This file is indexed.

/usr/share/doc/libchemps2/html/handson.html is in chemps2-doc 1.8.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>12. DMRG workshop (12-jul-2016): hands-on session &#8212; CheMPS2 1.8.3 (2016-11-15) documentation</title>
    
    <link rel="stylesheet" href="_static/classic.css" type="text/css" />
    <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    './',
        VERSION:     '1.8.3 (2016-11-15)',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="/usr/share/javascript/jquery/jquery.js"></script>
    <script type="text/javascript" src="/usr/share/javascript/underscore/underscore.js"></script>
    <script type="text/javascript" src="_static/doctools.js"></script>
    <script type="text/javascript" src="/usr/share/javascript/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
    <link rel="index" title="Index" href="genindex.html" />
    <link rel="search" title="Search" href="search.html" />
    <link rel="top" title="CheMPS2 1.8.3 (2016-11-15) documentation" href="index.html" />
    <link rel="prev" title="11. Interfaces to psi4 and pyscf" href="interfaces.html" /> 
  </head>
  <body role="document">
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="interfaces.html" title="11. Interfaces to psi4 and pyscf"
             accesskey="P">previous</a> |</li>
        <li class="nav-item nav-item-0"><a href="index.html">CheMPS2 1.8.3 (2016-11-15) documentation</a> &#187;</li> 
      </ul>
    </div>  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body" role="main">
            
  <div class="section" id="dmrg-workshop-12-jul-2016-hands-on-session">
<span id="index-0"></span><h1>12. DMRG workshop (12-jul-2016): hands-on session<a class="headerlink" href="#dmrg-workshop-12-jul-2016-hands-on-session" title="Permalink to this headline"></a></h1>
<div class="section" id="introduction">
<h2>12.1. Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline"></a></h2>
<p>The geometry of tetracene was optimized at the restricted B3LYP/6-31G* level of theory, and can be found in the file <a class="reference external" href="https://github.com/sebwouters/chemps2/raw/master/sphinx/tetracene.fcidump.in">tetracene.fcidump.in</a>:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">memory</span> <span class="mi">28</span> <span class="n">Gb</span>

<span class="n">molecule</span> <span class="n">tetracene</span> <span class="p">{</span>
<span class="mi">0</span> <span class="mi">1</span>
<span class="n">symmetry</span> <span class="n">csz</span>
    <span class="n">C</span>            <span class="mf">4.888883611380</span>    <span class="o">-</span><span class="mf">0.715374463486</span>    <span class="o">-</span><span class="mf">0.000000000000</span>
    <span class="n">C</span>            <span class="mf">4.888883611380</span>     <span class="mf">0.715374463486</span>     <span class="mf">0.000000000000</span>
    <span class="n">C</span>           <span class="o">-</span><span class="mf">4.888883611380</span>    <span class="o">-</span><span class="mf">0.715374463486</span>     <span class="mf">0.000000000000</span>
    <span class="n">C</span>           <span class="o">-</span><span class="mf">4.888883611380</span>     <span class="mf">0.715374463486</span>    <span class="o">-</span><span class="mf">0.000000000000</span>
    <span class="n">C</span>            <span class="mf">3.711144499602</span>    <span class="o">-</span><span class="mf">1.409316610825</span>     <span class="mf">0.000000000000</span>
    <span class="n">C</span>            <span class="mf">3.711144499602</span>     <span class="mf">1.409316610825</span>     <span class="mf">0.000000000000</span>
    <span class="n">C</span>           <span class="o">-</span><span class="mf">3.711144499602</span>    <span class="o">-</span><span class="mf">1.409316610825</span>     <span class="mf">0.000000000000</span>
    <span class="n">C</span>           <span class="o">-</span><span class="mf">3.711144499602</span>     <span class="mf">1.409316610825</span>     <span class="mf">0.000000000000</span>
    <span class="n">C</span>            <span class="mf">2.450542389320</span>    <span class="o">-</span><span class="mf">0.725895641808</span>     <span class="mf">0.000000000000</span>
    <span class="n">C</span>            <span class="mf">2.450542389320</span>     <span class="mf">0.725895641808</span>     <span class="mf">0.000000000000</span>
    <span class="n">C</span>           <span class="o">-</span><span class="mf">2.450542389320</span>    <span class="o">-</span><span class="mf">0.725895641808</span>     <span class="mf">0.000000000000</span>
    <span class="n">C</span>           <span class="o">-</span><span class="mf">2.450542389320</span>     <span class="mf">0.725895641808</span>     <span class="mf">0.000000000000</span>
    <span class="n">C</span>            <span class="mf">1.235393613403</span>    <span class="o">-</span><span class="mf">1.406341384439</span>    <span class="o">-</span><span class="mf">0.000000000000</span>
    <span class="n">C</span>            <span class="mf">1.235393613403</span>     <span class="mf">1.406341384439</span>    <span class="o">-</span><span class="mf">0.000000000000</span>
    <span class="n">C</span>           <span class="o">-</span><span class="mf">1.235393613403</span>    <span class="o">-</span><span class="mf">1.406341384439</span>     <span class="mf">0.000000000000</span>
    <span class="n">C</span>           <span class="o">-</span><span class="mf">1.235393613403</span>     <span class="mf">1.406341384439</span>    <span class="o">-</span><span class="mf">0.000000000000</span>
    <span class="n">C</span>            <span class="mf">0.000000000000</span>    <span class="o">-</span><span class="mf">0.726150477978</span>     <span class="mf">0.000000000000</span>
    <span class="n">C</span>           <span class="o">-</span><span class="mf">0.000000000000</span>     <span class="mf">0.726150477978</span>    <span class="o">-</span><span class="mf">0.000000000000</span>
    <span class="n">H</span>           <span class="o">-</span><span class="mf">5.836431028249</span>     <span class="mf">1.247257941939</span>     <span class="mf">0.000000000000</span>
    <span class="n">H</span>           <span class="o">-</span><span class="mf">5.836431028249</span>    <span class="o">-</span><span class="mf">1.247257941939</span>    <span class="o">-</span><span class="mf">0.000000000000</span>
    <span class="n">H</span>            <span class="mf">5.836431028249</span>    <span class="o">-</span><span class="mf">1.247257941939</span>     <span class="mf">0.000000000000</span>
    <span class="n">H</span>            <span class="mf">5.836431028249</span>     <span class="mf">1.247257941939</span>    <span class="o">-</span><span class="mf">0.000000000000</span>
    <span class="n">H</span>            <span class="mf">3.708923113951</span>    <span class="o">-</span><span class="mf">2.496817544333</span>     <span class="mf">0.000000000000</span>
    <span class="n">H</span>            <span class="mf">3.708923113951</span>     <span class="mf">2.496817544333</span>     <span class="mf">0.000000000000</span>
    <span class="n">H</span>           <span class="o">-</span><span class="mf">3.708923113951</span>    <span class="o">-</span><span class="mf">2.496817544333</span>    <span class="o">-</span><span class="mf">0.000000000000</span>
    <span class="n">H</span>           <span class="o">-</span><span class="mf">3.708923113951</span>     <span class="mf">2.496817544333</span>     <span class="mf">0.000000000000</span>
    <span class="n">H</span>            <span class="mf">1.235230564126</span>    <span class="o">-</span><span class="mf">2.494555353711</span>     <span class="mf">0.000000000000</span>
    <span class="n">H</span>            <span class="mf">1.235230564126</span>     <span class="mf">2.494555353711</span>     <span class="mf">0.000000000000</span>
    <span class="n">H</span>           <span class="o">-</span><span class="mf">1.235230564126</span>     <span class="mf">2.494555353711</span>     <span class="mf">0.000000000000</span>
    <span class="n">H</span>           <span class="o">-</span><span class="mf">1.235230564126</span>    <span class="o">-</span><span class="mf">2.494555353711</span>     <span class="mf">0.000000000000</span>
<span class="p">}</span>

<span class="n">sys</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span> <span class="mi">0</span><span class="p">,</span> <span class="s1">&#39;./..&#39;</span> <span class="p">)</span>
<span class="kn">import</span> <span class="nn">fcidump</span>

<span class="nb">set</span> <span class="n">basis</span> <span class="mi">6</span><span class="o">-</span><span class="mi">31</span><span class="n">g</span><span class="o">*</span>
<span class="nb">set</span> <span class="n">reference</span> <span class="n">rhf</span>
<span class="nb">set</span> <span class="n">scf_type</span> <span class="n">DIRECT</span>
<span class="nb">set</span> <span class="n">e_convergence</span> <span class="mi">1</span><span class="n">e</span><span class="o">-</span><span class="mi">12</span>
<span class="nb">set</span> <span class="n">d_convergence</span> <span class="mi">1</span><span class="n">e</span><span class="o">-</span><span class="mi">10</span>
<span class="nb">set</span> <span class="n">ints_tolerance</span> <span class="mf">0.0</span>

<span class="nb">set</span> <span class="n">fcidump</span> <span class="n">dumpfilename</span> <span class="n">tetracene</span><span class="o">.</span><span class="n">fcidump</span>

<span class="n">E</span><span class="p">,</span> <span class="n">wfn</span> <span class="o">=</span> <span class="n">energy</span><span class="p">(</span> <span class="s1">&#39;fcidump&#39;</span><span class="p">,</span> <span class="n">return_wfn</span><span class="o">=</span><span class="kc">True</span> <span class="p">)</span>
<span class="n">molden</span><span class="p">(</span> <span class="n">wfn</span><span class="p">,</span> <span class="s1">&#39;tetracene.molden&#39;</span> <span class="p">)</span>

</pre></div>
</div>
<p>The goal of this afternoon is to calculate the vertical singlet-triplet gap with DMRG(18, 18)-CASPT2/6-31G*.</p>
<p><a class="reference external" href="https://github.com/sebwouters/chemps2">chemps2</a> is a C++ library for spin-adapted DMRG calculations which can be incorporated in quantum chemistry packages. This has been done for <a class="reference external" href="http://www.psicode.org/">psi4</a>. Alternatively, the same functionality can be used with the binary, when the required matrix elements have been generated in <code class="docutils literal"><span class="pre">FCIDUMP</span></code> format. We will follow the second route this afternoon. The advantage of the latter route is that you are not tied to <a class="reference external" href="http://www.psicode.org/">psi4</a> to obtain matrix elements. In the future you can use <a class="reference external" href="http://www.molcas.org/">molcas</a>, <a class="reference external" href="https://www.molpro.net/">molpro</a>, <a class="reference external" href="http://www.daltonprogram.org/">dalton</a>... The disadvantage is that a full-rank <code class="docutils literal"><span class="pre">FCIDUMP</span></code> file is required, and that less virtual (secondary) orbitals can be used than with density-fitted DMRG-SCF and DMRG-CASPT2.</p>
<p>Please read an entire section before starting the instructions. Then you will have all the useful information you need!</p>
</div>
<div class="section" id="ugent-hpc">
<h2>12.2. UGent HPC<a class="headerlink" href="#ugent-hpc" title="Permalink to this headline"></a></h2>
<p>Follow the <a class="reference external" href="http://hpc.ugent.be/userwiki/index.php/User:VscConnect">instructions</a> to log in to the UGent HPC.</p>
<p>Submit an interactive job in the XYZ queue:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ qsub -I -W <span class="nv">x</span><span class="o">=</span>FLAGS:ADVRES:dmrg.198 -l <span class="nv">walltime</span><span class="o">=</span>06:00:00 -l <span class="nv">nodes</span><span class="o">=</span>1:ppn<span class="o">=</span>8
</pre></div>
</div>
<p>Once you are on the node, change directory to, for example, the following folder:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ <span class="nb">cd</span> <span class="nv">$VSC_SCRATCH_NODE</span>
$ mkdir dmrg_workshop
$ <span class="nb">cd</span> dmrg_workshop/
</pre></div>
</div>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">Please keep in mind that you will need about 20 GB of disk for the <code class="docutils literal"><span class="pre">FCIDUMP</span></code> file and 1 GB of disk for the <a class="reference external" href="https://github.com/sebwouters/chemps2">chemps2</a> checkpoints!</p>
</div>
</div>
<div class="section" id="fcidump-and-molden">
<h2>12.3. <code class="docutils literal"><span class="pre">FCIDUMP</span></code> and <code class="docutils literal"><span class="pre">MOLDEN</span></code><a class="headerlink" href="#fcidump-and-molden" title="Permalink to this headline"></a></h2>
<p>We will first use a plugin to <a class="reference external" href="http://www.psicode.org/">psi4</a> to generate the RHF matrix elements in <code class="docutils literal"><span class="pre">FCIDUMP</span></code> format, as well as the corresponding <code class="docutils literal"><span class="pre">MOLDEN</span></code> file. As said before, any other program which is able to generate these two types of files can be used as well. Load the <a class="reference external" href="http://www.psicode.org/">psi4</a> module and generate a new plugin called <code class="docutils literal"><span class="pre">fcidump</span></code>:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ module load PSI4/1.0-intel-2016a-mt-Python-2.7.11
$ psi4 --new-plugin fcidump
</pre></div>
</div>
<p>Overwrite the dummy file <code class="docutils literal"><span class="pre">fcidump.cc</span></code> and compile:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ <span class="nb">cd</span> fcidump/
$ rm fcidump.cc
$ wget <span class="s1">&#39;https://github.com/sebwouters/chemps2/raw/master/integrals/psi4plugins/fcidump.cc&#39;</span>
$ make
$ <span class="nb">cd</span> ../
</pre></div>
</div>
<p>The required <code class="docutils literal"><span class="pre">FCIDUMP</span></code> file and the corresponding <code class="docutils literal"><span class="pre">MOLDEN</span></code> file can now be generated with <a class="reference external" href="http://www.psicode.org/">psi4</a>:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ wget <span class="s1">&#39;https://github.com/sebwouters/chemps2/raw/master/sphinx/tetracene.fcidump.in&#39;</span>
$ <span class="nv">OMP_NUM_THREADS</span><span class="o">=</span><span class="m">8</span> psi4 -n <span class="m">8</span> tetracene.fcidump.in <span class="p">&amp;</span>
$ tail -n <span class="m">3000</span> -f tetracene.fcidump.out
$ ls -alh TETRACENE.FCIDUMP
$ ls -alh tetracene.molden
</pre></div>
</div>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">The specified symmetry group in <code class="docutils literal"><span class="pre">tetracene.fcidump.in</span></code> was <code class="docutils literal"><span class="pre">csz</span></code>, a subgroup of <code class="docutils literal"><span class="pre">d2h</span></code>. In the <code class="docutils literal"><span class="pre">csz</span></code> symmetry group, the 18 active space <span class="math">\(\pi\)</span>-orbitals can be localized to the carbon atoms. This is not the case for the <code class="docutils literal"><span class="pre">d2h</span></code> symmetry group.</p>
</div>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">While you are waiting for the <code class="docutils literal"><span class="pre">FCIDUMP</span></code> file of size 20 GB, you can already proceed with the next section.</p>
</div>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p>You can also use the precreated files from the folder <code class="docutils literal"><span class="pre">/apps/gent/tutorials/DMRG/</span></code> instead:</p>
<div class="last highlight-bash"><div class="highlight"><pre><span></span>$ ls -al /apps/gent/tutorials/DMRG/tetracene.fcidump.in
$ ls -al /apps/gent/tutorials/DMRG/tetracene.fcidump.out
$ ls -al /apps/gent/tutorials/DMRG/TETRACENE.FCIDUMP
$ ls -al /apps/gent/tutorials/DMRG/tetracene.molden
</pre></div>
</div>
</div>
</div>
<div class="section" id="basis-choice">
<h2>12.4. Basis choice<a class="headerlink" href="#basis-choice" title="Permalink to this headline"></a></h2>
<p>Now that you have the required matrix elements in <code class="docutils literal"><span class="pre">FCIDUMP</span></code> format and the corresponding <code class="docutils literal"><span class="pre">MOLDEN</span></code> file, we can perform calculations with <a class="reference external" href="https://github.com/sebwouters/chemps2">chemps2</a> v1.7.2. This module should have been loaded together with the <a class="reference external" href="http://www.psicode.org/">psi4</a> module. If this was not the case, you can load it with:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ module load CheMPS2/1.7.2-intel-2016a
</pre></div>
</div>
<p>Study the options of the binary:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ chemps2 --version
$ chemps2 --help
</pre></div>
</div>
<p>Perform each calculation in a separate folder. This way checkpoint files will not get mixed up. Create a folder <code class="docutils literal"><span class="pre">ci_input_orbs/</span></code> and in that folder an input file <code class="docutils literal"><span class="pre">ci_input_orbs.in</span></code> for <a class="reference external" href="https://github.com/sebwouters/chemps2">chemps2</a> with the following options:</p>
<ul class="simple">
<li>Target the singlet ground state</li>
<li>Use an (18, 18) active space</li>
<li>Switch off the CASPT2 calculation</li>
<li>Overwrite the tmp folder with the existing path <code class="docutils literal"><span class="pre">/local/NUMBER.master15.delcatty.gent.vsc/</span></code>, where <code class="docutils literal"><span class="pre">NUMBER</span></code> is the job number which you see with</li>
</ul>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ qstat -n
</pre></div>
</div>
<ul class="simple">
<li>Perform one DMRG-SCF iteration, which corresponds to DMRG-CI</li>
<li>The active space orbitals should be the RHF molecular orbitals (i.e. the input orbitals)</li>
<li>Use the convergence scheme</li>
</ul>
<blockquote>
<div><table border="1" class="docutils">
<colgroup>
<col width="20%" />
<col width="19%" />
<col width="18%" />
<col width="25%" />
<col width="18%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head"><span class="math">\(D_{SU(2)}\)</span></th>
<th class="head"><span class="math">\(E_{conv}\)</span></th>
<th class="head"><span class="math">\(N_{max}\)</span></th>
<th class="head"><span class="math">\(\gamma_{noise}\)</span></th>
<th class="head"><span class="math">\(r_{tol}\)</span></th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td>200</td>
<td>1e-6</td>
<td>10</td>
<td>0.05</td>
<td>1e-5</td>
</tr>
<tr class="row-odd"><td>400</td>
<td>1e-6</td>
<td>10</td>
<td>0.05</td>
<td>1e-5</td>
</tr>
<tr class="row-even"><td>600</td>
<td>1e-6</td>
<td>10</td>
<td>0.05</td>
<td>1e-5</td>
</tr>
<tr class="row-odd"><td>600</td>
<td>1e-8</td>
<td>3</td>
<td>0.0</td>
<td>1e-5</td>
</tr>
<tr class="row-even"><td>400</td>
<td>1e-8</td>
<td>3</td>
<td>0.0</td>
<td>1e-5</td>
</tr>
<tr class="row-odd"><td>200</td>
<td>1e-8</td>
<td>3</td>
<td>0.0</td>
<td>1e-5</td>
</tr>
</tbody>
</table>
</div></blockquote>
<ul class="simple">
<li>Set the option <code class="docutils literal"><span class="pre">SCF_MOLDEN</span></code> to the corresponding molden file</li>
</ul>
<p>When you have created the input file, you can double check with the <a class="reference internal" href="#first-ptr-solution"><span class="std std-ref">solution</span></a>.</p>
<p>Run the calculation:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ <span class="nb">cd</span> ci_input_orbs/
$ <span class="nv">OMP_NUM_THREADS</span><span class="o">=</span><span class="m">4</span> chemps2 --file<span class="o">=</span>ci_input_orbs.in <span class="p">&amp;</span>&gt; ci_input_orbs.out <span class="p">&amp;</span>
$ <span class="nb">cd</span> ../
</pre></div>
</div>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">You have now only used 4 of the 8 available cores. Proceed with the instructions below while waiting for the calculation to finish.</p>
</div>
<p>Create a folder <code class="docutils literal"><span class="pre">ci_local_orbs/</span></code> and in that folder an input file <code class="docutils literal"><span class="pre">ci_local_orbs.in</span></code> for <a class="reference external" href="https://github.com/sebwouters/chemps2">chemps2</a>, which is identical to <code class="docutils literal"><span class="pre">ci_input_orbs.in</span></code>, except for the active space orbitals. These should now be localized orbitals. When you have created the input file, you can double check with the <a class="reference internal" href="#second-ptr-solution"><span class="std std-ref">solution</span></a>.</p>
<p>Run the calculation:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ <span class="nb">cd</span> ci_local_orbs/
$ <span class="nv">OMP_NUM_THREADS</span><span class="o">=</span><span class="m">4</span> chemps2 --file<span class="o">=</span>ci_local_orbs.in <span class="p">&amp;</span>&gt; ci_local_orbs.out <span class="p">&amp;</span>
$ <span class="nb">cd</span> ../
$ tail -n <span class="m">300</span> ci_input_orbs/ci_input_orbs.out
$ tail -n <span class="m">300</span> ci_local_orbs/ci_local_orbs.out
</pre></div>
</div>
<p>When the calculations are finished, take a look at the files</p>
<blockquote>
<div><ul class="simple">
<li><code class="docutils literal"><span class="pre">ci_input_orbs/tetracene.molden.rotated</span></code></li>
<li><code class="docutils literal"><span class="pre">ci_local_orbs/tetracene.molden.rotated</span></code></li>
</ul>
</div></blockquote>
<p>with your favourite visualization software. Do the first 18 <code class="docutils literal"><span class="pre">App</span></code> or <code class="docutils literal"><span class="pre">A&quot;</span></code> orbitals have the desired shape? How are they ordered? Once you have formulated your own answer, you can double check with the <a class="reference internal" href="#third-ptr-solution"><span class="std std-ref">solution</span></a>.</p>
<p>Compare the energies of the last three sweep instructions as a function of <span class="math">\(D_{SU(2)}\)</span> for both calculations. Thereto you can grep for:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ grep <span class="s2">&quot;Minimum energy encountered during the last sweep&quot;</span> ci_input_orbs/ci_input_orbs.out
$ grep <span class="s2">&quot;Minimum energy encountered during the last sweep&quot;</span> ci_local_orbs/ci_local_orbs.out
</pre></div>
</div>
<p>What do you observe? Can you explain it? Once you have formulated your own answer, you can double check with the <a class="reference internal" href="#fourth-ptr-solution"><span class="std std-ref">solution</span></a>.</p>
</div>
<div class="section" id="dmrg-scf">
<h2>12.5. DMRG-SCF<a class="headerlink" href="#dmrg-scf" title="Permalink to this headline"></a></h2>
<p>Use localized orbitals for the active space from now on. Perform the DMRG-SCF orbital optimization for the singlet and the triplet. Also put DIIS on when the update norm is smaller than 1e-2, switch <code class="docutils literal"><span class="pre">PRINT_CORR</span></code> to <code class="docutils literal"><span class="pre">TRUE</span></code>, and remove the <code class="docutils literal"><span class="pre">SCF_MOLDEN</span></code> line. Use the following convergence scheme:</p>
<blockquote>
<div><table border="1" class="docutils">
<colgroup>
<col width="20%" />
<col width="19%" />
<col width="18%" />
<col width="25%" />
<col width="18%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head"><span class="math">\(D_{SU(2)}\)</span></th>
<th class="head"><span class="math">\(E_{conv}\)</span></th>
<th class="head"><span class="math">\(N_{max}\)</span></th>
<th class="head"><span class="math">\(\gamma_{noise}\)</span></th>
<th class="head"><span class="math">\(r_{tol}\)</span></th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td>250</td>
<td>1e-6</td>
<td>8</td>
<td>0.05</td>
<td>1e-5</td>
</tr>
<tr class="row-odd"><td>500</td>
<td>1e-8</td>
<td>8</td>
<td>0.05</td>
<td>1e-5</td>
</tr>
<tr class="row-even"><td>750</td>
<td>1e-10</td>
<td>8</td>
<td>0.0</td>
<td>1e-8</td>
</tr>
</tbody>
</table>
</div></blockquote>
<p>Why is the reduced virtual dimension not lowered at the end of the DMRG calculation? Why is the last <span class="math">\(r_{tol}\)</span> smaller? When you have created the input files, you can double check with the solution for the <a class="reference internal" href="#fifth-ptr-solution"><span class="std std-ref">singlet</span></a> and the <a class="reference internal" href="#sixth-ptr-solution"><span class="std std-ref">triplet</span></a>.</p>
<p>Run the calculation in separate folders:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ <span class="nb">cd</span> scf_singlet/
$ <span class="nv">OMP_NUM_THREADS</span><span class="o">=</span><span class="m">4</span> chemps2 --file<span class="o">=</span>scf_singlet.in <span class="p">&amp;</span>&gt; scf_singlet.out <span class="p">&amp;</span>
$ <span class="nb">cd</span> ../scf_triplet/
$ <span class="nv">OMP_NUM_THREADS</span><span class="o">=</span><span class="m">4</span> chemps2 --file<span class="o">=</span>scf_triplet.in <span class="p">&amp;</span>&gt; scf_triplet.out <span class="p">&amp;</span>
$ <span class="nb">cd</span> ../
$ tail -n <span class="m">300</span> scf_singlet/scf_singlet.out
$ tail -n <span class="m">300</span> scf_triplet/scf_triplet.out
</pre></div>
</div>
<p>What is the DMRG-SCF singlet-triplet gap you obtain? Double check with the <a class="reference internal" href="#seventh-ptr-solution"><span class="std std-ref">solution</span></a>.</p>
<p>Do you see polyradical character in the natural orbital occupation numbers for the singlet and/or triplet? How can you observe this in the correlation functions? Tip: It might be interesting to read</p>
<ol class="upperalpha simple" start="10">
<li>Hachmann, J. J. Dorando, Michael Avilés and Garnet Kin-Lic Chan, <em>Journal of Chemical Physics</em> <strong>127</strong>, 134309 (2007): <a class="reference external" href="http://dx.doi.org/10.1063/1.2768362">doi link</a> or <a class="reference external" href="https://arxiv.org/abs/0707.3120">arXiv</a></li>
</ol>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p>If you are in a hurry or immediately want to start with the DMRG-CASPT2 calculations, you can also use the precreated checkpoints from the folder <code class="docutils literal"><span class="pre">/apps/gent/tutorials/DMRG/</span></code>:</p>
<div class="last highlight-bash"><div class="highlight"><pre><span></span>$ cp /apps/gent/tutorials/DMRG/CheMPS2_CASSCF.h5.singlet scf_singlet/.
$ cp /apps/gent/tutorials/DMRG/CheMPS2_CASSCF.h5.triplet scf_triplet/.
</pre></div>
</div>
</div>
</div>
<div class="section" id="dmrg-caspt2">
<h2>12.6. DMRG-CASPT2<a class="headerlink" href="#dmrg-caspt2" title="Permalink to this headline"></a></h2>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p>DMRG-CASPT2 checkpoints can be used when you kill a DMRG-CASPT2 calculation before it is finished, or to redo the DMRG-CASPT2 calculation with another IPEA or IMAG shift. In case you would like to use checkpoints for the DMRG-CASPT2 calculations, it is important that for subsequent runs <strong>exactly</strong> the same orbitals are used. Therefore, start from the converged DMRG-SCF checkpoint <code class="docutils literal"><span class="pre">CheMPS2_CASSCF.h5</span></code> and do the following things:</p>
<blockquote>
<div><ul class="simple">
<li>Put <code class="docutils literal"><span class="pre">SCF_DIIS_THR</span></code> to <code class="docutils literal"><span class="pre">0.0</span></code></li>
<li>Delete any checkpoints named <code class="docutils literal"><span class="pre">CheMPS2_DIIS.h5</span></code></li>
<li>Switch <code class="docutils literal"><span class="pre">SCF_ACTIVE_SPACE</span></code> to <code class="docutils literal"><span class="pre">I</span></code></li>
</ul>
</div></blockquote>
<p class="last">This ensures that for the subsequent DMRG-CASPT2 runs, <strong>exactly</strong> the orbitals from <code class="docutils literal"><span class="pre">CheMPS2_CASSCF.h5</span></code> are used.</p>
</div>
<p>How large is the singlet-triplet gap with DMRG-CASPT2 when an IPEA shift of 0.0 and an IMAG shift of 0.0 are used? Is it best to use <code class="docutils literal"><span class="pre">A</span></code> or <code class="docutils literal"><span class="pre">P</span></code> for the option <code class="docutils literal"><span class="pre">CASPT2_ORBS</span></code>, and why? In your input file, also switch on the DMRG-CASPT2 checkpoint, because later we will redo the calculation with an IPEA shift of 0.25. Use the same convergence scheme as for the DMRG-SCF calculations.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p>Sometimes a larger virtual dimension can be required for DMRG-CASPT2 as compared to DMRG-SCF, because the excited wavefunctions</p>
<div class="math">
\[\left| sz, \alpha, \beta \right\rangle = \left[ \alpha \left( \hat{E}_{sz} + \hat{E}_{zs} \right) + \beta \right] \left| \Psi_0 \right\rangle\]</div>
<p class="last">are a linear combination over three matrix product states: <span class="math">\(\left| \Psi_0 \right\rangle\)</span>, <span class="math">\(\hat{E}_{sz} \left| \Psi_0 \right\rangle\)</span>, and <span class="math">\(\hat{E}_{zs} \left| \Psi_0 \right\rangle\)</span>. In practice, you should therefore check how the DMRG-CASPT2 second order energy in <a class="reference external" href="https://github.com/sebwouters/chemps2">chemps2</a> varies with <span class="math">\(D_{SU(2)}\)</span>!</p>
</div>
<p>When you have created the input files, you can double check with the solution for the <a class="reference internal" href="#eigth-ptr-solution"><span class="std std-ref">singlet</span></a> and the <a class="reference internal" href="#nineth-ptr-solution"><span class="std std-ref">triplet</span></a>.</p>
<p>Run the calculations, but please remember to copy over the converged DMRG-SCF orbitals:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ <span class="nb">cd</span> pt2_singlet/
$ cp ../scf_singlet/CheMPS2_CASSCF.h5 .
$ <span class="nv">OMP_NUM_THREADS</span><span class="o">=</span><span class="m">4</span> chemps2 --file<span class="o">=</span>pt2_singlet.in <span class="p">&amp;</span>&gt; pt2_singlet.out <span class="p">&amp;</span>
$ <span class="nb">cd</span> ../pt2_triplet/
$ cp ../scf_triplet/CheMPS2_CASSCF.h5 .
$ <span class="nv">OMP_NUM_THREADS</span><span class="o">=</span><span class="m">4</span> chemps2 --file<span class="o">=</span>pt2_triplet.in <span class="p">&amp;</span>&gt; pt2_triplet.out <span class="p">&amp;</span>
$ <span class="nb">cd</span> ../
$ tail -n <span class="m">300</span> pt2_singlet/pt2_singlet.out
$ tail -n <span class="m">300</span> pt2_triplet/pt2_triplet.out
</pre></div>
</div>
<p>How large is the singlet-triplet gap with DMRG-CASPT2 when an IPEA shift of 0.0 and an IMAG shift of 0.0 are used?</p>
<p>And with an IPEA shift of 0.25 and an IMAG shift of 0.0?</p>
<p>You can double check with the <a class="reference internal" href="#tenth-ptr-solution"><span class="std std-ref">solution</span></a>.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p>You will see</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>CheMPS2::DMRG::Symm4RDM<span class="o">(</span> X , Y <span class="o">)</span> : Elapsed wall <span class="nb">time</span> <span class="o">=</span> Z seconds.
</pre></div>
</div>
<p>appear in the output, with X and Y integers, and Z a floating point number. An estimate for the total wall time for the contraction of the 4-RDM with the Fock matrix is <span class="math">\(\frac{18 (18 + 1)}{2} Z\)</span> seconds.</p>
<p><strong>So this last exercise is homework!</strong></p>
<p>Compile <a class="reference external" href="https://github.com/sebwouters/chemps2">chemps2</a> on your institution&#8217;s HPC (or ask your admin or Sebastian to), and submit a non-interactive job for the DMRG-CASPT2 calculations.</p>
<p class="last">Yes, I have tricked you into using <a class="reference external" href="https://github.com/sebwouters/chemps2">chemps2</a> in the future!</p>
</div>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p>You can also find the precreated DMRG-CASPT2 checkpoints and the corresponding output in the folder <code class="docutils literal"><span class="pre">/apps/gent/tutorials/DMRG/</span></code>:</p>
<div class="last highlight-bash"><div class="highlight"><pre><span></span>$ cp /apps/gent/tutorials/DMRG/CheMPS2_f4rdm.h5.singlet pt2_singlet/.
$ cp /apps/gent/tutorials/DMRG/CheMPS2_MPS0.h5.singlet pt2_singlet/.
$ less /apps/gent/tutorials/DMRG/pt2_singlet.out.0.0
$ less /apps/gent/tutorials/DMRG/pt2_singlet.out.0.25

$ cp /apps/gent/tutorials/DMRG/CheMPS2_f4rdm.h5.triplet pt2_triplet/.
$ cp /apps/gent/tutorials/DMRG/CheMPS2_MPS0.h5.triplet pt2_triplet/.
$ less /apps/gent/tutorials/DMRG/pt2_triplet.out.0.0
$ less /apps/gent/tutorials/DMRG/pt2_triplet.out.0.25
</pre></div>
</div>
</div>
<p>To study an example DMRG-CASPT2 output during this workshop, perform a small active space calculation. For example:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ mkdir small_caspt2/
$ <span class="nb">cd</span> small_caspt2/
$ wget <span class="s1">&#39;https://github.com/sebwouters/chemps2/raw/master/tests/matrixelements/N2.CCPVDZ.FCIDUMP&#39;</span>
$ wget <span class="s1">&#39;https://github.com/sebwouters/chemps2/raw/master/tests/test14.input&#39;</span>
$ sed -i <span class="s2">&quot;s/\/path\/to/./&quot;</span> test14.input
$ sed -i <span class="s2">&quot;s/\/tmp/\/local\/NUMBER.master15.delcatty.gent.vsc\//&quot;</span> test14.input
$ cat test14.input
$ chemps2 --file<span class="o">=</span>test14.input <span class="p">&amp;</span>&gt; test14.output <span class="p">&amp;</span>
$ tail -n <span class="m">3000</span> -f test14.output
</pre></div>
</div>
<p>Do you know the difference between the diagonal, non-variational, and variational second order perturbation energies? How is the reference weight calculated and what does it mean?</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ grep <span class="s2">&quot;E2&quot;</span> test14.output
$ grep <span class="s2">&quot;Reference weight&quot;</span> test14.output
</pre></div>
</div>
</div>
<div class="section" id="solutions">
<h2>12.7. Solutions<a class="headerlink" href="#solutions" title="Permalink to this headline"></a></h2>
<div class="section" id="ci-input-orbs-in">
<span id="first-ptr-solution"></span><h3>12.7.1. ci_input_orbs.in<a class="headerlink" href="#ci-input-orbs-in" title="Permalink to this headline"></a></h3>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">FCIDUMP</span> <span class="o">=</span> /path/to/TETRACENE.FCIDUMP

<span class="nv">GROUP</span>        <span class="o">=</span> 3
<span class="nv">MULTIPLICITY</span> <span class="o">=</span> 1
<span class="nv">NELECTRONS</span>   <span class="o">=</span> 120
<span class="nv">IRREP</span>        <span class="o">=</span> 0
<span class="nv">EXCITATION</span>   <span class="o">=</span> 0

<span class="nv">SWEEP_STATES</span>       <span class="o">=</span> 200,  400,  600,  600,  400,  200
<span class="nv">SWEEP_ENERGY_CONV</span>  <span class="o">=</span> 1e-6, 1e-6, 1e-6, 1e-8, 1e-8, 1e-8
<span class="nv">SWEEP_MAX_SWEEPS</span>   <span class="o">=</span> 10,   10,   10,   3,    3,    3
<span class="nv">SWEEP_NOISE_PREFAC</span> <span class="o">=</span> 0.05, 0.05, 0.05, 0.0,  0.0,  0.0
<span class="nv">SWEEP_DVDSON_RTOL</span>  <span class="o">=</span> 1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 1e-5

<span class="nv">NOCC</span> <span class="o">=</span> 51,  0
<span class="nv">NACT</span> <span class="o">=</span> 0,   18
<span class="nv">NVIR</span> <span class="o">=</span> 171, 54

<span class="nv">SCF_STATE_AVG</span>    <span class="o">=</span> FALSE
<span class="nv">SCF_DIIS_THR</span>     <span class="o">=</span> 0.0
<span class="nv">SCF_GRAD_THR</span>     <span class="o">=</span> 1e-6
<span class="nv">SCF_MAX_ITER</span>     <span class="o">=</span> 1
<span class="nv">SCF_ACTIVE_SPACE</span> <span class="o">=</span> I
<span class="nv">SCF_MOLDEN</span>       <span class="o">=</span> /path/to/tetracene.molden

<span class="nv">CASPT2_CALC</span>    <span class="o">=</span> FALSE
<span class="nv">CASPT2_ORBS</span>    <span class="o">=</span> A
<span class="nv">CASPT2_IPEA</span>    <span class="o">=</span> 0.0
<span class="nv">CASPT2_IMAG</span>    <span class="o">=</span> 0.0
<span class="nv">CASPT2_CHECKPT</span> <span class="o">=</span> FALSE
<span class="nv">CASPT2_CUMUL</span>   <span class="o">=</span> FALSE

<span class="nv">PRINT_CORR</span> <span class="o">=</span> TRUE

<span class="nv">TMP_FOLDER</span> <span class="o">=</span> /local/NUMBER.master15.delcatty.gent.vsc/
</pre></div>
</div>
</div>
<div class="section" id="ci-local-orbs-in">
<span id="second-ptr-solution"></span><h3>12.7.2. ci_local_orbs.in<a class="headerlink" href="#ci-local-orbs-in" title="Permalink to this headline"></a></h3>
<p>Difference with <a class="reference internal" href="#first-ptr-solution"><span class="std std-ref">input orbitals</span></a>:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">SCF_ACTIVE_SPACE</span> <span class="o">=</span> L
</pre></div>
</div>
</div>
<div class="section" id="tetracene-molden-rotated-for-the-localized-active-space-orbitals">
<span id="third-ptr-solution"></span><h3>12.7.3. tetracene.molden.rotated for the localized active space orbitals<a class="headerlink" href="#tetracene-molden-rotated-for-the-localized-active-space-orbitals" title="Permalink to this headline"></a></h3>
<img alt="_images/handson_orbitals.png" src="_images/handson_orbitals.png" />
<p>For <code class="docutils literal"><span class="pre">ci_local_orbs/tetracene.molden.rotated</span></code>, the active space orbitals are localized on the carbon atoms, and are ordered according to the one-dimensional topology of the molecule.</p>
</div>
<div class="section" id="molecular-vs-localized-orbitals">
<span id="fourth-ptr-solution"></span><h3>12.7.4. Molecular vs. localized orbitals<a class="headerlink" href="#molecular-vs-localized-orbitals" title="Permalink to this headline"></a></h3>
<img alt="_images/handson_comparison.png" src="_images/handson_comparison.png" />
</div>
<div class="section" id="scf-singlet-in">
<span id="fifth-ptr-solution"></span><h3>12.7.5. scf_singlet.in<a class="headerlink" href="#scf-singlet-in" title="Permalink to this headline"></a></h3>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">FCIDUMP</span> <span class="o">=</span> /path/to/TETRACENE.FCIDUMP

<span class="nv">GROUP</span>        <span class="o">=</span> 3
<span class="nv">MULTIPLICITY</span> <span class="o">=</span> 1
<span class="nv">NELECTRONS</span>   <span class="o">=</span> 120
<span class="nv">IRREP</span>        <span class="o">=</span> 0
<span class="nv">EXCITATION</span>   <span class="o">=</span> 0

<span class="nv">SWEEP_STATES</span>       <span class="o">=</span> 250,  500,  750
<span class="nv">SWEEP_ENERGY_CONV</span>  <span class="o">=</span> 1e-6, 1e-8, 1e-10
<span class="nv">SWEEP_MAX_SWEEPS</span>   <span class="o">=</span> 8,    8,    8
<span class="nv">SWEEP_NOISE_PREFAC</span> <span class="o">=</span> 0.05, 0.05, 0.0
<span class="nv">SWEEP_DVDSON_RTOL</span>  <span class="o">=</span> 1e-5, 1e-5, 1e-8

<span class="nv">NOCC</span> <span class="o">=</span> 51,  0
<span class="nv">NACT</span> <span class="o">=</span> 0,   18
<span class="nv">NVIR</span> <span class="o">=</span> 171, 54

<span class="nv">SCF_STATE_AVG</span>    <span class="o">=</span> FALSE
<span class="nv">SCF_DIIS_THR</span>     <span class="o">=</span> 1e-2
<span class="nv">SCF_GRAD_THR</span>     <span class="o">=</span> 1e-6
<span class="nv">SCF_MAX_ITER</span>     <span class="o">=</span> 100
<span class="nv">SCF_ACTIVE_SPACE</span> <span class="o">=</span> L

<span class="nv">CASPT2_CALC</span>    <span class="o">=</span> FALSE
<span class="nv">CASPT2_ORBS</span>    <span class="o">=</span> A
<span class="nv">CASPT2_IPEA</span>    <span class="o">=</span> 0.0
<span class="nv">CASPT2_IMAG</span>    <span class="o">=</span> 0.0
<span class="nv">CASPT2_CHECKPT</span> <span class="o">=</span> FALSE
<span class="nv">CASPT2_CUMUL</span>   <span class="o">=</span> FALSE

<span class="nv">PRINT_CORR</span> <span class="o">=</span> TRUE

<span class="nv">TMP_FOLDER</span> <span class="o">=</span> /local/NUMBER.master15.delcatty.gent.vsc/
</pre></div>
</div>
</div>
<div class="section" id="scf-triplet-in">
<span id="sixth-ptr-solution"></span><h3>12.7.6. scf_triplet.in<a class="headerlink" href="#scf-triplet-in" title="Permalink to this headline"></a></h3>
<p>Difference with <a class="reference internal" href="#fifth-ptr-solution"><span class="std std-ref">singlet</span></a>:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">MULTIPLICITY</span> <span class="o">=</span> 3
</pre></div>
</div>
</div>
<div class="section" id="dmrg-scf-singlet-triplet-gap">
<span id="seventh-ptr-solution"></span><h3>12.7.7. DMRG-SCF singlet-triplet gap<a class="headerlink" href="#dmrg-scf-singlet-triplet-gap" title="Permalink to this headline"></a></h3>
<p>Both DMRG-SCF calculations are converged with 8 macro-iterations. The gap is</p>
<div class="math">
\[\Delta E = E_{triplet} - E_{singlet} = -688.803387 - (-688.867150) ~ E_{h} = 63.763 ~ mE_{h} = 40.012 ~ kcal/mol\]</div>
</div>
<div class="section" id="pt2-singlet-in">
<span id="eigth-ptr-solution"></span><h3>12.7.8. pt2_singlet.in<a class="headerlink" href="#pt2-singlet-in" title="Permalink to this headline"></a></h3>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">FCIDUMP</span> <span class="o">=</span> /path/to/TETRACENE.FCIDUMP

<span class="nv">GROUP</span>        <span class="o">=</span> 3
<span class="nv">MULTIPLICITY</span> <span class="o">=</span> 1
<span class="nv">NELECTRONS</span>   <span class="o">=</span> 120
<span class="nv">IRREP</span>        <span class="o">=</span> 0
<span class="nv">EXCITATION</span>   <span class="o">=</span> 0

<span class="nv">SWEEP_STATES</span>       <span class="o">=</span> 250,  500,  750
<span class="nv">SWEEP_ENERGY_CONV</span>  <span class="o">=</span> 1e-6, 1e-8, 1e-10
<span class="nv">SWEEP_MAX_SWEEPS</span>   <span class="o">=</span> 8,    8,    8
<span class="nv">SWEEP_NOISE_PREFAC</span> <span class="o">=</span> 0.05, 0.05, 0.0
<span class="nv">SWEEP_DVDSON_RTOL</span>  <span class="o">=</span> 1e-5, 1e-5, 1e-8

<span class="nv">NOCC</span> <span class="o">=</span> 51,  0
<span class="nv">NACT</span> <span class="o">=</span> 0,   18
<span class="nv">NVIR</span> <span class="o">=</span> 171, 54

<span class="nv">SCF_STATE_AVG</span>    <span class="o">=</span> FALSE
<span class="nv">SCF_DIIS_THR</span>     <span class="o">=</span> 0.0
<span class="nv">SCF_GRAD_THR</span>     <span class="o">=</span> 1e-6
<span class="nv">SCF_MAX_ITER</span>     <span class="o">=</span> 100
<span class="nv">SCF_ACTIVE_SPACE</span> <span class="o">=</span> I

<span class="nv">CASPT2_CALC</span>    <span class="o">=</span> TRUE
<span class="nv">CASPT2_ORBS</span>    <span class="o">=</span> A
<span class="nv">CASPT2_IPEA</span>    <span class="o">=</span> 0.0
<span class="nv">CASPT2_IMAG</span>    <span class="o">=</span> 0.0
<span class="nv">CASPT2_CHECKPT</span> <span class="o">=</span> TRUE
<span class="nv">CASPT2_CUMUL</span>   <span class="o">=</span> FALSE

<span class="nv">PRINT_CORR</span> <span class="o">=</span> TRUE

<span class="nv">TMP_FOLDER</span> <span class="o">=</span> /local/NUMBER.master15.delcatty.gent.vsc/
</pre></div>
</div>
</div>
<div class="section" id="pt2-triplet-in">
<span id="nineth-ptr-solution"></span><h3>12.7.9. pt2_triplet.in<a class="headerlink" href="#pt2-triplet-in" title="Permalink to this headline"></a></h3>
<p>Difference with <a class="reference internal" href="#eigth-ptr-solution"><span class="std std-ref">singlet</span></a>:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">MULTIPLICITY</span> <span class="o">=</span> 3
</pre></div>
</div>
</div>
<div class="section" id="dmrg-caspt2-singlet-triplet-gaps">
<span id="tenth-ptr-solution"></span><h3>12.7.10. DMRG-CASPT2 singlet-triplet gaps<a class="headerlink" href="#dmrg-caspt2-singlet-triplet-gaps" title="Permalink to this headline"></a></h3>
<p>For IPEA = 0.0 a.u. the gap is</p>
<div class="math">
\[\Delta E = E_{triplet} - E_{singlet} = -690.945663 - (-691.000608) ~ E_{h} = 54.945 ~ mE_{h} = 34.479 ~ kcal/mol\]</div>
<p>and for IPEA = 0.25 a.u. the gap is</p>
<div class="math">
\[\Delta E = E_{triplet} - E_{singlet} = -690.923604 - (-690.987560) ~ E_{h} = 63.956 ~ mE_{h} = 40.133 ~ kcal/mol\]</div>
</div>
</div>
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
        <div class="sphinxsidebarwrapper">
            <p class="logo"><a href="index.html">
              <img class="logo" src="_static/CheMPS2logo.png" alt="Logo"/>
            </a></p>
  <h3><a href="index.html">Table Of Contents</a></h3>
  <ul>
<li><a class="reference internal" href="#">12. DMRG workshop (12-jul-2016): hands-on session</a><ul>
<li><a class="reference internal" href="#introduction">12.1. Introduction</a></li>
<li><a class="reference internal" href="#ugent-hpc">12.2. UGent HPC</a></li>
<li><a class="reference internal" href="#fcidump-and-molden">12.3. <code class="docutils literal"><span class="pre">FCIDUMP</span></code> and <code class="docutils literal"><span class="pre">MOLDEN</span></code></a></li>
<li><a class="reference internal" href="#basis-choice">12.4. Basis choice</a></li>
<li><a class="reference internal" href="#dmrg-scf">12.5. DMRG-SCF</a></li>
<li><a class="reference internal" href="#dmrg-caspt2">12.6. DMRG-CASPT2</a></li>
<li><a class="reference internal" href="#solutions">12.7. Solutions</a><ul>
<li><a class="reference internal" href="#ci-input-orbs-in">12.7.1. ci_input_orbs.in</a></li>
<li><a class="reference internal" href="#ci-local-orbs-in">12.7.2. ci_local_orbs.in</a></li>
<li><a class="reference internal" href="#tetracene-molden-rotated-for-the-localized-active-space-orbitals">12.7.3. tetracene.molden.rotated for the localized active space orbitals</a></li>
<li><a class="reference internal" href="#molecular-vs-localized-orbitals">12.7.4. Molecular vs. localized orbitals</a></li>
<li><a class="reference internal" href="#scf-singlet-in">12.7.5. scf_singlet.in</a></li>
<li><a class="reference internal" href="#scf-triplet-in">12.7.6. scf_triplet.in</a></li>
<li><a class="reference internal" href="#dmrg-scf-singlet-triplet-gap">12.7.7. DMRG-SCF singlet-triplet gap</a></li>
<li><a class="reference internal" href="#pt2-singlet-in">12.7.8. pt2_singlet.in</a></li>
<li><a class="reference internal" href="#pt2-triplet-in">12.7.9. pt2_triplet.in</a></li>
<li><a class="reference internal" href="#dmrg-caspt2-singlet-triplet-gaps">12.7.10. DMRG-CASPT2 singlet-triplet gaps</a></li>
</ul>
</li>
</ul>
</li>
</ul>

  <h4>Previous topic</h4>
  <p class="topless"><a href="interfaces.html"
                        title="previous chapter">11. Interfaces to psi4 and pyscf</a></p>
  <div role="note" aria-label="source link">
    <h3>This Page</h3>
    <ul class="this-page-menu">
      <li><a href="_sources/handson.txt"
            rel="nofollow">Show Source</a></li>
    </ul>
   </div>
<div id="searchbox" style="display: none" role="search">
  <h3>Quick search</h3>
    <form class="search" action="search.html" method="get">
      <div><input type="text" name="q" /></div>
      <div><input type="submit" value="Go" /></div>
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="interfaces.html" title="11. Interfaces to psi4 and pyscf"
             >previous</a> |</li>
        <li class="nav-item nav-item-0"><a href="index.html">CheMPS2 1.8.3 (2016-11-15) documentation</a> &#187;</li> 
      </ul>
    </div>
    <div class="footer" role="contentinfo">
        &#169; Copyright 2013-2016, Sebastian Wouters.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.4.9.
    </div>
  </body>
</html>