/usr/share/acl2-7.2dfsg/proof-checker-a.lisp is in acl2-source 7.2dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 | ; ACL2 Version 7.2 -- A Computational Logic for Applicative Common Lisp
; Copyright (C) 2016, Regents of the University of Texas
; This version of ACL2 is a descendent of ACL2 Version 1.9, Copyright
; (C) 1997 Computational Logic, Inc. See the documentation topic NOTE-2-0.
; This program is free software; you can redistribute it and/or modify
; it under the terms of the LICENSE file distributed with ACL2.
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; LICENSE for more details.
; Written by: Matt Kaufmann and J Strother Moore
; email: Kaufmann@cs.utexas.edu and Moore@cs.utexas.edu
; Department of Computer Science
; University of Texas at Austin
; Austin, TX 78712 U.S.A.
(in-package "ACL2")
; PC globals are those that can be changed from inside the proof-checker's
; interactive loop, and whose values we want saved. Note that state-stack can
; also be changed outside the interactive loop (by use of :instruction), so we
; need to be careful. We'll manage this by keeping state-stack as a PC global,
; updating pc-output upon entry to reflect the latest value of state-stack.
(defmacro pc-value (sym)
(cond ((eq sym 'ss-alist)
'(f-get-global 'pc-ss-alist state))
(t `(cdr (assoc-eq ',sym
(f-get-global 'pc-output state))))))
(defmacro pc-assign (key val)
(cond ((eq key 'ss-alist)
`(f-put-global 'pc-ss-alist ,val state))
(t `(f-put-global
'pc-output
(put-assoc-eq ',key ,val
(f-get-global 'pc-output state))
state))))
(defun initialize-pc-acl2 (state)
(er-progn
(assign pc-output nil)
(pprogn
(pc-assign ss-alist nil)
(pc-assign old-ss nil)
(pc-assign state-stack nil)
(pc-assign next-pc-enabled-array-suffix 0)
(pc-assign pc-depth 0) ; for the proof-checker-cl-proc clause-processor
(assign in-verify-flg nil))))
(defmacro state-stack ()
'(pc-value state-stack))
(defmacro old-ss ()
'(pc-value old-ss))
; The entries in ss-alist are of the form (name state-stack . old-ss).
(defmacro ss-alist ()
'(pc-value ss-alist))
(defun define-global-name (var)
(add-suffix var "-FN"))
(defmacro define-global (var)
(let ((var-fn (define-global-name var)))
`(progn (defun ,var-fn (state)
(f-get-global ',var state))
(defmacro ,var ()
'(,var-fn state)))))
(define-global pc-prompt)
(define-global pc-prompt-depth-prefix)
(define-global pc-print-macroexpansion-flg)
; Turn the following on for debugging macro commands.
(define-global pc-print-prompt-and-instr-flg)
; We will maintain an invariant that there are no unproved goals hanging around
; in the pc-state. Moreover, for simplicity, we leave it up to each command to
; ensure that no newly-created goal has a conclusion with a non-NIL explicit
; value. The function remove-proved-goal-from-pc-state will be applied to
; remove the current goal if it has been proved.
; The pc-ens component of the state is either an enabled structure or else is
; NIL, which indicates that we should use the global enabled structure.
(defrec pc-state
(instruction
(goals . abbreviations)
local-tag-tree
pc-ens
.
tag-tree)
nil)
(defconst *pc-state-fields-for-primitives*
'(instruction goals abbreviations tag-tree local-tag-tree pc-ens))
(defmacro instruction (&optional state-stack-supplied-p)
`(access pc-state
(car ,(if state-stack-supplied-p
'state-stack
'(state-stack)))
:instruction))
(defmacro goals (&optional state-stack-supplied-p)
`(access pc-state
(car ,(if state-stack-supplied-p
'state-stack
'(state-stack)))
:goals))
(defmacro abbreviations (&optional state-stack-supplied-p)
`(access pc-state
(car ,(if state-stack-supplied-p
'state-stack
'(state-stack)))
:abbreviations))
(defmacro local-tag-tree (&optional state-stack-supplied-p)
`(access pc-state
(car ,(if state-stack-supplied-p
'state-stack
'(state-stack)))
:local-tag-tree))
(defmacro pc-ens (&optional state-stack-supplied-p)
`(access pc-state
(car ,(if state-stack-supplied-p
'state-stack
'(state-stack)))
:pc-ens))
(defmacro tag-tree (&optional state-stack-supplied-p)
`(access pc-state
(car ,(if state-stack-supplied-p
'state-stack
'(state-stack)))
:tag-tree))
; A state-stack is a list of goal records. The goal contains explicit hyps,
; and also (via current-addr) implicit if-term governors. Depends-on is the
; first suffix available for subgoals of the current goal; so, (goal-name . n)
; has been used at some point for exactly those positive integers n for which n
; < depends-on.
(defrec goal
(conc depends-on
(hyps . current-addr)
goal-name)
t)
(defconst *goal-fields*
'(conc hyps current-addr goal-name depends-on))
(defmacro conc (&optional ss-supplied-p)
`(access goal (car (goals ,ss-supplied-p)) :conc))
(defmacro hyps (&optional ss-supplied-p)
`(access goal (car (goals ,ss-supplied-p)) :hyps))
(defmacro current-addr (&optional ss-supplied-p)
`(access goal (car (goals ,ss-supplied-p)) :current-addr))
(defmacro goal-name (&optional ss-supplied-p)
`(access goal (car (goals ,ss-supplied-p)) :goal-name))
(defmacro depends-on (&optional ss-supplied-p)
`(access goal (car (goals ,ss-supplied-p)) :depends-on))
(defmacro make-official-pc-command (sym)
`(intern-in-package-of-symbol (symbol-name ,sym)
'acl2-pc::acl2-pkg-witness))
(defun intern-in-keyword-package (sym)
(declare (xargs :guard (symbolp sym)))
(intern (symbol-name sym) "KEYWORD"))
(defun make-pretty-pc-command (x)
(declare (xargs :guard (symbolp x)))
;; Returns the user-and-stored version of the command x.
(intern-in-keyword-package x))
(defun make-pretty-pc-instr (instr)
(declare (xargs :guard (or (symbolp instr)
(and (consp instr)
(symbolp (car instr))))))
(if (atom instr)
(make-pretty-pc-command instr)
(if (null (cdr instr))
(make-pretty-pc-command (car instr))
(cons (make-pretty-pc-command (car instr))
(cdr instr)))))
(defmacro change-pc-state (pc-s &rest args)
(list* 'change 'pc-state pc-s args))
(defun make-official-pc-instr (instr)
; This function always returns a syntactically legal instruction, i.e., a true
; list whose car is a symbol in the ACL2-PC package
(if (consp instr)
(if (and (symbolp (car instr))
(true-listp (cdr instr)))
(cons (make-official-pc-command (car instr)) (cdr instr))
(list (make-official-pc-command 'illegal) instr))
(if (symbolp instr)
(list (make-official-pc-command instr))
(if (and (integerp instr)
(> instr 0))
(list (make-official-pc-command 'dv) instr)
(list (make-official-pc-command 'illegal) instr)))))
(defun check-formals-length (formals args fn ctx state)
(declare (xargs :guard (and (symbol-listp formals)
(true-listp args))))
(let ((max-length (if (member-eq '&rest formals)
'infinity
(length (remove '&optional formals))))
(min-length (let ((k (max (length (member-eq '&rest formals))
(length (member-eq '&optional formals)))))
(- (length formals) k)))
(n (length args)))
(if (and (<= min-length n)
(or (eq max-length 'infinity)
(<= n max-length)))
(value t)
(if (equal min-length max-length)
(er soft ctx
"Wrong number of arguments in argument list ~x0 to ~x1. There should ~
be ~n2 argument~#3~[s~/~/s~] to ~x1."
args fn min-length (zero-one-or-more min-length))
(if (equal max-length 'infinity)
(er soft ctx
"Wrong number of arguments in argument list ~x0 to ~x1. There should ~
be at least ~n2 argument~#3~[s~/~/s~] to ~x1."
args fn min-length (min min-length 2))
(er soft ctx
"Wrong number of arguments in argument list ~x0 to ~x1. There should ~
be between ~n2 and ~n3 arguments to ~x1."
args fn min-length max-length))))))
(defun check-&optional-and-&rest (formals state)
(cond
((not (true-listp formals))
(er soft 'check-&optional-and-&rest
"The formals are supposed to be a true list, but they are ~x0."
formals))
;; &optional can only occur at most once
((member-eq '&optional (cdr (member-eq '&optional formals)))
(er soft 'check-&optional-and-&rest
"The &optional keywords occurs more than once in ~x0."
formals))
;; &rest can only occur next to the end
(t (let ((r-formals (reverse formals)))
(if (or (eq (car r-formals) '&optional)
(eq (car r-formals) '&rest))
(er soft 'check-&optional-and-&rest
"The &optional and &rest keywords may not occur as the last element of ~
the formals list, ~x0."
formals)
(if (member-eq '&rest (cddr r-formals))
(er soft 'check-&optional-and-&rest
"The &rest keyword may not occur except as the next-to-last ~
member of the formals list, which is not the case for ~x0."
formals)
(value t)))))))
(defun make-let-pairs-from-formals (formals arg)
;; e.g. (make-let-pairs-from-formals '(a b c) 'x) =
;; ((a (car x)) (b (car (cdr x))) (c (car (cdr (cdr x)))))
(if (consp formals)
(if (eq (car formals) '&optional)
(make-let-pairs-from-formals (cdr formals) arg)
(if (eq (car formals) '&rest)
(list (list (cadr formals) arg))
(cons (list (car formals) (list 'car arg))
(make-let-pairs-from-formals (cdr formals) (list 'cdr arg)))))
nil))
;; The following are like all-vars, but heuristic in that they deal with untranslated forms.
(mutual-recursion
(defun all-symbols (form)
(cond
((symbolp form)
(list form))
((atom form)
nil)
((eq (car form) (quote quote))
nil)
(t
;; used to have just (all-symbols-list (cdr form)) below, but
;; then (cond (current-addr ...) ...) messed up
(union-eq (all-symbols (car form))
(all-symbols-list (cdr form))))))
(defun all-symbols-list (x)
(if (consp x)
(union-eq (all-symbols (car x))
(all-symbols-list (cdr x)))
nil))
)
(defun make-access-bindings (record-name record fields)
(if (consp fields)
(cons `(,(car fields) (access ,record-name ,record ,(intern-in-keyword-package (car fields))))
(make-access-bindings record-name record (cdr fields)))
nil))
(defun let-form-for-pc-state-vars (form)
(let ((vars (all-symbols form)))
(let* ((goal-vars
(intersection-eq *goal-fields* vars))
(pc-state-vars
(if goal-vars
(intersection-eq *pc-state-fields-for-primitives* (cons 'goals vars))
(intersection-eq *pc-state-fields-for-primitives* vars))))
`(let ,(make-access-bindings 'pc-state 'pc-state pc-state-vars)
(let ,(make-access-bindings 'goal '(car goals) goal-vars)
,form)))))
(defun check-field-names (formals ctx state)
(let ((bad-formals (intersection-eq formals
(append *goal-fields* *pc-state-fields-for-primitives*))))
(if bad-formals
(er soft ctx
"It is illegal to use names of pc-state or goal fields as formals to~
define commands with ~x0, in this case ~&1."
ctx bad-formals)
(value t))))
(defmacro print-no-change (&optional str alist (col '0))
`(print-no-change-fn ,str ,alist ,col state))
(defmacro print-no-change2 (&rest args)
`(pprogn ,(cons 'print-no-change args)
(mv nil state)))
(defun print-no-change-fn (str alist col state)
(declare (xargs :guard (or (stringp str)
(null str))))
(io? proof-checker nil state
(col alist str)
(mv-let (col state)
(let ((channel (proofs-co state)))
(mv-let (col state)
(fmt1 "~|*** NO CHANGE ***" nil col channel state nil)
(if str
(mv-let (col state)
(fmt1 " -- " nil col channel state nil)
(mv-let (col state)
(fmt1 str alist col channel state
(term-evisc-tuple nil state))
(fmt1 "~|" nil col channel state nil)))
(fmt1 "~|" nil col channel state nil))))
(declare (ignore col))
state)))
(defmacro maybe-update-instruction (instr pc-state-and-state)
`(mv-let (pc-state state)
,pc-state-and-state
(mv (and pc-state ; in case the instruction failed!
(if (access pc-state pc-state :instruction)
pc-state
(change-pc-state pc-state :instruction (make-pretty-pc-instr ,instr))))
state)))
(defun pc-primitive-defun-form (raw-name name formals doc body)
`(defun ,name (args state)
;; notice that args aren't ignored, since even if they're nil, they're
;; used for arity checking
,@(and doc (list doc))
(mv-let
;; can't use er-progn because we return (mv nil state) for errors
(erp v state)
(check-formals-length ',formals args ',raw-name ',name state)
(declare (ignore v))
(if erp
(mv nil state)
(let ((pc-state
(change pc-state
(car (state-stack))
:instruction nil))
,@(make-let-pairs-from-formals formals 'args))
;; in case we have (declare (ignore pc-state))
,@(butlast body 1)
(maybe-update-instruction
(cons ',raw-name args)
,(let-form-for-pc-state-vars (car (last body)))))))))
(defun pc-command-table-guard (key val wrld)
; We wrap the pc-command-table guard into this function so that we can redefine
; it when modifying the ACL2 system.
(and (function-symbolp key wrld)
(or (eq val 'macro)
(eq val 'atomic-macro)
(eq val 'meta)
(and (eq val 'primitive)
(global-val 'boot-strap-flg wrld)))))
(table pc-command-table nil nil
:guard
; Before adding this table guard after Version_4.3, we were able to certify the
; following book.
; (in-package "ACL2")
; (program)
; (set-state-ok t)
; (define-pc-primitive foo (&rest rest-args)
; (declare (ignore rest-args))
; (mv (change-pc-state pc-state :goals (cdr goals))
; state))
; (logic)
; (defthm bug
; nil
; :instructions (:foo)
; :rule-classes nil)
(pc-command-table-guard key val world))
(defmacro add-pc-command (name command-type)
`(table pc-command-table ',name ,command-type))
(defmacro pc-command-type (name)
`(cdr (assoc-equal ,name (table-alist 'pc-command-table (w state)))))
(defmacro print-no-change3 (&optional str alist (col '0))
`(pprogn (print-no-change-fn ,str ,alist ,col state)
(value nil)))
(defun add-pc-command-1 (name command-type state)
(table-fn
'pc-command-table
`(',name ',command-type)
state
(list 'table 'pc-command-table (list 'quote name) (list 'quote command-type))))
(defun toggle-pc-macro-fn (name new-tp state)
(let ((tp (pc-command-type name)))
(if (null tp)
(print-no-change3 "The command ~x0 is not a proof-checker command."
(list (cons #\0 name)))
(case tp
(macro (if (or (null new-tp) (equal (symbol-name new-tp) "ATOMIC-MACRO"))
(add-pc-command-1 name 'atomic-macro state)
(if (equal (symbol-name new-tp) "MACRO")
(print-no-change3 "~x0 is already a non-atomic macro."
(list (cons #\0 name)))
(print-no-change3 "You can't change a proof-checker macro ~
to have type ~x0."
(list (cons #\0 new-tp))))))
(atomic-macro (if (or (null new-tp) (equal (symbol-name new-tp) "MACRO"))
(add-pc-command-1 name 'macro state)
(if (equal (symbol-name new-tp) "ATOMIC-MACRO")
(print-no-change3 "~x0 is already an atomic macro."
(list (cons #\0 name)))
(print-no-change3 "You can't change a proof-checker atomic macro ~
to have type ~x0."
(list (cons #\0 new-tp))))))
(otherwise (print-no-change3 "You can't change the type of a proof-checker ~x0 command."
(list (cons #\0 tp))))))))
(defun pc-meta-or-macro-defun (raw-name name formals doc body)
`(defun ,name (args state)
;; notice that args aren't ignored, since even if they're nil, they're
;; used for arity checking
(declare (xargs :mode :program :stobjs state))
,@(and doc (list doc))
(er-progn
(check-formals-length ',formals args ',raw-name ',name state)
(let ((state-stack (state-stack))
,@(make-let-pairs-from-formals formals 'args))
;; in case we have a doc-string and/or declare forms
,@(butlast body 1)
(let ((very-silly-copy-of-state-stack state-stack))
; This silly trick ensures that we don't have to declare state-stack ignored.
(declare (ignore very-silly-copy-of-state-stack))
,(car (last body)))))))
(defun goal-names (goals)
(if (consp goals)
(cons (access goal (car goals) :goal-name)
(goal-names (cdr goals)))
nil))
(defun instructions-of-state-stack (ss acc)
(if (consp ss)
(instructions-of-state-stack
(cdr ss)
(cons (access pc-state (car ss) :instruction)
acc))
;; at the end we cdr the accumulator to get rid of the `start' instruction
(cdr acc)))
(defmacro fms0 (str &optional alist col (evisc-tuple 'nil evisc-tuple-p))
;; This should only be called when the cursor is on the left margin, or when
;; a fresh line or new line indicator starts the string, unless col is
;; supplied.
`(mv-let (new-col state)
(fmt1 ,str ,alist
,(or col
0)
(proofs-co state)
state
,(if evisc-tuple-p evisc-tuple '(term-evisc-tuple nil state)))
(declare (ignore new-col))
state))
(defmacro with-output-forced (output-chan signature code)
; Use this to force output to output-chan after executing the give code. See
; print-pc-prompt and print-prompt for examples that make the usage pretty
; obvious.
(cond ((or (not (true-listp signature))
(member-eq output-chan signature))
(er hard 'with-output-forced
"Ill-formed call: ~x0"
`(with-output-forced ,output-chan ,signature ,code)))
(t
#+acl2-loop-only
code
#-acl2-loop-only
`(mv-let ,signature
,code
#-acl2-loop-only
(progn (force-output (get-output-stream-from-channel ,output-chan))
(mv ,@signature))
#+acl2-loop-only
(mv ,@signature)))))
(defun print-pc-prompt (state)
;; Does NOT print a new line before or after, but assumes that we're in column 0.
(let ((chan (proofs-co state)))
(with-output-forced
chan
(col state)
(io? proof-checker nil (mv col state)
(chan)
(fmt1 (pc-prompt) nil 0 chan state nil)
:default-bindings ((col 0))))))
(defun pc-macroexpand (raw-instr state)
; We assume that instr has already been "parsed", so that it's a list whose car
; is in the ACL2-PC package. This function repeatedly expands instr until we
; have an answer. At one time we intended not to allow state to be returned by
; macroexpansion, but now we want to take a more general view that all kinds of
; what used to be called "help" commands are implemented by macro commands.
; Notice that unlike Lisp macros, the global Lisp state is available for the
; expansion. Hence we can query the ACL2 database etc.
(let ((instr (make-official-pc-instr raw-instr)))
; Notice that instr is syntactically valid, i.e. is a true-listp headed by a
; symbol in the acl2-pc package -- even if raw-instr isn't of this form.
(if (member-eq (pc-command-type (car instr)) '(macro atomic-macro))
(er-let* ((val (xtrans-eval (list (car instr)
(list 'quote (cdr instr))
'state)
nil t t
'pc-macroexpand
state t)))
(pc-macroexpand val state))
; So, now we have an instruction that is primitive or meta.
(value instr))))
(defun find-goal (name goals)
(if (consp goals)
(if (equal name (access goal (car goals) :goal-name))
(car goals)
(find-goal name (cdr goals)))
nil))
(defun print-all-goals-proved-message (state)
(io? proof-checker nil state
nil
(pprogn
(print-no-change "There are no unproved goals!")
(if (f-get-global 'in-verify-flg state)
(fms0 "You may wish to exit.~%")
state))))
(defmacro when-goals (form)
`(if (goals t)
,form
(print-all-goals-proved-message state)))
(defmacro when-goals-trip (form)
`(if (goals t)
,form
(pprogn (print-all-goals-proved-message state)
(value 'skip))))
(defun current-immediate-deps (goal-name goal-names)
;; Returns all names in goal-names that are immediate dependents of goal-name.
(if (consp goal-names)
(if (and (consp (car goal-names))
(equal goal-name (caar goal-names)))
(cons (car goal-names)
(current-immediate-deps goal-name (cdr goal-names)))
(current-immediate-deps goal-name (cdr goal-names)))
nil))
(defun goal-dependent-p (parent name)
;; says whether parent is a proper ancestor of name
(if (consp name)
(if (equal parent (car name))
t
(goal-dependent-p parent (car name)))
nil))
(defun current-all-deps (goal-name goal-names)
;; Returns all names in goal-names that are proper dependents (not necessarily
;; immediate) of goal-name.
(if (consp goal-names)
(if (goal-dependent-p goal-name (car goal-names))
(cons (car goal-names)
(current-immediate-deps goal-name (cdr goal-names)))
(current-immediate-deps goal-name (cdr goal-names)))
nil))
(defun maybe-print-proved-goal-message (goal old-goals goals state)
; Here goal is a goal in the existing pc-state and goals is the goals in the
; new pc-state. old-goals is the goals in the existing pc-state.
; Warning: This function should be called under (io? proof-checker ...).
(let* ((name (access goal goal :goal-name))
(new-names (goal-names goals))
(names (set-difference-equal new-names (goal-names old-goals))))
(pprogn (if names
(fms0 "~|~%Creating ~n0 new ~#1~[~/goal~/goals~]: ~&2.~%"
(list (cons #\0 (length names))
(cons #\1 (zero-one-or-more (length names)))
(cons #\2 names))
0 nil)
state)
(if (find-goal name goals)
state
(let ((unproved-deps (current-all-deps name new-names)))
(if unproved-deps
(fms0 "~|~%The proof of the current goal, ~x0, has been ~
completed. However, the following subgoals remain ~
to be proved:~%~ ~ ~&1.~%Now proving ~x2.~%"
(list (cons #\0 name)
(cons #\1 unproved-deps)
(cons #\2 (access goal (car goals)
:goal-name)))
0 nil)
(if goals
(fms0 "~|~%The proof of the current goal, ~x0, has been ~
completed, as have all of its subgoals.~%Now proving ~x1.~%"
(list (cons #\0 name)
(cons #\1 (access goal (car goals)
:goal-name)))
0 nil)
(pprogn
(fms0 "~|*!*!*!*!*!*!* All goals have been proved! ~
*!*!*!*!*!*!*~%")
(if (f-get-global 'in-verify-flg state)
(fms0 "You may wish to exit.~%")
state)))))))))
(defun accumulate-ttree-in-pc-state (pc-state state)
(er-let* ((ttree (accumulate-ttree-and-step-limit-into-state
(access pc-state pc-state :tag-tree)
:skip
state)))
(value (change-pc-state pc-state :tag-tree ttree))))
(defun pc-process-assumptions (pc-ens ttree wrld state)
; Like process-assumptions, but returns (mv clauses known-assumptions ttree
; state).
(let ((n (count-assumptions ttree)))
(pprogn
(cond
((< n 101)
state)
(t
(io? prove nil state
(n)
(fms "~%Note: processing ~x0 forced hypotheses which we now ~
collect)~%"
(list (cons #\0 n))
(proofs-co state) state nil))))
(mv-let
(n0 assns pairs ttree1)
(extract-and-clausify-assumptions nil ttree nil pc-ens wrld
(splitter-output))
(cond
((= n0 0)
(mv nil nil ttree state))
(t
(mv (strip-cdrs pairs) assns ttree1 state)))))))
(defun make-implication (assumptions concl)
(cond
(assumptions
(fcons-term* (quote implies) (conjoin assumptions) concl))
(t concl)))
(defun cl-set-to-implications (cl-set)
(if (null cl-set)
nil
(cons (make-implication (butlast (car cl-set) 1)
(car (last (car cl-set))))
(cl-set-to-implications (cdr cl-set)))))
(defun known-assumptions (type-alist assns)
; Here assns is a list of cleaned-up assumptions. We want to collect those
; assumptions whose hypotheses are clearly true under the given type-alist.
; There seems to be no point in trying to add the ones that don't have this
; property, since they'd only introduce case splits. In fact, though, probably
; most of the assumptions we encounter will have this property.
(cond
((null assns)
nil)
((dumb-type-alist-implicationp type-alist
(access assumption (car assns) :type-alist))
(cons (access assumption (car assns) :term)
(known-assumptions type-alist (cdr assns))))
(t (known-assumptions type-alist (cdr assns)))))
(defun add-assumptions-to-top-goal
(goal-unproved-p known-assumptions forced-goals remaining-goals)
(if forced-goals
(if goal-unproved-p
(cons (if known-assumptions
(if forced-goals
(change goal (car remaining-goals)
:hyps
(append (access goal (car remaining-goals) :hyps)
known-assumptions)
:depends-on (+ (access goal
(car remaining-goals)
:depends-on)
(length forced-goals)))
(change goal (car remaining-goals)
:hyps
(append (access goal (car remaining-goals) :hyps)
known-assumptions)))
(car remaining-goals))
(append forced-goals (cdr remaining-goals)))
(append forced-goals remaining-goals))
; Otherwise, we assume that since forced-goals is nil, assns is nil.
; This saves us the cons above.
remaining-goals))
(defun unproved-goals (pc-state)
(let ((goals (access pc-state pc-state :goals)))
(if (and goals
(equal (access goal (car goals) :conc)
*t*))
(cdr goals)
goals)))
(defun make-pc-ens (pc-ens state)
(if (null pc-ens)
(ens state)
pc-ens))
(defun initial-rcnst-from-ens (ens wrld state splitter-output)
(make-rcnst ens wrld state
:splitter-output splitter-output
:force-info t))
(defun make-new-goals-fixed-hyps (termlist hyps goal-name start-index)
;; similar to make-new-goals
(if (consp termlist)
(cons (make goal
:conc (car termlist)
:hyps hyps
:current-addr nil
:goal-name (cons goal-name start-index)
:depends-on 1)
(make-new-goals-fixed-hyps (cdr termlist) hyps goal-name
(1+ start-index)))
nil))
(defun pc-single-step-primitive (instr state)
(state-global-let*
((guard-checking-on nil)) ; see the Essay on Guard Checking
(let* ((goals (goals))
(wrld (w state))
(old-tag-tree (tag-tree)))
(cond
((null goals)
(pprogn (print-all-goals-proved-message state)
(mv nil nil state)))
(t
(mv-let
(erp stobjs-out/vals state)
(trans-eval (list (car instr)
(list 'quote (cdr instr))
'state)
'pc-single-step state t)
(let ((vals (cdr stobjs-out/vals)))
; Vals is (x replaced-state), where x is a pc-state or nil.
(cond
(erp
(pprogn (print-no-change
; We used to say "Very odd" here, but it is perfectly natural to get such an
; error if there is an rdepth-error.
"An error occurred in executing ~X01."
(list (cons #\0 instr)
(cons #\1 (abbrev-evisc-tuple state))))
(mv 'pc-single-step-error-primitive nil state)))
(t
(assert$
(equal (car stobjs-out/vals) '(nil state))
(cond
((car vals) ;so, there is a new state
(let ((pc-ens (make-pc-ens (pc-ens) state)))
(mv-let
(step-limit bad-ass ttree)
(resume-suspended-assumption-rewriting
(access pc-state (car vals) :local-tag-tree)
nil ;ancestors
nil ;gstack
nil ;simplify-clause-pot-lst
(initial-rcnst-from-ens pc-ens
wrld
state
(splitter-output))
wrld
state
(initial-step-limit wrld state))
(declare (ignore step-limit))
(cond
(bad-ass
(pprogn
(let ((assumnote
; Is the assumnotes field always non-empty?
(car (access assumption bad-ass :assumnotes))))
(print-no-change
"A false assumption was encountered from applying the ~
rune ~x0 to the target ~x1."
(list (cons #\0 (access assumnote assumnote :rune))
(cons #\1 (access assumnote assumnote :target)))))
(mv nil nil state)))
(t
(let* ((returned-pc-state (car vals))
(remaining-goals (unproved-goals returned-pc-state))
(goal-name (goal-name)) ; original goal-name
(goal-unproved-p
(and remaining-goals
(equal goal-name
(access goal (car remaining-goals)
:goal-name))))
(hyps (hyps)) ; original hyps
(returned-goal
(let* ((goals (access pc-state returned-pc-state
:goals)))
(and goals
(equal goal-name
(access goal (car goals) :goal-name))
(car goals))))
(depends-on
(cond (returned-goal (access goal returned-goal
:depends-on))
(t ; goal has disappeared; use old depends-on
(depends-on)))))
(mv-let
(cl-set assns ttree state)
(pc-process-assumptions pc-ens ttree wrld state)
(mv-let
(contradictionp hyps-type-alist ttree0)
(cond ((and assns goal-unproved-p)
(type-alist-clause (dumb-negate-lit-lst hyps)
nil nil nil pc-ens wrld nil
nil))
(t ; else don't bother
(mv nil nil nil)))
(cond
(contradictionp
(er-let*
((new-pc-state
(let ((local-ttree (cons-tag-trees ttree ttree0)))
(accumulate-ttree-in-pc-state
(change-pc-state
(car vals)
:goals
(cdr goals)
:tag-tree
(cons-tag-trees local-ttree old-tag-tree)
:local-tag-tree
local-ttree)
state))))
(pprogn (io? proof-checker nil state
(instr goal-name)
(fms0 "~|AHA! A contradiction has ~
been discovered in the ~
hypotheses of goal ~x0 in the ~
course of executing ~
instruction ~x1, in the ~
process of preparing to deal ~
with forced assumptions.~|"
(list (cons #\0 goal-name)
(cons #\0 instr))
0 nil))
(io? proof-checker nil state
(goals)
(maybe-print-proved-goal-message
(car goals) goals (cdr goals) state))
(pc-assign state-stack
(cons new-pc-state
(state-stack)))
(value new-pc-state))))
(t
(let* ((termlist
(cl-set-to-implications cl-set))
(forced-goals
(make-new-goals-fixed-hyps
termlist hyps goal-name depends-on))
(new-goals
(add-assumptions-to-top-goal
goal-unproved-p
(known-assumptions hyps-type-alist assns)
forced-goals
remaining-goals))
(pc-state-1
(change-pc-state (car vals)
:goals new-goals
:tag-tree
(cons-tag-trees
ttree old-tag-tree)
:local-tag-tree ttree)))
(er-let* ((new-pc-state
(accumulate-ttree-in-pc-state
pc-state-1
state)))
(pprogn
(cond
(forced-goals
(io? proof-checker nil state
(forced-goals)
(fms0
"~|~%NOTE (forcing): Creating ~
~n0 new ~#1~[~/goal~/goals~] ~
due to FORCE or CASE-SPLIT ~
hypotheses of rules.~%"
(list
(cons #\0 (length forced-goals))
(cons #\1
(zero-one-or-more
(length forced-goals)))))))
(t state))
(io? proof-checker nil state
(new-goals goals)
(maybe-print-proved-goal-message
(car goals) goals new-goals state))
(pc-assign
state-stack
(cons new-pc-state (state-stack)))
(value new-pc-state))))))))))))))
(t
(mv nil nil state)))))))))))))
(defun maybe-print-macroexpansion (instr raw-instr state)
(let ((pc-print-macroexpansion-flg (pc-print-macroexpansion-flg)))
(if (and pc-print-macroexpansion-flg
(not (eq (car instr) (make-official-pc-command 'lisp)))
(not (equal instr (make-official-pc-instr raw-instr))))
(io? proof-checker nil state
(pc-print-macroexpansion-flg instr)
(fms0 ">> ~x0~|" (list (cons #\0 instr)) 0
(if (and (consp pc-print-macroexpansion-flg)
(integerp (car pc-print-macroexpansion-flg))
(integerp (cdr pc-print-macroexpansion-flg))
(> (car pc-print-macroexpansion-flg) 0)
(> (cdr pc-print-macroexpansion-flg) 0))
(evisc-tuple (car pc-print-macroexpansion-flg)
(cdr pc-print-macroexpansion-flg)
nil nil)
nil)))
state)))
(defun pc-single-step-1 (raw-instr state)
; Returns a triple (signal value new-state). Among other things, new-state
; contains the new value of the state-stack. Value is thought of as
; determining "success" or failure of raw-instr -- in particular, if raw-instr
; is primitive (or expands to a primitive instruction) then value is the new
; state (upon success) or nil (upon failure). Except, signal is handy for
; reporting errors. Signals are to be used only for simulating THROW and
; CATCH, unless one really wants to throw to the top-level loop in case of a
; "really bad" error.
(mv-let
(erp instr state)
(pc-macroexpand raw-instr state)
(if erp
(pprogn (io? proof-checker nil state
(raw-instr)
(fms0 "~%Macroexpansion of instruction ~x0 failed!~%"
(list (cons #\0 raw-instr))))
(mv erp nil state))
(case (pc-command-type (car instr))
(primitive
(pprogn (maybe-print-macroexpansion instr raw-instr state)
(pc-single-step-primitive instr state)))
(meta
(cond ((and (not (f-get-global 'in-verify-flg state))
(not (getpropc (car instr) 'predefined nil (w state))))
(er soft 'proof-checker
"You may only invoke a user-defined proof-checker meta ~
command, such as ~x0, when you are inside the ~
interactive ~x1 loop."
(car instr)
'verify))
(t
(pprogn (maybe-print-macroexpansion instr raw-instr state)
(mv-let (erp stobjs-out/vals state)
; Vals is a list (er x replaced-state), where er is to be passed as the error
; flag in the triple returned by pc-single-step. We need to call trans-eval
; here, rather than xtrans-eval, so that the effects of meta commands are not
; erased. But then we have to disallow meta commands during replay.
(trans-eval (list (car instr)
(list 'quote (cdr instr))
'state)
'pc-single-step
state t)
(assert$
(equal (car stobjs-out/vals)
*error-triple-sig*)
(if erp ; impossible case?
(pprogn (print-no-change
"Very odd -- an error ~
occurred in executing ~x0."
(list (cons #\0 instr)))
(mv 'pc-single-step-error-meta
nil state))
(let ((vals (cdr stobjs-out/vals)))
(mv (car vals) (cadr vals) state)))))))))
((macro atomic-macro)
(value (er hard 'pc-single-step
"Encountered instruction ~x0 whose pc-macroexpansion ~
produced ~x1, which is headed by a macro command!"
raw-instr instr)))
(otherwise
(pprogn (print-no-change "Undefined instruction, ~x0."
(list (cons #\0
(make-pretty-pc-instr instr))))
;; maybe I should cause an error below -- but then I should handle it too
(value nil)))))))
(defun union-lastn-pc-tag-trees (n ss acc)
; Union together the most recent n local-tag-tree fields of states in the
; state-stack ss.
(if (zp n)
acc
(union-lastn-pc-tag-trees (1- n)
(cdr ss)
(cons-tag-trees
(access pc-state (car ss) :local-tag-tree)
acc))))
(defun pc-single-step (raw-instr state)
;; We assume that raw-instr is an "official" instr.
;; same as pc-single-step-1, except that we deal with atomic macro commands
(declare (xargs :guard (consp raw-instr)))
(let ((tp (pc-command-type (car raw-instr))))
(if (eq tp 'atomic-macro)
(let* ((saved-ss (state-stack))
(old-len (length saved-ss)))
(mv-let (erp val state)
(pc-single-step-1 raw-instr state)
(let* ((new-ss (state-stack))
(new-len (length new-ss))
(diff (- new-len old-len)))
(if (and (< old-len new-len)
(equal saved-ss (nthcdr diff new-ss)))
(pprogn (pc-assign
state-stack
(cons (change pc-state
(car new-ss)
:instruction
(make-pretty-pc-instr raw-instr)
:local-tag-tree
(union-lastn-pc-tag-trees
diff new-ss nil))
saved-ss))
;; Notice that atomic macros can "return errors"
;; even when they "fail".
(mv erp val state))
(mv erp val state)))))
(pc-single-step-1 raw-instr state))))
(defconst *pc-complete-signal* 'acl2-pc-complete)
(defun print-re-entering-proof-checker (eof-p state)
(io? proof-checker nil state (eof-p)
(fms0
"~|~%~
/-----------------------------------------------------------\\~%~
| Note: Re-entering the proof-checker after ~s0 |~%~
| Submit EXIT if you want to exit the proof-checker. |~%~
\\-----------------------------------------------------------/~%"
(list (cons #\0 (cond (eof-p
"end of file. ")
(t
"error or abort.")))))))
(defun pc-main-loop (instr-list quit-conditions last-value
pc-print-prompt-and-instr-flg state)
; Returns an error triple whose state has the new state-stack "installed".
; Here instr-list is a (true) list of instructions or else is a non-NIL atom,
; probably *standard-oi*, from which the instructions are to be read. Notice
; that by taking (append instrs <stream>), one is able to get the system to
; read from the instr-list input until there are no more instructions, and then
; to read from the stream.
; Quit-conditions indicates when we want to quit; it is a list of atoms.
; 'signal means that we quit when there's a signal, while 'value means that we
; quit when the value is nil. If quit-conditions is empty (nil) then we keep
; going, no matter what. However, a signal to quit (i.e. *pc-complete-signal*)
; is always obeyed if 'exit is a quit-condition.
; This only returns non-nil if we exit successfully, or if all instructions
; succeed (null erp, non-nil value) without error.
(if (null instr-list)
(mv nil last-value state)
(mv-let
(col state)
(if pc-print-prompt-and-instr-flg
(print-pc-prompt state)
(mv 0 state))
(mv-let
(erp instr state)
(if (consp instr-list)
(pprogn (if pc-print-prompt-and-instr-flg
(io? proof-checker nil state
(col instr-list)
(fms0 "~y0~|"
(list (cons #\0
(car instr-list)))
col))
state)
(value (car instr-list)))
(state-global-let*
((infixp nil))
(read-object instr-list state)))
(cond
(erp
; Read-object encountered end-of-file, presumably because a control-d was
; issued. Note that raw Lisp errors are not handled here, but rather, in
; ld-read-eval-print, where a (verify) command is re-issued (to get back into
; the proof-checker) instead of taking input from the user.
(pprogn
(print-re-entering-proof-checker t state)
(pc-main-loop instr-list quit-conditions last-value
pc-print-prompt-and-instr-flg state)))
(t (mv-let
(signal val state)
(pc-single-step
(make-official-pc-instr instr)
state)
(cond
((or (and signal
(or (member-eq 'signal quit-conditions)
(and (eq signal *pc-complete-signal*)
(member-eq 'exit quit-conditions))))
(and (null val)
(member-eq 'value quit-conditions)))
; We set 'in-verify-flg back to nil when exiting explicitly from verify-fn and,
; in case we never get that chance because of an interrupt or abort, in
; ld-read-eval-print.
(mv signal val state))
(t (let ((new-last-value
; We ultimately "succeed" if and only if every instruction "succeeds". We use
; a let-binding here in order to avoid an Allegro CL compiler bug (found using
; Allegro CL 8.0, but told by Franz support that it still exists in Allegro CL
; 9.0).
(and last-value (null signal) val)))
(pc-main-loop
(if (consp instr-list)
(cdr instr-list)
instr-list)
quit-conditions
new-last-value
pc-print-prompt-and-instr-flg
state)))))))))))
(defun make-initial-goal (term)
(make goal
:conc term
:hyps nil
:current-addr nil
:goal-name 'main
:depends-on 1))
(defun initial-state-stack (term raw-term event-name rule-classes pc-ens)
(list (make pc-state
:instruction (list :start
(list event-name rule-classes raw-term))
:goals (list (make-initial-goal term))
:local-tag-tree nil
:tag-tree nil
:abbreviations nil
:pc-ens pc-ens)))
(defun event-name-and-types-and-raw-term (state-stack)
(cadr (access pc-state (car (last state-stack)) :instruction)))
(defmacro install-initial-state-stack (term raw-term event-name rule-classes)
`(pprogn
(pc-assign
state-stack
(initial-state-stack ,term ,raw-term ,event-name ,rule-classes
;; the initial enabled structure is nil, meaning
;; that we should use the global enabled structure
nil))
(pc-assign old-ss nil)))
(defun pc-main1 (instr-list quit-conditions pc-print-prompt-and-instr-flg
state)
(with-prover-step-limit!
:start
(pc-main-loop instr-list quit-conditions t pc-print-prompt-and-instr-flg
state)))
(defun pc-main (term raw-term event-name rule-classes instr-list
quit-conditions pc-print-prompt-and-instr-flg
in-verify-flg state)
(pprogn (install-initial-state-stack term raw-term event-name rule-classes)
(cond (in-verify-flg
(f-put-global 'in-verify-flg in-verify-flg state))
(t
; It is tempting to assert (eq (f-get-global 'in-verify-flg state) nil). But
; we can get here by way of calling state-from-instructions, which is used to
; replay proof-checker commands upon exit, and where in-verify-flg is already
; true.
state))
(pc-main1 instr-list quit-conditions pc-print-prompt-and-instr-flg
state)))
(defun pc-top (raw-term event-name rule-classes instr-list quit-conditions
in-verify-flg state)
;; Here instr-list can have a non-nil last cdr, meaning "proceed
;; interactively".
(declare (xargs :guard (symbolp event-name)))
(mv-let (erp term state)
(translate raw-term t t t 'pc-top (w state) state)
; known-stobjs = t (stobjs-out = t)
; Translate, above, does not enforce the mv-let or stobj signature rules.
; It does insist that the translation contain no :program mode functions.
(if erp
(mv t nil state)
(pc-main term raw-term event-name rule-classes instr-list
quit-conditions t in-verify-flg state))))
(mutual-recursion
; Keep this in sync with termp.
(defun illegal-fnp (x w)
(cond ((atom x) nil)
((eq (car x) 'quote)
nil)
((symbolp (car x))
(let ((arity (arity (car x) w)))
(if (and arity
(eql (length (cdr x)) arity))
(illegal-fnp-list (cdr x) w)
(car x))))
((consp (car x))
(illegal-fnp-list (cdr x) w))
(t nil)))
(defun illegal-fnp-list (x w)
(cond ((endp x) nil)
(t (or (illegal-fnp (car x) w)
(illegal-fnp-list (cdr x) w)))))
)
(defun verify-fn (raw-term raw-term-supplied-p event-name rule-classes
instructions state)
(cond
((f-get-global 'in-verify-flg state)
(er soft 'verify
"You are apparently already inside the VERIFY interactive loop. It ~
is illegal to enter such a loop recursively."))
(t
(let ((ld-level (f-get-global 'ld-level state)))
(mv-let
(erp val state)
(cond
(raw-term-supplied-p
(state-global-let*
((print-base 10)
(print-radix nil)
(inhibit-output-lst
(remove1-eq 'proof-checker
(f-get-global 'inhibit-output-lst state))))
(pc-top raw-term event-name rule-classes
(append instructions *standard-oi*)
(list 'exit)
ld-level
state)))
((null (state-stack))
(er soft 'verify "There is no interactive verification to re-enter!"))
(t
(let ((bad-fn
(illegal-fnp
(access goal
(car (access pc-state (car (last (state-stack)))
:goals))
:conc)
(w state))))
(cond
(bad-fn
(er soft 'verify
"The current proof-checker session was begun in an ACL2 world ~
with function symbol ~x0, but that function symbol no longer ~
exists."
bad-fn))
(t
(state-global-let*
((print-base 10)
(print-radix nil)
(inhibit-output-lst
(remove1-eq 'proof-checker
(f-get-global 'inhibit-output-lst state))))
(pprogn
(f-put-global 'in-verify-flg ld-level state)
(pc-main1 (append instructions *standard-oi*)
(list 'exit) t state))))))))
(cond ((equal erp *pc-complete-signal*)
(pprogn (f-put-global 'in-verify-flg nil state)
(value val)))
(t (mv erp val state))))))))
(defun print-unproved-goals-message (goals state)
(io? proof-checker nil state
(goals)
(fms0 "~%There ~#0~[is~/are~] ~x1 unproved goal~#0~[~/s~] from replay ~
of instructions. To enter the proof-checker state that exists ~
at this point, type (VERIFY).~%"
(list (cons #\0 goals)
(cons #\1 (length goals))))))
(defun state-stack-from-instructions
(raw-term event-name rule-classes instructions replay-flg quit-conditions state)
(if replay-flg
(pprogn (io? proof-checker nil state
nil
(fms0 "~|~%Entering the proof-checker....~%~%"))
(er-progn (pc-top raw-term event-name rule-classes
instructions quit-conditions nil state)
(value (state-stack))))
(value (state-stack))))
(defun state-from-instructions
(raw-term event-name rule-classes instructions quit-conditions state)
(mv-let (erp val state)
(pc-top raw-term event-name rule-classes
instructions quit-conditions nil state)
(declare (ignore erp val))
state))
(defun print-pc-defthm (ev state)
(io? proof-checker nil state
(ev)
(fms0 "~|~Y01"
(list (cons #\0 ev)
(cons #\1 (ld-evisc-tuple state))))))
(defmacro print-pc-goal (&optional goal)
`(let ((goal ,(or goal '(car (access pc-state (car (state-stack)) :goals)))))
(io? proof-checker nil state
(goal)
(if goal
(fms0
"~%------- ~x3 -------~|~
Conc: ~q0~|~
Hyps: ~q1~|~
Addr: ~Y2n~|~
Deps: ~Y4n~|"
(list
(cons #\0 (untranslate (access goal goal :conc) t (w state)))
(cons #\1 (let ((hyps (access goal goal :hyps)))
(cond ((null hyps) t)
((null (cdr hyps))
(untranslate (car hyps) t (w state)))
(t (cons 'and (untranslate-lst
hyps t (w state)))))))
(cons #\2 (access goal goal :current-addr))
(cons #\3 (access goal goal :goal-name))
(cons #\4 (access goal goal :depends-on))
(cons #\n nil)))
(fms0 "~%No goal in CAR of state-stack.~|")))))
(defmacro print-pc-state (&optional pc-state)
`(let ((pc-state ,(or pc-state '(car (state-stack)))))
(io? proof-checker nil state
(pc-state)
(if pc-state
(fms0
"~%Instr: ~y0~|~
Goals: ~y1~|~
Abbrs: ~y2~|~
Local ttree: ~y3~|~
Ttree: ~y4~|"
(list
(cons #\0 (access pc-state pc-state :instruction))
(cons #\1 (access pc-state pc-state :goals))
(cons #\2 (access pc-state pc-state :abbreviations))
(cons #\3 (access pc-state pc-state :local-tag-tree))
(cons #\4 (access pc-state pc-state :tag-tree))))
(fms0 "~%No state in CAR of state-stack.~|")))))
(defun proof-checker
(event-name raw-term term rule-classes instructions wrld state)
;; I'm only including wrld in the arglist because J has it there.
;; **** Be sure that in-verify-flg is untouchable, for soundness here (or
;; is that really an issue?).
(declare (ignore term wrld))
(cond
((and (not (f-get-global 'in-verify-flg state))
(ld-skip-proofsp state))
; Thus, we are not in an interactive loop, and we are to skip proofs.
(value nil))
(t
(mv-let (erp state-stack state)
(state-stack-from-instructions
raw-term event-name rule-classes instructions
(not (f-get-global 'in-verify-flg state))
'(signal value)
state)
;; could perhaps (declare (ignore erp)), but for now I'll abort upon error
(if erp
(pprogn
(io? proof-checker nil state
nil
(fms0 "~%~%Replay of proof-checker instructions ~
aborted.~%"))
(if (f-get-global 'in-verify-flg state)
(mv *pc-complete-signal* nil state)
(silent-error state)))
(let ((goals (access pc-state (car state-stack) :goals)))
(if (null goals)
(value (access pc-state (car state-stack) :tag-tree))
(pprogn
;; could print the goals here instead of just the number of goals.
(print-unproved-goals-message goals state)
(if (f-get-global 'in-verify-flg state)
(mv *pc-complete-signal* nil state)
(silent-error state))))))))))
(defmacro verify (&optional (raw-term 'nil raw-term-supplied-p)
&key
event-name
(rule-classes '(:rewrite))
instructions)
(declare (xargs :guard (symbolp event-name)))
(if (and raw-term-supplied-p (eq raw-term nil))
'(pprogn
(io? proof-checker nil state
nil
(fms0 "It is not permitted to enter the interactive proof-checker ~
with a goal of NIL! If you really MEANT to do such a ~
thing, (VERIFY 'NIL).~%"))
(value :invisible))
`(verify-fn ',raw-term ',raw-term-supplied-p ',event-name
',rule-classes ',instructions state)))
(set-guard-msg verify
(let ((name (cadr (assoc-keyword :event-name (cdr args)))))
(msg "The :event-name argument for VERIFY must be a symbol, ~
unlike ~x0.~@1"
name
(if (and (consp name)
(eq (car name) 'quote)
(cdr name)
(symbolp (cadr name))
(null (cddr name)))
(msg " Perhaps you intended the :EVENT-NAME to be ~
~x0 instead of ~x1."
(cadr name) name)
""))))
; Finally, here is some stuff that is needed not only for the proof-checker but
; also for :pl.
(mutual-recursion
(defun sublis-expr-non-quoteps (alist term)
;; Same as ACL2's function sublis-expr, except that it doesn't take a
;; world argument. However, for correctness it may be necessary that
;; every CDR in ALIST is non-quotep, so that we can guarantee that
;; non-quotep's are mapped to non-quotep's.
(let ((temp (assoc-equal term alist)))
(cond (temp (cdr temp))
((variablep term) term)
((fquotep term) term)
(t (let ((new-args (sublis-expr-non-quoteps-lst alist (fargs term))))
(if (quote-listp new-args)
;; then no substitution was actually made
term
;; otherwise, cons-term becomes simply cons
(cons (ffn-symb term) new-args)))))))
(defun sublis-expr-non-quoteps-lst (alist lst)
(cond ((null lst) nil)
(t (cons (sublis-expr-non-quoteps alist (car lst))
(sublis-expr-non-quoteps-lst alist (cdr lst))))))
)
(defun invert-abbreviations-alist (alist)
(declare (xargs :guard (alistp alist)))
(if (null alist)
nil
(cons (cons (cdr (car alist)) (list '? (car (car alist))))
(invert-abbreviations-alist (cdr alist)))))
(defun abbreviate (term abbreviations)
(if (null abbreviations)
term
(sublis-expr-non-quoteps (invert-abbreviations-alist abbreviations) term)))
(defmacro untrans0 (term &optional iff-flg abbreviations)
; Note that state should always be bound where this is called.
`(untranslate (abbreviate ,term ,abbreviations) ,iff-flg (w state)))
(defun untrans0-lst-fn (termlist iff-flg abbreviations state)
(if (consp termlist)
(cons (untrans0 (car termlist) iff-flg abbreviations)
(untrans0-lst-fn (cdr termlist) iff-flg abbreviations state))
nil))
(defmacro untrans0-lst (termlist &optional iff-flg abbreviations)
`(untrans0-lst-fn ,termlist ,iff-flg ,abbreviations state))
|