/usr/share/doc/dx/help/dxall529 is in dx-doc 1:4.4.4-9.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | #!F-adobe-helvetica-medium-r-normal--18*
#!N
#!N #!Rtall529
Tensors #!N #!N #!N Tensors are a generalization of the concept
of vectors. On one hand, the elements in a tensor have
meanings that are independent of the coordinate system in which they
are embedded. On the other hand, one can associate certain metrics
to them that vary among coordinate systems. #!N #!N In general,
a rank #!F-adobe-times-medium-i-normal--18* n #!EF tensor can be formed by surrounding
#!F-adobe-times-medium-i-normal--18* k #!EF rank #!F-adobe-times-medium-i-normal--18* n #!EF -1 tensors with square
brackets. (Note that scalars, vectors, and matrices are rank 0, 1,
and 2 tensors, respectively.) As with the matrices, all of the
subtensors must have the same shape. #!N #!N The following are
valid tensors: #!N #!N #!CForestGreen #!N #!F-adobe-courier-bold-r-normal--18* #!N [[[[[0xabcd]]]]] // a
1x1x1x1x1 rank 5 tensor #!N #!N [[[1 0 0] // a
3x3x3 rank 3 tensor with #!N [0 0 0] // 1's
on the diagonal #!N [0 0 0]] #!N [[0 0 0]
#!N [0 1 0] #!N [0 0 0]] #!N [[0 0
0] #!N [0 0 0] #!N [0 0 1]]] #!EF #!N
#!N #!EC #!N #!N #!N #!F-adobe-times-medium-i-normal--18* Next Topic #!EF #!N #!N
#!Llists1,dxall530 h Lists #!EL #!N #!F-adobe-times-medium-i-normal--18* #!N
|