This file is indexed.

/usr/share/perl5/PAI_scripts/CutOff.pm is in alien-hunter 1.7-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
=head1 NAME

PAI_scripts::CutOff

=head1 SYNOPSIS

determines dynamically a genome-specific score threshold using k-means clustering (k=3)

=head1 AUTHOR

George Vernikos <gsv(at)sanger.ac.uk>


=head1 LICENSE

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

=cut

package PAI_scripts::CutOff;
use Exporter;
@ISA = ("Exporter");
@EXPORT = qw (&Cutoff);


	sub Cutoff{
		$ScoresRef=$_[0];
		$min=0;
		%ALLscores;
		%scores;
		$cutoff=0;
		$Func_prev=0;
		$Func_max=0;

		foreach $z ($ScoresRef){
			foreach $key (keys %$z){
			$ALLscores{$key}="$z->{$key}";
			}
		}
		
		

		  					
		#@keys contains the keys sorted by their value (min->max)
		@keys = sort {
		$ALLscores{$a} <=> $ALLscores{$b}
		} keys %ALLscores; 	

				
		

		$NumKeys = keys %ALLscores; 

      		if($NumKeys<2){
		print "\n not enough data ($NumKeys) to determine threshold; T=0\n";	
		goto end;
		}
	    
	    	
		#minimum value
		$min=$ALLscores{$keys[0]};
		
		print "\n scaling 0-100\n";		
		#it scales to zero
		foreach $item (@keys){
		$ALLscores{$item}=$ALLscores{$item}-$min;
		}	
		#maximum value	
		$max=$ALLscores{$keys[$NumKeys-1]}; 			
			
		#it scales to maximum: Sx'=(Sx*100)/Smax
		foreach $item (@keys){
		$scores{$item}=sprintf("%.3f",($ALLscores{$item}*100)/$max);
		$ALLscores{$item}=sprintf("%.3f",($ALLscores{$item}*100)/$max);
		}

	
		
		#@keys contains the keys sorted by their value (max->min)
		@keys = sort {
		$scores{$b} <=> $scores{$a}
		} keys %scores; 					
	   	  
			

		#Exponential Smoothing (Damping factor = 0.5)
		print "\n Exponential Smoothing (Damping factor = 0.5)\n\n";
		for($i=1;$i<=$NumKeys-1;$i++){
		$scores{$keys[$i]}=0.5*$scores{$keys[$i]}+0.5*$scores{$keys[$i-1]};
		#print "$scores{$keys[$i]}\n";		
		}


		#@keys contains the keys sorted by their value (min->max)
		@keys = sort {
		$scores{$a} <=> $scores{$b}
		} keys %scores; 


		#for($i=0;$i<=$NumKeys-1;$i++){
		#print "$scores{$keys[$i]}\n";

		#}		
	
	############################################################

	
	#check if not enough data for k-means
	if($NumKeys>=300){
	print " K-means Clustering:\n\nFunc_max\tCutoff\tCntrA\t\tCntrB\t\tCntrC\n";
	
	#initialize the 3 centroids and redo - keeping the iteration with the maximum obj function, i.e. that seperates the 3 clusters the most
	for($j=10;$j<=40;$j+=10){
	
	for($k=0;$k<=(100-$j*2);$k+=10){
	$a=$k;
	$b=$k+$j;
	$c=$k+($j*2);


	
	
	#calculate distances of each Xi to each of the 3 centroids |Xi-Cj|^2
	REDO:
	for($i=0;$i<$NumKeys;$i++){
	$dist_a{$i}=($scores{$keys[$i]}-$a)*($scores{$keys[$i]}-$a);
	$dist_b{$i}=($scores{$keys[$i]}-$b)*($scores{$keys[$i]}-$b);
	$dist_c{$i}=($scores{$keys[$i]}-$c)*($scores{$keys[$i]}-$c);
	
	#calculates the objective function sum_j(sum_i(|Xi-Cj|^2))
	$f+=$dist_a{$i}+$dist_b{$i}+$dist_c{$i};
	}
	$Func=$f;
	$f=0;
	
	#scan through each hash to find where the transition to the other cluster occurs
	for($i=0;$i<$NumKeys;$i++){
		if($dist_a{$i}<=$dist_b{$i}){
		$trans_a=$i;
		}
		if($dist_b{$i}<=$dist_c{$i}){
		$trans_b=$i;
		}
	}
	#sets cutoff to the score value where the transition from cluster 1 -> 2 occurs
	$cutoff=$scores{$keys[$trans_a+1]};
	
	#recalculates mean for each cluster
	#cluster a
	$count=0;
	$sum=0;
	for($i=0;$i<=$trans_a;$i++){
	$count++;
	$sum+=$scores{$keys[$i]};
	}
	if($count!=0){
	$mean_a=$sum/$count;
	}
	else{
	$mean_a=0;
	}
	#cluster b
	$count=0;
	$sum=0;
	for($i=$trans_a+1;$i<=$trans_b;$i++){
	$count++;
	$sum+=$scores{$keys[$i]};
	}
	if($count!=0){
	$mean_b=$sum/$count;
	}
	else{
	$mean_b=0;
	}
	#cluster c
	$count=0;
	$sum=0;
	for($i=$trans_b+1;$i<$NumKeys;$i++){
	$count++;
	$sum+=$scores{$keys[$i]};
	}
	if($count!=0){
	$mean_c=$sum/$count;
	}
	else{
	$mean_c=0;
	}

	#convergence criteria
	$dif=abs($Func-$Func_prev);
	if($dif>0.1){
	$Func_prev=$Func;
	#re-initialize the centroids
	$a=$mean_a;
	$b=$mean_b;
	$c=$mean_c;
	
	#print "$Func\t$cutoff\t$a\t$b\t$c\n";
	
	#re-iterate with the new centroids
	goto REDO;
	}
	#keep the iteration with the highest objective function
	if($Func>$Func_max){
	$Func_max=$Func;
	$cutoff_best=$cutoff;
	$Fmax=sprintf("%.3f",$Func_max);
	$mA=sprintf("%.3f",$mean_a);
	$mB=sprintf("%.3f",$mean_b);
	$mC=sprintf("%.3f",$mean_c);
	$cutbest=sprintf("%.3f",$cutoff_best);
	print "$Fmax\t$cutbest\t$mA\t\t$mB\t\t$mC\n";
	}

	
	}
	}
	$cutoff_best=sprintf("%.3f",$cutoff_best);
	

	}
	#if not enough data - simple statistics
	else{
	$count=0;
	$average=0;
	$sum=0;
	foreach $k (keys %ALLscores){
	$sum+=$ALLscores{$k};
	$count++;	
	}
	$average=$sum/$count;
	
	foreach $k (keys %ALLscores){
	$sco=$ALLscores{$k}-$average;
	$scoSqr=$sco**2;
	$sumSqr+=$scoSqr;
	}
	
	$STANDEV=sqrt($sumSqr/($count-1));
	$STANDEV*=0.5;
	$cutoff_best=sprintf("%.3f",$average+$STANDEV);
	
	print "\n too little data to determine dynamically T;\n\n T=$cutoff_best(=average+0.5SD)\n";	
	goto end;
	}
	###############################################################
	
	end:		
	return ($cutoff_best,\%ALLscores);

	}
	1;