/usr/lib/avr/include/stdlib.h is in avr-libc 1:1.8.0+Atmel3.5.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 | /* Copyright (c) 2002, Marek Michalkiewicz
Copyright (c) 2004,2007 Joerg Wunsch
Portions of documentation Copyright (c) 1990, 1991, 1993, 1994
The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of the copyright holders nor the names of
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
$Id$
*/
#ifndef _STDLIB_H_
#define _STDLIB_H_ 1
#ifndef __ASSEMBLER__
#define __need_NULL
#define __need_size_t
#define __need_wchar_t
#include <stddef.h>
#ifndef __ptr_t
#define __ptr_t void *
#endif
#ifdef __cplusplus
extern "C" {
#endif
/** \file */
/** \defgroup avr_stdlib <stdlib.h>: General utilities
\code #include <stdlib.h> \endcode
This file declares some basic C macros and functions as
defined by the ISO standard, plus some AVR-specific extensions.
*/
/*@{*/
/** Result type for function div(). */
typedef struct {
int quot; /**< The Quotient. */
int rem; /**< The Remainder. */
} div_t;
/** Result type for function ldiv(). */
typedef struct {
long quot; /**< The Quotient. */
long rem; /**< The Remainder. */
} ldiv_t;
/** Comparision function type for qsort(), just for convenience. */
typedef int (*__compar_fn_t)(const void *, const void *);
#ifndef __DOXYGEN__
#ifndef __ATTR_CONST__
# define __ATTR_CONST__ __attribute__((__const__))
#endif
#ifndef __ATTR_MALLOC__
# define __ATTR_MALLOC__ __attribute__((__malloc__))
#endif
#ifndef __ATTR_NORETURN__
# define __ATTR_NORETURN__ __attribute__((__noreturn__))
#endif
#ifndef __ATTR_PURE__
# define __ATTR_PURE__ __attribute__((__pure__))
#endif
#ifndef __ATTR_GNU_INLINE__
# ifdef __GNUC_STDC_INLINE__
# define __ATTR_GNU_INLINE__ __attribute__((__gnu_inline__))
# else
# define __ATTR_GNU_INLINE__
# endif
#endif
#endif
/** The abort() function causes abnormal program termination to occur.
This realization disables interrupts and jumps to _exit() function
with argument equal to 1. In the limited AVR environment, execution is
effectively halted by entering an infinite loop. */
extern void abort(void) __ATTR_NORETURN__;
/** The abs() function computes the absolute value of the integer \c i.
\note The abs() and labs() functions are builtins of gcc.
*/
extern int abs(int __i) __ATTR_CONST__;
#ifndef __DOXYGEN__
#define abs(__i) __builtin_abs(__i)
#endif
/** The labs() function computes the absolute value of the long integer
\c i.
\note The abs() and labs() functions are builtins of gcc.
*/
extern long labs(long __i) __ATTR_CONST__;
#ifndef __DOXYGEN__
#define labs(__i) __builtin_labs(__i)
#endif
/**
The bsearch() function searches an array of \c nmemb objects, the
initial member of which is pointed to by \c base, for a member
that matches the object pointed to by \c key. The size of each
member of the array is specified by \c size.
The contents of the array should be in ascending sorted order
according to the comparison function referenced by \c compar.
The \c compar routine is expected to have two arguments which
point to the key object and to an array member, in that order,
and should return an integer less than, equal to, or greater than
zero if the key object is found, respectively, to be less than,
to match, or be greater than the array member.
The bsearch() function returns a pointer to a matching member of
the array, or a null pointer if no match is found. If two
members compare as equal, which member is matched is unspecified.
*/
extern void *bsearch(const void *__key, const void *__base, size_t __nmemb,
size_t __size, int (*__compar)(const void *, const void *));
/* __divmodhi4 and __divmodsi4 from libgcc.a */
/**
The div() function computes the value \c num/denom and returns
the quotient and remainder in a structure named \c div_t that
contains two int members named \c quot and \c rem.
*/
extern div_t div(int __num, int __denom) __asm__("__divmodhi4") __ATTR_CONST__;
/**
The ldiv() function computes the value \c num/denom and returns
the quotient and remainder in a structure named \c ldiv_t that
contains two long integer members named \c quot and \c rem.
*/
extern ldiv_t ldiv(long __num, long __denom) __asm__("__divmodsi4") __ATTR_CONST__;
/**
The qsort() function is a modified partition-exchange sort, or
quicksort.
The qsort() function sorts an array of \c nmemb objects, the
initial member of which is pointed to by \c base. The size of
each object is specified by \c size. The contents of the array
base are sorted in ascending order according to a comparison
function pointed to by \c compar, which requires two arguments
pointing to the objects being compared.
The comparison function must return an integer less than, equal
to, or greater than zero if the first argument is considered to
be respectively less than, equal to, or greater than the second.
*/
extern void qsort(void *__base, size_t __nmemb, size_t __size,
__compar_fn_t __compar);
/**
The strtol() function converts the string in \c nptr to a long
value. The conversion is done according to the given base, which
must be between 2 and 36 inclusive, or be the special value 0.
The string may begin with an arbitrary amount of white space (as
determined by isspace()) followed by a single optional \c '+' or \c '-'
sign. If \c base is zero or 16, the string may then include a
\c "0x" prefix, and the number will be read in base 16; otherwise,
a zero base is taken as 10 (decimal) unless the next character is
\c '0', in which case it is taken as 8 (octal).
The remainder of the string is converted to a long value in the
obvious manner, stopping at the first character which is not a
valid digit in the given base. (In bases above 10, the letter \c 'A'
in either upper or lower case represents 10, \c 'B' represents 11,
and so forth, with \c 'Z' representing 35.)
If \c endptr is not NULL, strtol() stores the address of the first
invalid character in \c *endptr. If there were no digits at all,
however, strtol() stores the original value of \c nptr in \c
*endptr. (Thus, if \c *nptr is not \c '\\0' but \c **endptr is \c '\\0'
on return, the entire string was valid.)
The strtol() function returns the result of the conversion, unless
the value would underflow or overflow. If no conversion could be
performed, 0 is returned. If an overflow or underflow occurs, \c
errno is set to \ref avr_errno "ERANGE" and the function return value
is clamped to \c LONG_MIN or \c LONG_MAX, respectively.
*/
extern long strtol(const char *__nptr, char **__endptr, int __base);
/**
The strtoul() function converts the string in \c nptr to an
unsigned long value. The conversion is done according to the
given base, which must be between 2 and 36 inclusive, or be the
special value 0.
The string may begin with an arbitrary amount of white space (as
determined by isspace()) followed by a single optional \c '+' or \c '-'
sign. If \c base is zero or 16, the string may then include a
\c "0x" prefix, and the number will be read in base 16; otherwise,
a zero base is taken as 10 (decimal) unless the next character is
\c '0', in which case it is taken as 8 (octal).
The remainder of the string is converted to an unsigned long value
in the obvious manner, stopping at the first character which is
not a valid digit in the given base. (In bases above 10, the
letter \c 'A' in either upper or lower case represents 10, \c 'B'
represents 11, and so forth, with \c 'Z' representing 35.)
If \c endptr is not NULL, strtoul() stores the address of the first
invalid character in \c *endptr. If there were no digits at all,
however, strtoul() stores the original value of \c nptr in \c
*endptr. (Thus, if \c *nptr is not \c '\\0' but \c **endptr is \c '\\0'
on return, the entire string was valid.)
The strtoul() function return either the result of the conversion
or, if there was a leading minus sign, the negation of the result
of the conversion, unless the original (non-negated) value would
overflow; in the latter case, strtoul() returns ULONG_MAX, and \c
errno is set to \ref avr_errno "ERANGE". If no conversion could
be performed, 0 is returned.
*/
extern unsigned long strtoul(const char *__nptr, char **__endptr, int __base);
/**
The atol() function converts the initial portion of the string
pointed to by \p s to long integer representation. In contrast to
\code strtol(s, (char **)NULL, 10); \endcode
this function does not detect overflow (\c errno is not changed and
the result value is not predictable), uses smaller memory (flash and
stack) and works more quickly.
*/
extern long atol(const char *__s) __ATTR_PURE__;
/**
The atoi() function converts the initial portion of the string
pointed to by \p s to integer representation. In contrast to
\code (int)strtol(s, (char **)NULL, 10); \endcode
this function does not detect overflow (\c errno is not changed and
the result value is not predictable), uses smaller memory (flash and
stack) and works more quickly.
*/
extern int atoi(const char *__s) __ATTR_PURE__;
/**
The exit() function terminates the application. Since there is no
environment to return to, \c status is ignored, and code execution
will eventually reach an infinite loop, thereby effectively halting
all code processing. Before entering the infinite loop, interrupts
are globally disabled.
In a C++ context, global destructors will be called before halting
execution.
*/
extern void exit(int __status) __ATTR_NORETURN__;
/**
The malloc() function allocates \c size bytes of memory.
If malloc() fails, a NULL pointer is returned.
Note that malloc() does \e not initialize the returned memory to
zero bytes.
See the chapter about \ref malloc "malloc() usage" for implementation
details.
*/
extern void *malloc(size_t __size) __ATTR_MALLOC__;
/**
The free() function causes the allocated memory referenced by \c
ptr to be made available for future allocations. If \c ptr is
NULL, no action occurs.
*/
extern void free(void *__ptr);
/**
\c malloc() \ref malloc_tunables "tunable".
*/
extern size_t __malloc_margin;
/**
\c malloc() \ref malloc_tunables "tunable".
*/
extern char *__malloc_heap_start;
/**
\c malloc() \ref malloc_tunables "tunable".
*/
extern char *__malloc_heap_end;
/**
Allocate \c nele elements of \c size each. Identical to calling
\c malloc() using <tt>nele * size</tt> as argument, except the
allocated memory will be cleared to zero.
*/
extern void *calloc(size_t __nele, size_t __size) __ATTR_MALLOC__;
/**
The realloc() function tries to change the size of the region
allocated at \c ptr to the new \c size value. It returns a
pointer to the new region. The returned pointer might be the
same as the old pointer, or a pointer to a completely different
region.
The contents of the returned region up to either the old or the new
size value (whatever is less) will be identical to the contents of
the old region, even in case a new region had to be allocated.
It is acceptable to pass \c ptr as NULL, in which case realloc()
will behave identical to malloc().
If the new memory cannot be allocated, realloc() returns NULL, and
the region at \c ptr will not be changed.
*/
extern void *realloc(void *__ptr, size_t __size) __ATTR_MALLOC__;
extern double strtod(const char *__nptr, char **__endptr);
extern double atof(const char *__nptr);
/** Highest number that can be generated by rand(). */
#define RAND_MAX 0x7FFF
/**
The rand() function computes a sequence of pseudo-random integers in the
range of 0 to \c RAND_MAX (as defined by the header file <stdlib.h>).
The srand() function sets its argument \c seed as the seed for a new
sequence of pseudo-random numbers to be returned by rand(). These
sequences are repeatable by calling srand() with the same seed value.
If no seed value is provided, the functions are automatically seeded with
a value of 1.
In compliance with the C standard, these functions operate on
\c int arguments. Since the underlying algorithm already uses
32-bit calculations, this causes a loss of precision. See
\c random() for an alternate set of functions that retains full
32-bit precision.
*/
extern int rand(void);
/**
Pseudo-random number generator seeding; see rand().
*/
extern void srand(unsigned int __seed);
/**
Variant of rand() that stores the context in the user-supplied
variable located at \c ctx instead of a static library variable
so the function becomes re-entrant.
*/
extern int rand_r(unsigned long *__ctx);
/*@}*/
/*@{*/
/** \name Non-standard (i.e. non-ISO C) functions.
\ingroup avr_stdlib
*/
/**
\brief Convert an integer to a string.
The function itoa() converts the integer value from \c val into an
ASCII representation that will be stored under \c s. The caller
is responsible for providing sufficient storage in \c s.
\note The minimal size of the buffer \c s depends on the choice of
radix. For example, if the radix is 2 (binary), you need to supply a buffer
with a minimal length of 8 * sizeof (int) + 1 characters, i.e. one
character for each bit plus one for the string terminator. Using a larger
radix will require a smaller minimal buffer size.
\warning If the buffer is too small, you risk a buffer overflow.
Conversion is done using the \c radix as base, which may be a
number between 2 (binary conversion) and up to 36. If \c radix
is greater than 10, the next digit after \c '9' will be the letter
\c 'a'.
If radix is 10 and val is negative, a minus sign will be prepended.
The itoa() function returns the pointer passed as \c s.
*/
#ifdef __DOXYGEN__
extern char *itoa(int val, char *s, int radix);
#else
extern __inline__ __ATTR_GNU_INLINE__
char *itoa (int __val, char *__s, int __radix)
{
if (!__builtin_constant_p (__radix)) {
extern char *__itoa (int, char *, int);
return __itoa (__val, __s, __radix);
} else if (__radix < 2 || __radix > 36) {
*__s = 0;
return __s;
} else {
extern char *__itoa_ncheck (int, char *, unsigned char);
return __itoa_ncheck (__val, __s, __radix);
}
}
#endif
/**
\ingroup avr_stdlib
\brief Convert a long integer to a string.
The function ltoa() converts the long integer value from \c val into an
ASCII representation that will be stored under \c s. The caller
is responsible for providing sufficient storage in \c s.
\note The minimal size of the buffer \c s depends on the choice of
radix. For example, if the radix is 2 (binary), you need to supply a buffer
with a minimal length of 8 * sizeof (long int) + 1 characters, i.e. one
character for each bit plus one for the string terminator. Using a larger
radix will require a smaller minimal buffer size.
\warning If the buffer is too small, you risk a buffer overflow.
Conversion is done using the \c radix as base, which may be a
number between 2 (binary conversion) and up to 36. If \c radix
is greater than 10, the next digit after \c '9' will be the letter
\c 'a'.
If radix is 10 and val is negative, a minus sign will be prepended.
The ltoa() function returns the pointer passed as \c s.
*/
#ifdef __DOXYGEN__
extern char *ltoa(long val, char *s, int radix);
#else
extern __inline__ __ATTR_GNU_INLINE__
char *ltoa (long __val, char *__s, int __radix)
{
if (!__builtin_constant_p (__radix)) {
extern char *__ltoa (long, char *, int);
return __ltoa (__val, __s, __radix);
} else if (__radix < 2 || __radix > 36) {
*__s = 0;
return __s;
} else {
extern char *__ltoa_ncheck (long, char *, unsigned char);
return __ltoa_ncheck (__val, __s, __radix);
}
}
#endif
/**
\ingroup avr_stdlib
\brief Convert an unsigned integer to a string.
The function utoa() converts the unsigned integer value from \c val into an
ASCII representation that will be stored under \c s. The caller
is responsible for providing sufficient storage in \c s.
\note The minimal size of the buffer \c s depends on the choice of
radix. For example, if the radix is 2 (binary), you need to supply a buffer
with a minimal length of 8 * sizeof (unsigned int) + 1 characters, i.e. one
character for each bit plus one for the string terminator. Using a larger
radix will require a smaller minimal buffer size.
\warning If the buffer is too small, you risk a buffer overflow.
Conversion is done using the \c radix as base, which may be a
number between 2 (binary conversion) and up to 36. If \c radix
is greater than 10, the next digit after \c '9' will be the letter
\c 'a'.
The utoa() function returns the pointer passed as \c s.
*/
#ifdef __DOXYGEN__
extern char *utoa(unsigned int val, char *s, int radix);
#else
extern __inline__ __ATTR_GNU_INLINE__
char *utoa (unsigned int __val, char *__s, int __radix)
{
if (!__builtin_constant_p (__radix)) {
extern char *__utoa (unsigned int, char *, int);
return __utoa (__val, __s, __radix);
} else if (__radix < 2 || __radix > 36) {
*__s = 0;
return __s;
} else {
extern char *__utoa_ncheck (unsigned int, char *, unsigned char);
return __utoa_ncheck (__val, __s, __radix);
}
}
#endif
/**
\ingroup avr_stdlib
\brief Convert an unsigned long integer to a string.
The function ultoa() converts the unsigned long integer value from
\c val into an ASCII representation that will be stored under \c s.
The caller is responsible for providing sufficient storage in \c s.
\note The minimal size of the buffer \c s depends on the choice of
radix. For example, if the radix is 2 (binary), you need to supply a buffer
with a minimal length of 8 * sizeof (unsigned long int) + 1 characters,
i.e. one character for each bit plus one for the string terminator. Using a
larger radix will require a smaller minimal buffer size.
\warning If the buffer is too small, you risk a buffer overflow.
Conversion is done using the \c radix as base, which may be a
number between 2 (binary conversion) and up to 36. If \c radix
is greater than 10, the next digit after \c '9' will be the letter
\c 'a'.
The ultoa() function returns the pointer passed as \c s.
*/
#ifdef __DOXYGEN__
extern char *ultoa(unsigned long val, char *s, int radix);
#else
extern __inline__ __ATTR_GNU_INLINE__
char *ultoa (unsigned long __val, char *__s, int __radix)
{
if (!__builtin_constant_p (__radix)) {
extern char *__ultoa (unsigned long, char *, int);
return __ultoa (__val, __s, __radix);
} else if (__radix < 2 || __radix > 36) {
*__s = 0;
return __s;
} else {
extern char *__ultoa_ncheck (unsigned long, char *, unsigned char);
return __ultoa_ncheck (__val, __s, __radix);
}
}
#endif
/** \ingroup avr_stdlib
Highest number that can be generated by random(). */
#define RANDOM_MAX 0x7FFFFFFF
/**
\ingroup avr_stdlib
The random() function computes a sequence of pseudo-random integers in the
range of 0 to \c RANDOM_MAX (as defined by the header file <stdlib.h>).
The srandom() function sets its argument \c seed as the seed for a new
sequence of pseudo-random numbers to be returned by rand(). These
sequences are repeatable by calling srandom() with the same seed value.
If no seed value is provided, the functions are automatically seeded with
a value of 1.
*/
extern long random(void);
/**
\ingroup avr_stdlib
Pseudo-random number generator seeding; see random().
*/
extern void srandom(unsigned long __seed);
/**
\ingroup avr_stdlib
Variant of random() that stores the context in the user-supplied
variable located at \c ctx instead of a static library variable
so the function becomes re-entrant.
*/
extern long random_r(unsigned long *__ctx);
#endif /* __ASSEMBLER */
/*@}*/
/*@{*/
/** \name Conversion functions for double arguments.
\ingroup avr_stdlib
Note that these functions are not located in the default library,
<tt>libc.a</tt>, but in the mathematical library, <tt>libm.a</tt>.
So when linking the application, the \c -lm option needs to be
specified.
*/
/** \ingroup avr_stdlib
Bit value that can be passed in \c flags to dtostre(). */
#define DTOSTR_ALWAYS_SIGN 0x01 /* put '+' or ' ' for positives */
/** \ingroup avr_stdlib
Bit value that can be passed in \c flags to dtostre(). */
#define DTOSTR_PLUS_SIGN 0x02 /* put '+' rather than ' ' */
/** \ingroup avr_stdlib
Bit value that can be passed in \c flags to dtostre(). */
#define DTOSTR_UPPERCASE 0x04 /* put 'E' rather 'e' */
#ifndef __ASSEMBLER__
/**
\ingroup avr_stdlib
The dtostre() function converts the double value passed in \c val into
an ASCII representation that will be stored under \c s. The caller
is responsible for providing sufficient storage in \c s.
Conversion is done in the format \c "[-]d.ddde±dd" where there is
one digit before the decimal-point character and the number of
digits after it is equal to the precision \c prec; if the precision
is zero, no decimal-point character appears. If \c flags has the
DTOSTRE_UPPERCASE bit set, the letter \c 'E' (rather than \c 'e' ) will be
used to introduce the exponent. The exponent always contains two
digits; if the value is zero, the exponent is \c "00".
If \c flags has the DTOSTRE_ALWAYS_SIGN bit set, a space character
will be placed into the leading position for positive numbers.
If \c flags has the DTOSTRE_PLUS_SIGN bit set, a plus sign will be
used instead of a space character in this case.
The dtostre() function returns the pointer to the converted string \c s.
*/
extern char *dtostre(double __val, char *__s, unsigned char __prec,
unsigned char __flags);
/**
\ingroup avr_stdlib
The dtostrf() function converts the double value passed in \c val into
an ASCII representationthat will be stored under \c s. The caller
is responsible for providing sufficient storage in \c s.
Conversion is done in the format \c "[-]d.ddd". The minimum field
width of the output string (including the \c '.' and the possible
sign for negative values) is given in \c width, and \c prec determines
the number of digits after the decimal sign. \c width is signed value,
negative for left adjustment.
The dtostrf() function returns the pointer to the converted string \c s.
*/
extern char *dtostrf(double __val, signed char __width,
unsigned char __prec, char *__s);
/**
\ingroup avr_stdlib
Successful termination for exit(); evaluates to 0.
*/
#define EXIT_SUCCESS 0
/**
\ingroup avr_stdlib
Unsuccessful termination for exit(); evaluates to a non-zero value.
*/
#define EXIT_FAILURE 1
/*@}*/
#if 0 /* not yet implemented */
extern int atexit(void (*)(void));
#endif
#ifdef __cplusplus
}
#endif
#endif /* __ASSEMBLER */
#endif /* _STDLIB_H_ */
|