This file is indexed.

/usr/include/plugins/inpaint.h is in cimg-dev 1.7.9+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
/*
 #
 #  File        : inpaint.h
 #                ( C++ header file - CImg plug-in )
 #
 #  Copyright   : David Tschumperlé
 #
 #  License     : CeCILL v2.0
 #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
 #
 # Description  :
 #
 # This plug-in implements the patch-based inpainting algorithm for 2d images, as
 # described in the two following publications :
 #
 # "A Smarter Examplar-based Inpainting Algorithm using Local and Global Heuristics
 #  for more Geometric Coherence."
 # (M. Daisy, P. Buyssens, D. Tschumperlé, O. Lezoray).
 # IEEE International Conference on Image Processing (ICIP'14), Paris/France, Oct. 2014
 #
 # and
 #
 # "A Fast Spatial Patch Blending Algorithm for Artefact Reduction in Pattern-based
 #  Image Inpainting."
 # (M. Daisy, D. Tschumperlé, O. Lezoray).
 # SIGGRAPH Asia 2013 Technical Briefs, Hong-Kong, November 2013.
 #
 #  This software is governed by the CeCILL  license under French law and
 #  abiding by the rules of distribution of free software.  You can  use,
 #  modify and/ or redistribute the software under the terms of the CeCILL
 #  license as circulated by CEA, CNRS and INRIA at the following URL
 #  "http://www.cecill.info".
 #
 #  As a counterpart to the access to the source code and  rights to copy,
 #  modify and redistribute granted by the license, users are provided only
 #  with a limited warranty  and the software's author,  the holder of the
 #  economic rights,  and the successive licensors  have only  limited
 #  liability.
 #
 #  In this respect, the user's attention is drawn to the risks associated
 #  with loading,  using,  modifying and/or developing or reproducing the
 #  software by the user in light of its specific status of free software,
 #  that may mean  that it is complicated to manipulate,  and  that  also
 #  therefore means  that it is reserved for developers  and  experienced
 #  professionals having in-depth computer knowledge. Users are therefore
 #  encouraged to load and test the software's suitability as regards their
 #  requirements in conditions enabling the security of their systems and/or
 #  data to be ensured and,  more generally, to use and operate it in the
 #  same conditions as regards security.
 #
 #  The fact that you are presently reading this means that you have had
 #  knowledge of the CeCILL license and that you accept its terms.
 #
*/
#ifndef cimg_plugin_inpaint
#define cimg_plugin_inpaint

template<typename t>
CImg<T>& inpaint_patch(const CImg<t>& mask, const unsigned int patch_size=11,
                       const unsigned int lookup_size=22, const float lookup_factor=1,
                       const int lookup_increment=1,
                       const unsigned int blend_size=0, const float blend_threshold=0.5f,
                       const float blend_decay=0.02, const unsigned int blend_scales=10,
                       const bool is_blend_outer=false) {
  if (depth()>1)
    throw CImgInstanceException(_cimg_instance
                                "inpaint_patch(): Instance image is volumetric (should be 2d).",
                                cimg_instance);
  if (!is_sameXYZ(mask))
    throw CImgArgumentException(_cimg_instance
                                "inpaint_patch() : Sizes of instance image and specified mask "
                                "(%u,%u,%u,%u) do not match.",
                                cimg_instance,
                                mask._width,mask._height,mask._depth,mask._spectrum);
  if (!patch_size)
    throw CImgArgumentException(_cimg_instance
                                "inpaint_patch() : Specified patch size is 0, must be strictly "
                                "positive.",
                                cimg_instance);
  if (!lookup_size)
    throw CImgArgumentException(_cimg_instance
                                "inpaint_patch() : Specified lookup size is 0, must be strictly "
                                "positive.",
                                cimg_instance);
  if (lookup_factor<0)
    throw CImgArgumentException(_cimg_instance
                                "inpaint_patch() : Specified lookup factor %g is negative, must be "
                                "positive.",
                                cimg_instance,
                                lookup_factor);
  if (!lookup_increment)
    throw CImgArgumentException(_cimg_instance
                                "inpaint_patch() : Specified lookup increment is 0, must be "
                                "strictly positive.",
                                cimg_instance);
  if (blend_decay<0)
    throw CImgArgumentException(_cimg_instance
                                "inpaint_patch() : Specified blend decay %g is negative, must be "
                                "positive.",
                                cimg_instance,
                                blend_decay);

  // Find (dilated by 2) bounding box for the inpainting mask.
  unsigned int xm0 = _width, ym0 = _height, xm1 = 0, ym1 = 0;
  bool is_mask_found = false;
  cimg_forXY(mask,x,y) if (mask(x,y)) {
    is_mask_found = true;
    if (x<(int)xm0) xm0 = (unsigned int)x;
    if (x>(int)xm1) xm1 = (unsigned int)x;
    if (y<(int)ym0) ym0 = (unsigned int)y;
    if (y>(int)ym1) ym1 = (unsigned int)y;
  }
  if (!is_mask_found) return *this;
  xm0 = xm0>2?xm0 - 2:0;
  ym0 = ym0>2?ym0 - 2:0;
  xm1 = xm1<_width - 3?xm1 + 2:_width - 1;
  ym1 = ym1<_height - 3?ym1 + 2:_height - 1;
  int ox = xm0, oy = ym0;
  unsigned int dx = xm1 - xm0 + 1U, dy = ym1 - ym0 + 1U;

  // Construct normalized version of the mask.
  CImg<ucharT> nmask(dx,dy);
  unsigned char *ptrM = nmask.data();
  cimg_for_inXY(mask,xm0,ym0,xm1,ym1,x,y) *(ptrM++) = mask(x,y)?0:1;
  xm0 = ym0 = 0; xm1 = dx - 1; ym1 = dy - 1;

  // Start patch filling algorithm.
  const int p2 = (int)patch_size/2, p1 = (int)patch_size - p2 - 1;
  const unsigned int patch_size2 = patch_size*patch_size;
  unsigned int _lookup_size = lookup_size, nb_lookups = 0, nb_fails = 0, nb_saved_patches = 0;
  bool is_strict_search = true;
  const float one = 1;

  CImg<floatT> confidences(nmask), priorities(dx,dy,1,2,-1), pC;
  CImg<unsigned int> saved_patches(4,256), is_visited(width(),height(),1,1,0);
  CImg<ucharT> pM, pN;  // Pre-declare patch variables (avoid iterative memory alloc/dealloc).
  CImg<T> pP, pbest;
  CImg<floatT> weights(patch_size,patch_size,1,1,0);
  weights.draw_gaussian((float)p1,(float)p1,patch_size/15.0f,&one)/=patch_size2;
  unsigned int target_index = 0;

  while (true) {

    // Extract mask border points and compute priorities to find target point.
    unsigned int nb_border_points = 0;
    float target_confidence = -1, target_priority = -1;
    int target_x = -1, target_y = -1;
    CImg_5x5(M,unsigned char);

    cimg_for_in5x5(nmask,xm0,ym0,xm1,ym1,x,y,0,0,M,unsigned char)
      if (!Mcc && (Mcp || Mcn || Mpc || Mnc)) { // Found mask border point.

        float confidence_term = -1, data_term = -1;
        if (priorities(x,y)>=0) { // If priority has already been computed.
          confidence_term = priorities(x,y,0);
          data_term = priorities(x,y,1);
        } else { // If priority must be computed/updated.

          // Compute smoothed normal vector.
          const float
            // N = smoothed 3x3 neighborhood of M.
            Npc = (4.0f*Mpc + 2.0f*Mbc + 2.0f*Mcc + 2.0f*Mpp + 2.0f*Mpn + Mbp + Mbn + Mcp + Mcn)/16,
            Nnc = (4.0f*Mnc + 2.0f*Mac + 2.0f*Mcc + 2.0f*Mnp + 2.0f*Mnn + Map + Man + Mcp + Mcn)/16,
            Ncp = (4.0f*Mcp + 2.0f*Mcb + 2.0f*Mcc + 2.0f*Mpp + 2.0f*Mnp + Mpb + Mnb + Mpc + Mnc)/16,
            Ncn = (4.0f*Mcn + 2.0f*Mca + 2.0f*Mcc + 2.0f*Mpn + 2.0f*Mnn + Mpa + Mna + Mpc + Mnc)/16,
            _nx = 0.5f*(Nnc - Npc),
            _ny = 0.5f*(Ncn - Ncp),
            nn = std::sqrt(1e-8f + _nx*_nx + _ny*_ny),
            nx = _nx/nn,
            ny = _ny/nn;

          // Compute confidence term.
          nmask._inpaint_patch_crop(x - p1,y - p1,x + p2,y + p2,1).move_to(pM);
          confidences._inpaint_patch_crop(x - p1,y - p1,x + p2,y + p2,1).move_to(pC);
          confidence_term = 0;
          const unsigned char *ptrM = pM.data();
          cimg_for(pC,ptrC,float) confidence_term+=*ptrC**(ptrM++);
          confidence_term/=patch_size2;
          priorities(x,y,0) = confidence_term;

          // Compute data term.
          _inpaint_patch_crop(ox + x - p1,oy + y - p1,ox + x + p2,oy + y + p2,2).move_to(pP);
          float mean_ix2 = 0, mean_ixiy = 0, mean_iy2 = 0;

          CImg_3x3(I,T);
          CImg_3x3(_M, unsigned char);
          cimg_forC(pP,c) cimg_for3x3(pP,p,q,0,c,I,T) {
            // Compute weight-mean of structure tensor inside patch.
            cimg_get3x3(pM,p,q,0,0,_M,unsigned char);
            const float
              ixf = (float)(_Mnc*_Mcc*(Inc - Icc)),
              iyf = (float)(_Mcn*_Mcc*(Icn - Icc)),
              ixb = (float)(_Mcc*_Mpc*(Icc - Ipc)),
              iyb = (float)(_Mcc*_Mcp*(Icc - Icp)),
              ix = cimg::abs(ixf)>cimg::abs(ixb)?ixf:ixb,
              iy = cimg::abs(iyf)>cimg::abs(iyb)?iyf:iyb,
              w = weights(p,q);
            mean_ix2 += w*ix*ix;
            mean_ixiy += w*ix*iy;
            mean_iy2 += w*iy*iy;
          }
          const float // Compute tensor-directed data term.
            ux = mean_ix2*(-ny) + mean_ixiy*nx,
            uy = mean_ixiy*(-ny) + mean_iy2*nx;
          data_term = std::sqrt(ux*ux + uy*uy);
          priorities(x,y,1) = data_term;
        }
        const float priority = confidence_term*data_term;
        if (priority>target_priority) {
          target_priority = priority; target_confidence = confidence_term;
          target_x = ox + x; target_y = oy + y;
        }
        ++nb_border_points;
      }
    if (!nb_border_points) break; // No more mask border points to inpaint!

    // Locate already reconstructed neighbors (if any), to get good origins for patch lookup.
    CImg<unsigned int> lookup_candidates(2,256);
    unsigned int nb_lookup_candidates = 0, *ptr_lookup_candidates = lookup_candidates.data();
    const unsigned int *ptr_saved_patches = saved_patches.data();
    const int
      x0 = target_x - (int)patch_size, y0 = target_y - (int)patch_size,
      x1 = target_x + (int)patch_size, y1 = target_y + (int)patch_size;
    for (unsigned int k = 0; k<nb_saved_patches; ++k) {
      const unsigned int
        src_x = *(ptr_saved_patches++), src_y = *(ptr_saved_patches++),
        dest_x = *(ptr_saved_patches++), dest_y = *(ptr_saved_patches++);
      if ((int)dest_x>=x0 && (int)dest_y>=y0 && (int)dest_x<=x1 && (int)dest_y<=y1) {
        const int off_x = target_x - dest_x, off_y = target_y - dest_y;
        *(ptr_lookup_candidates++) = src_x + off_x;
        *(ptr_lookup_candidates++) = src_y + off_y;
        if (++nb_lookup_candidates>=lookup_candidates._height)
          lookup_candidates.resize(2,-200,1,1,0);
      }
    }
    // Add also target point as a center for the patch lookup.
    *(ptr_lookup_candidates++) = target_x;
    *(ptr_lookup_candidates++) = target_y;
    ++nb_lookup_candidates;

    // Divide size of lookup regions if several lookup sources have been detected.
    unsigned int final_lookup_size = _lookup_size;
    if (nb_lookup_candidates>1) {
      const unsigned int
        _final_lookup_size = (unsigned int)cimg::round(_lookup_size*lookup_factor/
                                                       std::sqrt((float)nb_lookup_candidates),1,1);
      final_lookup_size = _final_lookup_size + 1 - (_final_lookup_size%2);
    }
    const int l2 = (int)final_lookup_size/2, l1 = (int)final_lookup_size - l2 - 1;

#ifdef gmic_debug
    CImg<ucharT> visu(*this,false);
    for (unsigned int C = 0; C<nb_lookup_candidates; ++C) {
      const int
        xl = lookup_candidates(0,C),
        yl = lookup_candidates(1,C);
      visu.draw_rectangle(xl - l1,yl - l1,xl + l2,yl + l2,CImg<ucharT>::vector(0,255,0).data(),0.2f);
    }
    visu.draw_rectangle(target_x - p1,target_y - p1,target_x + p2,target_y + p2,
                        CImg<ucharT>::vector(255,0,0).data(),0.5f);
    static int foo = 0;
    if (!(foo%1)) {
      //      visu.save("video.ppm",foo);
      static CImgDisplay disp_debug;
      disp_debug.display(visu).set_title("DEBUG");
    }
    ++foo;
#endif // #ifdef gmic_debug

    // Find best patch candidate to fill target point.
    _inpaint_patch_crop(target_x - p1,target_y - p1,target_x + p2,target_y + p2,0).move_to(pP);
    nmask._inpaint_patch_crop(target_x - ox - p1,target_y - oy - p1,target_x - ox + p2,target_y - oy  + p2,0).
      move_to(pM);
    ++target_index;
    const unsigned int
      _lookup_increment = (unsigned int)(lookup_increment>0?lookup_increment:
                                         nb_lookup_candidates>1?1:-lookup_increment);
    float best_ssd = cimg::type<float>::max();
    int best_x = -1, best_y = -1;
    for (unsigned int C = 0; C<nb_lookup_candidates; ++C) {
      const int
        xl = (int)lookup_candidates(0,C),
        yl = (int)lookup_candidates(1,C),
        x0 = cimg::max(p1,xl - l1), y0 = cimg::max(p1,yl - l1),
        x1 = cimg::min(width() - 1 - p2,xl + l2), y1 = cimg::min(height() - 1 - p2,yl + l2);
      for (int y = y0; y<=y1; y+=_lookup_increment)
        for (int x = x0; x<=x1; x+=_lookup_increment) if (is_visited(x,y)!=target_index) {
            if (is_strict_search) mask._inpaint_patch_crop(x - p1,y - p1,x + p2,y + p2,1).move_to(pN);
            else nmask._inpaint_patch_crop(x - ox - p1,y - oy - p1,x - ox + p2,y - oy + p2,0).move_to(pN);
            if ((is_strict_search && pN.sum()==0) || (!is_strict_search && pN.sum()==patch_size2)) {
              _inpaint_patch_crop(x - p1,y - p1,x + p2,y + p2,0).move_to(pC);
              float ssd = 0;
              const T *_pP = pP._data;
              const float *_pC = pC._data;
              cimg_for(pM,_pM,unsigned char) { if (*_pM) {
                  cimg_forC(pC,c) {
                    ssd+=cimg::sqr((Tfloat)*_pC - (Tfloat)*_pP); _pC+=patch_size2; _pP+=patch_size2;
                  }
                  if (ssd>=best_ssd) break;
                  _pC-=pC._spectrum*patch_size2;
                  _pP-=pC._spectrum*patch_size2;
                }
                ++_pC; ++_pP;
              }
              if (ssd<best_ssd) { best_ssd = ssd; best_x = x; best_y = y; }
            }
            is_visited(x,y) = target_index;
          }
    }

    if (best_x<0) { // If no best patch found.
      priorities(target_x - ox,target_y - oy,0)/=10; // Reduce its priority (lower data_term).
      if (++nb_fails>=4) { // If too much consecutive fails :
        nb_fails = 0;
        _lookup_size+=_lookup_size/2; // Try to expand the lookup size.
        if (++nb_lookups>=3) {
          if (is_strict_search) { // If still fails, switch to non-strict search mode.
            is_strict_search = false;
            _lookup_size = lookup_size;
            nb_lookups = 0;
          }
          else return *this; // Pathological case, probably a weird mask.
        }
      }
    } else { // Best patch found -> reconstruct missing part on the target patch.
      _lookup_size = lookup_size;
      nb_lookups = nb_fails = 0;
      _inpaint_patch_crop(best_x - p1,best_y - p1,best_x + p2,best_y + p2,0).move_to(pbest);
      nmask._inpaint_patch_crop(target_x - ox - p1,target_y - oy - p1,target_x - ox + p2,target_y - oy + p2,1).
        move_to(pM);
      cimg_for(pM,ptr,unsigned char) *ptr=1 - *ptr;
      draw_image(target_x - p1,target_y - p1,pbest,pM,1,1);
      confidences.draw_image(target_x - ox - p1,target_y - oy - p1,pC.fill(target_confidence),pM,1,1);
      nmask.draw_rectangle(target_x - ox - p1,target_y - oy - p1,0,0,target_x - ox + p2,target_y - oy + p2,0,0,1);
      priorities.draw_rectangle(target_x - ox - (int)patch_size,
                                target_y - oy - (int)patch_size,0,0,
                                target_x - ox + 3*p2/2,
                                target_y - oy + 3*p2/2,0,0,-1);
      // Remember patch positions.
      unsigned int *ptr_saved_patches = saved_patches.data(0,nb_saved_patches);
      *(ptr_saved_patches++) = best_x;
      *(ptr_saved_patches++) = best_y;
      *(ptr_saved_patches++) = target_x;
      *ptr_saved_patches = target_y;
      if (++nb_saved_patches>=saved_patches._height) saved_patches.resize(4,-200,1,1,0);
    }
  }
  nmask.assign();  // Free some unused memory resources.
  priorities.assign();
  confidences.assign();
  is_visited.assign();

  // Blend inpainting result (if requested), using multi-scale blending algorithm.
  if (blend_size && blend_scales) {
    const float _blend_threshold = cimg::max(0.0f,cimg::min(1.0f,blend_threshold));
    saved_patches._height = nb_saved_patches;

    // Re-crop image and mask if outer blending is activated.
    if (is_blend_outer) {
      const int
        b2 = (int)blend_size/2, b1 = (int)blend_size - b2 - 1,
        xb0 = cimg::max(0,ox - b1),
        yb0 = cimg::max(0,oy - b1),
        xb1 = cimg::min(_width - 1,xb0 + dx + b1 + b2),
        yb1 = cimg::min(_height - 1,yb0 + dy + b1 + b2);
      ox = xb0; oy = yb0; dx = xb1 - xb0 + 1U, dy = yb1 - yb0 + 1U;
    }

    // Generate map of source offsets.
    CImg<unsigned int> offsets(dx,dy,1,2);
    unsigned int *ptr = saved_patches.end();
    cimg_forY(saved_patches,i) {
      const unsigned int yd = *(--ptr), xd = *(--ptr), ys = *(--ptr), xs = *(--ptr);
      for (int l = -p1; l<=p2; ++l)
        for (int k = -p1; k<=p2; ++k) {
          const int xdk = xd + k, ydl = yd + l;
          if (xdk>=0 && xdk<=width() - 1 && ydl>=0 && ydl<=height() - 1 && mask(xd + k,yd + l)) {
            offsets(xd - ox + k,yd - oy + l,0) = xs + k;
            offsets(xd - ox + k,yd - oy + l,1) = ys + l;
          }
        }
    }
    unsigned int *ptrx = offsets.data(0,0,0,0), *ptry = offsets.data(0,0,0,1);
    cimg_forXY(offsets,x,y) {
      if (!mask(x + ox,y + oy)) { *ptrx = x + ox; *ptry = y + oy; }
      ++ptrx; ++ptry;
    }

    // Generate map of local blending amplitudes.
    CImg<floatT> blend_map(dx,dy,1,1,0);
    CImg_3x3(I,float);
    cimg_for3XY(offsets,x,y) if (mask(x + ox,y + oy)) {
      const float
        iox = cimg::max((float)offsets(_n1x,y,0) - offsets(x,y,0),
                        (float)offsets(x,y,0) - offsets(_p1x,y,0)),
        ioy = cimg::max((float)offsets(x,_n1y,1) - offsets(x,y,1),
                        (float)offsets(x,y,1) - offsets(x,_p1y,1)),
        ion = std::sqrt(iox*iox + ioy*ioy);
      float iin = 0;
      cimg_forC(*this,c) {
        cimg_get3x3(*this,x,y,0,c,I,float);
        const float
          iix = (float)cimg::max(Inc - Icc,Icc - Ipc),
          iiy = (float)cimg::max(Icn - Icc,Icc - Icp);
        iin+=std::log(1 + iix*iix + iiy*iiy);
      }
      iin/=_spectrum;
      blend_map(x,y) = ion*iin;
    }
    blend_map.threshold(blend_map.max()*_blend_threshold).distance(1);
    cimg_forXY(blend_map,x,y) blend_map(x,y) = 1/(1 + blend_decay*blend_map(x,y));
    blend_map.quantize(blend_scales + 1,false);
    float bm, bM = blend_map.max_min(bm);
    if (bm==bM) blend_map.fill((float)blend_scales);

    // Generate blending scales.
    CImg<T> result = _inpaint_patch_crop(ox,oy,ox + dx - 1,oy + dy - 1,0);
    for (unsigned int blend_iter = 1; blend_iter<=blend_scales; ++blend_iter) {
      const unsigned int
        _blend_width = blend_iter*blend_size/blend_scales,
        blend_width = _blend_width?_blend_width + 1 - (_blend_width%2):0;
      if (!blend_width) continue;
      const int b2 = (int)blend_width/2, b1 = (int)blend_width - b2 - 1;
      CImg<floatT>
        blended = _inpaint_patch_crop(ox,oy,ox + dx - 1,oy + dy - 1,0),
        cumul(dx,dy,1,1);
      weights.assign(blend_width,blend_width,1,1,0).
        draw_gaussian((float)b1,(float)b1,blend_width/4.0f,&one);
      cimg_forXY(cumul,x,y) cumul(x,y) = mask(x + ox,y + oy)?0.0f:1.0f;
      blended.mul(cumul);

      cimg_forY(saved_patches,l) {
        const unsigned int *ptr = saved_patches.data(0,l);
        const int
          xs = (int)*(ptr++),
          ys = (int)*(ptr++),
          xd = (int)*(ptr++),
          yd = (int)*(ptr++);
        if (xs - b1<0 || ys - b1<0 || xs + b2>=width() || ys + b2>=height()) { // Blend with partial patch.
          const int
            xs0 = cimg::max(0,xs - b1),
            ys0 = cimg::max(0,ys - b1),
            xs1 = cimg::min(width() - 1,xs + b2),
            ys1 = cimg::min(height() - 1,ys + b2);
          _inpaint_patch_crop(xs0,ys0,xs1,ys1,0).move_to(pP);
          weights._inpaint_patch_crop(xs0 - xs + b1,ys0 - ys + b1,xs1 - xs + b1,ys1 - ys + b1,0).move_to(pC);
          blended.draw_image(xd + xs0 - xs - ox,yd + ys0 - ys - oy,pP,pC,-1);
          cumul.draw_image(xd + xs0 - xs - ox,yd + ys0 - ys - oy,pC,-1);
        } else { // Blend with full-size patch.
          _inpaint_patch_crop(xs - b1,ys - b1,xs + b2,ys + b2,0).move_to(pP);
          blended.draw_image(xd - b1 - ox,yd - b1 - oy,pP,weights,-1);
          cumul.draw_image(xd - b1 - ox,yd - b1 - oy,weights,-1);
        }
      }

      if (is_blend_outer) {
        cimg_forXY(blended,x,y) if (blend_map(x,y)==blend_iter) {
          const float cum = cumul(x,y);
          if (cum>0) cimg_forC(*this,c) result(x,y,c) = (T)(blended(x,y,c)/cum);
        }
      } else { cimg_forXY(blended,x,y) if (mask(x + ox,y + oy) && blend_map(x,y)==blend_iter) {
          const float cum = cumul(x,y);
          if (cum>0) cimg_forC(*this,c) result(x,y,c) = (T)(blended(x,y,c)/cum);
        }
      }
    }
    if (is_blend_outer) draw_image(ox,oy,result);
    else cimg_forXY(result,x,y) if (mask(x + ox,y + oy))
           cimg_forC(*this,c) (*this)(x + ox,y + oy,c) = (T)result(x,y,c);
  }
  return *this;
}

// Special crop function that supports more boundary conditions :
// 0=dirichlet (with value 0), 1=dirichlet (with value 1) and 2=neumann.
CImg<T> _inpaint_patch_crop(const int x0, const int y0, const int x1, const int y1,
                            const unsigned int boundary=0) const {
  const int
    nx0 = x0<x1?x0:x1, nx1 = x0^x1^nx0,
    ny0 = y0<y1?y0:y1, ny1 = y0^y1^ny0;
  CImg<T> res(1U + nx1 - nx0,1U + ny1 - ny0,1,_spectrum);
  if (nx0<0 || nx1>=width() || ny0<0 || ny1>=height()) {
    if (boundary>=2) cimg_forXYZC(res,x,y,z,c) res(x,y,z,c) = _atXY(nx0 + x,ny0 + y,z,c);
    else res.fill((T)boundary).draw_image(-nx0,-ny0,*this);
  } else res.draw_image(-nx0,-ny0,*this);
  return res;
}

template<typename t>
CImg<T> get_inpaint_patch(const CImg<t>& mask, const unsigned int patch_size=11,
                          const unsigned int lookup_size=22, const float lookup_factor=1,
                          const int lookup_increment=1,
                          const unsigned int blend_size=0, const float blend_threshold=0.5,
                          const float blend_decay=0.02f, const unsigned int blend_scales=10,
                          const bool is_blend_outer=false) const {
  return (+*this).inpaint_patch(mask,patch_size,lookup_size,lookup_factor,lookup_increment,
                                blend_size,blend_threshold,blend_decay,blend_scales,is_blend_outer);
}

#endif /* cimg_plugin_inpaint */