This file is indexed.

/usr/src/castle-game-engine-5.2.0/base/castleutils_math.inc is in castle-game-engine-src 5.2.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
{
  Copyright 2001-2014 Michalis Kamburelis.

  This file is part of "Castle Game Engine".

  "Castle Game Engine" is free software; see the file COPYING.txt,
  included in this distribution, for details about the copyright.

  "Castle Game Engine" is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

  ----------------------------------------------------------------------------
}

{ Very basic operations on numbers.
  Also things related to setting 8087 Control Word. }

{$ifdef read_interface}

{ Swap variables values.
  @groupBegin }
procedure SwapValues(var a, b: Byte    ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure SwapValues(var a, b: Int64   ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure SwapValues(var a, b: Integer ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure SwapValues(var a, b: Cardinal); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure SwapValues(var a, b: Single  ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure SwapValues(var a, b: Double  ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure SwapValues(var a, b: Extended); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
procedure SwapValues(var a, b: char    ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure SwapValues(var a, b: Pointer ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{ @groupEnd }

{ Make sure the Smaller value is <= than the Larger value,
  by eventually swapping them.
  @groupBegin }
procedure OrderUp(var Smaller, Larger: Int64   ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure OrderUp(var Smaller, Larger: Integer ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure OrderUp(var Smaller, Larger: Cardinal); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure OrderUp(var Smaller, Larger: Single  ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure OrderUp(var Smaller, Larger: Double  ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure OrderUp(var Smaller, Larger: Extended); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
{ @groupEnd }

{ Assign the smaller value from X, Y to Smaller variable, the other one
  to Larger variable.
  @groupBegin }
procedure OrderUp(x, y: Integer;  var Smaller, Larger: Integer ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure OrderUp(x, y: Cardinal; var Smaller, Larger: Cardinal); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure OrderUp(x, y: Single;   var Smaller, Larger: Single  ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure OrderUp(x, y: Double;   var Smaller, Larger: Double  ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure OrderUp(x, y: Extended; var Smaller, Larger: Extended); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
{ @groupEnd }

{ Return minimum / maximum from 2 / 3 items.
  @groupBegin }
function min(const a, b: Int64   ): Int64   ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function min(const a, b: integer ): integer ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function min(const a, b: cardinal): cardinal; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function min(const a, b: Single  ): Single  ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function min(const a, b: Double  ): Double  ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
function min(const a, b: Extended): Extended; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}

function min(const a, b, c: Int64   ): Int64   ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function min(const a, b, c: integer ): integer ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function min(const a, b, c: cardinal): cardinal; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function min(const a, b, c: Single  ): Single  ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function min(const a, b, c: Double  ): Double  ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
function min(const a, b, c: Extended): Extended; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}

function max(const a, b: Int64   ): Int64   ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function max(const a, b: integer ): integer ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function max(const a, b: cardinal): cardinal; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function max(const a, b: Single  ): Single  ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function max(const a, b: Double  ): Double  ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
function max(const a, b: Extended): Extended; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}

function max(const a, b, c: Int64   ): Int64   ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function max(const a, b, c: integer ): integer ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function max(const a, b, c: cardinal): cardinal; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function max(const a, b, c: Single  ): Single  ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function max(const a, b, c: Double  ): Double  ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
function max(const a, b, c: Extended): Extended; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
{ @groupEnd }

{ Update value of A to be a minimum of A, B.
  Works like @code(A := Min(A, B)), but is marginally faster,
  since you don't have to do anything when A is already smaller.
  @groupBegin }
procedure MinTo1st(var a: Int64   ; const b: Int64   ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure MinTo1st(var a: Integer ; const b: Integer ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure MinTo1st(var a: Cardinal; const b: Cardinal); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure MinTo1st(var a: Single  ; const b: Single  ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure MinTo1st(var a: Double  ; const b: Double  ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure MinTo1st(var a: Extended; const b: Extended); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
{ @groupEnd }

{ Update value of A to be a maximum of A, B.
  Works like @code(A := Max(A, B)), but is marginally faster,
  since you don't have to do anything when A is already larger.
  @groupBegin }
procedure MaxTo1st(var a: Int64   ; const b: Int64   ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure MaxTo1st(var a: Integer ; const b: Integer ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure MaxTo1st(var a: Cardinal; const b: Cardinal); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure MaxTo1st(var a: Single  ; const b: Single  ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure MaxTo1st(var a: Double  ; const b: Double  ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure MaxTo1st(var a: Extended; const b: Extended); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}
{ @groupEnd }

{ Index (0, 1 or 2) of maximum / minimum of 3 numbers.
  @groupBegin }
function IndexMax(const a0, a1, a2: Double): Integer; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function IndexMin(const a0, a1, a2: Double): Integer; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{ @groupEnd }

function Between(const a, vBegin, vEnd: Int64   ): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Between(const a, vBegin, vEnd: integer ): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Between(const a, vBegin, vEnd: cardinal): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Between(const a, vBegin, vEnd: Float   ): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Between(const a, vBegin, vEnd: Char    ): boolean; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}

function RoundClamp255(const A: Single): Byte; {$ifdef SUPPORTS_INLINE} inline; {$endif}

function Clamped(const a, vBegin, vEnd: Int64   ): Int64   ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Clamped(const a, vBegin, vEnd: integer ): integer ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Clamped(const a, vBegin, vEnd: cardinal): cardinal; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Clamped(const a, vBegin, vEnd: Single  ): Single  ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Clamped(const a, vBegin, vEnd: Double  ): Double  ; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Clamped(const a, vBegin, vEnd: Extended): Extended; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}

procedure Clamp(var a: Int64   ; const vBegin, vEnd: Int64   ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure Clamp(var a: integer ; const vBegin, vEnd: integer ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure Clamp(var a: cardinal; const vBegin, vEnd: cardinal); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure Clamp(var a: Single  ; const vBegin, vEnd: Single  ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
procedure Clamp(var a: Double  ; const vBegin, vEnd: Double  ); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure Clamp(var a: Extended; const vBegin, vEnd: Extended); overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{$endif}

{ 3D coordinates (0, 1 or 2) except the given coordinate.
  If Coord = 0, then it sets First = 1 and Second = 2.
  And so on --- for each Coord value, we set First and Second to the remaining
  indexes. }
procedure RestOf3dCoords(coord: integer; out first, second: integer);

{ Increase Value by Change, nicely wrapping in [0..MaxValue], accepting
  also negative Change. The final value is always in the [0..MaxValue] range,
  even when initial Value was outside. }
function ChangeIntCycle(value, change, maxValue: integer): integer;

{ Linear interpolation between two values. Returns @code((1-A)*L + A*H).
  @groupBegin }
function Lerp(const a: Single; const l, h: Integer): Single;  overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Lerp(const a: Single; const l, h: Cardinal): Single; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Lerp(const a, l, h: Single): Single;                 overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Lerp(const a: Double; const l, h: Integer): Double;  overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Lerp(const a: Double; const l, h: Cardinal): Double; overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
function Lerp(const a, l, h: Double): Double;                 overload; {$ifdef SUPPORTS_INLINE} inline; {$endif}
{ @groupEnd }

const
  enatural = 2.71828182845905;
  sqrt2 = 1.4142135623730950488016887242097;
  Sqrt3 = 1.7320508075688773;
  { Half of Pi. Taken from FPC sources, file rtl/inc/genmath.inc }
  HalfPi = 1.57079632679489661923;

{ Smallest multiple of Multiplicator that is still >= Value. }
function RoundUpToMultiply(value, multiplicator: Integer): Integer;

{ Largest power of 2 still <= Value.
  When Value = 0 returns 0. }
function BiggestPowerOf2(Value: Cardinal): Cardinal;

{ Exponent of the largest power of 2 that it's still <= Value.
  Like BiggestPowerOf2, except that this returns which power of 2 it is,
  while BiggestPowerOf2 just returns exactly this power.
  Bigget2Exponent(0) = -1. }
function Biggest2Exponent(Value: Cardinal): integer;

{ Smallest exponent such that 2^this exponent is >= Value.
  Smallest2Exponent(0) = -1 (this is different situation than
  Smallest2Exponent(1), when we return 0. }
function Smallest2Exponent(Value: Cardinal): Integer;

{ Smallest power of 2 that is >= Value.
  Like Smallest2Exponent, except here we return 2^Smallest2Exponent(Value).
  Returns 0 when Value = 0. }
function Smallest2Power(Value: Cardinal): Cardinal;

{ Check is Value an exact power of 2. }
function IsPowerOf2(Value: Cardinal): boolean;

function DivRoundUp(Value, Divider: Cardinal): Cardinal; overload;
function DivRoundUp(Value, Divider: Integer): Integer; overload;

{ Linearly map value from a one range to another.

  Consider how SourceVal is placed in the [SourceBegin .. SourceEnd]
  (it may be outside of this range, it all still works OK).
  It has some distance to range start (SourceBegin), and some distance
  to range end (SourceEnd).

  We want to find another number, that is identically placed in another range
  [DestBegin .. DestEnd].

  @orderedList(
    @item(Such that @italic(Distance(SourceVal,
      SourceBegin) / Distance(SourceVal, SourceEnd) =
      Distance(Result, DestBegin) / Distance(Result, DestEnd)).)

    @item(And such that it's on the same side of the range.
      So if SourceVal is beyond SourceEnd (that is,
      @code(SourceBegin < SourceEnd < SourceVal) or
      @code(SourceBegin > SourceEnd > SourceVal)) then the result
      must be similarly beyond DestEnd.

      As you can see, this works regardless if one, or both,
      of the ranges increase (range end is larger than range begin).)
  )

  MapRangeClamped additionally at the end clamps the result to be within
  [destBegin, destEnd] range (or [destEnd, destBegin] range,
  in case destEnd < destBegin).

  @groupBegin }
function MapRange(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd: integer): float; overload;
function MapRange(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd: float  ): float; overload;
function MapRangeClamped(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd: integer): float; overload;
function MapRangeClamped(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd: float  ): float; overload;
{ @groupEnd }

{ Random float value in the given range.
  Make sure RangeBegin < RangeEnd. }
function RandomFloatRange(const RangeBegin, RangeEnd: Float): Float;

{ Angle between a 2D line segments and OX axis. Angle 0 means that Y1 = Y2
  and X2 > X1, then the angle increases as you rotate CCW. In radians. }
function AngleRadPointToPoint(x1, y1, x2, y2: Single): Single;

{ Calculate power Base to Exponent, knowing both arguments (and so,
  also the result) are >= 0. }
function NatNatPower(Base, Exponent: Cardinal): Cardinal;

{ Random -1 or +1. }
function RandomPlusMinus: integer;

{$ifdef FPC}
{ }
function ArcCot(x: Float): Float;
{$endif FPC}

{ Trivial factorial with Int64 result. Beware, the results very quickly
  stop to fit inside Int64 range. }
function SmallFactorial(n: Integer): Int64;

{ Better DivMod version, in case Dividend may be < 0.

  This fixes lack of DivMod with negative Remainder (for FPC at least
  older than 2.2.4, see fpc-devel thread "Math.DivMod results should be signed"
  on 2006-03-21, http://www.mail-archive.com/fpc-devel@lists.freepascal.org/msg04565.html).

  And workarounds faulty DivMod behavior with FPC 2.4.0,
  see http://bugs.freepascal.org/view.php?id=15453 }
procedure CastleDivMod(Dividend: Integer; Divisor: Word;
  out Result, Remainder: SmallInt);

{ Like DivMod (return result of integer division and a remainder),
  but always return Remainder >= 0.

  This is useful in case when Dividend < 0.
  Standard DivMod (and Pascal div and mod operators) return then
  Result rounded toward zero, and Remainder may be < 0.
  This procedure will return Result rounded toward negative infinity,
  and Remainder will always be >= 0. }
procedure DivUnsignedMod(Dividend: Integer; Divisor: Word;
  out Result: Smallint; out Remainder: Word);

{ Returns Ceil(A / B), but calculated faster and more precisely
  (without floating-point help). }
function CeilDiv(const A, B: Cardinal): Cardinal;

{ Calculate integer division and modulo on two float arguments.
  Requires that A >= 0 and B > 0, and the Result is always >= 0.

  Tries to secure against floating point imprecision.
  It's always guaranteed that Remainder >= 0 and <= B (and usually should be
  < B, but this cannot be guaranteed). }
procedure FloatDivMod(const A, B: Double;
  out DivResult: Int64; out Remainder: Double);

{ Calculate float modulo of division on two float arguments.
  Works for any A (lesser than zero too). Assumes that B > 0.

  Tries to secure against floating point imprecision.
  It's always guaranteed that Remainder >= 0 and <= B (and usually should be
  < B, but this cannot be guaranteed). }
function FloatModulo(const A, B: Double): Double;

procedure MinMax(const x0, x1, x2: Double; out min, max: Double); overload;
procedure MinMax(const x0, x1, x2: Single; out min, max: Single); overload;

{ Our version of CoTan, to workaround
  http://www.freepascal.org/mantis/view.php?id=9944. }
function CastleCoTan(const Value: Float): Float;

{ Floor from Sqrt(Value). }
function IntSqrt(const Value: Cardinal): Cardinal;

{ Hermite interpolation between two values.
  Just like GLSL smoothstep:
  http://www.khronos.org/opengles/sdk/docs/manglsl/xhtml/smoothstep.xml }
function SmoothStep(const Edge0, Edge1, X: Single): Single;
{$endif read_interface}

{$ifdef read_implementation}

procedure SwapValues(var a, b: Byte);     var Tmp: Byte;     begin Tmp := A; A := B; B := Tmp; end;
procedure SwapValues(var a, b: Int64);    var Tmp: Int64;    begin Tmp := A; A := B; B := Tmp; end;
procedure SwapValues(var a, b: Integer);  var Tmp: integer;  begin Tmp := A; A := B; B := Tmp; end;
procedure SwapValues(var a, b: Cardinal); var Tmp: Cardinal; begin Tmp := A; A := B; B := Tmp; end;
procedure SwapValues(var a, b: Single);   var Tmp: Single;   begin Tmp := A; A := B; B := Tmp; end;
procedure SwapValues(var a, b: Double);   var Tmp: Double;   begin Tmp := A; A := B; B := Tmp; end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure SwapValues(var a, b: Extended); var Tmp: Extended; begin Tmp := A; A := B; B := Tmp; end;
{$endif}
procedure SwapValues(var a, b: char);     var Tmp: char;     begin Tmp := A; A := B; B := Tmp; end;
procedure SwapValues(var a, b: Pointer);  var Tmp: Pointer;  begin Tmp := A; A := B; B := Tmp; end;

procedure OrderUp(var Smaller, Larger: Int64);    begin if Smaller > Larger then SwapValues(Smaller, Larger); end;
procedure OrderUp(var Smaller, Larger: Integer);  begin if Smaller > Larger then SwapValues(Smaller, Larger); end;
procedure OrderUp(var Smaller, Larger: Cardinal); begin if Smaller > Larger then SwapValues(Smaller, Larger); end;
procedure OrderUp(var Smaller, Larger: Single);   begin if Smaller > Larger then SwapValues(Smaller, Larger); end;
procedure OrderUp(var Smaller, Larger: Double);   begin if Smaller > Larger then SwapValues(Smaller, Larger); end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure OrderUp(var Smaller, Larger: Extended); begin if Smaller > Larger then SwapValues(Smaller, Larger); end;
{$endif}

procedure OrderUp(x, y: Integer;  var Smaller, Larger: Integer);  begin if X <= Y then begin Smaller := X; Larger := Y end else begin Smaller := Y; Larger := X end; end;
procedure OrderUp(x, y: Cardinal; var Smaller, Larger: Cardinal); begin if X <= Y then begin Smaller := X; Larger := Y end else begin Smaller := Y; Larger := X end; end;
procedure OrderUp(x, y: Single;   var Smaller, Larger: Single);   begin if X <= Y then begin Smaller := X; Larger := Y end else begin Smaller := Y; Larger := X end; end;
procedure OrderUp(x, y: Double;   var Smaller, Larger: Double);   begin if X <= Y then begin Smaller := X; Larger := Y end else begin Smaller := Y; Larger := X end; end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure OrderUp(x, y: Extended; var Smaller, Larger: Extended); begin if X <= Y then begin Smaller := X; Larger := Y end else begin Smaller := Y; Larger := X end; end;
{$endif}

function Min(const a, b: Int64): Int64;       begin if A < B then Result := A else Result := B end;
function Min(const a, b: integer): integer;   begin if A < B then Result := A else Result := B end;
function Min(const a, b: cardinal): cardinal; begin if A < B then Result := A else Result := B end;
function Min(const a, b: Single): Single;     begin if A < B then Result := A else Result := B end;
function Min(const a, b: Double): Double;     begin if A < B then Result := A else Result := B end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Min(const a, b: Extended): Extended; begin if A < B then Result := A else Result := B end;
{$endif}

function Max(const a, b: Int64): Int64;       begin if A > B then Result := A else Result := B end;
function Max(const a, b: integer): integer;   begin if A > B then Result := A else Result := B end;
function Max(const a, b: cardinal): cardinal; begin if A > B then Result := A else Result := B end;
function Max(const a, b: Single): Single;     begin if A > B then Result := A else Result := B end;
function Max(const a, b: Double): Double;     begin if A > B then Result := A else Result := B end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Max(const a, b: Extended): Extended; begin if A > B then Result := A else Result := B end;
{$endif}

function Min(const a, b, c: Int64): Int64;       begin if A < B then begin if C < A then result := C else result := A end else begin if C < B then result := C else result := B end; end;
function Min(const a, b, c: integer): integer;   begin if A < B then begin if C < A then result := C else result := A end else begin if C < B then result := C else result := B end; end;
function Min(const a, b, c: cardinal): cardinal; begin if A < B then begin if C < A then result := C else result := A end else begin if C < B then result := C else result := B end; end;
function Min(const a, b, c: Single): Single;     begin if A < B then begin if C < A then result := C else result := A end else begin if C < B then result := C else result := B end; end;
function Min(const a, b, c: Double): Double;     begin if A < B then begin if C < A then result := C else result := A end else begin if C < B then result := C else result := B end; end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Min(const a, b, c: Extended): Extended; begin if A < B then begin if C < A then result := C else result := A end else begin if C < B then result := C else result := B end; end;
{$endif}

function Max(const a, b, c: Int64): Int64;       begin if A > B then begin if C > A then Result := C else Result := A end else begin if C > B then Result := C else Result := B end; end;
function Max(const a, b, c: integer): integer;   begin if A > B then begin if C > A then Result := C else Result := A end else begin if C > B then Result := C else Result := B end; end;
function Max(const a, b, c: cardinal): cardinal; begin if A > B then begin if C > A then Result := C else Result := A end else begin if C > B then Result := C else Result := B end; end;
function Max(const a, b, c: Single): Single;     begin if A > B then begin if C > A then Result := C else Result := A end else begin if C > B then Result := C else Result := B end; end;
function Max(const a, b, c: Double): Double;     begin if A > B then begin if C > A then Result := C else Result := A end else begin if C > B then Result := C else Result := B end; end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
function Max(const a, b, c: Extended): Extended; begin if A > B then begin if C > A then Result := C else Result := A end else begin if C > B then Result := C else Result := B end; end;
{$endif}

procedure MinTo1st(var a: Int64   ; const b: Int64   ); begin if B < A then A := B end;
procedure MinTo1st(var a: Integer ; const b: Integer ); begin if B < A then A := B end;
procedure MinTo1st(var a: Cardinal; const b: Cardinal); begin if B < A then A := B end;
procedure MinTo1st(var a: Single  ; const b: Single  ); begin if B < A then A := B end;
procedure MinTo1st(var a: Double  ; const b: Double  ); begin if B < A then A := B end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure MinTo1st(var a: Extended; const b: Extended); begin if B < A then A := B end;
{$endif}

procedure MaxTo1st(var a: Int64   ; const b: Int64   ); begin if B > A then A := B end;
procedure MaxTo1st(var a: Integer ; const b: Integer ); begin if B > A then A := B end;
procedure MaxTo1st(var a: Cardinal; const b: Cardinal); begin if B > A then A := B end;
procedure MaxTo1st(var a: Single  ; const b: Single  ); begin if B > A then A := B end;
procedure MaxTo1st(var a: Double  ; const b: Double  ); begin if B > A then A := B end;
{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure MaxTo1st(var a: Extended; const b: Extended); begin if B > A then A := B end;
{$endif}

function IndexMax(const a0, a1, a2: Double): Integer;
begin
 if a0 > a1 then
 begin
  if a2 > a0 then result := 2 else result := 0
 end else
 begin
  if a2 > a1 then result := 2 else result := 1
 end;
end;

function IndexMin(const a0, a1, a2: Double): Integer;
begin
 if a0 < a1 then
 begin
  if a2 < a0 then result := 2 else result := 0
 end else
 begin
  if a2 < a1 then result := 2 else result := 1
 end;
end;

function Between(const a, vBegin, vEnd: Int64): boolean;    begin Result := (vBegin <= a) and (a <= vend) end;
function Between(const a, vBegin, vEnd: integer): boolean;  begin Result := (vBegin <= a) and (a <= vend) end;
function Between(const a, vBegin, vEnd: cardinal): boolean; begin Result := (vBegin <= a) and (a <= vend) end;
function Between(const a, vBegin, vEnd: Float): boolean;    begin Result := (vBegin <= a) and (a <= vend) end;
function Between(const a, vBegin, vEnd: Char): boolean;     begin Result := (vBegin <= a) and (a <= vend) end;

function RoundClamp255(const A: Single): Byte;
var
  I: Integer;
begin
  I := Round(A);
  if I < Low(Byte) then
    Exit(Low(Byte)) else
  if I > High(Byte) then
    Exit(High(Byte)) else
    Exit(I);
end;

function Clamped(const a, vBegin, vEnd: Int64): Int64;
begin
  if a < vBegin then result := vBegin else
  if a > vEnd then result := vEnd else
    result := a;
end;

function Clamped(const a, vBegin, vEnd: integer): integer;
begin
  if a < vBegin then result := vBegin else
  if a > vEnd then result := vEnd else
    result := a;
end;

function Clamped(const a, vBegin, vEnd: cardinal): cardinal;
begin
  if a < vBegin then result := vBegin else
  if a > vEnd then result := vEnd else
    result := a;
end;

function Clamped(const a, vBegin, vEnd: Single): Single;
begin
  if a < vBegin then result := vBegin else
  if a > vEnd then result := vEnd else
    result := a;
end;

function Clamped(const a, vBegin, vEnd: Double): Double;
begin
  if a < vBegin then result := vBegin else
  if a > vEnd then result := vEnd else
    result := a;
end;

{$ifndef EXTENDED_EQUALS_DOUBLE}
function Clamped(const a, vBegin, vEnd: Extended): Extended;
begin
  if a < vBegin then result := vBegin else
  if a > vEnd then result := vEnd else
    result := a;
end;
{$endif}

procedure Clamp(var a: Int64;    const vBegin, vEnd: Int64);
begin
  if a < vBegin then a := vBegin else
  if a > vEnd then a := vEnd;
end;

procedure Clamp(var a: integer;  const vBegin, vEnd: integer);
begin
  if a < vBegin then a := vBegin else
  if a > vEnd then a := vEnd;
end;

procedure Clamp(var a: cardinal; const vBegin, vEnd: cardinal);
begin
  if a < vBegin then a := vBegin else
  if a > vEnd then a := vEnd;
end;

procedure Clamp(var a: Single;   const vBegin, vEnd: Single);
begin
  if a < vBegin then a := vBegin else
  if a > vEnd then a := vEnd;
end;

procedure Clamp(var a: Double;   const vBegin, vEnd: Double);
begin
  if a < vBegin then a := vBegin else
  if a > vEnd then a := vEnd;
end;

{$ifndef EXTENDED_EQUALS_DOUBLE}
procedure Clamp(var a: Extended; const vBegin, vEnd: Extended);
begin
  if a < vBegin then a := vBegin else
  if a > vEnd then a := vEnd;
end;
{$endif}

procedure RestOf3dCoords(coord: integer; out first, second: integer);
begin
 if coord = 0 then first := 1 else first := 0;
 if coord = 2 then second := 1 else second := 2;
end;

function ChangeIntCycle(value, change, maxValue: integer): integer;
begin
 Inc(maxValue);
 result := (value+change) mod maxValue;
 {teraz wynik jest w zakresie -maxValue..maxValue gdzie maxValue to jest to
  oryginalne maxValue jakie dostalismy}
 if result < 0 then result := result+maxValue;
end;

{ Lerp : l + (h-l) * a = l + a*h - a*l = (1-a) *l + a*h }
function Lerp(const a: Single; const l, h: Integer): Single;  begin result := l + (h-l) * a; end;
function Lerp(const a: Single; const l, h: Cardinal): Single; begin result := l + (h-l) * a; end;
function Lerp(const a, l, h: Single): Single;                 begin result := l + (h-l) * a; end;
function Lerp(const a: Double; const l, h: Integer): Double;  begin result := l + (h-l) * a; end;
function Lerp(const a: Double; const l, h: Cardinal): Double; begin result := l + (h-l) * a; end;
function Lerp(const a, l, h: Double): Double;                 begin result := l + (h-l) * a; end;

function RoundUpToMultiply(value, multiplicator: Integer): Integer;
begin
 if value mod multiplicator = 0 then
  result := value else
  result := ((value div multiplicator)+1)*multiplicator;
end;

function BiggestPowerOf2(Value: Cardinal): Cardinal;
begin
 { szukamy najwiekszej potegi dwojki <= Value.
   To proste na bitach : znajdz pierwszy od lewej (najstarszy) bit rowny 1.
   Reszte bitow na prawo wyzeruj i zwroc calosc jako result. }
 result := Cardinal(1 shl (SizeOf(Cardinal)*8-1));
 while (result <> 0) and ((result and Value) = 0) do result := result shr 1;
end;

function Biggest2Exponent(Value: Cardinal): integer;
begin
 result := -1;
 while Value <> 0 do
  begin Inc(result); Value := Value shr 1 end;
end;

function Smallest2Exponent(Value: Cardinal): Integer;
begin
 if Value = 0 then begin result := -1; Exit end;

 for result := SizeOf(Value)*8-1 downto 0 do
  if ((LongWord(1) shl result) and Value) <> 0 then Break;

 { Wiemy ze Value <> 0 wiec zawsze z powyzszego for'a wyjdziemy breakiem.
   Teraz result okresla pozycje najbardziej znaczacej 1-ki w liczbie Value.
   Jezeli wszystkie pozostale bity sa rowne 0 (czyli Value = 1 shl result)
   to result juz jest dobry. Wpp. zeby 2^result bylo >= Value musimy
   zwiekszyc result o 1.}
 if Value <> Cardinal(1) shl result then Inc(result);
end;

function Smallest2Power(Value: Cardinal): Cardinal;
var Exp: Integer;
begin
 Exp := Smallest2Exponent(Value);
 if Exp = -1 then
  result := 0 else
  result := 1 shl Exp;
end;

function IsPowerOf2(Value: Cardinal): boolean;
var i: Cardinal;
begin
 i := Cardinal(1 shl (SizeOf(Cardinal)*8-1));
 while (i <> 0) do
 begin
  if i = Value then begin result := true; exit end;
  i := i shr 1;
 end;
 result := false;
end;

function DivRoundUp(Value, Divider: Cardinal): Cardinal;
begin
  Result := (Value + Divider - 1) div Divider;
end;

function DivRoundUp(Value, Divider: Integer): Integer;
begin
  Result := (Value + Divider - 1) div Divider;
end;

function MapRange(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd: integer): float;
begin
  { Map range SourceBegin .. SourceEnd to 0..1, and express SourceVal there. }
  Result := (sourceVal - sourceBegin) / (sourceEnd - sourceBegin);
  { Map range 0..1 to DestBegin .. DestEnd }
  Result := Result * (destEnd - destBegin) + destBegin;
end;

function MapRange(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd: float  ): float;
begin
  { Map range SourceBegin .. SourceEnd to 0..1, and express SourceVal there. }
  Result := (sourceVal - sourceBegin) / (sourceEnd - sourceBegin);
  { Map range 0..1 to DestBegin .. DestEnd }
  Result := Result * (destEnd - destBegin) + destBegin;
end;

function MapRangeClamped(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd: integer): float;
begin
  Result := MapRange(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd);
  if destEnd < destBegin then
    SwapValues(destBegin, destEnd);
  Result := Clamped(Result, destBegin, destEnd);
end;

function MapRangeClamped(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd: float  ): float;
begin
  Result := MapRange(sourceVal, sourceBegin, sourceEnd, destBegin, destEnd);
  if destEnd < destBegin then
    SwapValues(destBegin, destEnd);
  Result := Clamped(Result, destBegin, destEnd);
end;

function RandomFloatRange(const RangeBegin, RangeEnd: Float): Float;
begin
 result := Random*(RangeEnd-RangeBegin) + RangeBegin;
end;

function AngleRadPointToPoint(x1, y1, x2, y2: Single): Single;
begin
 if y2 > y1 then
 begin
  if SameValue(x1, x2) then
   result := Pi/2 else
  begin
   result := ArcTan( (y2-y1) / (x2-x1) );
   if result < 0 then result := result +Pi;
  end;
 end else
 if y1 > y2 then
 begin
  if SameValue(x1, x2) then
   result := Pi*3/2 else
  begin
   result := ArcTan( (y2-y1) / (x2-x1) );
   if result < 0 then result := result +Pi;
   result := result +Pi;
  end;
 end else
 if x2 > x1 then result := 0 else result := Pi;
end;

function NatNatPower(Base, Exponent: Cardinal): Cardinal;
var i : Cardinal;
begin
 result := 1;
 i := Exponent;
 while i > 0 do
 begin
  while not Odd(i) do
  begin
   i := i shr 1;
   base := sqr(base);
  end;
  i := i-1;
  result := result*base;
 end;
end;

function RandomPlusMinus: integer;
const PlusMinus: array[0..1]of integer = (-1,+1);
begin
 result := PlusMinus[Random(2)];
end;

{$ifdef FPC}
function ArcCot(x: Float): Float;
begin
 result := ArcTan(1/x);
end;
{$endif FPC}

function SmallFactorial(n: Integer): Int64;
begin
 Result := 1;
 while n > 1 do begin Result := Result * n; Dec(n) end;
end;

procedure CastleDivMod(Dividend: Integer; Divisor: Word;
  out Result, Remainder: SmallInt);
{$ifdef VER2_4_0}
{ Workaround http://bugs.freepascal.org/view.php?id=15453.
  DivMod overload with SmallInt params already exist in Math unit,
  so this is not our concern. }
begin
  if Dividend < 0 then
  begin
    { Use DivMod with >=0 dividend }
    DivMod(-Dividend, Divisor, Result, Remainder);
    { The documented behavior of Pascal's div/mod operators and DivMod
      on negative dividends is to return Result closer to zero and
      a negative Remainder. Which means that we can just negate both
      Result and Remainder, and all it's Ok. }
    Result := -Result;
    Remainder := -Remainder;
  end else
    DivMod(Dividend, Divisor, Result, Remainder);
{$else}
{ Workaround lack of DivMod overload with signed (SmallInt) params.
  This is needed only for old FPC (at least older than 2.2.4). }
var
  UnsignedResult: Word absolute Result;
  UnsignedRemainder: Word absolute Remainder;
begin
  DivMod(Dividend, Divisor, UnsignedResult, UnsignedRemainder);
{$endif}
end;

procedure DivUnsignedMod(Dividend: Integer; Divisor: Word;
  out Result: Smallint; out Remainder: Word);
var
  SignedRemainder: SmallInt;
begin
  CastleDivMod(Dividend, Divisor, Result, SignedRemainder);
  if SignedRemainder < 0 then
  begin
    Dec(Result);
    Remainder := Divisor + SignedRemainder;
  end else
    Remainder := SignedRemainder;
end;

function CeilDiv(const A, B: Cardinal): Cardinal;
var
  DivResult, ModResult: Cardinal;
begin
  { I would like to use DivMod, but it's limited to 16-bit values.
    DivMod(A, B, DivResult, ModResult); }
  DivResult := A div B;
  ModResult := A mod B;
  if ModResult = 0 then
    Result := DivResult else
    Result := DivResult + 1;
end;

procedure FloatDivMod(const A, B: Double;
  out DivResult: Int64; out Remainder: Double);
begin
  DivResult := Trunc(A / B);
  Remainder := A - B * DivResult;
  { Now the tricks to make this (somewhat) more numerically stable,
    i.e. resistant to tricky cases without unprecise floating-point
    calculation. }
  if Remainder < 0 then
    Remainder := 0 else
  if Remainder >= B then
  begin
    Remainder -= B;
    Inc(DivResult);

    { Mathematically, we could do above two lines in a loop
      "while Remainder >= A", but this could loop (practically)
      forever for very small (or zero) B.

      Instead we just clamp Remainder to [0, B] once again, the hard way. }

    Clamp(Remainder, 0, B);
  end;
end;

function FloatModulo(const A, B: Double): Double;
var
  DivResult: Int64;
begin
  if A < 0 then
  begin
    { FloatDivMod requires that 1st param be >= 0. }
    FloatDivMod(-A, B, DivResult, Result);
    Result := Clamped(B - Result, 0, B);
  end else
    FloatDivMod(A, B, DivResult, Result);
end;

procedure MinMax(const x0, x1, x2: Double; out min, max: Double);
begin
  min := x0;
  max := x0;
  if   x1 < min then min := x1 else
    if x1 > max then max := x1;
  if   x2 < min then min := x2 else
    if x2 > max then max := x2;
end;

procedure MinMax(const x0, x1, x2: Single; out min, max: Single);
begin
  min := x0;
  max := x0;
  if   x1 < min then min := x1 else
    if x1 > max then max := x1;
  if   x2 < min then min := x2 else
    if x2 > max then max := x2;
end;

function CastleCoTan(const Value: Float): Float;
var
  ASin, ACos: Float;
begin
  SinCos(Value, ASin, ACos);
  Result := Acos / ASin;
end;

function IntSqrt(const Value: Cardinal): Cardinal;
{ See http://en.wikipedia.org/wiki/Integer_square_root.

  This isn't nice impl, as it uses floating-point numbers to calculate
  integer function... However, doing it on ints, doesn't make this
  process terminate nicely. Hacks like in primes.cpp from
  http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
  don't calculate floor sqrt properly (e.g. for 8 return 3).

  So for now, calculate on floats. Autotests check it's Ok.

  Actually, when calculating on floats, I can just use Trunc(Sqrt())...
  So this is quite pointless exercise. }
(*
var
  Old, New: Float;
begin
  if Value = 0 then Exit(0); { to not fail by division by zero }

  New := Value;
  repeat
    Old := New;
    New := (Old + Value / Old) / 2;
  until Abs(Old - New) < 0.5;
  Result := Trunc(New);
end;
*)
begin
  Result := Trunc(Sqrt(Value));
end;

function SmoothStep(const Edge0, Edge1, X: Single): Single;
begin
  Result := Clamped((X - Edge0) / (Edge1 - Edge0), 0.0, 1.0);
  Result := Result * Result * (3.0 - 2.0 * Result);
end;
{$endif read_implementation}