This file is indexed.

/usr/share/doc/libchemps2/html/dmrgscf.html is in chemps2-doc 1.8.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>8. DMRG-SCF &#8212; CheMPS2 1.8.3 (2016-11-15) documentation</title>
    
    <link rel="stylesheet" href="_static/classic.css" type="text/css" />
    <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    './',
        VERSION:     '1.8.3 (2016-11-15)',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="/usr/share/javascript/jquery/jquery.js"></script>
    <script type="text/javascript" src="/usr/share/javascript/underscore/underscore.js"></script>
    <script type="text/javascript" src="_static/doctools.js"></script>
    <script type="text/javascript" src="/usr/share/javascript/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
    <link rel="index" title="Index" href="genindex.html" />
    <link rel="search" title="Search" href="search.html" />
    <link rel="top" title="CheMPS2 1.8.3 (2016-11-15) documentation" href="index.html" />
    <link rel="next" title="9. DMRG-SCF calculations" href="dmrgscfcalcs.html" />
    <link rel="prev" title="7. Typical resource requirements" href="resources.html" /> 
  </head>
  <body role="document">
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="dmrgscfcalcs.html" title="9. DMRG-SCF calculations"
             accesskey="N">next</a> |</li>
        <li class="right" >
          <a href="resources.html" title="7. Typical resource requirements"
             accesskey="P">previous</a> |</li>
        <li class="nav-item nav-item-0"><a href="index.html">CheMPS2 1.8.3 (2016-11-15) documentation</a> &#187;</li> 
      </ul>
    </div>  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body" role="main">
            
  <span class="target" id="index-0"></span><span class="target" id="index-1"></span><span class="target" id="index-2"></span><div class="section" id="dmrg-scf">
<span id="index-3"></span><h1>8. DMRG-SCF<a class="headerlink" href="#dmrg-scf" title="Permalink to this headline">¶</a></h1>
<p>In methods which use a FCI solver, this solver can be replaced by DMRG. DMRG allows for an efficient extraction of the 2-RDM. The 2-RDM of the active space is required in the complete active space self-consistent field (CASSCF) method to compute the gradient and the Hessian with respect to orbital rotations <a class="reference internal" href="#dmrgscf1" id="id1">[DMRGSCF1]</a>. It is therefore natural to introduce a CASSCF variant with DMRG as active space solver, called DMRG-SCF <a class="reference internal" href="#dmrgscf2" id="id2">[DMRGSCF2]</a> <a class="reference internal" href="#dmrgscf3" id="id3">[DMRGSCF3]</a> <a class="reference internal" href="#dmrgscf4" id="id4">[DMRGSCF4]</a>, which allows to treat static correlation in large active spaces. In CheMPS2, the augmented Hessian Newton-Raphson DMRG-SCF method is implemented, with exact Hessian <a class="reference internal" href="#dmrgscf5" id="id5">[DMRGSCF5]</a> <a class="reference internal" href="#dmrgscf6" id="id6">[DMRGSCF6]</a>.</p>
<div class="section" id="augmented-hessian-newton-raphson">
<h2>8.1. Augmented Hessian Newton-Raphson<a class="headerlink" href="#augmented-hessian-newton-raphson" title="Permalink to this headline">¶</a></h2>
<p>The basic idea is to express the energy with the unitary group generators up to second order:</p>
<div class="math">
\[\begin{split}\hat{E}_{pq} &amp; = &amp; \sum\limits_{\sigma} \hat{a}^{\dagger}_{p \sigma} \hat{a}_{q \sigma} \\
\left[ \hat{E}_{pq} , \hat{E}_{rs} \right] &amp; = &amp; \delta_{qr} \hat{E}_{ps} - \delta_{ps} \hat{E}_{rq} \\
\hat{E}^{-}_{pq} &amp; = &amp; \hat{E}_{pq} - \hat{E}_{qp} \\
\hat{T}(\vec{x}) &amp; = &amp; \sum\limits_{p&lt;q} x_{pq} \hat{E}^{-}_{pq} \\
E(\vec{x}) &amp; = &amp; \left\langle 0 \mid e^{\hat{T}(\vec{x})} \hat{H} e^{-\hat{T}(\vec{x})} \mid 0 \right\rangle \approx E(0) + \vec{x}^T \vec{g} + \frac{1}{2} \vec{x}^T \mathbf{H} \vec{x}\end{split}\]</div>
<p>The vector <span class="math">\(\vec{g}\)</span> is the gradient and the matrix <span class="math">\(\mathbf{H}\)</span> the Hessian for orbital rotations. The minimum of <span class="math">\(E(\vec{x})\)</span> is found at <span class="math">\(\vec{x} = - \mathbf{H}^{-1} \vec{g}\)</span>. The variables <span class="math">\(\vec{x}\)</span> parametrize an additional orbital rotation <span class="math">\(\mathbf{U}_{add} = \exp(\mathbf{T}(\vec{x}))\)</span>, with <span class="math">\(\mathbf{T}(\vec{x}) = -\mathbf{T}^T(\vec{x})\)</span> a real-valued skew-symmetric matrix. The additional orbital rotation <span class="math">\(\mathbf{U}_{add}\)</span> transforms the current orbitals <span class="math">\(\mathbf{U}(n)\)</span> to the new orbitals</p>
<div class="math">
\[\mathbf{U}(n+1) = \mathbf{U}_{add} \mathbf{U}(n) = \exp(\mathbf{T}(\vec{x}(n))) \mathbf{U}(n).\]</div>
<p>This updating scheme is called the Newton-Raphson method. If the Hessian is positive definite, these updates are stable. For saddle points in the energy landscape, the Hessian has negative eigenvalues, and these updates can be unstable. It is therefore better to use the augmented Hessian Newton-Raphson method:</p>
<div class="math">
\[\begin{split}\left[ \begin{array}{cc} \mathbf{H} &amp; \vec{g} \\ \vec{g}^T &amp; 0 \end{array} \right] \left[ \begin{array}{c} \vec{x} \\ 1 \end{array} \right] = \alpha \left[ \begin{array}{c} \vec{x} \\ 1 \end{array} \right].\end{split}\]</div>
<p>The eigenvector with smallest algebraic eigenvalue determines a stable update <span class="math">\(\vec{x}\)</span>, as is well explained in Ref. <a class="reference internal" href="#dmrgscf7" id="id7">[DMRGSCF7]</a>.</p>
</div>
<div class="section" id="diis">
<h2>8.2. DIIS<a class="headerlink" href="#diis" title="Permalink to this headline">¶</a></h2>
<p>When the update norm <span class="math">\(\|\vec{x}\|_2\)</span> is small enough, the convergence can be accelerated by the direct inversion of the iterative subspace (DIIS) <a class="reference internal" href="#dmrgscf8" id="id8">[DMRGSCF8]</a> <a class="reference internal" href="#dmrgscf9" id="id9">[DMRGSCF9]</a>. For a given set of orbitals <span class="math">\(\mathbf{U}(n)\)</span>, the update <span class="math">\(\vec{x}(n)\)</span> is calculated with the augmented Hessian Newton-Raphson method. This update defines the next set of orbitals:</p>
<div class="math">
\[\mathbf{U}(n+1) = \mathbf{U}_{add} \mathbf{U}(n) = \exp(\mathbf{T}(\vec{x}(n))) \mathbf{U}(n).\]</div>
<p>In DIIS, the error vector <span class="math">\(\vec{x}(n)\)</span> and the state vector <span class="math">\(\mathbf{Y}(n+1) = \log(\mathbf{U}(n+1))\)</span> are added to a list. The error</p>
<div class="math">
\[e = \left\| \sum\limits_{i = 1}^{\kappa} c_i \vec{x}(n - \kappa + i) \right\|_2\]</div>
<p>is minimized under the constraint <span class="math">\(\sum_{i} c_i = 1\)</span>. <span class="math">\(\kappa\)</span> is the size of the list memory, i.e. the number of retained vectors. The minimization of the error <span class="math">\(e\)</span> can be performed with Lagrangian calculus:</p>
<div class="math">
\[\begin{split}\left[ \begin{array}{cc} \mathbf{B} &amp; \vec{1} \\ \vec{1}^T &amp; 0 \end{array} \right] \left[ \begin{array}{c} \vec{c} \\ \lambda \end{array} \right] = \left[ \begin{array}{c} \vec{0} \\ 1 \end{array} \right],\end{split}\]</div>
<p>where <span class="math">\(2\lambda\)</span> is the Lagrangian multiplier and</p>
<div class="math">
\[\left[\mathbf{B}\right]_{ij} = \vec{x}^T(n - \kappa + i) \vec{x}(n - \kappa + j) = \left[\mathbf{B}\right]_{ji}.\]</div>
<p>The new state vector is then defined as</p>
<div class="math">
\[\mathbf{Y}_{new} = \sum\limits_{i = 1}^{\kappa} c_i \mathbf{Y}(n+1 - \kappa + i).\]</div>
<p>The current orbitals are then set to <span class="math">\(\mathbf{U}(n+1) = \exp(\mathbf{Y}_{new})\)</span>.</p>
<table class="docutils citation" frame="void" id="dmrgscf1" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id1">[DMRGSCF1]</a></td><td>P.E.M. Siegbahn, J. Almlof, A. Heiberg and B.O. Roos, <em>Journal of Chemical Physics</em> <strong>74</strong>, 2384-2396 (1981), doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.441359">10.1063/1.441359</a></td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="dmrgscf2" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id2">[DMRGSCF2]</a></td><td><ol class="first last upperalpha simple" start="4">
<li>Ghosh, J. Hachmann, T. Yanai and G.K.-L. Chan, <em>Journal of Chemical Physics</em> <strong>128</strong>, 144117 (2008), doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.2883976">10.1063/1.2883976</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="dmrgscf3" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id3">[DMRGSCF3]</a></td><td><ol class="first last upperalpha simple" start="4">
<li>Zgid and M. Nooijen, <em>Journal of Chemical Physics</em> <strong>128</strong>, 144116 (2008), doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.2883981">10.1063/1.2883981</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="dmrgscf4" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id4">[DMRGSCF4]</a></td><td><ol class="first last upperalpha simple" start="20">
<li>Yanai, Y. Kurashige, D. Ghosh and G.K.-L. Chan, <em>International Journal of Quantum Chemistry</em> <strong>109</strong>, 2178-2190 (2009), doi: <a class="reference external" href="http://dx.doi.org/10.1002/qua.22099">10.1002/qua.22099</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="dmrgscf5" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id5">[DMRGSCF5]</a></td><td><ol class="first last upperalpha simple" start="19">
<li>Wouters, W. Poelmans, P.W. Ayers and D. Van Neck, <em>Computer Physics Communications</em> <strong>185</strong>, 1501-1514 (2014), doi: <a class="reference external" href="http://dx.doi.org/10.1016/j.cpc.2014.01.019">10.1016/j.cpc.2014.01.019</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="dmrgscf6" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id6">[DMRGSCF6]</a></td><td><ol class="first last upperalpha simple" start="19">
<li>Wouters, T. Bogaerts, P. Van Der Voort, V. Van Speybroeck and D. Van Neck, <em>Journal of Chemical Physics</em> <strong>140</strong>, 241103 (2014), doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.4885815">10.1063/1.4885815</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="dmrgscf7" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id7">[DMRGSCF7]</a></td><td><ol class="first last upperalpha simple">
<li>Banerjee, N. Adams, J. Simons and R. Shepard, <em>Journal of Physical Chemistry</em> <strong>89</strong>, 52-57 (1985), doi: <a class="reference external" href="http://dx.doi.org/10.1021/j100247a015">10.1021/j100247a015</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="dmrgscf8" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id8">[DMRGSCF8]</a></td><td><ol class="first last upperalpha simple" start="16">
<li>Pulay, <em>Chemical Physics Letters</em> <strong>73</strong>, 393-398 (1980), doi: <a class="reference external" href="http://dx.doi.org/10.1016/0009-2614(80)80396-4">10.1016/0009-2614(80)80396-4</a></li>
</ol>
</td></tr>
</tbody>
</table>
<table class="docutils citation" frame="void" id="dmrgscf9" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id9">[DMRGSCF9]</a></td><td>C.D. Sherrill, Programming DIIS, <a class="reference external" href="http://vergil.chemistry.gatech.edu/notes/diis/node3.html">http://vergil.chemistry.gatech.edu/notes/diis/node3.html</a> (2000).</td></tr>
</tbody>
</table>
</div>
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
        <div class="sphinxsidebarwrapper">
            <p class="logo"><a href="index.html">
              <img class="logo" src="_static/CheMPS2logo.png" alt="Logo"/>
            </a></p>
  <h3><a href="index.html">Table Of Contents</a></h3>
  <ul>
<li><a class="reference internal" href="#">8. DMRG-SCF</a><ul>
<li><a class="reference internal" href="#augmented-hessian-newton-raphson">8.1. Augmented Hessian Newton-Raphson</a></li>
<li><a class="reference internal" href="#diis">8.2. DIIS</a></li>
</ul>
</li>
</ul>

  <h4>Previous topic</h4>
  <p class="topless"><a href="resources.html"
                        title="previous chapter">7. Typical resource requirements</a></p>
  <h4>Next topic</h4>
  <p class="topless"><a href="dmrgscfcalcs.html"
                        title="next chapter">9. DMRG-SCF calculations</a></p>
  <div role="note" aria-label="source link">
    <h3>This Page</h3>
    <ul class="this-page-menu">
      <li><a href="_sources/dmrgscf.txt"
            rel="nofollow">Show Source</a></li>
    </ul>
   </div>
<div id="searchbox" style="display: none" role="search">
  <h3>Quick search</h3>
    <form class="search" action="search.html" method="get">
      <div><input type="text" name="q" /></div>
      <div><input type="submit" value="Go" /></div>
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="dmrgscfcalcs.html" title="9. DMRG-SCF calculations"
             >next</a> |</li>
        <li class="right" >
          <a href="resources.html" title="7. Typical resource requirements"
             >previous</a> |</li>
        <li class="nav-item nav-item-0"><a href="index.html">CheMPS2 1.8.3 (2016-11-15) documentation</a> &#187;</li> 
      </ul>
    </div>
    <div class="footer" role="contentinfo">
        &#169; Copyright 2013-2016, Sebastian Wouters.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.4.9.
    </div>
  </body>
</html>