/usr/share/ecere/extras/md5.ec is in ecere-extras 0.44.15-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | /*
* md5.ec -- An eC adaptation of Alexander Peslyak public domain MD5 implementation
* --------------------------------------------------------------------------------
* This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
* MD5 Message-Digest Algorithm (RFC 1321).
*
* Homepage:
* http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
*
* Author:
* Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
*
* This software was written by Alexander Peslyak in 2001. No copyright is
* claimed, and the software is hereby placed in the public domain.
* In case this attempt to disclaim copyright and place the software in the
* public domain is deemed null and void, then the software is
* Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
* general public under the following terms:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted.
*
* There's ABSOLUTELY NO WARRANTY, express or implied.
*
* (This is a heavily cut-down "BSD license".)
*
* This differs from Colin Plumb's older public domain implementation in that
* no exactly 32-bit integer data type is required (any 32-bit or wider
* unsigned integer data type will do), there's no compile-time endianness
* configuration, and the function prototypes match OpenSSL's. No code from
* Colin Plumb's implementation has been reused; this comment merely compares
* the properties of the two independent implementations.
*
* The primary goals of this implementation are portability and ease of use.
* It is meant to be fast, but not as fast as possible. Some known
* optimizations are not included to reduce source code size and avoid
* compile-time configuration.
*/
struct MD5_CTX
{
uint32 lo, hi;
uint32 a, b, c, d;
byte buffer[64];
uint32 block[16];
} MD5_CTX;
/*
* The basic MD5 functions.
*
* F and G are optimized compared to their RFC 1321 definitions for
* architectures that lack an AND-NOT instruction, just like in Colin Plumb's
* implementation.
*/
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
#define H(x, y, z) (((x) ^ (y)) ^ (z))
#define H2(x, y, z) ((x) ^ ((y) ^ (z)))
#define I(x, y, z) ((y) ^ ((x) | ~(z)))
/*
* The MD5 transformation for all four rounds.
*/
#define STEP(f, a, b, c, d, x, t, s) \
(a) += f((b), (c), (d)) + (x) + (t); \
(a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
(a) += (b);
/*
* SET reads 4 input bytes in little-endian byte order and stores them
* in a properly aligned word in host byte order.
*
* The check for little-endian architectures that tolerate unaligned
* memory accesses is just an optimization. Nothing will break if it
* doesn't work.
*/
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
# define SET(n) (*(uint32 *)&ptr[(n) * 4])
# define GET(n) SET(n)
#else
# define SET(n) \
(ctx.block[(n)] = \
(uint32)ptr[(n) * 4] | \
((uint32)ptr[(n) * 4 + 1] << 8) | \
((uint32)ptr[(n) * 4 + 2] << 16) | \
((uint32)ptr[(n) * 4 + 3] << 24))
# define GET(n) (ctx.block[(n)])
#endif
/*
* This processes one or more 64-byte data blocks, but does NOT update
* the bit counters. There are no alignment requirements.
*/
static const void *body(MD5_CTX ctx, const void *data, uint size)
{
const byte *ptr = (const byte *)data;
uint32 a = ctx.a, b = ctx.b, c = ctx.c, d = ctx.d;
do
{
uint32 saved_a = a, saved_b = b, saved_c = c, saved_d = d;
// Round 1
STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)
// Round 2
STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)
// Round 3
STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11)
STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23)
STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11)
STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23)
STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11)
STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23)
STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11)
STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23)
// Round 4
STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)
a += saved_a;
b += saved_b;
c += saved_c;
d += saved_d;
ptr += 64;
} while (size -= 64);
ctx.a = a;
ctx.b = b;
ctx.c = c;
ctx.d = d;
return ptr;
}
void MD5Init(MD5_CTX ctx)
{
ctx =
{
a = 0x67452301;
b = 0xefcdab89;
c = 0x98badcfe;
d = 0x10325476;
};
}
void MD5Update(MD5_CTX ctx, const byte *data, uint size)
{
uint32 saved_lo = ctx.lo;
uint used = saved_lo & 0x3f;
if((ctx.lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
ctx.hi++;
ctx.hi += size >> 29;
if(used)
{
uint available = 64 - used;
if(size < available)
{
memcpy(&ctx.buffer[used], data, size);
return;
}
memcpy(&ctx.buffer[used], data, available);
data = (const byte *)data + available;
size -= available;
body(ctx, ctx.buffer, 64);
}
if(size >= 64)
{
data = body(ctx, data, size & ~(uint)0x3f);
size &= 0x3f;
}
memcpy(ctx.buffer, data, size);
}
void MD5Final(byte *result, MD5_CTX ctx)
{
uint used = ctx.lo & 0x3f;
uint available = 64 - used;
ctx.buffer[used++] = 0x80;
if(available < 8)
{
memset(&ctx.buffer[used], 0, available);
body(ctx, ctx.buffer, 64);
used = 0;
available = 64;
}
memset(&ctx.buffer[used], 0, available - 8);
ctx.lo <<= 3;
ctx.buffer[56] = (byte)ctx.lo;
ctx.buffer[57] = ctx.lo >> 8;
ctx.buffer[58] = ctx.lo >> 16;
ctx.buffer[59] = ctx.lo >> 24;
ctx.buffer[60] = (byte)ctx.hi;
ctx.buffer[61] = ctx.hi >> 8;
ctx.buffer[62] = ctx.hi >> 16;
ctx.buffer[63] = ctx.hi >> 24;
body(ctx, ctx.buffer, 64);
result[0] = (byte)ctx.a;
result[1] = ctx.a >> 8;
result[2] = ctx.a >> 16;
result[3] = ctx.a >> 24;
result[4] = (byte)ctx.b;
result[5] = ctx.b >> 8;
result[6] = ctx.b >> 16;
result[7] = ctx.b >> 24;
result[8] = (byte)ctx.c;
result[9] = ctx.c >> 8;
result[10] = ctx.c >> 16;
result[11] = ctx.c >> 24;
result[12] = (byte)ctx.d;
result[13] = ctx.d >> 8;
result[14] = ctx.d >> 16;
result[15] = ctx.d >> 24;
memset(ctx, 0, sizeof(MD5_CTX));
}
void MD5Digest(const char * string, int len, char * output)
{
byte bytes[16];
int c;
MD5_CTX ctx;
MD5Init(&ctx);
MD5Update(&ctx, (byte *)string, len);
MD5Final(bytes, &ctx);
len = 0;
for(c = 0; c<16; c++)
{
sprintf(output + len, "%02x", bytes[c]);
len += 2;
}
}
void MD5Digest64(const char * string, int len, uint64 * output)
{
byte bytes[16];
MD5_CTX ctx;
MD5Init(&ctx);
MD5Update(&ctx, (byte *)string, len);
MD5Final(bytes, &ctx);
output[0] = ((uint64)bytes[ 0] << 56) | ((uint64)bytes[ 1] << 48) | ((uint64)bytes[ 2] << 40) | ((uint64)bytes[ 3] << 32) |
((uint64)bytes[ 4] << 24) | ((uint64)bytes[ 5] << 16) | ((uint64)bytes[ 6] << 8) | ((uint64)bytes[ 7] );
output[1] = ((uint64)bytes[ 8] << 56) | ((uint64)bytes[ 9] << 48) | ((uint64)bytes[10] << 40) | ((uint64)bytes[11] << 32) |
((uint64)bytes[12] << 24) | ((uint64)bytes[13] << 16) | ((uint64)bytes[14] << 8) | ((uint64)bytes[15] );
}
|