR X) 'NORM)))), we substituted the
  quotation of (trn a b) for X. Why the difference? Remember that in
  the first hypothesis we are talking about the value of (trn a b)
  --- is it rational --- while in the second one we are talking about
  its syntactic form. Remember also that Lisp, and hence ACL2,
  evaluates the arguments to a function before applying the function
  to the resulting values. Thus, we are asking ``Is the list (trn a
  b) a [consp] and if so, is its [car] the symbol NORM?'' The quotes
  on both (trn a b) and NORM are therefore necessary. One can verify
  this by defining trn to be, say [cons], and then evaluating forms
  such as

    (AND (CONSP '(trn a b)) (EQ (CAR '(trn a b)) 'NORM))
    (AND (CONSP (trn a b)) (EQ (CAR (trn a b)) NORM))
    (AND (CONSP (trn 'a 'b)) (EQ (CAR (trn 'a 'b)) NORM))
    (AND (CONSP '(trn a b)) (EQ '(CAR (trn a b)) ''NORM))

  at the top-level ACL2 prompt.

  See [syntaxp-examples] for more examples of the use of syntaxp.

  An extended syntaxp hypothesis is similar to the simple type
  described above, but it uses two additional variables, mfc and
  state, which must not be bound by the left hand side or an earlier
  hypothesis of the rule. They must be the last two variables
  mentioned by form; first mfc, then state. These two variables give
  access to the functions mfc-xxx; see [extended-metafunctions]. As
  described there, mfc is bound to the so-called metafunction-context
  and state to ACL2's [state]. See [syntaxp-examples] for an example
  of the use of these extended syntaxp hypotheses.

  We conclude with an example illustrating an error that may occur if
  you forget that a syntaxp hypothesis will be evaluated in an
  environment where variables are bound to syntactic terms, not to
  values. Consider the following [stobj] introduction (see
  [defstobj]).

    (defstobj st
      (fld1 :type (signed-byte 3) :initially 0)
      fld2)

  The following syntaxp hypothesis is ill-formed for evaluation.
  Indeed, ACL2 causes an error because it anticipates that when
  trying to relieve the syntaxp hypothesis of this rule, ACL2 would
  be evaluating (fld1 st) where st is bound to a term, not to an
  actual stobj as required by the function fld1. The error message is
  intended to explain this problem.

    ACL2 !>(defthm bad
             (implies (syntaxp (quotep (fld1 st)))
                      (equal (stp st)
                             (and (true-listp st)
                                  (equal (len st) 2)
                                  (fld1p (car st))))))

    ACL2 Error in ( DEFTHM BAD ...):  The form (QUOTEP (FLD1 ST)), from
    a SYNTAXP hypothesis, is not suitable for evaluation in an environment
    where its variables are bound to terms.  See :DOC SYNTAXP.  Here is
    further explanation:
         The form ST is being used, as an argument to a call of FLD1, where
    the single-threaded object of that name is required.  But in the current
    context, the only declared stobj name is STATE.  Note:  this error
    occurred in the context (FLD1 ST).

    Summary
    Form:  ( DEFTHM BAD ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

    ACL2 Error in ( DEFTHM BAD ...):  See :DOC failure.

    ******** FAILED ********
    ACL2 !>

  Presumably the intention was to rewrite the term (stp st) when the
  fld1 component of st is seen to be an explicit constant. As
  explained elsewhere (see [free-variables]), we can obtain the
  result of rewriting (fld1 st) by binding a fresh variable to that
  term using EQUAL, as follows.

    (defthm good
      (implies (and (equal f (fld1 st))
                    (syntaxp (quotep f)))
               (equal (stp st)
                      (and (true-listp st)
                           (equal (len st) 2)
                           (fld1p (car st))))))

  The event above is admitted by ACL2. We can see it in action by
  disabling the definition of stp so that only the rule above, good,
  is available for reasoning about stp.

    (in-theory (disable stp))

  Then the proof fails for the following, because the syntaxp
  hypothesis of the rule, good, fails: (quotep f) evaluates to nil
  when f is bound to the term (fld1 st).

    (thm (stp st))

  However, the proof succeeds for the next form, as we explain below.

    (thm (stp (list 3 rest)))

  Consider what happens in that case when rule good is applied to the
  term (stp (list 3 rest)). (See [free-variables] for relevant
  background.) The first hypothesis of good binds the variable f to
  the result of rewriting (fld1 st), where st is bound to the
  (internal form of) the term (list 3 rest) --- and that result is
  clearly the term, '3. Then the syntaxp hypothesis is successfully
  relieved, because the evaluation of (quotep f) returns t in the
  environment that binds f to '3.


Subtopics

  [Syntaxp-examples]
      Examples pertaining to syntaxp hypotheses")
 (SYNTAXP-EXAMPLES
  (SYNTAXP)
  "Examples pertaining to syntaxp hypotheses

  See [syntaxp] for a basic discussion of the use of syntaxp to control
  rewriting.

  A common syntactic restriction is

    (SYNTAXP (AND (CONSP X) (EQ (CAR X) 'QUOTE)))

  or, equivalently,

    (SYNTAXP (QUOTEP X)).

  A rule with such a hypothesis can be applied only if x is bound to a
  specific constant. Thus, if x is 23 (which is actually represented
  internally as (quote 23)), the test evaluates to t; but if x prints
  as (+ 11 12) then the test evaluates to nil (because (car x) is the
  symbol [binary-+]). We see the use of this restriction in the rule

    (implies (and (syntaxp (quotep c))
                  (syntaxp (quotep d)))
             (equal (+ c d x)
                    (+ (+ c d) x))).

  If c and d are constants, then the [executable-counterpart] of
  [binary-+] will evaluate the sum of c and d. For instance, under
  the influence of this rule

    (+ 11 12 foo)

  rewrites to

    (+ (+ 11 12) foo)

  which in turn rewrites to (+ 23 foo). Without the syntactic
  restriction, this rule would loop with the built-in rules
  ASSOCIATIVITY-OF-+ or COMMUTATIVITY-OF-+.

  We here recommend that the reader try the affects of entering
  expressions such as the following at the top level ACL2 prompt.

    (+ 11 23)
    (+ '11 23)
    (+ '11 '23)
    (+ ''11 ''23)
    :trans (+ 11 23)
    :trans (+ '11 23)
    :trans (+ ''11 23)
    :trans (+ c d x)
    :trans (+ (+ c d) x)

  We also recommend that the reader verify our claim above about
  looping by trying the affect of each of the following rules
  individually.

    (defthm good
       (implies (and (syntaxp (quotep c))
                     (syntaxp (quotep d)))
                (equal (+ c d x)
                       (+ (+ c d) x))))

    (defthm bad
       (implies (and (acl2-numberp c)
                     (acl2-numberp d))
                (equal (+ c d x)
                       (+ (+ c d) x))))

  on (the false) theorems:

    (thm
      (equal (+ 11 12 x) y))

    (thm
      (implies (and (acl2-numberp c)
                    (acl2-numberp d)
                    (acl2-numberp x))
               (equal (+ c d x) y))).

  One can use :[brr], perhaps in conjunction with [cw-gstack], to
  investigate any looping.

  Here is a simple example showing the value of rule good above.
  Without good, the thm form below fails.

    (defstub foo (x) t)

    (thm (equal (foo (+ 3 4 x)) (foo (+ 7 x))))

  The next three examples further explore the use of quote in [syntaxp]
  hypotheses.

  We continue the examples of [syntaxp] hypotheses with a rule from
  community book books/finite-set-theory/set-theory.lisp. We will not
  discuss here the meaning of this rule, but it is necessary to point
  out that (ur-elementp nil) is true in this book.

    (defthm scons-nil
      (implies (and (syntaxp (not (equal a ''nil)))
                    (ur-elementp a))
               (= (scons e a)
                  (scons e nil)))).

  Here also, [syntaxp] is used to prevent looping. Without the
  restriction, (scons e nil) would be rewritten to itself since
  (ur-elementp nil) is true.
  Question: Why the use of two quotes in ''nil?
  Hints: Nil is a constant just as 23 is. Try :trans (cons a nil),
  :trans (cons 'a 'nil), and :trans (cons ''a ''nil). Also, don't
  forget that the arguments to a function are evaluated before the
  function is applied.

  The next two rules move negative constants to the other side of an
  inequality.

    (defthm |(< (+ (- c) x) y)|
      (implies (and (syntaxp (quotep c))
                    (syntaxp (< (cadr c) 0))
                    (acl2-numberp y))
               (equal (< (+ c x) y)
                      (< (fix x) (+ (- c) y)))))

    (defthm |(< y (+ (- c) x))|
      (implies (and (syntaxp (quotep c))
                    (syntaxp (< (cadr c) 0))
                    (acl2-numberp y))
               (equal (< y (+ c x))
                      (< (+ (- c) y) (fix x)))))

  Questions: What would happen if (< (cadr c) '0) were used? What about
  (< (cadr c) ''0)?

  One can also use syntaxp to restrict the application of a rule to a
  particular set of variable bindings as in the following taken from
  the [ihs] library.

    (encapsulate ()

      (local
       (defthm floor-+-crock
         (implies
          (and (real/rationalp x)
               (real/rationalp y)
               (real/rationalp z)
               (syntaxp (and (eq x 'x) (eq y 'y) (eq z 'z))))
          (equal (floor (+ x y) z)
                 (floor (+ (+ (mod x z) (mod y z))
                           (* (+ (floor x z) (floor y z)) z)) z)))))

      (defthm floor-+
        (implies
         (and (force (real/rationalp x))
              (force (real/rationalp y))
              (force (real/rationalp z))
              (force (not (equal z 0))))
         (equal (floor (+ x y) z)
                (+ (floor (+ (mod x z) (mod y z)) z)
                   (+ (floor x z) (floor y z))))))

      )

  We recommend the use of :brr to investigate the use of floor-+-crock.

  Another useful restriction is defined by

    (defun rewriting-goal-literal (x mfc state)

      ;; Are we rewriting a top-level goal literal, rather than rewriting
      ;; to establish a hypothesis from a rewrite (or other) rule?

      (declare (ignore x state))
      (null (access metafunction-context mfc :ancestors))).

  We use this restriction in the rule

    (defthm |(< (* x y) 0)|
        (implies (and (syntaxp (rewriting-goal-literal x mfc state))
                      (rationalp x)
                      (rationalp y))
                 (equal (< (* x y) 0)
                        (cond ((equal x 0)
                               nil)
                              ((equal y 0)
                               nil)
                              ((< x 0)
                               (< 0 y))
                              ((< 0 x)
                               (< y 0))))))

  which has been found to be useful, but which also leads to excessive
  thrashing in the linear arithmetic package if used
  indiscriminately.

  See [extended-metafunctions] for information on the use of mfc and
  metafunction-context.")
 (SYS-CALL
  (INTERFACING-TOOLS ACL2-BUILT-INS)
  "Make a system call to the host operating system

    Example Forms:
    (sys-call \"cp\" '(\"foo.lisp\" \"foo-copied.lisp\"))
    (prog2$ (sys-call \"cp\" '(\"foo.lisp\" \"foo-copied.lisp\"))
            (sys-call-status state))

  The first argument of sys-call is a command for the host operating
  system, and the second argument is a list of strings that are the
  arguments for that command. In GCL and perhaps some other lisps,
  you can put the arguments with the command; but this is not the
  case, for example, in Allegro CL running on Linux.

  For a related utility, see [sys-call+].

  The use of [prog2$] above is optional, but illustrates a typical sort
  of use when one wishes to get the return status. See
  [sys-call-status].

    General Form:
    (sys-call cmd args)

  This function logically returns nil. However, it makes the indicated
  call to the host operating system, as described above, using a
  function supplied ``under the hood'' by the underlying Lisp system.
  On occasions where one wishes to obtain the numeric status returned
  by the host operating system (or more precisely, by the Lisp
  function under the hood that passes the system call to the host
  operating system), one may do so; see [sys-call-status]. The status
  value is the value returned by that Lisp function, which may well
  be the same numeric value returned by the host operating system for
  the underlying system call.

  Note that sys-call does not touch the ACL2 [state]; however,
  [sys-call-status] updates the acl2-oracle field of the state.

  Be careful if you use sys-call! It can be used for example to
  overwrite files, or worse! We view a use of sys-call as a call to
  the operating system that is made outside ACL2. The following
  example from Bob Boyer shows how to use sys-call to execute, in
  effect, arbitrary Lisp forms. ACL2 provides a ``trust tag''
  mechanism that requires execution of a [defttag] form before you
  can use sys-call; see [defttag]. (Note: The setting of the raw Lisp
  variable *features* below is just to illustrate that any such
  mischief is possible. Normally *features* is a list with more than
  a few elements.)

    % cat foo
    print *0x85d2064=0x838E920
    detach
    q
    % acl2
    ... boilerplate deleted
    ACL2 !>(sys-call \"gdb -p $PPID -w < foo >& /dev/null \" nil)
    NIL
    ACL2 !>:q

    Exiting the ACL2 read-eval-print loop.  To re-enter, execute (LP).
    ACL2>*features*

    (:AKCL-SET-MV)

    ACL2>

  Finally, we note that sys-call does not provide some features that
  one may expect of a shell. In particular, sys-call does not
  generally support shell expansion of its arguments (such as ~/). It
  also does not directly support output redirection. If you want to
  run a program, P, and redirect its output, one option is to create
  a wrapper script, W to call instead. Thus W might be a shell script
  containing the line:

    P $* >& foo.out

  For a different, more direct solution, see [sys-call+].


Subtopics

  [Sys-call+]
      Make a system call to the host OS, returning status and output

  [Sys-call-status]
      Exit status from the preceding system call")
 (SYS-CALL+
  (SYS-CALL ACL2-BUILT-INS)
  "Make a system call to the host OS, returning status and output

    Example Form:
    ; The following returns (mv nil s state), where s is the standard output
    ; from the command: ls -l ./
    (sys-call+ \"ls\" '(\"-l\" \"./\") state)

    General Form:
    (sys-call+ cmd args state)

  where cmd is a command to the host operating system and args is a
  list of strings. Also see [sys-call]; but there are two differences
  between [sys-call] and sys-call+. First, the latter takes an extra
  argument, state. Second, while sys-call returns nil, sys-call+
  returns an [error-triple], (mv erp val state). While execution
  returns values as described just below, further below we explain
  the logical return values. In the following, please keep in mind
  that the exact behavior depends on the platform; the description is
  only a guide. For example, on some platforms erp might always be
  nil, even if in the error case, and val might or might not include
  error output. (For details, look at the ACL2 source code for
  function system-call+, whose output is converted by replacing an
  erp of nil by 0.)

      Erp is either nil or a non-zero integer. Normally, nil indicates that
      the command ran without error, and otherwise erp is the exit
      status.

      Val is a string, typically the output generated by the call of cmd.

      State is an ACL2 [state].

  While the description above pertains to the values returned by
  executing sys-call+, the logical values are as follows. For a
  discussion of the acl2-oracle field of an ACL2 state, see
  [read-ACL2-oracle] and [state].

      Erp is the first element of the acl2-oracle of the input state if
      that element is a nonzero integer, and otherwise is nil.

      Val is the second element of the acl2-oracle of the input state if it
      is a string, else the empty string, \"\".

      State is the result of popping the acl2-oracle field twice from the
      input state.

  Note that unlike [sys-call], a call of [sys-call+] has no effect on
  subsequent calls of [sys-call-status].

  As is the case for sys-call, a trust tag is required to call
  sys-call+. For discussion of this and more, see [sys-call].")
 (SYS-CALL-STATUS
  (SYS-CALL ACL2-BUILT-INS)
  "Exit status from the preceding system call

  This function returns two values, (mv status state). The first is the
  status resulting from the most recent invocation of function
  sys-call; see [sys-call]. The second is the ACL2 [state] object,
  which is also the input to this function.

  The function [sys-call] makes a system call to the host operating
  system using a function supplied ``under the hood'' by the
  underlying Lisp system. The status value is the value returned by
  that Lisp function, which may well be the numeric value returned by
  the host operating system for the underlying system call. For more
  information, see [sys-call].")
 (SYSTEM-UTILITIES
  (PROGRAMMING)
  "List of system-level programming utilities

  Since the ACL2 system is written in itself, the source code defines
  many utilities that support the ACL2 implementation. Some of these
  have been found to be useful not only to the ACL2 developers, but
  to those who use ACL2 to perform tasks other than the traditional
  ones: writing and submitting definitions, and proving theorems
  about the functions defined.

  This topic provides a summary, initially very short, of some of those
  system-level utilities. It is intended to be a growing document,
  with contributions from those in the community who find such
  utilities that benefit them. Although the ACL2 implementors have
  created this topic initially, we expect that others will add to it
  over time.

  The ACL2 system comes with substantial comments. As of Version_7.1
  (May, 2015), out of slightly under 10 MB of source code (not
  including 4.8 MB of [documentation] topics), nearly 400 KB (just
  over 40%) were comment lines. This topic is not intended to
  supplant or duplicate those comments, but rather, only to note
  system utilities of interest to the community. If you find the
  source comments inadquate, please feel free to ask the system
  implementors to make corresponding additions to the source code
  comments. Note that if you execute the command

    grep '^; Essay on' *.lisp

  in your ACL2 sources directory, you will see the names of more than
  80 long source comments, or ``Essays'', that can provide additional
  background.

  Also see [programming] and its subtopics, in particular
  [programming-with-state], which describes many system-level
  utilities. For example, a subsection of [programming-with-state],
  entitled ``SEQUENTIAL PROGRAMMING'', introduces handy utilities
  [pprogn] and [er-progn] along with links to their documentation.

  Here is another option for finding a system utility: As ACL2
  developers sometimes do, use meta-. or meta-x tags-apropos in Emacs
  to find utilities with given substrings in their names. For
  example, if in Emacs you submit the command meta-x tags-apropos and
  reply pwd at the prompt, you'll find a raw Lisp function our-pwd
  that ACL2 defines as an analogue to the Linux pwd command; and,
  with meta-x tags-search applied to (pwd, you can see how ACL2
  source code uses this utility.


List of a few ACL2 system utilities:

    * (alist-to-doublets alist): Return the result of replacing each pair
      (x . y) in the given alist by the two-element list (x y). The
      order is preserved, i.e., the following is a theorem.

          (implies (and (natp i) (< i (len alist)))
                   (equal (nth i (alist-to-doublets alist))
                          (let ((pair (nth i alist)))
                            (list (car pair) (cdr pair)))))

    * (all-vars x): For a [pseudo-termp] x, return the list of variables in
      x in reverse print order of first occurrence. For example,
      all-vars of '(f (g a b) c) is '(c b a).
    * (arity fn w): For a function symbol or lambda expression fn of
      [world] w, return the number of its formal parameters.
    * (body fn normalp w): For a function symbol or lambda expression fn of
      [world] w, return its body (normalized iff normalp is true).
    * (cons-count-bounded x): The number of cons nodes in x (without
      accounting for sharing), but truncated above by the value of
      (fn-count-evg-max-val), which is 200,000 as of this writing.
    * (defined-constant name w): If name is t, nil, or defined using
      [defconst], return the quoted term that is the value of name,
      which is not nil; otherwise return nil.
    * (defun-mode fn): If fn is a function symbol, return the [defun-mode]
      of fn: :program if fn is in :[program] mode, :logic if fn is in
      :[logic] mode. If fn is not a function symbol, return nil.
    * (disabledp name): The list of [rune]s introduced with name that are
      currently [disable]d.
    * (fargn x n): For a [pseudo-termp] x that is a function call and for a
      positive integer n, return the n-nth argument of x.
    * (fargs x): For a [pseudo-termp] x that is a function call, return its
      arguments.
    * (fdefun-mode fn): For a function symbol fn, return the [defun-mode]
      of fn: :program if fn is in :[program] mode, :logic if fn is in
      :[logic] mode.
    * (ffn-symb x): For a [pseudo-termp] x that is a function call, return
      its called function or lambda expression.
    * (ffn-symb-p x sym): For a [pseudo-termp] x, return t if it is a
      function call whose function symbol is sym, else return nil.
    * (flambda-applicationp x): For a [pseudo-termp] x that is not a
      variable, return t if it is a function call whose function
      symbol is a lambda expression, else return nil.
    * (flambdap fn): True when fn is a lambda expression.
    * (fn-symb x): For a [pseudo-termp] x, return its called function or
      lambda expression if x is a function call, otherwise return
      nil.
    * (formals fn w): For a function symbol fn of [world] w, return its
      list of formal parameters.
    * (formula name normalp w): For an event name or [rune], name, of
      [world] w, return the corresponding formula if any (normalized
      iff normalp is true), else nil. See [formula].
    * (fquotep x): For a [pseudo-termp] x that is not a variable, return
      true iff x is a quoted constant.
    * (function-symbolp sym w): True when the symbol sym is a function
      symbol in the [world] w.
    * (genvar pkg-witness prefix n avoid-lst): Generate a new variable
      name.
    * (get-brr-local var state): The value of brr-local variable var; this
      is the utility used by [brr@].
    * (get-event name w): For the given name of an event in the current
      ACL2 [world] w, return that event.
    * (get-skipped-proofs-p name w): For the given name of an event in the
      current ACL2 [world] w, return t if proofs were skipped when
      introducing that event, as with [skip-proofs] or using
      [set-ld-skip-proofsp] --- that is, with proofs skipped other
      than by the system (as with [include-book]); else return nil.
      Exception: if name is a function symbol in :[program] mode,
      always return nil.
    * (guard fn stobj-optp w): For a function symbol or lambda expression
      fn of [world] w, return its [guard]. Optimize the [stobj]
      recognizers away iff stobj-optp is true.
    * (lambda-applicationp x): For a [pseudo-termp] x, return t if it is a
      function call whose function symbol is a lambda expression,
      else return nil.
    * (lambda-body x): For a lambda expression x, return its body.
    * (lambda-formals x): For a lambda expression x, return its formal
      parameters.
    * (logicalp fn w): Returns t when the symbol-class of fn in w is not
      :program, else nil. (See symbol-class, below.)
    * (make-lambda args body): Return lambda expression with formal
      parameters args and body body.
    * (merge-sort-lexorder l): Sort the list l using a non-strict total
      order, [lexorder], on the ACL2 universe.
    * (nvariablep x): For a [pseudo-termp] x, return true iff x is not a
      variable (i.e. it is a quoted constant or a function call).
    * (plist-worldp alist): Recognizer for when alist is syntactically
      well-formed as an ACL2 logical [world], sometimes suitable for
      use in [guard]s. Note: for a somewhat deeper check, see
      community book books/system/pseudo-good-worldp.lisp.
    * (prettyify-clause cl let*-abstractionp wrld): Returns an untranslated
      (user-level) term that is equivalent to the clause, cl.
    * (programp fn w): Returns t when the symbol-class of fn in w is
      :program, else nil. (See symbol-class, below.)
    * (quotep x): For a [pseudo-termp] x, return true iff x is a quoted
      constant.
    * (recursivep fn w): For a function symbol fn of [world] w, return the
      list of mutually recursive functions of which fn is a member.
      The list is empty iff fn is not recursive. The list contains
      just fn iff fn is singly recursive.
    * (subcor-var vars terms form): For a list vars of symbols, a list
      terms of [pseudo-termp]s, and a [pseudo-termp] form,
      substitute, in form, the i-th variable from vars with the i-th
      term from terms. Note that vars and terms should have the same
      length. (\"subcor\" stands for \"substitute corresponding
      elements\".)
    * (sublis-var alist form): Substitute alist into the [term], form.
    * (subst-expr new old term): Substitute new for old in term; all are
      assumed to be [term]s.
    * (subst-var new old term): Substitute new for old in term; all are
      assumed to be [term]s, but moreover, old is assumed to be a
      variable.
    * (symbol-class name w): For a function symbol, name, of the ACL2
      [world] w, return :program if name is in :[program] mode,
      :common-lisp-compliant is name is [guard]-verified, and
      otherwise, :ideal. If name is the name of a theorem (more
      specifically, has a 'theorem property; see [getprop]), return
      :ideal. Otherwise return :program.
    * (termp x w): Is x a [term] in logical [world] w?
    * (trans-eval form ctx state aok): Translate and then evaluate form.
      Also see simple-translate-and-eval-cmp.
    * translate, translate1, translate11, translate-cmp, and
      translate1-cmp: Functions that translate user-level input to
      translated [term]s, as recognized by termp.
    * (untranslate term iff-flg w): Turn the translated [pseudo-termp] term
      into a user-level input [term], in the context of the logical
      world w. When the flag iff-flg is true, the resulting term is
      allowed to be iff-equivalent, e.g., (if x1 t x2) can be
      untranslated to (or x1 x2).
    * (variablep x): For a [pseudo-termp] x, return true iff x is a
      variable, i.e., a symbol.


Subtopics

  [Get-event-data]
      Obtain data stored after at the conclusion of an event")
 (TABLE
  (EVENTS)
  "User-managed tables

    Examples:
    (table tests 1 '(...))                ; set contents of tests[1] to '(...)
    (table tests 25)                      ; get contents of tests[25]
    (table tests)                         ; return table tests as an alist
    (table tests nil nil :clear)          ; clear table tests
    (table tests nil '((foo . 7)) :clear) ; set table tests to ((foo . 7))
    (table tests nil nil :guard)          ; fetch the table guard
    (table tests nil nil :guard term)     ; set the table guard

    General Form:
    (table table-name key-term value-term op term)

  where table-name is a symbol that is the name of a (possibly new)
  table, key-term and value-term, if present, are arbitrary terms
  involving (at most) the single variable [world], op, if present, is
  one of the table operations below, and term, if present, is a term.
  Table returns an ACL2 [error-triple]. The effect of table on
  [state] depends on op and how many arguments are presented. Some
  invocations actually have no effect on the ACL2 [world] and hence
  an invocation of table is not always an ``event''. We explain
  below, after giving some background information.

  Important Note: The table forms above are calls of a macro that
  expand to involve the special variable [state]. This will prevent
  you from accessing a table from within a hint or theory where you
  do not have the [state] variable. However, the form

    (table-alist 'tests world)

  returns the alist representation of the table named test in the given
  world. Often you have access to world.

  The ACL2 system provides ``tables'' by which the user can associate
  one object with another. Tables are in essence just conventional
  association lists --- lists of pairs --- but the ACL2 environment
  provides a means of storing these lists in the ``ACL2 world'' of
  the current [state]. The ACL2 user could accomplish the same ends
  by using ACL2 ``global variables;'' however, limitations on global
  variable names are imposed to ensure ACL2's soundness. Some
  features of the system use tables, and the user is invited to make
  free use of tables. By convention, no user-defined table is
  important to ACL2's soundness. Because tables are stored in the
  ACL2 [world] they are restored by [include-book] and undone by
  :[ubt]. Many users of Nqthm requested a facility by which user data
  could be saved in Nqthm ``lib files'' and tables are ACL2's answer
  to that request.

  Abstractly, each table is an association list mapping ``keys'' to
  ``values.'' In addition, each table has a ``:guard,'' which is a
  term that must be true of any key and value used. By setting the
  :guard on a table you may enforce an invariant on the objects in
  the table, e.g., that all keys are positive integers and all values
  are symbols. Each table has a ``name,'' which must be a symbol.
  Given a table name, the following operations can be performed on
  the table.

  :put --- associate a value with a key (possibly changing the value
  currently associated with that key).

  :get --- retrieve the value associated with a key (or nil if no value
  has been associated with that key).

  :alist --- return an alist showing all keys and non-nil values in the
  table.

  :clear --- clear the table (so that every value is nil), or if val is
  supplied then set table to that value (which must be an alist).

  :guard --- fetch or set the :guard of the table.

  When the operations above suggest that the table or its :guard are
  modified, what is actually meant is that the current [state] is
  redefined so that in it, the affected table name has the
  appropriate properties. in such cases, the table form is an event
  (see [events]). In the :put case, if the key is already in the
  table and associated with the proposed value, then the table event
  is redundant (see [redundant-events]).

  Table forms are commonly typed by the user while interacting with the
  system. :Put and :get forms are especially common. Therefore, we
  have adopted a positional syntax that is intended to be convenient
  for most applications. Essentially, some operations admit a ``short
  form'' of invocation.

    (table name key-term value-term :put)   ; long form
    (table name key-term value-term)        ; short form

  evaluates the key- and value-terms, obtaining two objects that we
  call key and value, checks that the key and value satisfy the
  :guard on the named table and then ``modifies'' the named table so
  that the value associated with key is value. When used like this,
  table is actually an event in the sense that it changes the ACL2
  [world]. In general, the forms evaluated to obtain the key and
  value may involve the variable [world], which is bound to the
  then-current [world] during the evaluation of the forms. However,
  in the special case that the table in question is named
  [ACL2-defaults-table], the key and value terms may not contain any
  variables. Essentially, the keys and values used in [events]
  setting the [ACL2-defaults-table] must be explicitly given
  constants. See [ACL2-defaults-table].

    (table name key-term nil :get)          ; long form
    (table name key-term)                   ; short form

  evaluates the key-term (see note below), obtaining an object, key,
  and returns the value associated with key in the named table (or,
  nil if there is no value associated with key). When used like this,
  table is not an event; the value is simply returned.

    (table name nil nil :alist)             ; long form
    (table name)                            ; short form

  returns an alist representing the named table; for every key in the
  table with a non-nil associated value, the alist pairs the key and
  its value. The order in which the keys are presented is
  unspecified. When used like this, table is not an event; the alist
  is simply returned.

    (table name nil val :clear)

  sets the named table to the alist val, making the checks that :put
  makes for each key and value of val. When used like this, table is
  an event because it changes the ACL2 [world].

    (table name nil nil :guard)

  returns the translated form of the guard of the named table.

    (table name nil nil :guard term)

  Provided the named table is empty and has not yet been assigned a
  :guard and term (which is not evaluated) is a term that mentions at
  most the variables key, val and [world], this event sets the :guard
  of the named table to term. Whenever a subsequent :put occurs, term
  will be evaluated with key bound to the key argument of the :put,
  val bound to the val argument of the :put, and [world] bound to the
  then current [world]. An error will be caused by the :put if the
  result of the evaluation is nil.

  Note that it is not allowed to change the :guard on a table once it
  has been explicitly set. Before the :guard is explicitly set, it is
  effectively just t. After it is set it can be changed only by
  undoing the event that set it. The purpose of this restriction is
  to prevent the user from changing the :guards on tables provided by
  other people or the system.

  The intuition behind the :guard mechanism on tables is to enforce
  invariants on the keys and values in a table, so that the values,
  say, can be used without run-time checking. But if the :guard of a
  table is sensitive to the ACL2 [world], it may be possible to cause
  some value in the table to cease satisfying the :guard without
  doing any operations on the table. Consider for example the :guard
  ``no value in this table is the name of an event.'' As described,
  that is enforced each time a value is stored. Thus, 'bang can be
  :put in the table provided there is no event named bang. But once
  it is in the table, there is nothing to prevent the user from
  defining bang as a function, causing the table to contain a value
  that could not be :put there anymore. Observe that not all
  state-sensitive :guards suffer this problem. The :guard ``every
  value is an event name'' remains invariant, courtesy of the fact
  that undoing back through an event name in the table would
  necessarily undo the :put of the name into the table.

  Table was designed primarily for convenient top-level use. Tables are
  not especially efficient. Each table is represented by an alist
  stored on the property list of the table name. :Get is just a
  getprop and [assoc-equal]. :Put does a getprop to the get the table
  alist, a put-assoc-equal to record the new association, and a
  putprop to store the new table alist --- plus the overhead
  associated with :guards and undoable [events], and checking (for
  redundancy) if the key is already bound to its proposed value. Note
  that there are never duplicate keys in the resulting alist; in
  particular, when the operation :clear is used to install new alist,
  duplicate keys are removed from that alist.

  A table name may be any symbol whatsoever. Symbols already in use as
  function or theorem names, for example, may be used as table names.
  Symbols in use only as table names may be defined with [defun],
  etc. Because there are no restrictions on the user's choice of
  table names, table names are not included among the logical names.
  Thus, :pe name will never display a table event (for a logical name
  other than :here). Either :pe name will display a ``normal'' event
  such as (defun name ...) or (defthm name ...) or else :pe name will
  cause an error indicating that name is not a logical name. This
  happens even if name is in use as a table name.


Subtopics

  [ACL2-defaults-table]
      A [table] specifying certain defaults, e.g., the default
      [defun-mode]

  [Using-tables-efficiently]
      Notes on how to use tables efficiently")
 (TAKE
  (LISTS ACL2-BUILT-INS)
  "Initial segment (first n elements) of a list

  For any natural number n not exceeding the length of l, (take n l)
  collects the first n elements of the list l.

  The following is a theorem (though it takes some effort, including
  lemmas, to get ACL2 to prove it):

    (equal (length (take n l)) (nfix n))

  If n is an integer greater than the length of l, then take pads the
  list with the appropriate number of nil elements. Thus, the
  following is also a theorem.

    (implies (and (integerp n)
                  (true-listp l)
                  (<= (length l) n))
             (equal (take n l)
                    (append l (make-list (- n (length l))))))

  For related functions, see [nthcdr] and see [butlast].

  The [guard] for (take n l) is that n is a nonnegative integer and l
  is a true list.

  Function: <take>

    (defun take (n l)
           (declare (xargs :guard (and (integerp n)
                                       (not (< n 0))
                                       (true-listp l))))
           (first-n-ac n l nil))")
 (TAU-DATA
  (TAU-SYSTEM)
  "To see what tau knows about a function symbol

    Examples:
    (tau-data binary-+)

    General Form:
    (tau-data fn)

  This macro returns a list structure that indicates what facts about
  the symbol fn are known to the tau system. Fn should either be a
  function symbol or else a macro associated with fn; see
  [macro-aliases-table]. See [introduction-to-the-tau-system] for
  background details.

  The list structure should be self-explanatory given the following
  brief comments. The ``index'' of a function, when non-nil, means
  the function is a monadic Boolean function treated by the tau
  system as a tau predicate.

  The ``positive'' and ``negative implicants'' are conjunctions that
  indicate the tau implied by the given one or its negation.

  The ``signatures'' entry is a formula indicating all the known
  signatures. If the signatures formula is T it means there are no
  known signatures. (Signatures is the conjunction of all signature
  rules and the empty conjunction is T.)

  If you wish to see a long list of all the runes from which some tau
  information has been gleaned, evaluate (global-val 'tau-runes (w
  state)).")
 (TAU-DATABASE
  (TAU-SYSTEM HISTORY)
  "To see the tau database as a (very large) object

    Example:
    (tau-database (w state))

  This function returns a large list object that shows in a
  human-readable way what the tau system knows about every function
  symbol. It is supposed to be self-explanatory. See
  [introduction-to-the-tau-system] for background details.

  If the output is not self-explanatory, please contact the
  implementors and we will improve the output or the documentation.")
 (TAU-INTERVAL-DOM
  (TAU-SYSTEM)
  "Access the domain of a tau interval

  It is the case that

    (tau-interval-dom (make-tau-interval dom lo-rel lo hi-rel hi)) = dom

  For a well-formed interval, dom is one of the symbols INTEGERP,
  RATIONALP, ACL2-NUMBERP, or NIL. When the domain is NIL there is no
  domain restriction.

  When the domain is INTEGERP, there are additional constraints on the
  other components. See [make-tau-interval].")
 (TAU-INTERVAL-HI
  (TAU-SYSTEM)
  "Access the upper bound of a tau interval

  It is the case that

    (tau-interval-hi (make-tau-interval dom lo-rel lo hi-rel hi)) = hi

  For a well-formed interval, hi is either nil, denoting positive
  infinity, or a rational number giving the upper bound of the
  interval. It must be the case that the upper bound is weakly above
  the lower bound of a well-formed interval.

  When the domain of an interval is INTEGERP, there are additional
  constraints on the other components. See [make-tau-interval].")
 (TAU-INTERVAL-HI-REL
  (TAU-SYSTEM)
  "Access the upper bound relation of a tau interval

  It is the case that

    (tau-interval-hi-rel (make-tau-interval dom lo-rel lo hi-rel hi)) = hi-rel

  For a well-formed interval, hi-rel is a Boolean, where t denotes the
  [<] (strong inequality or ``less-than'') relation and nil denotes
  [<=] (weak inequality or ``less-than-or-equal'') relation between
  the elements of the interval and the upper bound.

  When the domain of an interval is INTEGERP, there are additional
  constraints on the other components. See [make-tau-interval].")
 (TAU-INTERVAL-LO
  (TAU-SYSTEM)
  "Access the lower bound of a tau interval

  It is the case that

    (tau-interval-lo (make-tau-interval dom lo-rel lo hi-rel hi)) = lo

  For a well-formed interval, lo is either nil, denoting negative
  infinity, or a rational number giving the lower bound of the
  interval. It must be the case that the lower bound is weakly below
  the upper bound of a well-formed interval.

  When the domain of an interval is INTEGERP, there are additional
  constraints on the other components. See [make-tau-interval].")
 (TAU-INTERVAL-LO-REL
  (TAU-SYSTEM)
  "Access the lower bound relation of a tau interval

  It is the case that

    (tau-interval-lo-rel (make-tau-interval dom lo-rel lo hi-rel hi)) = lo-rel

  For a well-formed interval, lo-rel is a Boolean, where t denotes the
  [<] (strong inequality or ``less-than'') relation and nil denotes
  [<=] (weak inequality or ``less-than-or-equal'') relation between
  the lower bound and the elements of the interval.

  When the domain of an interval is INTEGERP, there are additional
  constraints on the other components. See [make-tau-interval].")
 (TAU-INTERVALP
  (TAU-SYSTEM)
  "Boolean recognizer for tau intervals

    General Form:
    (tau-intervalp x)

  An interval is a structure of the form: (dom (lo-rel . lo) . (hi-rel
  . hi)). Every tau contains an interval used to represent the domain
  and the upper and lower bounds of the objects recognized by the
  tau.

  Restrictions on the components of an interval are as follows. For an
  interpretation of the meaning of the components, see
  [in-tau-intervalp] or [make-tau-interval].

  dom (``domain'') -- must be one of four symbols: INTEGERP, RATIONALP,
  ACL2-NUMBERP, or NIL.

  The two ``relations,'' lo-rel and hi-rel, must be Booleans.

  Lo and hi must be either nil or explicit rational numbers. Lo must be
  no greater than hi (where nils represent negative or positive
  infinity for lo and hi respectively.

  Finally, if the dom is INTEGERP, then both relations must nil and lo
  and hi must be integers when they are non-nil.

  Recall that [make-tau-interval] constructs intervals. The intervals
  it constructs are well-formed only if the arguments to
  make-tau-interval satisfy the rules above; make-tau-interval does
  not coerce or adjust its arguments in any way. Thus, it can be
  (mis-)used to create non-intervals. Here are examples of
  tau-intervalp using make-tau-interval.

    ; integers: 0 <= x <= 10:
    (tau-intervalp (make-tau-interval 'INTEGERP nil 0 nil 10))      = t

    ; integers: 0 <= x (i.e., the natural numbers):
    (tau-intervalp (make-tau-interval 'INTEGERP nil 0 nil nil))     = t

    ; violations of domain rules:
    (tau-intervalp (make-tau-interval 'INTEGERP t 0 t 10))          = nil
    (tau-intervalp (make-tau-interval 'INTEGERP nil 0 nil 10/11))   = nil

    ; violation of rule that bounds must be rational if non-nil:
    (tau-intervalp (make-tau-interval 'ACL2-NUMBERP t 0 t #c(3 5))) = nil

    ; violation of rule that lo <= hi:
    (tau-intervalp (make-tau-interval 'ACL2-NUMBERP t 0 t -10))     = nil

    ; rationals: 0 < x <= 22/7:
    (tau-intervalp (make-tau-interval 'RATIONALP t 0 nil 22/7))     = t

    ; numbers: -10 < x < 10:
    (tau-intervalp (make-tau-interval 'ACL2-NUMBERP t -10 t 10))    = t

    ; any: -10 < x < 10:
    (tau-intervalp (make-tau-interval nil t -10 t 10))              = t

    : any:
    (tau-intervalp (make-tau-interval nil nil nil nil nil))         = t

  Note that the second-to-last interval, with domain nil contains all
  non-numbers as well as numbers strictly between -10 and 10. The
  reason is that the interval contains 0 and all non-numbers are
  coerced to 0 by the inequality functions.

  Note that the last interval contains all ACL2 objects. It is called
  the ``universal interval.''")
 (TAU-STATUS
  (TAU-SYSTEM)
  "Query or set tau system status

    Examples:
    (tau-status)
    (tau-status :system t)
    (tau-status :auto-mode nil)
    (tau-status :system t :auto-mode nil)

    General Form:
    (tau-status :system a :auto-mode b)

  where a and b are Booleans. Both keyword arguments are optional and
  they may be presented in either order. Value a controls whether the
  [tau-system] is used during subsequent proofs. Value b controls
  whether tau system rules are added automatically (``greedily'')
  when rules of other [rule-classes] are added. If no arguments are
  supplied, this is not an event and just returns an [error-triple]
  indicating the current settings. See
  [introduction-to-the-tau-system] for background details.

  The two flags are independent. For example, the tau system may be
  disabled in proof attempts even though it is automatically (and
  silently) extending its database as rules of other classes are
  added.

  Flag (a) is actually toggled by enabling or disabling the
  :[executable-counterpart] of [tau-system]. Flag (b) is toggled with
  the function [set-tau-auto-mode], which manipulates the
  [ACL2-defaults-table].

  This macro expands into zero, one, or two [events], as required by
  the supplied values of flags a and b.

  If no arguments are supplied the form is not an event and simply
  returns (as an [error-triple], (mv nil ans state)) the current
  settings of the two flags. For example:

    ACL2 !>(tau-system)
     ((:SYSTEM NIL) (:AUTO-MODE T))

  intended to be self-explanatory.")
 (TAU-SYSTEM
  (RULE-CLASSES)
  "Make a rule for the ACL2 ``type checker''

  This documentation topic describes the syntactic form of
  ``tau-system'' rules; these rules extend ACL2's ``type checker.''
  For an introduction to the tau system, see
  [introduction-to-the-tau-system].

  There happens to be a function named tau-system, defined as the
  identity function. Its only role is to provide the rune
  (:EXECUTABLE-COUNTERPART TAU-SYSTEM), which is used to enable and
  disable the tau system. Otherwise the function tau-system has no
  purpose and we recommend that you avoid using it so you are free to
  enable and disable the tau system.

  When in the default (``greedy'') mode (see [set-tau-auto-mode]),
  every [defun] and every :corollary (see :[rule-classes]) of every
  [defthm] stored as a rule of any :rule-class is inspected to
  determine if it is of one of the forms below. Rules of these forms
  are added to the tau database, even if they are not labeled as
  :tau-system rules, e.g., a :[rewrite] rule might contribute to the
  tau database! To add a rule to the tau database without adding any
  other kind of rule, tag it with :[rule-classes] :tau-system. If a
  theorem has :[rule-classes] nil, it is not considered for the tau
  database.

    General Forms:
    Boolean:
    (booleanp (p v))

    Eval:
    (p 'const) or
    (p *const*)

    Simple:
    (implies (p v) (q v))

    Conjunctive:
    (implies (and (p1 v) ... (pk v)) (q v)), ; Here k must exceed 1.

    Signature Form 1:
    (implies (and (p1 x1) (p2 x2) ...)
             (q (fn x1 x2 ...)))

    Signature Form 2:
    (implies (and (p1 x1) (p2 x2) ...)
             (q (mv-nth 'n (fn x1 x2 ...))))

    Bounder Form 1 (or Form 2):
    (implies (and (tau-intervalp i1)
                  ...
                  (or (equal (tau-interval-dom i1) 'dom1-1)
                      ...)
                  ...
                  (in-tau-intervalp x1 i1)
                  ...)
             (and (tau-intervalp (bounder-fn i1 ...))
                  (in-tau-intervalp target
                                    (bounder-fn i1 ...))))

    where target is
    (fn x1 ... y1 ...)             in Form 1, and
    (mv-nth 'n (fn x1 ... y1 ...)) in Form 2

    Big Switch:
    (equal (fn . formals) body)

    MV-NTH Synonym:
    (equal (nth-alt x y) (mv-nth x y)) or
    (equal (mv-nth x y) (nth-alt x y))

  The symbols p, q, p1, etc., denote monadic (one-argument)
  Boolean-valued function symbols, or equalities in which one
  argument is constant, arithmetic comparisons in which one argument
  is a rational or integer constant, or the logical negations of such
  terms. By ``equalities'' we allow [equal], [eq], [eql], and [=]. By
  ``arithmetic comparison'' we mean [<], [<=], [>=], or [>]. Any of
  these tau predicates may appear negated.

  The notation (p v) above might stand for any one of:

    (INTEGERP X)
    (EQUAL V 'MONDAY)
    (<= I 16)
    (NOT (EQUAL X 'SUNDAY))

  The different rule forms above affect different aspects of the tau
  system. We discuss each form in more detail below.

  The documentation below is written as though the tau system is in
  auto mode! To insure that the only rules added to the tau system
  are those explicitly assigned to :rule-class :tau-system, you
  should use [set-tau-auto-mode] to select manual mode.

    General Form: Boolean:
    (booleanp (p v))

  Here p must be a function symbol and v must be a variable. Such a
  :tau-system rule adds p to the list of tau predicates. If p was
  recognized as Boolean when it was defined, there is no need to
  state this rule. This form is needed if you define a monadic
  Boolean function in such a way that the system does not recognize
  that it is Boolean.

    General Form: Eval:
    (p 'const) or
    (p *const*)

  Here p must be a function symbol. In addition, recall that these
  general tau predicate forms may appear negated. So the form above
  includes such theorems as (NOT (GOOD-STATEP *INITIAL-STATE*)). A
  theorem of this form thus records whether a named predicate is true
  or false on the given constant.

  Generally, when the tau system must determine whether an enabled tau
  predicate is true or false on a constant, it simply evaluates the
  predicate on the constant. This can be impossible or very
  inefficient if p is not defined but constrained, or if p is defined
  in a hard-to-compute way (e.g., (defun p (x) (evenp (ack x x)))
  where ack is the Ackermann function), or perhaps if the constant is
  very large. By proving a :tau-system rule of Eval form, you cause
  the tau system to note the value of the predicate on the constant
  and henceforth to look it up instead of evaluating the definition.

  A difficulty, however, is determining that a slow down is due to the
  evaluation of tau predicates and not some other reason. The first
  step is determining that tau is slowing the proof down. See
  [time-tracker-tau] for an explanation of TIME-TRACKER-NOTEs output
  during some proofs involving tau reasoning. These notes can alert
  you to the fact that significant amounts of time are being spent in
  the tau system. [Time-tracker-tau] gives some ways of determining
  whether tau predicate evaluation is involved. (If worse comes to
  worst, consider the following hack: In the ACL2 source file
  tau.lisp, immediately after the definition of the system function
  ev-fncall-w-tau-recog, there is a comment which contains some raw
  Lisp code that can be used to investigate whether tau's use of
  evaluation on constants is causing a problem.) However, once a
  recognizer and the constants on which it is being evaluated are
  identified, the tau system can be sped up by proving Eval rules to
  pre-compute and store the values of the recognizer on those
  constants. Alternatively, at the possible loss of some completeness
  in the tau system, the executable counterpart of the recognizer can
  be disabled.

    General Form: Simple:
    (implies (p v) (q v))

  Here v must be a variable symbol. This rule builds-in the information
  that anything satisfying p must also satisfy q, i.e., the ``type''
  q includes the ``type'' p. Recall that the forms may be negated.
  Most of the time, p and q will be predicate symbols but it is
  possible they will be equalities- or inequalities-with-constants.
  Examples of Simple rules include the following, which are in fact
  built-in:

    (implies (natp x) (integerp x))
    (implies (integerp x) (rationalp x))
    (implies (integerp x) (not (true-listp x)))
    (implies (natp x) (not (< x 0)))
    (implies (symbol-alistp x) (alistp x))

  Because the tau system records the transitive closure of the Simple
  rules, any time a term is known to satisfy natp it is also known to
  satisfy integerp and rationalp, and known not to satisfy
  true-listp, and known to be non-negative.

    General Form: Conjunctive:
    (implies (and (p1 v) ... (pk v)) (q v)), ; Here k must exceed 1.

  The pi and q may be any tau predicates or their negations, v must be
  a variable symbol, and i must exceed 1 or else this is a Simple
  rule. An obvious operational interpretation of this rule is that if
  an object is known to satisfy all of the pi, then it is known to
  satisfy q. However, the actual interpretation is more general. For
  example, if an object is known to satisfy all but one of the pi and
  is known not to satisfy q, then the object is known not to satisfy
  the ``missing'' pi.

  For example, the following Conjunctive rule allows tau to conclude
  that if weekday D is not MON, TUE, THU or FRI, then it is WED:

    (implies (and (weekdayp d)
                  (not (eq d 'MON))
                  (not (eq d 'TUE))
                  (not (eq d 'WED))
                  (not (eq d 'THU)))
             (eq d 'FRI))

  The tau database is not closed under conjunctive rules; they are
  applied dynamically.

    General Form: Signature Form 1:
    (implies (and (p1 x1) (p2 x2) ... (pn xn) dep-hyp)
             (q (fn x1 x2 ... xn)))

  The pi and q may be any tau predicates or their negations, fn must be
  a function symbol of arity n, the xi must be distinct variable
  symbols and dep-hyp may be any term, provided it is not of the (pi
  xi) shape and the only the variables in it are the xi.

  The Signature form actually allows multiple tau predicates to be
  applied to each variable, e.g., x1 might be required to be both an
  INTEGERP and EVENP. The Signature form allows there to be multiple
  hypotheses classified as dep-hyps, i.e., not fitting any of the
  previous shapes, and they are implicitly just conjoined. The name
  ``dep-hyp'' is an abbreviation of ``dependent hypothesis'' and
  stems from the fact they often express relations between several of
  the function's inputs rather than type-like constraints on
  individual inputs.

  A Signature rule informs tau that the function fn returns an object
  satisfying q provided that the arguments satisfy the respective pi
  and provided that dep-hyp occurs in the current context. Note: to
  be precise, dependent hypotheses are relieved only by applying
  ACL2's most primitive form of reasoning, [type-set]. In particular,
  tau reasoning is not used to establish dependent hypotheses. The
  presence of a dep-hyp in a signature rule may severely restrict its
  applicability. We discuss this after showing a few mundane
  examples.

  An example Signature rule is

    (implies (and (integer-listp x)
                  (integer-listp y))
             (integer-listp (append x y)))

  Of course, a function may have multiple signatures:

    (implies (and (symbol-listp x)
                  (symbol-listp y))
             (symbol-listp (append x y)))

  Here is a Signature rule for the function pairlis$:

    (implies (and (symbol-listp x)
                  (integer-listp y))
             (symbol-alistp (pairlis$ x y)))

  The tau system can consequently check this theorem by composing the
  last two rules shown and exploiting Simple rule stating that
  symbol-alists are also alists:

    (thm (implies (and (symbol-listp a)
                       (symbol-listp b)
                       (integer-listp y))
                  (alistp (pairlis$ (append a b) y))))

  Since a and b are known to be lists of symbols and a signature for
  append is that it preserves that predicate, the first argument to
  the pairlis$ expression is known to be a list of symbols. This
  means the Signature rule for pairlis$ tells us the result is a
  symbol-alistp, but the previously mentioned Simple rule, (implies
  (symbol-alistp x) (alistp x)), tells us the result is also an
  alistp.

  When a Signature rule has an dep-hyp, that hypothesis is not an
  expression in the tau system. Tau is not used to check that
  hypothesis. Instead, tau uses the more primitive [type-set]
  mechanism of ACL2. Here is an example of a Signature rule with a
  dep-hyp:

    (implies (and (natp n)
                  (integer-listp a)
                  (< n (len a)))
             (integerp (nth n a)))

  Note that the last hypothesis is a dependent hypothesis: it is not a
  tau predicate but a relationship between n and a. It is relieved by
  [type-set]. If one is trying to compute the signature of an (nth n
  a) expression in a context in which (< n (len a)) is explicitly
  assumed, then this mechanism would establish the dependent
  hypothesis. But one can easily imagine an almost identical context
  where, say (< n (len (rev a))) is explicitly assumed. In that
  context, the Signature rule would not be fired because [type-set]
  cannot establish (< n (len a)) from (< n (len (rev a))), even
  though it would be easily proved by rewriting using the theorem
  (equal (len (rev a)) (len a)).

  Note also that if this signature could be phrased in a way that
  eliminates the dependency between n and a it would be more
  effective. For example, here is a related Signature rule without a
  dependent hypothesis:

    (implies (and (natp n)
                  (register-filep a)
                  (< n 16))
             (integerp (nth n a)))

  In this theorem we require only that n be less than 16, which is a
  tau predicate and hence just an additional tau constraint on n.

    General Form: Signature Form 2:
    (implies (and (p1 x1) (p2 x2) ... (pn xn) dep-hyp)

             (q (mv-nth 'n (fn x1 x2 ... xn))))

  This form of signature rule is just like form 1 except that it is
  useful for functions that return multiple-values and allows us to
  ``type-check'' their individual outputs.

    General Form: Bounder Forms 1 and 2:
    (implies (and (tau-intervalp i1)
                  ...
                  (or (equal (tau-interval-dom i1) 'dom1-1)
                      ...)
                  ...
                  (in-tau-intervalp x1 i1)
                  ...)
             (and (tau-intervalp (bounder-fn i1 ...))
                  (in-tau-intervalp target
                                    (bounder-fn i1 ...))))

  where target is either (fn x1 ... y1 ...) in Form 1 or (mv-nth 'n (fn
  x1 ... y1 ...)) in Form 2.

  This form is for advanced users only and the schema given above is
  just a reminder of the general shape. A ``bounder'' for a given
  function symbol, fn, is a function symbol bounder-fn that computes
  an interval containing (fn x1 ... y1 ...) (or its nth component in
  the case of Form 2 rules) from the intervals containing certain of
  the arguments of fn. The correctness theorem for a bounder function
  informs the tau system that bounds for fn are computed by
  bounder-fn and sets up the correspondence between the relevant
  arguments, xi, of fn and the intervals containing those arguments,
  ii to which bounder-fn is applied. When the tau system computes the
  tau for a call of fn, it computes the tau of the relevant arguments
  and applies the bounder to the intervals of those tau. This
  provides a domain and upper and/or lower bounds for the value of
  the term. The tau system then further augments that with signature
  rules. See [bounders] for details on intervals, bounders, and
  bounder correctness theorems.

    General Form: Big Switch:
    (equal (fn . formals) body)

  In the Big Switch form, fn must be a function symbol, formals must be
  a list of distinct variable symbols, and body must be a ``big
  switch'' term, i.e., one that case splits on tau predicates about a
  single variable and produces a term not involving that variable. An
  example of a Big Switch rule is

    (equal (conditional-type x y)
           (if (consp x)
               (consp y)
               (integerp y)))

  The idea is that the tau system can treat calls of conditional-type
  as a tau-predicate after determining the tau of an argument.

  Since equality-to-constants are tau predicates, a more common example
  of a Big Switch rule is

    (equal (dtypep x expr)
           (case x
                 (STMT (stmt-typep expr))
                 (EXPR (expr-typep expr))
                 (MODULE (module-typep expr))
                 (otherwise nil)))

  This is because (case x (STMT ...) ...) macroexpands in ACL2 to (if
  (eql x 'STMT) ... ...) and (eql x 'STMT) is a tau predicate about
  x.

  Big Switch rules are recognized when a function is defined (if tau is
  in automatic mode). They generally do not have to be proved
  explicitly, though they might be when mutual recursion is involved.
  Only the first detected Big Switch rule about a function fn is
  recognized.

    General Form: MV-NTH Synonym:
    (equal (nth-alt x y) (mv-nth x y)) or
    (equal (mv-nth x y) (nth-alt x y))

  Rules of this form just tell the tau system that the user-defined
  function nth-alt is synonymous with the ACL2 primitive function
  mv-nth. Because ACL2's rewriter gives special handling to mv-nth,
  users sometimes define their own versions of that function so they
  can disable them and control rewriting better. By revealing to the
  tau system that such a synonym has been introduced you allow
  Signature rules of Form 2 to be used.


Subtopics

  [Bounders]
      Intervals, bounder functions, and bounder correctness

  [In-tau-intervalp]
      Boolean membership in a tau interval

  [Introduction-to-the-tau-system]
      A decision procedure for runtime types

  [Make-tau-interval]
      Make a tau interval

  [Set-tau-auto-mode]
      Turn on or off automatic (``greedy'') generation of :tau-system
      rules

  [Tau-data]
      To see what tau knows about a function symbol

  [Tau-database]
      To see the tau database as a (very large) object

  [Tau-interval-dom]
      Access the domain of a tau interval

  [Tau-interval-hi]
      Access the upper bound of a tau interval

  [Tau-interval-hi-rel]
      Access the upper bound relation of a tau interval

  [Tau-interval-lo]
      Access the lower bound of a tau interval

  [Tau-interval-lo-rel]
      Access the lower bound relation of a tau interval

  [Tau-intervalp]
      Boolean recognizer for tau intervals

  [Tau-status]
      Query or set tau system status

  [Time-tracker-tau]
      Messages about expensive use of the [tau-system]")
 (TENTH
  (NTH ACL2-BUILT-INS)
  "Tenth member of the list

  See any Common Lisp documentation for details.")
 (TERM
  (MISCELLANEOUS)
  "The three senses of well-formed ACL2 expressions or formulas

    Examples of Terms:
    (cond ((caar x) (cons t x)) (t 0))   ; an untranslated term

    (if (car (car x)) (cons 't x) '0)    ; a translated term

    (car (cons x y) 'nil v)              ; a pseudo-term

  In traditional first-order predicate calculus a ``term'' is a
  syntactic entity denoting some object in the universe of
  individuals. Often, for example, the syntactic characterization of
  a term is that it is either a variable symbol or the application of
  a function symbol to the appropriate number of argument terms.
  Traditionally, ``atomic formulas'' are built from terms with
  predicate symbols such as ``equal'' and ``member;'' ``formulas''
  are then built from atomic formulas with propositional
  ``operators'' like ``not,'' ``and,'' and ``implies.'' Theorems are
  formulas. Theorems are ``valid'' in the sense that the value of a
  theorem is true, in any model of the axioms and under all possible
  assignments of individuals to variables.

  However, in ACL2, terms are used in place of both atomic formulas and
  formulas. ACL2 does not have predicate symbols or propositional
  operators as distinguished syntactic entities. The ACL2 universe of
  individuals includes a ``true'' object (denoted by t) and a
  ``false'' object (denoted by nil), predicates and propositional
  operators are functions that return these objects. Theorems in ACL2
  are terms and the ``validity'' of a term means that, under no
  assignment to the variables does the term evaluate to nil.

  We use the word ``term'' in ACL2 in three distinct senses. We will
  speak of ``translated'' terms, ``untranslated'' terms, and
  ``pseudo-'' terms.

  Translated Terms: The Strict Sense and Internal Form

  In its most strict sense, a ``term'' is either a legal variable
  symbol, a quoted constant, or the application of an n-ary function
  symbol or closed lambda expression to a true list of n terms.

  The legal variable symbols are symbols other than t or nil which are
  not in the keyword package, do not start with ampersand, do not
  start and end with asterisks, and if in the main Lisp package, do
  not violate an appropriate restriction (see [name]).

  Quoted constants are expressions of the form (quote x), where x is
  any ACL2 object. Such expressions may also be written 'x.

  Closed lambda expressions are expressions of the form (lambda (v1 ...
  vn) body) where the vi are distinct legal variable symbols, body is
  a term, and the only free variables in body are among the vi.

  The function termp, which takes two arguments, an alleged term x and
  a logical world w (see [world]), recognizes terms of a given
  extension of the logic. Termp is defined in :[program] mode. Its
  definition may be inspected with :[pe] termp for a complete
  specification of what we mean by ``term'' in the most strict sense.
  Most ACL2 term-processing functions deal with terms in this strict
  sense and use termp as a [guard]. That is, the ``internal form'' of
  a term satisfies termp, the strict sense of the word ``term.''

  Untranslated Terms: What the User Types

  While terms in the strict sense are easy to explore (because their
  structure is so regular and simple) they can be cumbersome to type.
  Thus, ACL2 supports a more sugary syntax that includes uses of
  macros and constant symbols. Very roughly speaking, macros are
  functions that produce terms as their results. Constants are
  symbols that are associated with quoted objects. Terms in this
  sugary syntax are ``translated'' to terms in the strict sense; the
  sugary syntax is more often called ``untranslated.'' Roughly
  speaking, translation just implements macroexpansion, the
  replacement of constant symbols by their quoted values, and the
  checking of all the rules governing the strict sense of ``term.''

  More precisely, macro symbols are as described in the documentation
  for [defmacro]. A macro, mac, can be thought of as a function,
  mac-fn, from ACL2 objects to an ACL2 object to be treated as an
  untranslated term. For example, [caar] is defined as a macro
  symbol; the associated macro function maps the object x into the
  object (car (car x)). A macro form is a ``call'' of a macro symbol,
  i.e., a list whose [car] is the macro symbol and whose [cdr] is an
  arbitrary true list of objects, used as a term. Macroexpansion is
  the process of replacing in an untranslated term every occurrence
  of a macro form by the result of applying the macro function to the
  appropriate arguments. The ``appropriate'' arguments are determined
  by the exact form of the definition of the macro; macros support
  positional, keyword, optional and other kinds of arguments. See
  [defmacro].

  In addition to macroexpansion and constant symbol dereferencing,
  translation implements the mapping of [let] and [let*] forms into
  applications of lambda expressions and closes lambda expressions
  containing free variables. Thus, the translation of

    (let ((x (1+ i))) (cons x k))

  can be seen as a two-step process that first produces

    ((lambda (x) (cons x k)) (1+ i))

  and then

    ((lambda (x k) (cons x k)) (1+ i) k) .

  Observe that the body of the [let] and of the first lambda expression
  contains a free k which is finally bound and passed into the second
  lambda expression.

  Translation also maps [flet] forms into applications of lambda
  expressions. See [flet].

  When we say, of an event-level function such as [defun] or [defthm],
  that some argument ``must be a term'' we mean an untranslated term.
  The event functions translate their term-like arguments.

  To better understand the mapping between untranslated terms and
  translated terms it is convenient to use the keyword command
  :[trans] to see examples of translations. See [trans] and also see
  [trans1].

  Finally, we note that the theorem prover prints terms in untranslated
  form. But there can be more than one correct untranslated term
  corresponding to a given translated term. For example, the
  translated term (if x y 'nil) can be untranslated as (if x y nil)
  and can also be untranslated as (and x y). The theorem prover
  attempts to print an untranslated term that is as helpful to the
  user as possible. In particular, consider a term of the form (nth k
  st) where st is a single-threaded object (see [stobj]) and the kth
  accessor of st is, say, kn. The theorem prover typically would
  expand (kn st) to (nth k st). If k is large then it could be
  difficult for the user to make sense out of a proof transcript that
  mentions the expanded term. Fortunately, the untranslation of (nth
  k st) would be (nth *kn* st); here *kn* would be a constant (see
  [defconst]) added by the [defstobj] event introducing st, defined
  to have value k. The user can extend this user-friendly style of
  printing applications of [nth] to stobjs; see [add-nth-alias].
  These remarks about printing applications of function [nth] extend
  naturally to function [update-nth]. Moreover, the prover will
  attempt to treat terms as [stobj]s for the above purpose when
  appropriate. For example, if function foo has [signature] ((foo *
  st) => (mv * * * st)), where st is introduced with (defstobj st f0
  f1), then the [term] (nth '1 (mv-nth '3 (foo x st0))) will be
  printed as (nth *f1* (mv-nth 3 (foo x st0))).

  Pseudo-Terms: A Common Guard for Metafunctions

  Because termp is defined in :[program] mode, it cannot be used
  effectively in conjectures to be proved. Furthermore, from the
  perspective of merely guarding a term processing function, termp
  often checks more than is required. Finally, because termp requires
  the logical [world] as one of its arguments it is impossible to use
  termp as a [guard] in places where the logical [world] is not
  itself one of the arguments.

  For these reasons we support the idea of ``pseudo-terms.'' A
  pseudo-term is either a symbol (but not necessarily one having the
  syntax of a legal variable symbol), a true list of length 2
  beginning with quote, or the ``application of'' a symbol or pseudo
  lambda expression to a true list of pseudo-terms. A pseudo lambda
  expression is an expression of the form (lambda (v1 ... vn) body)
  where the vi are all symbols and body is a pseudo-term.

  Pseudo-terms are recognized by the unary function [pseudo-termp]. If
  (termp x w) is true, then (pseudo-termp x) is true. However, if x
  fails to be a (strict) term it may nevertheless still be a
  pseudo-term. For example, (car a b) is not a term, because [car] is
  applied to the wrong number of arguments, but it is a pseudo-term.

  The structures recognized by [pseudo-termp] can be recursively
  explored with the same simplicity that terms can be. In particular,
  if x is not a variablep or an fquotep, then (ffn-symb x) is the
  function (symbol or lambda expression) and (fargs x) is the list of
  argument pseudo-terms. A metafunction (see [meta]) or
  clause-processor (see [clause-processor]) may use [pseudo-termp] as
  the [guard].


Subtopics

  [Guard-holders]
      Remove trivial calls from a [term]

  [Kwote]
      Quote an arbitrary object

  [Kwote-lst]
      Quote an arbitrary true list of objects

  [Pseudo-termp]
      A predicate for recognizing term-like s-expressions

  [Term-order]
      The ordering relation on terms used by ACL2")
 (TERM-LIST-LISTP
  (ACL2-BUILT-INS)
  "recognizer for a list of clauses

    Example:
    (term-list-listp
     '(((NOT (ENDP X)) (NATP (LEN X)))
       ((ENDP X) (NOT (NATP (LEN (CDR X)))) (NATP (LEN X))))
     (w state))

    General Form:
    (term-list-listp x w)

  where x is any ACL2 object and w is an ACL2 logical [world]. The
  result is t or nil according to whether x is a true list of true
  lists of quotations of well-formed terms in w.

  This function is the standard ACL2 idiom for recognizing a ``set of
  clauses.'' See [clause-processor]. Each clause processor is
  supposed to take a clause (i.e., term-listp) as input and yield a
  list of clauses (i.e., term-list-listp) as output. When a clause
  processor is run by the theorem prover its input is guaranteed to
  be a well-formed clause by invariants maintained by ACL2. But its
  output is checked by an explicit call to this function unless the
  user has proved that the clause processor always returns a list of
  clauses (see [well-formedness-guarantee]) or has taken the risk of
  disabling the runtime test with [set-skip-meta-termp-checks].

  Function: <term-list-listp>

    (defun term-list-listp (l w)
           (declare (xargs :guard (plist-worldp-with-formals w)))
           (if (atom l)
               (equal l nil)
               (and (term-listp (car l) w)
                    (term-list-listp (cdr l) w))))")
 (TERM-LISTP
  (ACL2-BUILT-INS)
  "recognizer for a list of quotations of terms and of clauses

    Example:
    (term-listp '((ZP X) 'NIL (CONS X Y)) (w state))

    General Form:
    (term-listp x w)

  where x is any ACL2 object and w is an ACL2 logical [world]. The
  result is t or nil according to whether x is a true list of
  quotations of well-formed terms in w.

  This function is used in the definition of [termp]. In addition,
  term-listp is the standard ACL2 idiom for recognizing a clause
  (``set of literals''). See [clause-processor]. Each clause
  processor is supposed to take a clause (i.e., term-listp) as input
  and yield a list of clauses (i.e., [term-list-listp]) as output.
  When a clause processor is run by the theorem prover its input is
  guaranteed to be a well-formed clause by invariants maintained by
  ACL2. But its output is checked by an explicit call of
  [term-list-listp] unless the user has proved that the clause
  processor always returns a list of clauses (see
  [well-formedness-guarantee]) or has taken the risk of disabling the
  runtime test with [set-skip-meta-termp-checks].

  [Term-listp] is mutually recursive with [termp].

  Function: <term-listp>

    (defun term-listp (x w)
           (declare (xargs :guard (plist-worldp-with-formals w)))
           (cond ((atom x) (equal x nil))
                 ((termp (car x) w)
                  (term-listp (cdr x) w))
                 (t nil)))")
 (TERM-ORDER
  (TERM ACL2-BUILT-INS)
  "The ordering relation on terms used by ACL2

  ACL2 must occasionally choose which of two terms is syntactically
  smaller. The need for such a choice arises, for example, when using
  equality hypotheses in conjectures (the smaller term is substituted
  for the larger elsewhere in the formula), in stopping loops in
  permutative rewrite rules (see [loop-stopper]), and in choosing the
  order in which to try to cancel the addends in linear arithmetic
  inequalities. When this notion of syntactic size is needed, ACL2
  uses ``term order.'' Popularly speaking, term order is just a
  lexicographic ordering on terms. But the situation is actually more
  complicated.

  We define term order only with respect to terms in translated form.
  See [trans]. Constants are viewed as built up by pseudo-function
  applications, as described at the end of this documentation.

  Term1 comes before term2 in the term order iff

      (a) the number of variable occurrences in term1 is less than that in
      term2, or

      (b) the numbers of variable occurrences in the two terms are equal
      but the number of function applications in term1 is less than
      that in term2, or

      (c) the numbers of variable occurrences in the two terms are equal,
      the numbers of functions applications in the two terms are
      equal, but pseudo-function application count for term1 is less
      than that for term2, or

      (d) the numbers of variable occurrences in the two terms are equal,
      the numbers of functions applications in the two terms are
      equal, the pseudo-function application counts for the two terms
      are equal, and term1 comes before term2 in a lexicographic
      ordering, [lexorder], based their structure as Lisp objects:
      see [lexorder].

  The function term-order, when applied to the translations of two ACL2
  terms, returns t iff the first is ``less than or equal'' to the
  second in the term order.

  By ``number of variable occurrences'' we do not mean ``number of
  distinct variables'' but ``number of times a variable symbol is
  mentioned.'' (Cons x x) has two variable occurrences, not one.
  Thus, perhaps counterintuitively, a large term that contains only
  one variable occurrence, e.g., (standard-char-p (car (reverse x)))
  comes before (cons x x) in the term order.

  Since constants contain no variable occurrences and non-constant
  expressions must contain at least one variable occurrence,
  constants come before non-constants in the term order, no matter
  how large the constants. For example, the list constant

    '(monday tuesday wednesday thursday friday)

  comes before x in the term order. Because term order is involved in
  the control of permutative rewrite rules and used to shift smaller
  terms to the left, a set of permutative rules designed to allow the
  permutation of any two tips in a tree representing the nested
  application of some function will always move the constants into
  the left-most tips. Thus,

    (+ x 3 (car (reverse klst)) (dx i j)) ,

  which in translated form is

    (binary-+ x
              (binary-+ '3
                        (binary-+ (dx i j)
                                  (car (reverse klst))))),

  will be permuted under the built-in commutativity rules to

    (binary-+ '3
              (binary-+ x
                        (binary-+ (car (reverse klst))
                                  (dx i j))))

  or

    (+ 3 x (car (reverse klst)) (dx i j)).

  Two terms with the same numbers of variable occurrences and function
  applications and the same pseudo-function application count are
  ordered by lexicographic means, based on their structures. See
  [lexorder]. Thus, if two terms (member ...) and (reverse ...)
  contain the same numbers of variable occurrences and function
  applications, and no quoted constants, then the [member] term is
  first in the term order because [member] comes before [reverse] in
  the term order (which is here reduced to alphabetic ordering).

  It remains to discuss the notion of pseudo-function application
  count.

  Clearly, two constants are ordered using cases (c) and (d) of term
  order, since they each contain 0 variable occurrences and no
  function calls. This raises the question ``How many function
  applications are in a constant?'' Because we regard the number of
  function applications as a more fundamental measure of the size of
  a constant than lexicographic considerations, we decided that for
  the purposes of term order, constants would be seen as being built
  by primitive constructor functions. These constructor functions are
  not actually defined in ACL2 but merely imagined for the purposes
  of term order. We here use suggestive names for these imagined
  functions, ignoring entirely the prior use of these names within
  ACL2. The imagined applications of these functions are what we
  refer to as pseudo-function applications.

  The constant function z constructs 0. Positive integers are
  constructed from (z) by the successor function, s. Thus 2 is (s (s
  (z))) and contains three function applications. 100 contains one
  hundred and one applications. Negative integers are constructed
  from their positive counterparts by [-]. Thus, -2 is (- (s (s
  (z)))) and has four applications. Ratios are constructed by the
  dyadic function [/]. Thus, -1/2 is

    (/ (- (s (z))) (s (s (z))))

  and contains seven applications. Complex rationals are similarly
  constructed from rationals. All character objects are considered
  primitive and are constructed by constant functions of the same
  name. Thus #\\a and #\\b both contain one application. Strings are
  built from the empty string, (o) by the ``string-cons'' function
  written cs. Thus \"AB\" is (cs (#\\a) (cs (#\\b) (o))) and contains
  five applications. Symbols are obtained from strings by ``packing''
  the [symbol-name] with the unary function p. Thus 'ab is

    (p (cs (#\\a) (cs (#\\b) (o))))

  and has six applications. Note that packages are here ignored and
  thus 'acl2::ab and 'my-package::ab each contain just six
  applications. Finally, [cons]es are built with [cons], as usual. So
  '(1 . 2) is (cons '1 '2) and contains six applications, since '1
  contains two and '2 contains three. This, for better or worse,
  answers the question ``How many function applications are in a
  constant?''

  Finally, when we refer to the ``pseudo-function application count'',
  we mean the number of pseudo-function applications as described
  above, except that we bound this number by the constant
  (fn-count-evg-max-val). (This bound is important for efficiency, so
  that constants that are very large cons structures do not cause
  significant slowdown as ACL2 attempts to walk through them while
  computing their pseudo-function application count.)")
 (TERM-TABLE
  (META)
  "A table used to validate meta rules

    Example:
    (table term-table t '((binary-+ x y) '3 'nil (car x)))

  See [table] for a general discussion of tables and the table event
  used to manipulate tables.

  The ``term-table'' is used at the time a meta rule is checked for
  syntactic correctness. Each proposed metafunction is run on each
  term in this table, and the result in each case is checked to make
  sure that it is a termp in the current world. In each case where
  this test fails, a warning is printed.

  By default, when a metafunction is run in support of the application
  of a meta rule, the result must be a term (see [termp]) in the
  current world. When the result is not a term, a hard error arises.
  (However, see the last paragraph below.) The term-table is simply a
  means for providing feedback to the user at the time a meta rule is
  submitted, warning of the definite possibility that such a hard
  error will occur at some point in the future.

  The key used in term-table is arbitrary. The top-most value is always
  the one that is used; it is the entire list of terms to be
  considered. Each must be a termp in the current ACL2 world.

  The runtime check on the output of metafunctions can be avoided by
  proving that it will always succeed (see
  [well-formedness-guarantee]) or by telling ACL2 to skip the test at
  the risk of soundness (see [set-skip-meta-termp-checks]).")
 (TERMINATION-THEOREM
  (LEMMA-INSTANCE MEASURE HINTS)
  "Use a previously-proved measure theorem

  See [lemma-instance] for a discussion of :termination-theorem and
  :termination-theorem! lemma instances, and see [tthm] for a related
  user-level query utility. Also see [termination-theorem-example]
  for a simple example of the use of a measure theorem in [hints].")
 (TERMINATION-THEOREM-EXAMPLE
  (LEMMA-INSTANCE MEASURE HINTS)
  "How to use a previously-proved measure theorem

  See [lemma-instance] for a discussion of :termination-theorem and
  :termination-theorem! lemma instances, and see [tthm] for a related
  user-level query utility. In this topic, we illustrate the use of
  such lemma instances to take advantage of a measure theorem already
  proved for an existing definition, when attempting to admit a new
  definition.

  The following very simple example is contrived but should get the
  idea across. Suppose that the following event was previously
  executed, for example when including a book, in order to define the
  log base 10 of x.

    (encapsulate
      ()
      (local (include-book \"arithmetic-5/top\" :dir :system))
      (defun log10 (x) ; log base 10 of x
        (if (or (zp x)
                (< x 10))
            0
          (1+ (log10 (floor x 10))))))

  Now suppose we want to admit the following definition, whose
  recursion pattern is similar to that above. The simplest way might
  be to include the same book as above, but perhaps that is
  impossible because the [formula] for some name in that book
  conflicts with the formula for that name in the current session.
  Without that book, it could be challenging to develop lemmas that
  allow the termination proof to succeed for this proposed
  definition. So we provide a hint, specifying the use of the
  termination theorem already proved for log10, as follows.

    (defun base10-digits (x)
      (declare (xargs :hints
                      ((\"Goal\" :use ((:termination-theorem log10))))))
      (if (or (zp x)
              (< x 10))
          (list x)
        (append (base10-digits (floor x 10))
                (list (mod x 10)))))

  With this hint, the termination proof succeeds, printing the
  following line in the event summary.

    Hint-events: ((:USE LOG10))

  This line says that the only :use hint was based on the event log10.
  This may surprise you; perhaps you would expect to see something
  instead such as (:USE (:TERMINATION-THEOREM LOG10)). However, the
  Hint-events field of the summary is intended only to show the names
  of [events] that support the hints. For example, if you replace the
  :use hint in the example above with

    :use ((:rewrite car-cons) (:termination-theorem log10))

  then the Hint-events summary line will be as follows.

    Hint-events: ((:USE CAR-CONS) (:USE LOG10))

  Similarly, proof output for a :use hint (provided when not in
  [gag-mode]) is also given at the level of events. For the
  definition above, we get the following output.

    We augment the goal with the hypothesis provided by the :USE hint.
    The hypothesis can be obtained from LOG10.  We are left with the following
    subgoal.

  Again, perhaps one would expect to see ``obtained from the
  termination theorem for LOG10''. But for the modified hint shown
  above, using (:rewrite car-cons), we similarly see only event
  names, not a [rune].

    These hypotheses can be obtained from CAR-CONS and LOG10.

  We conclude with a remark about what happens when the termination
  theorem does not exist, even though (as required) the indicated
  function symbol is in [logic] mode. (For example, imagine that you
  are generating such hints programmatically, without analyzing
  whether the indicated function symbol was defined using recursion.)
  In that case, using :termination-theorem will fail. Here, for
  example, is what happens if f was defined non-recursively.

    ACL2 !>(defun g (x)
             (declare (xargs :hints
                             ((\"Goal\" :use ((:termination-theorem f))))))
             (if (consp x)
                 (g (cddr x))
               x))


    ACL2 Error in ( DEFUN G ...):  The object (:TERMINATION-THEOREM F)
    is an ill-formed lemma instance because there is no termination theorem
    for F.  The function F is not recursive.  See :DOC lemma-instance.


    Summary
    Form:  ( DEFUN G ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

    ACL2 Error in ( DEFUN G ...):  See :DOC failure.

    ******** FAILED ********
    ACL2 !>

  The alternative, :termination-theorem!, is provided in order to avoid
  this sort of error. Here is the corresponding (edited) log, with
  [gag-mode] off. Notice that since there is no termination theorem
  stored for f, the :use hint specifies the use of T for the
  termination theorem.

    ACL2 !>(defun g (x)
             (declare (xargs :hints
                             ((\"Goal\" :use ((:termination-theorem! f))))))
             (if (consp x)
                 (g (cddr x))
               x))

    For the admission of G we will use the relation O< (which is known
    to be well-founded on the domain recognized by O-P) and the measure
    (ACL2-COUNT X).  The non-trivial part of the measure conjecture is

    Goal
    (IMPLIES (CONSP X)
             (O< (ACL2-COUNT (CDDR X))
                 (ACL2-COUNT X))).

    [Note:  A hint was supplied for our processing of the goal above.
    Thanks!]

    We augment the goal with the hypothesis provided by the :USE hint.
    The hypothesis can be obtained from F.  We are left with the following
    subgoal.

    Goal'
    (IMPLIES T
             (OR (NOT (CONSP X))
                 (O< (ACL2-COUNT (CDDR X))
                     (ACL2-COUNT X)))).

    By case analysis we reduce the conjecture to

    [[.. output elided ..]]

    Hint-events: ((:USE F))
    Time:  0.02 seconds (prove: 0.01, print: 0.01, other: 0.00)
    Prover steps counted:  1121
     G
    ACL2 !>")
 (TERMP
  (ACL2-BUILT-INS)
  "recognizer for the quotation of a term

    Example:
    (termp '(CAR (CONS X Y)) (w state))

    General Form:
    (termp x w)

  where x is any ACL2 object and w is an ACL2 logical [world]. The
  result is t or nil according to whether x is the quotation of a
  well-formed term in w.

  Each metafunction (see [meta]) is supposed to take (the quotation of)
  a well-formed term as input and yield (the quotation of) a
  well-formed term as output. When a metafunction is run by the
  simplifier its input is guaranteed to be well-formed by invariants
  maintained by ACL2. But its output is checked by an explicit call
  of termp unless the user has proved that the metafunction always
  returns a term (see [well-formedness-guarantee]) or has taken the
  risk of disabling the runtime test with
  [set-skip-meta-termp-checks].

  [Termp] is mutually recursive with [term-listp].

  Function: <termp>

    (defun
         termp (x w)
         (declare (xargs :guard (plist-worldp-with-formals w)))
         (cond ((atom x) (legal-variablep x))
               ((eq (car x) 'quote)
                (and (consp (cdr x)) (null (cddr x))))
               ((symbolp (car x))
                (let ((arity (arity (car x) w)))
                     (and arity (true-listp (cdr x))
                          (eql (length (cdr x)) arity)
                          (term-listp (cdr x) w))))
               ((and (consp (car x))
                     (true-listp (car x))
                     (eq (car (car x)) 'lambda)
                     (equal 3 (length (car x)))
                     (arglistp (cadr (car x)))
                     (termp (caddr (car x)) w)
                     (null (set-difference-eq (all-vars (caddr (car x)))
                                              (cadr (car x))))
                     (term-listp (cdr x) w)
                     (equal (length (cadr (car x)))
                            (length (cdr x))))
                t)
               (t nil)))")
 (THE
  (GUARD COMPILATION ACL2-BUILT-INS)
  "The is a special form that can be used to optimize the execution
  efficiency of [guard]-verified ACL2 definitions, or (less
  frequently) to carry out a low-level run-time type checks.
  (Advanced)

  The is a special Common Lisp form. It is usually used as a way to
  boost the performance of ACL2 definitions by telling the Common
  Lisp compiler that a certain expression will always produce a
  result of a certain type. This information may allow the Common
  Lisp compiler to avoid certain run-time checks. See [declare] and
  [type-spec] for general, related background.

  General form:

    (the <typ> <val>)   ;; returns <val>, or causes a run-time error

    * <typ> is a [type-spec]
    * <val> is some expression that should produce a value of that type.

  Typical example:

    (defun merge-bytes (b1 b2)
      ;; Combine two 8-bit bytes into a 16-bit result.
      (declare (type (unsigned-byte-p 8) b1 b2))
      (the (unsigned-byte 16)
           (logior (the (unsigned-byte 16) (ash b1 8))
                   b2)))

  On most Lisp implementations 16-bit numbers are fixnums. The the
  forms above are promises to the Lisp compiler that these ash and
  logior operations will always produce 16-bit numbers. Ideally, the
  compiler could use this information to generate more efficient
  code, i.e., by omitting whatever code is normally required to
  handle bignum results. (Of course, a sufficiently smart compiler
  could have figured this out on its own; in practice Lisp compilers
  vary in their reasoning abilities.)


Relation to Guards

  To justify that type declarations are correct, the is integrated into
  ACL2's [guard] mechanism. When a call of (the TYPE EXPR) in the
  body of a function definition generates a guard proof obligation
  that the type, TYPE, holds for the value of the expression, EXPR.
  Consider the following example.

    (defun f (x)
      (declare (xargs :guard (p1 x)))
      (if (p2 x)
          (the integer (h x))
        17))

  The [guard] proof obligation generated for the THE expression above
  is as follows.

    (implies (and (p1 x) (p2 x))
             (let ((var (h x))) (integerp var)))

  For the to provide any execution speed benefit, [guard]s must be
  [verified].

  In contexts where guards have not been verified, the acts as a
  low-level, run-time type check that val satisfies the type
  specification typ (see [type-spec]). An error is caused if the
  check fails; otherwise, val is returned. Here are some examples:

    (the integer 3)       ; returns 3
    (the (integer 0 6) 3) ; returns 3
    (the (integer 0 6) 7) ; causes an error (see below for exception)

  There is an exception to the rule that failure of the type-check
  causes an error: there is no error when [guard]-checking has been
  turned off, that is, in any of the following ways; also
  [set-guard-checking] and see [with-guard-checking].

    * :set-guard-checking nil
    * (with-guard-checking nil ...)
    * :set-guard-checking :none
    * (with-guard-checking :none ...)


Further resources

  The [b*] macro provides a special syntax that may make using the
  forms more pleasant; see [patbind-the] for more information.

  When optimizing functions with type declarations, you may wish to
  manually inspect the compiler's output with [disassemble$] or
  conduct experiments to measure the impact of your optimizations.

  THE is defined in Common Lisp. See any Common Lisp documentation for
  more information.


Subtopics

  [Type-spec]
      Type specifiers can be used in Common Lisp type declarations and
      [the] forms, and may result in improved efficiency of
      execution.")
 (THE-METHOD
  (ACL2-TUTORIAL)
  "How to find proofs

  Also see [introduction-to-the-theorem-prover] for a more detailed
  tutorial on how to prove theorems with ACL2.

  Many users develop proof scripts in an Emacs buffer and submit one
  event at a time to the theorem prover running in a *shell* buffer.
  The script buffer is logically divided into two regions: the events
  that have been accepted by the theorem prover and those that have
  not yet been accepted. An imaginary ``barrier'' divides these two
  regions. The region above the barrier describes the state of the
  *shell* buffer (and ACL2's logical world). The region below the
  barrier is the ``to do'' list.

  We usually start a proof project by typing the key lemmas, and main
  goal into the to do list. Definitions are here just regarded as
  theorems to prove (i.e., the measure conjectures). Then we follow
  ``The Method.''

  (1) Think about the proof of the first theorem in the to do list.
  Structure the proof either as an induction followed by
  simplification or just simplification. Have the necessary lemmas
  been proved? That is, are the necessary lemmas in the done list
  already? If so, proceed to Step 2. Otherwise, add the necessary
  lemmas at the front of the to do list and repeat Step 1.

  (2) Call the theorem prover on the first theorem in the to do list
  and let the output stream into the *shell* buffer. Abort the proof
  if it runs more than a few seconds.

  (3) If the theorem prover succeeded, advance the barrier past the
  successful command and go to Step 1.

  (4) Otherwise, inspect the failed proof attempt, starting from the
  beginning, not the end. Basically you should look for the first
  place the proof attempt deviates from your imagined proof. If your
  imagined proof was inductive, inspect the induction scheme used by
  ACL2. If that is ok, then find the first subsequent subgoal that is
  stable under simplification and think about why it was not proved
  by the simplifier. If your imagined proof was not inductive, then
  think about the first subgoal stable under simplification, as
  above. Modify the script appropriately. It usually means adding
  lemmas to the to do list, just in front of the theorem just tried.
  It could mean adding hints to the current theorem. In any case,
  after the modifications go to Step 1.

  We do not seriously suggest that this or any rotely applied algorithm
  will let you drive ACL2 to difficult proofs. Indeed, to remind you
  of this we call this ``The Method'' rather than ``the method.''
  That is, we are aware of the somewhat pretentious nature of any
  such advice. But these remarks have helped many users approach ACL2
  in a constructive and disciplined way.

  We say much more about The Method in the ACL2 book. See the home
  page. Also see [set-gag-mode] for a discussion of a way for ACL2 to
  help you to use The Method. And again, see
  [introduction-to-the-theorem-prover] for a more detailed tutorial.

  Learning to read failed proofs is a useful skill. There are several
  kinds of ``checkpoints'' in a proof: (1) a formula to which
  induction is being (or would be) applied, (2) the first formula
  stable under simplification, (3) a formula that is possibly
  generalized, either by cross-fertilizing with and throwing away an
  equivalence hypothesis or by explicit generalization of a term with
  a new variable.

  At the induction checkpoint, confirm that you believe the formula
  being proved is a theorem and that it is appropriately strong for
  an inductive proof. Read the selected induction scheme and make
  sure it agrees with your idea of how the proof should go.

  At the post-simplification checkpoint, which is probably the most
  commonly seen, consider whether there are additional rewrite rules
  you could prove to make the formula simplify still further. Look
  for compositions of function symbols you could rewrite. Look for
  contradictions among hypotheses and prove the appropriate
  implications: for example, the checkpoint might contain the two
  hypotheses (P (F A)) and (NOT (Q (G (F A)))) and you might realize
  that (implies (p x) (q (g x))) is a theorem. Look for signs that
  your existing rules did not apply, e.g., for terms that should have
  been rewritten, and figure out why they were not. Possible causes
  include that they do not exactly match your old rules, that your
  old rules have hypotheses that cannot be relieved here -- perhaps
  because some other rules are missing, or perhaps your old rules are
  disabled. If you cannot find any further simplifications to make in
  the formula, ask yourself whether it is valid. If so, sketch a
  proof. Perhaps the proof is by appeal to a combination of lemmas
  you should now prove?

  At the two generalization checkpoints --- where hypotheses are
  discarded or terms are replaced by variables --- ask yourself
  whether the result is a theorem. It often is not. Think about
  rewrite rules that would prove the formula. These are often
  restricted versions of the overly-general formulas created by the
  system's heuristics.

  See [proof-tree] for a discussion of a tool to help you navigate
  through ACL2 proofs.")
 (THEORIES
  (ACL2)
  "Sets of [rune]s to [enable]/[disable] in concert

    Example: '((:definition app) ; or (:d app)
               (:executable-counterpart app)
               (:i app)
               rv
               (rv)
               (:r assoc-of-app))

  See:

  A theory is a list of ``runic designators'' as described below. Each
  runic designator denotes a set of ``runes'' (see [rune]) and by
  unioning together the runes denoted by each member of a theory we
  define the set of runes corresponding to a theory. Theories are
  used to control which rules are ``[enable]d,'' i.e., available for
  automatic application by the theorem prover. There is always a
  ``current'' theory. A rule is [enable]d precisely if its [rune] is
  an element of the set of [rune]s corresponding to the current
  theory. At the top-level, the current theory is the theory selected
  by the most recent [in-theory] event, extended with the rule names
  introduced since then. Inside the theorem prover, the :[in-theory]
  hint (see [hints]) can be used to select a particular theory as
  current during the proof attempt for a particular goal.

  Theories are generally constructed by ``theory expressions.''
  Formally, a theory expression is any term, containing at most the
  single free variable [world], that when evaluated with [world]
  bound to the current ACL2 world (see [world]) produces a theory.
  ACL2 provides various functions for the convenient construction and
  manipulation of theories. These are called ``theory functions''(see
  [theory-functions]). For example, the theory function
  [union-theories] takes two theories and produces their union. The
  theory function [universal-theory] returns the theory containing
  all known rule names as of the introduction of a given logical
  name. But a theory expression can contain constants, e.g.,

    '(len (len) (:rewrite car-cons) car-cdr-elim)

  and user-defined functions. The only important criterion is that a
  theory expression mention no variable freely except [world] and
  evaluate to a theory.

  More often than not, theory expressions typed by the user do not
  mention the variable [world]. This is because user-typed theory
  expressions are generally composed of applications of ACL2's theory
  functions. These ``functions'' are actually macros that expand into
  terms in which [world] is used freely and appropriately. Thus, the
  technical definition of ``theory expression'' should not mislead
  you into thinking that interestng theory expressions must mention
  [world]; they probably do and you just didn't know it!

  One aspect of this arrangement is that theory expressions cannot
  generally be evaluated at the top-level of ACL2, because [world] is
  not bound. To see the value of a theory expression, expr, at the
  top-level, type

    ACL2 !>(LET ((WORLD (W STATE))) expr).

  However, because the built-in theories are quite long, you may be
  sorry you printed the value of a theory expression!

  A theory is a true list of runic designators and to each theory there
  corresponds a set of [rune]s, obtained by unioning together the
  sets of [rune]s denoted by each runic designator. For example, the
  theory constant

    '(len (len) (:e nth) (:rewrite car-cons) car-cdr-elim)

  corresponds to the set of [rune]s

    {(:definition len)
     (:induction len)
     (:executable-counterpart len)
     (:executable-counterpart nth)
     (:elim car-cdr-elim)
     (:rewrite car-cons)} .

  Observe that the theory contains five elements but its runic
  correspondent contains six. That is because runic designators can
  denote sets of several [rune]s, as is the case for the first
  designator, len. If the above theory were selected as current then
  the six rules named in its runic counterpart would be [enable]d and
  all other rules would be [disable]d.

  We now precisely define the runic designators and the set of [rune]s
  denoted by each. When we refer below to the ``macro-aliases
  dereference of'' a symbol, symb, we mean the (function) symbol
  corresponding symb in the macro-aliases-table if there is such a
  symbol, else symb itself; see [macro-aliases-table]. For example,
  the macro-aliases dereference of [append] is [binary-append], and
  the macro-aliases dereference of [nth] is nth.

    * A [rune] is a runic designator and denotes the singleton set
      containing that rune.
    * Suppose that symb is a symbol and symb' is the macro-aliases
      dereference of symb, where symb' is a function symbol
      introduced with a [defun] (or [defuns]) event. Then symb is a
      runic designator and denotes the set containing the runes
      (:definition symb') and (:induction symb'), omitting the latter
      if no such [induction] rune exists (presumably because the
      definition of symb' is not singly recursive).
    * Suppose that symb is a symbol and symb' is the macro-aliases
      dereference of symb, where symb' is a function symbol
      introduced with a [defun] (or [defuns]) event. Then (symb) is a
      runic designator and denotes the singleton set containing the
      rune (:executable-counterpart symb').
    * If symb is the name of a [defthm] (or [defaxiom]) event that
      introduced at least one rule, then symb is a runic designator
      and denotes the set of the names of all rules introduced by the
      named event.
    * If str is the string naming some [defpkg] event and symb is the
      symbol returned by (intern str \"ACL2\"), then symb is a runic
      designator and denotes the singleton set containing (:rewrite
      symb), which is the name of the rule stating the conditions
      under which the [symbol-package-name] of (intern x str) is str.
    * If symb is the name of a [deftheory] event, then symb is a runic
      designator and denotes the runic theory corresponding to symb.
    * Finally, suppose that symb is a symbol and symb' is the macro-aliases
      dereference of symb. Then (:KWD symb . rest) is a runic
      designator, known as a ``runic abbreviation'', if (:KWD' symb'
      . rest) is a [rune], where: :KWD is one of :d, :e, :i, :r, or
      :t; and :KWD' is :definition, :executable-counterpart,
      :induction, :rewrite, or :type-prescription, respectively. In
      this case, (:KWD symb . rest) denotes the runic theory
      corresponding to the rune (:KWD' symb' . rest).

  Note that including a function name, e.g., [len], in the current
  theory [enable]s that function but does not [enable] the executable
  counterpart. Similarly, including (len) or (:e len) [enable]s the
  executable counterpart but not the symbolic definition. And
  including the name of a proved lemma [enable]s all of the rules
  added by the event. Of course, one can include explicitly the
  [rune]s naming the rules in question and so can avoid entirely the
  use of non-runic elements in theories.

  Because a [rune] is a runic designator denoting the set containing
  that [rune], a list of [rune]s is a theory and denotes itself. We
  call such theories ``runic theories.'' To every theory there
  corresponds a runic theory obtained by unioning together the sets
  denoted by each designator in the theory. When a theory is selected
  as ``current'' it is actually its runic correspondent that is
  effectively used. That is, a [rune] is [enable]d iff it is a member
  of the runic correspondent of the current theory. The value of a
  theory defined with [deftheory] is the runic correspondent of the
  theory computed by the defining theory expression. The theory
  manipulation functions, e.g., [union-theories], actually convert
  their theory arguments to their runic correspondents before
  performing the required set operation. The manipulation functions
  always return runic theories. Thus, it is sometimes convenient to
  think of (non-runic) theories as merely abbreviations for their
  runic correspondents, abbreviations which are ``expanded'' at the
  first opportunity by theory manipulation functions and the ``theory
  consumer'' functions such as [in-theory] and [deftheory].


Subtopics

  [Active-runep]
      Check that a [rune] exists and is [enable]d

  [Current-theory]
      Currently [enable]d rules as of logical name

  [Deftheory]
      Define a theory (to [enable] or [disable] a set of rules)

  [Deftheory-static]
      Define a `static' theory (to [enable] or [disable] a set of rules)

  [Disable]
      Deletes names from current theory

  [Disabledp]
      Determine whether a given name or rune is disabled

  [E/d]
      Enable/disable rules

  [Enable]
      Adds names to current theory

  [Executable-counterpart-theory]
      Executable counterpart rules as of logical name

  [Function-theory]
      Function symbol rules as of logical name

  [Ground-zero]
      [enable]d rules in the [startup] theory

  [In-theory]
      Designate ``current'' theory (enabling its rules)

  [Incompatible]
      Declaring that two rules should not both be [enable]d

  [Intersection-theories]
      Intersect two [theories]

  [Minimal-theory]
      A minimal theory to enable

  [Rule-names]
      How rules are named.

  [Rune]
      A rule name

  [Set-difference-theories]
      Difference of two [theories]

  [Theories-and-primitives]
      Warnings from disabling certain built-in functions

  [Theory]
      Retrieve named theory

  [Theory-functions]
      Functions for obtaining or producing [theories]

  [Union-theories]
      Union two [theories]

  [Universal-theory]
      All rules as of logical name

  [Using-enabled-rules]
      Avoiding :use [hints] for [enable]d :[rewrite] rules")
 (THEORIES-AND-PRIMITIVES
  (THEORIES)
  "Warnings from disabling certain built-in functions

  When you [disable] the [definition] or [executable-counterpart] of a
  built-in function, you may see a warning, for example as follows.

    ACL2 !>(in-theory (disable mv-nth))

    ACL2 Warning [Theory] in ( IN-THEORY (DISABLE ...)):  The :DEFINITION
    rule for MV-NTH is disabled by the theory expression (DISABLE MV-NTH),
    but because this built-in function is given certain special handling,
    some expansions of its calls may still occur.  See :DOC theories-and-
    primitives.

  This warning can be eliminated by turning off all theory warnings
  (see [set-inhibit-warnings]) or simply by evaluating the following
  form.

    (assign verbose-theory-warning nil)

  But before you eliminate such warnings, you may wish to read the
  following to understand their significance.

  First consider the following example, evaluated after the [in-theory]
  event displayed above.

    ACL2 !>(thm (equal (mv-nth 2 (list a b c d e)) c))

    Q.E.D.

    Summary
    Form:  ( THM ...)
    Rules: ((:DEFINITION MV-NTH)
            (:FAKE-RUNE-FOR-TYPE-SET NIL))
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
    Prover steps counted:  19

    Proof succeeded.
    ACL2 !>

  Note that even though the [definition] of [mv-nth] had been
  [disable]d, nevertheless its definition rule was used in proving
  this theorem. It is as though [mv-nth] had not been been disabled
  after all! The warning is intended to indicate that expansion of
  mv-nth calls may be made by the theorem prover even when mv-nth is
  disabled. Indeed, the prover has special-purpose code for
  simplifying certain mv-nth calls.

  A similar issue can arise for executable-counterpart rules, as the
  following log illustrates.

    ACL2 !>(in-theory (disable (:e symbolp)))

    ACL2 Warning [Theory] in ( IN-THEORY (DISABLE ...)):  The :EXECUTABLE-
    COUNTERPART rule for SYMBOLP is disabled by the theory expression
    (DISABLE (:E SYMBOLP)), but because this built-in function is given
    certain special handling, some evaluations of its calls may still occur.
    See :DOC theories-and-primitives.


    Summary
    Form:  ( IN-THEORY (DISABLE ...))
    Rules: NIL
    Warnings:  Theory
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
     (:NUMBER-OF-ENABLED-RUNES 3233)
    ACL2 !>(thm (symbolp 'a))

    Q.E.D.

    Summary
    Form:  ( THM ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

    Proof succeeded.
    ACL2 !>

  In general, ACL2 warns when [in-theory] [events] or [hints] leave you
  in a theory where a rule for a built-in function has just been
  disabled, but may be applied in some cases nonetheless, because of
  special-purpose prover code for handling calls of that function.
  The built-in function symbols with such [definition] rules or
  [executable-counterpart] rules are those in the following two
  lists, respectively.

  Definition: <*definition-minimal-theory*>

    (defconst *definition-minimal-theory*
              (list* 'mv-nth
                     'iff
                     *expandable-boot-strap-non-rec-fns*))

  Definition: <*built-in-executable-counterparts*>

    (defconst *built-in-executable-counterparts*
              '(acl2-numberp binary-* binary-+ unary-- unary-/
                             < car cdr char-code characterp code-char
                             complex complex-rationalp coerce
                             cons consp denominator equal if imagpart
                             integerp intern-in-package-of-symbol
                             numerator pkg-witness pkg-imports
                             rationalp realpart stringp symbol-name
                             symbol-package-name symbolp not))")
 (THEORY
  (THEORIES THEORY-FUNCTIONS)
  "Retrieve named theory

  Examples:

  For use in [in-theory] [events] or :in-theory [hints]:
  (theory 'ground-zero)

  For direct evaluation at the top-level loop:
  (let ((world (w state))) (theory 'ground-zero))

  In the examples above, the theory returned is the one in force when
  ACL2 is started up (see [ground-zero]).

    General Form:
    (theory name)

  where name is the name of a previously executed [deftheory] event
  (otherwise a hard error occurs). Returns the named theory. See
  [theories].

  This ``function'' is actually a macro that expands to a term
  mentioning the single free variable [world]. When theory
  expressions are evaluated by [in-theory] or the :[in-theory] hint,
  [world] is bound to the current ACL2 [world].")
 (THEORY-FUNCTIONS
  (THEORIES)
  "Functions for obtaining or producing [theories]

    Example Calls of Theory Functions:
    (universal-theory :here)
    (union-theories th1 th2)
    (set-difference-theories th1 th2)

  The theory functions are documented individually:

  The functions (actually, macros) mentioned above are convenient ways
  to produce [theories]. (See [theories].) Some, like
  [universal-theory], take a logical name (see [logical-name]) as an
  argument and return the relevant theory as of the time that name
  was introduced. Others, like [union-theories], take two [theories]
  and produce a new one. See [redundant-events] for a caution about
  the use of logical names in theory expressions.

  Theory expressions are generally composed of applications of theory
  functions. Formally, theory expressions are expressions that
  involve, at most, the free variable [world] and that when evaluated
  with [world] bound to the current ACL2 world (see [world]) return
  [theories]. The ``theory functions'' are actually macros that
  expand into forms that involve the free variable [world]. Thus, for
  example (universal-theory :here) actually expands to
  (universal-theory-fn :here world) and when that form is evaluated
  with [world] bound to the current ACL2 [world], universal-theory-fn
  scans the ACL2 property lists and computes the current universal
  theory. Because the theory functions all implicitly use [world],
  the variable does not generally appear in anything the user types.


Subtopics

  [Current-theory]
      Currently [enable]d rules as of logical name

  [Disable]
      Deletes names from current theory

  [E/d]
      Enable/disable rules

  [Enable]
      Adds names to current theory

  [Executable-counterpart-theory]
      Executable counterpart rules as of logical name

  [Function-theory]
      Function symbol rules as of logical name

  [Ground-zero]
      [enable]d rules in the [startup] theory

  [Intersection-theories]
      Intersect two [theories]

  [Minimal-theory]
      A minimal theory to enable

  [Set-difference-theories]
      Difference of two [theories]

  [Theory]
      Retrieve named theory

  [Union-theories]
      Union two [theories]

  [Universal-theory]
      All rules as of logical name")
 (THEORY-INVARIANT
  (EVENTS)
  "User-specified invariants on [theories]

    Examples:
    (theory-invariant (not (and (active-runep '(:rewrite left-to-right))
                                (active-runep '(:rewrite right-to-left))))
                      :key my-invariant
                      :error nil)

    ; Equivalent to the above:
    (theory-invariant (incompatible (:rewrite left-to-right)
                                    (:rewrite right-to-left))
                      :key my-invariant
                      :error nil)

    General Form:
    (theory-invariant term &key key error)

  where:

    * term is a term that uses no variables other than ens and [state];
    * key is an arbitrary ``name'' for this invariant (if omitted, an
      integer is generated and used); and
    * :error specifies the action to be taken when an invariant is violated
      --- either nil if a warning is to be printed, else t (the
      default) if an error is to be caused.

  Theory-invariant is an event that adds to or modifies the [table] of
  user-supplied theory invariants that are checked each time a theory
  expression is evaluated.

  The theory invariant mechanism is provided via a table (see [table])
  named theory-invariant-table. In fact, the theory-invariant
  ``event'' is just a macro that expands into a use of the [table]
  event. More general access to the theory-invariant [table] is
  provided by [table] itself. For example, the [table] can be
  inspected or cleared with [table]; you can clear an individual
  theory invariant by setting the invariant to t, or eliminate all
  theory invariants with the command (table theory-invariant-table
  nil nil :clear).

  Theory-invariant-table maps arbitrary keys to records containing
  terms that mention, at most, the variables ens and [state]. Every
  time an alleged theory expression is evaluated, e.g., in the
  [in-theory] event or :[in-theory] hint, each of the terms in
  theory-invariant-table is evaluated with ens bound to a so-called
  ``enabled structure'' obtained from the theory expression and
  [state] bound to the current ACL2 state (see [state]). Users
  generally need not know about the enabled structure, other than
  that it can be accessed using the macros active-runep and
  incompatible; see [active-runep] and see [incompatible]. If the
  result is nil, a message is printed and an error occurs (except,
  only a warning occurs if :error nil is specified). Thus, the
  [table] can be thought of as a list of conjuncts. Each term in the
  [table] has a ``name,'' which is just the key under which the term
  is stored. When a theory violates the restrictions specified by
  some term, both the name and the term are printed. By calling
  theory-invariant with a new term but the same name, you can
  overwrite that conjunct of the theory invariant; but see the Local
  Redefinition Caveat at the end of this note. You may want to avoid
  using explicit names, since otherwise the subsequent inclusion of
  another book that defines a theory invariant with the same name
  will override your theory invariant.

  Theory invariants are particularly useful in the context of large
  rule sets intended for re-use. Such sets often contain conflicting
  rules, e.g., rules that are to be [enable]d when certain function
  symbols are [disable]d, rules that rewrite in opposite directions
  and thus loop if simultaneously [enable]d, groups of rules which
  should be [enable]d in concert, etc. The developer of such rule
  sets understands these restrictions and probably documents them.
  The theory invariant mechanism allows the developer to codify his
  restrictions so that the user is alerted when they are violated.

  Since theory invariants are arbitrary terms, macros may be used to
  express commonly used restrictions. For example, executing the
  event

    (theory-invariant (incompatible (:rewrite left-to-right)
                                    (:rewrite right-to-left)))

  would subsequently cause an error any time the current theory
  contained both of the two [rune]s shown. Of course, [incompatible]
  is just defined as a macro. Its definition may be inspected with
  :pe incompatible.

  In order for a theory-invariant event to be accepted, the proposed
  theory invariant must be satisfied by the current theory (see
  [current-theory]). The value returned upon successful execution of
  the event is the key (whether user-supplied or generated).

  Local Redefinition Caveat. Care needs to be taken when redefining a
  theory invariant in a [local] context. Consider the following
  example.

    (theory-invariant
     (active-runep '(:definition binary-append))
     :key app-inv)

    (encapsulate
     ()
     (local (theory-invariant t :key app-inv))
     (in-theory (disable binary-append))
     (defthm ...))

  The second pass of the [encapsulate] will fail, because the
  [in-theory] event violates the original theory-invariant and the
  [local] theory-invariant is skipped in the second pass of the
  [encapsulate]. Of course, [local] [theory-invariant]s in [books]
  can cause the analogous problem in the second ([include-book]) pass
  of a [certify-book]. In both cases, though, the theory invariants
  are only checked at the conclusion of the (include-book or
  encapsulate) event. Indeed, theory invariants are checked at the
  end of every event related to [theories], including [defun],
  [defthm], [in-theory], [encapsulate], and [include-book], except
  for events executed on behalf of an [include-book] or the second
  pass of an [encapsulate].")
 (THE_ADMISSION_OF_APP
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Admission of App

  [{IMAGE}]

  Here is what it looks like to submit the definition of app to ACL2:

  {IMAGE}

    ACL2 !>(defun app (x y)
      (cond ((endp x) y)
            (t (cons (car x)
                     (app (cdr x) y)))))

    The admission of APP is trivial, using the relation O< (which
    is known to be well-founded on the domain recognized by O-P)
    and the measure (ACL2-COUNT X).  We observe that the type of APP is
    described by the theorem (OR (CONSP (APP X Y)) (EQUAL (APP X Y) Y)).
    We used primitive type reasoning.

    Summary
    Form:  ( DEFUN APP ...)
    Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))
    Warnings:  None
    Time:  0.03 seconds (prove: 0.00, print: 0.00, other: 0.03)
     APP

  {IMAGE}

  The text between the lines above is one interaction with the ACL2
  command loop. Interacting with the latest version of ACL2 may not
  produce the very same output, but we trust you'll recognize the
  basics.

  Above you see the user's input and how the system responds. This
  little example shows you what the syntax looks like and is a very
  typical successful interaction with the definitional principle.

  Let's look at it a little more closely.

  [{IMAGE}]")
 (THE_ASSOCIATIVITY_OF_APP
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Associativity of App

  [{IMAGE}]

  {IMAGE}

    ACL2!>(let ((a '(1 2))
                (b '(3 4))
                (c '(5 6)))
            (equal (app (app a b) c)
                   (app a (app b c))))
    T

  {IMAGE}

  Observe that, for the particular a, b, and c above, (app (app a b) c)
  returns the same thing as (app a (app b c)). Perhaps app is
  associative. Of course, to be associative means that the above
  property must hold for all values of a, b, and c, not just the ones
  tested above.

  Wouldn't it be cool if you could type

    ACL2!>(equal (app (app a b) c)
                 (app a (app b c)))

  and have ACL2 compute the value T? Well, you can't! If you try it,
  you'll get an error message! The message says we can't evaluate
  that form because it contains free variables, i.e., variables not
  given values. Click [here] to see the message.

  We cannot evaluate a form on an infinite number of cases. But we can
  prove that a form is a theorem and hence know that it will always
  evaluate to true.

  [{IMAGE}]")
 (THE_BASE_CASE_IN_THE_APP_EXAMPLE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Base Case in the App Example

  This formula is the Base Case. It consists of two parts, a test
  identifying the non-inductive case and the conjecture to prove.

    (IMPLIES (ENDP A)                 ; Test
             (:P A B C))              ; Conjecture

  When we prove this we can assume

     * A is empty

  and we have to prove the conjecture for A.")
 (THE_END_OF_THE_FLYING_TOUR
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The End of the Flying Tour

  {IMAGE}

  This completes the Flying Tour.

  We recommend that you now take [A Walking Tour of ACL2].

  Thanks.
  Matt Kaufmann and J Moore

  [{IMAGE}]")
 (THE_END_OF_THE_PROOF_OF_THE_ASSOCIATIVITY_OF_APP
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The End of the Proof of the Associativity of App

  [{IMAGE}]

    That [completes] the proof of *1.

    [Q.E.D.]

    Summary
    Form:  ( DEFTHM ASSOCIATIVITY-OF-APP ...)
    [Rules]: ((:REWRITE CDR-CONS)
            (:REWRITE CAR-CONS)
            (:DEFINITION NOT)
            (:DEFINITION ENDP)
            (:FAKE-RUNE-FOR-TYPE-SET NIL)
            (:DEFINITION APP))
    Warnings:  None
    Time:  0.27 seconds (prove: [0.10], print: 0.05, other: 0.12)
     ASSOCIATIVITY-OF-APP

  {IMAGE}

  [{IMAGE}]")
 (THE_END_OF_THE_WALKING_TOUR
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The End of the Walking Tour

  {IMAGE}

  This completes the Walking Tour.

  We intend to document many other parts of the system this way, but we
  just haven't gotten around to it.

  To start the two tours over again from the beginning, click on the
  icons below. If you are really interested in learning how to use
  ACL2, we recommend that you repeat each tour at least once more to
  explore branches of the tour that you might have missed.

  If you want to learn how to use the theorem prover, we now recommend
  that you devote the time necessary to work your way through the
  extended introduction to how to use the prover.

  See [introduction-to-the-theorem-prover].

  This will explain how to interact with ACL2 and has some sample
  problems for you to solve including some challenge proofs to make
  ACL2 find.

  We hope you enjoy ACL2. We do.

  Matt Kaufmann and J Strother Moore

  [{IMAGE}] [{IMAGE}]")
 (THE_EVENT_SUMMARY
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Event Summary

  At the conclusion of most events (click [here] for a brief discussion
  of events or see [events] [{ICON}]), ACL2 prints a summary. The
  summary for app is:

    Summary
    Form:  ( DEFUN APP ...)
    Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))
    Warnings:  None
    Time:  0.03 seconds (prove: 0.00, print: 0.00, other: 0.03)
     APP

  The ``rules'' listed are those used in function admission or proof
  summarized. What is actually listed are ``runes'' (see [rune])
  [{ICON}]) which are list-structured names for rules in the ACL2
  database or ``[world]'' [{ICON}]. Using [theories] [{ICON}] you can
  ``enable'' and ``disable'' rules so as to make them available (or
  not) to the ACL2 theorem prover.

  The ``warnings'' mentioned (none are listed for app) remind the
  reader whether the event provoked any warnings. The warnings
  themselves would have been printed earlier in the processing and
  this part of the summary just names the earlier warnings printed.

  The ``time'' indicates how much processing time was used and is
  divided into three parts: the time devoted to proof, to printing,
  and to syntactic checks, pre-processing and database updates.
  Despite the fact that ACL2 is an applicative language it is
  possible to measure time with ACL2 programs. The [state] [{ICON}]
  contains a clock. The times are printed in decimal notation but are
  actually counted in integral units. Note that by default, each time
  is a runtime, also known as a cpu time, as opposed to being a real
  time, also known as a wall clock time.

  The final APP is the value of the defun command and was printed by
  the read-eval-print loop. The fact that it is indented one space is
  a subtle reminder that the command actually returned an ``error
  triple'', consisting of a flag indicating (in this case) that no
  error occurred, a value (in this case the symbol APP), and the
  final [state] [{ICON}]). See [ld-post-eval-print] [{ICON}] for some
  details. If you really want to follow that link, however, you might
  see [ld] [{ICON}] first.

  You should now return to [the Walking Tour].")
 (THE_EXPANSION_OF_ENDP_IN_THE_INDUCTION_STEP_{STEP_0}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Expansion of ENDP in the Induction Step (Step 0)

    Subgoal *1/2
    (IMPLIES (AND (NOT [(]ENDP A))
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             (EQUAL (APP (APP A B) C)
                    (APP A (APP B C)))).

  {IMAGE}

  Click on the link above (the open parenthesis before ENDP) to replace
  (ENDP A) by its definition.")
 (THE_EXPANSION_OF_ENDP_IN_THE_INDUCTION_STEP_{STEP_1}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Expansion of ENDP in the Induction Step (Step 1)

    Subgoal *1/2
    (IMPLIES (AND [(]NOT (NOT (CONSP A)))
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             (EQUAL (APP (APP A B) C)
                    (APP A (APP B C)))).

  {IMAGE}

  The bold text is the instantiated definition of ENDP.

  Now click on the link above to simplify (NOT (NOT (CONSP A)))")
 (THE_EXPANSION_OF_ENDP_IN_THE_INDUCTION_STEP_{STEP_2}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Expansion of ENDP in the Induction Step (Step 2)

    Subgoal *1/2'
    (IMPLIES (AND (CONSP A)
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             (EQUAL (APP (APP A B) C)
                    (APP A (APP B C)))).

  {IMAGE}

  Note that this is Subgoal *1/2'.

  You may click [here] to return to the main proof.")
 (THE_FALLING_BODY_MODEL
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Falling Body Model

  {IMAGE}

  One particularly famous and very simple model is the equation of a
  falling body: the distance d an object falls is proportional to the
  square of the time t. If the time is measured in seconds and the
  distance in feet, the equation relating these two is

           2
    d = 16t

  This equation is a model of falling objects. It can be used to
  predict how long it takes a cannonball to fall from the top of a
  200 foot tower (3.5 seconds). This might be important if your
  product is designed to drop cannonballs on moving targets.")
 (THE_FINAL_SIMPLIFICATION_IN_THE_BASE_CASE_{STEP_0}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Final Simplification in the Base Case (Step 0)

    Subgoal *1/1'
    (IMPLIES (NOT (CONSP A))
             (EQUAL (APP [(]APP A B) C)
                    (APP A (APP B C)))).

  {IMAGE}

  Click on the link above to replace (APP A B) by its definition. Note
  that the hypothesis (NOT (CONSP A)) allows us to simplify the IF in
  APP to its false branch this time.")
 (THE_FINAL_SIMPLIFICATION_IN_THE_BASE_CASE_{STEP_1}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Final Simplification in the Base Case (Step 1)

    Subgoal *1/1'
    (IMPLIES (NOT (CONSP A))
             (EQUAL (APP B C)
                    [(]APP A (APP B C)))).

  {IMAGE}

  Click on the link above to expand the definition of APP. Again, we
  come out through the false branch because of the hypothesis.")
 (THE_FINAL_SIMPLIFICATION_IN_THE_BASE_CASE_{STEP_2}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Final Simplification in the Base Case (Step 2)

    Subgoal *1/1'
    (IMPLIES (NOT (CONSP A))
             [(]EQUAL (APP B C)
                    (APP B C))).

  {IMAGE}

  Click on the link above to use the Axiom (EQUAL x x) = t")
 (THE_FINAL_SIMPLIFICATION_IN_THE_BASE_CASE_{STEP_3}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Final Simplification in the Base Case (Step 3)

    Subgoal *1/1'
    (IMPLIES (NOT (CONSP A))
             T)

  {IMAGE}

  Now that its conclusion is identically T the IMPLIES will simplify to
  T (not shown) and we are done with Subgoal *1/1'.

  You may click [here] to return to the main proof.")
 (THE_FIRST_APPLICATION_OF_THE_ASSOCIATIVITY_RULE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The First Application of the Associativity Rule

  So here we see our associativity rule being used!

  The rewriter sweeps the conjecture in a leftmost innermost fashion,
  applying rewrite rules as it goes.

  The associativity rule is used many times in this sweep. The first
  ``target'' is highlighted below. Click on it to see what happens:

    Current Conjecture:
    (equal (app (app [(app (app x1 x2) (app x3 x4))] (app x5 x6)) x7)
           (app x1 (app (app x2 x3) (app (app x4 x5) (app x6 x7)))))")
 (THE_INDUCTION_SCHEME_SELECTED_FOR_THE_APP_EXAMPLE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Induction Scheme Selected for the App Example

    (AND
       (IMPLIES (AND (NOT (ENDP A))         ; Induction Step: test
                     (:P (CDR A) B C))      ;  and induction hypothesis
                (:P A B C))                 ;  implies induction conclusion.
       (IMPLIES (ENDP A) (:P A B C)))       ; Base Case

  The formula beginning with this parenthesis is the induction scheme
  suggested by (APP A B) applied to (P A B C).

  It is a conjunction ([and] [{ICON}]) of two formulas.

  The first is the induction step and the second is the base case.")
 (THE_INDUCTION_STEP_IN_THE_APP_EXAMPLE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Induction Step in the App Example

  This formula is the Induction Step. It basically consists of three
  parts, a test identifying the inductive case, an induction
  hypothesis and an induction conclusion.

    (IMPLIES (AND (NOT (ENDP A))      ; Test
                  (:P (CDR A) B C))   ; Induction Hypothesis
             (:P A B C))              ; Induction Conclusion

  When we prove this we can assume

     * A is not empty, and that

      * the associativity conjecture holds for a ``smaller'' version of A,
        namely, (CDR A).

  Under those hypotheses we have to prove the associativity conjecture
  for A itself.")
 (THE_INSTANTIATION_OF_THE_INDUCTION_SCHEME
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Instantiation of the Induction Scheme

  The induction scheme just shown is just an abbreviation for our real
  goal.

  To obtain our actual goals we have to replace the schema :P by the
  associativity conjecture (instantiated as shown in the scheme).

  This produces two actual goals, the induction step and the base case.")
 (THE_JUSTIFICATION_OF_THE_INDUCTION_SCHEME
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Justification of the Induction Scheme

  This paragraph explains why the induction selected is legal. The
  explanation is basically the same as the explanation for why the
  recursion in (APP A B) terminates.")
 (THE_PROOF_OF_THE_ASSOCIATIVITY_OF_APP
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Proof of the Associativity of App

  [{IMAGE}]

  Here is the theorem prover's output when it processes the defthm
  command for the associativity of app. We have highlighted text for
  which we offer some explanation, and broken the presentation into
  several pages. (The most recent version of ACL2 may print slightly
  different output but the basics are the same.) Just follow the
  Walking Tour after exploring the explanations.

  However, before exploring this output you should understand that ACL2
  users rarely read successful proofs! Instead, they look at certain
  subgoals printed in failed proofs, figure whether and how those
  subgoals can be proved, and give ACL2 directions for proving them,
  usually by simply proving other lemmas. Furthermore, to be a good
  user of ACL2 you do not have to understand how the theorem prover
  works. You just have to understand how to interact with it. We
  explain this in great detail later. But basically all new users are
  curious to know how ACL2 works and this little tour attempts to
  give some answers, just to satisfy your curiosity.

  {IMAGE}

    ACL2!>(defthm associativity-of-app
            (equal (app (app a b) c)
                   (app a (app b c))))

    Name the formula above [*1].

    [Perhaps] we can prove *1 by induction.  Three induction schemes are
    [suggested] by this conjecture.  [Subsumption] reduces that number to two.
    However, one of these is [flawed] and so we are left with one viable
    candidate.

    We will induct according to a scheme suggested by (APP A B).  If we
    let  (:P A B C) denote *1 above then the induction scheme we'll use
    is
    [(]AND
       [(]IMPLIES (AND (NOT (ENDP A))
                     (:P (CDR A) B C))
                (:P A B C))
       [(]IMPLIES (ENDP A) (:P A B C))).
    This induction is [justified] by the same argument used to admit APP,
    namely, the measure (ACL2-COUNT A) is decreasing according to the relation
    O< (which is known to be well-founded on the domain recognized
    by O-P).  When [applied] to the goal at hand the above induction
    scheme produces the following two [nontautological subgoals].

  [{IMAGE}]")
 (THE_Q.E.D._MESSAGE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Q.E.D. Message

  Q.E.D. stands for ``quod erat demonstrandum'' which is Latin for
  ``which was to be demonstrated'' and is the signal that a proof is
  completely done.")
 (THE_RULES_USED_IN_THE_ASSOCIATIVITY_OF_APP_PROOF
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Rules used in the Associativity of App Proof

  Note that under Rules we list the [runes] [{ICON}] of all the rules
  used in the proof. This list says that we used the rewrite rules
  CAR-CONS and CDR-CONS, the definitions of the functions NOT, ENDP
  and APP, and primitive type reasoning (which is how we simplified
  the IF and EQUAL terms).

  For what it is worth, IMPLIES and AND are actually [macros] [{ICON}]
  that are expanded into IF expressions before the proof ever begins.
  The use of macros is not reported among the rules.")
 (THE_SIMPLIFICATION_OF_THE_INDUCTION_CONCLUSION_{STEP_0}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Simplification of the Induction Conclusion (Step 0)

    Subgoal *1/2'
    (IMPLIES (AND (CONSP A)
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             (EQUAL (APP [(]APP A B) C)
                    (APP A (APP B C)))).

  {IMAGE}

  Click on the link above to replace (APP A B) by its definition.")
 (THE_SIMPLIFICATION_OF_THE_INDUCTION_CONCLUSION_{STEP_10}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Simplification of the Induction Conclusion (Step 10)

    Subgoal *1/2'
    (IMPLIES (AND (CONSP A)
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             [(]EQUAL (APP (APP (CDR A) B) C)
                    (APP (CDR A) (APP B C)))).

  {IMAGE}

  Click on the link above to use the Induction Hypothesis (which is the
  second of the two hypotheses above and which is identical to the
  rewritten conclusion).")
 (THE_SIMPLIFICATION_OF_THE_INDUCTION_CONCLUSION_{STEP_11}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Simplification of the Induction Conclusion (Step 11)

    Subgoal *1/2'
    [(]IMPLIES (AND (CONSP A)
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             T)

  {IMAGE}

  Click on the link above to use the definition of IMPLIES. Since the
  conclusion of the implication is now identically T, the implication
  simplifies to T.")
 (THE_SIMPLIFICATION_OF_THE_INDUCTION_CONCLUSION_{STEP_12}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Simplification of the Induction Conclusion (Step 12)

    Subgoal *1/2'
    T

  {IMAGE}

  So, indeed, Subgoal *1/2' does simplify to T!

  You can see that even in an example as simple as this one, quite a
  lot happens in simplification.

  You may click [here] to return to the main proof.")
 (THE_SIMPLIFICATION_OF_THE_INDUCTION_CONCLUSION_{STEP_1}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Simplification of the Induction Conclusion (Step 1)

    Subgoal *1/2'
    (IMPLIES (AND (CONSP A)
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             (EQUAL (APP (IF [(]CONSP A)
                             (CONS (CAR A) (APP (CDR A) B))
                             B)
                         C)
                    (APP A (APP B C)))).

  {IMAGE}

  Note that the IF expression above is the simplified body of APP. But
  we know the test (CONSP A) is true, by the first hypothesis. Click
  on the link above to replace the test by T. Actually this step and
  several subsequent ones are done during the simplification of the
  body of APP but we want to illustrate the basic principles of
  simplification without bothering with every detail.")
 (THE_SIMPLIFICATION_OF_THE_INDUCTION_CONCLUSION_{STEP_2}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Simplification of the Induction Conclusion (Step 2)

    Subgoal *1/2'
    (IMPLIES (AND (CONSP A)
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             (EQUAL (APP [(]IF T
                             (CONS (CAR A) (APP (CDR A) B))
                             B)
                         C)
                    (APP A (APP B C)))).

  {IMAGE}

  Click on the link above to apply the Axiom (IF T x y) = x.")
 (THE_SIMPLIFICATION_OF_THE_INDUCTION_CONCLUSION_{STEP_3}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Simplification of the Induction Conclusion (Step 3)

    Subgoal *1/2'
    (IMPLIES (AND (CONSP A)
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             (EQUAL [(]APP (CONS (CAR A) (APP (CDR A) B))
                         C)
                    (APP A (APP B C)))).

  {IMAGE}

  Click on the link above to expand the definition of APP here.")
 (THE_SIMPLIFICATION_OF_THE_INDUCTION_CONCLUSION_{STEP_4}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Simplification of the Induction Conclusion (Step 4)

    Subgoal *1/2'
    (IMPLIES (AND (CONSP A)
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             (EQUAL (IF [(]CONSP (CONS (CAR A) (APP (CDR A) B)))
                        (CONS (CAR (CONS (CAR A) (APP (CDR A) B)))
                              (APP (CDR (CONS (CAR A) (APP (CDR A) B)))
                                   C))
                        C)
                    (APP A (APP B C)))).

  {IMAGE}

  Click on the link above to apply the Axiom (CONSP (CONS x y)) = T.")
 (THE_SIMPLIFICATION_OF_THE_INDUCTION_CONCLUSION_{STEP_5}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Simplification of the Induction Conclusion (Step 5)

    Subgoal *1/2'
    (IMPLIES (AND (CONSP A)
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             (EQUAL (IF T
                        (CONS [(]CAR (CONS (CAR A) (APP (CDR A) B)))
                              (APP (CDR (CONS (CAR A) (APP (CDR A) B)))
                                   C))
                        C)
                    (APP A (APP B C)))).

  {IMAGE}

  Click on the link above to apply the Axiom (CAR (CONS x y)) = x.")
 (THE_SIMPLIFICATION_OF_THE_INDUCTION_CONCLUSION_{STEP_6}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Simplification of the Induction Conclusion (Step 6)

    Subgoal *1/2'
    (IMPLIES (AND (CONSP A)
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             (EQUAL (IF T
                        (CONS (CAR A)
                              (APP [(]CDR (CONS (CAR A) (APP (CDR A) B)))
                                   C))
                        C)
                    (APP A (APP B C)))).

  {IMAGE}

  Click on the link above to apply the Axiom (CDR (CONS x y)) = y.")
 (THE_SIMPLIFICATION_OF_THE_INDUCTION_CONCLUSION_{STEP_7}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Simplification of the Induction Conclusion (Step 7)

    Subgoal *1/2'
    (IMPLIES (AND (CONSP A)
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             (EQUAL [(]IF T
                        (CONS (CAR A)
                              (APP (APP (CDR A) B)
                                   C))
                        C)
                    (APP A (APP B C)))).

  {IMAGE}

  Click on the link above to apply the Axiom (IF T x y) = x.")
 (THE_SIMPLIFICATION_OF_THE_INDUCTION_CONCLUSION_{STEP_8}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Simplification of the Induction Conclusion (Step 8)

    Subgoal *1/2'
    (IMPLIES (AND (CONSP A)
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             (EQUAL (CONS (CAR A)
                          (APP (APP (CDR A) B)
                               C))
                    [(]APP A (APP B C)))).

  {IMAGE}

  Click on the link above to expand the definition of APP here. This
  time, we'll do the whole expansion at once, including the
  simplification of the resulting IF. This is how ACL2 actually does
  it.")
 (THE_SIMPLIFICATION_OF_THE_INDUCTION_CONCLUSION_{STEP_9}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Simplification of the Induction Conclusion (Step 9)

    Subgoal *1/2'
    (IMPLIES (AND (CONSP A)
                  (EQUAL (APP (APP (CDR A) B) C)
                         (APP (CDR A) (APP B C))))
             [(]EQUAL (CONS (CAR A)
                          (APP (APP (CDR A) B)
                               C))
                    (CONS (CAR A)
                          (APP (CDR A) (APP B C))))).

  {IMAGE}

  Click on the link above to apply the Axiom that (EQUAL (CONS x y)
  (CONS u v)) is equal to the conjunction of (EQUAL x u) and (EQUAL y
  v). In this case, (EQUAL x u) is trivial, (EQUAL (CAR A) (CAR A)).")
 (THE_SUMMARY_OF_THE_PROOF_OF_THE_TRIVIAL_CONSEQUENCE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Summary of the Proof of the Trivial Consequence

  Note that at the conclusion of the proof, the system reminds you of
  the earlier Warning.

  It is a good idea, when the Q.E.D. flys by, to see if there were any
  Warnings.")
 (THE_THEOREM_THAT_APP_IS_ASSOCIATIVE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Theorem that App is Associative

  [{IMAGE}]

    ACL2!>(defthm associativity-of-app
            (equal (app (app a b) c)
                   (app a (app b c))))

  The formula above says app is associative. The [defthm] [{ICON}]
  command instructs ACL2 to prove the formula and to name it
  associativity-of-app. Actually, the defthm command also builds the
  formula into the database as a [rewrite] [{ICON}] rule, but we
  won't go into that just yet.

  What we will consider is how the ACL2 theorem prover proves this
  formula.

  If you proceed you will find the actual output of ACL2 in response to
  the command above. Some of the text is highlighted for the purposes
  of the tour. ACL2 does not highlight its output.

  You will note that we sometimes highlight a single open parenthesis.
  This is our way of drawing your attention to the subformula that
  begins with that parenthesis. By clicking on the parenthesis you
  will get an explanation of the subformula or its processing.

  [{IMAGE}]")
 (THE_TIME_TAKEN_TO_DO_THE_ASSOCIATIVITY_OF_APP_PROOF
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Time Taken to do the Associativity of App Proof

  The time it took us to explain this proof may leave the impression
  that the proof is complicated. In a way, it is. But it happens
  quickly.

  The time taken to do this proof is about 1/10 second. The rest of the
  time (about 2/10 seconds) is spent in pre- and post-processing.

  Basically, this proof flashes across your screen before you can read
  it; you see the Q.E.D. and don't bother to scroll back to read it.
  You have more important things to do than read successful proofs.")
 (THE_TOURS
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The Tours

  ACL2 is a very large, multipurpose system. You can use it as a
  programming language, a specification language, a modeling
  language, a formal mathematical logic, or a semi-automatic theorem
  prover, just to name its most common uses. It has been used on a
  number of [industrial applications]. If you're uncertain as to
  whether your project is appropriate for ACL2 we urge you to look
  over this list or contact the ACL2 developers.

  This home page includes all of ACL2's online documentation, which is
  quite extensive (over 4 megabytes). To help ease your introduction
  to ACL2, we have built two tours through this documentation.

  If you are familiar with at least some of the [industrial
  applications] of ACL2, then you will understand the distance
  between the simple examples we talk about in these tours and the
  kinds of things ACL2 users do with the system.

  Newcomers to ACL2 should first take the ``Flying Tour.'' Then, if you
  want to know more, take the ``Walking Tour.'' On your first
  reading, follow the two Tours linearly, clicking only on the icon
  of the Tour you're on. Beware of other links, which might jump you
  from one tour to the other or into the ACL2 User's Manual! Once
  you've had a coherent overview of the system, you might quickly
  repeat both Tours to see if there are unvisited links you're
  interested in, using your brower's Back Button to return to your
  starting points.

  If after all this you want to learn how to use the theorem prover
  (!), see [introduction-to-the-theorem-prover].

  To start a tour, click on the appropriate icon below.

  [{IMAGE}] [{IMAGE}]

  If you take the tours in a text-based format (such as using the :DOC
  command in Emacs), they will probably be unsatisfying because we
  use gif files and assume you can navigate ``back.''")
 (THE_WARNING_ABOUT_THE_TRIVIAL_CONSEQUENCE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "The WARNING about the Trivial Consequence

  This Warning alerts us to the fact that when treated as a rewrite
  rule, the new rule TRIVIAL-CONSEQUENCE, rewrites terms of the same
  form as a rule we have already proved, namely ASSOCIATIVITY-OF-APP.

  When you see this warning you should think about your rules!

  In the current case, it would be a good idea not to make
  TRIVIAL-CONSEQUENCE a rule at all. We could do this with
  :[rule-classes] [{ICON}] nil.

  ACL2 proceeds to try to prove the theorem, even though it printed
  some warnings. The basic assumption in ACL2 is that the user
  understands what he or she is doing but may need a little reminding
  just to manage a complicated set of facts.")
 (THIRD
  (NTH ACL2-BUILT-INS)
  "Third member of the list

  See any Common Lisp documentation for details.")
 (THM
  (MISCELLANEOUS)
  "Prove a theorem

    Example:
    (thm (equal (app (app a b) c)
                (app a (app b c))))

  Also see [defthm]. Unlike [defthm], thm does not create an event; it
  merely causes the theorem prover to attempt a proof.

    General Form:
    (thm term
         :hints        hints
         :otf-flg      otf-flg)

  where term is a term alleged to be a theorem, and [hints] and
  [otf-flg] are as described in the corresponding [documentation]
  topics. The keyword arguments above are both optional.


Subtopics

  [Otf-flg]
      Allow more than one initial subgoal to be pushed for induction")
 (TIDBITS
  (ACL2-TUTORIAL)
  "Some basic hints for using ACL2

  See [books] for a discussion of books. Briefly, a book is a file
  whose name ends in ``.lisp'' that contains ACL2 [events]; see
  [events].

  See [history] for a list of useful commands. Some examples:

    :pbt :here      ; print the current event
    :pbt (:here -3) ; print the last four events
    :u              ; undo the last event
    :pe append      ; print the definition of append

  See [documentation] to learn how to print documentation to the
  terminal. There are also versions of the [documentation] for web
  browsers and for Emacs (see [ACL2-Doc]).

  There are quite a few kinds of rules allowed in ACL2 besides
  :[rewrite] rules, though we hope that beginners won't usually need
  to be aware of them. See [rule-classes] for details. In particular,
  there is support for [congruence] rewriting. See [rune] (``RUle
  NamE'') for a description of the various kinds of rules in the
  system. Also see [theories] for a description of how to build
  [theories] of [rune]s, which are often used in hints; see [hints].

  A ``[programming] mode'' is supported; see [program], see
  [defun-mode], and see [default-defun-mode]. It can be useful to
  prototype functions after executing the command :[program], which
  will cause definitions to be syntaxed-checked only.

  ACL2 supports mutual recursion, though this feature is not tied into
  the automatic discovery of [induction] schemas and is often not the
  best way to proceed when you expect to be reasoning about the
  functions. See [defuns]; also see [mutual-recursion].

  See [ld] for discussion of how to load files of [events]. There are
  many options to [ld], including ones to suppress proofs and to
  control output.

  The :[otf-flg] (Onward Thru the Fog FLaG) is a useful feature that
  Nqthm users have often wished for. It prevents the prover from
  aborting a proof attempt and inducting on the original conjecture.
  See [otf-flg].

  ACL2 supports redefinition and redundancy in [events]; see
  [ld-redefinition-action] and see [redundant-events].

  A [proof-tree] display feature is available for use with Emacs. This
  feature provides a view of ACL2 proofs that can be much more useful
  than reading the stream of [characters] output by the theorem
  prover as its ``proof.'' See [proof-tree].

  An interactive feature similar to Pc-Nqthm is supported in ACL2. See
  [verify] and see [proof-checker].

  ACL2 allows you to [monitor] the use of [rewrite] rules. See
  [break-rewrite].

  See [arrays] to read about applicative, fast [arrays] in ACL2.

  To quit the ACL2 [command] loop, or (in akcl) to return to the ACL2
  [command] loop after an interrupt, type :[q]. To continue (resume)
  after an interrupt (in akcl), type :r. To cause an interrupt (in
  akcl under Unix (trademark of AT&T)), hit control-C (twice, if
  inside Emacs). To exit ACL2 altogether, type :[quit].

  See [state] to read about the von Neumannesque ACL2 [state] object
  that records the ``current state'' of the ACL2 session. Also see
  [@], and see [assign], to learn about reading and setting global
  [state] variables.

  If you want your own von Neumannesque object, e.g., a structure that
  can be ``destructively modified'' but which must be used with some
  syntactic restrictions, see [stobj].")
 (TIME$
  (PROGRAMMING ACL2-BUILT-INS)
  "Time an evaluation

  Semantically, (time$ x ...) equals x. However, its evaluation may
  write timing output to the trace output (which is usually the
  terminal), as explained further below.

    Examples:

    ; Basic examples:

    (time$ (foo 3 4))
    (time$ (mini-proveall))
    (defun bar (x) (time$ (f x)))

    ; Custom examples, which use a custom timing message rather than a built-in
    ; message from Lisp:

    ; Report only if real time is at least 1/2 second (two equivalent forms).
    (time$ (foo) :mintime 1/2)
    (time$ (foo) :real-mintime 1/2)

    ; Report only if allocation is at least 1000 bytes (and if the Lisp supports
    ; :minalloc).
    (time$ (foo) :minalloc 1000)

    ; Report only if real time is at least 1/2 second and (if the Lisp supports
    ; :minalloc) allocation is at least 931 bytes.
    (time$ (foo) :real-mintime 1/2 :minalloc 931)

    ; Print \"Hello Moon, Goodbye World\" instead of any timing data.
    (time$ (foo)
           :msg \"Hello ~s0, ~s1 World.\"
           :args (list \"Moon\" \"Goodbye\"))

    ; Print default custom timing message (same as omitting :mintime 0):
    (time$ (foo)
           :mintime 0)

    ; Print supplied custom timing message.
    (let ((bar ...))
      (time$ (foo)
             :msg \"The execution of ~xf took ~st seconds of real ~
                   time and ~sc seconds of run time (cpu time), and ~
                   allocated ~sa bytes.  In an unrelated note, bar ~
                   currently has the value ~x0.~%\"
             :args (list bar)))

    General Forms:
    (time$ form)
    (time$ form ; arguments below are optional
           :real-mintime  <rational number of seconds>
           :run-mintime   <rational number of seconds>
           :minalloc      <number of bytes>
           :msg           <fmt string>
           :args          <list of arguments for msg>
           )
    ; Note: :real-mintime can be replaced by :mintime

  where form is processed as usual except that the host Common Lisp
  times its evaluation.

  The simplest form is (time$ x), which will call the time utility in
  the underlying Lisp, and will print a small default message. If you
  want to see a message printed by the host Lisp, use (time$ x
  :mintime nil) instead, which may provide detailed,
  implementation-specific data such as the amounts of time spent in
  user and system mode, the gc time, the number of page faults
  encountered, and so on. Of you can create a custom message,
  configured using the :msg and :args parameters. Time$ can also be
  made to report timing information only conditionally: the
  :real-mintime (or equivalently, :mintime), :run-mintime, and
  :minalloc arguments can be used to avoid reporting timing
  information for computations that take a small amount of time
  (perhaps as might be expected in ordinary cases), but to draw the
  user's attention to computations that take longer or allocate more
  memory than expected.

  We next document the keyword arguments in some detail.

      Keyword arguments :real-mintime (or :mintime) and :run-mintime can be
      used to specify a minimum time threshold for time reporting.
      That is, no timing information will be printed if the execution
      of form takes less than the specified number of seconds of real
      (total) time or run (cpu) time, respectively. Note that
      rational numbers like 1/2 may be used to specify a fractional
      amount of seconds. It is an error to specify both :real-mintime
      and its synonym, :mintime.

      Keyword argument :minalloc is not supported on all Lisps. When it is
      not supported, it is ignored. But on supported Lisps, :minalloc
      can be used to specify a minimum memory allocation threshold.
      If form results in fewer than this many bytes being allocated,
      then no timing information will be reported.

      Keyword argument :msg, when provided, should be a string accepted by
      the fmt family of functions (see [fmt]), and it may refer to
      the elements of :args by their positions, just as for cw (see
      [cw]).

  The following directives allow you to report timing information using
  the :msg string. The examples at the top of this documentation
  topic illustrate the use of these directives.

      ~xf --- the form that was executed

      ~sa --- the amount of memory allocated, in bytes (in supported Lisps)

      ~st --- the real time taken, in seconds

      ~sc --- the run time (cpu time) taken, in seconds

      The following apply only when the host Lisp is GCL. The two system
      times will likely be nil unless the GCL version is 2.6.10 or
      later. Note the upper-case characters for child times.

      ~sC --- the child run time (cpu time) taken, in seconds

      ~ss --- the system time taken, in seconds

      ~sS --- the child system time taken, in seconds

  We turn now to an example that illustrates how time$ can be called in
  function bodies. Consider the following definition of the Fibonacci
  function, followed by the definition of a function that times k
  calls of this function.

    (defun fib (n)
      (if (zp n)
          1
        (if (= n 1)
            1
          (+ (fib (- n 1))
             (fib (- n 2))))))

    (defun time-fib (k)
      (if (zp k)
          nil
        (prog2$
         (time$ (fib k)
                :mintime 1/2
                :msg \"(fib ~x0) took ~st seconds, ~sa bytes allocated.~%\"
                :args (list k))
         (time-fib (1- k)))))

  The following log shows a sample execution of the function defined
  just above.

    ACL2 !>(time-fib 36)
    (fib 36) took 3.19 seconds, 1280 bytes allocated.
    (fib 35) took 1.97 seconds, 1280 bytes allocated.
    (fib 34) took 1.21 seconds, 1280 bytes allocated.
    (fib 33) took 0.75 seconds, 1280 bytes allocated.
    NIL
    ACL2 !>

  Notes:

  (1) Common Lisp specifies that the time utility prints to ``trace
  output'', and time$ follows this convention. Thus, if you have
  opened a [trace] file (see [open-trace-file]), then you can expect
  to find the time$ output there.

  (2) Unless the :msg argument is supplied, an explicit call of time$
  in the top-level loop will show that the form being timed is a call
  of the ACL2 evaluator function ev-rec. This is normal; the curious
  are invited, at their own risk, to see [return-last] for an
  explanation.


Subtopics

  [Time-tracker]
      Display time spent during specified evaluation")
 (TIME-TRACKER
  (DEBUGGING TIME$ ACL2-BUILT-INS)
  "Display time spent during specified evaluation

  The time-tracker macro is a utility for displaying time spent during
  specified evaluation. In general, the user provides this
  specification. However, ACL2 itself uses this utility for tracking
  uses of its [tau-system] reasoning utility (see
  [time-tracker-tau]). We discuss that use as an example before
  discussing the general form for calls of time-tracker.

  Note that by default, the time being tracked is runtime (cpu time);
  to switch to realtime (elapsed time), see [get-internal-time].

  Remark for ACL2(p) users (see [parallelism]): time-tracker is merely
  a no-op in ACL2(p).

  During the development of the [tau-system], we were concerned about
  the possibility that it would slow down proofs without any
  indication of how one might avoid the problem. We wanted a utility
  that would alert the user in such situations. However, the
  tau-system code does not return [state], so we could not track time
  spent in the state. We developed the time-tracker utility to track
  time and print messages, and we did it in a general way so that
  others can use it in their own code. Here is an example of such a
  message that could be printed during a proof.

    TIME-TRACKER-NOTE [:TAU]: Elapsed runtime in tau is 2.58 secs; see
    :DOC time-tracker-tau.

  And here is an example of such a message that could be printed at the
  end of the proof.

    TIME-TRACKER-NOTE [:TAU]: For the proof above, the total time spent
    in the tau system was 20.29 seconds.  See :DOC time-tracker-tau.

  The time-tracker utility tracks computation time spent on behalf of a
  user-specified ``tag''. In the case of the tau-system, we chose the
  tag, :tau. The first argument of time-tracker is the tag, which in
  our running example is always :tau. Note that although all
  arguments of time-tracker are evaluated, the first argument is
  typically a keyword and the second is always a keyword, and such
  arguments evaluate to themselves.

  An ACL2 function invoked at the start of a proof includes
  approximately the following code.

    (progn$
     (time-tracker :tau :end)
     (time-tracker :tau :init
                   :times '(1 2 3 4 5)
                   :interval 5
                   :msg \"Elapsed runtime in tau is ~st secs; see :DOC ~
                         time-tracker-tau.~|~%\")
     ...)

  The first time-tracker call (above) ends any existing time-tracking
  for tag :tau. One might have expected it to be put into code
  managing the proof summary, but we decided not to rely on that code
  being executed, say, in case of an interrupt. When a given tag is
  not already being time-tracked, then :end is a no-op (rather than
  an error).

  The second time-tracker call (above) initiates time-tracking for the
  tag, :tau. Moreover, it specifies the effect of the :print?
  keyword. Consider the following abbreviated definition from the
  ACL2 source code.

    (defun tau-clausep-lst-rec (clauses ens wrld ans ttree state calist)
      (cond
       ((endp clauses)
        (mv (revappend ans nil) ttree calist))
       (t (mv-let
           (flg1 ttree1 calist)
           (tau-clausep (car clauses) ens wrld state calist)
           (prog2$ (time-tracker :tau :print?)
                   (tau-clausep-lst-rec (cdr clauses) ...))))))

  Notice that (time-tracker :tau :print?) is executed immediately after
  tau-clausep is called. The idea is to check whether the total time
  elapsed inside the tau-system justifies printing a message to the
  user. The specification of :times '(1 2 3 4 5) in the :init form
  above says that a message should be printed after 1 second, after 2
  seconds, ..., and after 5 seconds. Thereafter, the specification of
  :interval 5 in the :init form above says that each time we print,
  at least 5 additional seconds should have been tracked before
  (time-tracker :tau :print?) prints again. Finally, the :msg keyword
  above specifies just what should be printed. If it is omitted, then
  a reasonable default message is printed (as discussed below), but
  in this case we wanted to print a custom message. The :msg string
  above is what is printed using formatted printing (see [fmt]),
  where the character #\\t is bound to a string giving a decimal
  representation with two decimal points of the time tracked so far
  for tag :tau. (As our general description below points out, :msg
  can also be a ``message'' list rather than a string.)

  But when is time actually tracked for :tau? Consider the following
  definition from the ACL2 source code.

    (defun tau-clausep-lst (clauses ens wrld ans ttree state calist)
      (prog2$ (time-tracker :tau :start!)
              (mv-let
               (clauses ttree calist)
               (tau-clausep-lst-rec clauses ens wrld ans ttree state calist)
               (prog2$ (time-tracker :tau :stop)
                       (mv clauses ttree calist)))))

  The two calls of time-tracker above first start, and then stop,
  time-tracking for the tag, :tau. Thus, time is tracked during
  evaluation of the call of tau-clausep-lst-rec, which is the
  function (discussed above) that does the [tau-system]'s work.

  Finally, as noted earlier above, ACL2 may print a time-tracking
  message for tag :tau at the end of a proof. The ACL2 function
  print-summary contains essentially the following code.

    (time-tracker :tau :print?
                  :min-time 1
                  :msg \"For the proof above, the total runtime ~
                        spent in the tau system was ~st seconds.  ~
                        See :DOC time-tracker-tau.~|~%\")

  The use of :min-time says that we are to ignore the :times and
  :interval established by the :init call described above, and
  instead, print a message if and only if at least 1 second (since 1
  is the value of keyword :min-time) has been tracked for tag :tau.
  Formatted printing (see [fmt]) is used for the value of :msg, where
  the character #\\t is bound to a decimal string representation of
  the time in seconds, as described above.

  The example above covers all legal values for the second argument of
  time-tracker and discusses all the additional legal keyword
  arguments. We conclude with a precise discussion of all arguments.
  Note that all arguments are evaluated; thus when we refer to an
  argument, we are discussing the value of that argument. All times
  discussed are runtimes, i.e., cpu times, unless that default is
  changed; see [get-internal-time].

    General forms:

    (time-tracker t)        ; enable time-tracking (default)

    (time-tracker nil)      ; disable time-tracking

    (time-tracker tag       ; a symbol other than t or nil
                  option    ; :init, :end, :start, :start!, :stop, or :print?
                  ;; keyword arguments:
                  :times    ; non-nil if and only if option is :init
                  :interval ; may only be non-nil with :init option
                  :min-time ; may only be non-nil with :print? option
                  :msg      ; may only be non-nil with :init and :print? options

  Time-tracking is enabled by default. If the first argument is t or
  nil, then no other arguments are permitted and time-tracking is
  enabled or disabled, respectively. When time-tracking is disabled,
  nothing below takes place. Thus we assume time-tracking is enabled
  for the remainder of this discussion. We also assume below that the
  first argument is neither t nor nil.

  We introduce some basic notions about time-tracking. A given tag,
  such as :tau in the example above, might or might not currently be
  ``tracked'': :init causes the specified tag to be tracked, while
  :end causes the specified tag not to be tracked. If the tag is
  being tracked, the tag might or might not be ``active'': :start and
  :start! cause the tag to be in an active state, whie :stop causes
  the tag not to be active. Note that only tracked tags can be in an
  active or inactive state. For a tag that is being tracked, the
  ``accumulated time'' is the total time spent in an active state
  since the time that the tag most recently started being tracked,
  and the ``checkpoint list'' is a non-empty list of rational numbers
  specifying when printing may take place, as described below.

  We now consider each legal value for the second argument, or
  ``option'', for a call of time-tracker on a given tag.

  :Init specifies that the tag is to be tracked. It also establishes
  defaults for the operation of :print?, as described below, using
  the :times, :interval, and :msg keywords. Of these three, only
  :times is required, and its value must be a non-empty list of
  rational numbers specifying the initial checkpoint list for the
  tag. It is an error to specify :init if the tag is already being
  tracked. (So if you don't care whether or not the tag is already
  being tracked and you want to initiate tracking for that tag, use
  :end first.)

  :End specifies that if the tag is being tracked, then it should nstop
  being tracked. If the tag is not being tracked, then :end has no
  effect.

  :Start specifies that the tag is to be active. It is an error to
  specify :start if the tag is not being tracked or is already
  active.

  :Start! has the same effect as :start, except that it does not cause
  an error when the tag is already active. In effect, :start! first
  invokes :stop if the tag is already active, and then invokes start.

  :Stop specifies that the tag is to stop being active. It is an error
  to specify :stop if the tag is not being tracked or is not active.

  :Print? specifies that if the tag is being tracked (not necessarily
  active), then a message should be printed if a suitable condition
  is met. The nature of that message and that condition depend on the
  keyword options supplied with :print? as well as those supplied
  with the :init option that most recently initiated tracking.
  :Print? has no effect if the tag is not being tracked, except that
  if certain keyword values are checked if supplied with :print?:
  :min-time must be a rational number or nil, and :msg must be either
  a string, a true-list whose car is a string, or nil. The remainder
  of this documentation describes the :print? option in detail under
  the assumption that the tag is being tracked: first, giving the
  conditions under which it causes a message to be printed, and
  second, explaining what is printed.

  When :print? is supplied a non-nil value of :min-time, that value
  must be a rational number, in which case a message is printed if
  the accumulated time for the tag is at least that value. Otherwise
  a message is printed if the accumulated time is greater than or
  equal to the car of the checkpoint list for the tag. In that case,
  the tracking state for the tag is updated in the following two
  ways. First, the checkpoint list is scanned from the front and as
  long as the accumulated time is greater than or equal to the car of
  the remaining checkpoint list, that car is popped off the
  checkpoint list. Second, if the checkpoint list has been completely
  emptied and a non-nil :interval was supplied when tracking was most
  recently initiated with the :init option, then the checkpoint list
  is set to contain a single element, namely the sum of the
  accumulated time with that value of :interval.

  Finally, suppose the above criteria are met, so that :print? results
  in printing of a message. We describe below the message, msg, that
  is printed. Here is how it is printed (see [fmt]), where
  seconds-as-decimal-string is a string denoting the number of
  seconds of accumulated time for the tag, with two digits after the
  decimal point.

    (fms \"TIME-TRACKER-NOTE [~x0]: ~@1~|\"
         (list (cons #0 tag)
               (cons #1 msg)
               (cons #t seconds-as-decimal-string))
         (proofs-co state) state nil)

  The value of msg is the value of the :msg keyword supplied with
  :print?, if non-nil; else, the value of :msg supplied when most
  recently initialization with the :init option, if non-nil; and
  otherwise, the string \"~st s\" (the final ``s'' abbreviating the
  word ``seconds''). It is convenient to supply :msg as a call (msg
  str arg-0 arg-1 ... arg-k), where str is a string and each arg-i is
  the value to be associated with #\\i upon formatted printing (as
  with [fmt]) of the string str.")
 (TIME-TRACKER-TAU
  (TAU-SYSTEM)
  "Messages about expensive use of the [tau-system]

  This [documentation] topic explains messages printing by the theorem
  prover about the [tau-system], as follows.

  During a proof you may see a message such as the following.

    TIME-TRACKER-NOTE [:TAU]: Elapsed runtime in tau is 4.95 secs; see
    :DOC time-tracker-tau.

  Just below a proof summary you may see a message such as the
  following.

    TIME-TRACKER-NOTE [:TAU]: For the proof above, the total runtime spent
    in the tau system was 30.01 seconds.  See :DOC time-tracker-tau.

  Both of these messages are intended to let you know that certain
  prover heuristics (see [tau-system]) may be slowing proofs down
  more than they are helping. If you are satisfied with the prover's
  performance, you may ignore these messages or even turn them off by
  disabling time-tracking entirely (see [time-tracker]). Otherwise,
  here are some actions that you can take to solve such a performance
  problem.

  The simplest solution is to disable the tau-system, in either of the
  following equivalent ways.

    (in-theory (disable (:executable-counterpart tau-system)))
    (in-theory (disable (tau-system)))

  But if you want to leave the tau-system enabled, you could
  investigate the possibility is that the tau-system is causing an
  expensive :[logic]-mode function to be executed. You can diagnose
  that problem by observing the rewriter --- see [dmr] --- or by
  interrupting the system and getting a backtrace (see
  [set-debugger-enable]). A solution in that case is to disable the
  executable-counterpart of that function, for example in either of
  these equivalent ways.

    (in-theory (disable (:executable-counterpart foo)))
    (in-theory (disable (foo)))

  As a result, the tau-system will be weakened, but perhaps only
  negligibly.

  In either case above, you may prefer to provide :[in-theory] hints
  rather than :in-theory [events]; see [hints].

  A more sophisticated solution is to record values of the
  :[logic]-mode function in question, so that the tau-system will
  look up the necessary values rather than calling the function,
  whether or not the executable-counterpart of that function is
  enabled. Here is an example of a lemma that can provide such a
  solution. See [tau-system].

    (defthm lemma
      (and (foo 0)
           (foo 17)
           (foo t)
           (not (foo '(a b c))))
      :rule-classes :tau-system)")
 (TIPS
  (ACL2-TUTORIAL)
  "Some hints for using the ACL2 prover

  We present here some tips for using ACL2 effectively. Though this
  collection is somewhat ad hoc, we try to provide some organization,
  albeit somewhat artificial: for example, the sections overlap, and
  no particular order is intended. This material has been adapted by
  Bill Young from a very similar list for Nqthm that appeared in the
  conclusion of: ``Interaction with the Boyer-Moore Theorem Prover: A
  Tutorial Study Using the Arithmetic-Geometric Mean Theorem,'' by
  Matt Kaufmann and Paolo Pecchiari, CLI Technical Report 100, June,
  1995. We also draw from a similar list in Chapter 13 of ``A
  Computational Logic Handbook'' by R.S. Boyer and J S. Moore
  (Academic Press, 1988). We'll refer to this as ``ACLH'' below.

  These tips are organized roughly as follows.

      A. ACL2 Basics

      B. Strategies for creating events

      C. Dealing with failed proofs

      D. Performance tips

      E. Miscellaneous tips and knowledge

      F. Some things you DON'T need to know

  ACL2 BASICS

  A1. The ACL2 logic.
  This is a logic of total functions. For example, if A and B are less
  than or equal to each other, then we need to know something more in
  order to conclude that they are equal (e.g., that they are
  numbers). This kind of twist is important in writing definitions;
  for example, if you expect a function to return a number, you may
  want to apply the function [fix] or some variant (e.g., [nfix] or
  [ifix]) in case one of the formals is to be returned as the value.

  ACL2's notion of ordinals is important on occasion in supplying
  ``measure [hints]'' for the acceptance of recursive definitions. Be
  sure that your measure is really an ordinal. Consider the following
  example, which ACL2 fails to admit (as explained below).

    (defun cnt (name a i x)
      (declare (xargs :measure (+ 1 i)))
      (cond ((zp (+ 1 i))
             0)
            ((equal x (aref1 name a i))
             (1+ (cnt name a (1- i) x)))
            (t (cnt name a (1- i) x))))

  One might think that (+ 1 i) is a reasonable measure, since we know
  that (+ 1 i) is a positive integer in any recursive call of cnt,
  and positive integers are ACL2 ordinals (see [o-p]). However, the
  ACL2 logic requires that the measure be an ordinal unconditionally,
  not just under the governing assumptions that lead to recursive
  calls. An appropriate fix is to apply [nfix] to (+ 1 i), i.e., to
  use

    (declare (xargs :measure (nfix (+ 1 i))))

  in order to guarantee that the measure will always be an ordinal (in
  fact, a positive integer).

  For more about admissibility of recursive definitions, see [defun],
  in particular the discussion of termination.

  A2. Simplification.
  The ACL2 simplifier is basically a rewriter, with some ``[linear]
  arithmetic'' thrown in. One needs to understand the notion of
  conditional rewriting. See [rewrite].

  A3. Parsing of rewrite rules.

  ACL2 parses [rewrite] rules roughly as explained in ACLH, except that
  it never creates ``unusual'' rule classes. In ACL2, if you want a
  :[linear] rule, for example, you must specify :[linear] in the
  :[rule-classes]. See [rule-classes], and also see [rewrite] and see
  [linear].

  A4. Linear arithmetic.
  On this subject, it should suffice to know that the prover can
  handle truths about [+] and [-], and that [linear] rules (see
  above) are somehow ``thrown in the pot'' when the prover is doing
  such reasoning. Perhaps it's also useful to know that [linear]
  rules can have hypotheses, and that conditional rewriting is used
  to relieve those hypotheses.

  A5. Events.
  Over time, the expert ACL2 user will know some subtleties of its
  [events]. For example, [in-theory] [events] and [hints] are
  important, and they distinguish between a function and its
  executable counterpart.

  B. STRATEGIES FOR CREATING EVENTS

  In this section, we concentrate on the use of definitions and
  [rewrite] rules. There are quite a few kinds of rules allowed in
  ACL2 besides [rewrite] rules, though most beginning users probably
  won't usually need to be aware of them. See [rule-classes] for
  details. In particular, there is support for [congruence]
  rewriting. Also see [rune] (``RUle NamE'') for a description of the
  various kinds of rules in the system.

  B1. Use high-level strategy.
  Decompose theorems into ``manageable'' lemmas (admittedly,
  experience helps here) that yield the main result ``easily.'' It's
  important to be able to outline non-trivial proofs by hand (or in
  your head). In particular, avoid submitting goals to the prover
  when there's no reason to believe that the goal will be proved and
  there's no ``sense'' of how an induction argument would apply. It
  is often a good idea to avoid induction in complicated theorems
  unless you have a reason to believe that it is appropriate.

  B2. Write elegant definitions.
  Try to write definitions in a reasonably modular style, especially
  recursive ones. Think of ACL2 as a [programming] language whose
  procedures are definitions and lemmas, hence we are really
  suggesting that one follow good [programming] style (in order to
  avoid duplication of ``code,'' for example).

  When possible, complex functions are best written as compositions of
  simpler functions. The theorem prover generally performs better on
  primitive recursive functions than on more complicated recursions
  (such as those using accumulating parameters).

  Avoid large non-recursive definitions which tend to lead to large
  case explosions. If such definitions are necessary, try to prove
  all relevant facts about the definitions and then [disable] them.

  Whenever possible, avoid mutual recursion if you care to prove
  anything about your functions. The induction heuristics provide
  essentially no help with reasoning about mutually defined
  functions. Mutually recursive functions can usually be combined
  into a single function with a ``flag'' argument. (However, see
  [mutual-recursion-proof-example] for a small example of proof
  involving mutually recursive functions.)

  B3. Look for analogies.
  Sometimes you can easily edit sequences of lemmas into sequences of
  lemmas about analogous functions.

  B4. Write useful rewrite rules.
  As explained in A3 above, every [rewrite] rule is a directive to the
  theorem prover, usually to replace one [term] by another. The
  directive generated is determined by the syntax of the [defthm]
  submitted. Never submit a [rewrite] rule unless you have considered
  its interpretation as a proof directive.

  B4a. Rewrite rules should simplify.
  Try to write [rewrite] rules whose right-hand sides are in some
  sense ``simpler than'' (or at worst, are variants of) the left-hand
  sides. This will help to avoid infinite loops in the rewriter.

  B4b. Avoid needlessly expensive rules.
  Consider a rule whose conclusion's left-hand side (or, the entire
  conclusion) is a [term] such as (consp x) that matches many [term]s
  encountered by the prover. If in addition the rule has complicated
  hypotheses, this rule could slow down the prover greatly. Consider
  switching the conclusion and a complicated hypothesis (negating
  each) in that case.

  B4c. The ``Knuth-Bendix problem''.
  Be aware that left sides of [rewrite] rules should match the
  ``normalized forms'', where ``normalization'' (rewriting) is inside
  out. Be sure to avoid the use of nonrecursive function symbols on
  left sides of [rewrite] rules, except when those function symbols
  are [disable]d, because they tend to be expanded away before the
  rewriter would encounter an instance of the left side of the rule.
  Also assure that subexpressions on the left hand side of a rewrite
  rule are in simplified form; see [community-books] example
  books/demos/knuth-bendix-problem-1.lisp.

  B4d. Avoid proving useless rules.
  Sometimes it's tempting to prove a [rewrite] rule even before you
  see how it might find application. If the rule seems clean and
  important, and not unduly expensive, that's probably fine,
  especially if it's not too hard to prove. But unless it's either
  part of the high-level strategy or, on the other hand, intended to
  get the prover past a particular unproved goal, it may simply waste
  your time to prove the rule, and then clutter the database of rules
  if you are successful.

  B4e. State rules as strongly as possible, usually.
  It's usually a good idea to state a rule in the strongest way
  possible, both by eliminating unnecessary hypotheses and by
  generalizing subexpressions to variables.

  Advanced users may choose to violate this policy on occasion, for
  example in order to avoid slowing down the prover by excessive
  attempted application of the rule. However, it's a good rule of
  thumb to make the strongest rule possible, not only because it will
  then apply more often, but also because the rule will often be
  easier to prove (see also B6 below). New users are sometimes
  tempted to put in extra hypotheses that have a ``type restriction''
  appearance, without realizing that the way ACL2 handles (total)
  functions generally lets it handle trivial cases easily.

  B4f. Avoid circularity.
  A stack overflow in a proof attempt almost always results from
  circular rewriting. Use [brr] to investigate the stack; see
  [break-lemma]. Because of the complex heuristics, it is not always
  easy to define just when a [rewrite] will cause circularity. See
  the very good discussion of this topic in ACLH.

  See [break-lemma] for a trick involving use of the forms brr t and
  (cw-gstack) for inspecting loops in the rewriter.

  B4g. Remember restrictions on permutative rules.
  Any rule that permutes the variables in its left hand side could
  cause circularity. For example, the following axiom is
  automatically supplied by the system:

    (defaxiom commutativity-of-+
              (equal (+ x y) (+ y x))).

  This would obviously lead to dangerous circular rewriting if such
  ``permutative'' rules were not governed by a further restriction.
  The restriction is that such rules will not produce a [term] that
  is ``lexicographically larger than'' the original [term] (see
  [loop-stopper]). However, this sometimes prevents intended
  rewrites. See Chapter 13 of ACLH for a discussion of this problem.

  B5. Conditional vs. unconditional rewrite rules.
  It's generally preferable to form unconditional [rewrite] rules
  unless there is a danger of case explosion. That is, rather than
  pairs of rules such as

    (implies p
             (equal term1 term2))

  and

    (implies (not p)
             (equal term1 term3))

  consider:

    (equal term1
           (if p term2 term3))

  However, sometimes this strategy can lead to case explosions: [if]
  [term]s introduce cases in ACL2. Use your judgment. (On the subject
  of [if]: [cond], [case], [and], and [or] are macros that abbreviate
  [if] forms, and propositional functions such as [implies] quickly
  expand into [if] [term]s.)

  B6. Create elegant theorems.
  Try to formulate lemmas that are as simple and general as possible.
  For example, sometimes properties about several functions can be
  ``factored'' into lemmas about one function at a time. Sometimes
  the elimination of unnecessary hypotheses makes the theorem easier
  to prove, as does generalizing first by hand.

  B7. Use [defaxiom]s temporarily to explore possibilities.
  When there is a difficult goal that seems to follow immediately (by
  a :use hint or by rewriting) from some other lemmas, you can create
  those lemmas as [defaxiom] [events] (or, the application of
  [skip-proofs] to [defthm] [events]) and then double-check that the
  difficult goal really does follow from them. Then you can go back
  and try to turn each [defaxiom] into a [defthm]. When you do that,
  it's often useful to [disable] any additional [rewrite] rules that
  you prove in the process, so that the ``difficult goal'' will still
  be proved from its lemmas when the process is complete.

  Better yet, rather than disabling [rewrite] rules, use the [local]
  mechanism offered by [encapsulate] to make temporary rules
  completely [local] to the problem at hand. See [encapsulate] and
  see [local].

  B9. Use books.
  Consider using previously certified [books], especially for
  [arithmetic] reasoning. This cuts down the duplication of effort
  and starts your specification and proof effort from a richer
  foundation. See [community-books].

  C. DEALING WITH FAILED PROOFS

  C1. Look in proof output for goals that can't be further simplified.
  Use the ``[proof-tree]'' utility to explore the proof space.
  However, you don't need to use that tool to use the ``checkpoint''
  strategy. The idea is to think of ACL2 as a ``simplifier'' that
  either proves the theorem or generates some goal to consider. That
  goal is the first ``checkpoint,'' i.e., the first goal that does
  not further simplify. Exception: it's also important to look at the
  induction scheme in a proof by induction, and if induction seems
  appropriate, then look at the first checkpoint after the induction
  has begun.

  Consider whether the goal on which you focus is even a theorem.
  Sometimes you can execute it for particular values to find a
  counterexample.

  When looking at checkpoints, remember that you are looking for any
  reason at all to believe the goal is a theorem. So for example,
  sometimes there may be a contradiction in the hypotheses.

  Don't be afraid to skip the first checkpoint if it doesn't seem very
  helpful. Also, be willing to look a few lines up or down from the
  checkpoint if you are stuck, bearing in mind however that this
  practice can be more distracting than helpful.

  C2. Use the ``break rewrite'' facility.
  [Brr] and related utilities let you inspect the ``rewrite stack.''
  These can be valuable tools in large proof efforts. See
  [break-lemma] for an introduction to these tools, and see
  [break-rewrite] for more complete information.

  The break facility is especially helpful in showing you why a
  particular rewrite rule is not being applied.

  C3. Use induction hints when necessary. Of course, if you can define
  your functions so that they suggest the correct inductions to ACL2,
  so much the better! But for complicated inductions, induction
  [hints] are crucial. See [hints] for a description of :induct
  [hints].

  C4. Use the ``Proof Checker'' to explore.
  The [verify] command supplied by ACL2 allows one to explore problem
  areas ``by hand.'' However, even if you succeed in proving a
  conjecture with [verify], it is useful to prove it without using
  it, an activity that will often require the discovery of [rewrite]
  rules that will be useful in later proofs as well.

  C5. Don't have too much patience.
  Interrupt the prover fairly quickly when simplification isn't
  succeeding.

  C6. Simplify rewrite rules.
  When it looks difficult to relieve the hypotheses of an existing
  [rewrite] rule that ``should'' apply in a given setting, ask
  yourself if you can eliminate a hypothesis from the existing
  [rewrite] rule. If so, it may be easier to prove the new version
  from the old version (and some additional lemmas), rather than to
  start from scratch.

  C7. Deal with base cases first.
  Try getting past the base case(s) first in a difficult proof by
  induction. Usually they're easier than the inductive step(s), and
  rules developed in proving them can be useful in the inductive
  step(s) too. Moreover, it's pretty common that mistakes in the
  statement of a theorem show up in the base case(s) of its proof by
  induction.

  C8. Use :expand hints. Consider giving :expand [hints]. These are
  especially useful when a proof by induction is failing. It's almost
  always helpful to open up a recursively defined function that is
  supplying the induction scheme, but sometimes ACL2 is too timid to
  do so; or perhaps the function in question is [disable]d.

  D. PERFORMANCE TIPS

  D1. Disable rules.
  There are a number of instances when it is crucial to [disable]
  rules, including (often) those named explicitly in :use [hints].
  Also, [disable] recursively defined functions for which you can
  prove what seem to be all the relevant properties. The prover can
  spend significant time ``behind the scenes'' trying to open up
  recursively defined functions, where the only visible effect is
  slowness.

  D2. Turn off the ``break rewrite'' facility. Remember to execute :brr
  nil after you've finished with the ``break rewrite'' utility (see
  [break-rewrite]), in order to bring the prover back up to full
  speed.

  E. MISCELLANEOUS TIPS AND KNOWLEDGE

  E1. Order of application of rewrite rules.
  Keep in mind that the most recent [rewrite] rules in the [history]
  are tried first.

  E2. Relieving hypotheses is not full-blown theorem proving.
  Relieving hypotheses on [rewrite] rules is done by rewriting and
  [linear] arithmetic alone, not by case splitting or by other prover
  processes ``below'' simplification.

  E3. ``Free variables'' in rewrite rules.
  The set of ``free variables'' of a [rewrite] rule is defined to
  contain those variables occurring in the rule that do not occur in
  the left-hand side of the rule. It's often a good idea to avoid
  rules containing free variables because they are ``weak,'' in the
  sense that hypotheses containing such variables can generally only
  be proved when they are ``obviously'' present in the current
  context. This weakness suggests that it's important to put the most
  ``interesting'' (specific) hypotheses about free variables first,
  so that the right instances are considered. For example, suppose
  you put a very general hypothesis such as (consp x) first. If the
  context has several [term]s around that are known to be [consp]s,
  then x may be bound to the wrong one of them. For much more
  information on free variables, see [free-variables].

  E4. Obtaining information
  Use :[pl] foo to inspect [rewrite] rules whose left hand sides are
  applications of the function foo. Another approach to seeing which
  [rewrite] rules apply is to enter the [proof-checker] with
  [verify], and use the show-rewrites or sr command.

  E5. Consider esoteric rules with care.
  If you care to see [rule-classes] and peruse the list of subtopics
  (which will be listed right there in most versions of this
  [documentation]), you'll see that ACL2 supports a wide variety of
  rules in addition to :[rewrite] rules. Should you use them? This is
  a complex question that we are not ready to answer with any
  generality. Our general advice is to avoid relying on such rules as
  long as you doubt their utility. More specifically: be careful not
  to use conditional type prescription rules, as these have been
  known to bring ACL2 to its knees, unless you are conscious that you
  are doing so and have reason to believe that they are working well.

  F. SOME THINGS YOU DON'T NEED TO KNOW

  Most generally: you shouldn't usually need to be able to predict too
  much about ACL2's behavior. You should mainly just need to be able
  to react to it.

  F1. Induction heuristics.
  Although it is often important to read the part of the prover's
  output that gives the induction scheme chosen by the prover, it is
  not necessary to understand how the prover made that choice.
  (Granted, advanced users may occasionally gain minor insight from
  such knowledge. But it's truly minor in many cases.) What is
  important is to be able to tell it an appropriate induction when it
  doesn't pick the right one (after noticing that it doesn't). See C3
  above.

  F2. Heuristics for expanding calls of recursively defined functions.
  As with the previous topic, the important thing isn't to understand
  these heuristics but, rather, to deal with cases where they don't
  seem to be working. That amounts to supplying :expand [hints] for
  those calls that you want opened up, which aren't. See also C8
  above.

  F3. The ``waterfall''.
  As discussed many times already, a good strategy for using ACL2 is
  to look for checkpoints (goals stable under simplification) when a
  proof fails, perhaps using the [proof-tree] facility. Thus, it is
  reasonable to ignore almost all the prover output, and to avoid
  pondering the meaning of the other ``processes'' that ACL2 uses
  besides simplification (such as elimination, cross-fertilization,
  generalization, and elimination of irrelevance). For example, you
  don't need to worry about prover output that mentions ``type
  reasoning'' or ``abbreviations,'' for example.")
 (TOGGLE-PC-MACRO
  (PROOF-CHECKER)
  "Change an ordinary macro command to an atomic macro, or vice-versa

    Example:
    (toggle-pc-macro pro)

  Change pro from an atomic macro command to an ordinary one (or
  vice-versa, if pro happens to be an ordinary macro command)

    General Form:
    (toggle-pc-macro name &optional new-tp)

  If name is an atomic macro command then this turns it into an
  ordinary one, and vice-versa. However, if new-tp is supplied and
  not nil, then it should be the new type (the symbol macro or
  atomic-macro, in any package), or else there is no change.")
 (TOP-LEVEL
  (MISCELLANEOUS)
  "Evaluate a top-level form as a function body

  Some forms, such as calls of [with-local-stobj], are illegal when
  supplied directly to the ACL2 top-level loop. The macro top-level
  provides a workaround in such cases, by defining a temporary
  :[program]-mode function named top-level-fn whose only argument is
  state and whose body is the form to be evaluated. When the call of
  top-level returns there is no change to the existing ACL2 logical
  [world]. The following edited log illustrates all of the above
  points.

    ACL2 !>:pbt 0
              0  (EXIT-BOOT-STRAP-MODE)
    ACL2 !>(defstobj st fld)

    Summary
    Form:  ( DEFSTOBJ ST ...)
    Rules: NIL
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
     ST
    ACL2 !>(top-level
            (with-local-stobj
             st
             (mv-let (result st)
                     (let ((st (update-fld 17 st)))
                       (mv (fld st) st))
                     result)))
    17
    ACL2 !>(top-level
            (with-local-stobj
             st
             (mv-let (result st)
                     (let ((st (update-fld 17 st)))
                       (mv (fld st) st))
                     (mv nil result state))))
     17
    ACL2 !>(top-level
            (with-local-stobj
             st
             (mv-let (result st)
                     (let ((st (update-fld 17 st)))
                       (mv (fld st) st))
                     (mv result state))))
    (17 <state>)
    ACL2 !>:pbt 0
              0  (EXIT-BOOT-STRAP-MODE)
       d      1:x(DEFSTOBJ ST FLD)
    ACL2 !>

  Each argument of top-level after the first should be a [declare] form
  or [documentation] string, as the list of these extra arguments
  will be placed before the first argument when forming the
  definition of top-level-fn.

  [Top-level] generates a call of [ld], so that the value returned is
  printed in the normal way. The call of [top-level] itself actually
  evaluates to (mv erp :invisible state), where erp is t if and only
  evaluation of the call of top-level-fn caused an error, which
  normally results in no additional output. (For details about
  ``caused an error'', see the definition of top-level in the ACL2
  source code, and see [ld-error-action].)")
 (TRACE
  (DEBUGGING)
  "Tracing functions in ACL2

  ACL2 provides a trace utility, [trace$], with corresponding reverse
  operation [untrace$]. These can be used without any dependence on
  the underlying Lisp utility, and are the tracing utilities of
  choice in ACL2; see [trace$] and see [untrace$].

  However, for advanced users we note that the underlying host Lisp may
  also provide a trace utility, trace, and corresponding untrace.
  Moreover, these have been modified in the case that the host Lisp
  is GCL, Allegro CL, or CCL (OpenMCL), to provide limited support
  for :entry, :exit, and perhaps :cond keywords, to hide certain
  large data structures (world, enabled structure, rewrite constant),
  and to trace executable counterparts. See source files
  *-trace.lisp. For the above Lisps, you can invoke the original
  trace and untrace by invoking old-trace and old-untrace,
  respectively, in raw Lisp rather than in the normal ACL2 loop.


Subtopics

  [Break-on-error]
      Break when encountering a hard or soft error caused by ACL2

  [Close-trace-file]
      Stop redirecting trace output to a file

  [Open-trace-file]
      Redirect trace output to a file

  [Set-trace-evisc-tuple]
      Set the trace evisc tuple

  [Trace!]
      Trace the indicated functions after creating an active trust tag

  [Trace$]
      Trace function evaluations

  [Untrace$]
      Untrace functions

  [Wet]
      Evaluate a form and print subsequent error trace")
 (TRACE!
  (TRACE)
  "Trace the indicated functions after creating an active trust tag

    Example:
    (trace! (fact :native t :entry *foo*))

    General Form:
    (trace! spec1 ... specn)

  where the speci are suitable arguments to [trace$].

  See [trace$] for a way to trace function calls. Some calls of trace$
  are potentially dangerous and thus require a trust tag (see
  [defttag]). But it can be a nuisance to call defttag explicitly, so
  the trace! macro is provided in order to avoid the need to do that:
  trace! automatically defines a (temporary) trust tag.

  See [untrace$] for how to undo the effect of [trace!].

  The evaluation of a trace! form causes temporary creation of an
  active trust tag, :trace!, followed by the corresponding trace$
  form. The trust tag will disappear when the call to trace!
  completes. Even though trace! will remove its temporary ttag, it
  will still print a ``TTAG NOTE'', which indicates that the session
  is suspect. See [defttag] and see [ttags-seen] for further remarks
  on this issue.

  Because of the active trust tag, it is possible to do things with
  trace! that are useful but without logical justification. Below is
  an example of how to use trace! to cause a function call to change
  [state], even though the function does not take [state] as a
  parameter.

    ACL2 !>(defun fact (n)
             (declare (xargs :guard (natp n) :verify-guards nil))
             (if (zp n)
                 1
               (* n (fact (1- n)))))

    The admission of FACT is trivial, using the relation O< (which is known
    to be well-founded on the domain recognized by O-P) and the measure
    (ACL2-COUNT N).  We observe that the type of FACT is described by the
    theorem (AND (INTEGERP (FACT N)) (< 0 (FACT N))).  We used the :compound-
    recognizer rule ZP-COMPOUND-RECOGNIZER and primitive type reasoning.

    Summary
    Form:  ( DEFUN FACT ...)
    Rules: ((:COMPOUND-RECOGNIZER ZP-COMPOUND-RECOGNIZER)
            (:FAKE-RUNE-FOR-TYPE-SET NIL))
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     FACT
    ACL2 !>(defun update-foo (n value state)
             (declare (xargs :stobjs state :verify-guards nil))
             (assign foo (cons (cons n value) (@ foo))))

    Since UPDATE-FOO is non-recursive, its admission is trivial.  We observe
    that the type of UPDATE-FOO is described by the theorem
    (AND (CONSP (UPDATE-FOO N VALUE STATE))
         (TRUE-LISTP (UPDATE-FOO N VALUE STATE))).
    We used primitive type reasoning.

    (UPDATE-FOO * * STATE) => (MV * * STATE).

    Summary
    Form:  ( DEFUN UPDATE-FOO ...)
    Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     UPDATE-FOO
    ACL2 !>(trace! (fact :exit (update-foo n value state)))

    TTAG NOTE: Adding ttag :TRACE! from the top level loop.
     ((FACT :EXIT (UPDATE-FOO N VALUE STATE)))
    ACL2 !>(assign foo nil)
     NIL
    ACL2 !>(fact 7)
    1> (ACL2_*1*_ACL2::FACT 7)
      2> (ACL2_*1*_ACL2::FACT 6)
        3> (ACL2_*1*_ACL2::FACT 5)
          4> (ACL2_*1*_ACL2::FACT 4)
            5> (ACL2_*1*_ACL2::FACT 3)
              6> (ACL2_*1*_ACL2::FACT 2)
                7> (ACL2_*1*_ACL2::FACT 1)
                  8> (ACL2_*1*_ACL2::FACT 0)
                  <8 NIL
                <7 NIL
              <6 NIL
            <5 NIL
          <4 NIL
        <3 NIL
      <2 NIL
    <1 NIL
    5040
    ACL2 !>(@ foo)
    ((7 . 5040)
     (6 . 720)
     (5 . 120)
     (4 . 24)
     (3 . 6)
     (2 . 2)
     (1 . 1)
     (0 . 1))
    ACL2 !>(verify-guards fact)

    Computing the guard conjecture for FACT....

    The guard conjecture for FACT is trivial to prove, given the :compound-
    recognizer rules NATP-COMPOUND-RECOGNIZER and ZP-COMPOUND-RECOGNIZER,
    primitive type reasoning and the :type-prescription rule FACT.  FACT
    is compliant with Common Lisp.

    Summary
    Form:  ( VERIFY-GUARDS FACT)
    Rules: ((:COMPOUND-RECOGNIZER NATP-COMPOUND-RECOGNIZER)
            (:COMPOUND-RECOGNIZER ZP-COMPOUND-RECOGNIZER)
            (:FAKE-RUNE-FOR-TYPE-SET NIL)
            (:TYPE-PRESCRIPTION FACT))
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     FACT
    ACL2 !>(assign foo nil)
     NIL
    ACL2 !>(fact 7)
    1> (ACL2_*1*_ACL2::FACT 7)
      2> (FACT 7)
        3> (FACT 6)
          4> (FACT 5)
            5> (FACT 4)
              6> (FACT 3)
                7> (FACT 2)
                  8> (FACT 1)
                    9> (FACT 0)
                    <9 NIL
                  <8 NIL
                <7 NIL
              <6 NIL
            <5 NIL
          <4 NIL
        <3 NIL
      <2 NIL
    <1 NIL
    5040
    ACL2 !>(@ foo)
    ((7 . 5040)
     (7 . 5040)
     (6 . 720)
     (5 . 120)
     (4 . 24)
     (3 . 6)
     (2 . 2)
     (1 . 1)
     (0 . 1))
    ACL2 !>(trace! (fact :exit (progn (update-foo n value state)
                                      (cons traced-fn values))))

    TTAG NOTE: Adding ttag :TRACE! from the top level loop.
     ((FACT :EXIT (PROGN (UPDATE-FOO N VALUE STATE)
                         (CONS TRACED-FN VALUES))))
    ACL2 !>(assign foo nil)
     NIL
    ACL2 !>(fact 7)
    1> (ACL2_*1*_ACL2::FACT 7)
      2> (FACT 7)
        3> (FACT 6)
          4> (FACT 5)
            5> (FACT 4)
              6> (FACT 3)
                7> (FACT 2)
                  8> (FACT 1)
                    9> (FACT 0)
                    <9 (FACT 1)
                  <8 (FACT 1)
                <7 (FACT 2)
              <6 (FACT 6)
            <5 (FACT 24)
          <4 (FACT 120)
        <3 (FACT 720)
      <2 (FACT 5040)
    <1 (ACL2_*1*_ACL2::FACT 5040)
    5040
    ACL2 !>(@ foo)
    ((7 . 5040)
     (7 . 5040)
     (6 . 720)
     (5 . 120)
     (4 . 24)
     (3 . 6)
     (2 . 2)
     (1 . 1)
     (0 . 1))
    ACL2 !>

  Finally, we remark that using trace! can cause errors in situations
  where tracing is automatically suspended and re-introduced. This is
  likely to be a rare occurrence, but consider the following example.

    (trace! (lexorder :native t :multiplicity 1))
    (certify-book \"foo\" 0 t)

  If the certify-book causes compilation, you may see an error such as
  the following.

    ACL2 Error in (CERTIFY-BOOK \"foo\" ...):  The keyword :NATIVE cannot
    be used in a trace spec unless there is an active trust tag.  The trace
    spec (LEXORDER :NATIVE T :MULTIPLICITY 1) is thus illegal.  Consider
    using trace! instead.  The complete list of keywords that require a
    trust tag for use in a trace spec is: (:NATIVE :DEF :MULTIPLICITY).

  This error is harmless. The function will appear, when calling
  (trace$), to remain traced, but in fact there will be no tracing
  behavior, so you may want to call [untrace$] on the function symbol
  in question.")
 (TRACE$
  (TRACE)
  "Trace function evaluations

    Examples:
    (trace$ foo bar)     ; trace foo and bar
    (trace$)             ; return current trace info (no new tracing specified)
    (trace$ (foo :entry  ; trace foo, printing first actual parameter upon entry
                 (car arglist)))
    (trace$ (foo :exit   ; trace foo, using fmt to print upon exit
                 (:fmt (msg \"Exiting FOO with ~x0\"
                            value))))
    (trace$ (foo :native t))

    General Forms:
    (trace$ spec1 spec2 ... specn) ; n >= 1
    (trace$)

  where the speci are trace specs, as described below.

  Trace$ installs alternate code for the indicated functions that
  prints information upon entry to, and exit from, calls of the
  functions. For an alternate tracing utility used for educational
  purposes in {ACL2s | http://acl2s.ccs.neu.edu/acl2s/doc/}, see
  community book books/misc/trace-star.lisp.

  From a logical perspective all trace printing is a fiction. (But see
  [trace!] for a way to get around this and modify [state].) For a
  related fiction, see [cw]. (Trace$) returns the list of
  currently-active trace specs, while the application of trace$ to at
  least one argument returns the list of its arguments that are
  successfully acted on.

  Output from [trace$] normally goes to the screen, i.e., to
  [standard-co]. But it can be redirected to a file; see
  [open-trace-file].

  See [untrace$] for how to undo the effect of [trace$]. Also see
  [trace] for mention of modifications made to raw Lisp trace, which
  is accessible (as described below) using the :native keyword.

  Note that when trace$ is applied to a function without option
  :native, that function's declarations and documentation are
  discarded.

  Next, we introduce tracing with some examples. After that, we provide
  reference documentation for individual trace options allowed in a
  trace spec. Note that although our example focuses on user-defined
  functions, trace$ can also be applied to built-in functions, though
  perhaps only system hackers should take advantage of this
  observation.

  We begin by illustrating the simplest sort of trace spec: a function
  symbol. For example, the form (trace$ foo bar) directs the tracing
  of functions foo and bar by virtue of the two trace specs foo and
  bar. We can see tracing in action by first defining:

    (defun f (x)
      (cons x x))

    (defun g (x)
      (list (f x) 3))

  The following log then illustrates tracing of these two functions.
  Notice that before [guard]s have been verified, the so-called
  ``*1*'' functions (sometimes called ``executable counterpart
  functions'' or ``logic functions'') are called but the
  corresponding raw Lisp functions are not; but after guard
  verification of f, the raw Lisp counterpart of f is indeed called.
  (See [guard] and see [guard-evaluation-examples-log].)

    ACL2 !>(trace$ f g)
     ((F) (G))
    ACL2 !>(g 7)
    1> (ACL2_*1*_ACL2::G 7)
      2> (ACL2_*1*_ACL2::F 7)
      <2 (ACL2_*1*_ACL2::F (7 . 7))
    <1 (ACL2_*1*_ACL2::G ((7 . 7) 3))
    ((7 . 7) 3)
    ACL2 !>(verify-guards f)

    Computing the guard conjecture for F....

    The guard conjecture for F is trivial to prove.  F is compliant with
    Common Lisp.

    Summary
    Form:  ( VERIFY-GUARDS F)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     F
    ACL2 !>(g 7)
    1> (ACL2_*1*_ACL2::G 7)
      2> (ACL2_*1*_ACL2::F 7)
        3> (F 7)
        <3 (F (7 . 7))
      <2 (ACL2_*1*_ACL2::F (7 . 7))
    <1 (ACL2_*1*_ACL2::G ((7 . 7) 3))
    ((7 . 7) 3)
    ACL2 !>

  The following example introduces trace specs other than function
  symbols. Consider the following definition.

    (defun fact (n)
      (declare (xargs :guard (natp n)))
      (if (zp n)
          1
        (* n (fact (1- n)))))

  The following log illustrates the use of trace options :cond
  (condition for entering trace), :entry (what to print on entry),
  and :exit (what to print on exit). The reason for two calls on
  argument 4 is that we are seeing such calls for the executable
  counterpart of fact and also its raw Lisp function.

    ACL2 !>(trace$ (fact :cond (evenp (car arglist))
                         :entry (cons 'factorial-call arglist)
                         :exit (car values)))
     ((FACT :COND (EVENP (CAR ARGLIST))
            :ENTRY (CONS 'FACTORIAL-CALL ARGLIST)
            :EXIT (CAR VALUES)))
    ACL2 !>(fact 4)
    1> (FACTORIAL-CALL 4)
      2> (FACTORIAL-CALL 4)
        3> (FACTORIAL-CALL 2)
          4> (FACTORIAL-CALL 0)
          <4 1
        <3 2
      <2 24
    <1 24
    24
    ACL2 !>

  Notice that VALUES above is the list of all values returned, which is
  a one-element list unless [mv] return is used, as illustrated in
  the following example, after defining: (defun two-vals (x) (mv x
  7)).

    ACL2 !>(trace$ two-vals)
     ((TWO-VALS))
    ACL2 !>(two-vals 3)
    1> (ACL2_*1*_ACL2::TWO-VALS 3)
    <1 (ACL2_*1*_ACL2::TWO-VALS 3 7)
    (3 7)
    ACL2 !>(verify-guards two-vals)

    Computing the guard conjecture for TWO-VALS....

    The guard conjecture for TWO-VALS is trivial to prove, given the :executable-
    counterpart of CONS.  TWO-VALS is compliant with Common Lisp.

    Summary
    Form:  ( VERIFY-GUARDS TWO-VALS)
    Rules: ((:EXECUTABLE-COUNTERPART CONS))
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     TWO-VALS
    ACL2 !>(two-vals 3)
    1> (ACL2_*1*_ACL2::TWO-VALS 3)
      2> (TWO-VALS 3)
      <2 (TWO-VALS 3 7)
    <1 (ACL2_*1*_ACL2::TWO-VALS 3 7)
    (3 7)
    ACL2 !>

  We now document all of the options that may appear in a trace spec. A
  trace spec with options is of the form

    (fn :kwd1 val1 :kwd2 val2 ... :kwdn valn)

  and here we document each legal keyword :kwdi and corresponding
  expected value vali. Note that trace$ is intended primarily for
  functions defined in the ACL2 command loop (see [lp]). If you want
  to trace a function that is defined in raw Lisp, then you can use
  option :native (see below), but then many other trace$ options will
  not be available to you: all of them except :multiplicity and
  :native itself will be passed directly to the trace utility of the
  underlying Common Lisp.

  :COND, :ENTRY, and :EXIT

  Introduction. For each of these three options, the value is a
  (user-level) term, except that for :entry and :exit the value can
  be of the form (:fmt u) or (:fmt! u), where u is a user-level term.
  We skip these two latter cases for now and return to them later.
  Then the indicated term is evaluated as indicated in the next
  paragraph, and if the :cond term is omitted or evaluates to
  non-nil, then the value of the :entry term is printed on entry and
  the value of the :exit term is printed on exit. By default, where
  :entry is omitted or is specified as nil, the value printed for
  :entry is the list obtained by consing the calling function symbol
  onto the list of actual parameters: in the notation described
  below, this is (cons TRACED-FN ARGLIST). Similarly, the default for
  printing at the exit of the function call, i.e. where :exit is
  omitted or is specified as nil, is (cons TRACED-FN VALUES) where
  VALUES is the list of values returned as described below.

  Available Variables. In the evaluations of the term described below
  upon a call of fn, each formal parameter of the definition of fn
  will be bound to the corresponding actual of the call, the variable
  ARGLIST will be bound to the list of actuals, and the variable
  TRACED-FN will be bound to the function being called (either fn or
  its executable counterpart function; see above). Additionally in
  the case of :exit, the variable VALUES will be bound to the
  multiple values returned (thus, a one-element list if [mv] is not
  used in the return). Also for :exit, we bind VALUE to the logical
  value returned, i.e., to the suitable list of values returned in
  the [mv] case and otherwise to the single value returned. So in the
  mv case, VALUE is the same as VALUES, and otherwise VALUE is (car
  VALUES). Other than these variables and [state], no other variable
  may occur in the term, whose value must be a single non-[stobj]
  value, unless there is an active trust tag (see [defttag]).

  Now suppose fn is called. First: If :cond is supplied and the result
  of evaluating the :cond term is nil, then no tracing is done.
  Otherwise tracing proceeds as follows. First the :entry form is
  evaluated, and the result is printed. Then the call of fn is
  evaluated. Finally the :exit term is evaluated and the result is
  printed. As indicated above, the default for the :entry term if
  omitted or explicitly nil is (cons TRACED-FN ARGLIST), and the
  default for the :exit term if omitted or explicitly nil is (cons
  TRACED-FN VALUES).

  Note that if the function has a formal named ARGLIST, then ARGLIST
  will nevertheless refer to the entire list of formals, not the
  single formal named ARGLIST; similarly for TRACED-FN, and
  additionally for VALUE and VALUES in the case of :exit.

  As mentioned above, for each of :entry and :exit, a value of nil
  specifies the default behavior. If you really want a value of nil,
  use a non-nil form that evaluates to nil, for example (car nil) or
  'nil. However, for :cond a value of nil means what it says: do not
  evaluate the :entry or :exit forms.

  Finally we discuss the case that the :entry or :exit term is of the
  form (:fmt u) or (:fmt! u). In these cases, the term u is evaluated
  as described above to produce a value, say msg, but instead of
  printing msg directly, ACL2 calls fmt1 using the string \"~@0\" and
  the alist that binds just character #\\0 to msg. The following
  example illustrates this point, where fact is defined as above.
  Also see [fmt]. Note that (msg string . vals) produces a value
  suitable for a \"~@\" directive to the fmt family of print functions.

    ACL2 !>(trace$
            (fact
             :entry (:fmt (msg \"Tracing ~x0 on ~x1\" traced-fn arglist))
             :exit (car values)))
     ((FACT :ENTRY (:FMT (MSG \"Tracing ~x0 on ~x1\" TRACED-FN ARGLIST))
            :EXIT (CAR VALUES)))
    ACL2 !>(fact 3)
    1> Tracing ACL2_*1*_ACL2::FACT on (3)
      2> Tracing FACT on (3)
        3> Tracing FACT on (2)
          4> Tracing FACT on (1)
            5> Tracing FACT on (0)
            <5 1
          <4 1
        <3 2
      <2 6
    <1 6
    6
    ACL2 !>

  If :fmt! is used instead of :fmt, then indentation as is the prefix
  string, \"n> \" or \"<n \". The following example illustrates the use
  of :fmt!.

    ACL2 !>(trace$
            (fact
             :entry (:fmt! (msg \"Tracing ~x0 on ~x1\" traced-fn arglist))
             :exit (:fmt! (msg \"From input ~x0: ~x1\"
                               (car arglist) (car values)))))
     ((FACT :ENTRY (:FMT! (MSG \"Tracing ~x0 on ~x1\" TRACED-FN ARGLIST))
            :EXIT (:FMT! (MSG \"From input ~x0: ~x1\" (CAR ARGLIST)
                              (CAR VALUES)))))
    ACL2 !>(fact 3)
    Tracing ACL2_*1*_ACL2::FACT on (3)
    Tracing FACT on (3)
    Tracing FACT on (2)
    Tracing FACT on (1)
    Tracing FACT on (0)
    From input 0: 1
    From input 1: 1
    From input 2: 2
    From input 3: 6
    From input 3: 6
    6
    ACL2 !>

  Here is the same example, with user-managed indentation.

    ACL2 !>(trace$
            (fact
             :entry (:fmt! (msg \"~t0Tracing ~x1 on ~x2\"
                                (+ 3 (* 2 (@ trace-level)))
                                traced-fn arglist))
             :exit (:fmt! (msg \"~t0From input ~x1: ~x2\"
                               (1+ (* 2 (@ trace-level)))
                               (car arglist) (car values)))))
     ((FACT :ENTRY (:FMT! (MSG \"~t0Tracing ~x1 on ~x2\"
                               (+ 3 (* 2 (@ TRACE-LEVEL)))
                               TRACED-FN ARGLIST))
            :EXIT (:FMT! (MSG \"~t0From input ~x1: ~x2\"
                              (1+ (* 2 (@ TRACE-LEVEL)))
                              (CAR ARGLIST)
                              (CAR VALUES)))))
    ACL2 !>(fact 3)
       Tracing ACL2_*1*_ACL2::FACT on (3)
         Tracing FACT on (3)
           Tracing FACT on (2)
             Tracing FACT on (1)
               Tracing FACT on (0)
               From input 0: 1
             From input 1: 1
           From input 2: 2
         From input 3: 6
       From input 3: 6
    6
    ACL2 !>

  ADVANCED OPTIONS (alphabetical list)

  :COMPILE

  The tracing of fn installs a substitute definition of fn that prints
  trace information. If the :compile option is omitted or has value
  :same, then the new definition will be compiled if and only if the
  existing definition is already compiled. Otherwise, the new
  definition will be compiled exactly when the value of :compile is
  not nil.

  :DEF, :MULTIPLICITY

  ACL2's trace$ mechanism often needs to know the number of outputs of
  a traced function, in the sense of [mv]. If you trace a function
  that was not defined inside the ACL2 loop (hence you are using the
  :native option), or if you provide an alternative definition using
  option :def (see below) and the new definition changes the number
  of values returned, then a natural number value for :multiplicity
  informs the trace utility of the number of expected outputs of the
  function being traced. In the case that :native is supplied, the
  effect of a non-nil :multiplicity value depends on the host Lisp.
  In the case of Lisps for which ACL2 uses the built-in Lisp
  mechanism for returning multiple values (see [mv]), which are CCL
  and threaded SBCL as of June, 2010, :multiplicity is not needed and
  is ignored with :native t. For GCL and Allegro CL, :multiplicity is
  used to generate a suitable :exit form if the :exit keyword was not
  already supplied. For the other Lisps, the :multiplicity value is
  treated essentially as 1 whether it is supplied or not, because we
  do not know how to pass suitable information based on this value to
  the host Lisp's built-in tracing mechanism.

  Note that even supplying a :multiplicity option does not change the
  meaning of the variable values. See the discussion of :native
  below.

  A useful option can be to supply a definition as the value of :def.
  (Again, note that if :native is used, then all options other than
  :multiplicity are passed directly to the underlying Lisp; in
  particular, :def will have no effect with :native except in the
  unlikely case that the raw Lisp provides some sort of support for
  :def.) Note that this definition should be like a [defun] form, but
  without the leading defun symbol; and it should define the function
  symbol being traced, with the same formal parameter list. However,
  tracing of the so-called ``executable counterpart'' of a function
  (sometimes referred to as the ``*1* function'', for evaluation in
  the ACL2 loop; see [guards] for related discussion) is not
  sensitive to the :def option; rather, if a function has an
  executable counterpart then that executable counterpart is traced.

  :EVISC-TUPLE

  The printing described above is, by default, done using the current
  default trace evisc-tuple, which can be set using
  [set-trace-evisc-tuple] (for the shape of this tuple, see
  [evisc-tuple]); see [set-trace-evisc-tuple]. This tuple is based by
  default on the raw Lisp variables *print-level* and *print-length*,
  and will hide the ACL2 [world] and handle [stobj]s appropriately.
  You may override this default by supplying an evisc tuple with the
  :evisc-tuple argument in your trace spec. Be careful to supply a
  valid evisc-tuple, or you may get a raw Lisp error!

  A special value, :print, is useful if you are doing system hacking
  that can produce objects that are not valid ACL2 objects, such as
  raw Lisp arrays or objects in supporting packages not visible in
  the ACL2 read-eval-print loop. If you supply :evisc-tuple :print,
  then the printing described above will be done with raw Lisp
  printing rather than ACL2 printing: specifically, with (format
  *trace-output* \"s%\" x), where x is the value to be printed.

  A second special value for :evisc-tuple, :no-print, avoids printing
  the values of the :entry and :exit forms (or their defaults, if not
  specified). This option is of use for side effects; for an example
  see community book books/misc/wet.lisp.

  Note that if :evisc-tuple X is supplied, then the form X will be
  evaluated before the function body is entered. You can thus pull
  some tricks to print extra information before the :entry form is
  evaluated, for example as follows for a factorial function, fact.

    ACL2 !>(trace$ (fact :evisc-tuple
                         (prog2$ (cw \"~|**** HERE IS CW ****~|\")
                                 nil)))
     ((FACT :EVISC-TUPLE (PROG2$ (CW \"~|**** HERE IS CW ****~|\")
                                 NIL)))
    ACL2 !>(fact 3)
    **** HERE IS CW ****
    1> (ACL2_*1*_ACL2::FACT 3)
    **** HERE IS CW ****
      2> (ACL2_*1*_ACL2::FACT 2)
    **** HERE IS CW ****
        3> (ACL2_*1*_ACL2::FACT 1)
    **** HERE IS CW ****
          4> (ACL2_*1*_ACL2::FACT 0)
          <4 (ACL2_*1*_ACL2::FACT 1)
        <3 (ACL2_*1*_ACL2::FACT 1)
      <2 (ACL2_*1*_ACL2::FACT 2)
    <1 (ACL2_*1*_ACL2::FACT 6)
    6
    ACL2 !>

  :FORMALS

  Normally ACL2 can figure out the formals for a given function. This
  is always the case for functions defined in the ACL2 command loop
  and when option :def is supplied. If neither of these cases applies
  then you can still trace a function (even without using the :native
  option) by supplying option :notinline :fncall, but you will still
  need to supply the list of formal parameters. The value of the
  :formals option should be the list of formals in this case.

  :HIDE

  The default value for this advanced option is t, which causes
  [stobj]s and the logical [world] to be printed as single symbols,
  along with certain large structures of interest to developers
  (rewrite contants, enabled structures, and event and command index
  structures). If however the value nil is supplied, then this
  default behavior is defeated. In that case, you can still arrange
  to print the logical world as a symbol and to print [stobj]s
  without breaking the trace printing: see [set-trace-evisc-tuple]
  for how to do this globally, or similarly use the :evisc-tuple
  option to trace$ to do this with a single trace spec. Note however
  that with value nil specified for :hide, such use of an evisc-tuple
  will not deal properly with local stobjs (see [with-local-stobj])
  or stobjs bound by [stobj-let], or with the aforementioned large
  structures other than the logical [world].

  :NATIVE

  If :native is supplied with a non-nil value, then the trace spec is
  passed to the native Lisp trace (after removing the :native
  option). A trust tag (see [defttag]) is required in order to use
  this option, because no syntactic check is made on the :cond,
  :entry, or :exit forms -- arbitrary raw Lisp may occur in them!

  Note that by ``native Lisp trace'' we mean the currently installed
  trace. As discussed briefly elsewhere (see [trace]), ACL2 has
  modified that trace to be more useful if the underlying host Lisp
  is GCL, Allegro CL, or CCL (OpenMCL). If you need the original
  trace utility supplied for those Lisps, quit the ACL2 loop with :q
  and call old-trace and old-untrace in raw Lisp where you would
  otherwise call trace and untrace. Note that the original trace
  utility supplied with a given Lisp will not hide the ACL2 logical
  [world] or give special treatment to [stobj]s.

  It is important to understand that if :native t is specified, then
  all other options are interpreted by the native Lisp trace. For
  example, that trace probably has no understanding of the use of
  :fmt described above for :entry or :exit. Indeed, the native trace
  may not even accept any of :cond, :entry or :exit, let alone any of
  the advanced options! Moreover, if :native t is specified, then
  even a :multiplicity option does not provide the meaning of the
  variable values that one might desire. In GCL for example, in the
  case of an [mv] return of a function defined only in raw Lisp (not
  in ACL2), this variable will be bound to a list containing only the
  first result.

  :NOTINLINE

  By default, a new definition installed by trace$ will include a
  notinline declaration so that recursive calls will always be
  traced. To avoid this declaration, supply value nil.

  A special value for :notinline, :fncall, will cause the traced
  function to call its original definition. Without this special
  value, the new installed definition for the traced function will
  include the body of the original definition. This :fncall behavior
  is the default only in the following cases:

    * for functions whose definitions are built into ACL2;
    * for functions that have been added (using a trust tag, an advanced
      feature, so most users can probably ignore this case) to either
      of the [state] global variables program-fns-with-raw-code or
      logic-fns-with-raw-code;
    * for [memoize]d functions.

  The legal values for :notinline are t (the default for other than the
  cases displayed above), nil, and :fncall.

  Remarks.

  (1) If some of the given trace specs have errors, then trace$ will
  generally print error messages for those but will still process
  those that do not have errors. The value returned will indicate the
  trace specs that were processed successfully.

  (2) If you certify or include a book that redundantly defines a
  function that is currently traced, then tracing behavior may
  disappear if a compiled definition is installed for the function or
  its in-the-logic (so-called `*1*') counterpart.

  (3) Some predefined functions are called during tracing. In order to
  avoid infinite loops, such calls of traced predefined functions
  will be made using the original predefined functions, not using
  their code installed by trace$.")
 (TRANS
  (MACROS)
  "Print the macroexpansion of a form

    Examples:
    :trans (list a b c)
    :trans (caddr x)
    :trans (cond (p q) (r))

  This function takes one argument, an alleged term, and translates it,
  expanding the macros in it completely. Either an error is caused or
  the formal meaning of the term is printed. We also print the
  ``output signature'' which indicates how many results are returned
  and which are single-threaded objects. For example, a term that
  returns one ordinary object (e.g., an object other than [state] or
  a user-defined single-threaded object (see [defstobj])) has the
  output signature

    => *

  A term that returns the single-threaded object STATE has the output
  signature

    => STATE

  and a term that returns four results might have the output signature

    => (MV $MEM * * STATE)

  This signature indicates that the first result is the (user defined)
  single-threaded object $MEM, that the next two results are
  ordinary, and that the last result is STATE.

  See [trans!] for a corresponding command that does not enforce
  restrictions of single-threaded objects.

  It is sometimes more convenient to use [trans1] which is like trans
  but which only does top-level macroexpansion.

  For more, see [term].")
 (TRANS!
  (MACROS)
  "Print the macroexpansion of a form without single-threadedness
  concerns

    Examples:
    :trans! (list a b c)
    :trans! (append x state)

  :Trans! is identical to :[trans], except that unlike :trans, :trans!
  ignores single-threadedness restrictions. Thus, the second form
  above is legal for :trans!. Also see [trans] and see [trans1].")
 (TRANS1
  (MACROS)
  "Print the one-step macroexpansion of a form

    Examples:
    :trans1 (list a b c)
    :trans1 (caddr x)
    :trans1 (cond (p q) (r))

  This function takes one argument, an alleged term, and expands the
  top-level macro in it for one step only. Either an error is caused,
  which happens when the form is not a call of a macro, or the result
  is printed. Also see [trans], which translates the given form
  completely.")
 (TRUE-LIST-LISTP
  (LISTS TRUE-LISTP ACL2-BUILT-INS)
  "Recognizer for true (proper) lists of true lists

  True-list-listp is the function that checks whether its argument is a
  list that ends in, or equals, nil, and furthermore, all of its
  elements have that property. Also see [true-listp].

  Function: <true-list-listp>

    (defun true-list-listp (x)
           (declare (xargs :guard t))
           (cond ((atom x) (eq x nil))
                 (t (and (true-listp (car x))
                         (true-list-listp (cdr x))))))")
 (TRUE-LISTP
  (LISTS ACL2-BUILT-INS)
  "Recognizer for proper (null-terminated) lists

  True-listp is the function that checks whether its argument is a list
  that ends in, or equals, nil.

For a discussion of whether requring lists to be nil-terminated is
right for you, see [std::strict-list-recognizers].
  Function: <true-listp>

    (defun true-listp (x)
           (declare (xargs :guard t))
           (if (consp x)
               (true-listp (cdr x))
               (eq x nil)))


Subtopics

  [True-list-listp]
      Recognizer for true (proper) lists of true lists")
 (TRUNCATE
  (NUMBERS ACL2-BUILT-INS)
  "Division returning an integer by truncating toward 0

    Example Forms:
    ACL2 !>(truncate 14 3)
    4
    ACL2 !>(truncate -14 3)
    -4
    ACL2 !>(truncate 14 -3)
    -4
    ACL2 !>(truncate -14 -3)
    4
    ACL2 !>(truncate -15 -3)
    5
    ACL2 !>(truncate 10/4 3/4)
    3

  (Truncate i j) is the result of taking the quotient of i and j and
  dropping the fraction. For example, the quotient of -14 by 3 is -4
  2/3, so dropping the fraction 2/3, we obtain a result for (truncate
  -14 3) of -4.

  The [guard] for (truncate i j) requires that i and j are rational
  ([real], in ACL2(r)) numbers and j is non-zero.

  Truncate is a Common Lisp function. However, note that unlike Common
  Lisp, the ACL2 truncate function returns only a single value, Also
  see [nonnegative-integer-quotient], which is appropriate for
  integers and may simplify reasoning, unless a suitable arithmetic
  library is loaded, but be less efficient for evaluation on concrete
  objects.

  Function: <truncate>

    (defun truncate (i j)
           (declare (xargs :guard (and (real/rationalp i)
                                       (real/rationalp j)
                                       (not (eql j 0)))))
           (let* ((q (* i (/ j)))
                  (n (numerator q))
                  (d (denominator q)))
                 (cond ((= d 1) n)
                       ((>= n 0)
                        (nonnegative-integer-quotient n d))
                       (t (- (nonnegative-integer-quotient (- n)
                                                           d))))))")
 (TRUST-TAG (POINTERS) "See [defttag].")
 (TTAG (POINTERS) "See [defttag].")
 (TTAGS-SEEN
  (MISCELLANEOUS)
  "List some declared trust tags (ttags)

    General Forms:
    :ttags-seen
    (ttags-seen)

  Suppose the output is as follows.

    (T NIL)
    (FOO \"/home/bob/bar.lisp\"
         \"/home/cindy/bar.lisp\")
    Warning: This output is minimally trustworthy (see :DOC TTAGS-SEEN).

  This output indicates that the current logical [world] has seen the
  declaration of trust tag T at the top-level (see [defttag]) and the
  declaration of trust tag FOO in the two books included from the
  listed locations. The warning emphasizes that this command cannot
  be used to validate the ``purity'' of an ACL2 session, because
  using a ttag renders enough power to hide from this or any other
  command the fact that the ttag was ever declared.

  As discussed elsewhere (see [defttag]), the only reliable way to
  validate the ``purity'' of a session is to watch for ``TTAG NOTE''
  output.

  Another shortcoming of this command is that it only checks the
  current logical [world] for ttag declarations. For example, one
  could execute a [defttag] event; then use [progn!] and
  [set-raw-mode] to replace system functions with corrupt definitions
  or to introduce inconsistent axioms in the [ground-zero] [world];
  and finally, execute :[ubt!] 1 to remove all evidence of the ttag
  in the [world] while leaving in place the corrupt definitions or
  axioms. The base world is now tainted, meaning we could prove nil
  or certify a book that proves nil, but the resulting session or
  book would contain no trace of the ttag that tainted it!

  Despite shortcomings, this command might be useful to system hackers.
  It also serves to illustrate the inherent flaw in asking a session
  whether or how it is ``tainted'', justifying the ``TTAG NOTE''
  approach (see [defttag]).")
 (TTHM
  (HISTORY MEASURE)
  "The [measure] (termination) theorem for a given function symbol

    Example Forms:
    :tthm FN
    (tthm 'FN) ; equivalent to the above

  where FN is a function symbol. This shows the [measure] (termination)
  theorem for FN. More precisely, evaluation of a call of this macro
  --- pronounced ``tee-thumb'' --- either results in an error or
  returns an [error-triple] whose value component is the user-level
  (untranslated) version of that termination theorem. Also see
  [lemma-instance] for discussion of a way to specify this theorem as
  a :termination-theorem prover hint.

  Technical note: a corresponding evaluation that provides a
  (translated) [termp] is: (termination-theorem 'FN state).")
 (TTREE
  (MISCELLANEOUS)
  "Tag-trees

  Many low-level ACL2 functions take and return ``tag trees'' or
  ``ttrees'' (pronounced ``tee-trees'') which contain various useful
  bits of information such as the lemmas used, the linearize
  assumptions made, etc.

  Abstractly a tag-tree represents a list of sets, each member set
  having a name given by one of the ``tags'' (which are symbols) of
  the ttree. The elements of the set named tag are all of the objects
  tagged tag in the tree. You are invited to browse the source code.
  Definitions of primitives are labeled with the comment ``; Note:
  Tag-tree primitive''.

  The rewriter, for example, takes a term and a ttree (among other
  things), and returns a new term, term', and new ttree, ttree'.
  Term' is equivalent to term (under the current assumptions) and the
  ttree' is an extension of ttree. If we focus just on the set
  associated with the tag LEMMA in the ttrees, then the set for
  ttree' is the extension of that for ttree obtained by unioning into
  it all the [rune]s used by the rewrite. The set associated with
  LEMMA can be obtained by (tagged-objects 'LEMMA ttree).")
 (TUTORIAL1-TOWERS-OF-HANOI
  (ANNOTATED-ACL2-SCRIPTS)
  "The Towers of Hanoi Example

  This example was written almost entirely by Bill Young of
  Computational Logic, Inc.

  We will formalize and prove a small theorem about the famous ``Towers
  of Hanoi'' problem. This problem is illustrated by the following
  picture.

       |        |        |
       |        |        |
      ---       |        |
     -----      |        |
    -------     |        |

       A        B        C

  We have three pegs --- a, b, and c --- and n disks of different
  sizes. The disks are all initially on peg a. The goal is to move
  all disks to peg c while observing the following two rules.

  1. Only one disk may be moved at a time, and it must start and finish
  the move as the topmost disk on some peg;

  2. A disk can never be placed on top of a smaller disk.

  Let's consider some simple instances of this problem. If n = 1, i.e.,
  only one disk is to be moved, simply move it from a to c. If n = 2,
  i.e., two disks are to be moved, the following sequence of moves
  suffices: move from a to b, move from a to c, move from b to c.

  In this doc topic we will show an ACL2 function that generates a
  suitable list of moves for a tower of n disks. Then we will use
  ACL2 to prove that the number of moves is (- (expt 2 n) 1). For an
  ACL2 script that proves the correctness of (a version of) this
  function, see the community book \"misc/hanoi.lisp\" in the books
  directory of your ACL2 sources.

  In general, this problem has a straightforward recursive solution.
  Suppose that we desire to move n disks from a to c, using b as the
  intermediate peg. For the basis, we saw above that we can always
  move a single disk from a to c. Now if we have n disks and assume
  that we can solve the problem for n-1 disks, we can move n disks as
  follows. First, move n-1 disks from a to b using c as the
  intermediate peg; move the single disk from a to c; then move n-1
  disks from b to c using a as the intermediate peg.

  In ACL2, we can write a function that will return the sequence of
  moves. One such function is as follows. Notice that we have two
  base cases. If (zp n) then n is not a positive integer; we treat
  that case as if n were 0 and return an empty list of moves. If n is
  1, then we return a list containing the single appropriate move.
  Otherwise, we return the list containing exactly the moves dictated
  by our recursive analysis above.

    (defun move (a b)
      (list 'move a 'to b))

    (defun hanoi (a b c n)
      (if (zp n)
          nil
        (if (equal n 1)
            (list (move a c))
          (append (hanoi a c b (1- n))
                  (cons (move a c)
                        (hanoi b a c (1- n)))))))

  Notice that we give hanoi four arguments: the three pegs, and the
  number of disks to move. It is necessary to supply the pegs
  because, in recursive calls, the roles of the pegs differ. In any
  execution of the algorithm, a given peg will sometimes be the
  source of a move, sometimes the destination, and sometimes the
  intermediate peg.

  After submitting these functions to ACL2, we can execute the hanoi
  function on various specific arguments. For example:

    ACL2 !>(hanoi 'a 'b 'c 1)
    ((MOVE A TO C))

    ACL2 !>(hanoi 'a 'b 'c 2)
    ((MOVE A TO B)
     (MOVE A TO C)
     (MOVE B TO C))

    ACL2 !>(hanoi 'a 'b 'c 3)
    ((MOVE A TO C)
     (MOVE A TO B)
     (MOVE C TO B)
     (MOVE A TO C)
     (MOVE B TO A)
     (MOVE B TO C)
     (MOVE A TO C))

  From the algorithm it is clear that if it takes m moves to transfer n
  disks, it will take (m + 1 + m) = 2m + 1 moves for n+1 disks. From
  some simple calculations, we see that we need the following number
  of moves in specific cases:

    Disks   0   1   2   3   4   5   6   7  ...
    Moves   0   1   3   7  15  31  63  127 ...

  The pattern is fairly clear. To move n disks requires (2^n - 1)
  moves. Let's attempt to use ACL2 to prove that fact.

  First of all, how do we state our conjecture? Recall that hanoi
  returns a list of moves. The length of the list (given by the
  function len) is the number of moves required. Thus, we can state
  the following conjecture.

    (defthm hanoi-moves-required-first-try
      (equal (len (hanoi a b c n))
             (1- (expt 2 n))))

  When we submit this to ACL2, the proof attempt fails. Along the way
  we notice subgoals such as:

    Subgoal *1/1'
    (IMPLIES (NOT (< 0 N))
             (EQUAL 0 (+ -1 (EXPT 2 N)))).

  This tells us that the prover is considering cases that are
  uninteresting to us, namely, cases in which n might be negative.
  The only cases that are really of interest are those in which n is
  a non-negative natural number. Therefore, we revise our theorem as
  follows:

    (defthm hanoi-moves-required
      (implies (and (integerp n)
                    (<= 0 n))    ;; n is at least 0
               (equal (len (hanoi a b c n))
                      (1- (expt 2 n)))))

  and submit it to ACL2 again.

  Again the proof fails. Examining the proof script we encounter the
  following text. (How did we decide to focus on this goal? Some
  information is provided in ACLH, and the ACL2 documentation on
  [tips] may be helpful. But the simplest answer is: this was the
  first goal suggested by the ``[proof-tree]'' tool below the start
  of the proof by induction. See [proof-tree].)

    Subgoal *1/5''
    (IMPLIES (AND (INTEGERP N)
                  (< 0 N)
                  (NOT (EQUAL N 1))
                  (EQUAL (LEN (HANOI A C B (+ -1 N)))
                         (+ -1 (EXPT 2 (+ -1 N))))
                  (EQUAL (LEN (HANOI B A C (+ -1 N)))
                         (+ -1 (EXPT 2 (+ -1 N)))))
             (EQUAL (LEN (APPEND (HANOI A C B (+ -1 N))
                                 (CONS (LIST 'MOVE A 'TO C)
                                       (HANOI B A C (+ -1 N)))))
                    (+ -1 (* 2 (EXPT 2 (+ -1 N))))))

  It is difficult to make much sense of such a complicated goal.
  However, we do notice something interesting. In the conclusion is a
  [term] of the following shape.

    (LEN (APPEND ... ...))

  We conjecture that the length of the [append] of two lists should be
  the sum of the lengths of the lists. If the prover knew that, it
  could possibly have simplified this [term] earlier and made more
  progress in the proof. Therefore, we need a [rewrite] rule that
  will suggest such a simplification to the prover. The appropriate
  rule is:

    (defthm len-append
      (equal (len (append x y))
             (+ (len x) (len y))))

  We submit this to the prover, which proves it by a straightforward
  induction. The prover stores this lemma as a [rewrite] rule and
  will subsequently (unless we [disable] the rule) replace [term]s
  matching the left hand side of the rule with the appropriate
  instance of the [term] on the right hand side.

  We now resubmit our lemma hanoi-moves-required to ACL2. On this
  attempt, the proof succeeds and we are done.

  One bit of cleaning up is useful. We needed the hypotheses that:

    (and (integerp n) (<= 0 n)).

  This is an awkward way of saying that n is a natural number; natural
  is not a primitive data type in ACL2. We could define a function
  naturalp, but it is somewhat more convenient to define a macro as
  follows:

    (defmacro naturalp (x)
      (list 'and (list 'integerp x)
                    (list '<= 0 x)))

  Subsequently, we can use (naturalp n) wherever we need to note that a
  quantity is a natural number. See [defmacro] for more information
  about ACL2 macros. With this macro, we can reformulate our theorem
  as follows:

    (defthm hanoi-moves-required
      (implies (naturalp n)
               (equal (len (hanoi a b c n))
                      (1- (expt 2 n))))).

  Another interesting (but much harder) theorem asserts that the list
  of moves generated by our hanoi function actually accomplishes the
  desired goal while following the rules. When you can state and
  prove that theorem, you'll be a very competent ACL2 user.

  By the way, the name ``Towers of Hanoi'' derives from a legend that a
  group of Vietnamese monks works day and night to move a stack of 64
  gold disks from one diamond peg to another, following the rules set
  out above. We're told that the world will end when they complete
  this task. From the theorem above, we know that this requires
  18,446,744,073,709,551,615 moves:

    ACL2 !>(1- (expt 2 64))
    18446744073709551615
    ACL2 !>

  We're guessing they won't finish any time soon.")
 (TUTORIAL2-EIGHTS-PROBLEM
  (ANNOTATED-ACL2-SCRIPTS)
  "The Eights Problem Example

  This example was written almost entirely by Bill Young of
  Computational Logic, Inc.

  This simple example was brought to our attention as one that Paul
  Jackson has solved using the NuPrl system. The challenge is to
  prove the theorem:

    for all n > 7, there exist naturals i and j such that: n = 3i + 5j.

  In ACL2, we could phrase this theorem using quantification. However
  we will start with a constructive approach, i.e., we will show that
  values of i and j exist by writing a function that will construct
  such values for given n. Suppose we had a function (split n) that
  returns an appropriate pair (i . j). Our theorem would be as
  follows:

    (defthm split-splits
      (let ((i (car (split n)))
            (j (cdr (split n))))
        (implies (and (integerp n)
                      (< 7 n))
                 (and (integerp i)
                      (<= 0 i)
                      (integerp j)
                      (<= 0 j)
                      (equal (+ (* 3 i) (* 5 j))
                             n)))))

  That is, assuming that n is a natural number greater than 7, (split
  n) returns values i and j that are in the appropriate relation to
  n.

  Let's look at a few cases:

     8 = 3x1 + 5x1;    11 = 3x2 + 5x1;     14 = 3x3 + 5x1;   ...
     9 = 3x3 + 5x0;    12 = 3x4 + 5x0;     15 = 3x5 + 5x0;   ...
    10 = 3x0 + 5x2;    13 = 3x1 + 5x2;     16 = 3x2 + 5x2;   ...

  Maybe you will have observed a pattern here; any natural number
  larger than 10 can be obtained by adding some multiple of 3 to 8,
  9, or 10. This gives us the clue to constructing a proof. It is
  clear that we can write split as follows:

    (defun bump-i (x)
      ;; Bump the i component of the pair
      ;; (i . j) by 1.
      (cons (1+ (car x)) (cdr x)))

    (defun split (n)
      ;; Find a pair (i . j) such that
      ;; n = 3i + 5j.
      (if (or (zp n) (< n 8))
          nil ;; any value is really reasonable here
        (if (equal n 8)
            (cons 1 1)
          (if (equal n 9)
              (cons 3 0)
            (if (equal n 10)
                (cons 0 2)
              (bump-i (split (- n 3))))))))

  Notice that we explicitly compute the values of i and j for the cases
  of 8, 9, and 10, and for the degenerate case when n is not a
  natural or is less than 8. For all naturals greater than n, we
  decrement n by 3 and bump the number of 3's (the value of i) by 1.
  We know that the recursion must terminate because any integer value
  greater than 10 can eventually be reduced to 8, 9, or 10 by
  successively subtracting 3.

  Let's try it on some examples:

    ACL2 !>(split 28)
    (6 . 2)

    ACL2 !>(split 45)
    (15 . 0)

    ACL2 !>(split 335)
    (110 . 1)

  Finally, we submit our theorem split-splits, and the proof succeeds.
  In this case, the prover is ``smart'' enough to induct according to
  the pattern indicated by the function split.

  For completeness, we'll note that we can state and prove a quantified
  version of this theorem. We introduce the notion split-able to mean
  that appropriate i and j exist for n.

    (defun-sk split-able (n)
      (exists (i j)
              (equal n (+ (* 3 i) (* 5 j)))))

  Then our theorem is given below. Notice that we prove it by observing
  that our previous function split delivers just such an i and j (as
  we proved above).

    (defthm split-splits2
      (implies (and (integerp n)
                    (< 7 n))
               (split-able n))
      :hints ((\"Goal\" :use (:instance split-able-suff
                                      (i (car (split n)))
                                      (j (cdr (split n)))))))

  Unfortunately, understanding the mechanics of the proof requires
  knowing something about the way [defun-sk] works. See [defun-sk] or
  see [Tutorial4-Defun-Sk-Example] for more on that subject.")
 (TUTORIAL3-PHONEBOOK-EXAMPLE
  (ANNOTATED-ACL2-SCRIPTS)
  "A Phonebook Specification

  The other tutorial examples are rather small and entirely self
  contained. The present example is rather more elaborate, and makes
  use of a feature that really adds great power and versatility to
  ACL2, namely: the use of previously defined collections of lemmas,
  in the form of ``[books].''

  This example was written almost entirely by Bill Young of
  Computational Logic, Inc.

  This example is based on one developed by Ricky Butler and Sally
  Johnson of NASA Langley for the PVS system, and subsequently
  revised by Judy Crow, et al, at SRI. It is a simple phone book
  specification. We will not bother to follow their versions closely,
  but will instead present a style of specification natural for ACL2.

  The idea is to model an electronic phone book with the following
  properties.

      Our phone book will store the phone numbers of a city.

      It must be possible to retrieve a phone number, given a name.

      It must be possible to add and delete entries.

  Of course, there are numerous ways to construct such a model. A
  natural approach within the Lisp/ACL2 context is to use
  ``association lists'' or ``alists.'' Briefly, an alist is a list of
  pairs (key . value) associating a value with a key. A phone book
  could be an alist of pairs (name . pnum). To find the phone number
  associated with a given name, we merely search the alist until we
  find the appropriate pair. For a large city, such a linear list
  would not be efficient, but at this point we are interested only in
  modeling the problem, not in deriving an efficient implementation.
  We could address that question later by proving our alist model
  equivalent, in some desired sense, to a more efficient data
  structure.

  We could build a theory of alists from scratch, or we can use a
  previously constructed theory (book) of alist definitions and
  facts. By using an existing book, we build upon the work of others,
  start our specification and proof effort from a much richer
  foundation, and hopefully devote more of our time to the problem at
  hand. Unfortunately, it is not completely simple for the new user
  to know what [books] are available and what they contain. We hope
  later to improve the documentation of the growing collection of
  [community-books] that are typically downloaded with ACL2; for now,
  the reader is encouraged to look in the README.html file in the
  books' top-level directory. For present purposes, the beginning
  user can simply take our word that a book exists containing useful
  alist definitions and facts. These definitions and lemmas can be
  introduced into the current theory using the [command]:

    (include-book \"data-structures/alist-defthms\" :dir :system)

  This book has been ``certified,'' which means that the definitions
  and lemmas have been mechanically checked and stored in a safe
  manner. (See [books] and see [include-book] for details.)

  Including this book makes available a collection of functions
  including the following:

    (ALISTP A)    ; is A an alist (actually a primitive ACL2 function)

    (BIND X V A)  ; associate the key X with value V in alist A

    (BINDING X A) ; return the value associated with key X in alist A

    (BOUND? X A)  ; is key X associated with any value in alist A

    (DOMAIN A)    ; return the list of keys bound in alist A

    (RANGE A)     ; return the list of values bound to keys in alist A

    (REMBIND X A) ; remove the binding of key X in alist A

  Along with these function definitions, the book also provides a
  number of proved lemmas that aid in simplifying expressions
  involving these functions. (See [rule-classes] for the way in which
  lemmas are used in simplification and rewriting.) For example,

    (defthm bound?-bind
      (equal (bound? x (bind y v a))
             (or (equal x y)
                 (bound? x a))))

  asserts that x will be bound in (bind y v a) if and only if: either x
  = y or x was already bound in a. Also,

    (defthm binding-bind
      (equal (binding x (bind y v a))
             (if (equal x y)
                 v
               (binding x a))))

  asserts that the resulting binding will be v, if x = y, or the
  binding that x had in a already, if not.

  Thus, the inclusion of this book essentially extends our
  specification and reasoning capabilities by the addition of new
  operations and facts about these operations that allow us to build
  further specifications on a richer and possibly more intuitive
  foundation.

  However, it must be admitted that the use of a book such as this has
  two potential limitations:

      the definitions available in a book may not be ideal for your
      particular problem;

      it is (extremely) likely that some useful facts (especially,
      [rewrite] rules) are not available in the book and will have to
      be proved.

  For example, what is the value of binding when given a key that is
  not bound in the alist? We can find out by examining the function
  definition. Look at the definition of the binding function (or any
  other defined function), using the :[pe] command:

    ACL2 !>:pe binding
       d     33  (INCLUDE-BOOK
                      \"/slocal/src/acl2/v1-9/books/public/alist-defthms\")

    >V d          (DEFUN BINDING (X A)
                         \"The value bound to X in alist A.\"
                         (DECLARE (XARGS :GUARD (ALISTP A)))
                         (CDR (ASSOC-EQUAL X A)))

  This tells us that binding was introduced by the given [include-book]
  form, is currently [disable]d in the current theory, and has the
  definition given by the displayed [defun] form. We see that binding
  is actually defined in terms of the primitive [assoc-equal]
  function. If we look at the definition of [assoc-equal]:

    ACL2 !>:pe assoc-equal
     V     -489  (DEFUN ASSOC-EQUAL (X ALIST)
                        (DECLARE (XARGS :GUARD (ALISTP ALIST)))
                        (COND ((ENDP ALIST) NIL)
                              ((EQUAL X (CAR (CAR ALIST)))
                               (CAR ALIST))
                              (T (ASSOC-EQUAL X (CDR ALIST)))))

  we can see that [assoc-equal] returns nil upon reaching the end of an
  unsuccessful search down the alist. So binding returns (cdr nil) in
  that case, which is nil. Notice that we could also have
  investigated this question by trying some simple examples.

    ACL2 !>(binding 'a nil)
    NIL

    ACL2 !>(binding 'a (list (cons 'b 2)))
    NIL

  These definitions aren't ideal for all purposes. For one thing,
  there's nothing that keeps us from having nil as a value bound to
  some key in the alist. Thus, if binding returns nil we don't always
  know if that is the value associated with the key in the alist, or
  if that key is not bound. We'll have to keep that ambiguity in mind
  whenever we use binding in our specification. Suppose instead that
  we wanted binding to return some error string on unbound keys.
  Well, then we'd just have to write our own version of binding. But
  then we'd lose much of the value of using a previously defined
  book. As with any specification technique, certain tradeoffs are
  necessary.

  Why not take a look at the definitions of other alist functions and
  see how they work together to provide the ability to construct and
  search alists? We'll be using them rather heavily in what follows
  so it will be good if you understand basically how they work.
  Simply start up ACL2 and execute the form shown earlier, but
  substituting our directory name for the top-level ACL2 directory
  with yours. Alternatively, just

    (include-book \"data-structures/alist-defthms\" :dir :system)

  Then, you can use :[pe] to look at function definitions. You'll soon
  discover that almost all of the definitions are built on
  definitions of other, more primitive functions, as binding is built
  on [assoc-equal]. You can look at those as well, of course, or in
  many cases visit their documentation.

  The other problem with using a predefined book is that it will seldom
  be ``sufficiently complete,'' in the sense that the collection of
  [rewrite] rules supplied won't be adequate to prove everything we'd
  like to know about the interactions of the various functions. If it
  were, there'd be no real reason to know that binding is built on
  top of [assoc-equal], because everything we'd need to know about
  binding would be nicely expressed in the collection of theorems
  supplied with the book. However, that's very seldom the case.
  Developing such a collection of rules is currently more art than
  science and requires considerable experience. We'll encounter
  examples later of ``missing'' facts about binding and our other
  alist functions. So, let's get on with the example.

  Notice that alists are mappings of keys to values; but, there is no
  notion of a ``type'' associated with the keys or with the values.
  Our phone book example, however, does have such a notion of types;
  we map names to phone numbers. We can introduce these ``types'' by
  explicitly defining them, e.g., names are strings and phone numbers
  are integers. Alternatively, we can partially define or axiomatize
  a recognizer for names without giving a full definition. A way to
  safely introduce such ``constrained'' function symbols in ACL2 is
  with the [encapsulate] form. For example, consider the following
  form.

    (encapsulate
      ;; Introduce a recognizer for names and give a ``type'' lemma.
      (((namep *) => *))
      ;;
      (local (defun namep (x)
               ;; This declare is needed to tell
               ;; ACL2 that we're aware that the
               ;; argument x is not used in the body
               ;; of the function.
               (declare (ignore x))
               t))
      ;;
      (defthm namep-booleanp
        (booleanp (namep x))))

  This [encapsulate] form introduces the new function namep of one
  argument and one result and constrains (namep x) to be Boolean, for
  all inputs x. More generally, an encapsulation establishes an
  environment in which functions can be defined and theorems and
  rules added without necessarily introducing those functions,
  theorems, and rules into the environment outside the encapsulation.
  To be admissible, all the events in the body of an encapsulate must
  be admissible. But the effect of an encapsulate is to assume only
  the non-local events.

  The first ``argument'' to encapsulate, ((namep (x) t)) above,
  declares the intended [signature]s of new function symbols that
  will be ``exported'' from the encapsulation without definition. The
  [local] [defun] of name defines name within the encapsulation
  always to return t. The defthm event establishes that namep is
  Boolean. By making the defun local but the defthm non-local this
  encapsulate constrains the undefined function namep to be Boolean;
  the admissibility of the encapsulation establishes that there
  exists a Boolean function (namely the constant function returning
  t).

  We can subsequently use namep as we use any other Boolean function,
  with the proviso that we know nothing about it except that it
  always returns either t or nil. We use namep to ``recognize'' legal
  keys for our phonebook alist.

  We wish to do something similar to define what it means to be a legal
  phone number. We submit the following form to ACL2:

    (encapsulate
      ;; Introduce a recognizer for phone numbers.
      (((pnump *) => *))
      ;;
      (local (defun pnump (x)
               (not (equal x nil))))
      ;;
      (defthm pnump-booleanp
        (booleanp (pnump x)))
      ;;
      (defthm nil-not-pnump
        (not (pnump nil)))).

  This introduces a Boolean-valued recognizer pnump, with the
  additional proviso that the constant nil is not a pnump. We impose
  this restriction to guarantee that we'll never bind a name to nil
  in our phone book and thereby introduce the kind of ambiguity
  described above regarding the use of binding.

  Now a legal phone book is an alist mapping from nameps to pnumps. We
  can define this as follows:

    (defun name-phonenum-pairp (x)
      ;; Recognizes a pair of (name . pnum).
      (and (consp x)
           (namep (car x))
           (pnump (cdr x))))

    (defun phonebookp (l)
      ;; Recognizes a list of such pairs.
      (if (not (consp l))
          (null l)
        (and (name-phonenum-pairp (car l))
             (phonebookp (cdr l)))))

  Thus, a phone book is really a list of pairs (name . pnum). Notice
  that we have not assumed that the keys of the phone book are
  distinct. We'll worry about that question later. (It is not always
  desirable to insist that the keys of an alist be distinct. But it
  may be a useful requirement for our specific example.)

  Now we are ready to define some of the functions necessary for our
  phonebook example. The functions we need are:

    (IN-BOOK? NM BK)          ; does NM have a phone number in BK

    (FIND-PHONE NM BK)        ; find NM's phone number in phonebook BK

    (ADD-PHONE NM PNUM BK)    ; give NM the phone number PNUM in BK

    (CHANGE-PHONE NM PNUM BK) ; change NM's phone number to PNUM in BK

    (DEL-PHONE NM PNUM)       ; remove NM's phone number from BK

  Given our underlying theory of alists, it is easy to write these
  functions. But we must take care to specify appropriate
  ``boundary'' behavior. Thus, what behavior do we want when, say, we
  try to change the phone number of a client who is not currently in
  the book? As usual, there are numerous possibilities; here we'll
  assume that we return the phone book unchanged if we try anything
  ``illegal.''

  Possible definitions of our phone book functions are as follows.
  (Remember, an include-book form such as the ones shown earlier must
  be executed in order to provide definitions for functions such as
  bound?.)

    (defun in-book? (nm bk)
      (bound? nm bk))

    (defun find-phone (nm bk)
      (binding nm bk))

    (defun add-phone (nm pnum bk)
      ;; If nm already in-book?, make no change.
      (if (in-book? nm bk)
          bk
        (bind nm pnum bk)))

    (defun change-phone (nm pnum bk)
      ;; Make a change only if nm already has a phone number.
      (if (in-book? nm bk)
          (bind nm pnum bk)
        bk))

    (defun del-phone (nm bk)
      ;; Remove the binding from bk, if there is one.
      (rembind nm bk))

  Notice that we don't have to check whether a name is in the book
  before deleting, because rembind is essentially a no-op if nm is
  not bound in bk.

  In some sense, this completes our specification. But we can't have
  any real confidence in its correctness without validating our
  specification in some way. One way to do so is by proving some
  properties of our specification. Some candidate properties are:

      1. A name will be in the book after we add it.

      2. We will find the most recently added phone number for a client.

      3. If we change a number, we'll find the change.

      4. Changing and then deleting a number is the same as just deleting.

      5. A name will not be in the book after we delete it.

  Let's formulate some of these properties. The first one, for example,
  is:

    (defthm add-in-book
      (in-book? nm (add-phone nm pnum bk))).

  You may wonder why we didn't need any hypotheses about the ``types''
  of the arguments. In fact, add-in-book is really expressing a
  property that is true of alists in general, not just of the
  particular variety of alists we are dealing with. Of course, we
  could have added some extraneous hypotheses and proved:

    (defthm add-in-book
      (implies (and (namep nm)
                    (pnump pnum)
                    (phonebookp bk))
               (in-book? nm (add-phone nm pnum bk)))),

  but that would have yielded a weaker and less useful lemma because it
  would apply to fewer situations. In general, it is best to state
  lemmas in the most general form possible and to eliminate
  unnecessary hypotheses whenever possible. The reason for that is
  simple: lemmas are usually stored as rules and used in later
  proofs. For a lemma to be used, its hypotheses must be relieved
  (proved to hold in that instance); extra hypotheses require extra
  work. So we avoid them whenever possible.

  There is another, more important observation to make about our lemma.
  Even in its simpler form (without the extraneous hypotheses), the
  lemma add-in-book may be useless as a [rewrite] rule. Notice that
  it is stated in terms of the non-recursive functions in-book? and
  add-phone. If such functions appear in the left hand side of the
  conclusion of a lemma, the lemma may not ever be used. Suppose in a
  later proof, the theorem prover encountered a [term] of the form:

    (in-book? nm (add-phone nm pnum bk)).

  Since we've already proved add-in-book, you'd expect that this would
  be immediately reduced to true. However, the theorem prover will
  often ``expand'' the non-recursive definitions of in-book? and
  add-phone using their definitions before it attempts rewriting with
  lemmas. After this expansion, lemma add-in-book won't ``match'' the
  [term] and so won't be applied. Look back at the proof script for
  add-in-proof and you'll notice that at the very end the prover
  warned you of this potential difficulty when it printed:

    Warnings:  Non-rec
    Time:  0.18 seconds (prove: 0.05, print: 0.00, other: 0.13)
    ADD-IN-BOOK

  The ``Warnings'' line notifies you that there are non-recursive
  function calls in the left hand side of the conclusion and that
  this problem might arise. Of course, it may be that you don't ever
  plan to use the lemma for rewriting or that your intention is to
  [disable] these functions. [Disable]d functions are not expanded
  and the lemma should apply. However, you should always take note of
  such warnings and consider an appropriate response. By the way, we
  noted above that binding is [disable]d. If it were not, none of the
  lemmas about binding in the book we included would likely be of
  much use for exactly the reason we just gave.

  For our current example, let's assume that we're just investigating
  the properties of our specifications and not concerned about using
  our lemmas for rewriting. So let's go on. If we really want to
  avoid the warnings, we can add :rule-classes nil to each defthm
  event; see [rule-classes].

  Property 2 is: we always find the most recently added phone number
  for a client. Try the following formalization:

    (defthm find-add-first-cut
      (equal (find-phone nm (add-phone nm pnum bk))
             pnum))

  and you'll find that the proof attempt fails. Examining the proof
  attempt and our function definitions, we see that the lemma is
  false if nm is already in the book. We can remedy this situation by
  reformulating our lemma in at least two different ways:

    (defthm find-add1
      (implies (not (in-book? nm bk))
               (equal (find-phone nm (add-phone nm pnum bk))
                      pnum)))

    (defthm find-add2
      (equal (find-phone nm (add-phone nm pnum bk))
             (if (in-book? nm bk)
                 (find-phone nm bk)
                 pnum)))

  For technical reasons, lemmas such as find-add2, i.e., which do not
  have hypotheses, are usually slightly preferable. This lemma is
  stored as an ``unconditional'' [rewrite] rule (i.e., has no
  hypotheses) and, therefore, will apply more often than find-add1.
  However, for our current purposes either version is all right.

  Property 3 says: If we change a number, we'll find the change. This
  is very similar to the previous example. The formalization is as
  follows.

    (defthm find-change
      (equal (find-phone nm (change-phone nm pnum bk))
             (if (in-book? nm bk)
                 pnum
               (find-phone nm bk))))

  Property 4 says: changing and then deleting a number is the same as
  just deleting. We can model this as follows.

    (defthm del-change
      (equal (del-phone nm (change-phone nm pnum bk))
             (del-phone nm bk)))

  Unfortunately, when we try to prove this, we encounter subgoals that
  seem to be true, but for which the prover is stumped. For example,
  consider the following goal. (Note: endp holds of lists that are
  empty.)

    Subgoal *1/4
    (IMPLIES (AND (NOT (ENDP BK))
                  (NOT (EQUAL NM (CAAR BK)))
                  (NOT (BOUND? NM (CDR BK)))
                  (BOUND? NM BK))
             (EQUAL (REMBIND NM (BIND NM PNUM BK))
                    (REMBIND NM BK))).

  Our intuition about rembind and bind tells us that this goal should
  be true even without the hypotheses. We attempt to prove the
  following lemma.

    (defthm rembind-bind
      (equal (rembind nm (bind nm pnum bk))
             (rembind nm bk)))

  The prover proves this by induction, and stores it as a rewrite rule.
  After that, the prover has no difficulty in proving del-change.

  The need to prove lemma rembind-bind illustrates a point we made
  early in this example: the collection of [rewrite] rules supplied
  by a previously certified book will almost never be everything
  you'll need. It would be nice if we could operate purely in the
  realm of names, phone numbers, and phone books without ever having
  to prove any new facts about alists. Unfortunately, we needed a
  fact about the relation between rembind and bind that wasn't
  supplied with the alists theory. Hopefully, such omissions will be
  rare.

  Finally, let's consider our property 5 above: a name will not be in
  the book after we delete it. We formalize this as follows:

    (defthm in-book-del
      (not (in-book? nm (del-phone nm bk))))

  This proves easily. But notice that it's only true because del-phone
  (actually rembind) removes all occurrences of a name from the phone
  book. If it only removed, say, the first one it encountered, we'd
  need a hypothesis that said that nm occurs at most once in bk. Ah,
  maybe that's a property you hadn't considered. Maybe you want to
  ensure that any name occurs at most once in any valid phonebook.

  To complete this example, let's consider adding an invariant to our
  specification. In particular, suppose we want to assure that no
  client has more than one associated phone number. One way to ensure
  this is to require that the domain of the alist is a ``set'' (has
  no duplicates).

    (defun setp (l)
      (if (atom l)
          (null l)
        (and (not (member-equal (car l) (cdr l)))
             (setp (cdr l)))))

    (defun valid-phonebookp (bk)
      (and (phonebookp bk)
           (setp (domain bk))))

  Now, we want to show under what conditions our operations preserve
  the property of being a valid-phonebookp. The operations in-book?
  and find-phone don't return a phone book, so we don't really need
  to worry about them. Since we're really interested in the ``types''
  of values preserved by our phonebook functions, let's look at the
  types of those operations as well.

    (defthm in-book-booleanp
      (booleanp (in-book? nm bk)))

    (defthm in-book-namep
      (implies (and (phonebookp bk)
                    (in-book? nm bk))
               (namep nm))
      :hints ((\"Goal\" :in-theory (enable bound?))))

    (defthm find-phone-pnump
      (implies (and (phonebookp bk)
                    (in-book? nm bk))
               (pnump (find-phone nm bk)))
      :hints ((\"Goal\" :in-theory (enable bound? binding))))

  Note the ``:[hints]'' on the last two lemmas. Neither of these would
  prove without these [hints], because once again there are some
  facts about bound? and binding not available in our current
  context. Now, we could figure out what those facts are and try to
  prove them. Alternatively, we can [enable] bound? and binding and
  hope that by opening up these functions, the conjectures will
  reduce to versions that the prover does know enough about or can
  prove by induction. In this case, this strategy works. The hints
  tell the prover to [enable] the functions in question when
  considering the designated goal.

  Below we develop the theorems showing that add-phone, change-phone,
  and del-phone preserve our proposed invariant. Notice that along
  the way we have to prove some subsidiary facts, some of which are
  pretty ugly. It would be a good idea for you to try, say,
  add-phone-preserves-invariant without introducing the following
  four lemmas first. See if you can develop the proof and only add
  these lemmas as you need assistance. Then try
  change-phone-preserves-invariant and del-phone-preserves-invariant.
  They will be easier. It is illuminating to think about why
  del-phone-preserves-invariant does not need any ``type''
  hypotheses.

    (defthm bind-preserves-phonebookp
      (implies (and (phonebookp bk)
                    (namep nm)
                    (pnump num))
               (phonebookp (bind nm num bk))))

    (defthm member-equal-strip-cars-bind
      (implies (and (not (equal x y))
                    (not (member-equal x (strip-cars a))))
               (not (member-equal x (strip-cars (bind y z a))))))

    (defthm bind-preserves-domain-setp
      (implies (and (alistp bk)
                    (setp (domain bk)))
               (setp (domain (bind nm num bk))))
      :hints ((\"Goal\" :in-theory (enable domain))))

    (defthm phonebookp-alistp
      (implies (phonebookp bk)
               (alistp bk)))

    (defthm ADD-PHONE-PRESERVES-INVARIANT
      (implies (and (valid-phonebookp bk)
                    (namep nm)
                    (pnump num))
               (valid-phonebookp (add-phone nm num bk)))
      :hints ((\"Goal\" :in-theory (disable domain-bind))))

    (defthm CHANGE-PHONE-PRESERVES-INVARIANT
      (implies (and (valid-phonebookp bk)
                    (namep nm)
                    (pnump num))
               (valid-phonebookp (change-phone nm num bk)))
      :hints ((\"Goal\" :in-theory (disable domain-bind))))

    (defthm remove-equal-preserves-setp
      (implies (setp l)
               (setp (remove-equal x l))))

    (defthm rembind-preserves-phonebookp
      (implies (phonebookp bk)
               (phonebookp (rembind nm bk))))

    (defthm DEL-PHONE-PRESERVES-INVARIANT
      (implies (valid-phonebookp bk)
               (valid-phonebookp (del-phone nm bk))))

  As a final test of your understanding, try to formulate and prove an
  invariant that says that no phone number is assigned to more than
  one name. The following hints may help.

      1. Define the appropriate invariant. (Hint: remember the function
      range.)

      2. Do our current definitions of add-phone and change-phone
      necessarily preserve this property? If not, consider what
      hypotheses are necessary in order to guarantee that they do
      preserve this property.

      3. Study the definition of the function range and notice that it is
      defined in terms of the function [strip-cdrs]. Understand how
      this defines the range of an alist.

      4. Formulate the correctness theorems and attempt to prove them.
      You'll probably benefit from studying the invariant proof
      above. In particular, you may need some fact about the function
      [strip-cdrs] analogous to the lemma
      member-equal-strip-cars-bind above.

  Below is one solution to this exercise. Don't look at the solution,
  however, until you've struggled a bit with it. Notice that we
  didn't actually change the definitions of add-phone and
  change-phone, but added a hypothesis saying that the number is
  ``new.'' We could have changed the definitions to check this and
  return the phonebook unchanged if the number was already in use.

    (defun pnums-in-use (bk)
      (range bk))

    (defun phonenums-unique (bk)
      (setp (pnums-in-use bk)))

    (defun new-pnump (pnum bk)
      (not (member-equal pnum (pnums-in-use bk))))

    (defthm member-equal-strip-cdrs-rembind
      (implies (not (member-equal x (strip-cdrs y)))
               (not (member-equal x (strip-cdrs (rembind z y))))))

    (defthm DEL-PHONE-PRESERVES-PHONENUMS-UNIQUE
      (implies (phonenums-unique bk)
               (phonenums-unique (del-phone nm bk)))
      :hints ((\"Goal\" :in-theory (enable range))))

    (defthm strip-cdrs-bind-non-member
      (implies (and (not (bound? x a))
                    (alistp a))
               (equal (strip-cdrs (bind x y a))
                      (append (strip-cdrs a) (list y))))
      :hints ((\"Goal\" :in-theory (enable bound?))))

    (defthm setp-append-list
      (implies (setp l)
               (equal (setp (append l (list x)))
                      (not (member-equal x l)))))

    (defthm ADD-PHONE-PRESERVES-PHONENUMS-UNIQUE
      (implies (and (phonenums-unique bk)
                    (new-pnump pnum bk)
                    (alistp bk))
               (phonenums-unique (add-phone nm pnum bk)))
      :hints ((\"Goal\" :in-theory (enable range))))

    (defthm member-equal-strip-cdrs-bind
      (implies (and (not (member-equal z (strip-cdrs a)))
                    (not (equal z y)))
               (not (member-equal z (strip-cdrs (bind x y a))))))

    (defthm CHANGE-PHONE-PRESERVES-PHONENUMS-UNIQUE
      (implies (and (phonenums-unique bk)
                    (new-pnump pnum bk)
                    (alistp bk))
               (phonenums-unique (change-phone nm pnum bk)))
      :hints ((\"Goal\" :in-theory (enable range))))")
 (TUTORIAL4-DEFUN-SK-EXAMPLE
  (ANNOTATED-ACL2-SCRIPTS)
  "Example of quantified notions

  This example illustrates the use of [defun-sk] and [defthm] [events]
  to reason about quantifiers. See [defun-sk]. For a more through,
  systematic beginner's introduction to quantification in ACL2, see
  [quantifier-tutorial].

  Many users prefer to avoid the use of quantifiers, since ACL2
  provides only very limited support for reasoning about quantifiers.

  Here is a list of [events] that proves that if there are arbitrarily
  large numbers satisfying the disjunction (OR P R), then either
  there are arbitrarily large numbers satisfying P or there are
  arbitrarily large numbers satisfying R.

    ; Introduce undefined predicates p and r.
    (defstub p (x) t)
    (defstub r (x) t)

    ; Define the notion that something bigger than x satisfies p.
    (defun-sk some-bigger-p (x)
      (exists y (and (< x y) (p y))))

    ; Define the notion that something bigger than x satisfies r.
    (defun-sk some-bigger-r (x)
      (exists y (and (< x y) (r y))))

    ; Define the notion that arbitrarily large x satisfy p.
    (defun-sk arb-lg-p ()
      (forall x (some-bigger-p x)))

    ; Define the notion that arbitrarily large x satisfy r.
    (defun-sk arb-lg-r ()
      (forall x (some-bigger-r x)))

    ; Define the notion that something bigger than x satisfies p or r.
    (defun-sk some-bigger-p-or-r (x)
      (exists y (and (< x y) (or (p y) (r y)))))

    ; Define the notion that arbitrarily large x satisfy p or r.
    (defun-sk arb-lg-p-or-r ()
      (forall x (some-bigger-p-or-r x)))

    ; Prove the theorem promised above.  Notice that the functions open
    ; automatically, but that we have to provide help for some rewrite
    ; rules because they have free variables in the hypotheses.  The
    ; ``witness functions'' mentioned below were introduced by DEFUN-SK.

    (thm
     (implies (arb-lg-p-or-r)
              (or (arb-lg-p)
                  (arb-lg-r)))
     :hints ((\"Goal\"
              :use
              ((:instance some-bigger-p-suff
                          (x (arb-lg-p-witness))
                          (y (some-bigger-p-or-r-witness
                              (max (arb-lg-p-witness)
                                   (arb-lg-r-witness)))))
               (:instance some-bigger-r-suff
                          (x (arb-lg-r-witness))
                          (y (some-bigger-p-or-r-witness
                              (max (arb-lg-p-witness)
                                   (arb-lg-r-witness)))))
               (:instance arb-lg-p-or-r-necc
                          (x (max (arb-lg-p-witness)
                                  (arb-lg-r-witness))))))))

    ; And finally, here's a cute little example.  We have already
    ; defined above the notion (some-bigger-p x), which says that
    ; something bigger than x satisfies p.  Let us introduce a notion
    ; that asserts that there exists both y and z bigger than x which
    ; satisfy p.  On first glance this new notion may appear to be
    ; stronger than the old one, but careful inspection shows that y and
    ; z do not have to be distinct.  In fact ACL2 realizes this, and
    ; proves the theorem below automatically.

    (defun-sk two-bigger-p (x)
      (exists (y z) (and (< x y) (p y) (< x z) (p z))))

    (thm (implies (some-bigger-p x) (two-bigger-p x)))

    ; A technical point:  ACL2 fails to prove the theorem above
    ; automatically if we take its contrapositive, unless we disable
    ; two-bigger-p as shown below.  That is because ACL2 needs to expand
    ; some-bigger-p before applying the rewrite rule introduced for
    ; two-bigger-p, which contains free variables.  The moral of the
    ; story is:  Don't expect too much automatic support from ACL2 for
    ; reasoning about quantified notions.

    (thm (implies (not (two-bigger-p x)) (not (some-bigger-p x)))
         :hints ((\"Goal\" :in-theory (disable two-bigger-p))))")
 (TUTORIAL5-MISCELLANEOUS-EXAMPLES
  (ANNOTATED-ACL2-SCRIPTS)
  "Miscellaneous ACL2 examples

  The following examples are more advanced examples of usage of ACL2.
  They are included largely for reference, in case someone finds them
  useful.


Subtopics

  [File-reading-example]
      Example of reading files in ACL2

  [Functional-instantiation-example]
      A small proof demonstrating functional instantiation

  [Guard-example]
      A brief transcript illustrating [guard]s in ACL2

  [Mutual-recursion-proof-example]
      A small proof about mutually recursive functions")
 (TYPE
  (POINTERS)
  "Disambiguation page for type-related concepts.

  The word type might mean many things in ACL2.

    Built-in Types
      ACL2 can reason about and compute with certain different kinds of
      objects, such as [numbers], [strings], [characters], and
      [conses]. See [About_Types] for basic background on the
      different kinds of ACL2 objects.
    User-Defined Types
      When modeling systems with ACL2, you may often want to introduce
      certain concepts as new data types. For instance, if you are
      modeling a network, you might want host and connection objects.
      ACL2 does not directly support introducing new types. Instead,
      such types are usually ``emulated'' by introducing a new
      recognizer function, say hostp, and perhaps some related
      constructor and accessor functions, say make-host and
      host->name. Macro libraries can help to assist with introducing
      common types. See for instance [std/util], [defdata], or [fty].
    Type Declarations
      For more efficient Common Lisp execution, ACL2 functions can be
      annotated with Common Lisp type specifiers (see [type-spec])
      that may boost performance by reducing run-time type checking.
      This mechanism is integrated with ACL2's [guard] mechanism, so
      you can prove your type declarations are correct. See also
      [declare] and [the], and also [patbind-the].
    Type Prescriptions
      ACL2 includes a limited but efficient ``[type-set] reasoning engine
      for determining whether objects are of certain built-in types.
      This engine can be extended with [type-prescription] rules.
      Such rules are often inferred automatically when new functions
      are introduced with [defun]. Type-set reasoning can assist
      other reasoning engines like [forward-chaining],
      [linear-arithmetic], and rewriting. Type-set information is
      stored in a [type-alist] data structure.
    Tau
      ACL2 includes another reasoning engine, the [tau-system], for
      reasoning about type-like predicates. Unlike [type-set], Tau
      can also be used for reasoning about user-defined types, and
      can also carry out certain interval arithmetic reasoning. See
      the [introduction-to-the-tau-system] for more information about
      Tau.")
 (TYPE-ALIST
  (TYPE-SET)
  "An ACL2 representation of contextual knowledge

  The ACL2 prover maintains many structures that need not be understood
  by the user. One of these, the type-alist structure, is usually in
  this category. But some utilities refer to the type-alist, so we
  summarize it here.

  A type-alist is is an association list, each element of which is of
  the form (u ts . ttree), where u is a [term] (in internal,
  ``translated'' form), ts is a [type-set], and ttree is a tag-tree
  (see [ttree]). Such an element means that the term u has the
  type-set ts, which is a number. While you are welcome to see the
  [documentation] of [type-set] for details, this is not necessary,
  since user-level utilities generally display a type-alist without
  displaying numeric type-sets. Instead, they often use a symbol of
  the form *TS-typ* to denote the type described by typ, and for
  complements they use (TS-COMPLEMENT *TS-typ*). For example, a
  context in which the terms (p x y), (no-duplicatesp-equal y), and
  (natp x) are assumed to be true (i.e., non-nil) may be displayed
  using the following lines.

    -----
    Terms with type *TS-T*:
    (NO-DUPLICATESP-EQUAL Y)
    -----
    Terms with type (TS-COMPLEMENT *TS-NIL*):
    (P X Y)
    -----
    Terms with type *TS-NON-NEGATIVE-INTEGER*:
    X
    -----

  These lines says that (no-duplicatesp-equal y) is the symbol t, (p x
  y) is not the symbol nil, and x is a non-negative integer (i.e., a
  [natp]).

  ACL2 computes a type-alist based on contextual information including
  the hypotheses of the current goal (technically: the negations of
  the literals in the goal that are not currently being rewritten),
  [forward-chaining] from those literals, and the surrounding tests
  in calls of if. The type-alist is of course not all that is known,
  since an entire logical [world] of facts is also known; and
  additional known information may be recorded in the current
  database of [linear] rules.")
 (TYPE-PRESCRIPTION
  (RULE-CLASSES)
  "Make a rule that specifies the type of a term

  See [rule-classes] for a general discussion of rule classes,
  including how they are used to build rules from formulas and a
  discussion of the various keywords in a rule class description. In
  this topic we focus on user-defined type-prescription rules, but
  note that ACL2 also introduces type-prescription rules when
  introducing a function with [defun]; see
  [type-prescription-debugging] for discussion of how to influence
  the generation of such rules.

    Examples:
    (defthm integerp-foo                       ; Assumes that foo has been
      (integerp (foo x y))                     ; defined; then, states that
      :rule-classes :type-prescription)        ; (foo x y) is of type integer.

    (defthm characterp-nth-type-prescription   ; (Nth n lst) is of type character
      (implies                                 ; provided the hypotheses can be
       (and (character-listp lst)              ; established by type reasoning.
            (<= 0 n)
            (< n (len lst)))
       (characterp (nth n lst)))
      :rule-classes :type-prescription)

    (defthm characterp-nth-type-prescription-alt ; equivalent to the above
      (implies
       (and (character-listp lst)
            (<= 0 n)
            (< n (len lst)))
       (characterp (nth n lst)))
      :rule-classes ((:type-prescription :typed-term (nth n lst))))

    (defthm demodulize-type-for-quote-value  ; (Demodulize a lst 'value ans) is
      (implies                               ; either a nonnegative integer or
       (and (atom a)                         ; of the same type as ans, provided
            (true-listp lst)                 ; the hyps can be established by type
            (member-equal a lst))            ; reasoning
       (or (and (integerp (demodulize a lst 'value ans))
                (>= (demodulize a lst 'value ans) 0))
         (equal (demodulize a lst 'value ans) ans)))
      :rule-classes :type-prescription)

  To specify the term whose type (see [type-set]) is described by the
  rule, provide that term as the value of the :typed-term field of
  the rule class object.

    General Form (after preprocessing; see below):
    (implies hyps
             (or type-restriction1-on-pat
                 ...
                 type-restrictionk-on-pat
                 (equal pat var1)
                 ...
                 (equal pat varj)))

  where pat is the application of some function symbol to some
  arguments, each type-restrictioni-on-pat is a term involving pat
  and containing no variables outside of the occurrences of pat, and
  each vari is one of the variables of pat. Generally speaking, the
  type-restriction terms ought to be terms that inform us as to the
  type of pat. Ideally, they should be ``primitive recognizing
  expressions'' about pat; see [compound-recognizer]. We describe
  preprocessing at the end of this topic.

  If the :typed-term is not provided in the rule class object, it is
  computed heuristically by looking for a term in the conclusion
  whose type is being restricted. An error is caused if no such term
  is found.

  Roughly speaking, the effect of adding such a rule is to inform the
  ACL2 typing mechanism that pat has the type described by the
  conclusion, when the hypotheses are true. In particular, the type
  of pat is within the union of the types described by the several
  disjuncts. The ``type described by'' (equal pat vari) is the type
  of vari.

  More operationally, when asked to determine the type of a term that
  is an instance of pat, ACL2 will first attempt to establish the
  hypotheses. This is done by type reasoning alone, not rewriting!
  However, if some hypothesis is a call of [force], then forcing may
  occur, which may ultimately invoke the rewriter; see [force] and
  see [case-split]. So-called free variables in hypotheses are
  treated specially; see [free-variables]. Provided the hypotheses
  are established by type reasoning, ACL2 then unions the types
  described by the type-restrictioni-on-pat terms together with the
  types of those subexpressions of pat identified by the vari. The
  final type computed for a term is the intersection of the types
  implied by each applicable rule. Type prescription rules may be
  disabled.

  You can limit the recursive establishment of hypotheses of rules; see
  [set-backchain-limit].

  Because only type reasoning is used to establish the hypotheses of
  :type-prescription rules, some care must be taken with the
  hypotheses. Suppose, for example, that the non-recursive function
  my-statep is defined as

    (defun my-statep (x)
      (and (true-listp x)
           (equal (len x) 2)))

  and suppose (my-statep s) occurs as a hypothesis of a
  :type-prescription rule that is being considered for use in the
  proof attempt for a conjecture with the hypothesis (my-statep s).
  Since the hypothesis in the conjecture is rewritten, it will become
  the conjunction of (true-listp s) and (equal (len s) 2). Those two
  terms will be assumed to have type t in the context in which the
  :type-prescription rule is tried. But type reasoning will be unable
  to deduce that (my-statep s) has type t in this context. Thus,
  either my-statep should be disabled (see [disable]) during the
  proof attempt or else the occurrence of (my-statep s) in the
  :type-prescription rule should be replaced by the conjunction into
  which it rewrites.

  While this example makes it clear how non-recursive predicates can
  cause problems, non-recursive functions in general can cause
  problems. For example, if (mitigate x) is defined to be (if
  (rationalp x) (1- x) x) then the hypothesis (pred (mitigate s)) in
  the conjecture will rewrite, opening mitigate and splitting the
  conjecture into two subgoals, one in which (rationalp s) and (pred
  (1- x)) are assumed and the other in which (not (rationalp s)) and
  (pred x) are assumed. But (pred (mitigate s)) will not be typed as
  t in either of these contexts. The moral is: beware of
  non-recursive functions occuring in the hypotheses of
  :type-prescription rules.

  Because of the freedom one has in forming the conclusion of a
  type-prescription, we have to use heuristics to recover the
  pattern, pat, whose type is being specified. In some cases our
  heuristics may not identify the intended term and the
  :type-prescription rule will be rejected as illegal because the
  conclusion is not of the correct form. When this happens you may
  wish to specify the pat directly. This may be done by using a
  suitable rule class token. In particular, when the token
  :type-prescription is used it means ACL2 is to compute pat with its
  heuristics; otherwise the token should be of the form
  (:type-prescription :typed-term pat), where pat is the term whose
  type is being specified.

  The defun event may generate a :type-prescription rule. Suppose fn is
  the name of the function concerned. Then (:type-prescription fn) is
  the rune given to the type-prescription, if any, generated for fn
  by [defun]. (The trivial rule, saying fn has unknown type, is not
  stored, but [defun] still allocates the rune and the corollary of
  this rune is known to be t.)

  We close with a discussion of how, before a term is parsed into a
  :type-prescription rule, it is preprocessed. We describe this
  preprocessing in some detail below, but first consider the
  following (contrived) example.

    (defthm append-tp-example
      (let ((result (append x y)))
        (implies (nat-listp x)
                 (implies (let ((second-hyp (integer-listp y)))
                            second-hyp)
                          (true-listp result))))
      :rule-classes :type-prescription)

  This theorem is parsed into a type-prescription rule with the
  following hypotheses and conclusion.

    (nat-listp x) ; first hypothesis
    ((lambda (second-hyp) second-hyp) (integer-listp y)) ; second hypothesis
    (true-listp (binary-append x y)) ; conclusion

  Notice that the top-level [let] was expanded, i.e., (append x y) was
  substituted for result --- more accurately, (binary-append x y) was
  substituted for result, since [append] is a macro that abbreviates
  [binary-append]. Also notice that the two hypotheses were
  ``flattened'' in the sense that they were gathered up into a list.
  Finally, notice that the [let] in the second hypothesis was not
  expanded (it was merely translated to internal form, using LAMBDA).
  If you actually submit the theorem above, you will get warnings,
  which you may choose to ignore; the application of
  type-prescription rules is somewhat subtle, so if you use them then
  you may wish to experiment to see which forms work best for you.

  Here is the detail promised above, for parsing a term into a
  :type-prescription rule. There are two steps. (1) ACL2 first
  translates the term, expanding all macros (see [trans]) and also
  removing [guard-holders]. (2) Then the the translated term is
  traversed top-down, expanding away lambdas ([let], [let*], and
  [mv-let] expressions) and flattening the [implies] structure, until
  the conclusion is exposed; then the conclusion's lambdas are also
  expanded away. The simplest way to understand (2) may be to look at
  the definition of ACL2 source function unprettyify-tp, which
  implements Step (2), say by evaluating :[pe] unprettyify-tp.


Subtopics

  [Backchain-limit]
      Limiting the effort expended on relieving hypotheses

  [Case-split]
      Like force but immediately splits the top-level goal on the
      hypothesis

  [Force]
      Identity function used to force a hypothesis

  [Type-prescription-debugging]
      Improve a built-in [type-prescription] rule")
 (TYPE-PRESCRIPTION-DEBUGGING
  (DEBUGGING TYPE-PRESCRIPTION)
  "Improve a built-in [type-prescription] rule

  A [type-prescription] rule is introduced automatically when a
  function is defined (see [defun]). However, that rule might not be
  what you expect. In this topic we explore how you might be able to
  improve that rule, by way of an example.

  First consider the following definition.

    ACL2 !>(defun f (x) (alistp x))

    Since F is non-recursive, its admission is trivial.  We observe that
    the type of F is described by the theorem
    (OR (EQUAL (F X) T) (EQUAL (F X) NIL)).  We used the :type-prescription
    rule ALISTP.

    Summary
    Form:  ( DEFUN F ...)
    Rules: ((:TYPE-PRESCRIPTION ALISTP))
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.00)
     F
    ACL2 !>

  Notice in particular the phrase, ``We used the :type-prescription
  rule ALISTP,'' and the corresponding [rune] (:TYPE-PRESCRIPTION
  ALISTP) in the list of rules printed in the summary. These are
  telling us that ACL2 used the indicated rule during the process of
  computing a (@see type-prescription) rule for f.

  Now suppose that in a different session we instead proceed as
  follows.

    ACL2 !>(in-theory (disable (:type-prescription alistp)))

    Summary
    Form:  ( IN-THEORY (DISABLE ...))
    Rules: NIL
    Time:  0.01 seconds (prove: 0.00, print: 0.00, other: 0.01)
     (:NUMBER-OF-ENABLED-RUNES 3298)
    ACL2 !>(defun f (x) (alistp x))

    Since F is non-recursive, its admission is trivial.  We could deduce
    no constraints on the type of F.

    Summary
    Form:  ( DEFUN F ...)
    Rules: NIL
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
     F
    ACL2 !>

  Notice that this time ``We could deduce no constraints on the type of
  F,'' because in this context, [type-set] reasoning does not see
  that the body of f is a Boolean, because (:type-prescription
  alistp) has been [disable]d. Thus, the ``Rules'' field of the
  summary is empty this time.

  Consider the following story. On Monday, you run the first session,
  and a subsequent proof uses [type-set] reasoning to conclude that
  (f x) is Boolean, even after you [disable] the [definition] of f.
  Then on Tuesday, you run the second session, and are surprised to
  find that ACL2 no longer reasons (during that same subsequent proof
  attempt) that (f x) is Boolean. You want to debug this problem, so
  you look back in the log where you defined f, and you see the
  ``deduce no constraints'' message --- but then you look further
  back, at Monday's log, where you find the definition of f ``used
  the :type-prescription rule ALISTP'' to conclude that ``the type of
  F is described by the theorem (OR (EQUAL (F X) T) (EQUAL (F X)
  NIL))''. The mention of ALISTP in that definition's output from
  Monday, together with the corresponding mention of
  (:TYPE-PRESCRIPTION ALISTP) in the ``Rules'' field of the summary,
  leads you to resolve the issue as follows. On Monday, when
  (:TYPE-PRESCRIPTION ALISTP) was [enable]d, ACL2 used type-set
  reasoning to conclude that the body of f is Boolean, but on
  Tuesday, (:TYPE-PRESCRIPTION ALISTP) was disabled at that point and
  hence the body of f was not known to be Boolean by type-set
  reasoning. Hence on Tuesday, no Boolean type-prescription rule was
  stored for f at definition time, which is why the subsequent proof
  attempt failed to use such a rule. So you avoid disabling
  (:TYPE-PRESCRIPTION ALISTP) until after submitting the [defun] for
  f, and now ACL2's type reasoning knows that f returns a Boolean.")
 (TYPE-SET
  (MISCELLANEOUS)
  "How type information is encoded in ACL2

  To help you experiment with type-sets we briefly note the following
  utility functions.

  (type-set-quote x) will return the type-set of the object x. For
  example, (type-set-quote \"test\") is 2048 and (type-set-quote '(a b
  c)) is 512.

  (type-set 'term nil nil nil (ens state) (w state) nil nil nil) will
  return the type-set of term. For example,

    (type-set '(integerp x) nil nil nil (ens state) (w state) nil nil nil)

  will return (mv 192 nil). 192, otherwise known as *ts-boolean*, is
  the type-set containing t and nil. The second result may be ignored
  in these experiments. Term must be in the translated, internal form
  shown by :[trans]. See [trans] and see [term].

  (type-set-implied-by-term 'x nil 'term (ens state)(w state) nil) will
  return the type-set deduced for the variable symbol x assuming the
  translated term, term, true. The second result may be ignored in
  these experiments. For example,

    (type-set-implied-by-term 'v nil '(integerp v)
                              (ens state) (w state) nil)

  returns 11.

  (convert-type-set-to-term 'x ts (ens state) (w state) nil) will
  return a term whose truth is equivalent to the assertion that the
  term x has type-set ts. The second result may be ignored in these
  experiments. For example

    (convert-type-set-to-term 'v 523 (ens state) (w state) nil)

  returns a term expressing the claim that v is either an integer or a
  non-nil true-list. 523 is the logical-or of 11 (which denotes the
  integers) with 512 (which denotes the non-nil true-lists).

  The ``actual primitive types'' of ACL2 are listed in
  *actual-primitive-types*, whose elements are shown below. Each
  actual primitive type denotes a set --- sometimes finite and
  sometimes not --- of ACL2 objects and these sets are pairwise
  disjoint. For example, *ts-zero* denotes the set containing 0 while
  *ts-positive-integer* denotes the set containing all of the
  positive integers.

    *TS-ZERO*                  ;;; {0}
    *TS-POSITIVE-INTEGER*      ;;; positive integers
    *TS-POSITIVE-RATIO*        ;;; positive non-integer rationals
    *TS-NEGATIVE-INTEGER*      ;;; negative integers
    *TS-NEGATIVE-RATIO*        ;;; negative non-integer rationals
    *TS-COMPLEX-RATIONAL*      ;;; complex rationals
    *TS-NIL*                   ;;; {nil}
    *TS-T*                     ;;; {t}
    *TS-NON-T-NON-NIL-SYMBOL*  ;;; symbols other than nil, t
    *TS-PROPER-CONS*           ;;; null-terminated non-empty lists
    *TS-IMPROPER-CONS*         ;;; conses that are not proper
    *TS-STRING*                ;;; strings
    *TS-CHARACTER*             ;;; characters

  The actual primitive types were chosen by us to make theorem proving
  convenient. Thus, for example, the actual primitive type *ts-nil*
  contains just nil so that we can encode the hypothesis ``x is nil''
  by saying ``x has type *ts-nil*'' and the hypothesis ``x is
  non-nil'' by saying ``x has type complement of *ts-nil*.'' We
  similarly devote a primitive type to t, *ts-t*, and to a third
  type, *ts-non-t-non-nil-symbol*, to contain all the other ACL2
  symbols.

  Let *ts-other* denote the set of all Common Lisp objects other than
  those in the actual primitive types. Thus, *ts-other* includes such
  things as floating point numbers and CLTL array objects. The actual
  primitive types together with *ts-other* constitute what we call
  *universe*. Note that *universe* is a finite set containing one
  more object than there are actual primitive types; that is, here we
  are using *universe* to mean the finite set of primitive types, not
  the infinite set of all objects in all of those primitive types.
  *Universe* is a partitioning of the set of all Common Lisp objects:
  every object belongs to exactly one of the sets in *universe*.

  Abstractly, a ``type-set'' is a subset of *universe*. To say that a
  term, x, ``has type-set ts'' means that under all possible
  assignments to the variables in x, the value of x is a member of
  some member of ts. Thus, (cons x y) has type-set {*ts-proper-cons*
  *ts-improper-cons*}. A term can have more than one type-set. For
  example, (cons x y) also has the type-set {*ts-proper-cons*
  *ts-improper-cons* *ts-nil*}. Extraneous types can be added to a
  type-set without invalidating the claim that a term ``has'' that
  type-set. Generally we are interested in the smallest type-set a
  term has, but because the entire theorem-proving problem for ACL2
  can be encoded as a type-set question, namely, ``Does p have
  type-set complement of *ts-nil*?,'' finding the smallest type-set
  for a term is an undecidable problem. When we speak informally of
  ``the'' type-set we generally mean ``the type-set found by our
  heuristics'' or ``the type-set assumed in the current context.''

  Note that if a type-set, ts, does not contain *ts-other* as an
  element then it is just a subset of the actual primitive types. If
  it does contain *ts-other* it can be obtained by subtracting from
  *universe* the complement of ts. Thus, every type-set can be
  written as a (possibly complemented) subset of the actual primitive
  types.

  By assigning a unique bit position to each actual primitive type we
  can encode every subset, s, of the actual primitive types by the
  nonnegative integer whose ith bit is on precisely if s contains the
  ith actual primitive type. The type-sets written as the complement
  of s are encoded as the twos-complement of the encoding of s. Those
  type-sets are thus negative integers. The bit positions assigned to
  the actual primitive types are enumerated from 0 in the same order
  as the types are listed in *actual-primitive-types*. At the
  concrete level, a type-set is an integer between *min-type-set* and
  *max-type-set*, inclusive.

  For example, *ts-nil* has bit position 6. The type-set containing
  just *ts-nil* is thus represented by 64. If a term has type-set 64
  then the term is always equal to nil. The type-set containing
  everything but *ts-nil* is the twos-complement of 64, which is -65.
  If a term has type-set -65, it is never equal to nil. By ``always''
  and ``never'' we mean under all, or under no, assignments to the
  variables, respectively.

  Here is a more complicated example. Let s be the type-set containing
  all of the symbols and the natural numbers. The relevant actual
  primitive types, their bit positions and their encodings are:

    actual primitive type       bit    value

    *ts-zero*                    0       1
    *ts-positive-integer*        1       2
    *ts-nil*                     6      64
    *ts-t*                       7     128
    *ts-non-t-non-nil-symbol*    8     256

  Thus, the type-set s is represented by (+ 1 2 64 128 256) = 451. The
  complement of s, i.e., the set of all objects other than the
  natural numbers and the symbols, is -452.


Subtopics

  [Type-alist]
      An ACL2 representation of contextual knowledge")
 (TYPE-SET-INVERTER
  (RULE-CLASSES)
  "Exhibit a new decoding for an ACL2 type-set

  See [rule-classes] for a general discussion of rule classes,
  including how they are used to build rules from formulas and a
  discussion of the various keywords in a rule class description.

    Example Rule Class:
    (:type-set-inverter
      :corollary (equal (and (counting-number x) (not (equal x 0)))
                        (and (integerp x) (< 0 x)))
      :type-set 2)

    General Forms of Rule Class:
    :type-set-inverter, or
    (:type-set-inverter :type-set n)

    General Form of Theorem or Corollary:
    (EQUAL new-expr old-expr)

  where n is a [type-set] (see [type-set]) and old-expr is the term
  containing x as a free variable that ACL2 currently uses to
  recognize [type-set] n. For a given n, the exact form of old-expr
  is generated by

    (convert-type-set-to-term 'x n (ens state) (w state) nil)].

  If the :[type-set] field of the rule-class is omitted, we attempt to
  compute it from the right-hand side, old-expr, of the corollary.
  That computation is done by type-set-implied-by-term (see
  [type-set]). However, it is possible that the type-set we compute
  from lhs does not have the required property that when inverted
  with convert-type-set-to-term the result is lhs. If you omit
  :[type-set] and an error is caused because lhs has the incorrect
  form, you should manually specify both :[type-set] and the lhs
  generated by convert-type-set-to-term.

  The rule generated will henceforth make new-expr be the term used by
  ACL2 to recognize type-set n. If this rule is created by a [defthm]
  event named name then the rune of the rule is (:type-set-inverter
  name) and by disabling that rune you can prevent its being used to
  decode type-sets.

  Type-sets are inverted when forced assumptions are turned into
  formulas to be proved. In their internal form, assumptions are
  essentially pairs consisting of a context and a goal term, which
  was forced. Abstractly a context is just a list of hypotheses which
  may be assumed while proving the goal term. But actually contexts
  are alists which pair terms with type-sets, encoding the current
  hypotheses. For example, if the original conjecture contained the
  hypothesis (integerp x) then the context used while working on that
  conjecture will include the assignment to x of the type-set
  *ts-integer*.")
 (TYPE-SPEC
  (DECLARE THE)
  "Type specifiers can be used in Common Lisp type declarations and
  [the] forms, and may result in improved efficiency of execution.

  ACL2 permits the use of type declarations in certain contexts; see
  [declare] for background. Here is an example of a type declaration;
  here the symbol, integer, is what we refer to as a ``type-spec'':

    (let ((x (+ a b)))
      (declare (type integer x))   ;; <-- type declaration
      (+ 1 x))

  A Common Lisp compiler might be able to use the above declaration to
  improve the execution efficiency of the resulting code. In
  particular, the Common Lisp [+] operation is rather elaborate: it
  must be capable of adding together integers, rationals, floats,
  etc. When we tell the compiler that this x is surely an integer, it
  may be able to use a more efficient version of (+ 1 x) that only
  deals with the integer case.

  Type declarations can be added to functions, [let] bindings, and
  other places as described in [declare], and interact with the
  ACL2's [guard] mechanism. For instance, during guard verification,
  the above type declaration will result in a guard obligation: we
  will need to prove that (+ a b) is always an integer. Type
  declarations about the formals of a function generally become part
  of the guard of the function, but see also [split-types] for a way
  to gain more control over this.

  Whether or not a particular type declaration will actually improve
  the efficiency of your functions depends on the Lisp compiler. For
  instance, many Lisp compilers will not benefit much from a plain
  integer declaration. If you are trying to optimize code by adding
  type declarations, it may be useful to use [disassemble$] to
  inspect the impact that your declarations have on the resulting
  code.


Type Specs

  The syntax that Common Lisp compilers use for these type
  declarations---e.g., the symbol integer above---is different than
  the usual syntax of ACL2.

  We use the name type-spec to refer to the supported types that can be
  mentioned in declarations. For instance:

    Declaration	|  Type-Spec	|
    (type string x y z)	|  string	|
    (type (integer 0 7) x)	|  (integer 0 7)	|
    (type rational x)	|  rational	|
    (type (rational 1 *) x)	|  (rational 1 *)	|

  The supported type-specs and their meanings (when applied to the
  variable x as in (declare (type type-spec x)) are given below.

    type-spec              meaning
    ----------------------------------------------------------------------
    (AND type1 ... typek)  (AND (p1 X) ... (pk X))
                           where (pj x) is the meaning for type-spec typej
    ATOM                   (ATOM X)
    BIT                    (OR (EQUAL X 1) (EQUAL X 0))
    CHARACTER              (CHARACTERP X)
    COMPLEX                (AND (COMPLEX-RATIONALP X)
                                (RATIONALP (REALPART X))
                                (RATIONALP (IMAGPART X)))
    (COMPLEX RATIONAL)     same as COMPLEX, above
    (COMPLEX type)         (AND (COMPLEX-RATIONALP X)
                                (p (REALPART X))
                                (p (IMAGPART X)))
                           where (p x) is the meaning for type-spec type
    CONS                   (CONSP X)
    INTEGER                (INTEGERP X)
    (INTEGER i j)          (AND (INTEGERP X)   ; See notes below
                                (<= i X)
                                (<= X j))
    (MEMBER x1 ... xn)     (MEMBER X '(x1 ... xn))
    (MOD i)                same as (INTEGER 0 i-1)
    NIL                    NIL
    (NOT type)             (NOT (p X))
                           where (p x) is the meaning for type-spec type
    NULL                   (EQ X NIL)
    (OR type1 ... typek)   (OR (p1 X) ... (pk X))
                           where (pj x) is the meaning for type-spec typej
    RATIO                  (AND (RATIONALP X) (NOT (INTEGERP X)))
    RATIONAL               (RATIONALP X)
    (RATIONAL i j)         (AND (RATIONALP X)  ; See notes below
                                (<= i X)
                                (<= X j))
    REAL                   (RATIONALP X)       ; (REALP X) in ACL2(r)
    (REAL i j)             (AND (RATIONALP X)  ; See notes below
                                (<= i X)
                                (<= X j))
    (SATISFIES pred)       (pred X) ; Lisp requires a unary function, not a macro
    SIGNED-BYTE            (INTEGERP X)
    (SIGNED-BYTE i)        same as (INTEGER k m) where k=-2^(i-1), m=2^(i-1)-1
    STANDARD-CHAR          (STANDARD-CHARP X)
    STRING                 (STRINGP X)
    (STRING max)           (AND (STRINGP X) (EQUAL (LENGTH X) max))
    SYMBOL                 (SYMBOLP X)
    T                      T
    UNSIGNED-BYTE          same as (INTEGER 0 *)
    (UNSIGNED-BYTE i)      same as (INTEGER 0 (2^i)-1)
    ----------------------------------------------------------------------

  Notes

  In general, (integer i j) means

    (AND (INTEGERP X)
         (<= i X)
         (<= X j)).

  But if i is the symbol *, the first inequality is omitted. If j is
  the symbol *, the second inequality is omitted. If instead of being
  an integer, the second element of the type specification is a list
  containing an integer, (i), then the first inequality is made
  strict. An analogous remark holds for the (j) case. The rational
  and real type specifiers are similarly generalized.

  Common Lisp itself supports richer type specifiers than ACL2. Some
  resources:

    * A {nice picture of the Common Lisp Type Hierarchy |
      http://sellout.github.io/2012/03/03/common-lisp-type-hierarchy/}
      by Greg Pfeil.")
 (TYPESPEC-CHECK (POINTERS)
                 "See [meta-extract].")
 (U
  (HISTORY)
  "Undo last [command], without a query

    Example:
    :u

  The keyword [command] :u is the same as :[ubt!] :x. :[Oops] will undo
  the last :u. See [ubt!].")
 (UBT
  (HISTORY)
  "Undo the [command]s back through a [command] descriptor

    Examples:
    :ubt :max      ; undo back through the most recent command
                   ; (which just means undo the most recent command)
    :ubt :x        ; same as :ubt :max
    :u             ; same as :ubt :max with no questions asked
    :ubt fn        ; undo back through the introduction of fn
                   ; (including all the other events in fn's block)
    :ubt 5         ; undo back through the fifth command executed
    :ubt (:max -4) ; undo back through the most recent five commands
    :ubt (:x -4)   ; undo back through the most recent five commands

  See [command-descriptor].

  Ubt takes one argument, a [command] descriptor, and undoes the
  [command]s from :[max] (aka :x) through the one described. See
  [command-descriptor]. [Pbt] will print the [command]s that ubt will
  undo. :[Oops] will undo the undo. See [oops].

  Ubt can cause errors but not queries. To get queries as well, see
  [ubt?]. To get neither errors nor queries, see [ubt!]..

  It is important to remember that a [command] may create several
  [events]. That is, the [command] that introduces fn1 may also
  introduce fn2. Undoing the [command] that created either of these
  will undo them both. The [events] created by a [command] constitute
  the [command]'s ``block'' and we can only undo entire blocks. Use
  [pcb] to print the [command] block of a [command] if you wish to
  see what will be lost by undoing the [command].

  Ubt will not undo into ``prehistory''. :Ubt 1 will undo all of your
  [command]s. But :ubt -5 will cause an error, warning you that :ubt
  cannot undo system initialization.

  See [u] for how to undo just the latest command. See [ubu], [ubu!],
  and [ubu?] for how to undo back up to, but not including, the
  current command.")
 (UBT!
  (HISTORY)
  "Undo [command]s, without a query or an error

    Example:
    :ubt! :x-4

  The keyword [command] :ubt! is the same as :[ubt], but with a
  guarantee that it is ``error-free.'' More precisely, the value
  returned by :ubt! will always be of the form (mv nil val state).
  :[Oops] will undo the last :ubt!. See [ubt], [ubt?], [ubu!], [ubu],
  [ubu?], and [u].")
 (UBT-PREHISTORY
  (HISTORY)
  "Undo the [command]s back through the last [reset-prehistory] event

  This command is only used to eliminate a [reset-prehistory] event. If
  your most recent reset-prehistory event does not have a flag
  argument of t, then :ubt-prehistory undoes all command back
  through, and including, that reset-prehistory event.")
 (UBT?
  (HISTORY)
  "Undo [command]s, with queries as appropriate

    Example:
    :ubt? :x-4

  The keyword [command] :ubt? is the same as :[ubt], but with
  appropriate queries made. :[Oops] will undo the last :ubt?. See
  [ubt!], [ubt], [ubu!], [ubu], [ubu?], and [u].")
 (UBU
  (HISTORY)
  "Undo the [command]s back up to (not including) a [command] descriptor

    Examples:
    :ubu :x-3      ; undo the last three commands (same as :ubt :x-2)
    :ubu (:x -3)   ; same as above
    :ubu fn        ; undo back up to, but not including the introduction of fn
                   ; (so fn will continue to be defined)
    :ubu 5         ; undo back up to, but not including, the fifth command
                   ; executed (leaving the first five commands in place)

  See [command-descriptor].

  Ubu takes one argument, a [command] descriptor, and undoes the
  [command]s from :[max] (aka :x) up to, but not including, the
  indicated command. See [command-descriptor].

  Ubu can cause errors. To avoid these, see [ubu!].

  For appropriate queries to be made, see [ubu?].

  Also see [ubt], which is similar but also undoes the indicated
  command. As for :[ubt], :[oops] will undo the undo (see [oops]) and
  [ubu] will not undo into ``prehistory''.

  See [u] for how to undo just the latest command, and see [ubt],
  [ubt!], and [ubt?] for how to undo back through (that is,
  including) the current command.")
 (UBU!
  (HISTORY)
  "Undo [command]s, without a query or an error

    Example:
    :ubu! :x-4

  The keyword [command] :ubu! is the same as :[ubu], but with a
  guarantee that it is ``error-free.'' More precisely, the
  [error-triple] returned by :ubu! will always be of the form (mv nil
  val state). :[Oops] will undo the last :ubu!. Also see [ubu],
  [ubu?], [ubt], [ubt!], [ubt?], and [u].")
 (UBU?
  (HISTORY)
  "Undo [command]s, with queries as appropriate

    Example:
    :ubu? :x-4

  The keyword [command] :ubu? is the same as :[ubu], but with
  appropriate queries made. :[Oops] will undo the last :ubu?. Also
  see [ubu!], [ubu], [ubt!], [ubt], [ubt?], and [u].")
 (UNARY--
  (NUMBERS ACL2-BUILT-INS)
  "Arithmetic negation function

  Completion Axiom (completion-of-unary-minus):

    (equal (unary-- x)
           (if (acl2-numberp x)
               (unary-- x)
             0))

  [Guard] for (unary-- x):

    (acl2-numberp x)

  Notice that like all arithmetic functions, unary-- treats non-numeric
  inputs as 0.

  Calls of the macro [-] on one argument expand to calls of unary--;
  see [-].")
 (UNARY-/
  (NUMBERS ACL2-BUILT-INS)
  "Reciprocal function

  Completion Axiom (completion-of-unary-/):

    (equal (unary-/ x)
           (if (and (acl2-numberp x)
                    (not (equal x 0)))
               (unary-/ x)
             0))

  [Guard] for (unary-/ x):

    (and (acl2-numberp x)
         (not (equal x 0)))

  Notice that like all arithmetic functions, unary-/ treats non-numeric
  inputs as 0.

  Calls of the macro [/] on one argument expand to calls of unary-/;
  see [/].")
 (UNCERTIFIED-BOOKS
  (BOOKS)
  "Invalid [certificate]s and uncertified [books]

  For relevant background see [books], see [certificate], and see
  [portcullis].

  [Include-book] has a special provision for dealing with an
  uncertified book, i.e., a file with no [certificate] or an invalid
  [certificate] (i.e., one whose check sums describe files other than
  the ones actually read). In this case, a warning is printed and the
  book is otherwise processed much as though it were certified and
  had an open [portcullis].

  If a book B.lisp is uncertified and a file B.port exists, then the
  forms in B.port are evaluated before the forms in B.lisp. Such a
  file B.port is typically created calling [certify-book] on book \"B\"
  with argument :write-port t, so that B.port contains the
  [portcullis] [command]s for B (the commands present in the [world]
  when that certification was attempted). To avoid loading .port
  files, see [compilation].

  Inclusion of uncertified books can be handy, but it can have
  disastrous consequences.

  The provision allowing uncertified [books] to be included can have
  disastrous consequences, ranging from hard lisp errors, to damaged
  memory, to quiet logical inconsistency.

  It is possible for the inclusion of an uncertified book to render the
  logic inconsistent. For example, one of its non-[local] [events]
  might be (defthm t-is-nil (equal t nil)). It is also possible for
  the inclusion of an uncertified book to cause hard errors or
  [breaks] into raw Common Lisp. For example, if the file has been
  edited since it was certified, it may contain too many open
  parentheses, causing Lisp to read past ``end of file.'' Similarly,
  it might contain non-ACL2 objects such as 3.1415 or ill-formed
  event forms that cause ACL2 code to break.

  Even if a book is perfectly well formed and could be certified (in a
  suitable extension of ACL2's initial [world]), its uncertified
  inclusion might cause Lisp errors or inconsistencies! For example,
  it might mention packages that do not exist in the host [world],
  especially if the .port file (discussed above) does not exist from
  an earlier certification attempt. The [portcullis] of a certified
  book ensures that the correct [defpkg]s have been admitted, but if
  a book is read without actually raising its [portcullis], symbols
  in the file, e.g., acl2-arithmetic::fn, could cause ``unknown
  package'' errors in Common Lisp. Perhaps the most subtle disaster
  occurs if the host [world] does have a [defpkg] for each package
  used in the book but the host [defpkg] imports different symbols
  than those required by the [portcullis]. In this case, it is
  possible that formulas which were theorems in the certified book
  are non-theorems in the host [world], but those formulas can be
  read without error and will then be quietly assumed.

  In short, if you include an uncertified book, all bets are off
  regarding the validity of the future behavior of ACL2.

  That said, it should be noted that ACL2 is pretty tough and if errors
  don't occur, the chances are that deductions after the inclusion of
  an uncertified book are probably justified in the (possibly
  inconsistent) logical extension obtained by assuming the
  admissibility and validity of the definitions and conjectures in
  the book.")
 (UNDOCUMENTED_TOPIC
      (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
      "Undocumented Topic

  This topic has not yet been documented. Sorry")
 (UNION$
  (LISTS ACL2-BUILT-INS)
  "Elements of one list that are not elements of another

    General Forms:
    (union$ l1 l2 ... lk)
    (union$ l1 l2 ... lk :test 'eql) ; same as above
    (union$ l1 l2 ... lk :test 'eq)    ; same, but eq is equality test
    (union$ l1 l2 ... lk :test 'equal) ; same, but equal is equality test

  (Union$ x y) equals a list that contains both the members of x and
  the members of y. More precisely, the resulting list is the same as
  one would get by first deleting the members of y from x, and then
  concatenating the result to the front of y. The optional keyword,
  :TEST, has no effect logically, but provides the test (default
  [eql]) used for comparing members of the two lists.

  Union$ need not take exactly two arguments: (union$) is nil, (union$
  x) is x, (union$ x y z ... :test test) is (union$ x (union$ y z ...
  :test test) :test test), and if :TEST is not supplied, then (union$
  x y z ...) is (union$ x (union$ y z ...)). For the discussion below
  we restrict ourselves, then, to the cases (union$ x y) and (union$
  x y :test test).

  The [guard] for a call of union$ (in the two cases just above)
  depends on the test. In all cases, both arguments must satisfy
  [true-listp]. If the test is [eql], then one of the arguments must
  satisfy [eqlable-listp]. If the test is [eq], then one of the
  arguments must satisfy [symbol-listp].

  See [equality-variants] for a discussion of the relation between
  union$ and its variants:

      (union-eq x lst) is equivalent to (union$ x lst :test 'eq);

      (union-equal x lst) is equivalent to (union$ x lst :test 'equal).

  In particular, reasoning about any of these primitives reduces to
  reasoning about the function union-equal.

  Function: <union-equal>

    (defun
         union-equal (l1 l2)
         (declare (xargs :guard (and (true-listp l1) (true-listp l2))))
         (cond ((endp l1) l2)
               ((member-equal (car l1) l2)
                (union-equal (cdr l1) l2))
               (t (cons (car l1)
                        (union-equal (cdr l1) l2)))))

  Note that union-eq can take any number of arguments, in analogy to
  union$; indeed, (union-eq ...) expands to (union$ ... :test 'eq).
  However, union-equal is a function, not a macro, and takes exactly
  two arguments.

  Union$ is similar to the Common Lisp primitive union. However, Common
  Lisp does not specify the order of elements in the result of a call
  of union.")
 (UNION-EQ (POINTERS) "See [union$].")
 (UNION-EQUAL (POINTERS) "See [union$].")
 (UNION-THEORIES
  (THEORIES THEORY-FUNCTIONS)
  "Union two [theories]

    Example:
    (union-theories (current-theory 'lemma3)
                    (theory 'arith-patch))

    General Form:
    (union-theories th1 th2)

  where th1 and th2 are theories (see [theories]). To each of the
  arguments there corresponds a runic theory. This function returns
  the union of those two runic [theories], represented as a list and
  ordered chronologically.

  This ``function'' is actually a macro that expands to a term
  mentioning the single free variable [world]. When theory
  expressions are evaluated by [in-theory] or the :[in-theory] hint,
  [world] is bound to the current ACL2 [world].")
 (UNIVERSAL-THEORY
  (THEORIES THEORY-FUNCTIONS)
  "All rules as of logical name

    Examples:
    (universal-theory :here)
    (universal-theory 'lemma3)

  See [logical-name].

    General Form:
    (universal-theory logical-name)

  Returns the theory consisting of all the [rune]s that existed
  immediately after [logical-name] was introduced. See [theories] and
  see [logical-name]. The theory includes [logical-name] itself (if
  there is a rule by that name). (Note that since some [events] do
  not introduce rules (e.g., [defmacro], [defconst] or [defthm] with
  :[rule-classes] nil), the universal-theory does not necessarily
  include a [rune] for every event name.) The universal-theory is
  very long and you will probably regret printing it.

  You may experience a fencepost problem in deciding which
  [logical-name] to use. [Deflabel] can always be used to mark
  unambiguously for future reference a particular point in the
  development of your theory. This is convenient because [deflabel]
  does not introduce any rules and hence it doesn't matter if you
  count it as being in the interval or not. The order of [events] in
  the vicinity of an [encapsulate] is confusing. See [encapsulate].

  This ``function'' is actually a macro that expands to a term
  mentioning the single free variable [world]. When theory
  expressions are evaluated by [in-theory] or the :[in-theory] hint,
  [world] is bound to the current ACL2 [world].

  Also see [current-theory]. Current-theory is much more commonly used
  than universal-theory. The former includes only the [enable]d
  [rune]s as of the given [logical-name], which is probably what you
  want, while the latter includes [disable]d ones as well.")
 (UNMEMOIZE
  (MEMOIZE PROGRAMMING HONS-AND-MEMOIZATION EVENTS)
  "Turn off memoization for the specified function

    Example:
    (unmemoize 'foo) ; turn off memoization of foo

    General Form:
    (unmemoize fn)

  where fn evaluates to a function symbol that is currently memoized;
  see [memoize]. An exception is that as with [memoize], fn may
  evaluate to the name of a macro that is associated with such a
  function symbol; see [macro-aliases-table].

  Calls of this macro generate events of the form (table memoize-table
  fn nil). When successful, the returned value is of the form (mv nil
  function-symbol state).

  To remove the effects of all [memoize] [events], evaluate:
  (clear-memo-table). To save and restore memoization, see
  [save-and-clear-memoization-settings] and see
  [restore-memoization-settings].")
 (UNMONITOR
  (BREAK-REWRITE)
  "To stop monitoring a rule name

    Examples:
    (unmonitor '(:rewrite assoc-of-app))
    :unmonitor (:rewrite assoc-of-app)
    :unmonitor :all

    General Forms:
    (unmonitor rune)
    (unmonitor :all)

  Here, rune is a [rune] that is currently among those with break
  points installed. This function removes the break.

  Subtle point: Because you may want to unmonitor a ``[rune]'' that is
  no longer a [rune] in the current ACL2 [world], we don't actually
  check this about [rune]. Instead, we simply check that [rune] is a
  consp beginning with a keywordp. That way, you'll know you've made
  a mistake if you try to :unmonitor binary-append instead of
  :unmonitor (:definition binary-append), for example.")
 (UNQUOTE
  'ACL2-BUILT-INS
  "Obtain the object being quoted

  Unquote is just an abbrevation for [cadr]. Its intended use is to
  obtain an object being quoted. For example, if x is (quote (3 4))
  then (unquote x) is (3 4):

    ACL2 !>(let ((x '(quote (3 4))))
             (unquote x))
    (3 4)
    ACL2 !>")
 (UNSAVE
  (PROOF-CHECKER)
  "Remove a [proof-checker] state

    Example:
    (unsave assoc-of-append)

    General Form:
    (unsave name)

  Eliminates the association of a [proof-checker] state with name. See
  [unsave] or see [ACL2-pc::unsave].

  Also see [ACL2-pc::save] and see [retrieve].")
 (UNSIGNED-BYTE-P
  (NUMBERS ACL2-BUILT-INS)
  "Recognizer for natural numbers that fit in a specified bit width

  (Unsigned-byte-p bits x) is T when bits is a positive integer and x
  is a nonnegative integer that fits into a bit-width of bits, i.e.,
  0 <= x < 2^bits.

  Note that a [type-spec] of (unsigned-byte i) for a variable x in a
  function's [declare] form translates to a [guard] condition of
  (unsigned-byte-p i x).

  The [guard] for unsigned-byte-p is T.

  Function: <unsigned-byte-p>

    (defun unsigned-byte-p (bits x)
           (declare (xargs :guard t))
           (and (integerp bits)
                (<= 0 bits)
                (integer-range-p 0 (expt 2 bits) x)))")
 (UNSUPPORTED-PARALLELISM-FEATURES
  (PARALLELISM)
  "ACL2 features not supported in ACL2(p)

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].
  See [parallelism-tutorial] for an introduction to parallel
  programming in ACL2.

  For proof features of ACL2 that are not yet supported when parallel
  execution is enabled for the primary ACL2 proof process, generally
  known as ``the waterfall'', see
  [unsupported-waterfall-parallelism-features].

  Please note that this topic discusses ACL2 features that are disabled
  when using ACL2(p) (see [compiling-ACL2p]). These features are
  disabled regardless of whether waterfall parallelism is enabled.

  Calls of [observation-cw] simply convert to calls of [cw], so
  suppressing [observation]s (see [set-inhibit-output-lst]) will not
  suppress these messages.

  Memoization is not supported when executing in parallel. See
  [Unsupported-waterfall-parallelism-features] for memoization
  details related to waterfall parallelism.

  Since, as of April 2012, garbage collection is inherently sequential,
  ACL2(p) minimizes the use of garbage collection by setting a high
  garbage collection threshold. As a result, ACL2(p) is not expected
  to perform well on machines with less memory than this threshold (1
  gigabyte, as of April 2012).

  In CCL, the underlying parallel execution engine is tuned for the
  number of CPU cores (or hardware threads) actually available in the
  machine. SBCL and LispWorks are tuned for a machine with 16 CPU
  cores.

  CCL is considered to be the ``flagship Lisp'' for parallel execution
  in ACL2. The SBCL and LispWorks implementations are thought to be
  generally stable. However, due to their relatively less common use,
  the SBCL and LispWorks implementations are likely less robust than
  the CCL implementation.

  The [time-tracker] utility is a no-op for ACL2(p).")
 (UNSUPPORTED-WATERFALL-PARALLELISM-FEATURES
  (PARALLEL-PROOF)
  "Proof features not supported with waterfall-parallelism enabled

  For a general introduction to ACL2(p), an experimental extension of
  ACL2 that supports parallel execution and proof, see [parallelism].
  Please note that although this extension is usable and, we hope,
  robust in its behavior, there are still known issues to address
  beyond those listed explicitly below. While we expect ACL2(p) to
  perform correctly, it may never have the same level of attention to
  correctness as is given to ACL2; see [parallelism], specifically
  the ``IMPORTANT NOTE'' there.

  Below we list proof features of ACL2 that are not yet supported when
  parallel execution is enabled for the primary ACL2 proof process,
  generally known as ``the waterfall'', typically by calling
  [set-waterfall-parallelism].

  Please note that this topic is limited to the case that such
  waterfall parallelism is enabled. We believe that all ACL2 proof
  procedures are supported when waterfall parallelism is disabled,
  even in executables that support parallelism (see
  [compiling-ACL2p]).

  Without a trust tag (see [defttag]): We support [clause-processor]s,
  [computed-hints], and [custom-keyword-hints] that do not modify
  [state], but we do not permit [override-hints], regardless of
  whether they modify state. With a trust tag, the user can use
  [clause-processor]s that modify state and can also use
  [override-hints] (see [set-waterfall-parallelism-hacks-enabled] for
  a convenient mechanism for adding a trust tag). See
  [error-triples-and-parallelism] for a discussion of how to avoid
  modifying state in such situations. Regardless of whether a trust
  tag is active: We do not support checkers of [custom-keyword-hints]
  to be anything but the default checker.

  GNU Make versions 3.81 and 3.82 formerly caused a lot of problems
  (version 3.80 somewhat less so), at least on Linux, when certifying
  books with ACL2 built on a host Lisp of CCL using `make'. CCL was
  updated around March 23, 2011 to fix this problem, so if you get
  segfaults (for example) with CCL, try updating your CCL
  installation.

  Book certification should generally work but may present some issues,
  including the following.

    * The standard `make'-based process for book certification will not use
      [waterfall-parallelism], which is disabled by default (even
      when [compiling-ACL2p] by using the ACL2_PAR flag). See
      [books-certification] and see [books-certification-classic],
      which explain that [ACL2-customization] files are ignored
      during that process unless specified explicitly on the command
      line or in the environment.
    * A book certified with ACL2(p) might subsequently cause an error when
      included with ACL2. As of this writing, however, we have only
      seen this for a book in which [deftheory-static] is used.
    * In general, ACL2(p) is primarily intended to support more rapid
      interactive development. While we are unaware of an unsoundness
      likely to affect an ACL2(p) user, we suggest using ACL2 for
      final book certification, rather than ACL2(p), to lower the
      risk of unsound book certification.

  Proof output can contain repeated printing of the same subgoal name.

  [Gag-mode] isn't officially supported, although it has proved helpful
  to use ACL2(p) in conjunction with (set-gag-mode t) (because this
  setting suppresses the output that occurs outside the waterfall).
  This being said, ACL2(p) also prints key checkpoints (for example
  see [introduction-to-key-checkpoints]), but with a notion of ``key
  checkpoint'' that does not take into account whether the goal is
  later proved by induction. See [ACL2p-key-checkpoints] for further
  explanation of these key checkpoints. Note that [pso] is also not
  supported.

  The :[brr] utility is not supported.

  The [accumulated-persistence] utility is not supported.

  Tracking for [forward-chaining-reports] is not supported (see
  [set-fc-criteria]).

  Time limits (see [with-prover-time-limit]) aren't supported.

  The timing information printed at the end of a proof attempt, which
  is intended to represent cpu time (not wall-clock time), may be
  somewhat inaccurate when [waterfall-parallelism] is non-nil.
  Consider using [time$] to obtain timing information.

  The use of [wormhole]s is not recommended, as there may be race
  conditions.

  Output specific to :OR [hints] is disabled.

  Proof trees are likely not to work as originally designed.

  The use of [set-inhibit-output-lst] may not fully inhibit proof
  output.

  Reporting of [splitter] rules is currently unsupported when
  waterfall-parallelism is on.

  Interrupting a proof attempt is not yet properly supported. At a
  minimum, interrupts are trickier with waterfall parallelism
  enabled. For one, the user typically needs to issue the interrupt
  twice before the proof attempt is actually interrupted.
  Additionally, on rare occasions the theorem is registered as
  proved, even though the prover did not finish the proof. If this
  occurs, issue a :u (see [ubt]) and you will likely be at a stable
  state.

  Also with regards to interrupting a proof attempt, sometimes the user
  may need to issue a :q and lp to reset properly the parallelism
  implementation to a stable state. The primary symptom that the user
  is experiencing this issue is that threads will continue to compute
  in the background, even though there should be no proof attempt in
  progress. The user can observe this symptom by examining the CPU
  utilization of their ACL2 process, for example on Linux/Unix with
  the shell process top. Lisp usage greater than a few percent is
  indicative of this problem.

  Because of how ACL2 [arrays] are designed, the user may find that, in
  practice, ACL2 arrays work (but perhaps with some
  [slow-array-warning] messages). However, we are aware of race
  conditions that can cause problems.

  Instead of dynamically monitoring rewrites, [dmr] instead dynamically
  outputs information helpful for debugging the performance of proof
  parallelism. The instructions concerning how to see this debugging
  information are the same as the instructions for enabling [dmr]
  mode.

  If you are working with LispWorks 6.0 or 6.0.1, then you may see
  messages about misaligned conses. The state of the system may be
  corrupted after such a message has been printed. This LispWorks bug
  is fixed in LispWorks 6.1.

  The waterfall parallelism mode :resource-and-timing-based is not
  fully supported when the host Lisp is other than CCL. It may work,
  but we have not attempted to address a potential race condition.

  Proof output for splitter rules (see [splitter]) is currently
  unsupported when waterfall-parallelism is enabled.

  Memoization may not work as intended when executing in parallel
  (including the waterfall). In an effort to be helpful to the user,
  the functions automatically memoized by ACL2 are unmemoized when
  setting waterfall parallelism to anything but nil. Those exact
  functions are again memoized once waterfall parallelism is
  disabled. Additionally, any functions memoized within the ACL2 loop
  (by a call of [memoize]) are also unmemoized when enabling
  waterfall parallelism and once again memoized when disabling
  waterfall parallelism. This is implemented by returning the
  memoization state to what it was before enabling waterfall
  parallelism. As such, the user should be aware that any changes
  made to the memoization state while waterfall parallelism is
  enabled will be lost once waterfall parallelism is disabled.")
 (UNTRACE$
  (TRACE)
  "Untrace functions

    Examples:
    (untrace$)         ; untrace all functions previously
                       ; traced (e.g. with trace$ or trace!)
    (untrace$ foo bar) ; as above, except only untrace foo and bar

    General Forms:
    (untrace$)                 ; untrace all (as noted above)
    (untrace$ fn1 fn2 ... fnk) ; untrace the indicated functions

  where the fni were previously traced (e.g. with [trace$] or
  [trace!]).

  Untrace$ undoes the effect of [trace$]. See [trace$]. The value
  returned by untrace$ gives the list of functions for which tracing
  is being removed.")
 (UNTRANS-TABLE
  (MACROS)
  "Associates a function symbol with a macro for printing user-level
  terms

    Examples:
    ACL2 !>(untrans-table (w state))
    ((BINARY-+ + . T)
     (BINARY-* * . T)
     (BINARY-APPEND APPEND . T)
     (BINARY-LOGAND LOGAND . T)
     (BINARY-LOGIOR LOGIOR . T)
     (BINARY-LOGXOR LOGXOR . T)
     (BINARY-LOGEQV LOGEQV . T)
     (BINARY-POR POR . T)
     (BINARY-PAND PAND . T))

  See [table] for a general discussion of tables.

  See [add-macro-fn] for a more general discussion of this [table] and
  for a way to associate a macro name with a function name in theory
  events.")
 (UNTRANSLATE (POINTERS)
              "See [user-defined-functions-table].")
 (UNTRANSLATE-PREPROCESS (POINTERS)
                         "See [user-defined-functions-table].")
 (UPDATE-NTH
  (LISTS ACL2-BUILT-INS)
  "Modify a list by putting the given value at the given position

  (Update-nth key val l) returns a list that is the same as the list l,
  except that the value at the 0-based position key (a natural
  number) is val.

  If key is an integer at least as large as the length of l, then l
  will be padded with the appropriate number of nil elements, as
  illustrated by the following example.

    ACL2 !>(update-nth 8 'z '(a b c d e))
    (A B C D E NIL NIL NIL Z)

  We have the following theorem.

    (implies (and (true-listp l)
                  (integerp key)
                  (<= 0 key))
             (equal (length (update-nth key val l))
                    (if (< key (length l))
                        (length l)
                      (+ 1 key))))

  The [guard] of update-nth requires that its first (position) argument
  is a natural number and its last (list) argument is a true list.

  Function: <update-nth>

    (defun update-nth (key val l)
           (declare (xargs :guard (true-listp l))
                    (type (integer 0 *) key))
           (cond ((zp key) (cons val (cdr l)))
                 (t (cons (car l)
                          (update-nth (1- key) val (cdr l))))))


Subtopics

  [Nth-aliases-table]
      A [table] used to associate names for nth/update-nth printing")
 (UPDATE-NTH-ARRAY
  (STOBJ ACL2-BUILT-INS)
  "Update a stobj array

  Update-nth-array is called by [stobj] updaters to modify stobj array
  fields. See [stobj-example-3] for a discussion of this function and
  how it plays that role.

  Function: <update-nth-array>

    (defun update-nth-array (j key val l)
           (declare (xargs :guard (and (integerp j)
                                       (integerp key)
                                       (<= 0 j)
                                       (<= 0 key)
                                       (true-listp l)
                                       (true-listp (nth j l)))))
           (update-nth j (update-nth key val (nth j l))
                       l))")
 (UPPER-CASE-P
  (CHARACTERS ACL2-BUILT-INS)
  "Recognizer for upper case characters

  (Upper-case-p x) is true if and only if x is an upper case character,
  i.e., a member of the list #\\A, #\\B, ..., #\\Z.

  The [guard] for upper-case-p requires its argument to be a standard
  character (see [standard-char-p]).

  Upper-case-p is a Common Lisp function. See any Common Lisp
  documentation for more information.

  Function: <upper-case-p>

    (defun upper-case-p (x)
           (declare (xargs :guard (and (characterp x)
                                       (standard-char-p x))))
           (and (member x
                        '(#\\A #\\B #\\C #\\D #\\E #\\F #\\G
                              #\\H #\\I #\\J #\\K #\\L #\\M #\\N #\\O #\\P #\\Q
                              #\\R #\\S #\\T #\\U #\\V #\\W #\\X #\\Y #\\Z))
                t))")
 (USE (POINTERS)
      "See [hints] for keyword :use.")
 (USER-DEFINED-FUNCTIONS-TABLE
  (MACROS)
  "An advanced [table] used to replace certain system functions

    Examples:
    (table user-defined-functions-table 'untranslate-preprocess 'my-preprocess)
    (table user-defined-functions-table 'untranslate 'my-untranslate)

  This feature should perhaps only be used by advanced users who have a
  thorough understanding of the system functions being replaced.
  There are currently two ways a user can affect the way ACL2 prints
  terms.

  The first example associates the user-defined function symbol
  my-preprocess with untranslate-preprocess. As a result, when ACL2
  prints a term, say during a proof, using its so-called
  ``untranslate'' process the first thing it does is to call
  my-preprocess on two arguments: that term and the current ACL2
  logical [world]. If the call produces a non-nil result, then that
  result is passed to the untranslate process.

  The second example associates the user-defined function symbol
  my-untranslate with the built-in function symbol untranslate. As a
  result, the code for my-untranslate will be run whenever the
  untranslate process is run. The formals of the two functions must
  agree and must not contain any [stobj] names. Note that these
  overrides fail to occur upon guard violations and some other
  evaluation errors.

  The untranslate-preprocess approach may suffice for most cases in
  which a user wants to modify the way output is produced by the
  theorem prover. We present an example immediately below, but see
  [untranslate-patterns] for a more elaborate example. If the
  untranslate-preprocess approach does not seem sufficient for your
  purposes, you are invited to look at community book
  books/misc/rtl-untranslate.lisp or the source code for [define] for
  an example of user-defined untranslate (i.e., following the second
  example displayed above).

  Suppose you have a large constant that you would prefer not to see in
  proofs. For example, you may have submitted the following
  definition (but imagine a much larger constant, say, a list of
  length 1,000,000).

    (defconst *a* '(a b c d))

  If you submit the following (silly) theorem

    (thm (equal (cons x *a*) (car (cons yyy zzz))))

  then you will see the following output:

    (EQUAL (CONS X '(A B C D)) YYY).

  If *a* had represented a much larger structure, we would wish we
  could see the following instead.

    (EQUAL (CONS X *A*) YYY)

  That can be accomplished as follows. First we make the following
  definition.

    (defun my-preprocess (term wrld)
      (declare (ignore wrld))
      (if (equal term (list 'quote *a*))
          '*a*
        nil))

  Now we submit the following [table] event.

    (table user-defined-functions-table
           'untranslate-preprocess
           'my-preprocess)

  This will install my-preprocess as a preprocessor before the normal
  untranslation routine is applied to printing a term. When the
  untranslation routine encounters the constant (QUOTE (A B C D)), it
  will replace it with *a*, and the usual untranlation routine will
  print this as *A*.")
 (USING-COMPUTED-HINTS
  (COMPUTED-HINTS HINTS)
  "How to use computed hints

  Computed hints (see [computed-hints]) are extraordinarily powerful.
  We show a few examples here to illustrate their use. We recommend
  that the using-computed-hints-n topics be read in the order
  using-computed-hints-1, using-computed-hints-2, and so on.


Subtopics

  [Using-computed-hints-1]
      Driving Home the Basics

  [Using-computed-hints-2]
      One Hint to Every Top-Level Goal in a Forcing Round

  [Using-computed-hints-3]
      Hints as a Function of the Goal (not its Name)

  [Using-computed-hints-4]
      Computing the Hints

  [Using-computed-hints-5]
      Debugging Computed Hints

  [Using-computed-hints-6]
      Using the computed-hint-replacement feature

  [Using-computed-hints-7]
      Using the stable-under-simplificationp flag

  [Using-computed-hints-8]
      Some Final Comments")
 (USING-COMPUTED-HINTS-1
  (USING-COMPUTED-HINTS)
  "Driving Home the Basics

  The common hint

    (\"Subgoal 3.2.1''\" :use lemma42)

  has the same effect as the computed hint

    (if (equal id '((0) (3 2 1) . 2))
        '(:use lemma42)
        nil)

  which, of course, is equivalent to

    (and (equal id '((0) (3 2 1) . 2))
         '(:use lemma42))

  which is also equivalent to the computed hint

    my-special-hint

  provided the following defun has first been executed

    (defun my-special-hint (id clause world)
      (declare (xargs :mode :program)
               (ignore clause world))
      (if (equal id '((0) (3 2 1) . 2))
          '(:use lemma42)
          nil))

  It is permitted for the defun to be in :LOGIC mode (see [defun-mode])
  also.

  Just to be concrete, the following three events all behave the same
  way (if my-special-hint is as above):

    (defthm main (big-thm a b c)
      :hints ((\"Subgoal 3.2.1''\" :use lemma42)))

    (defthm main (big-thm a b c)
      :hints ((and (equal id '((0) (3 2 1) . 2)) '(:use lemma42))))

    (defthm main (big-thm a b c)
      :hints (my-special-hint))")
 (USING-COMPUTED-HINTS-2
  (USING-COMPUTED-HINTS)
  "One Hint to Every Top-Level Goal in a Forcing Round

  Suppose the main proof completes with a forcing round on three
  subgoals, \"[1]Subgoal 3\", \"[1]Subgoal 2\", and \"[1]Subgoal 1\".
  Suppose you wish to :use lemma42 in all top-level goals of the
  first forcing round. This can be done supplying the hint

    (if test '(:use lemma42) nil),

  where test is an expression that returns t when ID is one of the
  clause ids in question.

        goal-spec     (parse-clause-id goal-spec)

    \"[1]Subgoal 3\"        ((1) (3) . 0)
    \"[1]Subgoal 2\"        ((1) (2) . 0)
    \"[1]Subgoal 1\"        ((1) (1) . 0)

  Recall (see [clause-identifier]) that parse-clause-id maps from a
  goal spec to a clause id, so you can use that function on the goal
  specs printed in the failed proof attempt to determine the clause
  ids in question.

  So one acceptable test is

    (member-equal id '(((1) (3) . 0)
                       ((1) (2) . 0)
                       ((1) (1) . 0)))

  or you could use parse-clause-id in your computed hint if you don't
  want to see clause ids in your script:

    (or (equal id (parse-clause-id \"[1]Subgoal 3\"))
        (equal id (parse-clause-id \"[1]Subgoal 2\"))
        (equal id (parse-clause-id \"[1]Subgoal 1\")))

  or you could use the inverse function (see [clause-identifier]):

    (member-equal (string-for-tilde-@-clause-id-phrase id)
                  '(\"[1]Subgoal 3\"
                    \"[1]Subgoal 2\"
                    \"[1]Subgoal 1\"))

  Recall that what we've shown above are the tests to use in the
  computed hint. The hint itself is (if test '(:use lemma42) nil) or
  something equivalent like (and test '(:use lemma42)).

  The three tests above are all equivalent. They suffer from the
  problem of requiring the explicit enumeration of all the goal specs
  in the first forcing round. A change in the script might cause more
  forced subgoals and the ones other than those enumerated would not
  be given the hint.

  You could write a test that recognizes all first round top-level
  subgoals no matter how many there are. Just think of the
  programming problem: how do I recognize all the clause id's of the
  form ((1) (n) . 0)? Often you can come to this formulation of the
  problem by using parse-clause-id on a few of the candidate
  goal-specs to see the common structure. A suitable test in this
  case is:

    (and (equal (car id) '(1))     ; forcing round 1, top-level (pre-induction)
         (equal (len (cadr id)) 1) ; Subgoal n (not Subgoal n.i ...)
         (equal (cddr id) 0))      ; no primes

  The test above is ``overkill'' because it recognizes precisely the
  clause ids in question. But recall that once a computed hint is
  used, it is (by default) removed from the hints available to the
  children of the clause. Thus, we can widen the set of clause ids
  recognized to include all the children without worrying that the
  hint will be applied to those children.

  In particular, the following test supplies the hint to every
  top-level goal of the first forcing round:

    (equal (car id) '(1))

  You might worry that it would also supply the hint to the subgoal
  produced by the hint -- the cases we ruled out by the ``overkill''
  above. But that doesn't happen since the hint is unavailable to the
  children. You could even write:

    (equal (car (car id)) 1)

  which would supply the hint to every goal of the form \"[1]Subgoal
  ...\" and again, because we see and fire on the top-level goals
  first, we will not fire on, say, \"[1]Subgoal *1.3/2\", i.e., the id
  '((1 1 3) (2) . 0) even though the test recognizes that id.

  Finally, the following test supplies the hint to every top-level goal
  of every forcing round (except the 0th, which is the ``gist'' of
  the proof, not ``really'' a forcing round):

    (not (equal (car (car id)) 0))

  Recall again that in all the examples above we have exhibited the
  test in a computed hint of the form (if test '(:key1 val1 ...)
  nil).")
 (USING-COMPUTED-HINTS-3
  (USING-COMPUTED-HINTS)
  "Hints as a Function of the Goal (not its Name)

  Sometimes it is desirable to supply a hint whenever a certain term
  arises in a conjecture. For example, suppose we have proved

    (defthm all-swaps-have-the-property
       (the-property (swap x))
       :rule-classes nil)

  and suppose that whenever (SWAP A) occurs in a goal, we wish to add
  the additional hypothesis that (THE-PROPERTY (SWAP A)). Note that
  this is equivalent supplying the hint

    (if test
        '(:use (:instance all-swaps-have-the-property (x A)))
        nil)

  where test answers the question ``does the clause contain (SWAP A)?''
  That question can be asked with (occur-lst '(SWAP A) clause).
  Briefly, occur-lst takes the representation of a translated term,
  x, and a list of translated terms, y, and determines whether x
  occurs as a subterm of any term in y. (By ``subterm'' here we mean
  proper or improper, e.g., the subterms of (CAR X) are X and (CAR
  X).)

  Thus, the computed hint:

    (if (occur-lst '(swap a) clause)
        '(:use (:instance all-swaps-have-the-property (x A)))
        nil)

  will add the hypothesis (THE-PROPERTY (SWAP A)) to every goal
  containing (SWAP A) -- except the children of goals to which the
  hypothesis was added.

  A COMMON MISTAKE users are likely to make is to forget that they are
  dealing with translated terms. For example, suppose we wished to
  look for (SWAP (LIST 1 A)) with occur-lst. We would never find it
  with

    (occur-lst '(SWAP (LIST 1 A)) clause)

  because that presentation of the term contains macros and other
  abbreviations. By using :trans (see [trans]) we can obtain the
  translation of the target term. Then we can look for it with:

    (occur-lst '(SWAP (CONS '1 (CONS A 'NIL))) clause)

  Note in particular that you must

    * eliminate all macros and
    * explicitly quote all constants.

  We recommend using :trans to obtain the translated form of the terms
  in which you are interested, before programming your hints.

  An alternative is to use the expression (prettyify-clause clause nil
  nil) in your hint to convert the current goal clause into the
  s-expression that is actually printed. For example, the clause

    ((NOT (CONSP X)) (SYMBOLP Y) (EQUAL (CONS '1 (CAR X)) Y))

  ``prettyifies'' to

    (IMPLIES (AND (CONSP X)
                  (NOT (SYMBOLP Y)))
             (EQUAL (CONS 1 (CAR X)) Y))

  which is what you would see printed by ACL2 when the goal clause is
  that shown.

  However, if you choose to convert your clauses to prettyified form,
  you will have to write your own explorers (like our occur-lst),
  because all of the ACL2 term processing utilities work on
  translated and/or clausal forms. This should not be taken as a
  terrible burden. You will, at least, gain the benefit of knowing
  what you are really looking for, because your explorers will be
  looking at exactly the s-expressions you see at your terminal. And
  you won't have to wade through our still undocumented term/clause
  utilities. The approach will slow things down a little, since you
  will be paying the price of independently consing up the
  prettyified term.

  We make one more note on this example. We said above that the
  computed hint:

    (if (occur-lst '(swap a) clause)
        '(:use (:instance all-swaps-have-the-property (x A)))
        nil)

  will add the hypothesis (THE-PROPERTY (SWAP A)) to every goal
  containing (SWAP A) -- except the children of goals to which the
  hypothesis was added.

  It bears noting that the subgoals produced by induction and top-level
  forcing round goals are not children. For example, suppose the hint
  above fires on \"Subgoal 3\" and produces, say, \"Subgoal 3'\". Then
  the hint will not fire on \"Subgoal 3'\" even though it (still)
  contains (SWAP A) because \"Subgoal 3'\" is a child of a goal on
  which the hint fired.

  But now suppose that \"Subgoal 3'\" is pushed for induction. Then the
  goals created by that induction, i.e., the base case and induction
  step, are not considered children of \"Subgoal 3'\". All of the
  original hints are available.

  Alternatively, suppose that \"Subgoal 3' is proved but forces some
  other subgoal, \"[1]Subgoal 1\" which is attacked in Forcing Round 1.
  That top-level forced subgoal is not a child. All the original
  hints are available to it. Thus, if it contains (SWAP A), the hint
  will fire and supply the hypothesis, producing \"[1]Subgoal 1'\".
  This may be unnecessary, as the hypothesis might already be present
  in \"[1]Subgoal 1\". In this case, no harm is done. The hint won't
  fire on \"[1]Subgoal 1'\" because it is a child of \"[1]Subgoal 1\" and
  the hint fired on that.")
 (USING-COMPUTED-HINTS-4
  (USING-COMPUTED-HINTS)
  "Computing the Hints

  So far we have used computed hints only to compute when a fixed set
  of keys and values are to be used as a hint. But computed hints
  can, of course, compute the set of keys and values. You might, for
  example, write a hint that recognizes when a clause ``ought'' to be
  provable by a :BDD hint and generate the appropriate hint. You
  might build in a set of useful lemmas and check to see if the
  clause is provable :BY one of them. You can keep all function
  symbols disabled and use computed hints to compute which ones you
  want to :EXPAND. In general, you can write a theorem prover for use
  in your hints, provided you can get it to do its job by directing
  our theorem prover.

  Suppose for example we wish to find every occurrence of an instance
  of (SWAP x) and provide the corresponding instance of
  ALL-SWAPS-HAVE-THE-PROPERTY. Obviously, we must explore the clause
  looking for instances of (SWAP x) and build the appropriate
  instances of the lemma. We could do this in many different ways,
  but below we show a general purpose set of utilities for doing it.
  The functions are not defined in ACL2 but could be defined as
  shown.

  Our plan is: (1) Find all instances of a given pattern (term) in a
  clause, obtaining a set of substitutions. (2) Build a set of
  :instance expressions for a given lemma name and set of
  substitutions. (3) Generate a :use hint for those instances when
  instances are found.

  The pair of functions below find all instances of a given pattern
  term in either a term or a list of terms. The functions each return
  a list of substitutions, each substitution accounting for one of
  the matches of pat to a subterm. At this level in ACL2
  substitutions are lists of pairs of the form (var . term). All
  terms mentioned here are presumed to be in translated form.

  The functions take as their third argument a list of substitutions
  accumulated to date and add to it the substitutions produced by
  matching pat to the subterms of the term. We intend this
  accumulator to be nil initially. If the returned value is nil, then
  no instances of pat occurred.

    (mutual-recursion

    (defun find-all-instances (pat term alists)
     (declare (xargs :mode :program))
     (mv-let
      (instancep alist)
      (one-way-unify pat term)
      (let ((alists (if instancep (add-to-set-equal alist alists) alists)))
        (cond
         ((variablep term) alists)
         ((fquotep term) alists)
         (t (find-all-instances-list pat (fargs term) alists))))))

    (defun find-all-instances-list (pat list-of-terms alists)
     (declare (xargs :mode :program))
     (cond
      ((null list-of-terms) alists)
      (t (find-all-instances pat
                             (car list-of-terms)
                             (find-all-instances-list pat
                                                      (cdr list-of-terms)
                                                      alists))))))

  Caveat: The following aside has nothing to do with computed hints.
  Does an instance of (CAR (CDR x)) occur in ((LAMBDA (V) (CAR V))
  (CDR A))? It does if one beta-reduces the lambda-expression to (CAR
  (CDR A)); the appropriate substitution is to replace x by A. But
  the definition of find-all-instances above does not find this
  instance because it does not do beta-reduction.

  We now turn our attention to converting a list of substitutions into
  a list of lemma instances, each of the form

    (:INSTANCE name (var1 term1) ... (vark termk))

  as written in :use hints. In the code shown above, substitutions are
  lists of pairs of the form (var . term), but in lemma instances we
  must write ``doublets.'' So here we show how to convert from one to
  the other:

    (defun pairs-to-doublets (alist)
      (declare (xargs :mode :program))
      (cond ((null alist) nil)
            (t (cons (list (caar alist) (cdar alist))
                     (pairs-to-doublets (cdr alist))))))

  Now we can make a list of lemma instances:

    (defun make-lemma-instances (name alists)
      (declare (xargs :mode :program))
      (cond
       ((null alists) nil)
       (t (cons (list* :instance name (pairs-to-doublets (car alists)))
                (make-lemma-instances name (cdr alists))))))

  Finally, we can package it all together into a hint function. The
  function takes a pattern, pat, which must be a translated term, the
  name of a lemma, name, and a clause. If some instances of pat occur
  in clause, then the corresponding instances of name are :USEd in
  the computed hint. Otherwise, the hint does not apply.

    (defun add-corresponding-instances (pat name clause)
      (declare (xargs :mode :program))
      (let ((alists (find-all-instances-list pat clause nil)))
        (cond
         ((null alists) nil)
         (t (list :use (make-lemma-instances name alists))))))

  The design of this particular hint function makes it important that
  the variables of the pattern be the variables of the named lemma
  and that all of the variables we wish to instantiate occur in the
  pattern. We could, of course, redesign it to allow ``free
  variables'' or some sort of renaming.

  We could now use this hint as shown below:

    (defthm ... ...
      :hints ((add-corresponding-instances
               '(SWAP x)
               'ALL-SWAPS-HAVE-THE-PROPERTY
               clause)))

  The effect of the hint above is that any time a clause arises in
  which any instance of (SWAP x) appears, we add the corresponding
  instance of ALL-SWAPS-HAVE-THE-PROPERTY. So for example, if Subgoal
  *1/3.5 contains the subterm (SWAP (SWAP A)) then this hint fires
  and makes the system behave as though the hint:

    (\"Subgoal *1/3.5\"
     :USE ((:INSTANCE ALL-SWAPS-HAVE-THE-PROPERTY (X A))
           (:INSTANCE ALL-SWAPS-HAVE-THE-PROPERTY (X (SWAP A)))))

  had been present.")
 (USING-COMPUTED-HINTS-5
  (USING-COMPUTED-HINTS)
  "Debugging Computed Hints

  We have found that it is sometimes helpful to define hints so that
  they print out messages to the terminal when they fire, so you can
  see what hint was generated and which of your computed hints did
  it.

  To that end we have defined a macro we sometimes use. Suppose you
  have a :hints specification such as:

    :hints (computed-hint-fn (hint-expr id))

  If you defmacro the macro below you could then write instead:

    :hints ((show-hint computed-hint-fn 1)
            (show-hint (hint-expr id) 2))

  with the effect that whenever either hint is fired (i.e., returns
  non-nil), a message identifying the hint by the marker (1 or 2,
  above) and the non-nil value is printed.

    (defmacro show-hint (hint &optional marker)
      (cond
       ((and (consp hint)
             (stringp (car hint)))
        hint)
       (t
        `(let ((marker ,marker)
               (ans ,(if (symbolp hint)
                         `(,hint id clause world stable-under-simplificationp)
                       hint)))
           (if ans
               (prog2$
                (cw \"~%***** Computed Hint~#0~[~/ (from hint ~x1)~]~%~x2~%~%\"
                    (if (null marker) 0 1)
                    marker
                    (cons (string-for-tilde-@-clause-id-phrase id)
                          ans))
                ans)
             nil)))))

  Note that when show-hint is applied to a hint that is a symbol, e.g.,
  computed-hint-fn, it applies the symbol to the four computed-hint
  arguments: id, clause, world, and stable-under-simplificationp. If
  computed-hint-fn is of arity 3 the code above would cause an error.
  One way to avoid it is to write

    :hints ((show-hints (computed-hint-fn id clause world) 1)
            (show-hint (hint-expr id) 2)).

  If you only use computed hints of arity 3, you might eliminate the
  occurrence of stable-under-simplificationp in the definition of
  show-hint above.

  Putting a show-hint around a common hint has no effect. If you find
  yourself using this utility let us know and we'll consider putting
  it into the system itself. But it does illustrate that you can use
  computed hints to do unusual things.")
 (USING-COMPUTED-HINTS-6
  (USING-COMPUTED-HINTS)
  "Using the computed-hint-replacement feature

  So far none of our computed hints have used the
  :COMPUTED-HINT-REPLACEMENT feature. We now illustrate that.

  The :computed-hint-replacement feature can easily lead to loops. So
  as you experiment with the examples in this section and your own
  hints using this feature, be ready to interrupt the theorem prover
  and abort!

  A non-looping use of the :computed-hint-replacement feature would be
  a hint like this:

    (if (certain-terms-present clause)
        '(:computed-hint-replacement t
          :in-theory (enable lemma25))
        '(:computed-hint-replacement t
          :in-theory (disable lemma25)))

  In this hint, if certain terms are present in clause, as determined
  by the function with the obvious name (here undefined), then this
  hint enables lemma25 and otherwise disables it. Lemma25 might be a
  very expensive lemma, e.g., one that matches frequently and has an
  expensive and rarely established hypothesis. One might wish it
  enabled only under certain conditions. Recall that theories are
  inherited by children. So once lemma25 is enabled it ``stays''
  enabled for the children, until disabled; and vice versa. If the
  :computed-hint-replacement feature were not present and computed
  hints were always deleted after they had been used, then lemma25
  would be left enabled (or disabled) for all the childen produced by
  the first firing of the hint. But with the arrangement here, every
  subgoal gets a theory deemed suitable by the hint, and the hint
  persists.

  Now we will set up a toy to allow us to play with computed hints to
  understand them more deeply. To follow the discussion it is best to
  execute the following events.

    (defstub wrapper (x) t)
    (defaxiom wrapper-axiom (wrapper x) :rule-classes nil)

  Now submit the following event and watch what happens.

    (thm (equal u v)
      :hints (`(:use (:instance wrapper-axiom (x a)))))

  The theorem prover adds (wrapper a) to the goal and then abandons the
  proof attempt because it cannot prove the subgoal. Since the
  computed hint is deleted upon use, the hint is not applied to the
  subgoal (i.e., the child of the goal).

  What happens if we do the following?

    (thm (equal u v)
      :hints (`(:computed-hint-replacement t
                :use (:instance wrapper-axiom (x a)))))

  As one might expect, this loops forever: The hint is applied to the
  child and adds the hypothesis again. When the hint fires, nothing
  is actually changed, since (wrapper a) is already in the subgoal.

  So let's change the experiment a little. Let's make the hint add the
  hypothesis (wrapper p) where p is the first literal of the clause.
  This is silly but it allows us to explore the behavior of computed
  hints a little more.

    (thm (equal u v)
      :hints (`(:use (:instance wrapper-axiom (x ,(car clause))))))

  So in this case, the theorem prover changes the goal to

    (IMPLIES (WRAPPER (EQUAL U V)) (EQUAL U V))

  which then simplifies to

    (IMPLIES (WRAPPER NIL) (EQUAL U V))

  because the concluding equality can be assumed false in the
  hypothesis (e.g., think of the contrapositive version). Nothing
  else happens because the hint has been removed and so is not
  applicable to the child.

  Now consider the following -- and be ready to interrupt it and abort!

    (thm (equal u v)
      :hints (`(:computed-hint-replacement t
                :use (:instance wrapper-axiom (x ,(car clause))))))

  This time the hint is not removed and so is applied to the child. So
  from Goal we get

    Goal'
    (IMPLIES (WRAPPER (EQUAL U V))
             (EQUAL U V))

  and then

    Goal''
    (IMPLIES (AND (WRAPPER (NOT (WRAPPER (EQUAL U V))))
                  (WRAPPER (EQUAL U V)))
             (EQUAL U V))

  etc.

  First, note that the hint is repeatedly applied to its children. That
  is because we wrote :computed-hint-replacement t. But second, note
  that Goal' is not even being simplified before Goal'' is produced
  from it. If it were being simplified, the (equal u v)'s in the
  hypotheses would be replaced by nil. This is a feature. It means
  after a computed hint has fired, other hints are given a chance at
  the result, even the hint itself unless it is removed from the list
  of hints.

  As an exercise, let's arrange for the hint to stay around and be
  applied indefinitely but with a simplification between each use of
  the the hint. To do this we need to pass information from one
  application of the hint to the next, essentially to say ``stay
  around but don't fire.''

  First, we will define a function to use in the hint. This is more
  than a mere convenience; it allows the hint to ``reproduce itself''
  in the replacement.

    (defun wrapper-challenge (clause parity)
      (if parity
          `(:computed-hint-replacement ((wrapper-challenge clause nil))
            :use (:instance wrapper-axiom (x ,(car clause))))
          `(:computed-hint-replacement ((wrapper-challenge clause t)))))

  Note that this function is not recursive, even though it uses its own
  name. That is because the occurrence of its name is in a quoted
  constant.

  Now consider the following. What will it do?

    (thm (equal u v)
      :hints ((wrapper-challenge clause t)))

  First, observe that this is a legal hint because it is a term that
  mentions only the free variable CLAUSE. When defining hint
  functions you may sometimes think their only arguments are the four
  variables id, clause, world, and stable-under-simplificationp. That
  is not so. But in your hints you must call those functions so that
  those are the only free variables. Note also that the occurrence of
  clause inside the :computed-hint-replacement is not an occurrence
  of the variable clause but just a constant. Just store this note
  away for a moment. We'll return to it momentarily.

  Second, the basic cleverness of this hint is that every time it fires
  it reproduces itself with the opposite parity. When the parity is t
  it actually changes the goal by adding a hypothesis. When the
  parity is nil it doesn't change the goal and so allows
  simplification to proceed -- but it swaps the parity back to t.
  What you can see with this simple toy is that we can use the
  computed hints to pass information from parent to child.

  Ok, so what happens when the event above is executed? Try it. You
  will see that ACL2 applied the hint the first time. It doesn't get
  around to printing the output because an error is caused before it
  can print. But here is a blow-by-blow description of what happens.
  The hint is evaluated on Goal with the clause ((equal u v)). It
  produces a hint exactly as though we had typed:

    (\"Goal\" :use (:instance wrapper-axiom (x (equal u v))))

  which is applied to this goal. In addition, it produces the new hints
  argument

    :hints ((wrapper-challenge clause nil)).

  By applying the \"Goal\" hint we get the new subgoal

    Goal'
    (implies (wrapper (equal u v))
             (equal u v))

  but this is not printed because, before printing it, the theorem
  prover looks for hints to apply to it and finds

    (wrapper-challenge clause nil)

  That is evaluated and produces a hint exactly as though we had typed:

    (\"Goal'\" )

  and the new hints argument:

    :hints ((wrapper-challenge clause nil)).

  But if you supply the hint (\"Goal'\" ), ACL2 will signal an error
  because it does not allow you to specify an empty hint!

  So the definition of wrapper-challenge above is almost correct but
  fatally flawed. We need a non-empty ``no-op'' hint. One such hint
  is to tell the system to expand a term that will always be expanded
  anyway. So undo wrapper-challenge, redefine it, and try the proof
  again. Now remember the observation about clause that we asked you
  to ``store'' above. The new definition of wrapper-challenge
  illustrates what we meant. Note that the first formal parameter of
  wrapper-challenge, below, is no longer named clause but is called
  cl instead. But the ``call'' of wrapper-challenge in the
  replacements is on clause. This may seem to violate the rule that a
  function definition cannot use variables other than the formals.
  But the occurrences of clause below are not variables but constants
  in an object that will eventually be treated as hint term.

    :ubt wrapper-challenge

    (defun wrapper-challenge (cl parity)
      (if parity
          `(:computed-hint-replacement ((wrapper-challenge clause nil))
            :use (:instance wrapper-axiom (x ,(car cl))))
          `(:computed-hint-replacement ((wrapper-challenge clause t))
            :expand ((atom zzz)))))

    (thm (equal u v)
      :hints ((wrapper-challenge clause t)))

  This time, things go as you might have expected! Goal' is produced
  and simplified, to

    Goal''
    (implies (wrapper nil)
             (equal u v)).

  Simplification gets a chance because when the new hint
  (wrapper-challenge clause nil) is fired it does not change the
  goal. But it does change the parity in the hints argument so that
  before Goal'' is simplified again, the hint fires and adds the
  hypothesis:

    Goal'''
    (IMPLIES (AND (WRAPPER (NOT (WRAPPER NIL)))
                  (WRAPPER NIL))
             (EQUAL U V)).

  This simplifies, replacing the first (NOT (WRAPPER NIL)) by NIL,
  since (WRAPPER NIL) is known to be true here. Thus the goal
  simplifies to

    Goal'4'
    (IMPLIES (WRAPPER NIL) (EQUAL U V)).

  The process repeats indefinitely.

  So we succeeded in getting a hint to fire indefinitely but allow a
  full simplification between rounds.")
 (USING-COMPUTED-HINTS-7
  (USING-COMPUTED-HINTS)
  "Using the stable-under-simplificationp flag

  A problem with the example in [using-computed-hints-6] is that
  exactly one simplification occurs between each (effective) firing
  of the hint. Much more commonly we wish to fire a hint once a
  subgoal has become stable under simplification.

  A classic example of this is when we are dealing with an interpreter
  for some state machine. We typically do not want the ``step''
  function to open up on the symbolic representation of a state until
  that state has been maximally simplified. We will illustrate with a
  simple state machine.

  Let us start by defining the step function, stp, and the
  corresponding run function that applies it a given number of times.

    (defun stp (s)
      (+ 1 s))

    (defun run (s n)
      (if (zp n)
          s
          (run (stp s) (- n 1))))

  The step function here is trivial: a state is just a number and the
  step function increments it. In this example we will not be
  interested in the theorems we prove but in how we prove them. The
  formula we will focus on is

    (thm (equal (run s 7) xxx))

  This is not a theorem, of course. But we want to test our advice on
  non-theorems because we do not want the advice to work only for
  proofs that succeed. (In the past, we gave advice about using
  computed hints and that advice caused the theorem prover to run
  forever when given formulas that it couldn't prove -- but most of
  the time the system is presented with formulas it cannot prove!)

  Furthermore, without some kind of additional rules, the (run s 7)
  expression in the conjecture above will not expand at all, because
  ACL2's heuristics do not approve.

  In fact, we do not want to take chances that run will be expanded --
  we want to control its expansion completely. Therefore, disable
  run.

    (in-theory (disable run))

  Now, what do we want? (That is always a good question to ask!) We
  want (run s 7) to expand ``slowly.'' In particular, we want it to
  expand once, to (run (stp s) 6). Then we want the stp to be
  expanded and fully simplified before the run expression is expanded
  again. That is, we want to force the expansion of run whenever the
  goal is stable under simplification. This is sometimes called
  ``staged simplification.''

  We can achieve staged simplification for any given function symbol by
  defining the functions shown below and then using a simple computed
  hint:

    (thm (equal (run s 7) xxx)
         :hints ((stage run)))

  By inspecting how stage is defined you can see how to extend it, but
  we explain as we go. To experiment, you can just paste the
  definitions (and defmacro) below into your ACL2 shell and then try
  the thm command.

  First, define this pair of mutually recursive functions.
  Find-first-call finds the first call of the function symbol fn in a
  given term.

    (mutual-recursion
     (defun find-first-call (fn term)
     ; Find the first call of fn in term.
      (cond ((variablep term) nil)
            ((fquotep term) nil)
            ((equal (ffn-symb term) fn)
             term)
            (t (find-first-call-lst fn (fargs term)))))
     (defun find-first-call-lst (fn lst)
     ; Find the first call of fn in a list of terms.
      (cond ((endp lst) nil)
            (t (or (find-first-call fn (car lst))
                   (find-first-call-lst fn (cdr lst)))))))

  We will arrange for the computed hint to generate an :EXPAND hint for
  the first call of fn, whenever the goal becomes stable under
  simplification. If no call is found, the hint will do nothing. To
  make sure the hint will not loop indefinitely (for example, by
  forcing fn to expand only to have the rewriter ``fold'' it back up
  again), we will provide the hint with a bound that stops it after
  some number of iterations. Here is the basic function that creates
  the expand hint and replaces itself to count down.

    (defun stage1 (fn max clause flg)
    ; If the clause is stable under simplification and there is a call of
    ; fn in it, expand it.  But don't do it more than max times.
     (let ((temp (and flg
                      (find-first-call-lst fn clause))))
       (if temp
           (if (zp max)
               (cw \"~%~%HINT PROBLEM:  The maximum repetition count of ~
                    your STAGE hint been reached without eliminating ~
                    all of the calls of ~x0.  You could supply a larger ~
                    count with the optional second argument to STAGE ~
                    (which defaults to 100).  But think about what is ~
                    happening! Is each stage permanently eliminating a ~
                    call of ~x0?~%~%\"
                   fn)
             `(:computed-hint-replacement
                ((stage1 ',fn ,(- max 1)
                         clause
                         stable-under-simplificationp))
               :expand (,temp)))
         nil)))

  Suppose that when stage1 is called, fn is the function we want to
  expand, max is the maximum number of iterations of this expansion,
  clause is the current goal clause, and flg is the value of the
  stable-under-simplificationp flag. Then if clause is stable and we
  can find a call of fn in it, we ask whether max is exhausted. If
  so, we print an ``error message'' to the comment window with [cw]
  and return nil (the value of cw). That nil means the hint does
  nothing. But if max is not yet exhausted, we return a new hint. As
  you can see above, the hint replaces itself with another stage1
  hint with the same fn and a decremented max to be applied to the
  new clause and the then-current value of
  stable-under-simplificationp. The hint also contains an :expand
  directive for the call of fn found.

  Thus, if the computed hint was:

    (stage1 'run 5 clause stable-under-simplificationp)

  and (run s 7) occurs in the clause, then it will generate

    (:computed-hint-replacement
      ((stage1 'run 4 clause stable-under-simplificationp))
     :expand ((run s 7)))

  which will in turn replace the old stage1 hint with the new one and
  will apply :expand ((run s 7)) to the current goal.

  We can make this more convenient by defining the macro:

    (defmacro stage (fn &optional (max '100))
     `(stage1 ',fn ,max clause stable-under-simplificationp))

  Note that the macro allows us to either provide the maximum bound or
  let it default to 100.

  Henceforth, we can type

    (thm (equal (run s 7) xxx)
         :hints ((stage run)))

  to stage the opening of run up to 100 times, or we can write

    (thm (equal (run s 7) xxx)
         :hints ((stage run 5)))

  to stage it only 5 times. In the latter example, the system with
  print a ``error message'' after the fifth expansion.

  Note that if we executed

    (set-default-hints '((stage run)))

  then we could attack all theorems (involving run) with staged
  simplification (up to bound 100), without typing an explicit hint.

    (thm (equal (run s 7) xxx))

  Using techniques similar to those above we have implemented
  ``priority phased simplification'' and provided it as a book. See
  community book books/misc/priorities.lisp. This is an idea
  suggested by Pete Manolios, by which priorities may be assigned to
  rules and then the simplifier simplifies each subgoal maximally
  under the rules of a given priority before enabling the rules of
  the next priority level. The book above documents both how we
  implement it with computed hints and how to use it.

  Here is another example of using the stable-under-simplificationp
  flag to delay certain actions. It defines a default hint, see
  [default-hints], which will enable [non-linear-arithmetic] on
  precisely those goals which are stable-under-simplificationp. It
  also uses the HISTORY and PSPV variables to determine when toggling
  [non-linear-arithmetic] is appropriate. These variables are
  documented only in the source code. If you start using these
  variables extensively, please contact the developers of ACL2 or
  Robert Krug (rkrug@cs.utexas.edu) and let us know how we can help.

    (defun nonlinearp-default-hint (stable-under-simplificationp hist pspv)
      (cond (stable-under-simplificationp
             (if (not (access rewrite-constant
                              (access prove-spec-var pspv :rewrite-constant)
                              :nonlinearp))
                 '(:computed-hint-replacement t
                   :nonlinearp t)
               nil))
            ((access rewrite-constant
                     (access prove-spec-var pspv :rewrite-constant)
                     :nonlinearp)
             (if (not (equal (caar hist) 'SETTLED-DOWN-CLAUSE))
                 '(:computed-hint-replacement t
                   :nonlinearp nil)
               nil))
            (t
             nil)))")
 (USING-COMPUTED-HINTS-8
  (USING-COMPUTED-HINTS)
  "Some Final Comments

  None of the examples show the use of the variable WORLD, which is
  allowed in computed hints. There are some (undocumented) ACL2
  utilities that might be useful in programming hints, but these
  utilities need access to the ACL2 logical world (see [world]).

  A very useful fact to know is that (table-alist name world) returns
  an alist representation of the current value of the [table] named
  name.

  The ACL2 source code is littered with :[program] mode functions for
  manipulating world. In our source code, the world is usually bound
  a variable named wrld; so searching our code for that name might be
  helpful.

  Using these utilities to look at the WORLD one can, for example,
  determine whether a symbol is defined recursively or not, get the
  body and formals of a defined function, or fetch the statement of a
  given lemma. Because these utilities are not yet documented, we do
  not expect users to employ WORLD in computed hints. But experts
  might and it might lead to the formulation of a more convenient
  language for computed hints.

  None of our examples illustrated the 7 argument form of a computed
  hint, (fn ID CLAUSE WORLD STABLE-UNDER-SIMPLIFICATIONP HIST PSPV
  CTX). When used, the variables HIST, PSPV, and CTX, are bound to
  the clause history, the package of ``special variables'' governing
  the clause, and the ``error message context.'' These variables are
  commonly used throughout our source code but are, unfortunately,
  undocumented. Again, we expect a few experts will find them useful
  in developing computed hints.

  If you start using computed hints extensively, please contact the
  developers of ACL2 and let us know what you are doing with them and
  how we can help.")
 (USING-ENABLED-RULES
  (THEORIES)
  "Avoiding :use [hints] for [enable]d :[rewrite] rules

  Consider the following (admittedly silly) example.

    (thm (equal (append (append x y) z) (append x y z))
         :hints ((\"Subgoal *1/1\" :use cdr-cons)))

  ACL2's output includes the following warning.

    ACL2 Warning [Use] in ( THM ...):  It is unusual to :USE an enabled
    :REWRITE or :DEFINITION rule, so you may want to consider disabling
    (:REWRITE CDR-CONS) in the hint provided for Subgoal *1/1.

  The warning is saying that if you leave the rewrite rule enabled,
  ACL2 may simplify away the hypothesis added by the :use hint. We
  now explain this danger in more detail and show how disabling the
  rule can solve this problem.

  Recall (see [hints]) how :use [hints] work. Such a hint specifies a
  formula, F, which is based on an existing lemma. Then the indicated
  goal, G, is replaced by the implication (implies F G). The
  intention is that the truth of F will help in the simplification of
  G to T (true). The ``[Use]'' warning shown above is telling us of
  the danger that F may be rewritten to T, reducing the implication
  above to (implies T G) --- thus, sadly, F has disappeared and is
  not available to help with the simplification of G.

  Consider the following tiny example.

    (defun p (x) (cons x x))
    (defthm car-p
       (equal (car (p x)) x))
    (in-theory (disable p (:type-prescription p)))
    (thm (implies (equal (p x1) (p x2))
                  (equal x1 x2))
         :hints ((\"Goal\"
                  :use ((:instance car-p (x x1))
                        (:instance car-p (x x2))))))

  The proof of the final [thm] form fails, because the new hypotheses
  are rewritten to t using the :[rewrite] rule CAR-P, in the manner
  described above. The following proof log shows the new hypotheses
  and their disappearance via rewriting.

    We augment the goal with the hypotheses provided by the :USE hint.
    These hypotheses can be derived from CAR-P via instantiation.  We are
    left with the following subgoal.

    Goal'
    (IMPLIES (AND (EQUAL (CAR (P X1)) X1)
                  (EQUAL (CAR (P X2)) X2))
             (IMPLIES (EQUAL (P X1) (P X2))
                      (EQUAL X1 X2))).

    By the simple :rewrite rule CAR-P we reduce the conjecture to

    Goal''
    (IMPLIES (EQUAL (P X1) (P X2))
             (EQUAL X1 X2)).

  When we disable the rule CAR-P as follows, the proof succeeds.

    (thm (implies (equal (p x1) (p x2))
                  (equal x1 x2))
         :hints ((\"Goal\"
                  :use ((:instance car-p (x x1))
                        (:instance car-p (x x2)))
                  :in-theory (disable car-p))))

  In general, then, a solution is to disable the rewrite rule that you
  are supplying in a :use hint.")
 (USING-TABLES-EFFICIENTLY
  (TABLE)
  "Notes on how to use tables efficiently

  (Thanks to Jared Davis for contributing this [documentation] topic,
  to which we have made only minor modifications.)

  Suppose your book contains [table] [events], or macros that expand
  into table events, of the following form:

    (table my-table 'my-field <computation>)

  Then <computation> will be evaluated twice during [certify-book] and
  again every time you include the book with [include-book]. In some
  cases this overhead can be avoided using [make-event].

  See also [defconsts] for an analogous trick involving [defconst].

  As an example, suppose we want to store numbers in a table only if
  they satisfy some computationally expensive predicate. We'll
  introduce a new book, number-table.lisp, and create a table to
  store these numbers:

    (table number-table 'data nil)

  Instead of implementing a ``computationally expensive predicate,''
  we'll write a function that just prints a message when it is called
  and accepts even numbers:

    (defun expensive-computation (n)
      (prog2$ (cw \"Expensive computation on ~x0.~%\" n)
              (evenp n)))

  Now we'll implement a macro, add-number, which will add its argument
  to the table only if it satisfies the expensive predicate:

    (defmacro add-number (n)
      `(table number-table 'data
              (let ((current-data
                     (cdr (assoc-eq 'data (table-alist 'number-table world)))))
                (if (expensive-computation ,n)
                    (cons ,n current-data)
                  current-data))))

  Finally, we'll call add-number a few times to finish the book.

    (add-number 1)
    (add-number 2)
    (add-number 3)

  When we now invoke (certify-book \"number-table\"), we see the
  expensive predicate being called twice for each number: once in
  Step 2, the main pass, then again in Step 3, the admissibility
  check. Worse, the computation is performed again for each number
  when we use [include-book] to load number-table, e.g.,

    ACL2 !>(include-book \"number-table\")
    Expensive computation on 1.
    Expensive computation on 2.
    Expensive computation on 3.

  To avoid these repeated executions, we can pull the test out of the
  table event using [make-event]. Here's an alternate implementation
  of add-number that won't repeat the computation:

    (defmacro add-number (n)
      `(make-event
        (if (expensive-computation ,n)
            '(table number-table 'data
                    (cons ,n (cdr (assoc 'data
                                         (table-alist 'number-table world)))))
          '(value-triple :expensive-computation-failed))))

  When we recertify number-table.lisp, we'll see the expensive
  computation is still called once for each number in Step 2, but is
  no longer called during Step 3. Similarly, the [include-book] no
  longer shows any calls of the expensive computation.")
 (USING_THE_ASSOCIATIVITY_OF_APP_TO_PROVE_A_TRIVIAL_CONSEQUENCE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "Using the Associativity of App to Prove a Trivial Consequence

  [{IMAGE}]

  If we have proved the associativity-of-app rule, then the following
  theorem is trivial:

    (defthm trivial-consequence
      (equal (app (app (app (app x1 x2) (app x3 x4)) (app x5 x6)) x7)
             (app x1 (app (app x2 x3) (app (app x4 x5) (app x6 x7))))))

  Below we show the proof

  [{IMAGE}]")
 (VALUE-TRIPLE
  (EVENTS ACL2-BUILT-INS)
  "Compute a value, optionally checking that it is not nil

    Examples:
    (value-triple (+ 3 4))
    (value-triple (cw \"hi\") :on-skip-proofs t)
    (value-triple (@ ld-pre-eval-print))
    (value-triple (@ ld-pre-eval-print) :check t)

    General Form:
    (value-triple form
                  :on-skip-proofs sp ; optional; nil by default
                  :check chk         ; optional; nil by default
                  )

  Value-triple provides a convenient way to evaluate a form in an event
  context, including [progn] and [encapsulate] and in [books]; see
  [events]. The form should evaluate to a single, non-[stobj] value.

  Calls of value-triple are generally skipped when proofs are being
  skipped, in particular when ACL2 is performing the second pass
  through the [events] of an [encapsulate] form or during an
  [include-book], or indeed any time [ld-skip-proofsp] is non-nil. If
  you want the call evaluated during those times as well, use a
  non-nil value for :on-skip-proofs. Note that the argument to
  :on-skip-proofs is not evaluated.

  If you expect the form to evaluate to a non-nil value and you want an
  error to occur when that is not the case, you can use :check t.
  More generally, the argument of :check can be a form that evaluates
  to a single, non-[stobj] value. If this value is not nil, then the
  aforementioned test is made (that the given form is not nil). If an
  error occurs and the value of :check is a string or indeed any
  ``message'' suitable for printing by [fmt] when supplied as a value
  for tilde-directive ~@, then that string or message is printed.")
 (VERBOSE-PSTACK
  (PSTACK)
  "Seeing what the prover is up to (for system hackers)

  NOTE: This utility is a low-level debugging utility, which may not be
  useful except to those familiar with ACL2 source code.

    General Forms:
    (verbose-pstack t)   ; get trace-like information on prover during proofs
    (verbose-pstack '(fn1 fn2 ...))
                         ; as above, but omit calls of the indicated functions
    (verbose-pstack nil) ; turn off trace-like information on prover

  For example, (verbose-pstack '(ev-fncall)) will provide a trace of
  various prover functions during proofs, except for the function
  ev-fncall.

  By evaluating (verbose-pstack t) one can get trace-like information
  during subsequent proofs about prover functions, including time
  summaries, printed to the screen during a proof. To turn off this
  feature, evaluate (verbose-pstack nil). Also see [pstack].")
 (VERIFY
  (PROOF-CHECKER)
  "Enter the interactive proof checker

  For proof-checker command summaries, see [proof-checker].

    Examples:
    (VERIFY (implies (and (true-listp x) (true-listp y))
                          (equal (append (append x y) z)
                                 (append x (append y z)))))
       -- Attempt to prove the given term interactively.

    (VERIFY (p x)
            :event-name p-always-holds
            :rule-classes (:rewrite :generalize)
            :instructions ((rewrite p-always-holds-lemma)
                           change-goal))
       -- Attempt to prove (p x), where the intention is to call the
          resulting DEFTHM event by the name p-always-holds, with
          rule-classes as indicated.  The two indicated instructions
          will be run immediately to start the proof.

    (VERIFY)
       -- Re-enter the proof-checker in the state at which is was last
          left.

    General Form:
    (VERIFY &OPTIONAL raw-term
            &KEY
            event-name
            rule-classes
            instructions)

  Verify is the function used for entering the [proof-checker]'s
  interactive loop.")
 (VERIFY-GUARDS
  (EVENTS GUARD)
  "Verify the [guard]s of a function

  See [guard] for a general discussion of guards.

  Before discussing the verify-guards event, we first discuss guard
  verification, which can take place at definition time or, later,
  using verify-guards. Typically, guard verification takes place at
  definition time if a guard (or type, or [stobjs]) has been supplied
  explicitly unless :verify-guards nil has been specified; see
  [defun] and see [xargs], and see [set-verify-guards-eagerness] for
  how to change this default. The point of guard verification is to
  ensure that during evaluation of an expression without free
  variables, no guard violation takes place.

  Technical note: the first argument of verify-guards must be a
  function symbol or the name of a [defthm] or [defaxiom] event, not
  a macro-alias for a function symbol (see [macro-aliases-table]).
  See [verify-guards+] for a utility that does not have this
  restriction.

  Guard verification is intended to guarantee that for any call of a
  given function, if its [guard] holds for that call then the [guard]
  will hold for every function call in the body of that function.
  Moreover, in order to avoid guard violations during evaluation of
  the function's guard itself, guard verification also is intended to
  guarantee that the guards are satisfied for all calls in the guard
  itself. Consider the following simple example.

    (defun f (x)
      (declare (xargs :guard (and (consp x)
                                  (integerp (car x)))))
      (if (rationalp (cdr x))
          (+ (car x) (cdr x))
        17))

  If you evaluate (f t), for example, in the top-level loop, you will
  (by default) get a guard error. The point of guard verification is
  to guarantee the absence of guard errors, and we start by using
  this example to illustrate the proof obligations that guarantee
  such absence.

  The body of the above definition has the following function calls,
  where the first is the entire body.

    (if (rationalp (cdr x))
        (< (car x) (cdr x))
      17)
    (rationalp (cdr x)) ; the test of the top-level IF call
    (cdr x)             ; from (rationalp (cdr x))
    (< (car x) (cdr x)) ; the true branch of the top-level IF call
    (car x)             ; from (< (car x) (cdr x))
    (cdr x)             ; from (< (car x) (cdr x))

  We thus see potentially six conditions to prove, one for each call.
  The guards of the function symbols of those calls are t for [if]
  and [rationalp], (or (consp x) (equal x nil)) for both (car x) and
  (cdr x), and finally that both arguments are rationals for <.
  Moreover, we can take advantage of ``contextual assumptions'': the
  if-test conditions and the top-level :guard. Thus, for
  verify-guards the proof obligation from the body of f is as
  follows.

    (implies
     (and (consp x) (integerp (car x))) ; from the :guard
     (and t ; from the top-level IF call
          t ; from (rationalp (cdr x))
          (or (consp x) (equal x nil)) ; from the first (cdr x)
          (implies
           (rationalp (cdr x)) ; IF-test for calls in the true branch
           (and (or (consp x) (equal x nil)) ; from (car x)
                (or (consp x) (equal x nil)) ; from the second (cdr x)
                (and (rationalp (car x)) (rationalp (cdr x))) ; from the < call
                ))))

  But the :guard itself generates a similar sort of proof obligation.
  Note that the guard (and (consp x) (integerp (car x))) is really an
  abbreviation (i.e. via the macro [and]) for the term (if (consp x)
  (integerp (car x)) nil). The guard proof obligation for the guard
  itself is thus as follows.

    (and t ; from (consp x)
         (implies (consp x)
                  (and t         ; from (integerp (car x)) ;
                       (consp x) ; from (car x) ;
                       )))

  All of the above proof obligations are indeed theorems, and guard
  verification succeeds for the above definition of f.

  The example above illustrates the general procedure for generating
  the guard proof obligation. Each function call is considered in the
  body or guard of the function, and it is required that the guard is
  met for that call, under certain ``contextual assumptions'', which
  are as follows. In the case of the body of the named function, it
  is assumed that the guard holds for that function on its formal
  parameters. And in both cases --- the body of the named function
  and also its guard --- the governing tests from superior calls of
  [if] are also assumed.

  As mentioned above, if the guard on a function is not t, then guard
  verification requires not only consideration of the body under the
  assumption that the guard is true, but also consideration of the
  guard itself. Thus, for example, guard verification fails in the
  following example, even though there are no proof obligations
  arising from the body, because the guard itself can cause a guard
  violation when evaluated for an arbitrary value of x:

    (defun foo (x)
      (declare (xargs :guard (car x)))
      x)

  We turn now to the verify-guards event as a way of verifying the
  [guard]s for a function or theorem.

    Examples:
    (verify-guards flatten)
    (verify-guards flatten
                   :hints ((\"Goal\" :use (:instance assoc-of-app)))
                   :guard-debug t ; default = nil
                   :otf-flg t)

    General Form:
    (verify-guards name
            :hints        hints
            :guard-debug  t ; typically t, but any value is legal
            :otf-flg      otf-flg)

  In the General Form above, name is the name of a :[logic] function
  (see [defun-mode]) or of a theorem or axiom. In the most common
  case name is the name of a function that has not yet had its
  [guard]s verified, each subroutine of which has had its [guard]s
  verified. The values [hints], [otf-flg], and [guard-debug] are as
  described in the corresponding [documentation] entries. The keyword
  arguments above are all optional. To admit this event, the
  conjunction of the guard proof obligations must be proved. If that
  proof is successful, name is considered to have had its [guard]s
  verified.

  See [verify-guards-formula] for a utility that lets you view the
  formula to be proved by verify-guards, but without creating an
  event.

  If name is one of several functions in a mutually recursive clique,
  verify-guards will attempt to verify the [guard]s of all of the
  functions.

  If name is a theorem or axiom name, verify-guards verifies the guards
  of the associated formula. When a theorem has had its guards
  verified then you know that the theorem will evaluate to non-nil in
  all Common Lisps, without causing a runtime error (other than
  possibly a resource error). In particular, you know that the
  theorem's validity does not depend upon ACL2's arbitrary completion
  of the domains of partial Common Lisp functions.

  For example, if app is defined as

    (defun app (x y)
      (declare (xargs :guard (true-listp x)))
      (if (endp x)
          y
          (cons (car x) (app (cdr x) y))))

  then we can verify the guards of app and we can prove the theorem:

    (defthm assoc-of-app
      (equal (app (app a b) c) (app a (app b c))))

  However, if you go into almost any Common Lisp in which app is
  defined as shown and evaluate

    (equal (app (app 1 2) 3) (app 1 (app 2 3)))

  we get an error or, perhaps, something worse like nil! How can this
  happen since the formula is an instance of a theorem? It is
  supposed to be true!

  It happens because the theorem exploits the fact that ACL2 has
  completed the domains of the partially defined Common Lisp
  functions like [car] and [cdr], defining them to be nil on all
  non-conses. The formula above violates the guards on app. It is
  therefore ``unreasonable'' to expect it to be valid in Common Lisp.

  But the following formula is valid in Common Lisp:

    (if (and (true-listp a)
             (true-listp b))
        (equal (app (app a b) c) (app a (app b c)))
        t)

  That is, no matter what the values of a, b and c the formula above
  evaluates to t in all Common Lisps (unless the Lisp engine runs out
  of memory or stack computing it). Furthermore the above formula is
  a theorem:

    (defthm guarded-assoc-of-app
      (if (and (true-listp a)
               (true-listp b))
          (equal (app (app a b) c) (app a (app b c)))
          t))

  This formula, guarded-assoc-of-app, is very easy to prove from
  assoc-of-app. So why prove it? The interesting thing about
  guarded-assoc-of-app is that we can verify the guards of the
  formula. That is, (verify-guards guarded-assoc-of-app) succeeds.
  Note that it has to prove that if a and b are true lists then so is
  (app a b) to establish that the guard on the outermost app on the
  left is satisfied. By verifying the guards of the theorem we know
  it will evaluate to true in all Common Lisps. Put another way, we
  know that the validity of the formula does not depend on ACL2's
  completion of the partial functions or that the formula is
  ``well-typed.''

  One last complication: The careful reader might have thought we could
  state guarded-assoc-of-app as

    (implies (and (true-listp a)
                  (true-listp b))
             (equal (app (app a b) c)
                    (app a (app b c))))

  rather than using the if form of the theorem. We cannot! The reason
  is technical: [implies] is defined as a function in ACL2. When it
  is called, both arguments are evaluated and then the obvious truth
  table is checked. That is, implies is not ``lazy.'' Hence, when we
  write the guarded theorem in the implies form we have to prove the
  guards on the conclusion without knowing that the hypothesis is
  true. It would have been better had we defined implies as a macro
  that expanded to the if form, making it lazy. But we did not and
  after we introduced guards we did not want to make such a basic
  change.

  Recall however that verify-guards is almost always used to verify the
  guards on a function definition rather than a theorem. We now
  return to that discussion.

  Verify-guards must often be used when the value of a recursive call
  of a defined function is given as an argument to a subroutine that
  is [guard]ed. An example of such a situation is given below.
  Suppose app (read ``append'') has a [guard] requiring its first
  argument to be a [true-listp]. Consider

    (defun rev (x)
      (declare (xargs :guard (true-listp x)))
      (cond ((endp x) nil)
            (t (app (rev (cdr x)) (list (car x))))))

  Observe that the value of a recursive call of rev is being passed
  into a [guard]ed subroutine, app. In order to verify the [guard]s
  of this definition we must show that (rev (cdr x)) produces a
  [true-listp], since that is what the [guard] of app requires. How
  do we know that (rev (cdr x)) is a [true-listp]? The most elegant
  argument is a two-step one, appealing to the following two lemmas:
  (1) When x is a [true-listp], (cdr x) is a [true-listp]. (2) When z
  is a [true-listp], (rev z) is a [true-listp]. But the second lemma
  is a generalized property of rev, the function we are defining.
  This property could not be stated before rev is defined and so is
  not known to the theorem prover when rev is defined.

  Therefore, we might break the admission of rev into three steps:
  define rev without addressing its [guard] verification, prove some
  general properties about rev, and then verify the [guard]s. This
  can be done as follows:

    (defun rev (x)
      (declare (xargs :guard (true-listp x)
                      :verify-guards nil))    ; Note this additional xarg.
      (cond ((endp x) nil)
            (t (app (rev (cdr x)) (list (car x))))))

    (defthm true-listp-rev
      (implies (true-listp x2)
               (true-listp (rev x2))))

    (verify-guards rev)

  The ACL2 system can actually admit the original definition of rev,
  verifying the [guard]s as part of the [defun] event. The reason is
  that, in this particular case, the system's heuristics just happen
  to hit upon the lemma true-listp-rev. But in many more complicated
  functions it is necessary for the user to formulate the inductively
  provable properties before [guard] verification is attempted.

  Remark on computation of guard conjectures and evaluation. When ACL2
  computes the [guard] conjecture for the body of a function, it
  evaluates any ground subexpressions (those with no free variables),
  for calls of functions whose :[executable-counterpart] [rune]s are
  [enable]d. Note that here, ``enabled'' refers to the current global
  [theory], not to any :[hints] given to the guard verification
  process; after all, the guard conjecture is computed even before
  its initial goal is produced. Also note that this evaluation is
  done in an environment as though :set-guard-checking :all had been
  executed, so that we can trust that this evaluation takes place
  without guard violations; see [set-guard-checking].

  If you want to verify the [guard]s on functions that are built into
  ACL2, you will first need to put them into :[logic] mode. See
  [verify-termination], specifically the ``Remark on system
  functions'' in that [documentation].")
 (VERIFY-GUARDS+
  (EVENTS)
  "Verify the [guard]s of a function

  We assume familiarity with [guard] verification; see [verify-guards].
  Unlike verify-guards, the macro call (verify-guards+ mac ...) will
  verify guards for a function, fn, such that the macro mac is
  associated with the function symbol fn in [macro-aliases-table]
  (also see [add-macro-alias]). For example, if you define a macro
  app and list append function binary-app, and you associate macro
  app with function symbol binary-app in [macro-aliases-table], then
  evaluation of the form (verify-guards+ app) will have the effect of
  evaluating (verify-guards fn). Note that in this setting,
  evaluation of (verify-guards app) would cause an error, because app
  is a macro and verify-guards, unlike verify-guards+, cannot handle
  macros.

  The rest of this [documentation] topic discusses why we do not simply
  arrange that verify-guards be permitted to take a macro alias. The
  following example shows a soundness issue in doing so.

    (encapsulate
     ()
     (defun f1 (x)
       (declare (xargs :guard (consp x)
                       :verify-guards nil))
       (car x))
     (defun f2 (x)
       (declare (xargs :guard t
                       :verify-guards nil))
       (cdr x))
     (defmacro mac (x)
       x)
     (add-macro-alias mac f2) ; silly macro alias ;
     (local (add-macro-alias mac f1)) ; alternate silly macro alias ;
     (verify-guards mac))

  If we were to allow macro aliases in [verify-guards], this event
  would be admitted, because on the first pass we are verifying
  guards of f1. But after the [encapsulate] form completes
  evaluation, it would appear that f2 is guard-verified. That could
  of course cause a raw Lisp error.

  The enhanced functionality provided by verify-guards+ does not have
  the above problem, because it takes advantage of [make-event] to
  avoid taking advantage of the contradictory results produced by the
  two calls of add-macro-alias. See [make-event]. If the specific
  example above is modified by replacing verify-guards with
  verify-guards+, then the first pass through the [encapsulate] form
  will expand the form (verify-guards+ mac) to (verify-guards f1).
  That same expansion will be used for the verify-guards+ call during
  the second pass through the encapsulate form, which is evaluated
  successfully and leaves us in a [world] where f1 is guard-verified
  and f2 is not.")
 (VERIFY-GUARDS-EAGERNESS (POINTERS)
                          "See [set-verify-guards-eagerness].")
 (VERIFY-GUARDS-FORMULA
  (GUARD)
  "View the guard proof obligation, without proving it

  See [verify-guards] and see [guard] for a discussion of guards. This
  utility is provided for viewing a guard proof obligation, without
  doing a proof.

    Example Forms:
    (verify-guards-formula foo)
    (verify-guards-formula foo :guard-debug t)
    (verify-guards-formula foo :otf-flg dont-care :xyz whatever)
    (verify-guards-formula (+ (foo x) (bar y)) :guard-debug t)

  Verify-guards-formula allows all keywords, but only pays attention to
  :guard-debug, which has the same effect as in [verify-guards] (see
  [guard-debug]). Apply verify-guards-formula to a name just as you
  would use [verify-guards], but when you only want to view the
  formula rather than creating an event. If the first argument is not
  a symbol, then it is treated as the body of a [defthm] event for
  which you want the guard proof obligation.

  See [guard-obligation] if you want to obtain guard proof obligations
  for use in a program.")
 (VERIFY-TERMINATION
  (EVENTS)
  "Convert a function from :program mode to :logic mode

    Example:
    (verify-termination fact)

    General Forms:
    (verify-termination fn dcl ... dcl)
    (verify-termination (fn1 dcl ... dcl)
                        (fn2 dcl ... dcl)
                        ...)

  where fn and the fni are function symbols having :[program] mode (see
  [defun-mode]) and all of the dcls are either [declare] forms or
  [documentation] strings. The first form above is an abbreviation
  for

    (verify-termination (fn dcl ... dcl))

  so we limit our discussion to the second form. Each of the fni must
  be in the same clique of mutually recursively defined functions,
  but not every function in the clique need be among the fni.

  Verify-termination attempts to establish the admissibility of the
  fni. Verify-termination retrieves their definitions, creates
  modified definitions using the dcls supplied above, and resubmits
  these definitions. You could avoid using verify-termination by
  typing the new definitions yourself. So in that sense,
  verify-termination adds no new functionality. But if you have
  prototyped your system in :[program] mode and tested it, you can
  use verify-termination to resubmit your definitions and change
  their [defun-mode]s to :[logic], addings [hints] without having to
  retype or recopy the code.

  The [defun] [command] executed by verify-termination is obtained by
  retrieving the [defun] (or [mutual-recursion]) [command] that
  introduced the clique in question and then possibly modifying each
  definition as follows. Consider a function, fn, in the clique. If
  fn is not among the fni above, its definition is left unmodified
  other than to add (declare (xargs :mode :logic)). Otherwise, fn is
  some fni and we modify its definition by inserting into it the
  corresponding dcls listed with fni in the arguments to
  verify-termination, as well as (declare (xargs :mode :logic)). In
  addition, we throw out from the old declarations in fn the :mode
  specification and anything that is specified in the new dcls.

  For example, suppose that fact was introduced with:

    (defun fact (n)
      (declare (type integer n)
               (xargs :mode :program))
      (if (zp n) 1 (* n (fact (1- n))))).

  Suppose later we do (verify-termination fact). Then the following
  definition is submitted.

    (defun fact (n)
      (declare (type integer n))
      (if (zp n) 1 (* n (fact (1- n))))).

  Observe that this is the same definition as the original one, except
  the old specification of the :mode has been deleted so that the
  [defun-mode] now defaults to :[logic]. Although the termination
  proof succeeds, ACL2 also tries to verify the [guard], because we
  have (implicitly) provided a [guard], namely (integerp n), for this
  function. (See [guard] for a general discussion of guards, and see
  [type-spec] for a discussion of how type declarations are used in
  guards.) Unfortunately, the [guard] verification fails, because the
  subterm (zp n) requires that n be nonnegative, as can be seen by
  invoking :args zp. (For a discussion of termination issues relating
  to recursion on the naturals, see [zero-test-idioms].) So we might
  be tempted to submit the following:

    (verify-termination
     fact
     (declare (xargs :guard (and (integerp n) (<= 0 n))))).

  However, this is considered a changing of the guard (from (integerp
  n)), which is illegal. If we instead change the guard in the
  earlier defun after undoing that earlier definition with :[ubt]
  fact, then (verify-termination fact) will succeed.

  Remark on system functions. There may be times when you want to apply
  verify-termination (and also, perhaps, [verify-guards]) to
  functions that are predefined in ACL2. It may be necessary in such
  cases to modify the system code first. See Part II of the {open
  architecture page for ACL2 |
  http://www.cs.utexas.edu/users/moore/acl2/open-architecture/} for a
  discussion of the process for contributing updates to the system
  code and [books] with such verify-termination or [verify-guards]
  [events], perhaps resulting in more system functions being built-in
  as [guard]-verified. To see which built-in functions have already
  received such treatment, see community books directory
  books/system/; or, evaluate the constant
  *system-verify-guards-alist*, each of whose entries associates the
  name of a community book with a list of functions whose
  guard-verification is proved by including that book. See the above
  URL for more details.

  Note that if fn1 is already in :[logic] mode, then the
  verify-termination call has no effect. It is generally considered
  to be redundant, in the sense that it returns without error; but if
  the fn1 is a constrained function (i.e., introduced in the
  signature of an [encapsulate], or by [defchoose]), then an error
  occurs. This error is intended to highlight unintended uses of
  verify-termination; but if you do not want to see an error in this
  case, you can write and use your own macro in place of
  verify-termination. The following explanation of the implementation
  of verify-termination may help with such a task.

  We conclude with a discussion of the use of [make-event] to implement
  verify-termination. This discussion can be skipped; we include it
  only for those who want to create variants of verify-termination,
  or who are interested in seeing an application of [make-event].

  Consider the following proof of nil, which succeeded up through
  Version_3.4 of ACL2.

    (encapsulate
     ()
     (defun foo (x y)
       (declare (xargs :mode :program))
       (if (or (zp x) (zp y))
           (list x y)
         (foo (1+ x) (1- y))))
     (local (defun foo (x y)
              (declare (xargs :measure (acl2-count y)))
              (if (or (zp x) (zp y))
                  (list x y)
                (foo (1+ x) (1- y)))))
     (verify-termination foo))

    (defthm bad-lemma
      (zp x)
      :hints ((\"Goal\" :induct (foo x 1)))
      :rule-classes nil)

  How did this work? In the first pass of the [encapsulate], the second
  [defun] of foo promoted foo from :program to :logic mode, with y as
  the unique measured variable. The following call to
  verify-termination was then redundant. However, on the second pass
  of the [encapsulate], the second ([local]) definition of foo was
  skipped, and the verify-termination event then used the first
  definition of foo to guess the measure, based (as with all guesses
  of measures) on a purely syntactic criterion. ACL2 incorrectly
  chose (acl2-count x) as the measure, installing x as the unique
  measured variable, which in turn led to an unsound induction scheme
  subsequently used to prove nil (lemma bad-lemma, above)

  Now, verify-termination is a macro whose calls expand to [make-event]
  calls. So in the first pass above, the verify-termination call
  generated a defun event identical to the [local] [defun] of foo,
  which was correctly identified as redundant. That expansion was
  recorded, and on the second pass of the [encapsulate], the
  expansion was recalled and used in place of the verify-termination
  call (that is how [make-event] works). So instead of a measure
  being guessed for the verify-termination call on the second pass,
  the same measure was used as was used on the first pass, and a
  sound induction scheme was stored. The attempt to prove nil (lemma
  bad-lemma) then failed.")
 (VERSION
  (ABOUT-ACL2)
  "ACL2 Version Number

  To determine the version number of your copy of ACL2, evaluate the
  form (@ acl2-version). The value will be a string. For example,

    ACL2 !>(@ acl2-version)
    \"ACL2 Version 3.4\"

  The part of the string after \"ACL2 Version \" is of the form x.y or
  x.y.z, optionally followed by a succession of values in
  parentheses, where x, y, and z are natural numbers. If z is omitted
  then it is implicitly 0. We refer to X, y, and z as the ``major'',
  ``minor'', and ``incrl'' fields, respectively. The incrl field is
  used for incremental releases. The discussion just below assumes
  that incremental releases are not employed at the user's site,
  i.e., the incrl fields are always 0. We remove this assumption when
  we discuss incremental releases at the end of this documenttation
  topic.

  [Books] are considered certified only in the same version of ACL2 in
  which the certification was done. The [certificate] file records
  the version number of the certifying ACL2 and [include-book]
  considers the book uncertified if that does not match the current
  version number. Thus, each time we release a new version of ACL2,
  previously certified books should be recertified.

  Note that there are over 150 constants in the system, most having to
  do with the fact that ACL2 is coded in ACL2. Many of these, for
  example *common-lisp-specials-and-constants* and *acl2-exports*,
  may change from version to version, and this can cause unsoundness.
  For example, the symbol 'set-difference-eq was added to
  *acl2-exports* in Version_2.9, so we can certify a book in
  Version_2.8 containing the following theorem, which is false in
  Version_2.9.

    (null (member 'set-difference-eq *acl2-exports*))

  Therefore, we need to disallow inclusion of such a book in a
  Version_2.9 session, which otherwise would allow us to prove nil.
  Furthermore, it is possible that from one version of the system to
  another we might change, say, the default values on some system
  function or otherwise make ``intentional'' changes to the axioms.
  It is even possible one version of the system is discovered to be
  unsound and we release a new version to correct our error.

  Therefore we adopted the draconian policy that books are certified by
  a given version of ACL2 and ``must'' be recertified to be used in
  other versions. We put ``must'' in quotes because in fact, ACL2
  allows a book that was certified in one ACL2 version to be included
  in a later version, using [include-book]. But ACL2 does not allow
  [certify-book] to succeed when such an [include-book] is executed
  on its behalf. Also, you may experience undesirable behavior if you
  avoid recertification when moving to a different version. Hence we
  recommend that you stick to the draconion policy of recertifying
  books when updating to a new ACL2 version.

  Furthermore, all bets are off if you certify a book using ACL2 built
  on one host Lisp implementation and include the book using ACL2
  built on a different host Lisp implementation. For example, for
  most host Lisp implementations, the Lisp reader will interpret the
  token 2f as a symbol; however, Common Lisp allows for the
  possibility that 2f is read as a number. In such a case, one could
  use the former ACL2 executable to certify a book containing the
  form

    (defthm my-thm
      (symbolp '2f)
      :rule-classes nil)

  but then use the latter ACL2 executable to include the book, even
  though for the latter ACL2 executable, 2f is a number, not a
  symbol. Of course, one would expect a checksum error in that case;
  but checksums do not provide guaranteed protection against
  including uncertified books.

  Incremental releases.

  From time to time, so-called ``incremental releases'' of ACL2 are
  made available. These releases are thoroughly tested on at least
  two platforms; ``normal'' releases, on the other hand, are
  thoroughly tested on many more platforms (perhaps a dozen or so)
  and are accompanied by updates to the ACL2 home page. We provide
  incremental releases in order to provide timely updates for ACL2
  users who want them, without imposing unnecessary burdens on either
  on the ACL2 implementors or on ACL2 users who prefer to update less
  frequently. The implementors expect users to update their copies of
  ACL2 when normal releases are made available, but not necessarily
  when incremental releases are made available.

  Incremental releases are accompanied by a bump in the incrl field of
  the version field, while normal releases are accompanied by a bump
  in the minor or (much less frequently) major field and zeroing out
  of the incrl field. Note that incremental releases are full-fledged
  releases.")
 (WALKABOUT
  (DEBUGGING)
  "Explore an ACL2 cons tree

  By typing (walkabout x state) for an ACL2 term x whose value is a
  [cons] tree, you can walk around that tree. For example, ACL2
  developers often use this utility to explore the ACL2 logical
  [world].

  When you issue a walkabout command, a summary of commands will be
  printed before you enter an interactive loop.

    Commands:
    0, 1, 2, ..., nx, bk, pp, (pp n), (pp lev len), =, (= symb), and q.

  In the interactive walkabout loop, a positive integer n takes you to
  the nth position, while 0 takes you up a level. The commands nx and
  bk take you to the next and previous position, respectively, at the
  same level. The command pp prints the current object in full, while
  (pp level length) hides sub-objects below the indicated level and
  past the indicated length, if non-nil; see [evisc-tuple]. The
  command (pp n) abbreviates (pp n n), so in particular (pp nil) is
  equivalent to pp.

  Note that the commands above work in any package: nx, bk, pp, =, and
  q are converted to the \"ACL2\" package if the current package is not
  \"ACL2\".

  The following example illustrates the commands described above.

    ACL2 !>(walkabout (append '(a (b1 b2 b3)) '(c d e f)) state)

    Commands:
    0, 1, 2, ..., nx, bk, pp, (pp n), (pp lev len), =, (= symb), and q.

    (A (B1 B2 B3) C ...)
    :2
    (B1 B2 B3)
    :3
    B3
    :0
    (B1 B2 B3)
    :nx
    C
    :nx
    D
    :0
    (A (B1 B2 B3) C ...)
    :pp
    (A (B1 B2 B3) C D E F)
    :(pp 4)
    (A (B1 B2 B3) C D ...)
    :(pp 1 4)
    (A # C D ...)
    :(pp nil 2)
    (A (B1 B2 ...) ...)
    :q
    ACL2 !>

  Finally we describe the commands q, =, and (= symb), where symb is a
  symbol. The command q simply causes an exit from the walkabout
  loop. The command = also exits, but causes the current object to be
  printed in full. The command (= symb) saves an association of symb
  with the current object, which can be retrieved outside the
  walkabout loop using the macro walkabout=, as illustrated below.

    :2
    (B1 B2 B3)
    :(= my-list)
    (walkabout= MY-LIST) is
    (B1 B2 B3)
    :q
    ACL2 !>(walkabout= MY-LIST)
    (B1 B2 B3)
    ACL2 !>

  Finally, we remark that for trees that are not true-lists, walkabout
  treats the dot as an object that can be ``walked about''. The
  following example illustrates this point.

    ACL2 !>(walkabout '(c d e . f) state)

    Commands:
    0, 1, 2, ..., nx, bk, pp, (pp n), (pp lev len), =, (= symb), and q.

    (C D E . F)
    :3
    E
    :nx
    .
    :nx
    F
    :0
    (C D E . F)
    :4
    .
    :0
    (C D E . F)
    :5
    F
    :")
 (WARNINGS
  (PROVER-OUTPUT)
  "Warnings emitted by the ACL2 proof process

  The prover can emit many warnings when processing [events]. See
  [set-inhibit-warnings] and see [set-inhibit-output-lst] for how to
  disable and enable them.")
 (WATERFALL (POINTERS)
            "See [hints-and-the-waterfall].")
 (WATERFALL-PARALLELISM
  (PARALLEL-PROOF)
  "For ACL2(p): configuring the parallel execution of the waterfall

  See [set-waterfall-parallelism].")
 (WATERFALL-PARALLELISM-FOR-BOOK-CERTIFICATION
  (PARALLELISM)
  "For ACL2(p): using waterfall parallelism during book certification

  This [documentation] topic relates to the experimental extension of
  ACL2 supporting parallel execution and proof; see [parallelism].

  There are books whose certification can be sped up significantly by
  using waterfall parallelism. (See [parallelism], including the
  caveat in its \"IMPORTANT NOTE\".) One such example in the ACL2
  community books is models/jvm/m5/apprentice.lisp, which is
  typically excluded from regressions because of how long it takes to
  certify. In order to use waterfall parallelism during certification
  of a book <book-name>.lisp using `make' (see [books-certification]
  and see [books-certification-classic]), we recommend creating a
  file <book-name>.acl2 that includes the following forms.

    #+acl2-par
    (set-waterfall-parallelism t)

    (certify-book <book-name> ? t) ; other arguments may be preferable

  Note that there are books that will not certify when
  waterfall-parallelism is enabled. See file
  acl2-customization-files/README for more information, including how
  to certify essentially all books using waterfall parallelism.")
 (WATERFALL-PRINTING
  (PARALLEL-PROOF)
  "For ACL2(p): configuring the printing within the parallelized
  waterfall

  See [set-waterfall-printing].")
 (WELL-FORMEDNESS-GUARANTEE
  (RULE-CLASSES)
  "Guarantee that a metafunction or clause-processor returns a
  well-formed answer

  A :well-formedness-guarantee is a keyword attribute available in the
  :[meta] and :[clause-processor] :[rule-classes]. By default, when a
  metafunction or clause processor is applied, ACL2 checks that the
  output is well-formed (and does not contain certain ``forbidden''
  functions; see [set-skip-meta-termp-checks]). By providing a
  :well-formedness-guarantee when you store a :meta or
  :clause-processor rule, you can cause ACL2 to skip these runtime
  checks.

  This is considered an advanced feature that requires that you prove
  certain theorems; this is probably only worthwhile if your
  metafunctions or clause processors produce very large terms.
  Henceforth, we assume you are familiar with metafunctions and
  clause processors.

  This topic first exhibits a simple example of a well-formedness
  guarantee for a metafunction. Then we describe the acceptable
  values of the :well-formedness-guarantee keyword of both the :meta
  and :clause-processor rule-classes. Next we show the forms of the
  theorems you must prove to provide such guarantees. Finally, we
  discuss the runtime effects of providing such guarantees.

  Example

  Suppose that fn is a vanilla metafunction that rewrites terms with
  top function symbol TARGET, of [arity] 1. The event storing fn as a
  metafunction would normally be something like this:

      (defthm fn-is-correct
        (implies (and (pseudo-termp x)
                      (alistp a))
                 (equal (evl x a)
                        (evl (fn x) a)))
        :rule-classes
        ((:meta :trigger-fns (TARGET))))

  where evl is an evaluator for all the function symbols known to fn.
  Suppose that to prove this theorem, evl must be able to interpret
  the symbols TARGET, CONS, and IF. While the metatheorem for fn
  establishes that fn returns something with the same ``meaning''
  (under evl) as its input, it does not answer the question: does fn
  return a well-formed term? Given the above :rule-class, whenever
  the simplifier fires the :meta rule fn-is-correct by applying fn to
  a term, it checks that the value, val, is well-formed, by
  evaluating (termp val (w state)).

  This check can be avoided if, before you store the rule
  fn-is-correct, you prove:

      (defthm fn-is-well-formed
        (implies (and (termp x w)
                      (arities-okp '((TARGET . 1)
                                     (CONS . 2)
                                     (IF . 3))
                                   w))
                 (termp (fn x) w))
        :rule-classes nil)

  and then you store fn-is-correct this way:

      (defthm fn-is-correct
        (implies (and (pseudo-termp x)
                      (alistp a))
                 (equal (evl x a)
                        (evl (fn x) a)))
        :rule-classes
        ((:meta :trigger-fns (TARGET)
                :well-formedness-guarantee fn-is-well-formed)))

  Acceptable Values

  Now we describe the values you may provide with the
  :well-founded-guarantee keyword of the :meta and the
  :clause-processor rule-classes.

      General Forms:
      :well-formedness-guarantee thm-name1
      :well-formedness-guarantee (thm-name1)
      :well-formedness-guarantee (thm-name1 thm-name2)

  where both thm-name1 and thm-name2 are the names of previously
  proved ``well-formedness theorems'' (see the next section);
  furthermore, thm-name1 must be about the metafunction or clause
  processor being introduced, and thm-name2 must be about the
  hypothesis metafunction (if any) associated with the metafunction.
  For :meta rules, all three forms are accepted, but the last form is
  required if the :meta rule involves a hypothesis metafunction. That
  is, to provide a :well-formedness-guarantee for a metatheorem with
  a hypothesis metafunction, you must supply both thm-name1 and
  thm-name2. For :clause-processor rules, you must use the first
  form.

  Each well-formedness theorem provides an ``arity alist'' that
  specifies the assumed arities of the function symbols known to the
  metafunction or clause processor. The arities shown for the
  function symbols listed in that alist must be the same as the
  arities of those functions in the actual ACL2 logical [world]
  current at the time the :meta or :clause-processor is stored.

  Furthermore, none of the function symbols in the arity alists should
  be ``forbidden'' function symbols as explained in
  [set-skip-meta-termp-checks].

  When the :meta or :clause-processor rule is stored, notes are made
  that will prevent the function symbols on the arity alists from
  becoming untouchable (and thus forbidden). See [push-untouchable].

  The only way a function's arity or forbidden status can change is if
  the user has engaged in redefinition or activated a trust tag to
  add or remove untouchables. Thus, the restrictions above are
  unimportant to most users.

  Well-Formedness Theorems

  Theorems must be proved to establish that metafunctions and clause
  processors return well-formed results. These are called
  ``well-formedness theorems.'' Note: To say a theorem is a
  ``well-formedness theorem'' is a remark about the shape of the
  formula, not its rule-class. There is no :well-formedness-theorem
  rule-class and a well-formedness theorem may be stored with any
  :[rule-classes] that accept the syntax of the formula or as
  :rule-classes nil. Indeed, if one of your metafunctions uses
  another function to produce a subterm of the metafunction's answer,
  you might need to prove a well-formedness theorem for the
  sub-function and make it a :rewrite rule.

  Well-formedness theorems for metafunctions and clause processors are
  similar but slightly different. We deal with metafunctions and
  their corresponding hypothesis metafunctions (if any) first. The
  shapes of the well-formedness theorems for a metafunction and
  hypothesis metafunction are identical, but remember that you must
  prove a well-formedness theorem for both the metafunction and the
  associated hypothesis metafunction. So suppose fn is a metafunction
  or a hypothesis metafunction and let (fn x ...) be a legal call on
  distinct variable symbols. (Recall that extended metafunctions and
  their hypothesis functions can take three arguments.) Then the
  general form a well-formedness theorem for fn states that fn
  returns a [termp] when given one, provided the arities of certain
  function symbols are as expected:

      General Form of Well-Formedness Theorem for a Metafunction:
      (implies (and (termp x w)
                    (arities-okp '<alist> w))
               (termp (fn x ...) w))

  where <alist> is an alist pairing function symbols with their
  assumed arities as illustrated in the opening example. Note that
  the first argument of arities-okp in the theorem is a quoted
  constant. You may omit or reorder the hypotheses above and you may
  use different variable symbols in place of x and w, but they must
  be distinct and different from the variables in the ``....''

  An example of <alist> is ((TARGET . 1) (CONS . 2) (IF . 3)).
  Generally, the <alist> you provide should assign arities to every
  symbol known to fn, i.e., every function symbol known to the
  evaluator used in your correctness theorem. If you inspect the
  definition of [termp] you will see that it uses w to obtain arities
  of the function symbols in x. The [arities-okp] hypothesis
  restricts w to worlds where the function symbols known to fn have
  the arities you expect. For example, given the (arities-okp
  '<alist> w) hypothesis for the <alist> above, the theorem prover
  will rewrite (arity 'IF w) to 3. By default [arity] and
  [arities-okp] are disabled and a rewrite rule that is part of
  ACL2's initial world will take care of calls like (arity 'IF w).

  Now we turn to the well-formedness theorem for a clause processor,
  cl-proc. Let (cl-proc x ...) be a legal call on distinct variable
  symbols. The theorem establishes that cl-proc returns a list of
  clauses when given a clause, provided certain functions have the
  expected arities. But the recognizer for a clause is the function
  [term-listp] and the recognizer for a list of clauses is
  [term-list-listp]:

      General Forms of Well-Formedness Theorem for a Clause Processor
      (implies (and (term-listp x w)
                    (arities-okp '<alist> w))
               (term-list-listp (cl-proc x ...) w))

      (implies (and (term-listp x w)
                    (arities-okp '<alist> w))
               (term-list-listp (clauses-result (cl-proc x ...)) w))

  The first form above is for a cl-proc that returns a single value
  and the second form is for a cl-proc that returns multiple values.

  The discussion about metafunctions, above, applies here as well.
  <Alist> is an alist pairing function symbols with their assumed
  arities. You may omit or reorder the hypotheses and you may use
  different variable symbols in place of x and w, but they must be
  distinct and different from the variables in the ``....''

  Runtime Effects

  In the absence of a :well-formedness-guarantee, if a metafunction or
  clause processor is applied during a proof and produces val, then
  certain checks are made on val before it is used in the proof
  attempt. In the case of a metafunction, (termp val (w state)) is
  checked and val is scanned to ensure that it contains no forbidden
  function symbols. In the case of a clause processor,
  (term-list-listp val (w state)) is checked and val is scanned to
  ensure that it contains no forbidden function symbols.

  If val is large (e.g., because the input is large), these checks can
  take more time than the metafunction or clause processor did to
  produce val! It is for this reason that we provide for
  :well-formedness-guarantees.

  When a :well-formedness-guarantee is provided no checks are made on
  val. However, ACL2 will check that the arity alist(s) involved in
  the guarantee still correctly shows the arities of the function
  symbols listed. Because those function symbols were not forbidden
  when the guarantee was made and are prohibited from being forbidden
  thereafter, no check is necessary to ensure that no forbidden
  symbols are introduced into the proof.")
 (WELL-FOUNDED-RELATION
  (RULE-CLASSES)
  "Show that a relation is well-founded on a set

  See [rule-classes] for a general discussion of rule classes,
  including how they are used to build rules from formulas and a
  discussion of the various keywords in a rule class description.

    Example:
    (defthm lex2p-is-well-founded-relation
      (and (implies (pairp x) (o-p (ordinate x)))
           (implies (and (pairp x)
                         (pairp y)
                         (lex2p x y))
                    (o< (ordinate x) (ordinate y))))
      :rule-classes :well-founded-relation)

  The example above creates a :well-founded-relation rule, where of
  course the functions pairp, lex2p, and ordinate would have to be
  defined first. It establishes that lex2p is a well-founded relation
  on pairps. We explain and give details below.

  Exactly two general forms are recognized:

    General Forms
    (AND (IMPLIES (mp x) (O-P (fn x)))              ; Property 1
         (IMPLIES (AND (mp x)                       ; Property 2
                       (mp y)
                       (rel x y))
                  (O< (fn x) (fn y)))),

  or

    (AND (O-P (fn x))                               ; Property 1
         (IMPLIES (rel x y)                         ; Property 2
                  (O< (fn x) (fn y))))

  where mp, fn, and rel are function symbols, x and y are distinct
  variable symbols, and no other :well-founded-relation theorem about
  fn has been proved. When the second general form is used, we act as
  though the first form were used with mp being the function that
  ignores its argument and returns t. The discussion below therefore
  considers only the first general form.

  Note: We are very rigid when checking that the submitted formula is
  of one of these forms. For example, in the first form, we insist
  that all the conjuncts appear in the order shown above. Thus,
  interchanging the two properties in the top-level conjunct or
  rearranging the hyptheses in the second conjunct both produce
  unrecognized forms. The requirement that each fn be proved
  well-founded at most once ensures that for each well-founded
  relation, fn, there is a unique mp that recognizes the domain on
  which rel is well-founded. We impose this requirement simply so
  that rel can be used as a short-hand when specifying the
  well-founded relations to be used in definitions; otherwise the
  specification would have to indicate which mp was to be used.

  We also insist that the new ordering be embedded into the ordinals as
  handled by [o-p] and [o<] and not some into previously admitted
  user-defined well-founded set and relation. This restriction should
  pose no hardship. If mp and rel were previously shown to be
  well-founded via the embedding fn, and you know how to embed some
  new set and relation into mp and rel, then by composing fn with
  your new embedding and using the previously proved well-founded
  relation lemma you can embed the new set and relation into the
  ordinals.

  Mp is a predicate that recognizes the objects that are supposedly
  ordered in a well-founded way by rel. We call such an object an
  ``mp-measure'' or simply a ``measure'' when mp is understood.
  Property 1 tells us that every measure can be mapped into an ACL2
  ordinal. (See [o-p].) This mapping is performed by fn. Property 2
  tells us that if the measure x is smaller than the measure y
  according to rel then the image of x under fn is a smaller than
  that of y, according to the well-founded relation [o<]. (See [o<].)
  Thus, the general form of a :well-founded-relation formula
  establishes that there exists a rel-order preserving embedding
  (namely via fn) of the mp-measures into the ordinals. We can thus
  conclude that rel is well-founded on mp-measures.

  Such well-founded relations are used in the admissibility test for
  recursive functions, in particular, to show that the recursion
  terminates. To illustrate how such information may be used,
  consider a generic function definition

    (defun g (x) (if (test x) (g (step x)) (base x))).

  If rel has been shown to be well-founded on mp-measures, then g's
  termination can be ensured by finding a measure, (m x), with the
  property that m produces a measure:

    (mp (m x)),                                     ; Defun-goal-1

  and that the argument to g gets smaller (when measured by m and
  compared by rel) in the recursion,

    (implies (test x) (rel (m (step x)) (m x))).    ; Defun-goal-2

  If rel is selected as the :well-founded-relation to be used in the
  definition of g, the definitional principal will generate and
  attempt to prove defun-goal-1 and defun-goal-2 to justify g. We
  show later why these two goals are sufficient to establish the
  termination of g. Observe that neither the ordinals nor the
  embedding, fn, of the mp-measures into the ordinals is involved in
  the goals generated by the definitional principal.

  Suppose now that a :well-founded-relation theorem has been proved for
  mp and rel. How can rel be ``selected as the
  :well-founded-relation'' by [defun]? There are two ways. First, an
  [xargs] keyword to the [defun] event allows the specification of a
  :well-founded-relation. Thus, the definition of g above might be
  written

    (defun g (x)
     (declare (xargs :well-founded-relation (mp . rel)))
     (if (test x) (g (step x)) (base x)))

  Alternatively, rel may be specified as the
  :default-well-founded-relation in [ACL2-defaults-table] by
  executing the event

    (set-well-founded-relation rel).

  When a [defun] event does not explicitly specify the relation in its
  [xargs] the default relation is used. When ACL2 is initialized, the
  default relation is [o<].

  Finally, though it is probably obvious, we now show that defun-goal-1
  and defun-goal-2 are sufficient to ensure the termination of g
  provided property-1 and property-2 of mp and rel have been proved.
  To this end, assume we have proved defun-goal-1 and defun-goal-2 as
  well as property-1 and property-2 and we show how to admit g under
  the primitive ACL2 definitional principal (i.e., using only the
  ordinals). In particular, consider the definition event

    (defun g (x)
     (declare (xargs :well-founded-relation o<
                     :measure (fn (m x))))
     (if (test x) (g (step x)) (base x)))

  Proof that g is admissible: To admit the definition of g above we
  must prove

    (o-p (fn (m x)))                        ; *1

  and

    (implies (test x)                               ; *2
             (o< (fn (m (step x))) (fn (m x)))).

  But *1 can be proved by instantiating property-1 to get

    (implies (mp (m x)) (o-p (fn (m x)))),

  and then relieving the hypothesis with defun-goal-1, (mp (m x)).

  Similarly, *2 can be proved by instantiating property-2 to get

    (implies (and (mp (m (step x)))
                  (mp (m x))
                  (rel (m (step x)) (m x)))
             (o< (fn (m (step x))) (fn (m x))))

  and relieving the first two hypotheses by appealing to two instances
  of defun-goal-1, thus obtaining

    (implies (rel (m (step x)) (m x))
             (o< (fn (m (step x))) (fn (m x)))).

  By chaining this together with defun-goal-2,

    (implies (test x)
             (rel (m (step x)) (m x)))

  we obtain *2. Q.E.D.")
 (WET
  (TRACE)
  "Evaluate a form and print subsequent error trace

  The acronym ``wet'' stands for ``with-error-trace''. Wet provides a
  convenient way to obtain a backtrace when evaluation causes a guard
  violation or other error.

  The basic idea is that (wet form) evaluates form and, if there is an
  error, shows a backtrace of calls that led to that error. Note
  however that by default only calls of user-defined (not built-in)
  functions ``supporting'' form in the following sense will show up
  in the backtrace: those that occur in the macroexpansion of form or
  (recursively) support any of those functions. So for example, since
  (make-event form) macroexpands to (make-event-fn (quote form) ...),
  calls of functions occurring in form will likely not show up in the
  backtrace by default. The option :fns all overrides this default,
  with potential loss of speed; more on this below.

  The following example explains the use of wet. First, submit the
  following three definitions:

    (defun foo (x) (declare (xargs :guard (consp x))) (car x))
    (defun bar (x) (foo (cdr x)))
    (defun g (x) (bar (cdr x)))

  Now imagine you have obtained the following guard violation:

    ACL2 !>(g '(3 4))

    ACL2 Error in TOP-LEVEL:  The guard for the function call (FOO X),
    which is (CONSP X), is violated by the arguments in the call (FOO NIL).
    To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.  See
    :DOC set-guard-checking for information about suppressing this check
    with (set-guard-checking :none), as recommended for new users.

    ACL2 !>

  With wet, you can get a backtrace of user-defined functions. The
  package prefixes shown below, ACL2_*1*_, indicate that the
  executable (logical) counterparts of the corresponding raw Lisp
  functions are being called; see [guard]. Don't forget to start with
  (include-book \"misc/wet\" :dir :system).

    ACL2 !>(wet (g '(3 4)))
    ; Fast loading /projects/acl2/devel/books/misc/wet.fasl

    TTAG NOTE: Adding ttag :TRACE! from the top level loop.

    ACL2 Error in WET:  The guard for the function call (FOO X), which
    is (CONSP X), is violated by the arguments in the call (FOO NIL).
    To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.  See
    :DOC set-guard-checking for information about suppressing this check
    with (set-guard-checking :none), as recommended for new users.

    Backtrace stack:
    ----------------
    1. (ACL2_*1*_ACL2::FOO NIL)
    2. (ACL2_*1*_ACL2::BAR (4))
    3. (ACL2_*1*_ACL2::G (3 4))

    ACL2 !>

  By default, large structures are hidden during the printing of the
  backtrace stack. But you can supply a value for keyword argument
  :evisc-tuple to modify the printing: nil to avoid hiding, else a
  suitable evisc-tuple, as shown below (see [evisc-tuple]).

    ACL2 !>(wet (g '(3 4)) :evisc-tuple (evisc-tuple 1 1 nil nil))
    ; Fast loading /projects/acl2/devel/books/misc/wet.fasl

    TTAG NOTE: Adding ttag :TRACE! from the top level loop.

    ACL2 Error in WET:  The guard for the function call (FOO X), which
    is (CONSP X), is violated by the arguments in the call (FOO NIL).
    To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.  See
    :DOC set-guard-checking for information about suppressing this check
    with (set-guard-checking :none), as recommended for new users.

    Backtrace stack:
    ----------------
    1. (ACL2_*1*_ACL2::FOO ...)
    2. (ACL2_*1*_ACL2::BAR ...)
    3. (ACL2_*1*_ACL2::G ...)

    ACL2 !>

  For a backtrace as a data object, evaluate the form (@ wet-stack).
  But note that this object may not be a legal ACL2 value, for
  example because of the ``*1*'' symbols shown above.

    General Form:
    (wet form           ; an arbitrary form
         :book bk-form  ; optional, not evaluated
         ;;; the rest are optional and evaluated:
         :evisc-tuple e ; an evisc-tuple
         :fns fns       ; :all, or a list of functions to show in a backtrace
         :compile c     ; :same, t, or nil; default :same (nil if :fns supplied)

  Form is evaluated. If there is an error, a backtrace stack is printed
  to the standard output ([*standard-co*]), containing (by default)
  the user-defined function calls made before the error. Such
  printing is controlled by the :evisc-tuple if supplied; otherwise,
  hiding of large structures will occur. (Technical detail: by
  default the global abbrev-evisc-tuple is used, if bound; see
  [set-evisc-tuple].

  The :fns option. As mentioned above, by default the wet backtrace
  shows user-defined functions that syntactically ``support'' the
  form being evaluated. This default can be overridden by supplying
  an explicit list, fns, of functions, using option :fns fns; these
  will then be the functions whose calls are eligible for inclusion
  in the backtrace. The special value :fns :all will allow all
  user-defined function calls in the backtrace. This value can be
  useful when using [oracle-apply], for example, since the function
  being applied isn't typically included as a syntactic supporter of
  the form being evaluated.

  The :compile option. Wet uses the [trace$] utility to modify the
  definitions of affected functions so that they can record
  information for the backtrace. As described above, these affected
  functions are those that syntactically ``support'' the form unless
  specified by the :fns option. As is the case for trace$ --- see
  [trace$] --- the new definitions of these affected functions may or
  may not be compiled. For trace$ and for wet, the default is to
  compile the new definition if and only if the original definition
  was compiled, except: For wet, if option :fns :all is provided,
  then the default is not to compile the affected definitions. And
  for trace$ and wet, the :compile option overrides the default, to
  specify what will be compiled: value :same to compile each affected
  function if and only if its original definition was compiled, value
  t to compile all affected functions, and value nil to skip
  compilation.

  The :book option. Wet actually works by temporarily including a
  community book,

    (include-book \"misc/wet\" :dir :system)

  and then passing its arguments to macro wet!, defined in that book.
  The keyword argument :book allows you to specify a different book
  that defines a macro wet! to which to pass its arguments. If the
  value of :book is a string, then the book named by that string is
  temporarily included using [include-book]: (include-book \"bk\").
  Otherwise :book should be a list of arguments, to be provided
  (unevaluated) to [include-book], for example (\"my-wet\" :dir
  :my-utils). Thus you can experiment by copying community book
  books/misc/wet.lisp to your own directory and making modifications
  to the copy. If you make changes, we invite you to share them with
  the ACL2 community (see [books]). Note that you can also supply
  :book nil, in which case the definition of wet! in your current
  session will be used without including a book.

  Also see [trace$] for a general tracing utility. As mentioned above,
  wet is implemented using trace$. Wet actually first applies
  [untrace$]; upon completion, wet then applies [trace$] to re-trace
  any functions that it had untraced, using their original trace
  specs.")
 (WHAT_IS_ACL2{Q}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "What Is ACL2?

  [{IMAGE}]

  ACL2 is a mathematical logic together with a mechanical theorem
  prover to help you reason in the logic.

  The logic is just a subset of applicative [Common Lisp]. (This link
  takes you off the main route of the tour. You'll see some Common
  Lisp on the tour, so visit this later!)

  The theorem prover is an ``industrial strength'' version of the
  Boyer-Moore theorem prover, Nqthm.

  Models of all kinds of computing systems can be built in ACL2, just
  as in Nqthm, even though the formal logic is Lisp.

  Once you've built an ACL2 model of a system, you can run it.

  You can also use ACL2 to prove theorems about the model.

  [{IMAGE}]")
 (WHAT_IS_A_MATHEMATICAL_LOGIC{Q}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "What is a Mathematical Logic?

  [{IMAGE}]

  {IMAGE}

  A mathematical logic is a formal system of formulas (axioms) and
  rules for deriving other formulas, called theorems.

  A proof is a derivation of a theorem. To see a concrete proof tree,
  click [here].

  Why should you care? The neat thing about Theorems is that they are
  ``true.'' More precisely, if all the axioms are valid and the rules
  are validity preserving, then anything derived from the axioms via
  the rules is valid.

  So, if you want to determine if some formula is true, prove it.

  [{IMAGE}]")
 (WHAT_IS_A_MECHANICAL_THEOREM_PROVER{Q}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "What is a Mechanical Theorem Prover?

  [{IMAGE}]

  A mechanical theorem prover is a computer program that finds proofs
  of theorems.

  {IMAGE}

  The ideal mechanical theorem prover is automatic: you give it a
  formula and it gives you a proof of that formula or tells you there
  is no proof.

  Unfortunately, automatic theorem provers can be built only for very
  simple logics (e.g., propositional calculus) and even then
  practical considerations (e.g., how many centuries you are willing
  to wait) limit the problems they can solve.

  [{IMAGE}]")
 (WHAT_IS_A_MECHANICAL_THEOREM_PROVER{Q}_{CONT}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "What is a Mechanical Theorem Prover? (cont)

  [{IMAGE}] To get around this, mechanical theorem provers often
  require help from the user.

  {IMAGE}

  Click [here] to continue downward.

  [{IMAGE}]")
 (WHAT_IS_REQUIRED_OF_THE_USER{Q}
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "What is Required of the User?

  [{IMAGE}]

  It is not easy to build ACL2 models of complex systems. To do so, the
  user must understand

    * the system being modeled, and

    * ACL2, at least as a programming language.

  It is not easy to get ACL2 to prove hard theorems. To do so, the user
  must understand

    * the model,

    * ACL2 as a mathematical logic, and

    * be able to construct a proof (in interaction with ACL2).

  ACL2 will help construct the proof but its primary role is to prevent
  logical mistakes. The creative burden --- the mathematical insight
  into why the model has the desired property --- is the user's
  responsibility.

  [{IMAGE}]")
 (WHY-BRR
  (BREAK-REWRITE)
  "An explanation of why ACL2 has an explicit [brr] mode

  Why isn't [brr] mode automatically disabled when there are no
  monitored runes? The reason is that the list of monitored runes is
  kept in a wormhole state.

  See [wormhole] for more information on wormholes in general. But the
  fundamental property of the wormhole function is that it is a
  logical no-op, a constant function that does not take state as an
  argument. When entering a wormhole, arbitrary information can be
  passed in (including the external state). That information is used
  to construct a near copy of the external state and that ``wormhole
  state'' is the one with respect to which interactions occur during
  breaks. But no information is carried by ACL2 out of a wormhole ---
  if that were allowed wormholes would not be logical no-ops. The
  only information carried out of a wormhole is in the user's head.

  [Break-rewrite] interacts with the user in a wormhole state because
  the signature of the ACL2 rewrite function does not permit it to
  modify [state]. Hence, only wormhole interaction is possible. (This
  has the additional desirable property that the correctness of the
  rewriter does not depend on what the user does during interactive
  breaks within it; indeed, it is logically impossible for the user
  to affect the course of [rewrite].)

  Now consider the list of monitored runes. Is that kept in the
  external state as a normal state global or is it kept in the
  wormhole state? If it is in the external state then it can be
  inspected within the wormhole but not changed. This is
  unacceptable; it is common to change the [monitor]ed rules as the
  proof attempt progresses, installing monitors when certain rules
  are about to be used in certain contexts. Thus, the list of
  monitored runes must be kept as a wormhole variable. Hence, its
  value cannot be determined outside the wormhole, where the proof
  attempt is ongoing.

  This raises another question: If the list of monitored runes is
  unknown to the rewriter operating on the external state, how does
  the rewriter know when to break? The answer is simple: it breaks
  every time, for every rune, if [brr] mode is enabled. The wormhole
  is entered (silently), computations are done within the wormhole
  state to determine if the user wants to see the break, and if so,
  interactions begin. For unmonitored runes and runes with false
  break conditions, the silent wormhole entry is followed by a silent
  wormhole exit and the user perceives no break.

  Thus, the penalty for running with [brr] mode enabled when there are
  no monitored runes is high: a wormhole is entered on every
  application of every rune and the user is simply unware of it. The
  user who has finally unmonitored all runes is therefore strongly
  advised to carry this information out of the wormhole and to do
  :[brr] nil in the external state when the next opportunity arises.")
 (WITH-BRR-ENS
  (BREAK-REWRITE BRR-COMMANDS)
  "Inside [break-rewrite], evaluate with respect to the theory currently
  installed in the prover

    Example Forms:

    (with-brr-ens (pe 'nth))
    (with-brr-ens (pl 'nth))
    (with-brr-ens (disabledp 'nth))

    General Form:

    (with-brr-ens form)

  where form is any form that evaluates either to a single value, val,
  or to an [error-triple], (mv erp val state). The return value ---
  which might be irrelevant if the form is evaluated for side-effect,
  such as a call of a [history] command such as [pe] or [pl] --- is
  (mv nil val state) in the first case and also, if erp is nil, in
  the second case.

  At the :[brr] prompt, evaluation of utilities such as :[pe] display
  whether or not a rule is globally [disable]d. However, inside the
  [break-rewrite] loop one might wish to know instead whether or not
  the rule is disabled at the current stage of the proof attempt that
  is underway. The wrapper with-brr-ens binds the so-called ``global
  enabled structure'' to the corresponding structure that is
  currently installed during the proof in progress, which will thus
  be used for [history] queries such as [pe]. In order to take
  advantage of this feature, you must state the query as an ordinary
  expression, not as a keyword command (see [keyword-commands]), for
  example as (with-brr-ens (pe 'nth)), not as (with-brr-ens :pe
  'nth).")
 (WITH-FAST-ALIST
  (FAST-ALISTS ACL2-BUILT-INS)
  "(with-fast-alist name form) causes name to be a fast alist for the
  execution of form.

  Logically, with-fast-alist just returns form.

  Under the hood, we cause alist to become a fast alist before
  executing form. If doing so caused us to introduce a new hash
  table, the hash table is automatically freed after form completes.

  More accurately, under the hood (with-fast-alist name form)
  essentially expands to something like:

    (if (already-fast-alist-p name)
        form
      (let ((<temp> (make-fast-alist name)))
        (prog1 form
               (fast-alist-free <temp>))))

  Practically speaking, with-fast-alist is frequently a better choice
  then just using [make-fast-alist], and is particularly useful for
  writing functions that can take either fast or slow alists as
  arguments. That is, consider the difference between:

    (defun bad (alist ...)
      (let* ((fast-alist (make-fast-alist alist))
             (answer     (expensive-computation fast-alist ...)))
       (prog2$ (fast-alist-free fast-alist)
               answer)))

    (defun good (alist ...)
       (with-fast-alist alist
         (expensive-computation alist ...)))

  Either approach is fine if the caller provides a slow alist. But if
  the input alist is already fast, bad will (perhaps unexpectedly)
  free it! On the other hand, good is able to take advantage of an
  already-fast argument and will not cause it to be inadvertently
  freed.

  See also the macro with-fast-alists defined in the community book
  \"books/centaur/misc/hons-extra.lisp\", which allows you to call
  [with-fast-alist] on several alists simultaneously.

  The community book \"books/centaur/misc/hons-extra.lisp\" extends the
  [b*] macro with the with-fast pattern binder. That is, after
  executing (include-book \"centaur/misc/hons-extra.lisp\" :dir
  :system) you may write something like this:

    (b* (...
         ((with-fast a b c ...))
         ...)
      ...)

  which causes a, b, and c to become fast alists until the completion
  of the b* form.

  Note that with-fast-alist will cause logically tail-recursive
  functions not to execute tail-recursively if its cleanup phase
  happens after the tail-recursive call returns.")
 (WITH-GUARD-CHECKING
  (GUARD ACL2-BUILT-INS)
  "Suppressing or enable guard-checking for a form

    Example:

    ; Turn off all guard-checking for the indicated calls of append and car:
    (with-guard-checking :none
                         (append 3 4))

    General Form:
    (with-guard-checking val form)

  where val evaluates to a legal [guard]-checking value (see
  [set-guard-checking], or evaluate *guard-checking-values* to see
  the list of such values), and form is a form that does not mention
  [state] (unless there is an active trust tag, in which case mention
  of state can be unsound; see below). See
  [with-guard-checking-error-triple] for an analogous utility for
  forms that mention state. Form is to be evaluated in a scope such
  that, in essence, (set-guard-checking val) is first executed
  locally in that scope. However, this guard-checking setting is
  ignored once evaluation passes into raw Lisp functions (see
  [guards-and-evaluation]).

  The remainder of this topic provides a remark for advanced users.
  With-guard-checking is implemented using [return-last], which you
  can in principle call directly; use :[trans] or :[trans1] to see
  how a call of with-guard-checking expands to a corresponding call
  of return-last. However, ACL2 enforces a couple of checks that can
  only be circumvented if there is an active trust tag. The following
  example from Jared Davis shows why those checks are required (in
  particular, it shows how cirmventing them with a trust tag can be
  unsound). We start by defining our own version of the utility,
  which omits the check that the form has no occurrences of state.

    (defmacro my-with-guard-checking (val form)
      `(with-guard-checking1 (chk-with-guard-checking-arg ,val)
                             ,form))

  Submitting the following event results in the error shown just below
  it.

    (defun foo (state)
      (declare (xargs :stobjs state
                      :guard (f-boundp-global 'guard-checking-on state)))
      (my-with-guard-checking :all (f-get-global 'guard-checking-on state)))

    ACL2 Error in ( DEFUN FOO ...):  The form
    (RETURN-LAST 'WITH-GUARD-CHECKING1-RAW
                 (CHK-WITH-GUARD-CHECKING-ARG :ALL)
                 (F-GET-GLOBAL 'GUARD-CHECKING-ON STATE))
    is essentially a call of WITH-GUARD-CHECKING, but without certain checks
    performed.  This is illegal unless there is an active trust tag; see
    :DOC defttag.  To avoid this error without use of a trust tag, call
    WITH-GUARD-CHECKING directly.  Note:  this error occurred in the context
    (WITH-GUARD-CHECKING1 (CHK-WITH-GUARD-CHECKING-ARG :ALL)
                          (F-GET-GLOBAL 'GUARD-CHECKING-ON
                                        STATE)).

  But if we first evaluate (defttag t), then the [defun] event above is
  admitted, and we can subsequently prove something that is not true.

    (thm (equal (foo state)
                (f-get-global 'guard-checking-on state)))

    (assert-event (not (equal (foo state)
                              (f-get-global 'guard-checking-on state))))")
 (WITH-GUARD-CHECKING-ERROR-TRIPLE
  (GUARD ACL2-BUILT-INS)
  "Suppressing or enable guard-checking for a form

    Example:

    ; Turn off all guard-checking for the indicated calls of append and car:
    (with-guard-checking-error-triple :none
                                      (value (append 3 4)))

    General Form:
    (with-guard-checking-error-triple val form)

  where val evaluates to a legal guard-checking value (see
  [set-guard-checking], or evaluate *guard-checking-values* to see
  the list of such values), and form is a form that returns an error
  triple, (mv erp val state); see [error-triple]. Thus,
  with-guard-checking-error-triple is much like
  [with-guard-checking], but the former is to be used if form
  mentions the ACL2 [state]; indeed, with-guard-checking-error-triple
  requires form to evaluate to an error triple. As with
  with-guard-checking, form is evalated in a context where
  guard-checking has been set to the value of val, but this
  guard-checking setting is ignored once evaluation passes into raw
  Lisp functions (see [guards-and-evaluation]).")
 (WITH-LIVE-STATE
  (PROGRAMMING-WITH-STATE ACL2-BUILT-INS)
  "Allow a reference to state in raw Lisp

  The macro with-live-state is an advanced feature that very few users
  will need (basically, only system hackers). Indeed, it is
  untouchable; see [remove-untouchable] for how to enable calling
  with-live-state in the ACL2 loop.

    Example Form:
    (with-live-state (assign y 3))

    General form:
    (with-live-state form)

  where form is an arbitrary form with a free reference to the variable
  [state].

  Logically, (with-live-state FORM) macroexpands to FORM. However, in
  raw Lisp it expands to:

    (let ((state *the-live-state*))
      FORM)

  If a form that mentions the variable [state] might be executed in raw
  Lisp --- that is, either outside the ACL2 loop or in raw mode (see
  [set-raw-mode]) --- then the surrounding the form with
  with-live-state as shown above can avoid potential warnings or
  (much less likely) errors. Note however that if state is lexically
  bound to a state other than the usual ``live'' state, surprising
  behavior may occur when evaluating a call of with-live-state in raw
  Lisp or raw mode (either directly by evaluation or at compile
  time), because with-live-state will override that lexical binding
  of [state] by a lexical binding of state to the usual ``live''
  state.")
 (WITH-LOCAL-STATE
  (STOBJ ACL2-BUILT-INS)
  "Locally bind state

  This is an advanced topic, probably of interest only to system
  developers.

  Consider the following example form:

    (with-local-state
     (mv-let (result state)
             (compute-with-state x state)
             result))

  This is equivalent to the following form.

    (with-local-stobj
     state
     (mv-let (result state)
             (compute-with-state x state)
             result))

  By default, this form is illegal, because ACL2 does not have a way to
  unwind all changes to the ACL2 [state]; we say more on this issue
  below. There may however be situations where you are willing to
  manage or overlook this issue. In that case you may execute the
  following form to enable the use of with-local-state, by enabling
  the use of [with-local-stobj] on state; but note that it requires
  an active trust tag (see [defttag]).

    (remove-untouchable create-state t)

  Please be aware that no local [state] is actually created, however!
  In particular, users of with-local-state need either to ensure that
  channels are closed and state global variables are returned to
  their original values, or else be willing to live with changes made
  to state that are not justified by the code that has been
  evaluated. You are welcome to look in the the ACL2 source code at
  the definition of macro channel-to-string, which employs
  with-local-state to create a local [state] for the purpose of
  creating a string.

  Here is an example use of with-local-state. Notice the use of
  [defttag] --- and indeed, please understand that we are just
  hacking here, and in general it takes significant effort to be sure
  that one is using with-local-state correctly!

    (defttag t)

    (remove-untouchable create-state t)

    (set-state-ok t)

    (defun foo (state)
      (declare (xargs :mode :program))
      (mv-let
       (channel state)
       (open-input-channel \"my-file\" :object state)
       (mv-let (eofp obj state)
               (read-object channel state)
               (declare (ignore eofp))
               (let ((state (close-input-channel channel state)))
                 (mv obj state)))))

    (defun bar ()
      (declare (xargs :mode :program))
      (with-local-state (mv-let (result state)
                                (foo state)
                                result)))

    ; Multiple-value return version:

    (defun foo2 (state)
      (declare (xargs :mode :program))
      (mv-let
       (channel state)
       (open-input-channel \"my-file\" :object state)
       (mv-let (eofp obj state)
               (read-object channel state)
               (let ((state (close-input-channel channel state)))
                 (mv eofp obj state)))))

    (defun bar2 ()
      (declare (xargs :mode :program))
      (with-local-state (mv-let (eofp result state)
                                (foo2 state)
                                (mv eofp result))))")
 (WITH-LOCAL-STOBJ
  (STOBJ ACL2-BUILT-INS)
  "Locally bind a single-threaded object

  See [stobj] for an introduction to single-threaded objects.

    Example Form:
    (with-local-stobj
     st
     (mv-let (result st)
             (compute-with-st x st)
             result))

  With-local-stobj can be thought of as a macro, where the example form
  above expands as follows.

    (mv-let (result st)
            (let ((st (create-st)))
              (compute-with-st x st))
            (declare (ignore st))
            result)

  However, ACL2 expects you to use with-local-stobj, not its expansion.
  More precisely, stobj creator functions are not allowed except
  (implicitly) via with-local-stobj and in logic-only situations
  (like theorems and hints). Moreover, neither with-local-stobj nor
  its expansions are legal when typed directly at the top-level loop.
  See [top-level] for a way to use with-local-stobj in the top-level
  loop.

    General Forms:
    (with-local-stobj stobj-name mv-let-form)
    (with-local-stobj stobj-name mv-let-form creator-name)

  where stobj-name is the name of a [stobj], mv-let-form is a call of
  [mv-let], and if creator-name is supplied then it should be the
  name of the creator function for stobj-name; see [defstobj]. For
  the example form above, its expansion would use creator-name, if
  supplied, in place of create-st. Note that stobj-name must not be
  [state] (the ACL2 state), except in special situations probably of
  interest only to system developers; see [with-local-state].

  With-local-stobj can be useful when a stobj is used to memoize
  intermediate results during a computation, yet it is desired not to
  make the stobj a formal parameter for the function and its callers.

  ACL2 can reason about these ``local stobjs,'' and in particular about
  stobj creator functions. For technical reasons, ACL2 will not allow
  you to enable the :EXECUTABLE-COUNTERPART [rune] of a stobj creator
  function.

  Finally, here is a small example concocted in order to illustrate
  that with-local-stobj calls can be nested.

    (defstobj st fld1)

    (defun foo ()
      (with-local-stobj
       st ; Let us call this the ``outer binding of st''.
       (mv-let (val10 val20 st)
         (let ((st (update-fld1 10 st)))
           ;; At this point the outer binding of st has fld1 = 10.
           (let ((result (with-local-stobj
                          st ; Let us call this the ``inner binding of st''.
                          (mv-let (val st)
                            (let ((st (update-fld1 20 st)))
                              ;; Now fld1 = 20 for the inner binding of st.
                              (mv (fld1 st) st))
                            val))))
             ;; So result has been bound to 20 above, but here we are once again
             ;; looking at the outer binding of st, where fld1 is still 10.
             (mv (fld1 st) result st)))
         (mv val10 val20))))

    (thm (equal (foo) (mv 10 20))) ; succeeds")
 (WITH-OUTPUT
  (PROVER-OUTPUT)
  "Suppressing or turning on specified output for an event

    Examples:

    ; Turn off all output during evaluation of the indicated thm form.
    (with-output
     :off :all
     :gag-mode nil
     (thm (equal (app (app x y) z) (app x (app y z)))))

    ; Prove the indicated theorem with the event summary turned off and
    ; using the :goals setting for gag-mode.
    (with-output
       :off summary
       :gag-mode :goals
       (defthm app-assoc (equal (app (app x y) z) (app x (app y z)))))

    ; Same effect as just above:
    (with-output
       :on summary
       :summary nil
       :gag-mode :goals
       (defthm app-assoc (equal (app (app x y) z) (app x (app y z)))))

    ; Turn on only the indicated parts of the summary.
    (with-output
       :on summary
       :summary (time rules)
       :gag-mode :goals  ; use gag-mode, with goal names printed
       (defthm app-assoc (equal (app (app x y) z) (app x (app y z)))))

    ; Same as specifying :off :all, but showing all output types
    ; (i.e., the value of constant *valid-output-names*):
    (with-output
     :off (error warning warning! observation prove proof-checker event history
                 summary proof-tree)
     :gag-mode nil
     (thm (equal (app (app x y) z) (app x (app y z)))))

    ; Same as above, but :stack :push says to save the current
    ; inhibit-output-lst, which can be restored in a subsidiary with-output call
    ; that specifies :stack :pop.
    (with-output
     :stack :push
     :off :all
     :gag-mode nil
     (thm (equal (app (app x y) z) (app x (app y z)))))

    ; Abbreviate printing in gag-mode for guard goals and induction schemes, but
    ; defeat abbreviated printing (if any) for terms.
    (with-output
     :evisc (:gag-mode (evisc-tuple 3 4 nil nil)
             :term nil)
     (defun h (x)
       (declare (xargs :guard t))
       (append (cons (make-list 10) x) x)))

    General Form:
    (with-output :key1 val1 ... :keyk valk form)

  where each :keyi is either :off, :on, :stack, :summary, :gag-mode, or
  :evisc; form evaluates to an [error-triple]; and vali is as
  follows. If :keyi is :off or :on, then vali is either :all, or else
  a symbol or non-empty list of symbols representing output types
  that can be inhibited; see [set-inhibit-output-lst]. Note that vali
  is not evaluated if :keyi is :off or :on. If :keyi is :summary,
  then vali is either :all or a true-list of symbols each of which
  belongs to the list *summary-types*. Note that vali is not
  evaluated if :keyi is :summary. If :keyi is :gag-mode, then vali
  should evaluate to one of the legal values for :[set-gag-mode]. If
  :keyi is :evisc, then vali should be a [keyword-value-listp], where
  each key is a legal keyword for the :sites keyword argument of
  [set-evisc-tuple] other than :trace (that is, a member of the list
  (:term :ld :abbrev :gag-mode)), and each value evaluates to a legal
  [evisc-tuple] for that keyword. Otherwise :keyi is :stack, in which
  case :vali is :push or :pop; for now assume that :stack is not
  specified (we'll return to it below). The result of evaluating the
  General Form above is to evaluate form, but in an environment where
  output occurs as follows. If :on :all is specified, then every
  output type is turned on except as inhibited by :off; else if :off
  :all is specified, then every output type is inhibited except as
  specified by :on; and otherwise, the currently-inhibited output
  types are reduced as specified by :on and then extended as
  specified by :off. If :gag-mode and/or :evisc are specified, then
  before modifying how output is inhibited, [gag-mode] and/or the
  appropriate [evisc-tuple]s are set for the evaluation of form as
  specified by the values of those keywords; see [set-gag-mode] and
  [set-evisc-tuple]. If summary is among the output types that are
  turned on (not inhibited), then if :summary is specified, the only
  parts of the summary to be printed will be those specified by the
  value of :summary. The correspondence should be clear, except
  perhaps that header refers to the line containing only the word
  Summary, and value refers to the value of the form printed during
  evaluation of sequences of events as for [progn] and [encapsulate].

  Note that the handling of the :stack argument pays no attention to
  the :summary argument.

  Note: When the scope of with-output is exited, then all modifications
  are undone: that is, the states of each of [gag-mode], the
  [evisc-tuple]s, and output inhibition are all restored to those
  which were present before the with-output call was entered.

  The :stack keyword's effect is illustrated by the following example,
  where ``(encapsulate nil)'' may replaced by ``(progn'' without any
  change to the output that is printed.

    (with-output
     :stack :push :off :all
     (encapsulate ()
       (defun f1 (x) x)
       (with-output :stack :pop (defun f2 (x) x))
       (defun f3 (x) x)
       (with-output :stack :pop :off warning (in-theory nil))
       (defun f4 (x) x)))

  The outer with-output call saves the current output settings (as may
  have been modified by earlier calls of [set-inhibit-output-lst]),
  by pushing them onto a stack, and then turns off all output. Each
  inner with-output call temporarily pops that stack, restoring the
  starting output settings, until it completes and undoes the effects
  of that pop. Unless event output was inhibited at the top level
  (see [set-inhibit-output-lst]), the following output is shown:

    Since F2 is non-recursive, its admission is trivial.  We observe that
    the type of F2 is described by the theorem (EQUAL (F2 X) X).

  And then, if summary output was not inhibited at the top level, we
  get the rest of this output:

    Summary
    Form:  ( DEFUN F2 ...)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

    Summary
    Form:  ( IN-THEORY NIL)
    Rules: NIL
    Warnings:  None
    Time:  0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

  Note that the use of :off warning suppresses a \"Theory\" warning for
  the (in-theory nil) event, and that in no case will output be
  printed for definitions of f1, f3, or f4, or for the [encapsulate]
  event itself.

  The following more detailed explanation of :stack is intended only
  for advanced users. After :gag-mode and :evisc are handled (if
  present) but before :on or :off is handled, the value of :stack is
  handled as follows. If the value is :push, then [state] global
  inhibit-output-lst-stack is modified by pushing the value of
  [state] global inhibit-output-lst onto the value of [state] global
  inhibit-output-lst-stack, which is nil at the top level. If the
  value is :pop, then [state] global inhibit-output-lst-stack is
  modified only if non-nil, in which case its top element is popped
  and becomes the value of of [state] global inhibit-output-lst.

  Warning: With-output has no effect in raw Lisp (other than to expand
  to the provided form argument), and hence is disallowed in function
  bodies. However, you can probably get the effect you want as
  illustrated below, where <form> must return an error-triple (mv erp
  val state); see [ld] and see [error-triple].

    Examples avoiding with-output, for use in function definitions:

    ; Inhibit all output:
    (state-global-let*
     ((inhibit-output-lst *valid-output-names*))
     <form>)

    ; Inhibit all warning output:
    (state-global-let*
     ((inhibit-output-lst
       (union-eq (f-get-global 'inhibit-output-lst state)
                 '(warning warning!))))
     <form>)

  Note that with-output is allowed in books. See [embedded-event-form].")
 (WITH-OUTPUT-LOCK
  (PARALLEL-PROGRAMMING ACL2-BUILT-INS)
  "Provides a mutual-exclusion mechanism for performing output in
  parallel

  This documentation topic relates to an experimental extension of
  ACL2, ACL2(p), created initially by David L. Rager. See
  [compiling-ACL2p] for how to build an executable image that
  supports parallel execution. Also see community books directory
  books/parallel/ for examples.

  One may wish to perform output while executing code in parallel. If
  threads are allowed to print concurrently, the output will be
  interleaved and often unreadable. To avoid this, the user can
  surround forms that perform output with the with-output-lock macro.
  Warning: with-output-lock may not perform as expected when called
  directly in the loop; see [parallelism-at-the-top-level].

  Take the following definition of pfib as an example.

    (defun pfib (x)
      (declare (xargs :guard (natp x)))
      (cond ((mbe :logic (or (zp x) (<= x 0))
                  :exec (<= x 0))
             0)
            ((= x 1) 1)
            (t (plet (declare (granularity t))
                     ((a (prog2$ (cw \"Computing pfib ~x0~%\" (- x 1))
                                 (pfib (- x 1))))
                      (b (prog2$ (cw \"Computing pfib ~x0~%\" (- x 2))
                                 (pfib (- x 2)))))
                     (+ a b)))))

  With [parallel-execution] enabled, a call of (pfib 5)results in
  non-deterministically interleaved output, for example as follows.

    ACL2 !>(pfib 5)
    CComputing pfib 4
    omputing pfib 3
    ComCpuotmipnugt ipnfgi bp fib3
    2
    Computing pCfiobm put2i
    ng pfib 1
    Computing pfib Co1mp
    uting pfib 0
    CCoommppuuttiinngg  ppffiibb  12

    ComCpuotmipnugt ipnfgi bp fib1
    0
    CoCmopmuptuitnign gp fpifbi b 1
    0
    5
    ACL2 !>

  If the user instead surrounds the calls to [cw] with the macro
  with-output-lock, as in the following session, the output will no
  longer be interleaved.

    ACL2 !>
    (defun pfib (x)
      (declare (xargs :guard (natp x)))
      (cond ((mbe :logic (or (zp x) (<= x 0))
                  :exec (<= x 0))
             0)
            ((= x 1) 1)
            (t (plet (declare (granularity t))
                     ((a (prog2$ (with-output-lock
                                  (cw \"Computing pfib ~x0~%\" (- x 1)))
                                 (pfib (- x 1))))
                      (b (prog2$ (with-output-lock
                                  (cw \"Computing pfib ~x0~%\" (- x 2)))
                                 (pfib (- x 2)))))
                     (+ a b)))))

    <snip>

    ACL2 !>(pfib 5)
    Computing pfib 4
    Computing pfib 3
    Computing pfib 3
    Computing pfib 2
    Computing pfib 2
    Computing pfib 1
    Computing pfib 2
    Computing pfib 1
    Computing pfib 1
    Computing pfib 0
    Computing pfib 1
    Computing pfib 0
    Computing pfib 1
    Computing pfib 0
    5
    ACL2 !>")
 (WITH-PROVER-STEP-LIMIT
  (MISCELLANEOUS)
  "Limit the number of steps for proofs

  Logically, (with-prover-step-limit expr form) is equivalent to form,
  except that if the number of ``prover steps'' executed during
  evaluation of form exceeds a bound specified by the value of expr,
  then that proof will abort. See [set-prover-step-limit] for a
  related utility that sets the limit on prover steps globally
  instead of setting it for just one form, and for a discussion of
  the notion of ``prover steps'', which could change in future ACL2
  releases. For a related utility based on time instead of prover
  steps, see [with-prover-time-limit]; but as discussed in the
  [documentation] for [set-prover-step-limit], there is at best a
  loose connection between the counting of steps and
  [with-prover-time-limit].

  The arguments of (with-prover-step-limit expr form) are evaluated.
  However, the (optional) argument flg is not evaluated in
  (with-prover-step-limit expr flg form).

  Depending on the machine you are using, you may have less than a
  half-hour of time before the number of prover steps exceeds the
  maximum limit on prover steps that may be imposed, which is one
  less than the value of *default-step-limit*. But there is no limit
  unless you explicitly call with-prover-step-limit or
  [set-prover-step-limit].

  For examples of how step-limits work besides those presented below,
  see the community book books/misc/misc2/step-limits.lisp.

  For a utility that returns an indicator of the number of prover steps
  most recently taken, see [last-prover-steps].

  Note that with-prover-step-limit may not be called inside
  definitions, and that it is simply the identity macro in raw Lisp.
  However, with-prover-step-limit! may be called in place of
  with-prover-step-limit, with the effect described here even in raw
  Lisp.

    Examples:

    ; Limit (mini-proveall) to 100,000 prover steps (which happens to suffice)
    (with-prover-step-limit 100000 (mini-proveall))

    ; Same as above for the inner call of with-prover-step-limit; so the
    ; mini-proveall call completes, but then we get an error because the second
    ; argument of the outer with-prover-step-limit call took more than 200
    ; steps.
    (with-prover-step-limit
     200
     (with-prover-step-limit 100000 (mini-proveall)))

    ; Same as preceding form just above, except that this time there is no error,
    ; because the inner call of with-prover-step-limit has an extra argument
    ; of t inserted into the second argument position, which specifies that this
    ; entire inner call is treated as though it uses no prover steps.
    (with-prover-step-limit
     200
     (with-prover-step-limit 100000 t (mini-proveall)))

    ; The inner call limits (mini-proveall) to 200 prover steps, which fails
    ; almost immediately.
    (with-prover-step-limit 100000 (with-prover-step-limit 200 (mini-proveall)))

    ; Do not limit the number of prover steps, regardless of such a limit imposed
    ; globally or by the surrounding context.
    (with-prover-step-limit nil (mini-proveall))

    ; Same as just above (indeed, nil above is converted to
    ; *default-step-limit*):
    (with-prover-step-limit *default-step-limit* (mini-proveall))

    ; Advanced example: Limit the indicated theorem to 100 steps, and when the
    ; proof does not complete, then put down a label instead.
    (mv-let (erp val state)
            (with-prover-step-limit
             100
             (thm (equal (append (append x x) x)
                         (append x x x))))
            (if erp
                (deflabel foo :doc \"Attempt failed.\")
              (value (list :succeeded-with val))))

    ; Use extra argument of t to avoid ``charging'' steps for the indicated
    ; form.
    (with-prover-step-limit
     500
     (encapsulate
      ()
      (with-prover-step-limit
       500
       t ; Don't charge prover steps for this first defthm.
       (defthm test1
         (equal (append x (append y z))
                (append (append x y) z))
         :rule-classes nil))
      (defthm test2
        (equal (append x (append y z))
               (append (append x y) z))
        :rule-classes nil)))

    General Forms:
    (with-prover-step-limit expr form)
    (with-prover-step-limit expr flg form)

  where form is an arbitrary form to evaluate, and expr evaluates to
  one of the following: nil; a natural number not exceeding the value
  of *default-step-limit*; or the special value, :START. The optional
  extra argument in the second position, flg, must be Boolean if
  supplied.

  If the value of expr is a natural number less than the value of
  *default-step-limit*, then that value is the maximum number of
  prover steps permitted during evaluation of form before an error
  occurs. If however the value of expr is nil or is the value of
  *default-step-limit*, then no limit is placed on the number of
  prover steps during processing of form. Otherwise, the value of
  expr should be the keyword :START, which is intended for use by the
  ACL2 implementation and may have semantics that change with new
  ACL2 versions.

  Finally we describe the optional extra Boolean argument, flg. If flg
  is nil or omitted, then a running count of prover steps is
  maintained after form is evaluated; otherwise, that count is not
  affected by evaluation of form. To see how this works when flg is
  nil or omitted, consider an event of shape (progn form1 form2),
  where we are tracking prover steps (say, because of a superior call
  of with-prover-step-limit). If n is the number of prover steps
  available when the [progn] form is entered, and if s prover steps
  are executed while evaluating form1, then n-s steps are available
  for evaluation of form2 provided s does not exceed n; otherwise, an
  error occurs. In particular, this is the case if form1 is an event
  (with-prover-step-limit k form1'). However, if form1 is an event
  (with-prover-step-limit k t form1'), then because of the extra
  argument of t, no steps are ``charged'' to form; that is, all n
  steps, rather than n-s steps, are available for evaluation of
  form2.


Subtopics

  [Last-prover-steps]
      The number of prover steps most recently taken")
 (WITH-PROVER-TIME-LIMIT
  (MISCELLANEOUS)
  "Limit the time for proofs

    Examples:

    ; Limit (mini-proveall) to about 1/4 second:
    (with-prover-time-limit 1/4 (mini-proveall))

    ; Limit (mini-proveall) to about 1/4 second, even if surrounding call of
    ; with-prover-time-limit provides for a more restrictive bound:
    (with-prover-time-limit '(1/4) (mini-proveall))

    ; Limit the indicated theorem to about 1/50 second, and if the proof does not
    ; complete or it fails, then put down a label instead.
    (mv-let (erp val state)
            (with-prover-time-limit
             1/50
             (thm (equal (append (append x x) x)
                         (append x x x))))
            (if erp
                (deflabel foo :doc \"Attempt failed.\")
              (value (list :succeeded-with val))))

    General Form:
    (with-prover-time-limit time form)

  where time evaluates to a positive rational number or to a list
  containing such, and form is arbitrary. Logically,
  (with-prover-time-limit time form) is equivalent to form. However,
  if the time for evaluation of form exceeds the value specified by
  time, and if ACL2 notices this fact during a proof, then that proof
  will abort, for example like this:

    ACL2 Error in ( DEFTHM PERM-REFLEXIVE ...):  Out of time in the rewriter.

  If there is already a surrounding call of with-prover-time-limit that
  has set up an expiration time, the inner with-prover-time-limit
  call is not allowed to push that time further into the future
  unless the inner time is specified as a list containing a rational,
  rather than as a rational.

  Note that by default, the time used is runtime (cpu time); to switch
  to realtime (elapsed time), see [get-internal-time].

  For a related utility based on prover steps instead of time, see
  [with-prover-step-limit]; also see [set-prover-step-limit]. Those
  utilities have the advantage of having platform-independent
  behavior, unlike time limits, which of course are generally less
  restrictive for faster processors. But note that the prover steps
  counted need not correspond closely to prover time. For other
  utilities that limit time, see [with-timeout] and
  [oracle-timelimit].

  Although with-prover-time-limit behaves like an ACL2 function in the
  sense that it evaluates both its arguments, it is however actually
  a macro that behaves as follows. (1) The value of its first (time
  limit) argument affects the evaluation of its second argument (by
  causing an error during that evaluation if the time for completion
  is insufficient). (2) The second argument can return multiple
  values (see [mv]), which are then returned by the call of
  with-prover-time-limit. (3) Thus, there is not a fixed number of
  values returned by with-prover-time-limit.

  If you find that the time limit appears to be implemented too
  loosely, it may be because the prover only checks the time elapsed
  at certain points during the proof process, for example at entry to
  the rewriter. For example, if you write your own [clause-processor]
  that does an expensive computation, the time is unlikely to be
  checked during its execution. If however you find the time limit
  seems to be ignored even during ordinary prover operation, you are
  encouraged to email an example to the ACL2 implementors with
  instructions on how to observe the undesirable behavior. This
  information can perhaps be used to improve ACL2 by the insertion of
  more checks for expiration of the time limit.

  The rest of this documentation topic explains the rather subtle
  logical story, and is not necessary for understanding how to use
  with-prover-time-limit. The ACL2 [state] object logically contains
  a field called the acl2-oracle, which is an arbitrary true list of
  objects; see [read-ACL2-oracle]. Our claim is that every ACL2
  session makes sense for some value of acl2-oracle in the initial
  state for that session. Logically, with-prover-time-limit is a
  no-op, just returning its second value. But under the hood, it
  provides a ``hint'' for the acl2-oracle, so that (logically
  speaking) when its first element ([car]) is consulted by ACL2's
  prover to see if the time limit has expired, it gets the ``right''
  answer (specifically, either nil if all is well or else a message
  to print if the time limit has expired). Logically, the acl2-oracle
  is then [cdr]'ed --- that is, its first element is popped off ---
  so that future results from read-acl2-oracle are independent of the
  one just obtained.")
 (WITH-SERIALIZE-CHARACTER
  (SERIALIZE ACL2-BUILT-INS)
  "Control output mode for print-object$

  See [serialize] for a discussion of ``serialization'' routines,
  contributed by Jared Davis for saving ACL2 objects in files for
  later loading.

  The expression (with-serialize-character char form) evaluates to the
  value of form, but with the serialize-character of the [state]
  assigned to char, which should be one of nil, #\\Y, or #\\Z. We
  describe the effect of that assignment below. But note that if you
  are doing this because of one or more specific calls of
  print-object$, such as (print-object$ x channel state), then you
  may wish instead to evaluate (print-object$-ser x
  serialize-character channel state), in which case you will not need
  to use with-serialize-character.

    General forms:
    (with-serialize-character nil form)
    (with-serialize-character #Y form)
    (with-serialize-character #Z form)

  where form should evaluate to an [error-triple].

  Note that if you prefer to obtain the same behavior (as described
  below) globally, rather than only within the scope of
  with-serialize-character, then use set-serialize-character in a
  corresponding manner:

    (set-serialize-character nil state)
    (set-serialize-character #\\Y state)
    (set-serialize-character #\\Z state)

  In each case above, calls of print-object$ (see [io]) in form will
  produce a readable object. In the first case, that object is
  printed as one might expect at the terminal, as an ordinary Lisp
  s-expression. But in the other cases, the object is printed by
  first laying down either #Y or #Z (respectively) and then calling
  [serialize-write] (or more precisely, the underlying function
  called by serialize-write that prints to a stream).

  Consider what happens when the ACL2 reader encounters an object
  produced as described above (in the #Y or #Z case). When the object
  was written, information was recorded on whether that object was a
  [hons]. In the case of #Z, the object will be read as a hons if and
  only if it was originally written as a hons. But in the case of #Y,
  it will never be read as a hons. Thus, #Y and #Z will behave the
  same if the original written object was not a hons, creating an
  object that is not a hons. For an equivalent explanation and a bit
  more discussion, see [serialize-read], in particular the discussion
  of the hons-mode. The value :smart described there corresponds to
  #Z, while :never corresponds to #Y.")
 (WITH-STOLEN-ALIST
  (HONS-AND-MEMOIZATION ACL2-BUILT-INS)
  "(with-stolen-alist name form) ensures that name is a fast alist at
  the start of the execution of form. At the end of execution, it
  ensures that name is a fast alist if and only if it was originally.
  That is, if name was not a fast alist originally, its hash table
  link is freed, and if it was a fast alist originally but its table
  was modified during the execution of form, that table is restored.
  Note that any extended table created from the original fast alist
  during form must be manually freed.

  Logically, with-stolen-alist just returns form.

  Under the hood, we cause alist to become a fast alist before
  executing form, and we check the various conditions outlined above
  before returning the final value.

  Note that with-stolen-alist will cause logically tail-recursive
  functions not to execute tail-recursively if its cleanup phase
  happens after the tail-recursive call returns.")
 (WITHOUT-EVISC
  (IO ACL2-BUILT-INS)
  "Print output in full

    General Form:
    (without-evisc form)

  where form is any expression to evaluate. The effect is to evaluate
  form as though the without-evisc wrapper were absent, except that
  expressions are printed in full for the ensuing output, regardless
  of the current evisc-tuples (see [set-evisc-tuple]). See
  [set-iprint] for an example.

  More precisely, without-evisc binds each of the term-evisc-tuple,
  ld-evisc-tuple, abbrev-evisc-tuple and gag-mode-evisc-tuple to nil
  (see [set-evisc-tuple]). It does not modify the trace evisc-tuple,
  so trace output is not modified by without-evisc. Also note that
  calls of printing functions such as [fmt] that include explicit
  evisc-tuples will not have those evisc-tuples overridden. The
  following example illustrates this point.

    ACL2 !>(without-evisc
            (fms \"~x0~%\"
                 (list (cons #0 '((a b ((c d)) e f g) u v w x y)))
                 *standard-co*
                 state
                 (evisc-tuple 2 3 nil nil)))

    ((A B # ...) U V ...)
    <state>
    ACL2 !>

  We conclude with two remarks. (1) A call of without-evisc on
  expression exp actually invokes a specialized call of [ld] on a
  one-element list containing exp, which prints the value returned by
  evaluation of exp but actually returns the useless value (mv nil
  :invisible state). So do not use without-evisc in programs; just
  use it at the top level of the ACL2 read-eval-print loop, or at
  least the top level of ld. (2) Even when using without-evisc, if
  the ACL2 logical [world] is part of the value returned, it will be
  printed in abbreviated form because the ACL2 read-eval-print loop
  always arranges for this to be the case, regardless of the
  ld-evisc-tuple. For example:

    ACL2 !>(without-evisc (w state))
    <world>
    ACL2 !>

  An alternative to the use of without-evisc is to explore large
  objects using the ACL2 function (walkabout object state). Some
  brief documentation is printed when you enter an interactive loop
  upon evaluating a call of walkabout. We may add documentation for
  walkabout if that is requested.")
 (WOF
  (IO)
  "Direct standard output and proofs output to a file

    Example Form:
    (wof \"tmp\" (pso)) ; same as (psof \"tmp\")

    General Form:
    (wof filename form)

  where filename is a writable filename and form is any form that
  evaluates to an error triple (see [programming-with-state]), that
  is, a multiple value of the form (mv erp val state). All output to
  channels [standard-co] and [proofs-co] will be directed to the
  indicated file. It is acceptable to replace filename with (quote
  filename).

  Note that so-called comment-window output (see [cw] and see
  [observation-cw]) is not redirected by wof to a file, nor is
  printing from a [wormhole].")
 (WORLD
  (STATE)
  "ACL2 property lists and the ACL2 logical database

  The ACL2 logical world is a data structure that includes all logical
  content resulting from the [command]s evaluated, back through and
  including initialization, but not including commands that have been
  undone (see [ubt]). Thus in particular, the world includes a
  represention of the current logical theory, as well as some
  extra-logical information such as the values of ACL2 [table]s. The
  rest of this topic focuses on the structure of the the ACL2 world
  and, more generally, the ``world'' data structure.

  A ``world'' is a list of triples, each of the form (sym prop . val),
  implementing the ACL2 notion of property lists. ACL2 permits the
  simultaneous existence of many property list worlds. ``The world''
  is often used as a shorthand for ``the ACL2 logical world'' which
  is the particular property list world used within the ACL2 system
  to maintain a database that contiains rules, [table]s, and so on.

  Common Lisp provides the notion of ``property lists'' by which one
  can attach ``properties'' and their corresponding ``values'' to
  symbols. For example, one can arrange for the 'color property of
  the symbol 'box-14 to be 'purple and the 'color property of the
  symbol 'triangle-7 to be 'yellow. Access to property lists is given
  via the Common Lisp function get. Thus, (get 'box-14 'color) might
  return 'purple. Property lists can be changed via the special form
  setf. Thus, (setf (get 'box-14 'color) 'blue) changes the Common
  Lisp property list configuration so that (get 'box-14 'color)
  returns 'blue. It should be obvious that ACL2 cannot provide this
  facility, because Common Lisp's get ``function'' is not a function
  of its argument, but instead a function of some implicit state
  object representing the property list settings for all symbols.

  ACL2 provides the functions getprop and putprop which allow one to
  mimic the Common Lisp property list facility. However, ACL2's
  getprop takes as one of its arguments a list that is a direct
  encoding of what was above called the ``state object representing
  the property list settings for all symbols.'' Because ACL2 already
  has a notion of ``[state]'' that is quite distinct from that used
  here, we call this property list object a ``world.'' A world is
  just a true list of triples. Each triple is of the form (sym prop .
  val). This world can be thought of as a slightly elaborated form of
  association list and getprop is a slightly elaborated form of
  [assoc] that takes two keys. When getprop is called on a symbol, s,
  property p, and world, w, it scans w for the first triple whose sym
  is s and prop is p and returns the corresponding val. Getprop has
  two additional arguments: one controls what it returns if no such
  sym and prop exist in w, and the other allows an extremely
  efficient implementation. To set some property's value for some
  symbol, ACL2 provides putprop. (putprop sym prop val w) merely
  returns a new world, w', in which (sym prop . val) has been
  [cons]ed onto the front of w, thus ``overwriting'' the prop value
  of sym in w to val and leaving all other properties in w unchanged.

  One aspect of ACL2's property list arrangement is that it is possible
  to have many different property list worlds. For example, 'box-14
  can have 'color 'purple in one world and can have 'color 'yes in
  another, and these two worlds can exist simultaneously because
  getprop is explicitly provided the world from which the property
  value is to be extracted.

  The efficiency alluded to above stems from the fact that Common Lisp
  provides property lists. Using Common Lisp's provisions behind the
  scenes, ACL2 can ``install'' the properties of a given world into
  the Common Lisp property list state so as to make retrieval via
  getprop very fast in the special case that the world provided to
  getprop has been installed. To permit more than one installed
  world, each of which is permitted to be changed via putprop, ACL2
  requires that worlds be named and these names are used to
  distinquish installed versions of the various worlds. At the moment
  we do not further document getprop and putprop.

  However, the ACL2 system uses a property list world, named
  'current-acl2-world, in which to store the succession of user
  [command]s and their effects on the logic. This world is often
  referred to in our [documentation] as ``the world'' though it
  should be stressed that the user is permitted to have worlds and
  ACL2's is in no way distinguished except that the user is not
  permitted to modify it except via event [command]s. The ACL2 world
  is part of the ACL2 [state] and may be obtained via (w state).

  Warning: The ACL2 world is very large. Its length as of this writing
  (Version 2.5) is over 40,000 and it grows with each release.
  Furthermore, some of the values stored in it are pointers to old
  versions of itself. Printing (w state) is something you should
  avoid because you likely will not have the patience to await its
  completion. For these practical reasons, the only thing you should
  do with (w state) is provide it to getprop, as in the form

    (getprop sym prop default 'current-acl2-world (w state))

  or its convenient abbrevation

    (getpropc sym prop default)

  to inspect properties within it, or to pass it to ACL2 primitives,
  such as theory functions, where it is expected.

  Some ACL2 [command] forms, such as theory expressions (see
  [theories]) and the values to be stored in tables (see [table]),
  are permitted to use the variable symbol world freely with the
  understanding that when these forms are evaluated that variable is
  bound to (w state). Theoretically, this gives those forms complete
  knowledge of the current logical configuration of ACL2. However, at
  the moment, few world scanning functions have been documented for
  the ACL2 user. Instead, supposedly convenient macro forms have been
  created and documented. For example, (current-theory :here), which
  is the theory expression which returns the currently [enable]d
  theory, actually macroexpands to (current-theory-fn :here world).
  When evaluated with world bound to (w state), current-theory-fn
  scans the current ACL2 world and computes the set of [rune]s
  currently [enable]d in it.


Subtopics

  [Formula]
      The formula of a name or [rune]

  [Getprop]
      Access fast property lists

  [Getpropc]
      Access fast property lists

  [Logical-name]
      A name created by a logical event

  [Props]
      Print the ACL2 properties on a symbol

  [Putprop]
      Update fast property lists

  [Redefined-names]
      To collect the names that have been redefined")
 (WORMHOLE
  (STATE LD)
  "[ld] without [state] --- a short-cut to a parallel universe

    Example Form:
    ; The following form enters a recursive read-eval-print loop on a
    ; copy of the current state, allowing you to interact with that loop.
    ; Note that the form does not mention the ACL2 state variable!
    ; Evaluate the form below. Inside the resulting loop, define some function,
    ; e.g., with (defun foo (x) x).  Then exit with :q and observe,
    ; e.g., with :pe foo, that the external state did not change.

    (wormhole 'foo
              '(lambda (whs) (set-wormhole-entry-code whs :ENTER))
              nil
              '(list 'hello 'there))

    General Form:
    (wormhole name entry-lambda input form
      :current-package    ...  ; known package name
      :ld-skip-proofsp    ...  ; nil, t or 'include-book
      :ld-redefinition-action  ; nil or '(:a . :b)
      :ld-prompt          ...  ; nil, t, or some prompt printer fn
      :ld-missing-input-ok ... ; nil, t, :warn, or warning message
      :ld-pre-eval-filter ...  ; :all, :query, or some new name
      :ld-pre-eval-print  ...  ; nil, t, or :never
      :ld-post-eval-print ...  ; nil, t, or :command-conventions
      :ld-evisc-tuple     ...  ; nil or '(alist level length hiding-cars)
      :ld-error-triples   ...  ; nil or t
      :ld-error-action    ...  ; :return!, :return, :continue, :error,
                               ;   or (:exit N)
      :ld-query-control-alist  ; alist supplying default responses
      :ld-verbose         ...) ; nil or t

  The keyword arguments above are exactly those of [ld] (see [ld])
  except that three of [ld]'s keyword arguments are missing: the
  three that specify the channels [standard-oi], [standard-co] and
  [proofs-co], which default in wormhole to ACL2's comment window.

  There are two ways to create and enter a wormhole: wormhole as
  described here and the simpler [wormhole-eval]. We recommend you
  read this full account of wormholes before using wormhole-eval.

  Ignoring the use of entry-lambda, wormhole manufactures a named
  ``wormhole [state]'' and calls the general-purpose ACL2
  read-eval-print loop [ld] on it. However, when ld exits, the
  wormhole evaporates and the function wormhole returns nil. The
  manufactured state is like the ``current'' ACL2 [state] except for
  two things. First, some information from the last wormhole state of
  this name is transferred into the new state; this allows a wormhole
  to maintain some state from one call to the next. Second, some
  information from the wormhole call itself is transferred into the
  new state; this allows the wormhole to be sensitive to context.
  These two changes to the current state are reflected in the
  settings (@ wormhole-status) and (@ wormhole-input) discussed in
  detail below.

  Note that wormhole may be called from environments in which [state]
  is not bound. It is still applicative because it always returns
  nil.

  There are some restrictions about what can be done inside a wormhole.
  As you may imagine, we really do not ``copy the current state'' but
  rather just keep track of how we modified it and undo those
  modifications upon exit. An error is signalled if you try to modify
  state in an unsupported way. For this same reason, wormholes do not
  allow updating of any user-defined single-threaded objects. See
  [stobj].

  One example wormhole is the implementation of the ACL2
  [accumulated-persistence] facility for tracking the frequency with
  which rules are tried. To implement this feature directly the
  theorem prover would have to take the tracking data as an argument
  and pass it around so that updates could be accumulated. This would
  greatly clutter the code. Instead, the tracking data is maintained
  in a wormhole. The theorem prover enters the wormhole to update the
  data as rules are tried. When you request a display of the data,
  [show-accumulated-persistence] enters the wormhole and prints the
  data. But the data is never available outside that wormhole. The
  ACL2 system uses a second wormhole to implement the [brr] facility,
  allowing the user to interact with the rewriter as rules are
  applied.

  We now specify the arguments and behavior of wormhole.

  The name argument must be a quoted constant and is typically a
  symbol. It will be the ``name'' of the wormhole. A wormhole of that
  name will be created the first time either wormhole or
  [wormhole-eval] is called.

  Every wormhole name has a ``status.'' The status of a wormhole is
  stored outside of ACL2; it is inaccessible to the ACL2 user except
  when in the named wormhole. But the status of a wormhole may be set
  by the user from within the wormhole.

  Upon the first call of wormhole or wormhole-eval on a name, the
  status of that name is nil. But in general you should arrange for
  the status to be a cons. The status is set by the quoted lambda
  every time wormhole is called; but it may also be set in the form
  argument (the first form evaluated in the interactive loop) by
  assigning to the state global variable wormhole-status, as with

    (assign wormhole-status ...)

  or even by the user interacting with the loop if you do not exit the
  loop with the first form. The car of the cons should be either
  :ENTER or :SKIP and is called the wormhole's ``entry code.'' The
  entry code of nil or an unexpectedly shaped status is :ENTER. The
  cdr of the cons is arbitrary data maintained by you.

  When wormhole is invoked, the status of the specified name is
  incorporated into the manufactured wormhole state. In particular,
  inside the wormhole, the status is the value of the state global
  variable wormhole-status. That is, inside the wormhole, the status
  may be accessed by (@ wormhole-status) and set by (assign
  wormhole-status ...), f-get-global and f-put-global. When ld exits
  -- typically because the form :q was read by ld -- the then-current
  value of wormhole-status is hidden away so that it can be restored
  when this wormhole is entered again. The rest of the wormhole state
  is lost.

  This allows a sequence of entries and exits to a wormhole to maintain
  some history in the status and this information can be manipulated
  by ACL2 functions executing inside the wormhole.

  The second argument to wormhole must be a quoted lambda expression.
  We explain it later.

  The third argument, input, may be any term. The value of the term is
  passed into the manufactured wormhole state, allowing you to pass
  in information about the calling context. Inside the wormhole, the
  input is available via (@ wormhole-input). It could be reassigned
  via (assign wormhole-input ...), but there is no reason to do that.

  The fourth argument, form, may be any term; when [ld] is called on
  the manufactured wormhole state, the first form evaluated by ld
  will be the value of form. Note that form will be translated by ld.
  Errors, including guard violations, in the translation or execution
  of that first form will leave you in the interactive loop of the
  wormhole state.

  When used properly, the first form allows you to greet your user
  before reading the first interactive command or simply to do
  whatever computation you want to do inside the wormhole and exit
  silently. We give examples below.

  Manufacturing a wormhole state is relatively expensive; in addition,
  the forms executed by ld must be read, translated, and interpreted
  as with any user type-in. The entry-lambda offers a way to avoid
  this or, at least, to decide whether to incur that expense.

  Before the wormhole state is manufactured and entered, the
  entry-lambda is applied to the current wormhole status with
  [wormhole-eval]. That lambda application must produce a new
  wormhole status, which is stored as the wormhole's status. The
  entry code for the new status determines whether wormhole actually
  manufactures a wormhole state and calls ld.

  If the entry code for that new status is :ENTER the wormhole state is
  manufactured and entered; otherwise, the new status is simply saved
  as the most recent status but the wormhole state is not
  manufactured or entered. Note therefore that the entry-lambda may
  be used to perform two functions: (a) to determine if it is really
  necessary to manufacture a state and (b) to update the data in the
  wormhole status as a function of the old status without invoking
  ld.

  The entry-lambda must be a quoted lambda expression of at most one
  argument. Thus, the argument must be either

    '(lambda (whs) <body>)

  or

    '(lambda () <body>)

  Note the quote. If a formal, e.g., whs, is provided, it must be used
  as a variable in the lambda body. The lambda-expression may contain
  free variables, that is, the body may mention variables other than
  the lambda formal. These free variables are understood in the
  caller's environment. These conventions allow us to compile the
  entry-lambda application very efficiently when the guard has been
  verified.

  The guard on a call of wormhole is the conjunction of the guards on
  the arguments conjoined with the guard on the body of the
  entry-lambda. See [wormhole-eval] for a discussion of the guard on
  the lambda-expression.

  The functions [wormhole-statusp], [wormhole-entry-code],
  [wormhole-data], [set-wormhole-entry-code], [set-wormhole-data],
  and [make-wormhole-status] may be useful in manipulating entry
  codes and data in the entry-lambda.

  Note that you access and manipulate the wormhole's status in two
  different ways depending on whether you're ``outside'' of the
  wormhole applying the quoted lambda or ``inside'' the
  read-eval-print loop of the wormhole.

  OUTSIDE (wormhole-eval): access via the value of the lambda formal
  and set by returning the new status as the value of the lambda
  body.

  INSIDE (ld phase of wormhole): access via (@ wormhole-status), and
  set via (assign wormhole-status ...).

  Pragmatic Advice on Designing a Wormhole: Suppose you are using
  wormholes to implement some extra-logical utility. You must
  contemplate how you will use your wormhole's status to store hidden
  information. You might be tempted to exploit the entry code as part
  of the status. For example, you may think of :ENTER as indicating
  that your utility is ``turned on'' and :SKIP as indicating that
  your utility is ``turned off.'' We advise against such a design. We
  recommend you base your decisions on the wormhole data. We
  recommend that you set but not read the wormhole entry code to
  signal whether you wish to enter a full-fledged wormhole. To use
  the entry code as a flag overloads it and invites confusion when
  your facility is ``turned off'' but you have to enter the wormhole
  for some reason.

  For a behind-the-scenes description of how wormholes work, See
  [wormhole-implementation].

  Here are some sample situations handled by wormhole-eval and
  wormhole. Let the wormhole in question be named DEMO. Initially its
  status is NIL. The functions below all maintain the convention that
  the status is either nil or of the form (:key . lst), where :key is
  either :SKIP or :ENTER and lst is a true-list of arbitrary objects.
  But since there is no way to prevent the user from entering the
  DEMO wormhole interactively and doing something to the status, this
  convention cannot be enforced. Thus, the functions below do what we
  say they do, e.g., remember all the values of x ever seen, only if
  they're the only functions messing with the DEMO status. On the
  other hand, the guards of all the functions below can be verified.
  We have explicitly declared that the guards on the functions below
  are to be verified, to confirm that they can be. Guard verification
  is optional but wormholes (and wormhole-eval in particular) are
  more efficient when guards have been verified. All of the functions
  defined below return nil.

  The examples below build on each other. If you really want to
  understand wormholes we recommend that you evaluate each of the
  forms below, in the order they are discussed.

  Q. How do I create a wormhole that prints its status to the comment
  window?

    (defun demo-status ()
      (declare (xargs :verify-guards t))
      (wormhole-eval 'demo
                     '(lambda (whs)
                        (prog2$ (cw \"DEMO status:~%~x0~%\" whs)
                                whs))
                     nil))

  Note above that after printing the status to the comment window we
  return the new (unchanged) status whs. Had we just written the call
  of cw, which returns nil, the function would print the status and
  then set it to nil!

  Q. How do I use a wormhole to collect every symbol, x, passed to the
  function?

    (defun demo-collect (x)
      (declare (xargs :verify-guards t))
      (wormhole-eval 'demo
                     '(lambda (whs)
                        (make-wormhole-status whs
                                              (wormhole-entry-code whs)
                                              (if (symbolp x)
                                                  (cons x (wormhole-data whs))
                                                  (wormhole-data whs))))
                     nil))

  We could have also defined this function this way:

    (defun demo-collect (x)
      (declare (xargs :verify-guards t))
      (if (symbolp x)
          (wormhole-eval 'demo
                         '(lambda (whs)
                            (set-wormhole-data whs
                                               (cons x (wormhole-data whs))))
                         nil)
          nil))

  Both versions always return nil and both versions collect into the
  wormhole data field just the symbols x upon which demo-collect is
  called.

  Q. How do I use demo-collect? Below is a function that maps over a
  list and computes its length. But it has been annotated with a call
  to demo-collect on every element.

    (defun my-len (lst)
      (if (endp lst)
          0
          (+ 1
             (prog2$ (demo-collect (car lst))
                     (my-len (cdr lst))))))

  Thus, for example:

    ACL2 !>(my-len '(4 temp car \"Hi\" rfix))
    5
    ACL2 !>(demo-status)
    DEMO status:
    (:ENTER RFIX CAR TEMP)
    NIL
    ACL2 !>

  Q. How do I set the entry code to :ENTER or :SKIP according to
  whether name is a member-equal of the list of things seen so far?
  Note that we cannot check this condition outside the wormhole,
  because it depends on the list of things collected so far. We make
  the decision inside the lambda-expression. Note that we explicitly
  check that the guard of member-equal is satisfied by the current
  wormhole status, since we cannot rely on the invariant that no
  other function interferes with the status of the DEMO wormhole. In
  the case that the status is ``unexpected'' we act like the status
  is nil and set it to (:SKIP . NIL).

    (defun demo-set-entry-code (name)
      (declare (xargs :verify-guards t))
      (wormhole-eval 'demo
                     '(lambda (whs)
                        (if (true-listp (wormhole-data whs))
                            (set-wormhole-entry-code
                             whs
                             (if (member-equal name (wormhole-data whs))
                                 :ENTER
                                 :SKIP))
                            '(:SKIP . NIL)))
                     nil))

  Thus

    ACL2 !>(demo-set-entry-code 'monday)
    NIL
    ACL2 !>(demo-status)
    DEMO status:
    (:SKIP RFIX CAR TEMP)
    NIL
    ACL2 !>(demo-set-entry-code 'rfix)
    NIL
    ACL2 !>(demo-status)
    DEMO status:
    (:ENTER RFIX CAR TEMP)
    NIL
    ACL2 !>

  Q. Suppose I want to collect every symbol and then, if the symbol has
  an ABSOLUTE-EVENT-NUMBER property in the ACL2 logical world, print
  the defining event with :pe and then enter an interactive loop; but
  if the symbol does not have an ABSOLUTE-EVENT-NUMBER, don't print
  anything and don't enter an interactive loop.

  Here it is not important to know what ABSOLUTE-EVENT-NUMBER is; this
  example just shows that we can use a wormhole to access the ACL2
  logical world, even in a function that does not take the state as
  an argument.

  In the code below, we use wormhole instead of wormhole-eval, because
  we might have to access the logical world and enter an interactive
  loop. But for efficiency we do as much as we can inside the entry
  lambda, where we can check whether x is symbol and collect it into
  the data field of the wormhole status. Note that if we collect x,
  we also set the entry code to :ENTER. If we don't collect x, we set
  the entry code to :SKIP.

    (defun collect-symbols-and-print-events (x)
      (declare (xargs :guard t))
      (wormhole 'demo
                '(lambda (whs)
                   (if (symbolp x)
                       (make-wormhole-status whs
                                             :ENTER
                                             (cons x (wormhole-data whs)))
                       (set-wormhole-entry-code whs :SKIP)))

    ; The wormhole will not get past here is unless the entry code is
    ; :ENTER.  If we get past here, we manufacture a state, put
    ; x into (@ wormhole-input) and call ld in such a way that the
    ; first form executed is the quoted if-expression below.

                x
                '(if (getpropc (@ wormhole-input) 'absolute-event-number)
                     (er-progn
                      (mv-let (col state)
                              (fmt \"~%Entering a wormhole on the event name ~x0~%\"
                                   (list (cons #\\0 (@ wormhole-input)))
                                   *standard-co* state nil)
                              (declare (ignore col))
                              (value nil))
                      (pe (@ wormhole-input))
                      (set-ld-prompt 'wormhole-prompt state)
                      (value :invisible))
                     (value :q))
                :ld-verbose nil
                :ld-prompt nil))

  The ``first form'' (the if) asks whether the wormhole-input (i.e., x)
  has an ABSOLUTE-EVENT-NUMBER property. If so, it enters an
  [er-progn] to perform a sequence of commands, each of which returns
  an ACL2 error triple (see [programming-with-state]). The first form
  uses [fmt] to print a greeting. Since fmt returns (mv col state)
  and we must return an error triple, we embed the fmt term in an
  (mv-let (col state) ... (value nil)). The macro value takes an
  object and returns a ``normal return'' error triple. The second
  form in the er-progn uses the ACL2 history macro pe (see [pe]) to
  print the defining event for a name. The third form sets the prompt
  of this read-eval-print loop to the standard function for printing
  the wormhole prompt. We silenced the printing of the prompt when we
  called ld, thanks to the :ld-prompt nil keyword option. More on
  this below. The fourth form returns the error triple value
  :invisible as the value of the first form. This prevents ld from
  printing the value of the first form. Since we have not exited ld,
  that function just continues by reading the next form from the
  comment window. The user perceives this as entering a
  read-eval-print loop. We continue in the loop until the user types
  :q.

  On the other branch of the if, if the symbol has no
  ABSOLUTE-EVENT-NUMBER property, we execute the form (value :q),
  which is the programming equivalent of typing :q. That causes the
  ld to exit.

  The ld special variables set in the call to wormhole and further
  manipulated inside the first form to ld may require explanation. By
  setting :[ld-verbose] to nil, we prevent ld from printing the
  familiar ACL2 banner when ld is called. If :ld-verbose nil is
  deleted, then you would see something like

    ACL2 Version  4.0.  Level 2.
    ...
    Type (good-bye) to quit completely out of ACL2.

  before the first form is read and evaluated.

  By setting :[ld-prompt] to nil we prevent ld from printing the prompt
  before reading and evaluating the first form.

  As this example shows, to use full-blown wormholes you must
  understand the protocol for using wormhole status to control
  whether a wormhole state is manufactured for ld and you must also
  understand programming with [state] and the effects of the various
  [ld] ``special variables.''

  From the discussion above we see that wormholes can be used to create
  formatted output without passing in the ACL2 [state]. For examples
  see [cw], in particular the discussion at the end of that
  documentation topic.


Subtopics

  [Get-wormhole-status]
      Make a wormhole's status visible outside the wormhole

  [Make-wormhole-status]
      Creates a wormhole status object from given status, entry code, and
      data

  [Set-wormhole-data]
      Sets the wormhole data object in a wormhole status object

  [Set-wormhole-entry-code]
      Sets the wormhole entry code in a wormhole status object

  [Wormhole-data]
      Determines the wormhole data object from a wormhole status object

  [Wormhole-entry-code]
      Determines the wormhole entry code from a wormhole status object

  [Wormhole-eval]
      State-saving without state --- a short-cut to a parallel universe

  [Wormhole-implementation]
      Notes on how wormholes are implemented

  [Wormhole-p]
      Predicate to determine if you are inside a [wormhole]

  [Wormhole-statusp]
      Predicate recognizing well-formed wormhole status object")
 (WORMHOLE-DATA
  (WORMHOLE)
  "Determines the wormhole data object from a wormhole status object

    General Form:  (wormhole-data whs)

  See [wormhole]. Returns the wormhole data from a well-formed wormhole
  status whs. If whs is nil or not well-formed, the data is nil.")
 (WORMHOLE-ENTRY-CODE
  (WORMHOLE)
  "Determines the wormhole entry code from a wormhole status object

    General Form:  (wormhole-entry-code whs)

  See [wormhole]. Returns :ENTER or :SKIP given a well-formed wormhole
  status whs. If whs is nil or not well-formed, the entry code is
  :ENTER.")
 (WORMHOLE-EVAL
  (WORMHOLE)
  "State-saving without state --- a short-cut to a parallel universe

    Example Form:
    (wormhole-eval 'demo
       '(lambda (whs)
          (set-wormhole-data whs
                             (cons (cons name info)
                                   (wormhole-data whs))))
       (prog2$ info name))

    General Form:
    (wormhole-eval name lambda varterm)

  where name must be a quoted wormhole name and lambda must be a quoted
  lambda-expression. The lambda-expression must have at most one
  formal parameter but the body of the lambda-expression may contain
  other variables. Note that in the example form given above, the
  lambda has one formal, whs, and uses name and info freely. Note
  that the lambda is quoted. The third argument of wormhole-eval,
  varterm, is an arbitrary term that should mention all of the free
  variables in the lambda-expression. That term establishes your
  ``right'' to refer to those free variables in the environment in
  which the wormhole-eval expression occurs. The value of varterm is
  irrelevant and if you provide nil ACL2 will automatically provide a
  suitable term, namely a prog2$ form like the one shown in the
  example above.

  Aside: Exception for ACL2(p) (see [parallelism]) to the irrelevance
  of varterm. By default, calls of wormhole-eval employ a lock,
  *wormhole-lock*. To avoid such a lock, include the symbol
  :NO-WORMHOLE-LOCK in varterm; for example, you might replace a last
  argument of nil in wormhole-eval by :NO-WORMHOLE-LOCK. End of
  Aside.

  See [wormhole] for a full explanation of wormholes. Most relevant
  here is that every wormhole has a name and a status. The status is
  generally a cons pair whose car is the keyword :ENTER or the
  keyword :SKIP and whose cdr is an arbitrary object used to store
  information from one wormhole call to the next.

  Here is a succinct summary of wormhole-eval. If the lambda-expression
  has a local variable, wormhole-eval applies the lambda-expression
  to the wormhole status of the named wormhole and remembers the
  value as the new wormhole status. If the lambda has no formal
  parameter, the lambda is applied to no arguments and the value is
  the new status. Wormhole-eval returns nil. Thus, the formal
  parameter of the lambda-expression, if provided, denotes the
  wormhole's hidden status information; the value of the lambda is
  the new status and is hidden away.

  The guard of a wormhole-eval call is the guard of the body of the
  lambda-expression, with a fresh variable symbol used in place of
  the formal so that no assumptions are possible about the hidden
  wormhole status. If the guard of a wormhole-eval is verified, the
  call is macroexpanded inline to the evaluation of the body in a
  suitable environment. Thus, it can be a very fast way to access and
  change hidden state information, but the results must remain
  hidden. To do arbitrary computations on the hidden state (i.e., to
  access the ACL2 [state] or logical [world] or to interact with the
  user) see [wormhole].

  Functions that are probably useful in the body of the [lambda] or the
  guard of a function using wormhole-eval include the following:
  [wormhole-statusp], [wormhole-entry-code], [wormhole-data],
  [set-wormhole-entry-code], [set-wormhole-data], and
  [make-wormhole-status].

  See [wormhole] for a series of example uses of wormhole-eval and
  wormhole.

  For a behind-the-scenes description of how wormholes work, See
  [wormhole-implementation].")
 (WORMHOLE-IMPLEMENTATION
  (WORMHOLE)
  "Notes on how wormholes are implemented

  What happens when you call [wormhole]? Recall that a typical call of
  the function looks like this:

    (wormhole 'name
              '(lambda (whs) ...)
              input
              form
              :ld-verbose ...
              ...)

  A brief recap of the advertised semantics for wormhole establishes
  our terminology: When the above wormhole is evaluated, the
  lambda-expression is applied to the wormhole's status and the
  result is stored as the new status. Then, if the entry-code of the
  new status is :ENTER, [ld] is invoked on a copy of the ``current
  state'' with the specified ld- ``special variables;'' output is
  directed to the comment window. In that copy of the state, the
  state-global variable wormhole-input is set to the value of input
  and the state-global variable wormhole-status is set to the (new)
  status computed by the lambda-expression. Thus, inside the
  wormhole, (@ wormhole-input) returns the list of inputs, (@
  wormhole-status) returns the current status, and (assign
  wormhole-status ...) sets the wormhole's status. The first form
  executed by the ld is the value of form and unless that form
  returns (value :q), causing the ld to quit, the ld proceeds to take
  subsequent input from the comment window. Upon exiting from ld, the
  wormhole state ``evaporates.'' The wormhole's status upon exit is
  remembered and restored the next time the wormhole is entered.

  Here is what really happens.

  Each wormhole's status is recorded in an alist stored in a Common
  Lisp global variable named *wormhole-status-alist*. This variable
  is not part of the ACL2 state. If you exit the ACL2 loop with :q
  you can inspect the value of *wormhole-status-alist*. When the
  lambda-expression is evaluated it is applied to the value
  associated with name in the alist and the result is stored back
  into that alist. This step is performed by [wormhole-eval]. To make
  things more efficient, wormhole-eval is just a macro that expands
  into a let that binds the lambda formal to the current status and
  whose body is the lambda body. Guard clauses are generated from the
  body, with one exception: the lambda formal is replaced by a new
  variable so that no prior assumptions are available about the value
  of the the wormhole status.

  If the newly computed status has an entry code of :ENTER [ld] will be
  invoked. But we don't really copy state, of course. Instead we will
  invoke ld on the live state, which is always available in the von
  Neumann world in which ACL2 is implemented. To give the illusion of
  copying state, we will undo changes to the state upon exiting. To
  support this, we do two things just before invoking ld: we bind a
  Common Lisp special variable is to t to record that ACL2 is in a
  wormhole, and we initialize an accumulator that will be used to
  record state changes made while in the wormhole.

  Then ld is invoked, with first argument, standard-oi, being set to
  (cons form *standard-oi*). According to the standard semantics of
  ld, this reads and evaluates form and then the forms in the
  specified channel. The standard channels are directed to and from
  the terminal, which is the physical realization of the comment
  window.

  All state modifying functions of ACL2 are sensitive to the special
  variable that indicates that evaluation is in a wormhole. Some ACL2
  state-modifying functions (e.g., those that modify the file system
  like [write-byte$]) are made to cause an error if invoked inside a
  wormhole on a file other than the terminal. Others, like
  f-put-global (the function behind such features as assign and
  maintenance of the ACL2 logical world by such events as [defun] and
  [defthm]) are made to record the old value of the state component
  being changed; these records are kept in the accumulator
  initialized above.

  Upon exit from ld for any reason, the final value of (@
  wormhole-status) is stored in *wormhole-status-alist* and then the
  accumulator is used to ``undo'' all the state changes.

  Wormhole always returns nil.")
 (WORMHOLE-P
  (WORMHOLE)
  "Predicate to determine if you are inside a [wormhole]

  See [wormhole] for a discussion of wormholes. (Wormhole-p state)
  returns (mv nil t state) when evaluated inside a wormhole, else (mv
  nil nil state).")
 (WORMHOLE-STATUSP
  (WORMHOLE)
  "Predicate recognizing well-formed wormhole status object

    General Form:  (wormhole-statusp whs)

  See [wormhole]. This predicate is useful in guards for wormholes. It
  checks whether whs is either nil or a cons whose car is :ENTER or
  :SKIP.")
 (WRITE-BYTE$ (POINTERS) "See [io].")
 (XARGS
  (DEFUN DECLARE)
  "Extra arguments, for example to give [hints] to [defun]

  Common Lisp's [defun] function does not easily allow one to pass
  extra arguments such as ``[hints]''. ACL2 therefore supports a
  peculiar new declaration (see [declare]) designed explicitly for
  passing additional arguments to [defun] via a keyword-like syntax.
  This declaration can also be used with [defmacro], but only for
  xargs keyword :GUARD; so we restrict attention below to use of
  xargs in [defun] [events].

  The following declaration is nonsensical but does illustrate all of
  the xargs keywords for [defun] (which are the members of the list
  *xargs-keywords*).

    (declare (xargs :guard (symbolp x)
                    :guard-debug t
                    :guard-hints ((\"Goal\" :in-theory (theory batch1)))
                    :hints ((\"Goal\" :in-theory (theory batch1)))
                    :measure (- i j)
                    :measure-debug t
                    :mode :logic
                    :non-executable t
                    :normalize nil
                    :otf-flg t
                    :ruler-extenders :basic
                    :split-types t
                    :stobjs ($s)
                    :verify-guards t
                    :well-founded-relation my-wfr))

    General Form:
    (xargs :key1 val1 ... :keyn valn)

  where the keywords and their respective values are as shown below.
  Note that once ``inside'' the xargs form, the ``extra arguments''
  to [defun] are passed exactly as though they were keyword
  arguments.

  :GUARD
  Value is a term involving only the formals of the function being
  defined. The actual [guard] used for the definition is the
  conjunction of all the [guard]s and types declared; see [declare].
  Note that if no :guard is specified explicitly, then a guard of t is
  assumed, as though one had declared (xargs :guard t). (Note that t
  is indeed a term involving only the formals; it specifies that the
  guard requiremeent is always met.) However, by default, a :[logic]
  mode function definition will not attempt to verify guards unless
  an expicit xargs :guard declaration is provided. For details on
  this point, as well as how to change that default behavior, see
  [set-verify-guards-eagerness].

  :GUARD-DEBUG
  Value: nil by default, else directs ACL2 to decorate each guard
  proof obligation with hypotheses indicating its sources. See
  [guard-debug].

  :GUARD-HINTS
  Value: hints (see [hints]), to be used during the [guard]
  verification proofs as opposed to the termination proofs of the
  [defun].

  :[hints]
  Value: hints (see [hints]), to be used during the termination proofs
  as opposed to the [guard] verification proofs of the [defun].

  :MEASURE
  Value is a term involving only the formals of the function being
  defined. This term indicates what is getting smaller in the
  recursion. The well-founded relation with which successive measures
  are compared is [o<] by default, but can be changed using the
  :well-founded-relation keyword or with the
  [set-well-founded-relation] event. Also allowed is a special case,
  (:? v1 ... vk), where (v1 ... vk) enumerates a subset of the formal
  parameters such that some valid measure involves only those formal
  parameters. However, this special case is only allowed for
  definitions that are redundant (see [redundant-events]) or are
  executed when skipping proofs (see [skip-proofs]). Another special
  case is :MEASURE nil, which is treated the same as if :MEASURE is
  omitted.

  :MEASURE-DEBUG
  Value: nil by default, else directs ACL2 to decorate each
  termination proof obligation with hypotheses indicating its
  sources. See [measure-debug].

  :MODE
  Value is :[program] or :[logic], indicating the [defun] mode of the
  function introduced. See [defun-mode]. If unspecified, the [defun]
  mode defaults to the default [defun] mode of the current [world].
  To convert a function from :[program] mode to :[logic] mode, see
  [verify-termination].

  :NON-EXECUTABLE
  Value is normally t or nil (the default). Rather than stating
  :non-executable t directly, which requires :[logic] mode and that
  the definitional body has a certain form, we suggest using the
  macro defun-nx or defund-nx; see [defun-nx]. A third value of
  :non-executable for advanced users is :program, which is generated
  by expansion of defproxy forms; see [defproxy]. For another way to
  deal with non-executability, see [non-exec].

  :NORMALIZE
  Value is a flag telling [defun] whether to propagate [if] tests
  upward, as well as potentially performing some simplification with
  [type-set] reasoning and expanding calls of a few built-in
  functions. Since the default is to do such ``normalization'', the
  value supplied is only of interest when it is nil. (See [defun]).

  :[otf-flg]
  Value is a flag indicating ``onward through the fog'' (see
  [otf-flg]). It applies to the [guard] verification, as it is
  effectively t during the termination proof.

  :RULER-EXTENDERS
  For recursive definitions (possibly mutually recursive), value
  controls termination analysis and the resulting stored induction
  scheme. See [ruler-extenders] for a discussion of legal values and
  their effects.

  :SPLIT-TYPES
  Value is t or nil, indicating whether or not [type]s are to be
  proved from the [guard]s. The default is nil, indicating that type
  declarations (see [declare]) contribute to the [guard]s. If the
  value is t, then instead, the expressions corresponding to the type
  declarations (see [type-spec]) are conjoined into a ``split-type
  expression,'' and guard verification insists that this term is
  implied by the specified :guard. Suppose for example that a
  definition has the following [declare] form.

    (declare (xargs :guard (p x y) :split-types t)
             (type integer x)
             (type (satisfies good-bar-p) y))

  Then for guard verification, (p x y) is assumed, and in addition to
  the usual proof obligations derived from the body of the
  definition, guard verification requires a proof that (p x y)
  implies both (integerp x) and (good-bar-p y). See community book
  demos/split-types-examples.lisp for small examples.

  :STOBJS
  Value is either a single [stobj] name or a true list of stobj names
  (see [stobj] and see [defstobj], and perhaps see [defabsstobj]).
  Every stobj name among the formals of the function must be listed,
  if the corresponding actual is to be treated as a stobj. That is,
  if a function uses a stobj name as a formal parameter but the name
  is not declared among the :stobjs then the corresponding argument
  is treated as ordinary. The only exception to this rule is [state]:
  whether you include it or not, state is always treated as a
  single-threaded object. This declaration has two effects. One is to
  enforce the syntactic restrictions on single-threaded objects. The
  other is to strengthen the [guard] of the function being defined so
  that it includes conjuncts specifying that each declared
  single-threaded object argument satisfies the recognizer for the
  corresponding single-threaded object.

  :[verify-guards]
  Value is t or nil, indicating whether or not [guard]s are to be
  verified upon completion of the termination proof. This flag should
  only be t if the :mode is unspecified but the default [defun] mode
  is :[logic], or else the :mode is :[logic].

  :[well-founded-relation]
  Value is a function symbol that is known to be a well-founded
  relation in the sense that a rule of class :[well-founded-relation]
  has been proved about it. The effect is to replace the default
  well-founded relation, which is typically [o<], by the specified
  value. See [well-founded-relation] and see
  [set-well-founded-relation] for further discussion, including how
  to change the default well-founded-relation.


Subtopics

  [Guard]
      Restricting the domain of a function

  [Otf-flg]
      Allow more than one initial subgoal to be pushed for induction")
 (XOR
  (BASICS ACL2-BUILT-INS)
  "Logical ``exclusive or''

  Xor is the ACL2 exclusive-or function. (xor P Q) means that either P
  or Q, but not both, is false (i.e., nil).

  Function: <xor>

    (defun xor (p q)
           (declare (xargs :guard t))
           (if p (if q nil t) (if q t nil)))")
 (YOU_MUST_THINK_ABOUT_THE_USE_OF_A_FORMULA_AS_A_RULE
  (PAGES_WRITTEN_ESPECIALLY_FOR_THE_TOURS)
  "You Must Think about the Use of a Formula as a Rule

  [{IMAGE}]

  This is good and bad.

  The good news is that you can program ACL2's simplifier.

  The bad news is that when you command ACL2 to prove a theorem you
  must give some thought to how that theorem is to be used as a rule!

  For example, if after proving associativity-of-app as previously
  shown, you engaged in the mathematically trivial act of proving it
  again but with the equality reversed, you would have programmed
  ACL2's rewriter to loop forever.

  You can avoid adding any rule by using the command:

    (defthm associativity-of-app
      (equal (app (app a b) c)
             (app a (app b c)))
      :rule-classes nil)

  [{IMAGE}]")
 (ZERO-TEST-IDIOMS
  (NUMBERS)
  "How to test for 0

  Below are six commonly used idioms for testing whether x is 0. [Zip]
  and [zp] are the preferred termination tests for recursions down
  the integers and naturals, respectively.

    idiom       logical              guard                 primary
                meaning                                 compiled code*

    (equal x 0) (equal x 0)          t                   (equal x 0)

    (eql x 0)   (equal x 0)          t                   (eql x 0)

    (zerop x)   (equal x 0)          x is a number       (= x 0)

    (= x 0)     (equal x 0)          x is a number       (= x 0)

    (zip x)     (equal (ifix x) 0)   x is an integer     (= x 0)

    (zp x)      (equal (nfix x) 0)   x is a natural      (int= x 0)

    (zpf x)     (equal (nfix x) 0)   x is a fixnum >= 0  (eql (the-fixnum x) 0)

  *See [guards-and-evaluation], especially the subsection titled
  ``Guards and evaluation V: efficiency issues''. Primary code is
  relevant only if [guard]s are verified. The ``compiled code'' shown
  is only suggestive.

  The first four idioms all have the same logical meaning and differ
  only with respect to their executability and efficiency. In the
  absence of compiler optimizing, (= x 0) is probably the most
  efficient, (equal x 0) is probably the least efficient, and (eql x
  0) is in between. However, an optimizing compiler could always
  choose to compile (equal x 0) as (eql x 0) and, in situations where
  x is known at compile-time to be numeric, (eql x 0) as (= x 0). So
  efficiency considerations must, of course, be made in the context
  of the host compiler.

  Note also that (zerop x) and (= x 0) are indistinguishable. They have
  the same meaning and the same [guard], and can reasonably be
  expected to generate equally efficient code.

  Note that (zip x) and (zp x) do not have the same logical meanings as
  the others or each other. They are not simple tests for equality to
  0. They each coerce x into a restricted domain, [zip] to the
  integers and [zp] to the natural numbers, choosing 0 for x when x
  is outside the domain. Thus, 1/2, #c(1 3), and 'abc, for example,
  are all ``recognized'' as zero by both [zip] and [zp]. But [zip]
  reports that -1 is different from 0 while [zp] reports that -1
  ``is'' 0. More precisely, (zip -1) is nil while (zp -1) is t.

  Note that the last five idioms all have [guard]s that restrict their
  Common Lisp executability. If these last five are used in
  situations in which [guard]s are to be verified, then proof
  obligations are incurred as the price of using them. If guard
  verification is not involved in your project, then the first five
  can be thought of as synonymous.

  [Zip] and [zp] are not provided by Common Lisp but are ACL2-specific
  functions. Why does ACL2 provide these functions? The answer has to
  do with the admission of recursively defined functions and
  efficiency. [Zp] is provided as the zero-test in situations where
  the controlling formal parameter is understood to be a natural
  number. [Zip] is analogously provided for the integer case. We
  illustrate below.

  Here is an admissible definition of factorial

    (defun fact (n) (if (zp n) 1 (* n (fact (1- n)))))

  Observe the classic recursion scheme: a test against 0 and recursion
  by [1-]. Note however that the test against 0 is expressed with the
  [zp] idiom. Note also the absence of a [guard] making explicit our
  intention that n is a natural number.

  This definition of factorial is readily admitted because when (zp n)

  is false (i.e., nil) then n is a natural number other than 0 and so
  (1- n) is less than n. The base case, where (zp n) is true, handles
  all the ``unexpected'' inputs, such as arise with (fact -1) and
  (fact 'abc). When calls of fact are evaluated, (zp n) checks
  (integerp n) and (> n 0). [Guard] verification is unsuccessful for
  this definition of fact because [zp] requires its argument to be a
  natural number and there is no [guard] on fact, above. Thus the
  primary raw lisp for fact is inaccessible and only the :[logic]
  definition (which does runtime ``type'' checking) is used in
  computation. In summary, this definition of factorial is easily
  admitted and easily manipulated by the prover but is not executed
  as efficiently as it could be.

  Runtime efficiency can be improved by adding a [guard] to the
  definition.

    (defun fact (n)
      (declare (xargs :guard (and (integerp n) (>= n 0))))
      (if (zp n) 1 (* n (fact (1- n)))))

  This [guard]ed definition has the same termination conditions as
  before -- termination is not sensitive to the [guard]. But the
  [guard]s can be verified. This makes the primary raw lisp
  definition accessible during execution. In that definition, the (zp
  n) above is compiled as (= n 0), because n will always be a natural
  number when the primary code is executed. Thus, by adding a [guard]
  and verifying it, the elegant and easily used definition of
  factorial is also efficiently executed on natural numbers.

  Now let us consider an alternative definition of factorial in which
  (= n 0) is used in place of (zp n).

    (defun fact (n) (if (= n 0) 1 (* n (fact (1- n)))))

  This definition does not terminate. For example (fact -1) gives rise
  to a call of (fact -2), etc. Hence, this alternative is
  inadmissible. A plausible response is the addition of a [guard]
  restricting n to the naturals:

    (defun fact (n)
     (declare (xargs :guard (and (integerp n) (>= n 0))))
     (if (= n 0) 1 (* n (fact (1- n)))))

  But because the termination argument is not sensitive to the [guard],
  it is still impossible to admit this definition. To influence the
  termination argument one must change the conditions tested. Adding
  a runtime test that n is a natural number would suffice and allow
  both admission and [guard] verification. But such a test would slow
  down the execution of the compiled function.

  The use of (zp n) as the test avoids this dilemma. [Zp] provides the
  logical equivalent of a runtime test that n is a natural number but
  the execution efficiency of a direct [=] comparison with 0, at the
  expense of a [guard] conjecture to prove. In addition, if [guard]
  verification and most-efficient execution are not needed, then the
  use of (zp n) allows the admission of the function without a
  [guard] or other extraneous verbiage.

  While general rules are made to be broken, it is probably a good idea
  to get into the habit of using (zp n) as your terminating ``0
  test'' idiom when recursing down the natural numbers. It provides
  the logical power of testing that n is a non-0 natural number and
  allows efficient execution.

  We now turn to the analogous function, [zip]. [Zip] is the preferred
  0-test idiom when recursing through the integers toward 0. [Zip]
  considers any non-integer to be 0 and otherwise just recognizes 0.
  A typical use of [zip] is in the definition of [integer-length],
  shown below. (ACL2 can actually accept this definition, but only
  after appropriate lemmas have been proved.)

    (defun integer-length (i)
      (declare (xargs :guard (integerp i)))
      (if (zip i)
          0
        (if (= i -1)
          0
          (+ 1 (integer-length (floor i 2))))))

  Observe that the function recurses by (floor i 2). Hence, calling the
  function on 25 causes calls on 12, 6, 3, 1, and 0, while calling it
  on -25 generates calls on -13, -7, -4, -2, and -1. By making (zip
  i) the first test, we terminate the recursion immediately on
  non-integers. The [guard], if present, can be verified and allows
  the primary raw lisp definition to check (= i 0) as the first
  terminating condition (because the primary code is executed only on
  integers).")
 (ZEROP
  (NUMBERS ACL2-BUILT-INS)
  "Test an acl2-number against 0

  (zerop x) is t if x is 0 and is nil otherwise. Thus, it is logically
  equivalent to (equal x 0).

  (Zerop x) has a [guard] requiring x to be numeric and can be expected
  to execute more efficiently than (equal x 0) in properly [guard]ed
  compiled code.

  In recursions down the natural numbers, (zp x) is preferred over
  (zerop x) because the former coerces x to a natural and allows the
  termination proof. In recursions through the integers, (zip x) is
  preferred. See [zero-test-idioms].

  Zerop is a Common Lisp function. See any Common Lisp documentation
  for more information.

  Function: <zerop>

    (defun zerop (x)
           (declare (xargs :guard (acl2-numberp x)))
           (eql x 0))")
 (ZIP
  (NUMBERS ACL2-BUILT-INS)
  "Testing an ``integer'' against 0

  (Zip i) is logically equivalent to (equal (ifix i) 0) and is the
  preferred termination test for recursion through the integers. (Zip
  i) returns t if i is 0 or not an integer; it returns nil otherwise.
  Thus,

    i         (zip i)
    3         nil
    0         t
    -2        nil
    5/2       t
    #c(1 3)   t
    'abc      t

  (Zip i) has a [guard] requiring i to be an integer.

  For a discussion of the various idioms for testing against 0, see
  [zero-test-idioms].

  Zip is typically used as the termination test in recursions through
  the integers. It has the advantage of ``coercing'' its argument to
  an integer and hence allows the definition to be admitted without
  an explicit type check in the body. [Guard] verification allows zip
  to be compiled as a direct [=]-comparision with 0.

  Function: <zip>

    (defun zip (x)
           (declare (xargs :guard (integerp x)))
           (if (integerp x) (= x 0) t))")
 (ZP
  (NUMBERS ACL2-BUILT-INS)
  "Testing a ``natural'' against 0

  (Zp n) is logically equivalent to (equal (nfix n) 0) and is the
  preferred termination test for recursion down the natural numbers.
  (Zp n) returns t if n is 0 or not a natural number; it returns nil
  otherwise. Thus, in the ACL2 logic (ignoring the issue of
  [guard]s):

     n       (zp n)
    3         nil
    0         t
    -1        t
    5/2       t
    #c(1 3)   t
    'abc      t

  (Zp n) has a [guard] requiring n to be a natural number.

  For a discussion of the various idioms for testing against 0, see
  [zero-test-idioms].

  Zp is typically used as the termination test in recursions down the
  natural numbers. It has the advantage of ``coercing'' its argument
  to a natural and hence allows the definition to be admitted without
  an explicit type check in the body. [Guard] verification allows zp
  to be compiled as a direct [=]-comparision with 0.

  Function: <zp>

    (defun zp (x)
           (declare (xargs :guard (and (integerp x) (<= 0 x))))
           (if (integerp x) (<= x 0) t))")
 (ZPF
  (NUMBERS ACL2-BUILT-INS)
  "Testing a nonnegative fixnum against 0

  Zpf is exactly the same as [zp], except that zpf is intended for, and
  faster for, fixnum arguments. Its guard is specified with a type
  declaration, (type (unsigned-byte 29) x). (See [declare] and see
  [type-spec].) Also see [zp].

  Function: <zpf>

    (defun zpf (x)
           (declare (type (unsigned-byte 29) x))
           (if (integerp x) (<= x 0) t))")
 (ACL2-PC::=
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) attempt an equality (or equivalence) substitution

    Examples:
    =     -- replace the current subterm by a term equated to it in
             one of the hypotheses (if such a term exists)
    (= x) -- replace the current subterm by x, assuming that the prover
             can show that they are equal
    (= (+ x y) z)
          -- replace the term (+ x y) by the term z inside the current
             subterm, assuming that the prover can prove
             (equal (+ x y) z) from the current top-level hypotheses
             or that this term or (equal z (+ x y)) is among the
             current top-level hypotheses or the current governors
    (= & z)
          -- exactly the same as above, if (+ x y) is the current
             subterm
    (= (+ x y) z :hints :none)
          -- same as (= (+ x y) z), except that a new subgoal is
             created with the current goal's hypotheses and governors
             as its top-level hypotheses and (equal (+ x y) z) as its
             conclusion
    (= (+ x y) z 0)
          -- exactly the same as immediately above
    (= (p x)
       (p y)
       :equiv iff
       :otf-flg t
       :hints ((\"Subgoal 2\" :BY FOO) (\"Subgoal 1\" :use bar)))
          -- same as (= (+ x y) z), except that the prover uses
             the indicated values for otf-flg and hints, and only
             propositional (iff) equivalence is used (however, it
             must be that only propositional equivalence matters at
             the current subterm)

    General Form:
    (= &optional x y &rest keyword-args)

  If terms x and y are supplied, then replace x by y inside the current
  subterm if they are ``known'' to be ``equal''. Here ``known'' means
  the following: the prover is called as in the prove command (using
  keyword-args) to prove (equal x y), except that a keyword argument
  :equiv is allowed, in which case (equiv x y) is proved instead,
  where equiv is that argument. (See below for how governors are
  handled.)

  Actually, keyword-args is either a single non-keyword or is a list of
  the form ((kw-1 x-1) ... (kw-n x-n)), where each kw-i is one of the
  keywords :equiv, :otf-flg, :hints. Here :equiv defaults to equal if
  the argument is not supplied or is nil, and otherwise should be the
  name of an ACL2 equivalence relation. :Otf-flg and :hints give
  directives to the prover, as explained above; also see
  [ACL2-pc::prove]. However, no prover call is made if :hints is a
  non-nil atom or if keyword-args is a single non-keyword (more on
  this below).

  Remarks on defaults

  (1) If there is only one argument, say a, then x defaults to the
  current subterm, in the sense that x is taken to be the current
  subterm and y is taken to be a.

  (2) If there are at least two arguments, then x may be the symbol &,
  which then represents the current subterm. Thus, (= a) is
  equivalent to (= & a). (Obscure point: actually, & can be in any
  package, except the keyword package.)

  (3) If there are no arguments, then we look for a top-level
  hypothesis or a governor of the form (equal c u) or (equal u c),
  where c is the current subterm. In that case we replace the current
  subterm by u.

  As with the prove command, we allow goals to be given ``bye''s in the
  proof, which may be generated by a :hints keyword argument in
  keyword-args. These result in the creation of new subgoals.

  A proof is attempted unless the :hints argument is a non-nil atom
  other than :none, or unless there is one element of keyword-args
  and it is not a keyword. In that case, if there are any hypotheses
  in the current goal, then what is attempted is a proof of the
  implication whose antecedent is the conjunction of the current
  hypotheses and governors and whose conclusion is the appropriate
  equal term.

  Remarks: (1) It is allowed to use abbreviations in the hints. (2) The
  keyword :none has the special role as a value of :hints that is
  shown clearly in an example above. (3) If there are governors, then
  the new subgoal has as additional hypotheses the current governors.")
 (ACL2-PC::ACL2-WRAP
  (PROOF-CHECKER-COMMANDS)
  "(macro) same as (lisp x)

    Example:
    (acl2-wrap (pe :here))

    General Form:
    (acl2-wrap form)

  Same as (lisp form). This is provided for interface tools that want
  to be able to execute the same form in raw Lisp, in the
  proof-checker, or in the ACL2 top-level loop (lp).")
 (ACL2-PC::ADD-ABBREVIATION
  (PROOF-CHECKER-COMMANDS)
  "(primitive) add an abbreviation

  Example: (add-abbreviation v (* x y)) causes future occurrences of (*
  x y) to be printed as (? v), until (unless) a corresponding
  invocation of remove-abbreviations occurs. In this case we say that
  v ``abbreviates'' (* x y).

    General Form:
    (add-abbreviation var &optional raw-term)

  Let var be an abbreviation for raw-term, if raw-term is supplied,
  else for the current subterm. Note that var must be a variable that
  does not already abbreviate some term.

  A way to think of abbreviations is as follows. Imagine that whenever
  an abbreviation is added, say v abbreviates expr, an entry
  associating v to expr is made in an association list, which we will
  call ``*abbreviations-alist*''. Then simply imagine that ? is a
  function defined by something like:

    (defun ? (v)
      (let ((pair (assoc v *abbreviations-alist*)))
        (if pair (cdr pair)
          (error ...))))

  Of course the implementation isn't exactly like that, since the
  ``constant'' *abbreviations-alist* actually changes each time an
  add-abbreviation instruction is successfully invoked. Nevertheless,
  if one imagines an appropriate redefinition of the ``constant''
  *abbreviations-alist* each time an add-abbreviation is invoked,
  then one will have a clear model of the meaning of such an
  instruction.

  The effect of abbreviations on output is that before printing a term,
  each subterm that is abbreviated by a variable v is first replaced
  by (? v).

  The effect of abbreviations on input is that every built-in
  proof-checker command accepts abbreviations wherever a term is
  expected as an argument, i.e., accepts the syntax (? v) whenever v
  abbreviates a term. For example, the second argument of
  add-abbreviation may itself use abbreviations that have been
  defined by previous add-abbreviation instructions.

  See also [ACL2-pc::remove-abbreviations] and see
  [ACL2-pc::show-abbreviations].")
 (ACL2-PC::AL
  (PROOF-CHECKER-COMMANDS)
  "(macro) same as apply-linear

    Example:
    (al 3)

  See [ACL2-pc::apply-linear], as al and apply-linear are identical.")
 (ACL2-PC::APPLY-LINEAR
  (PROOF-CHECKER-COMMANDS)
  "(primitive) apply a linear rule

    Examples:
    (apply-linear foo)
       -- apply the linear rule `foo'
    (apply-linear (:linear foo))
       -- same as above
    (apply-linear 2)
       -- apply the second linear rule, as displayed by show-linears
    rewrite
       -- apply the first rewrite rule, as displayed by show-rewrites
    (apply-linear foo ((y 7)))
       -- apply the linear rule foo with the substitution
          that associates 7 to the ``free variable'' y
    (apply-linear foo ((x 2) (y 3)) t)
       -- apply the linear rule foo by substituting 2 and 3 for free
          variables x and y, respectively, and also binding all other
          free variables possible by using the current context
          (hypotheses and governors)

    General Form:
    (apply-linear &optional rule-id substitution instantiate-free)

  Add a new top-level hypothesis by applying a [linear] rule to the
  current subterm. The new hypothesis will be created according to
  the information provided by the show-linears (sls) command.

  A short name for this command is al.

  We assume familiarity with the [proof-checker]'s rewrite (r) command
  (see [ACL2-pc::rewrite]). In brief, the apply-linear command is an
  analogue of the rewrite command, but for [linear] rules in place of
  [rewrite] rules. There is a significant difference: for the
  apply-linear command, instead of rewriting the current subterm as
  is done by the rewrite command, the conclusion of the applicable
  linear rule, suitably instantiated, is added as a new (and last)
  top-level hypothesis of the goal. There is another significant
  difference: the automatic application of [linear] rules in the
  theorem prover is somewhat more complex than the automatic
  application of [rewrite] rules, so the apply-linear command may not
  correspond as closely to the prover's automatic use of a linear
  rule as the rewrite command corresponds to the prover's automatic
  use of a rewrite rule.

  Below, we refer freely to the [documentation] for the proof-checker's
  rewrite command (see [ACL2-pc::rewrite]).

  The rule-id is treated just as it is by the rewrite command. If
  rule-id is a positive integer n, then the nth rule as displayed by
  show-linears is the one that is applied. If rule-id is nil or is
  not supplied, then it is treated as the number 1. Otherwise,
  rule-id should be either a symbol or else a :linear [rune]. If a
  symbol is supplied, then any [linear] rule of that name may be
  used.

  Consider the following example. Suppose that the current subterm is
  (< (g (h y)) y) and that foo is the name of the following linear
  rule.

    (implies (true-listp x)
             (< (g x) 15))

  Then the instruction (apply-linear foo) applies foo by adding a new
  hypothesis (< (g (h y)) 15). In addition, a new goal with
  conclusion (true-listp y) is created unless the current context
  (top-level hypotheses and governors) implies (true-listp y) using
  only ``trivial reasoning'', just as for the rewrite command.

  If the rule-id argument is a number or is not supplied, then the
  system will store an instruction of the form (apply-linear name
  ...), where name is the name of a [linear] rule; this is in order
  to make it easier to replay instructions when there have been
  changes to the history. Except: instead of the name (whether the
  name is supplied or calculated), the system stores the [rune] if
  there is any chance of ambiguity. (Formally, ``ambiguity'' here
  means that the rune being applied is of the form (:rewrite name .
  index), where index is not nil.)

  Speaking in general, then, an apply-linear instruction works as
  follows.

  First, a [linear] rule is selected according to the arguments of the
  instruction. The selection is made as explained under ``General
  Form'' above.

  Next, a trigger term of the rule (see [linear]) is matched with the
  current subterm, i.e., a substitution unify-subst is found such
  that if one instantiates that trigger term of the rule with
  unify-subst, then one obtains the current subterm. If this match
  fails, then the instruction fails.

  Next, an attempt is made to relieve (discharge) the hypotheses,
  possibly handling free variables (see [free-variables]), exactly as
  is done with hypotheses when applying the [proof-checker] command,
  rewrite (r).

  Finally, the instruction is applied exactly as the rewrite
  instruction is applied, except instead of replacing the current
  subterm, the rule's instantiated conclusion is added to the end of
  the list of top-level hypotheses of the goal.

  Note that as for the rewrite command, the substitution argument
  should be a list whose elements have the form (variable term),
  where term may contain abbreviations.")
 (ACL2-PC::BASH
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) call the ACL2 theorem prover's simplifier

    Examples:
    bash -- attempt to prove the current goal by simplification alone
    (bash (\"Subgoal 2\" :by foo) (\"Subgoal 1\" :use bar))
         -- attempt to prove the current goal by simplification alone,
            with the indicated hints

    General Form:
    (bash &rest hints)

  Call the theorem prover's simplifier, creating a subgoal for each
  resulting goal.

  Notice that unlike prove, the arguments to bash are spread out, and
  are all hints.

  Bash is similar to reduce in that neither of these allows induction.
  But bash only allows simplification, while reduce allows processes
  eliminate-destructors, fertilize, generalize, and
  eliminate-irrelevance.

  Remark: All forcing rounds will be skipped (unless there are more
  than 15 subgoals generated in the first forcing round, an injustice
  that should be rectified, but might remain unless there is pressure
  to fix it).")
 (ACL2-PC::BDD
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) prove the current goal using bdds

    Examples:
    bdd
    (bdd :vars nil :bdd-constructors (cons) :prove t :literal :all)

  The general form is as shown in the latter example above, but with
  any keyword-value pairs omitted and with values as described for
  the :[bdd] hint; see [hints].

  This command simply calls the theorem prover with the indicated bdd
  hint for the top-level goal. Note that if :prove is t (the
  default), then the proof will succeed entirely using bdds or else
  it will fail immediately. See [bdd].")
 (ACL2-PC::BK
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) move backward one argument in the enclosing term

    Example and General Form:
    bk

  For example, if the conclusion is (= x (* (- y) z)) and the current
  subterm is (* (- y) z), then after executing bk, the current
  subterm will be x.

  Move to the previous argument of the enclosing term.

  This is the same as up followed by (dive n-1), where n is the
  position of the current subterm in its parent term in the
  conclusion. Thus in particular, the nx command fails if one is
  already at the top of the conclusion.

  Also see [ACL2-pc::up], [ACL2-pc::dive], [ACL2-pc::top], and
  [ACL2-pc::nx].")
 (ACL2-PC::BOOKMARK
  (PROOF-CHECKER-COMMANDS)
  "(macro) insert matching ``bookends'' comments

    Example:
    (bookmark final-goal)

    General Form:
    (bookmark name &rest instruction-list)

  Run the instructions in instruction-list (as though this were a call
  of do-all; see [ACL2-pc::do-all]), but first insert a begin bookend
  with the given name and then, when the instructions have been
  completed, insert an end bookend with that same name. See
  [ACL2-pc::comm] for an explanation of bookends and how they can
  affect the display of instructions.")
 (ACL2-PC::CASESPLIT
  (PROOF-CHECKER-COMMANDS)
  "(primitive) split into two cases

    Example:
    (casesplit (< x y)) -- assuming that we are at the top of the
                           conclusion, add (< x y) as a new top-level
                           hypothesis in the current goal, and create a
                           subgoal identical to the current goal except
                           that it has (not (< x y)) as a new top-level
                           hypothesis

    General Form:
    (casesplit expr &optional use-hyps-flag do-not-flatten-flag)

  When the current subterm is the entire conclusion, this instruction
  adds expr as a new top-level hypothesis, and create a subgoal
  identical to the existing current goal except that it has the
  negation of expr as a new top-level hypothesis. Also see
  [ACL2-pc::claim]. The optional arguments control the use of
  governors and the ``flattening'' of new hypotheses, as we now
  explain.

  The argument use-hyps-flag is only of interest when there are
  governors. (To read about governors, see [ACL2-pc::hyps]). In that
  case, if use-hyps-flag is not supplied or is nil, then the
  description above is correct; but otherwise, it is not expr but
  rather it is (implies govs expr) that is added as a new top-level
  hypothesis (and whose negation is added as a top-level hypothesis
  for the new goal), where govs is the conjunction of the governors.

  If do-not-flatten-flag is supplied and not nil, then that is all
  there is to this command. Otherwise (thus this is the default),
  when the claimed term (first argument) is a conjunction (and) of
  terms and the claim instruction succeeds, then each (nested)
  conjunct of the claimed term is added as a separate new top-level
  hypothesis. Consider the following example, assuming there are no
  governors.

    (casesplit (and (and (< x y) (integerp a)) (equal r s)) t)

  Three new top-level hypotheses are added to the current goal, namely
  (< x y), (integerp a), and (equal r s). In that case, only one
  hypothesis is added to create the new goal, namely the negation of
  (and (< x y) (integerp a) (equal r s)). If the negation of this
  term had been claimed, then it would be the other way around: the
  current goal would get a single new hypothesis while the new goal
  would be created by adding three hypotheses.

  Remark: It is allowed to use abbreviations in the hints.")
 (ACL2-PC::CG
  (PROOF-CHECKER-COMMANDS)
  "(macro) change to another goal.

    Examples:
    (cg (main . 1)) -- change to the goal (main . 1)
    cg              -- change to the next-to-top goal

    General Form:
    (CG &OPTIONAL goal-name)

  Same as (change-goal goal-name t), i.e. change to the indicated and
  move the current goal to the end of the goal stack.")
 (ACL2-PC::CHANGE-GOAL
  (PROOF-CHECKER-COMMANDS)
  "(primitive) change to another goal.

    Examples:
    (change-goal (main . 1)) -- change to the goal (main . 1)
    change-goal              -- change to the next-to-top goal

    General Form:
    (change-goal &optional goal-name end-flg)

  Change to the goal with the name goal-name, i.e. make it the current
  goal. However, if goal-name is nil or is not supplied, then it
  defaults to the next-to-top goal, i.e., the second goal in the
  stack of goals. If end-flg is supplied and not nil, then move the
  current goal to the end of the goal stack; else merely swap it with
  the next-to-top goal. Also see [ACL2-pc::cg].")
 (ACL2-PC::CL-PROC
  (PROOF-CHECKER-COMMANDS)
  "(macro) same as clause-processor

  This is simply an abbreviation for [ACL2-pc::clause-processor].")
 (ACL2-PC::CLAIM
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) add a new hypothesis

    Examples:
    (claim (< x y))   -- attempt to prove (< x y) from the current
                         top-level hypotheses and if successful, then
                         add (< x y) as a new top-level hypothesis in
                         the current goal
    (claim (< x y)
           :otf-flg t
           :hints ((\"Goal\" :induct t)))
                      -- as above, but call the prover using the
                         indicated values for the otf-flg and hints
    (claim (< x y) 0) -- as above, except instead of attempting to
                         prove (< x y), create a new subgoal with the
                         same top-level hypotheses as the current goal
                         that has (< x y) as its conclusion
    (claim (< x y) :hints :none)
                      -- same as immediately above

    General Form:
    (claim expr &rest rest-args)

  This command creates a new subgoal with the same top-level hypotheses
  as the current goal but with a conclusion of expr. If rest-args is
  a non-empty list headed by a non-keyword, then there will be no
  proof attempted for the new subgoal. With that possible exception,
  rest-args should consist of keyword arguments. The keyword argument
  :do-not-flatten controls the ``flattening'' of new hypotheses, just
  as with the casesplit command (see [ACL2-pc::casesplit]). The
  remaining rest-args are used with a call the prove command on the
  new subgoal, except that if :hints is a non-nil atom, then the
  prover is not called --- rather, this is the same as the situation
  described above, where rest-args is a non-empty list headed by a
  non-keyword.

  Remarks: (1) Unlike the casesplit command, the claim command is
  completely insensitive to governors. (2) It is allowed to use
  abbreviations in the hints. (3) The keyword :none has the special
  role as a value of :hints that is shown clearly in an example
  above.")
 (ACL2-PC::CLAUSE-PROCESSOR
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) use a clause-processor

    Example:
    (cl-proc :function
             note-fact-clause-processor
            :hint '(equal a a)) -- Invoke the indicated clause processor function
            with the indicated hint argument (see the beginning of community book
            books/clause-processors/basic-examples.lisp.

    General Form:
    (cl-proc &rest cl-proc-args)

  Invoke a clause-processor as indicated by cl-proc-args, which is a
  list of arguments that can serve as the value of a
  :[clause-processor] hint; see [hints].

  This command calls the prove command, and hence should only be used
  at the top of the conclusion.")
 (ACL2-PC::COMM
  (PROOF-CHECKER-COMMANDS)
  "(macro) display instructions from the current interactive session

    Examples:
    comm
    (comm 10)

    General Form:
    (comm &optional n)

  Prints out instructions in reverse order. This is actually the same
  as (commands n t) --- or, (commands nil t) if n is not supplied. As
  for commands (see [ACL2-pc::commands]), the final argument of t
  causes suppression of instructions occurring between so-called
  ``matching bookends,'' which we now explain.

  A ``begin bookend'' is an instruction of the form

    (COMMENT :BEGIN x . y).

  Similarly, an ``end bookend'' is an instruction of the form

    (COMMENT :END x' . y').

  The ``name'' of the first bookend is x and the ``name'' of the second
  bookend is x'. When such a pair of instructions occurs in the
  current state-stack, we call them ``matching bookends'' provided
  that they have the same name (i.e. x equals x') and if no other
  begin or end bookend with name x occurs between them. The idea now
  is that comm hides matching bookends together with the instructions
  they enclose. Here is a more precise explanation of this
  ``hiding''; probably there is no value in reading on!

  A comm instruction hides bookends in the following manner. (So does a
  comment instruction when its second optional argument is supplied
  and non-nil.) First, if the first argument n is supplied and not
  nil, then we consider only the last n instructions from the
  state-stack; otherwise, we consider them all. Now the resulting
  list of instructions is replaced by the result of applying the
  following process to each pair of matching bookends: the pair is
  removed, together with everything in between the begin and end
  bookend of the pair, and all this is replaced by the
  ``instruction''

    (\"***HIDING***\" :COMMENT :BEGIN name ...)

  where (comment begin name ...) is the begin bookend of the pair.
  Finally, after applying this process to each pair of matching
  bookends, each begin bookend of the form (comment begin name ...)
  that remains is replaced by

    (\"***UNFINISHED***\" :COMMENT :BEGIN name ...) .")
 (ACL2-PC::COMMANDS
  (PROOF-CHECKER-COMMANDS)
  "(macro) display instructions from the current interactive session

    Examples:
    commands
    (commands 10 t)

    General Forms:

    commands or (commands nil)
    Print out all the instructions (in the current state-stack) in
    reverse order, i.e. from the most recent instruction to the starting
    instruction.

    (commands n) [n a positive integer]
    Print out the most recent n instructions (in the current
    state-stack), in reverse order.

    (commands x abbreviate-flag)
    Same as above, but if abbreviate-flag is non-NIL, then do not
    display commands between ``matching bookends''.  See documentation
    for comm for an explanation of matching bookends.

  Remark: If there are more than n instructions in the state-stack,
  then (commands n) is the same as commands (and also, (commands n
  abb) is the same as (commands nil abb)).")
 (ACL2-PC::COMMENT
  (PROOF-CHECKER-COMMANDS)
  "(primitive) insert a comment

    Example:
    (comment now begin difficult final goal)

    General Form:
    (comment &rest x)

  This instruction makes no change in the state except to insert the
  comment instruction.

  Some comments can be used to improve the display of commands; see
  [ACL2-pc::comm].")
 (ACL2-PC::CONTRADICT
      (PROOF-CHECKER-COMMANDS)
      "(macro) same as contrapose

  See [ACL2-pc::contrapose].")
 (ACL2-PC::CONTRAPOSE
  (PROOF-CHECKER-COMMANDS)
  "(primitive) switch a hypothesis with the conclusion, negating both

    Example:
    (contrapose 3)

    General Form:
    (contrapose &optional n)

  The (optional) argument n should be a positive integer that does not
  exceed the number of hypotheses. Negate the current conclusion and
  make it the nth hypothesis, while negating the current nth
  hypothesis and making it the current conclusion. If no argument is
  supplied then the effect is the same as for (contrapose 1).

  Remark: By ``negate'' we mean an operation that replaces nil by t, x
  by nil for any other explicit value x, (not x) by x, and any other
  x by (not x).")
 (ACL2-PC::DEMOTE
  (PROOF-CHECKER-COMMANDS)
  "(primitive) move top-level hypotheses to the conclusion

    Examples:
    demote        -- demote all top-level hypotheses
    (demote 3 5)  -- demote hypotheses 3 and 5

  For example, if the top-level hypotheses are x and y and the
  conclusion is z, then after execution of demote, the conclusion
  will be (implies (and x y) z) and there will be no (top-level)
  hypotheses.

    General Form:
    (demote &rest hyps-indices)

  Eliminate the indicated (top-level) hypotheses, but replace the
  conclusion conc with (implies hyps conc) where hyps is the
  conjunction of the hypotheses that were eliminated. If no arguments
  are supplied, then all hypotheses are demoted, i.e. demote is the
  same as (demote 1 2 ... n) where n is the number of top-level
  hypotheses.

  Remark: You must be at the top of the conclusion in order to use this
  command. Otherwise, first invoke top. Also, demote fails if there
  are no top-level hypotheses or if indices are supplied that are out
  of range.")
 (ACL2-PC::DIVE
  (PROOF-CHECKER-COMMANDS)
  "(primitive) move to the indicated subterm

    Examples:
    (DIVE 1)    -- assign the new current subterm to be the first
                   argument of the existing current subterm
    (DIVE 1 2)  -- assign the new current subterm to be the result of
                   first taking the 1st argument of the existing
                   current subterm, and then the 2nd argument of that

  For example, if the current subterm is

    (* (+ a b) c),

  then after (dive 1) it is

    (+ a b).

  If after that, then (dive 2) is invoked, the new current subterm will
  be

    b.

  Instead of (dive 1) followed by (dive 2), the same current subterm
  could be obtained by instead submitting the single instruction
  (dive 1 2).

    General Form:
    (dive &rest naturals-list)

  If naturals-list is a non-empty list (n_1 ... n_k) of natural
  numbers, let the new current subterm be the result of selecting the
  n_1-st argument of the current subterm, and then the n_2-th subterm
  of that, ..., finally the n_k-th subterm.

  Remark: Dive is related to the command pp, in that the diving is done
  according to raw (translated, internal form) syntax. Use the
  command dv if you want to dive according to the syntax displayed by
  the command p. Note that (dv n) can be abbreviated by simply n.

  Remark: Emacs users who load (into Emacs) the file emacs/acl2-doc.el
  will have defined a command, Control-t Control-d, that avoids the
  need to type dive commands. After you print the current term using
  the pp command, you may position the cursor on a subterm and type
  Control-t Control-d. Emacs will respond by pasting the appropriate
  dive command immediately after the proof-checker's prompt. You can
  then simply type <RETURN> in order to dive to the desired subterm.")
 (ACL2-PC::DO-ALL
  (PROOF-CHECKER-COMMANDS)
  "(macro) run the given instructions

    Example:
    (do-all induct p prove)

    General Form:
    (do-all &rest instruction-list)

  Run the indicated instructions until there is a hard ``failure''. The
  instruction ``succeeds'' if and only if each instruction in
  instruction-list does. (See [ACL2-pc::sequence] for an explanation
  of ``success'' and ``failure.'') As each instruction is executed,
  the system will print the usual prompt followed by that
  instruction, unless the global state variable
  pc-print-prompt-and-instr-flg is nil.

  Remark: If do-all ``fails'', then the failure is hard if and only if
  the last instruction it runs has a hard ``failure''.

  Obscure point: For the record, (do-all ins_1 ins_2 ... ins_k) is the
  same as (sequence (ins_1 ins_2 ... ins_k)).")
 (ACL2-PC::DO-ALL-NO-PROMPT
  (PROOF-CHECKER-COMMANDS)
  "(macro) run the given instructions, halting once there is a
  ``failure''

    Example:
    (do-all-no-prompt induct p prove)

    General Form:
    (do-all-no-prompt &rest instruction-list)

  Do-all-no-prompt is the same as do-all, except that the prompt and
  instruction are not printed each time, regardless of the value of
  pc-print-prompt-and-instr-flg. Also, restoring is disabled. See
  [ACL2-pc::do-all].")
 (ACL2-PC::DO-STRICT
  (PROOF-CHECKER-COMMANDS)
  "(macro) run the given instructions, halting once there is a
  ``failure''

    Example:
    (do-strict induct p prove)

    General Form:
    (do-strict &rest instruction-list)

  Run the indicated instructions until there is a (hard or soft)
  ``failure''. In fact do-strict is identical in effect to do-all,
  except that do-all only halts once there is a hard ``failure''. See
  [ACL2-pc::do-all].")
 (ACL2-PC::DOC
  (PROOF-CHECKER-COMMANDS)
  "(macro) access documentation inside the proof-checker

    Examples:

    (doc rewrite)          -- documentation on rewriting in ACL2
    (doc acl2-pc::rewrite) -- documentation on the proof-checker rewrite command
    (doc)                  -- same as (help doc) or (doc acl2-pc::doc)
    doc                    -- same as above

    General Forms:
    (doc) ; or, just: help
    (doc topic-name)

  For any [documentation] topic, A, (doc A) prints documentation on A
  to the terminal. You can read that documentation online or in the
  Emacs [ACL2-Doc] browser; see [documentation]. This [proof-checker]
  command provides a direct interface to the ACL2 :[doc] command at
  the terminal.

  Also see [ACL2-pc::help], which provides help for proof-checker
  commands. For example, submitting (help rewrite) to the
  proof-checker is equivalent to submitting (doc acl2-pc::rewrite) to
  the proof-checker, which corresponds to submitting :doc
  acl2-pc::rewrite directly to the ACL2 loop.")
 (ACL2-PC::DROP
  (PROOF-CHECKER-COMMANDS)
  "(primitive) drop top-level hypotheses

    Examples:
    (drop 2 3) -- drop the second and third hypotheses
    drop       -- drop all top-level hypotheses

    General Forms:
    (drop n1 n2 ...) -- Drop the hypotheses with the indicated indices.

    drop             -- Drop all the top-level hypotheses.

  Remark: If there are no top-level hypotheses, then the instruction
  drop will fail. If any of the indices is out of range, i.e. is not
  an integer between one and the number of top-level hypotheses
  (inclusive), then (drop n1 n2 ...) will fail.")
 (ACL2-PC::DV
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) move to the indicated subterm

    Examples:
    (dv 1)    -- assign the new current subterm to be the first argument
                 of the existing current subterm
    (dv 1 2)  -- assign the new current subterm to be the result of
                 first taking the 1st argument of the existing
                 current subterm, and then the 2nd argument of that

  For example, if the current subterm is

    (* (+ a b) c),

  then after (dv 1) it is

    (+ a b).

  If after that, then (dv 2) is invoked, the new current subterm will
  be

    b.

  Instead of (dv 1) followed by (dv 2), the same current subterm could
  be obtained by instead submitting the single instruction (dv 1 2).

    General Form:
    (dv &rest naturals-list)

  If naturals-list is a non-empty list (n_1 ... n_k) of natural
  numbers, let the new current subterm be the result of selecting the
  n_1-st argument of the current subterm, and then the n_2-th subterm
  of that, ..., finally the n_k-th subterm.

  Remark: (dv n) may be abbreviated by simply n, so we could have typed
  1 instead of (dv 1) in the first example above.

  Remark: Emacs users who load (into Emacs) the file emacs/acl2-doc.el
  will have defined a command, Control-t d, that avoids the need to
  type dv commands. After you print the current term using the p or
  th command, you may position the cursor on a subterm and type
  Control-t d. Emacs will respond by pasting the appropriate dv
  command immediately after the proof-checker's prompt. You can then
  simply type <RETURN> in order to dive to the desired subterm.

  Remark: A similar command is dive, which is related to the command
  pp, in that the diving is done according to raw (translated,
  internal form) syntax. (See [ACL2-pc::dive].) Use the command dv if
  you want to dive according to the syntax displayed by the command
  p. Thus, the command ``up'' is the inverse of dive, not of dv. The
  following example illustrates this point.

    ACL2 !>(verify (equal (* a b c) x))
    ->: p ; print user-level term
    (EQUAL (* A B C) X)
    ->: pp ; print internal-form (translated) term
    (EQUAL (BINARY-* A (BINARY-* B C)) X)
    ->: exit
    Exiting....
     NIL
    ACL2 !>(verify (equal (* a b c) x))
    ->: p
    (EQUAL (* A B C) X)
    ->: 1 ; same as (dv 1)
    ->: p ; print user-level term
    (* A B C)
    ->: pp ; print internal-form (translated) term
    (BINARY-* A (BINARY-* B C))
    ->: 3 ; dive to third argument of (* A B C)
    ->: p
    C
    ->: up ; go up one level in (BINARY-* A (BINARY-* B C))
    ->: p
    (* B C)
    ->: pp
    (BINARY-* B C)
    ->:


Subtopics

  [Dive-into-macros-table]
      Right-associated function information for the [proof-checker]")
 (ACL2-PC::ELIM
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) call the ACL2 theorem prover's elimination process

    Example and General Form:
    elim

  Upon running the elim command, the system will create a subgoal will
  be created for each goal that would have been pushed for proof by
  induction in an ordinary proof, where only elimination is used; not
  even simplification is used!")
 (ACL2-PC::EQUIV
  (PROOF-CHECKER-COMMANDS)
  "(primitive) attempt an equality (or congruence-based) substitution

    Examples:
    (equiv (* x y) 3) -- replace (* x y) by 3 everywhere inside the
                         current subterm, if their equality is among the
                         top-level hypotheses or the governors
    (equiv x t iff)   -- replace x by t everywhere inside the current
                         subterm, where only propositional equivalence
                         needs to be maintained at each occurrence of x

    General form:
    (equiv old new &optional relation)

  Substitute new for old everywhere inside the current subterm,
  provided that either (relation old new) or (relation new old) is
  among the top-level hypotheses or the governors (possibly by way of
  backchaining and/or refinement; see below). If relation is nil or
  is not supplied, then it defaults to equal. Also see acl2-pc::= for
  a much more flexible command. Note that the equiv command fails if
  no substitution is actually made.

  Remark: No substitution takes place inside explicit values. So for
  example, the instruction (equiv 3 x) will cause 3 to be replaced by
  x if the current subterm is, say, (* 3 y), but not if the current
  subterm is (* 4 y) even though 4 = (1+ 3).

  The following remarks are quite technical and mostly describe a
  certain weak form of ``backchaining'' that has been implemented for
  equiv in order to support the = command. In fact neither the term
  (relation old new) nor the term (relation new old) needs to be
  explicitly among the current ``assumptions'', i.e., the top-level
  hypothesis or the governors. Rather, there need only be such an
  assumption that ``tells us'' (r old new) or (r new old), for some
  equivalence relation r that refines relation. Here, ``tells us''
  means that either one of the indicated terms is among those
  assumptions, or else there is an assumption that is an implication
  whose conclusion is one of the indicated terms and whose hypotheses
  (gathered up by appropriately flattening the first argument of the
  implies term) are all among the current assumptions.")
 (ACL2-PC::EX
  (PROOF-CHECKER-COMMANDS)
  "(macro) exit after possibly saving the state

    Example and General Form:
    ex

  Same as exit, except that first the instruction save is executed.

  If save queries the user and is answered negatively, then the exit is
  aborted.")
 (ACL2-PC::EXIT
  (PROOF-CHECKER-COMMANDS)
  "(meta) exit the interactive proof-checker

    Examples:
    exit                        -- exit the interactive proof-checker
    (exit t)                    -- exit after printing a bogus defthm event
    (exit append-associativity) -- exit and create a defthm
                                   event named append-associativity

    General Forms:

    exit --  Exit without storing an event.

    (exit t) -- Exit after printing a bogus defthm event, showing :INSTRUCTIONS.

    (exit event-name &optional rule-classes do-it-flg) --
    Exit, and perhaps store an event

  The command exit returns you to the ACL2 loop. At a later time,
  (acl2::verify) may be executed to get back into the same
  proof-checker state, as long as there hasn't been an intervening
  use of the proof-checker (otherwise see [ACL2-pc::save]).

  When given one or more arguments as shown above, exit still returns
  you to the ACL2 loop, but first, if the interactive proof is
  complete, then it attempts create a defthm event with the specified
  event-name and rule-classes (which defaults to (:rewrite) if not
  supplied). The event will be printed to the terminal, and then
  normally the user will be queried whether an event should really be
  created. However, if the final optional argument do-it-flg is
  supplied and not nil, then an event will be made without a query.

  For example, the form

    (exit top-pop-elim (:elim :rewrite) t)

  causes a defthm event named top-pop-elim to be created with
  rule-classes (:elim :rewrite), without a query to the user (because
  of the argument t).

  Remark: it is permitted for event-name to be nil. In that case, the
  name of the event will be the name supplied during the original
  call of verify. (See [verify] and [ACL2-pc::commands].) Also in
  that case, if rule-classes is not supplied then it defaults to the
  rule-classes supplied in the original call of verify.

  Comments on ``success'' and ``failure''. An exit instruction will
  always ``fail'', so for example, if it appears as an argument of a
  do-strict instruction then none of the later (instruction)
  arguments will be executed. Moreover, the ``failure'' will be
  ``hard'' if an event is successfully created or if the instruction
  is simply exit; otherwise it will be ``soft''. See
  [ACL2-pc::sequence] for an explanation of hard and soft
  ``failures''. An obscure but potentially important fact is that if
  the ``failure'' is hard, then the error signal is a special signal
  that the top-level interactive loop can interpret as a request to
  exit. Thus for example, a sequencing command that turns an error
  triple (mv erp val state) into (mv t val state) would never cause
  an exit from the interactive loop.

  If the proof is not complete, then (exit event-name ...) will not
  cause an exit from the interactive loop. However, in that case it
  will print out the original user-supplied goal (the one that was
  supplied with the call to verify) and the current list of
  instructions.")
 (ACL2-PC::EXPAND
  (PROOF-CHECKER-COMMANDS)
  "(primitive) expand the current function call without simplification

    Examples:
    expand -- expand and do not simplify.

  Also see [ACL2-pc::x], which performs simplification, and see
  [ACL2-pc::x-dumb], which provides a simple interface to
  acl2-pc::expand.

  For example, if the current subterm is (append a b), then after
  expand the current subterm will be the term:

    (if (consp a)
        (cons (car a) (append (cdr a) b))
      b)

  regardless of the top-level hypotheses and the governors.

    General Form:
    (expand &optional do-not-expand-lambda-flg)

  Expand the function call at the current subterm, and do not simplify.
  The options have the following meanings:

    do-not-expand-lambda-flg:   default is nil; otherwise, the result
                                should be a lambda expression")
 (ACL2-PC::FAIL
  (PROOF-CHECKER-COMMANDS)
  "(macro) cause a failure

    Examples:
    fail
    (fail t)

    General Form:
    (fail &optional hard)

  This is probably only of interest to writers of macro commands. The
  only function of fail is to fail to ``succeed''.

  The full story is that fail and (fail nil) simply return (mv nil nil
  state), while (fail hard) returns (mv hard nil state) if hard is
  not nil. Also see [ACL2-pc::do-strict], [ACL2-pc::do-all], and
  [ACL2-pc::sequence].")
 (ACL2-PC::FINISH
  (PROOF-CHECKER-COMMANDS)
  "(macro) require completion of instructions; save error if inside
  :[hints]

    Example:
    (finish induct prove bash)

    General Form:
    (finish &rest instructions)

  Run the indicated instructions, stopping at the first failure. If
  there is any failure, or if any new goals are created and remain at
  the end of the indicated instructions, then consider the call of
  finish to be a failure. See [proof-checker-commands] and see
  [ACL2-pc::sequence] for a discussion of the notion of ``failure''
  for [proof-checker] commands.")
 (ACL2-PC::FORWARDCHAIN
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) forward chain from an implication in the hyps

    Example:
    (forwardchain 2) ; Second hypothesis should be of the form
                     ; (IMPLIES hyp concl), and the result is to replace
                     ; that hypothesis with concl.

    General Forms:
    (forwardchain hypothesis-number)
    (forwardchain hypothesis-number hints)
    (forwardchain hypothesis-number hints quiet-flg)

  This command replaces the hypothesis corresponding to given index,
  which should be of the form (IMPLIES hyp concl), with its
  consequent concl. In fact, the given hypothesis is dropped, and the
  replacement hypothesis will appear as the final hypothesis after
  this command is executed.

  The prover must be able to prove the indicated hypothesis from the
  other hypotheses, or else the command will fail. The :hints
  argument is used in this prover call, and should have the usual
  syntax of hints to the prover.

  Output is suppressed if quiet-flg is supplied and not nil.")
 (ACL2-PC::FREE
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) create a ``free variable''

    Example:
    (free x)

    General Form:
    (free var)

  Mark var as a ``free variable''. Free variables are only of interest
  for the put command; see [ACL2-pc::put].")
 (ACL2-PC::GENEQV
  (PROOF-CHECKER-COMMANDS)
  "(macro) show the generated equivalence relation maintained at the
  current subterm

    General Forms:
    geneqv     ; show list of equivalence relations being maintained
    (geneqv t) ; as above, but pair each relation with a justifying rune

  This is an advanced command, whose effect is to print the so-called
  ``generated equivalence relation'' (or ``geneqv'') that is
  maintained at the current subterm of the conclusion. That structure
  is a list of equivalence relations, representing the transitive
  closure E of the union of those relations, such that it suffices to
  maintain E at the current subterm: if that subterm, u, is replaced
  in the goal's conclusion, G, by another term equivalent to u with
  respect to E, then the resulting conclusion is Boolean equivalent
  to G. Also see [defcong].

  The command `geneqv' prints the above list of equivalence relations,
  or more precisely, the list of function symbols for those
  relations. If however geneqv is given a non-nil argument, then a
  list is printed whose elements are each of the form (s r), where s
  is the symbol for an equivalence relation and r is a :[congruence]
  [rune] justifying the inclusion of s in the list of equivalence
  relations being maintained at the current subterm.")
 (ACL2-PC::GENERALIZE
  (PROOF-CHECKER-COMMANDS)
  "(primitive) perform a generalization

    Example:
    (generalize
     ((and (true-listp x) (true-listp y)) 0)
     ((append x y) w))

    General Form:
    (generalize &rest substitution)

  Generalize using the indicated substitution, which should be a
  non-empty list. Each element of that list should be a two-element
  list of the form (term variable), where term may use abbreviations.
  The effect of the instruction is to replace each such term in the
  current goal by the corresponding variable. This replacement is
  carried out by a parallel substitution, outside-in in each
  hypothesis and in the conclusion. More generally, actually, the
  ``variable'' (second) component of each pair may be nil or a
  number, which causes the system to generate a new name of the form
  _ or _n, with n a natural number; more on this below. However, when
  a variable is supplied, it must not occur in any goal of the
  current proof-checker state.

  When the ``variable'' above is nil, the system will treat it as the
  variable |_| if that variable does not occur in any goal of the
  current proof-checker state. Otherwise it treats it as |_0|, or
  |_1|, or |_2|, and so on, until one of these is not among the
  variables of the current proof-checker state. If the ``variable''
  is a non-negative integer n, then the system treats it as |_n|
  unless that variable already occurs among the current goals, in
  which case it increments n just as above until it obtains a new
  variable.

  Remark: The same variable may not occur as the variable component of
  two different arguments (though nil may occur arbitrarily many
  times, as may a positive integer).")
 (ACL2-PC::GOALS
  (PROOF-CHECKER-COMMANDS)
  "(macro) list the names of goals on the stack

    Example and General Form:
    goals

  Goals lists the names of all goals that remain to be proved. They are
  listed in the order in which they appear on the stack of remaining
  goals, which is relevant for example to the effect of a change-goal
  instruction.")
 (ACL2-PC::HELP
  (PROOF-CHECKER-COMMANDS)
  "(macro) proof-checker help facility

    Examples:

    (help rewrite)   -- documentation on the proof-checker rewrite command
    (help)           -- this help
    (help help)      -- same as (help) or simply, help
    (help all)       -- same as (doc proof-checker-commands)

    General Forms:
    (help) ; or, just: help
    (help command)
    (help all)

  For any proof-checker command, C, (help C) prints documentation on C
  to the terminal. You can read that documentation online or in the
  Emacs [ACL2-Doc] browser by viewing topic acl2-pc::C; see
  [documentation].

  To see a list of all proof-checker commands, you can submit (help
  all). This is actually equivalent to (doc proof-checker-commands),
  which prints the documentation for topic [proof-checker-commands]
  (which, as discussed above, you can view online or with
  [ACL2-Doc]).

  Also see [ACL2-pc::doc], which provides a direct interface to the
  ACL2 :[doc] command. For example, submitting (help rewrite) to the
  proof-checker is equivalent to submitting (doc acl2-pc::rewrite) to
  the proof-checker or submitting :doc acl2-pc::rewrite directly to
  the ACL2 loop.")
 (ACL2-PC::HYPS
  (PROOF-CHECKER-COMMANDS)
  "(macro) print the hypotheses

    Examples:
    hyps               -- print all (top-level) hypotheses
    (hyps (1 3) (2 4)) -- print hypotheses 1 and 3 and governors 2 and 4
    (hyps (1 3) t)     -- print hypotheses 1 and 3 and all governors

    General Form:
    (hyps &optional hyps-indices govs-indices)

  Print the indicated top-level hypotheses and governors. (The notion
  of ``governors'' is defined below.) Here, hyps-indices and
  govs-indices should be lists of indices of hypotheses and governors
  (respectively), except that the atom t may be used to indicate that
  one wants all hypotheses or governors (respectively).

  The list of ``governors'' is defined as follows. Actually, we define
  here the notion of the governors for a pair of the form <term,
  address>]; we're interested in the special case where the term is
  the conclusion and the address is the current address. If the
  address is nil, then there are no governors, i.e., the list of
  governors is nil. If the term is of the form (if x y z) and the
  address is of the form (2 . rest) or (3 . rest), then the list of
  governors is the result of consing x or its negation (respectively)
  onto the list of governors for the pair <y, rest> or the pair <z,
  rest> (respectively). If the term is of the form (implies x y) and
  the address is of the form (2 . rest), then the list of governors
  is the result of consing x onto the list of governors for the pair
  <y, rest>. Otherwise, the list of governors for the pair <term, (n
  . rest)> is exactly the list of governors for the pair <argn, rest>
  where argn is the nth argument of term.

  If all goals have been proved, a message saying so will be printed.
  (as there will be no current hypotheses or governors!).

  The hyps command never causes an error. It ``succeeds'' (in fact its
  value is t) if the arguments (when supplied) are appropriate, i.e.
  either t or lists of indices of hypotheses or governors,
  respectively. Otherwise it ``fails'' (its value is nil).")
 (ACL2-PC::ILLEGAL
  (PROOF-CHECKER-COMMANDS)
  "(macro) illegal instruction

    Example:
    (illegal -3)

    General Form:
    (illegal instruction)

  Probably not of interest to most users; always ``fails'' since it
  expands to the fail command.

  The illegal command is used mainly in the implementation. For
  example, the instruction 0 is ``read'' as (illegal 0), since dive
  expects positive integers.")
 (ACL2-PC::IN-THEORY
  (PROOF-CHECKER-COMMANDS)
  "(primitive) set the current proof-checker theory

    Example:
    (in-theory
       (union-theories (theory 'minimal-theory) '(true-listp binary-append)))

    General Form:
    (in-theory &optional atom-or-theory-expression)

  If the argument is not supplied, then this command sets the current
  proof-checker theory (see below for explanation) to agree with the
  current ACL2 theory. Otherwise, the argument should be a theory
  expression, and in that case the proof-checker theory is set to the
  value of that theory expression.

  The current proof-checker theory is used in all calls to the ACL2
  theorem prover and rewriter from inside the proof-checker. Thus,
  the most recent in-theory instruction in the current state-stack
  has an effect in the proof-checker totally analogous to the effect
  caused by an in-theory hint or event in ACL2. All in-theory
  instructions before the last are ignored, because they refer to the
  current theory in the ACL2 [state], not to the existing
  proof-checker theory. For example:

    ACL2 !>:trans1 (enable bar)
     (UNION-THEORIES (CURRENT-THEORY :HERE)
                     '(BAR))
    ACL2 !>:trans1 (CURRENT-THEORY :HERE)
     (CURRENT-THEORY-FN :HERE WORLD)
    ACL2 !>

  Thus (in-theory (enable bar)) modifies the current theory of the
  current ACL2 world. So for example, suppose that foo is disabled
  outside the proof checker and you execute the following
  instructions, in this order.

    (in-theory (enable foo))
    (in-theory (enable bar))

  Then after the second of these, bar will be enabled in the
  proof-checker, but foo will be disabled. The reason is that
  (in-theory (enable bar)) instructs the proof-checker to modify the
  current theory (from outside the proof-checker, not from inside the
  proof-checker) by enabling bar.

  Note that in-theory instructions in the proof-checker have no effect
  outside the proof-checker's interactive loop.

  If the most recent in-theory instruction in the current state of the
  proof-checker has no arguments, or if there is no in-theory
  instruction in the current state of the proof-checker, then the
  proof-checker will use the current ACL2 theory. This is true even
  if the user has interrupted the interactive loop by exiting and
  changing the global ACL2 theory. However, if the most recent
  in-theory instruction in the current state of the proof-checker had
  an argument, then global changes to the current theory will have no
  effect on the proof-checker state.")
 (ACL2-PC::INDUCT
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) generate subgoals using induction

    Examples:
    induct, (induct t)
       -- induct according to a heuristically-chosen scheme, creating
          a new subgoal for each base and induction step
    (induct (append (reverse x) y))
       -- as above, but choose an induction scheme based on the term
          (append (reverse x) y) rather than on the current goal

    General Form:
    (induct &optional term)

  Induct as in the corresponding :induct hint given to the theorem
  prover, creating new subgoals for the base and induction steps. If
  term is t or is not supplied, then use the current goal to
  determine the induction scheme; otherwise, use that term.

  Remark: As usual, abbreviations are allowed in the term.

  Remark: Induct actually calls the prove command with all processes
  turned off. Thus, you must be at top of the goal for an induct
  instruction.")
 (ACL2-PC::LEMMAS-USED
  (PROOF-CHECKER-COMMANDS)
  "(macro) print the runes (definitions, lemmas, ...) used

  This is just an alias for runes.")
 (ACL2-PC::LISP
  (PROOF-CHECKER-COMMANDS)
  "(meta) evaluate the given form in Lisp

    Example:
    (lisp (assign xxx 3))

    General Form:
    (lisp form)

  Evaluate form. The lisp command is mainly of interest for side
  effects. Also see [ACL2-pc::print], [ACL2-pc::skip], and
  [ACL2-pc::fail].

  The rest of the documentation for lisp is of interest only to those
  who use it in macro commands. If the Lisp evaluation (by
  trans-eval) of form returns an [error-triple] of the form (mv erp
  ((NIL NIL STATE) . (erp-1 val-1 &)) state), then the lisp command
  returns the appropriate error triple

    (mv (or erp erp-1)
        val-1
        state) .

  Otherwise, the trans-eval of form must return an error triple of the
  form (mv erp (cons stobjs-out val) &), and the lisp command returns
  the appropriate error triple

    (mv erp
        val
        state).

  Note that the output signature of the form has been lost. The user
  must know the signature in order to use the output of the lisp
  command. Trans-eval, which is undocumented except by comments in
  the ACL2 source code, has replaced, in val, any occurrence of the
  current state or the current values of stobjs by simple symbols
  such as REPLACED-STATE. The actual values of these objects may be
  recovered, in principle, from the state returned and the
  user-stobj-alist within that state. However, in practice, the
  stobjs cannot be recovered because the user is denied access to
  user-stobj-alist. The moral is: do not try to write macro commands
  that manipulate stobjs. Should the returned val contain
  REPLACED-STATE the value may simply be ignored and state used,
  since that is what REPLACED-STATE denotes.")
 (ACL2-PC::NEGATE
  (PROOF-CHECKER-COMMANDS)
  "(macro) run the given instructions, and ``succeed'' if and only if
  they ``fail''

  Example: (negate prove)

    General form:
    (negate &rest instruction-list)

  Run the indicated instructions exactly in the sense of do-all, and
  ``succeed'' if and only if they ``fail''.

  Remark: Negate instructions will never produce hard ``failures''.")
 (ACL2-PC::NIL
  (PROOF-CHECKER-COMMANDS)
  "(macro) used for interpreting control-d

    Example and General form:
    nil

  (or, control-d).

  The whole point of this command is that in some Lisps (including
  akcl), if you type control-d then it seems, on occasion, to get
  interpreted as nil. Without this command, one seems to get into an
  infinite loop.")
 (ACL2-PC::NOISE
  (PROOF-CHECKER-COMMANDS)
  "(meta) run instructions with output

    Example:
    (noise induct prove)

    General Form:
    (noise &rest instruction-list)

  Run the instruction-list through the top-level loop with output.

  In fact, having output is the default. Noise is useful inside a
  surrounding call of quiet, when one temporarily wants output. For
  example, if one wants to see output for a prove command immediately
  following an induct command but before an s command, one may want
  to submit an instruction like (quiet induct (noise prove) s). Also
  see [ACL2-pc::quiet].")
 (ACL2-PC::NX
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) move forward one argument in the enclosing term

    Example and General Form:
    nx

  For example, if the conclusion is (= x (* (- y) z)) and the current
  subterm is x, then after executing nx, the current subterm will be
  (* (- y) z).

  This is the same as up followed by (dive n+1), where n is the
  position of the current subterm in its parent term in the
  conclusion. Thus in particular, the nx command fails if one is
  already at the top of the conclusion.

  Also see [ACL2-pc::up], [ACL2-pc::dive], [ACL2-pc::top], and
  [ACL2-pc::bk].")
 (ACL2-PC::ORELSE
  (PROOF-CHECKER-COMMANDS)
  "(macro) run the first instruction; if (and only if) it ``fails'', run
  the second

    Example:
    (orelse top (print \"Couldn't move to the top\"))

    General form:
    (orelse instr1 instr2)

  Run the first instruction. Then if it ``fails'', run the second
  instruction also; otherwise, stop after the first.

  This instruction ``succeeds'' if and only if either instr1
  ``succeeds'', or else instr2 ``succeeds''. If it ``fails'', then
  the failure is soft.")
 (ACL2-PC::P
  (PROOF-CHECKER-COMMANDS)
  "(macro) prettyprint the current term

    Example and General Form:
    p

  Prettyprint the current term. The usual user syntax is used, so that
  for example one would see (and x y) rather than (if x y 'nil). (See
  also pp.) Also, abbreviations are inserted where appropriate; see
  [ACL2-pc::add-abbreviation].

  The ``current term'' is the entire conclusion unless dive commands
  have been given, in which case it may be a subterm of the
  conclusion.

  If all goals have been proved, a message saying so will be printed
  (as there will be no current term!).")
 (ACL2-PC::P-TOP
  (PROOF-CHECKER-COMMANDS)
  "(macro) prettyprint the conclusion, highlighting the current term

    Example and General Form:
    p-top

  For example, if the conclusion is (equal (and x (p y)) (foo z)) and
  the current subterm is (p y), then p-top will print (equal (and x
  (*** (p y) ***)) (foo z)).

  Prettyprint the the conclusion, highlighting the current term. The
  usual user syntax is used, as with the command p (as opposed to
  pp). This is illustrated in the example above, where one would*not*see (equal (if x (*** (p y) ***) 'nil) (foo z)).

  Remark (obscure): In some situations, a term of the form (if x t y)
  occurring inside the current subterm will not print as (or x y),
  when x isn't a call of a boolean primitive. There's nothing
  incorrect about this, however.")
 (ACL2-PC::PL
  (PROOF-CHECKER-COMMANDS)
  "(macro) print the rules for a given name

    Examples:
    pl
    (pl foo)

    General Form:
    (pl &optional x)

  This command simply invokes the corresponding command of the
  top-level ACL2 loop; see [pl]. If no argument is given, or if the
  argument is nil, then the current subterm should be a call of a
  function symbol, and the argument is taken to be that symbol.

  If you want information about applying rewrite rules to the current
  subterm, consider the show-rewrites (or equivalently, sr) command.")
 (ACL2-PC::PP
  (PROOF-CHECKER-COMMANDS)
  "(macro) prettyprint the current term

    Example and General Form:
    pp

  This is the same as p (see its documentation), except that raw syntax
  (internal form) is used. So for example, one would see (if x y
  'nil) rather than (and x y). Abbreviations are however still
  inserted, as with p.")
 (ACL2-PC::PR
  (PROOF-CHECKER-COMMANDS)
  "(macro) print the rules for a given name

    Examples:
    pr
    (pr foo)

    General Form:
    (pr &optional x)

  This command simply invokes the corresponding command of the
  top-level ACL2 loop; see [pr]. If no argument is given, or if the
  argument is nil, then the current subterm should be a call of a
  function symbol, and the argument is taken to be that symbol.

  If you want information about applying rewrite rules to the current
  subterm, consider the show-rewrites (or equivalently, sr) command.")
 (ACL2-PC::PRINT
  (PROOF-CHECKER-COMMANDS)
  "(macro) print the result of evaluating the given form

    Example:
    (print (append '(a b) '(c d)))
    Print the list (a b c d) to the terminal

    General Forms:
    (print form)
    (print form t)

  Prettyprints the result of evaluating form. The evaluation of form
  should return a single value that is not [state] or a
  single-threaded object (see [stobj]). The optional second argument
  causes printing to be done without elision (so-called
  ``evisceration''; see [evisc-tuple]).

  If the form you want to evaluate does not satisfy the criterion
  above, you should create an appropriate call of the lisp command
  instead. Notice that this command always returns (mv nil nil state)
  where the second result will always be REPLACED-STATE.")
 (ACL2-PC::PRINT-ALL-CONCS
  (PROOF-CHECKER-COMMANDS)
  "(macro) print all the conclusions of (as yet unproved) goals

  Example and General Form: print-all-concs

  Prints all the conclusions of goals that remain to be proved, in a
  pleasant format. Also see [ACL2-pc::print-all-goals].")
 (ACL2-PC::PRINT-ALL-GOALS
  (PROOF-CHECKER-COMMANDS)
  "(macro) print all the (as yet unproved) goals

  Example and General Form: print-all-goals

  Prints all the goals that remain to be proved, in a pleasant format.
  Also see [ACL2-pc::print-all-concs].")
 (ACL2-PC::PRINT-MAIN
  (PROOF-CHECKER-COMMANDS)
  "(macro) print the original goal

    Example and General Form:
    print-main

  Print the goal as originally entered.")
 (ACL2-PC::PRO
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) repeatedly apply promote

    Example and General Form:
    pro

  Apply the promote command until there is no change. This command
  ``succeeds'' exactly when at least one call of promote
  ``succeeds''. In that case, only a single new proof-checker state
  will be created.")
 (ACL2-PC::PROMOTE
  (PROOF-CHECKER-COMMANDS)
  "(primitive) move antecedents of conclusion's implies term to
  top-level hypotheses

    Examples:
    promote
    (promote t)

  For example, if the conclusion is (implies (and x y) z), then after
  execution of promote, the conclusion will be z and the terms x and
  y will be new top-level hypotheses.

    General Form:
    (promote &optional do-not-flatten-flag)

  Replace conclusion of (implies hyps exp) or (if hyps exp t) with
  simply exp, adding hyps to the list of top-level hypotheses.
  Moreover, if hyps is viewed as a conjunction then each conjunct
  will be added as a separate top-level hypothesis. An exception is
  that if do-not-flatten-flag is supplied and not nil, then only one
  top-level hypothesis will be added, namely hyps.

  Remark: You must be at the top of the conclusion in order to use this
  command. Otherwise, first invoke top.")
 (ACL2-PC::PROTECT
  (PROOF-CHECKER-COMMANDS)
  "(macro) run the given instructions, reverting to existing state upon
  failure

    Example:
    (protect induct p prove)

    General Form:
    (protect &rest instruction-list)

  Protect is the same as do-strict, except that as soon as an
  instruction ``fails'', the state-stack reverts to what it was
  before the protect instruction began, and restore is given the same
  meaning that it had before the protect instruction began. See
  [ACL2-pc::do-strict].")
 (ACL2-PC::PROVE
  (PROOF-CHECKER-COMMANDS)
  "(primitive) call the ACL2 theorem prover to prove the current goal

    Examples:
    prove -- attempt to prove the current goal
    (prove :otf-flg t
           :hints ((\"Subgoal 2\" :by foo) (\"Subgoal 1\" :use bar)))
          -- attempt to prove the current goal, with the indicated hints
             and with OTF-FLG set

    General Form:
    (prove &rest rest-args)

  Attempt to prove the current goal, where rest-args is as in the
  keyword arguments to defthm except that only :hints and :otf-flg
  are allowed. The command succeeds exactly when the corresponding
  defthm would succeed, except that it is all right for some goals to
  be given ``bye''s. Each goal given a ``bye'' will be turned into a
  new subgoal. (See [hints] for an explanation of :by hints.)

  Remark: Use (= t) instead if you are not at the top of the
  conclusion. Also note that if there are any hypotheses in the
  current goal, then what is actually attempted is a proof of
  (implies hyps conc), where hyps is the conjunction of the top-level
  hypotheses and conc is the goal's conclusion.

  Remark: It is allowed to use abbreviations in the hints.")
 (ACL2-PC::PSO
  (PROOF-CHECKER-COMMANDS)
  "(macro) print the most recent proof attempt from inside the
  proof-checker

    Example and General Form:
    pso

  Print the most recent proof attempt from inside the proof-checker
  assuming you are in [gag-mode] or have saved output (see
  [set-saved-output]). This includes all calls to the prover,
  including for example [proof-checker] commands induct, split, and
  bash, in addition to prove. So for example, you can follow (quiet
  prove) with pso to see the proof, including [proof-tree] output, if
  it failed.

  Related [proof-checker] commands are psog and pso!; see
  [ACL2-pc::psog] and [ACL2-pc::pso!].")
 (ACL2-PC::PSO!
  (PROOF-CHECKER-COMMANDS)
  "(macro) print the most recent proof attempt from inside the
  proof-checker

    Example and General Form:
    pso!

  Print the most recent proof attempt from inside the proof-checker,
  including [proof-tree] output, assuming you are in [gag-mode] or
  have saved output (see [set-saved-output]). This includes all calls
  to the prover, including for example [proof-checker] commands
  induct, split, and bash, in addition to prove. So for example, you
  can follow (quiet prove) with pso! to see the proof, including
  [proof-tree] output, if it failed.

  Related [proof-checker] commands are pso and psog; see [ACL2-pc::pso]
  and [ACL2-pc::psog].")
 (ACL2-PC::PSOG
  (PROOF-CHECKER-COMMANDS)
  "(macro) print the most recent proof attempt from inside the
  proof-checker

    Example and General Form:
    psog

  Print the most recent proof attempt from inside the proof-checker,
  including goal names, assuming you are in [gag-mode] or have saved
  output (see [set-saved-output]). This includes all calls to the
  prover, including for example [proof-checker] commands induct,
  split, and bash, in addition to prove. So for example, you can
  follow (quiet prove) with psog to see the proof, including
  [proof-tree] output, if it failed.

  Related [proof-checker] commands are pso and pso!; see [ACL2-pc::pso]
  and [ACL2-pc::pso!].")
 (ACL2-PC::PUT
  (PROOF-CHECKER-COMMANDS)
  "(macro) substitute for a ``free variable''

    Example:
    (put x 17)

    General Form:
    (put var expr)

  Substitute expr for the ``free variable'' var, as explained below.

  A ``free variable'' is, for our purposes, a variable var such that
  the instruction (free var) has been executed earlier in the
  state-stack. What (free var) really does is to let var be an
  abbreviation for the term (hide var) (see
  [ACL2-pc::add-abbreviation]). What (put var expr) really does is to
  unwind the state-stack, replacing that free instruction with the
  instruction (add-abbreviation var expr), so that future references
  to (? var) become reference to expr rather than to (hide var), and
  then to replay all the other instructions that were unwound.
  Because hide was used, the expectation is that in most cases, the
  instructions will replay successfully and put will ``succeed''.
  However, if any replayed instruction ``fails'', then the entire
  replay will abort and ``fail'', and the state-stack will revert to
  its value before the put instruction was executed.

  If (put var expr) ``succeeds'', then (remove-abbreviation var) will
  be executed at the end.

  Remark: The restore command will revert the state-stack to its value
  present before the put instruction was executed.")
 (ACL2-PC::QUIET
  (PROOF-CHECKER-COMMANDS)
  "(meta) run instructions without output

    Example:
    (quiet induct prove)

    General Form:
    (quiet &rest instruction-list)

  Run the instruction-list through the top-level loop with no output.

  Also see [ACL2-pc::noise].")
 (ACL2-PC::R
  (PROOF-CHECKER-COMMANDS)
  "(macro) same as rewrite

    Example:
    (r 3)

  See [ACL2-pc::rewrite].")
 (ACL2-PC::REDUCE
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) call the ACL2 theorem prover's simplifier

    Examples:
    reduce -- attempt to prove the current goal without using induction
    (reduce (\"Subgoal 2\" :by foo) (\"Subgoal 1\" :use bar))
           -- attempt to prove the current goal without using
              induction, with the indicated hints

    General Form:
    (reduce &rest hints)

  Attempt to prove the current goal without using induction, using the
  indicated hints (if any). A subgoal will be created for each goal
  that would have been pushed for proof by induction in an ordinary
  proof.

  Notice that unlike prove, the arguments to reduce are spread out, and
  are all hints.

  Reduce is similar to bash in that neither of these allows induction.
  But bash only allows simplification, while reduce allows processes
  eliminate-destructors, fertilize, generalize, and
  eliminate-irrelevance.

  Remark: Induction will be used to the extent that it is ordered
  explicitly in the hints.")
 (ACL2-PC::REDUCE-BY-INDUCTION
  (PROOF-CHECKER-COMMANDS)
  "(macro) call the ACL2 prover without induction, after going into
  induction

    Examples:
    reduce-by-induction
      -- attempt to prove the current goal after going into induction,
         with no further inductions

    (reduce-by-induction (\"Subgoal 2\" :by foo) (\"Subgoal 1\" :use bar))
      -- attempt to prove the current goal after going into induction,
         with no further inductions, using the indicated hints

    General Form:
    (reduce-by-induction &rest hints)

  A subgoal will be created for each goal that would have been pushed
  for proof by induction in an ordinary proof, except that the proof
  begins with a top-level induction.

  Notice that unlike prove, the arguments to reduce-by-induction are
  spread out, and are all hints. Also see [ACL2-pc::prove],
  [ACL2-pc::reduce], and [ACL2-pc::bash].

  Remark: Induction and the various processes will be used to the
  extent that they are specified explicitly in the :induct and
  :do-not [hints].")
 (ACL2-PC::REMOVE-ABBREVIATIONS
  (PROOF-CHECKER-COMMANDS)
  "(primitive) remove one or more abbreviations

    Examples:
    remove-abbreviations -- remove all abbreviations
    (remove-abbreviations v w)
                         -- assuming that V and W currently abbreviate
                            terms, then they are ``removed'' in the
                            sense that they are no longer considered to
                            abbreviate those terms

    General Forms:
    (remove-abbreviations &rest vars)

  If vars is not empty (i.e., not nil), remove the variables in vars
  from the current list of abbreviations, in the sense that each
  variable in vars will no longer abbreviate a term.

  Remark: The instruction fails if at least one of the arguments fails
  to be a variable that abbreviates a term.

  Also see [ACL2-pc::add-abbreviation] for a discussion of
  abbreviations in general, and see [ACL2-pc::show-abbreviations].")
 (ACL2-PC::REPEAT
  (PROOF-CHECKER-COMMANDS)
  "(macro) repeat the given instruction until it ``fails''

    Example:
    (repeat promote)

    General Form:
    (repeat instruction)

  The given instruction is run repeatedly until it ``fails''.

  Remark: There is nothing here in general to prevent the instruction
  from being run after all goals have been proved, though this is
  indeed the case for primitive instructions.")
 (ACL2-PC::REPEAT-REC
      (PROOF-CHECKER-COMMANDS)
      "(macro) auxiliary to repeat

  See [ACL2-pc::repeat].")
 (ACL2-PC::REPLAY
  (PROOF-CHECKER-COMMANDS)
  "(macro) replay one or more instructions

    Examples:
    REPLAY     -- replay all instructions in the current session
                  (i.e., state-stack)
    (REPLAY 5) -- replay the most recent 5 instructions
    (REPLAY 5
            (COMMENT deleted dive command here))
               -- replace the 5th most recent instruction with the
                  indicated comment instruction, and then replay it
                  followed by the remaining 4 instructions

    General Form:
    (REPLAY &OPTIONAL n replacement-instruction)

  Replay the last n instructions if n is a positive integer; else n
  should be nil or not supplied, and replay all instructions.
  However, if replacement-instruction is supplied and not nil, then
  before the replay, replace the nth instruction (from the most
  recent, as shown by commands) with replacement-instruction.

  If this command ``fails'', then the restore command will revert the
  state-stack to its value present before the replay instruction was
  executed.")
 (ACL2-PC::RESTORE
  (PROOF-CHECKER-COMMANDS)
  "(meta) remove the effect of an UNDO command

    Example and General Form:
    restore

  Restore removes the effect of an undo command. This always works as
  expected if restore is invoked immediately after undo, without
  intervening instructions. However, other commands may also interact
  with restore, notably ``sequencing'' commands such as do-all,
  do-strict, protect, and more generally, sequence.

  Remark: Another way to control the saving of proof-checker state is
  with the save command; see [ACL2-pc::save].

  The restore command always ``succeeds''; it returns (mv nil t state).")
 (ACL2-PC::RETAIN
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) drop all but the indicated top-level hypotheses

    Example:
    (RETAIN 2 3) -- keep the second and third hypotheses, and drop
                    the rest

    General Form:
    (retain &rest args)

  Drop all top-level hypotheses except those with the indicated
  indices.

  There must be at least one argument, and all must be in range (i.e.
  integers between one and the number of top-level hypotheses,
  inclusive).")
 (ACL2-PC::RETRIEVE
  (PROOF-CHECKER-COMMANDS)
  "(macro) re-enter the proof-checker

    Examples:
    (retrieve associativity-of-permutationp)
    retrieve

    General Form:
    (retrieve &optional name)

  Must be used from outside the interactive proof-checker loop. If name
  (which must be a symbol) is supplied and not nil, this causes
  re-entry to the interactive proof-checker loop in the state at
  which save was last executed for the indicated name. (See
  [ACL2-pc::save].) If name is nil or is not supplied, then the user
  is queried regarding which proof-checker state to re-enter. The
  query is omitted, however, if there only one proof-checker state is
  present that was saved with save, in which case that is the one
  that is used. Also see [ACL2-pc::unsave].")
 (ACL2-PC::REWRITE
  (PROOF-CHECKER-COMMANDS)
  "(primitive) apply a rewrite rule

    Examples:
    (rewrite reverse-reverse)
       -- apply the rewrite rule `reverse-reverse'
    (rewrite (:rewrite reverse-reverse))
       -- same as above
    (rewrite 2)
       -- apply the second rewrite rule, as displayed by show-rewrites
    rewrite
       -- apply the first rewrite rule, as displayed by show-rewrites
    (rewrite transitivity-of-< ((y 7)))
       -- apply the rewrite rule transitivity-of-< with the substitution
          that associates 7 to the ``free variable'' y
    (rewrite foo ((x 2) (y 3)) t)
       -- apply the rewrite rule foo by substituting 2 and 3 for free
          variables x and y, respectively, and also binding all other
          free variables possible by using the current context
          (hypotheses and governors)

    General Form:
    (rewrite &optional rule-id substitution instantiate-free)

  Replace the current subterm with a new term by applying a [rewrite]
  or [definition] rule. The replacement will be done according to the
  information provided by the show-rewrites (sr) command.

  If rule-id is a positive integer n, then the nth rule as displayed by
  show-rewrites is the one that is applied. If rule-id is nil or is
  not supplied, then it is treated as the number 1. Otherwise,
  rule-id should be either a symbol or else a :rewrite or :definition
  [rune]. If a symbol is supplied, then any (:rewrite or :definition)
  rule of that name may be used. We say more about this, and describe
  the other optional arguments, below.

  Consider first the following example. Suppose that the current
  subterm is (reverse (reverse y)) and that there is a [rewrite] rule
  called reverse-reverse of the form

    (implies (true-listp x)
             (equal (reverse (reverse x)) x)) .

  Then the instruction (rewrite reverse-reverse) causes the current
  subterm to be replaced by y and creates a new goal with conclusion
  (true-listp y). An exception is that if the top-level hypotheses
  imply (true-listp y) using only ``trivial reasoning'' (more on this
  below), then no new goal is created.

  If the rule-id argument is a number or is not supplied, then the
  system will store an instruction of the form (rewrite name ...),
  where name is the name of a rewrite rule; this is in order to make
  it easier to replay instructions when there have been changes to
  the history. Except: instead of the name (whether the name is
  supplied or calculated), the system stores the [rune] if there is
  any chance of ambiguity. (Formally, ``ambiguity'' here means that
  the rune being applied is of the form (:rewrite name . index),
  where index is not nil.)

  Speaking in general, then, a rewrite instruction works as follows:

  First, a [rewrite] or [definition] rule is selected according to the
  arguments of the rewrite instruction. The selection is made as
  explained under ``General Form'' above.

  Next, the left-hand side of the rule is matched with the current
  subterm, i.e., a substitution unify-subst is found such that if one
  instantiates the left-hand side of the rule with unify-subst, then
  one obtains the current subterm. If this match fails, then the
  instruction fails.

  Next, an attempt is made to relieve (discharge) the hypotheses, much
  as the theorem prover relieves hypotheses except that there is no
  call to the rewriter. First, the substitution unify-subst is
  extended with the substitution argument, which may bind free
  variables (see [free-variables]). Each hypothesis of the rule is
  then considered in turn, from first to last. For each hypothesis,
  first the current substitution is applied, and then the system
  checks whether the hypothesis is ``clearly'' true in the current
  context. If there are variables in the hypotheses of the rule that
  are not bound by the current substitution, then a weak attempt is
  made to extend that substitution so that the hypothesis is present
  in the current context (see [ACL2-pc::hyps]), much as would be done
  by the theorem prover's rewriter.

  If in the process above there are free variables (see
  [free-variables]), but the proof-checker can see how to bind them
  to relieve all hypotheses, then it will do so in both the
  show-rewrites (sr) and rewrite commands. But normally, if even one
  hypothesis remains unrelieved, then no automatic extension of the
  substitution is made. Except, if instantiate-free is not nil, then
  that extension to the substitution is kept. (Technical note: in the
  case of an unrelieved hypothesis and a non-nil value of
  instantiate-free, if a [bind-free] hypothesis produces a list of
  binding alists, then the last of those alists is the one that is
  used to extend the substitution.)

  Finally, the instruction is applied as follows. The current subterm
  is replaced by applying the final substitution described above to
  the right-hand side of the selected rule. And, one new subgoal is
  created for each unrelieved hypothesis of the rule, whose top-level
  hypotheses are the governors and top-level hypotheses of the
  current goal and whose conclusion and current subterm are the
  instance, by that same final substitution, of that unrelieved
  hypothesis.

  Remark: The substitution argument should be a list whose elements
  have the form (variable term), where term may contain
  abbreviations.")
 (ACL2-PC::RUN-INSTR-ON-GOAL
      (PROOF-CHECKER-COMMANDS)
      "(macro) auxiliary to THEN

  See [ACL2-pc::then].")
 (ACL2-PC::RUN-INSTR-ON-NEW-GOALS
      (PROOF-CHECKER-COMMANDS)
      "(macro) auxiliary to then

  See [ACL2-pc::then].")
 (ACL2-PC::RUNES
  (PROOF-CHECKER-COMMANDS)
  "(macro) print the runes (definitions, lemmas, ...) used

    Examples and general forms:
    (runes t)   ; print all [rune]s used during this interactive proof
    (runes nil) ; print all [rune]s used by the most recent command
    (runes)     ; same as (runes nil)
    runes       ; same as (runes nil)

  This command does not change the [proof-checker] state. Rather, it
  simply reports runes (see [rune]) that have participated in the
  interactive proof.

  Note that (runes nil) will show the [rune]s used by the most recent
  primitive or macro command (as displayed by :comm).")
 (ACL2-PC::S
  (PROOF-CHECKER-COMMANDS)
  "(primitive) simplify the current subterm

    Examples:
    S  -- simplify the current subterm
    (S :backchain-limit 2 :normalize t :expand (append x z))
       -- simplify the current subterm, but during the rewriting
          process first ``normalize'' it by pushing IFs to the
          top-level, and also force the term (append x z) to be
          expanded during the rewriting process

    General Form:
    (s &key rewrite normalize backchain-limit repeat in-theory hands-off
            expand)

  Simplify the current subterm according to the keyword parameters
  supplied. First if-normalization is applied (unless the normalize
  argument is nil), i.e., each subterm of the form (f ... (if test x
  y) ...) is replaced by the term (if test (f ... x ...) (f ... y
  ...)) except, of course, when f is if and the indicated if subterm
  is in the second or third argument position. Then rewriting is
  applied (unless the rewrite argument is nil). Finally this pair of
  actions is repeated --- until the rewriting step causes no change
  in the term. A description of each parameter follows.

    :rewrite -- default t

  When non-nil, instructs the system to use ACL2's rewriter (or,
  something close to it) during simplification.

    :normalize -- default t

  When non-nil, instructs the system to use if-normalization (as
  described above) during simplification.

    :backchain-limit -- default 0

  Sets the number of recursive calls to the rewriter that are allowed
  for backchaining. Even with the default of 0, some reasoning is
  allowed (technically speaking, type-set reasoning is allowed) in
  the relieving of hypotheses. The value should be nil or a
  non-negative integer, and limits backchaining only for rewriting,
  not for type-set reasoning.

    :repeat -- default 0

  Sets the number of times the current term is to be rewritten. If this
  value is t, then the default is used (as specified by the constant
  *default-s-repeat-limit*).

    :in-theory, :hands-off, :expand

  These have their usual meaning; see [hints].

  Remark: if conditional rewrite rules are used that cause case splits
  because of the use of force, then appropriate new subgoals will be
  created, i.e., with the same current subterm (and address) but with
  each new (forced) hypothesis being negated and then used to create
  a corresponding new subgoal. In that case, the current goal will
  have all such new hypotheses added to the list of top-level
  hypotheses.")
 (ACL2-PC::S-PROP
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) simplify propositionally

    Example:
    s-prop

    General Form:
    (s-prop &rest names)

  Simplify, using the default settings for s (which include
  if-normalization and rewriting without real backchaining), but with
  respect to a theory in which only basic functions and rules (the
  ones in (theory 'minimal-theory)), together with the names (or
  parenthesized names) in the &rest argument names, are enabled.

  Also see [ACL2-pc::s].")
 (ACL2-PC::SAVE
  (PROOF-CHECKER-COMMANDS)
  "(macro) save the proof-checker state (state-stack)

    Example:
    (save lemma3-attempt)

    General Form:
    (save &optional name do-it-flg)

  Saves the current proof-checker state by ``associating'' it with the
  given name, which must be a symbol. Submit (retrieve name) to Lisp
  to get back to this proof-checker state. If verify was originally
  supplied with an event name, then the argument can be omitted in
  favor of that name as the default.

  Remark that if a save has already been done with the indicated name
  (or the default event name), then the user will be queried
  regarding whether to go ahead with the save --- except, if
  do-it-flg is supplied and not nil, then there will be no query and
  the save will be effected.

  Also see [ACL2-pc::retrieve] and [ACL2-pc::unsave].")
 (ACL2-PC::SEQUENCE
  (PROOF-CHECKER-COMMANDS)
  "(meta) run the given list of instructions according to a multitude of
  options

    Example:
    (sequence (induct p prove) t)

  This is a very general command that is used to define other
  sequencing commands; see [ACL2-pc::do-all], [ACL2-pc::do-strict],
  [ACL2-pc::protect], and [ACL2-pc::succeed].

    General Form:
    (sequence
     instruction-list
     &optional
     strict-flg protect-flg success-expr no-prompt-flg no-restore-flg)

  Each instruction in the list instruction-list is run, and the
  instruction ``succeeds'' if every instruction in instruction-list
  ``succeeds''. However, it might ``succeed'' even if some
  instructions in the list ``fail''; more generally, the various
  arguments control a number of aspects of the running of the
  instructions. All this is explained in the paragraphs below. First
  we embark on a general discussion of the instruction interpreter,
  including the notions of ``succeed'' and ``fail''.

  Remark: The arguments are not evaluated, except (in a sense) for
  success-expr, as described below.

  Each primitive and meta instruction can be thought of as returning an
  [error-triple], say (erp val state). An instruction (primitive or
  meta) ``succeeds'' if erp is nil and val is not nil; otherwise it
  ``fails''. (When we use the words ``succeed'' or ``fail'' in this
  technical sense, we'll always include them in double quotes.) If an
  instruction ``fails,'' we say that that the failure is ``soft'' if
  erp is nil; otherwise the failure is ``hard''. The sequence command
  gives the user control over how to treat ``success'' and
  ``failure'' when sequencing instructions, though we have created a
  number of handy macro commands for this purpose, notably do-all,
  do-strict and protect.

  Here is precisely what happens when a sequence instruction is run.
  The instruction interpreter is run on the instructions supplied in
  the argument instruction-list (in order). The interpreter halts the
  first time there is a hard ``failure.'' except that if strict-flg
  is supplied and not nil, then the interpreter halts the first time
  there is any ``failure.'' The error triple (erp val state) returned
  by the sequence instruction is the triple returned by the last
  instruction executed (or, the triple (nil t state) if
  instruction-list is nil), except for the following provision. If
  success-expr is supplied and not nil, then it is evaluated with the
  state global variables pc-erp and pc-val (in the \"ACL2\" package)
  bound to the corresponding components of the error triple returned
  (as described above). At least two values should be returned, and
  the first two of these will be substituted for erp and val in the
  triple finally returned by sequence. For example, if success-expr
  is (mv erp val), then no change will be made to the error triple,
  and if instead it is (mv nil t), then the sequence instruction will
  ``succeed''.

  That concludes the description of the error triple returned by a
  sequence instruction, but it remains to explain the effects of the
  arguments protect-flg and no-prompt-flg.

  If protect-flg is supplied and not nil and if also the instruction
  ``fails'' (i.e., the error component of the triple is not nil or
  the value component is nil), then the state is reverted so that the
  proof-checker's state (including the behavior of restore) is set
  back to what it was before the sequence instruction was executed.
  Otherwise, unless no-restore-flg is set, the state is changed so
  that the restore command will now undo the effect of this sequence
  instruction (even if there were nested calls to sequence).

  Finally, as each instruction in instruction-list is executed, the
  prompt and that instruction will be printed, unless the global
  state variable pc-print-prompt-and-instr-flg is unbound or nil and
  the parameter no-prompt-flg is supplied and not nil.")
 (ACL2-PC::SHOW-ABBREVIATIONS
  (PROOF-CHECKER-COMMANDS)
  "(macro) display the current abbreviations

    Examples:
    (show-abbreviations v w)
       -- assuming that v and w currently abbreviate terms,
          then this instruction displays them together with
          the terms they abbreviate
    show-abbreviations
       -- display all abbreviations

  Also see [ACL2-pc::add-abbreviation] for a general discussion of
  abbreviations and see [ACL2-pc::remove-abbreviations].

    General Form:
    (show-abbreviations &rest vars)

  Display each argument in vars together with the term it abbreviates
  (if any). If there are no arguments, i.e. the instruction is simply
  show-abbreviations, then display all abbreviations together with
  the terms they abbreviate.

  If the term abbreviated by a variable, say v, contains a proper
  subterm that is also abbreviate by (another) variable, then both
  the unabbreviated term and the abbreviated term (but not using (?
  v) to abbreviate the term) are displayed with together with v.")
 (ACL2-PC::SHOW-LINEARS
  (PROOF-CHECKER-COMMANDS)
  "(macro) display the applicable [linear] rules

    Example:
    show-linears

    General Form:
    (show-linears &optional rule-id enabled-only-flg)

  This command displays [linear] rules with a trigger term that matches
  the current subterm, and shows how they can be applied. This
  command is analogous to the show-rewrites [proof-checker] command;
  see [ACL2-pc::show-rewrites]. Also see [ACL2-pc::apply-linear] for
  how to apply [linear] rules.")
 (ACL2-PC::SHOW-REWRITES
  (PROOF-CHECKER-COMMANDS)
  "(macro) display the applicable [rewrite] rules

    Example:
    show-rewrites

    General Form:
    (show-rewrites &optional rule-id enabled-only-flg)

  This command displays [rewrite] rules whose left-hand side matches
  the current subterm, and shows how that command can be applied. For
  each rule displayed, hypotheses are shown that would need to be
  proved after the rule is applied. Note that hypotheses are omitted
  from the display when the system can trivially verify that they
  hold; to see all hypotheses for each rule in a display that is
  independent of the arguments of the current subterm, use the pl or
  pr command.

  Here are details on the arguments and the output. If rule-id is
  supplied and is a name (non-nil symbol) or a :[rewrite] or
  :[definition] [rune], then only the corresponding rewrite rule(s)
  will be displayed, while if rule-id is a positive integer n, then
  only the nth rule that would be in the list is displayed. In each
  case, the display will point out when a rule is currently disabled
  (in the interactive environment), except that if enabled-only-flg
  is supplied and not nil, then disabled rules will not be displayed
  at all. Finally, among the free variables of any rule (see
  [free-variables]), those that would remain free if the rule were
  applied will be displayed. Also see [rewrite].")
 (ACL2-PC::SHOW-TYPE-PRESCRIPTIONS
  (PROOF-CHECKER-COMMANDS)
  "(macro) display the applicable [type-prescription] rules

    Example:
    show-type-prescriptions

    General Form:
    (show-type-prescriptions &optional rule-id)

  Display [type-prescription] rules that apply to the current subterm.
  If rule-id is supplied and is a name (non-nil symbol) or a
  :[rewrite] or :[definition] [rune], then only the corresponding
  rewrite rule(s) will be displayed. In each case, the display will
  point out when a rule is currently disabled (in the interactive
  environment). Also see [type-prescription].")
 (ACL2-PC::SKIP
  (PROOF-CHECKER-COMMANDS)
  "(macro) ``succeed'' without doing anything

    Example and General Form:
    skip

  Make no change in the state-stack, but ``succeed''. Same as (sequence
  nil).")
 (ACL2-PC::SL
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) simplify with lemmas

    Examples:
    sl
    (sl 3)

    General Form:
    (sl &optional backchain-limit)

  Simplify, but with all function definitions disabled (see
  [function-theory] in the top-level ACL2 loop), except for a few
  basic functions (the ones in (theory 'minimal-theory)). The
  backchain-limit has a default of 0, but if is supplied and not nil,
  then it should be a nonnegative integer; see [ACL2-pc::s].

  WARNING: This command completely ignores in-theory commands that are
  executed inside the [proof-checker].")
 (ACL2-PC::SLS
  (PROOF-CHECKER-COMMANDS)
  "(macro) same as SHOW-LINEARS

    Example:
    sls

    General Form:
    (sls &optional rule-id enabled-only-flg)

  See show-linears. NOTE: In analogy to the sr abbreviation for
  show-rewrites, one might expect this command to be sl; but that
  name was taken (``simplify with lemmas'') before sls was
  implemented.")
 (ACL2-PC::SPLIT
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) split the current goal into cases

    Example:
    split

  For example, if the current goal has one hypothesis (or x y) and a
  conclusion of (and a b), then split will create four new goals:

    one with hypothesis X and conclusion A
    one with hypothesis X and conclusion B
    one with hypothesis Y and conclusion A
    one with hypothesis Y and conclusion B.

    General Form:
    SPLIT

  Replace the current goal by subgoals whose conjunction is equivalent
  (primarily by propositional reasoning) to the original goal, where
  each such goal cannot be similarly split.

  Remark: The new goals will all have their hypotheses promoted; in
  particular, no conclusion will have a top function symbol of
  implies. Also note that split will fail if there is exactly one new
  goal created and it is the same as the existing current goal.

  The way split really works is to call the ACL2 theorem prover with
  only simplification (and preprocessing) turned on, and with only a
  few built-in functions (especially, propositional ones) enabled,
  namely, the ones in the list (theory 'minimal-theory). However,
  because the prover is called, type-set reasoning can be used to
  eliminate some cases. For example, if (true-listp x) is in the
  hypotheses, then probably (true-listp (cdr x)) will be reduced to
  t.")
 (ACL2-PC::SR
  (PROOF-CHECKER-COMMANDS)
  "(macro) same as SHOW-REWRITES

    Example:
    sr

    General Form:
    (sr &optional rule-id enabled-only-flg)

  See [ACL2-pc::show-rewrites].")
 (ACL2-PC::ST
  (PROOF-CHECKER-COMMANDS)
  "(macro) same as SHOW-TYPE-PRESCRIPTIONS

    Example:
    sr

    General Form:
    (st &optional rule-id)

  See [ACL2-pc::show-type-prescriptions].")
 (ACL2-PC::SUCCEED
  (PROOF-CHECKER-COMMANDS)
  "(macro) run the given instructions, and ``succeed''

    Example:
    (succeed induct p prove)

    General Form:
    (succeed &rest instruction-list)

  Run the indicated instructions until there is a hard ``failure'', and
  ``succeed''. (See [ACL2-pc::sequence] for an explanation of
  ``success'' and ``failure''.)")
 (ACL2-PC::TH
  (PROOF-CHECKER-COMMANDS)
  "(macro) print the top-level hypotheses and the current subterm

    Examples:
    th               -- print all (top-level) hypotheses and the current
                        subterm
    (th (1 3) (2 4)) -- print hypotheses 1 and 3 and governors 2 and 4,
                        and the current subterm
    (th (1 3) t)     -- print hypotheses 1 and 3 and all governors, and
                        the current subterm

    General Form:
    (th &optional hyps-indices govs-indices)

  Print hypotheses and the current subterm. The printing of hypotheses
  (and perhaps governors) are controlled as in the hyps command; see
  [ACL2-pc::hyps].

  Historical note: The name th is adapted from the Gypsy Verification
  Environment, where th abbreviates the command theorem, which says
  to print information on the current goal.")
 (ACL2-PC::THEN
  (PROOF-CHECKER-COMMANDS)
  "(macro) apply one instruction to current goal and another to new
  subgoals

    Example:
    (then induct prove)

    General Form:
    (then first-instruction &optional completion must-succeed-flg)

  Run first-instruction, and then run completion (another instruction)
  on each subgoal created by first-instruction. If must-succeed-flg
  is supplied and not nil, then halt at the first ``failure'' and
  remove the effects of the invocation of completion that ``failed''.

  The default for completion is reduce.")
 (ACL2-PC::TOP
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) move to the top of the goal

    Example and General Form:
    top

  For example, if the conclusion is (= x (* (- y) z)) and the current
  subterm is y, then after executing top, the current subterm will be
  the same as the conclusion, i.e., (= x (* (- y) z)).

  Top is the same as (up n), where n is the number of times one needs
  to execute up in order to get to the top of the conclusion. The top
  command fails if one is already at the top of the conclusion.

  Also see [ACL2-pc::up], [ACL2-pc::dive], [ACL2-pc::nx], and
  [ACL2-pc::bk].")
 (ACL2-PC::TYPE-ALIST
  (PROOF-CHECKER-COMMANDS)
  "(macro) display the [type-alist] from the current context

    Examples:
    (type-alist t t)     ; display type-alist based on conclusion and governors
    (type-alist t t t)   ; as above, but also display forward-chaining report
    type-alist           ; same as (type-alist nil t) -- governors only
    (type-alist nil)     ; same as (type-alist nil t) -- governors only
    (type-alist t)       ; same as (type-alist t nil) -- conclusion only
    (type-alist nil nil) ; display type-alist without considering
                         ; conclusion or governors

    General Form:
    (type-alist &optional concl-flg govs-flg fc-report-flg)

  where if govs-flg is omitted then it defaults to (not concl-flg), and
  concl-flg and fc-report-flg default to nil.

  Display the current assumptions as a [type-alist]. Note that this
  display includes the result of forward chaining. When fc-report-flg
  is supplied a non-nil value, the display also includes a
  forward-chaining report; otherwise,the presence or absence of such
  a report is controlled by the usual global settings (see
  [forward-chaining-reports]).

  There are two basic reasons contemplated for using this command.

  1. The theorem prover has failed (either outside the proof-checker or
  using a proof-checker command such as bash or reduce and you want
  to debug by getting an idea of what the prover knows about the
  context.

      a. You really are interested in the context for the current term.
      Include hypotheses and governors (i.e., accounting for tests of
      surrounding if-expressions that must be true or false) but not
      the current conclusion (which the theorem prover's heuristics
      would generally ignore for contextual information). Command:
      (type-alist nil t) ; equivalently, type-alist or (type-alist nil)

      b. You are not thinking in particular about the current term; you
      just want to get an idea of the context that the prover would
      build at the top-level, for forward-chaining. Incorporate the
      conclusion but not the governors. Command:
      (type-alist t nil) ; equivalently, (type-alist t)

  2. You intend to use one of the [proof-checker-commands] that does
  simplification, such as s or x, and you want to see the context.
  Then include the surrounding if-term governors but not the goal's
  conclusion. Command:
  (type-alist nil t) ; equivalently, type-alist or (type-alist nil)

  See [type-set] (also see [type-prescription]) for information about
  ACL2's type system, which can assist in understanding the output of
  the type-alist command.")
 (ACL2-PC::UNDO
  (PROOF-CHECKER-COMMANDS)
  "(meta) undo some instructions

    Examples:
    (undo 7)
    undo

    General Forms:

    (undo n) -- Undo the last n instructions.  The argument n should be
                a positive integer.

    undo     -- Same as (undo 1).

  Remark: To remove the effect of an undo command, use restore; see
  [ACL2-pc::restore].

  Remark: If the argument n is greater than the total number of
  interactive instructions in the current session, then (undo n) will
  simply take you back to the start of the session.

  The undo meta command always ``succeeds''; it returns (mv nil t
  state) unless its optional argument is supplied and of the wrong
  type (i.e. not a positive integer) or there are no instructions to
  undo.")
 (ACL2-PC::UNSAVE
  (PROOF-CHECKER-COMMANDS)
  "(macro) remove a proof-checker state

    Example:
    (unsave assoc-of-append)

    General Form:
    (unsave &optional name)

  Eliminates the association of a proof-checker state with name, if
  name is supplied and not nil. The name may be nil or not supplied,
  in which case it defaults to the event name supplied with the
  original call to verify (if there is one --- otherwise, the
  instruction ``fails'' and there is no change). The ACL2 function
  unsave may also be executed outside the interactive loop, with the
  same syntax.

  Also see [ACL2-pc::save] and [ACL2-pc::retrieve].")
 (ACL2-PC::UP
  (PROOF-CHECKER-COMMANDS)
  "(primitive) move to the parent (or some ancestor) of the current
  subterm

    Examples:  if the conclusion is (= x (* (- y) z)) and the
               current subterm is y, then we have:
    up or (up 1) -- the current subterm becomes (- y)
    (up 2)       -- the current subterm becomes (* (- y) z)
    (up 3)       -- the current subterm becomes the entire conclusion
    (up 4)       -- no change; can't go up that many levels

    General Form:
    (up &optional n)

  Move up n levels in the conclusion from the current subterm, where n
  is a positive integer. If n is not supplied or is nil, then move up
  one level, i.e., treat the instruction as (up 1).

  Also see [ACL2-pc::dive], [ACL2-pc::top], [ACL2-pc::nx], and
  [ACL2-pc::bk].")
 (ACL2-PC::USE
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) use a lemma instance

    Example:
    (USE true-listp-append
         (:instance assoc-of-append (x a) (y b) (z c)))
    -- Add two top-level hypotheses, one the lemma called
       true-listp-append, and the other an instance of the lemma called
       assoc-of-append by the substitution in which x is assigned a, y
       is assigned b, and z is assigned c.

    General Form:
    (use &rest args)

  Add the given lemma instances to the list of top-level hypotheses.
  See [hints] for the syntax of :use hints in defthm, which is
  essentially the same as the syntax here (see the example above).

  This command calls the prove command, and hence should only be used
  at the top of the conclusion.")
 (ACL2-PC::WRAP
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) execute the indicated instructions and combine all the
  new goals

    Example:
    (wrap induct) ; induct, then replace first new goal by the conjunction of all
                  ; the new goals, and drop all new goals after the first

    General Form:
    (wrap &rest instrs)

  First the instructions in instrs are executed, as in do-all. If this
  ``fails'' then no additional action is taken. Otherwise, the
  current goal after execution of instrs is conjoined with all
  ``new'' goals, in the sense that their names are not among the
  names of goals at the time instrs was begun. This conjunction
  becomes the new current goal and those ``new'' goals are dropped.

  See the code for the [proof-checker] command wrap-induct for an
  example of the use of wrap.")
 (ACL2-PC::WRAP-INDUCT
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) same as induct, but create a single goal

    Examples:
    wrap-induct
    (wrap-induct t)
    (wrap-induct (append (reverse x) y))

    General Form:
    (wrap-induct &optional term)

  The wrap-induct command is identical to the [proof-checker] induct
  command (see [ACL2-pc::induct]), except that only a single goal is
  created: the conjunction of the base and induction steps.

  Note: The output will generally indicate that more than goal has been
  created, e.g.:

    Creating two new goals:  (MAIN . 1) and (MAIN . 2).

  However, wrap-induct always creates a unique goal (when it succeeds).
  A subsequent message clarifies this, for example:

    NOTE: Created ONLY one new goal, which is the current goal:
      (MAIN . 1)")
 (ACL2-PC::WRAP1
  (PROOF-CHECKER-COMMANDS)
  "(primitive) combine goals into a single goal

    Examples:
    ; Keep (main . 1) and (main . 2) if they exist, as well as the current goal;
    ; and for each other goal, conjoin it into the current goal and delete it:
    (wrap1 ((main . 1) (main . 2)))

    ; As explained below, conjoin all subsequent siblings of the current goal
    ; into the current goal, and then delete them:
    (wrap1)

    General Form:
    (wrap1 &optional kept-goal-names)

  If kept-goal-names is not nil, the current goal is replaced by
  conjoining it with all goals other than the current goal and those
  indicated by kept-goal-names, and those other goals are deleted. If
  kept-goal-names is omitted, then the the current goal must be of
  the form (name . n), and the goals to conjoin into the current goal
  (and delete) are those with names of the form (name . k) for k >=
  n.

  NOTE: Wrap1 always ``succeeds'', even if there are no other goals to
  conjoin into the current goal (a message is printed in that case),
  and it always leaves you with no hypotheses at the top of the
  current goal's conclusion (as though top and demote had been
  executed, if necessary).

  Also see [ACL2-pc::wrap].")
 (ACL2-PC::X
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) expand and (maybe) simplify function call at the
  current subterm

    Examples:
    x --  expand and simplify.

  Also see [ACL2-pc::expand] and see [ACL2-pc::x-dumb], which do not
  perform simplification.

  For example, if the current subterm is (append a b), then after x the
  current subterm will probably be (cons (car a) (append (cdr a) b))
  if (consp a) and (true-listp a) are among the top-level hypotheses
  and governors. If there are no top-level hypotheses and governors,
  then after x the current subterm will probably be:

    (if (true-listp x)
        (if x
            (cons (car x) (append (cdr x) y))
          y)
      (apply 'binary-append (list x y))).

    General Form:
    (X &key
       rewrite normalize backchain-limit in-theory hands-off expand)

  Expand the function call at the current subterm, and simplify using
  the same conventions as with the s command (see [ACL2-pc::s]).

  Unlike s, it is permitted to set both :rewrite and :normalize to nil,
  which will result in no simplification; see [ACL2-pc::x-dumb].

  Remark (obscure): On rare occasions the current address may be
  affected by the use of x. For example, suppose we have the
  definition

    (defun g (x) (if (consp x) x 3))

  and then we enter the proof-checker with

    (verify (if (integerp x) (equal (g x) 3) t)) .

  Then after invoking the instruction (dive 2 1), so that the current
  subterm is (g x), followed by the instruction x, we would expect
  the conclusion to be (if (integerp x) (equal 3 3) t). However, the
  system actually replaces (equal 3 3) with t (because we use the
  ACL2 term-forming primitives), and hence the conclusion is actually
  (if (integerp x) t t). Therefore, the current address is put at (2)
  rather than (2 1). In such cases, a warning ``NOTE'' will be
  printed to the terminal.

  The other primitive commands to which the above ``truncation'' note
  applies are equiv, rewrite, and s.")
 (ACL2-PC::X-DUMB
  (PROOF-CHECKER-COMMANDS)
  "(atomic macro) expand function call at the current subterm, without
  simplifying

    General Form:
    x-dumb:  expand without simplification.

  Same as (expand t). See [ACL2-pc::expand].

  Also see [ACL2-pc::x], which performs simplification."))

)