/usr/share/gap/doc/ref/chap35.html is in gap-doc 4r8p6-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 | <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 35: Magmas</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap35" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chap41.html">41</a> <a href="chap42.html">42</a> <a href="chap43.html">43</a> <a href="chap44.html">44</a> <a href="chap45.html">45</a> <a href="chap46.html">46</a> <a href="chap47.html">47</a> <a href="chap48.html">48</a> <a href="chap49.html">49</a> <a href="chap50.html">50</a> <a href="chap51.html">51</a> <a href="chap52.html">52</a> <a href="chap53.html">53</a> <a href="chap54.html">54</a> <a href="chap55.html">55</a> <a href="chap56.html">56</a> <a href="chap57.html">57</a> <a href="chap58.html">58</a> <a href="chap59.html">59</a> <a href="chap60.html">60</a> <a href="chap61.html">61</a> <a href="chap62.html">62</a> <a href="chap63.html">63</a> <a href="chap64.html">64</a> <a href="chap65.html">65</a> <a href="chap66.html">66</a> <a href="chap67.html">67</a> <a href="chap68.html">68</a> <a href="chap69.html">69</a> <a href="chap70.html">70</a> <a href="chap71.html">71</a> <a href="chap72.html">72</a> <a href="chap73.html">73</a> <a href="chap74.html">74</a> <a href="chap75.html">75</a> <a href="chap76.html">76</a> <a href="chap77.html">77</a> <a href="chap78.html">78</a> <a href="chap79.html">79</a> <a href="chap80.html">80</a> <a href="chap81.html">81</a> <a href="chap82.html">82</a> <a href="chap83.html">83</a> <a href="chap84.html">84</a> <a href="chap85.html">85</a> <a href="chap86.html">86</a> <a href="chap87.html">87</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap34.html">[Previous Chapter]</a> <a href="chap36.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap35_mj.html">[MathJax on]</a></p>
<p><a id="X873E502F7D21C39C" name="X873E502F7D21C39C"></a></p>
<div class="ChapSects"><a href="chap35.html#X873E502F7D21C39C">35 <span class="Heading">Magmas</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap35.html#X7E1248B186E7BB44">35.1 <span class="Heading">Magma Categories</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X87D3F38B7EAB13FA">35.1-1 IsMagma</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X86071DE7835F1C7C">35.1-2 IsMagmaWithOne</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X83E4903D7FBB2E24">35.1-3 IsMagmaWithInversesIfNonzero</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X82CBFF648574B830">35.1-4 IsMagmaWithInverses</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap35.html#X808F1A148398733D">35.2 <span class="Heading">Magma Generation</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X839147CF813312D6">35.2-1 Magma</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X7854B23286B17321">35.2-2 MagmaWithOne</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X7A2B51F67EF4DA28">35.2-3 MagmaWithInverses</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X7F629A498383A0AD">35.2-4 MagmaByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X84DABBEB803107EB">35.2-5 MagmaWithOneByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X82C08CFB854E3F1A">35.2-6 MagmaWithInversesByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X8268EAA47E4A3A64">35.2-7 Submagma</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X7F295EBC7A9CE87E">35.2-8 SubmagmaWithOne</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X79441F1F7A277E28">35.2-9 SubmagmaWithInverses</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X84ED076D7E46AB79">35.2-10 AsMagma</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X87EEEC018129F0F4">35.2-11 AsSubmagma</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X8553F44D8123B2C6">35.2-12 IsMagmaWithZeroAdjoined</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X8620878D7FD98823">35.2-13 InjectionZeroMagma</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X7B353674859BF659">35.2-14 UnderlyingInjectionZeroMagma</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap35.html#X782215B982F2F01C">35.3 <span class="Heading">Magmas Defined by Multiplication Tables</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X85CD1E7678295CA6">35.3-1 MagmaByMultiplicationTable</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X865526C881645D65">35.3-2 MagmaWithOneByMultiplicationTable</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X7EDAFB987EE8A770">35.3-3 MagmaWithInversesByMultiplicationTable</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X828BED4580D28FB8">35.3-4 MagmaElement</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X849BDCC27C4C3191">35.3-5 <span class="Heading">MultiplicationTable</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap35.html#X87036FCE868FFEE9">35.4 <span class="Heading">Attributes and Properties for Magmas</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X872E05B478EC20CA">35.4-1 GeneratorsOfMagma</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X87DD93EC8061DD81">35.4-2 GeneratorsOfMagmaWithOne</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X83A901B1857C8489">35.4-3 GeneratorsOfMagmaWithInverses</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X7DE33AFC823C7873">35.4-4 Centralizer</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X847ABE6F781C7FE8">35.4-5 Centre</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X7C651C9C78398FFF">35.4-6 Idempotents</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X7C83B5A47FD18FB7">35.4-7 IsAssociative</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X857B0E507D745ADB">35.4-8 IsCentral</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X830A4A4C795FBC2D">35.4-9 IsCommutative</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X7EE2EA5F7EB7FEC2">35.4-10 MultiplicativeNeutralElement</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X7B39F93C8136D642">35.4-11 MultiplicativeZero</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X867DB05A8218FB1E">35.4-12 SquareRoots</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap35.html#X837DA95883CFB985">35.4-13 TrivialSubmagmaWithOne</a></span>
</div></div>
</div>
<h3>35 <span class="Heading">Magmas</span></h3>
<p>This chapter deals with domains (see <a href="chap31.html#X7E651AC287AFDCC1"><span class="RefLink">31</span></a>) that are closed under multiplication <code class="code">*</code>. Following <a href="chapBib.html#biBBourbaki70">[Bou70]</a>, we call them <em>magmas</em> in <strong class="pkg">GAP</strong>. Together with the domains closed under addition <code class="code">+</code> (see <a href="chap55.html#X7D0D096B81365B02"><span class="RefLink">55</span></a>), they are the basic algebraic structures; every semigroup, monoid (see <a href="chap51.html#X8665D8737FDD5B10"><span class="RefLink">51</span></a>), group (see <a href="chap39.html#X8716635F7951801B"><span class="RefLink">39</span></a>), ring (see <a href="chap56.html#X81897F6082CACB59"><span class="RefLink">56</span></a>), or field (see <a href="chap58.html#X80A8E676814A19FD"><span class="RefLink">58</span></a>) is a magma. In the cases of a <em>magma-with-one</em> or <em>magma-with-inverses</em>, additional multiplicative structure is present, see <a href="chap35.html#X7E1248B186E7BB44"><span class="RefLink">35.1</span></a>. For functions to create free magmas, see <a href="chap36.html#X7F51B17983019D3E"><span class="RefLink">36.4</span></a>.</p>
<p><a id="X7E1248B186E7BB44" name="X7E1248B186E7BB44"></a></p>
<h4>35.1 <span class="Heading">Magma Categories</span></h4>
<p><a id="X87D3F38B7EAB13FA" name="X87D3F38B7EAB13FA"></a></p>
<h5>35.1-1 IsMagma</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsMagma</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A <em>magma</em> in <strong class="pkg">GAP</strong> is a domain <span class="SimpleMath">M</span> with (not necessarily associative) multiplication <code class="code">*</code><span class="SimpleMath">: M × M → M</span>.</p>
<p><a id="X86071DE7835F1C7C" name="X86071DE7835F1C7C"></a></p>
<h5>35.1-2 IsMagmaWithOne</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsMagmaWithOne</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A <em>magma-with-one</em> in <strong class="pkg">GAP</strong> is a magma <span class="SimpleMath">M</span> with an operation <code class="code">^0</code> (or <code class="func">One</code> (<a href="chap31.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>)) that yields the identity of <span class="SimpleMath">M</span>.</p>
<p>So a magma-with-one <span class="SimpleMath">M</span> does always contain a unique multiplicatively neutral element <span class="SimpleMath">e</span>, i.e., <span class="SimpleMath">e</span><code class="code"> * </code><span class="SimpleMath">m = m = m</span><code class="code"> * </code><span class="SimpleMath">e</span> holds for all <span class="SimpleMath">m ∈ M</span> (see <code class="func">MultiplicativeNeutralElement</code> (<a href="chap35.html#X7EE2EA5F7EB7FEC2"><span class="RefLink">35.4-10</span></a>)). This element <span class="SimpleMath">e</span> can be computed with the operation <code class="func">One</code> (<a href="chap31.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>) as <code class="code">One( </code><span class="SimpleMath">M</span><code class="code"> )</code>, and <span class="SimpleMath">e</span> is also equal to <code class="code">One( </code><span class="SimpleMath">m</span><code class="code"> )</code> and to <span class="SimpleMath">m</span><code class="code">^0</code> for each element <span class="SimpleMath">m ∈ M</span>.</p>
<p><em>Note</em> that a magma may contain a multiplicatively neutral element but <em>not</em> an identity (see <code class="func">One</code> (<a href="chap31.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>)), and a magma containing an identity may <em>not</em> lie in the category <code class="func">IsMagmaWithOne</code> (see Section <a href="chap31.html#X7D72F11B82F4A036"><span class="RefLink">31.6</span></a>).</p>
<p><a id="X83E4903D7FBB2E24" name="X83E4903D7FBB2E24"></a></p>
<h5>35.1-3 IsMagmaWithInversesIfNonzero</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsMagmaWithInversesIfNonzero</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>An object in this <strong class="pkg">GAP</strong> category is a magma-with-one <span class="SimpleMath">M</span> with an operation <code class="code">^-1</code><span class="SimpleMath">: M ∖ Z → M ∖ Z</span> that maps each element <span class="SimpleMath">m</span> of <span class="SimpleMath">M ∖ Z</span> to its inverse <span class="SimpleMath">m</span><code class="code">^-1</code> (or <code class="code">Inverse( </code><span class="SimpleMath">m</span><code class="code"> )</code>, see <code class="func">Inverse</code> (<a href="chap31.html#X78EE524E83624057"><span class="RefLink">31.10-8</span></a>)), where <span class="SimpleMath">Z</span> is either empty or consists exactly of one element of <span class="SimpleMath">M</span>.</p>
<p>This category was introduced mainly to describe division rings, since the nonzero elements in a division ring form a group; So an object <span class="SimpleMath">M</span> in <code class="func">IsMagmaWithInversesIfNonzero</code> will usually have both a multiplicative and an additive structure (see <a href="chap55.html#X7D0D096B81365B02"><span class="RefLink">55</span></a>), and the set <span class="SimpleMath">Z</span>, if it is nonempty, contains exactly the zero element (see <code class="func">Zero</code> (<a href="chap31.html#X8040AC7A79FFC442"><span class="RefLink">31.10-3</span></a>)) of <span class="SimpleMath">M</span>.</p>
<p><a id="X82CBFF648574B830" name="X82CBFF648574B830"></a></p>
<h5>35.1-4 IsMagmaWithInverses</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsMagmaWithInverses</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A <em>magma-with-inverses</em> in <strong class="pkg">GAP</strong> is a magma-with-one <span class="SimpleMath">M</span> with an operation <code class="code">^-1</code><span class="SimpleMath">: M → M</span> that maps each element <span class="SimpleMath">m</span> of <span class="SimpleMath">M</span> to its inverse <span class="SimpleMath">m</span><code class="code">^-1</code> (or <code class="code">Inverse( </code><span class="SimpleMath">m</span><code class="code"> )</code>, see <code class="func">Inverse</code> (<a href="chap31.html#X78EE524E83624057"><span class="RefLink">31.10-8</span></a>)).</p>
<p>Note that not every trivial magma is a magma-with-one, but every trivial magma-with-one is a magma-with-inverses. This holds also if the identity of the magma-with-one is a zero element. So a magma-with-inverses-if-nonzero can be a magma-with-inverses if either it contains no zero element or consists of a zero element that has itself as zero-th power.</p>
<p><a id="X808F1A148398733D" name="X808F1A148398733D"></a></p>
<h4>35.2 <span class="Heading">Magma Generation</span></h4>
<p>This section describes functions that create magmas from generators (see <code class="func">Magma</code> (<a href="chap35.html#X839147CF813312D6"><span class="RefLink">35.2-1</span></a>), <code class="func">MagmaWithOne</code> (<a href="chap35.html#X7854B23286B17321"><span class="RefLink">35.2-2</span></a>), <code class="func">MagmaWithInverses</code> (<a href="chap35.html#X7A2B51F67EF4DA28"><span class="RefLink">35.2-3</span></a>)), the underlying operations for which methods can be installed (see <code class="func">MagmaByGenerators</code> (<a href="chap35.html#X7F629A498383A0AD"><span class="RefLink">35.2-4</span></a>), <code class="func">MagmaWithOneByGenerators</code> (<a href="chap35.html#X84DABBEB803107EB"><span class="RefLink">35.2-5</span></a>), <code class="func">MagmaWithInversesByGenerators</code> (<a href="chap35.html#X82C08CFB854E3F1A"><span class="RefLink">35.2-6</span></a>)), functions for forming submagmas (see <code class="func">Submagma</code> (<a href="chap35.html#X8268EAA47E4A3A64"><span class="RefLink">35.2-7</span></a>), <code class="func">SubmagmaWithOne</code> (<a href="chap35.html#X7F295EBC7A9CE87E"><span class="RefLink">35.2-8</span></a>), <code class="func">SubmagmaWithInverses</code> (<a href="chap35.html#X79441F1F7A277E28"><span class="RefLink">35.2-9</span></a>)), and functions that form a magma equal to a given collection (see <code class="func">AsMagma</code> (<a href="chap35.html#X84ED076D7E46AB79"><span class="RefLink">35.2-10</span></a>), <code class="func">AsSubmagma</code> (<a href="chap35.html#X87EEEC018129F0F4"><span class="RefLink">35.2-11</span></a>)).</p>
<p><code class="func">InjectionZeroMagma</code> (<a href="chap35.html#X8620878D7FD98823"><span class="RefLink">35.2-13</span></a>) creates a new magma which is the original magma with a zero adjoined.</p>
<p><a id="X839147CF813312D6" name="X839147CF813312D6"></a></p>
<h5>35.2-1 Magma</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Magma</code>( [<var class="Arg">Fam</var>, ]<var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the magma <span class="SimpleMath">M</span> that is generated by the elements in the list <var class="Arg">gens</var>, that is, the closure of <var class="Arg">gens</var> under multiplication <code class="func">\*</code> (<a href="chap31.html#X8481C9B97B214C23"><span class="RefLink">31.12-1</span></a>). The family <var class="Arg">Fam</var> of <span class="SimpleMath">M</span> can be entered as the first argument; this is obligatory if <var class="Arg">gens</var> is empty (and hence also <span class="SimpleMath">M</span> is empty).</p>
<p><a id="X7854B23286B17321" name="X7854B23286B17321"></a></p>
<h5>35.2-2 MagmaWithOne</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MagmaWithOne</code>( [<var class="Arg">Fam</var>, ]<var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the magma-with-one <span class="SimpleMath">M</span> that is generated by the elements in the list <var class="Arg">gens</var>, that is, the closure of <var class="Arg">gens</var> under multiplication <code class="func">\*</code> (<a href="chap31.html#X8481C9B97B214C23"><span class="RefLink">31.12-1</span></a>) and <code class="func">One</code> (<a href="chap31.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>). The family <var class="Arg">Fam</var> of <span class="SimpleMath">M</span> can be entered as first argument; this is obligatory if <var class="Arg">gens</var> is empty (and hence <span class="SimpleMath">M</span> is trivial).</p>
<p><a id="X7A2B51F67EF4DA28" name="X7A2B51F67EF4DA28"></a></p>
<h5>35.2-3 MagmaWithInverses</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MagmaWithInverses</code>( [<var class="Arg">Fam</var>, ]<var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the magma-with-inverses <span class="SimpleMath">M</span> that is generated by the elements in the list <var class="Arg">gens</var>, that is, the closure of <var class="Arg">gens</var> under multiplication <code class="func">\*</code> (<a href="chap31.html#X8481C9B97B214C23"><span class="RefLink">31.12-1</span></a>), <code class="func">One</code> (<a href="chap31.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>), and <code class="func">Inverse</code> (<a href="chap31.html#X78EE524E83624057"><span class="RefLink">31.10-8</span></a>). The family <var class="Arg">Fam</var> of <span class="SimpleMath">M</span> can be entered as first argument; this is obligatory if <var class="Arg">gens</var> is empty (and hence <span class="SimpleMath">M</span> is trivial).</p>
<p><a id="X7F629A498383A0AD" name="X7F629A498383A0AD"></a></p>
<h5>35.2-4 MagmaByGenerators</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MagmaByGenerators</code>( [<var class="Arg">Fam</var>, ]<var class="Arg">gens</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>An underlying operation for <code class="func">Magma</code> (<a href="chap35.html#X839147CF813312D6"><span class="RefLink">35.2-1</span></a>).</p>
<p><a id="X84DABBEB803107EB" name="X84DABBEB803107EB"></a></p>
<h5>35.2-5 MagmaWithOneByGenerators</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MagmaWithOneByGenerators</code>( [<var class="Arg">Fam</var>, ]<var class="Arg">gens</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>An underlying operation for <code class="func">MagmaWithOne</code> (<a href="chap35.html#X7854B23286B17321"><span class="RefLink">35.2-2</span></a>).</p>
<p><a id="X82C08CFB854E3F1A" name="X82C08CFB854E3F1A"></a></p>
<h5>35.2-6 MagmaWithInversesByGenerators</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MagmaWithInversesByGenerators</code>( [<var class="Arg">Fam</var>, ]<var class="Arg">gens</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>An underlying operation for <code class="func">MagmaWithInverses</code> (<a href="chap35.html#X7A2B51F67EF4DA28"><span class="RefLink">35.2-3</span></a>).</p>
<p><a id="X8268EAA47E4A3A64" name="X8268EAA47E4A3A64"></a></p>
<h5>35.2-7 Submagma</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Submagma</code>( <var class="Arg">D</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubmagmaNC</code>( <var class="Arg">D</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">Submagma</code> returns the magma generated by the elements in the list <var class="Arg">gens</var>, with parent the domain <var class="Arg">D</var>. <code class="func">SubmagmaNC</code> does the same, except that it is not checked whether the elements of <var class="Arg">gens</var> lie in <var class="Arg">D</var>.</p>
<p><a id="X7F295EBC7A9CE87E" name="X7F295EBC7A9CE87E"></a></p>
<h5>35.2-8 SubmagmaWithOne</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubmagmaWithOne</code>( <var class="Arg">D</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubmagmaWithOneNC</code>( <var class="Arg">D</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">SubmagmaWithOne</code> returns the magma-with-one generated by the elements in the list <var class="Arg">gens</var>, with parent the domain <var class="Arg">D</var>. <code class="func">SubmagmaWithOneNC</code> does the same, except that it is not checked whether the elements of <var class="Arg">gens</var> lie in <var class="Arg">D</var>.</p>
<p><a id="X79441F1F7A277E28" name="X79441F1F7A277E28"></a></p>
<h5>35.2-9 SubmagmaWithInverses</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubmagmaWithInverses</code>( <var class="Arg">D</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubmagmaWithInversesNC</code>( <var class="Arg">D</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">SubmagmaWithInverses</code> returns the magma-with-inverses generated by the elements in the list <var class="Arg">gens</var>, with parent the domain <var class="Arg">D</var>. <code class="func">SubmagmaWithInversesNC</code> does the same, except that it is not checked whether the elements of <var class="Arg">gens</var> lie in <var class="Arg">D</var>.</p>
<p><a id="X84ED076D7E46AB79" name="X84ED076D7E46AB79"></a></p>
<h5>35.2-10 AsMagma</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AsMagma</code>( <var class="Arg">C</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For a collection <var class="Arg">C</var> whose elements form a magma, <code class="func">AsMagma</code> returns this magma. Otherwise <code class="keyw">fail</code> is returned.</p>
<p><a id="X87EEEC018129F0F4" name="X87EEEC018129F0F4"></a></p>
<h5>35.2-11 AsSubmagma</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AsSubmagma</code>( <var class="Arg">D</var>, <var class="Arg">C</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Let <var class="Arg">D</var> be a domain and <var class="Arg">C</var> a collection. If <var class="Arg">C</var> is a subset of <var class="Arg">D</var> that forms a magma then <code class="func">AsSubmagma</code> returns this magma, with parent <var class="Arg">D</var>. Otherwise <code class="keyw">fail</code> is returned.</p>
<p><a id="X8553F44D8123B2C6" name="X8553F44D8123B2C6"></a></p>
<h5>35.2-12 IsMagmaWithZeroAdjoined</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsMagmaWithZeroAdjoined</code>( <var class="Arg">M</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>
<p><code class="code">IsMagmaWithZeroAdjoined</code> returns <code class="keyw">true</code> if the magma <var class="Arg">M</var> was created using <code class="func">InjectionZeroMagma</code> (<a href="chap35.html#X8620878D7FD98823"><span class="RefLink">35.2-13</span></a>) or <code class="func">MagmaWithZeroAdjoined</code> (<a href="chap35.html#X8620878D7FD98823"><span class="RefLink">35.2-13</span></a>) and returns <code class="keyw">false</code> if it was not.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=Semigroup(Transformation([1,1,1]), Transformation([1,3,2]));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsMagmaWithZeroAdjoined(S);</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=MagmaWithZeroAdjoined(S);</span>
<<transformation semigroup of degree 3 with 2 generators>
with 0 adjoined>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsMagmaWithZeroAdjoined(M);</span>
true
</pre></div>
<p><a id="X8620878D7FD98823" name="X8620878D7FD98823"></a></p>
<h5>35.2-13 InjectionZeroMagma</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InjectionZeroMagma</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MagmaWithZeroAdjoined</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p><code class="func">InjectionZeroMagma</code> returns an embedding from the magma <var class="Arg">M</var> into a new magma formed from <var class="Arg">M</var> by adjoining a single new element which is the multiplicative zero of the resulting magma. The elements of the new magma form a family of elements in the category <code class="func">IsMultiplicativeElementWithZero</code> (<a href="chap31.html#X8703BFC2841BBD63"><span class="RefLink">31.14-12</span></a>) and the magma itself satisfies <code class="func">IsMagmaWithZeroAdjoined</code> (<a href="chap35.html#X8553F44D8123B2C6"><span class="RefLink">35.2-12</span></a>).</p>
<p><code class="code">MagmaWithZeroAdjoined</code> is just shorthand for <code class="code">Range(InjectionZeroMagma(<var class="Arg">M</var>)))</code>.</p>
<p>If <code class="code">N</code> is a magma with zero adjoined, then the embedding used to create <code class="code">N</code> can be recovered using <code class="func">UnderlyingInjectionZeroMagma</code> (<a href="chap35.html#X7B353674859BF659"><span class="RefLink">35.2-14</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=Monoid(Transformation( [ 7, 7, 5, 3, 1, 3, 7 ] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput">Transformation( [ 5, 1, 4, 1, 4, 4, 7 ] ));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">MultiplicativeZero(S);</span>
Transformation( [ 7, 7, 7, 7, 7, 7, 7 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">T:=MagmaWithZeroAdjoined(S);</span>
<<transformation monoid of degree 7 with 2 generators>
with 0 adjoined>
<span class="GAPprompt">gap></span> <span class="GAPinput">map:=UnderlyingInjectionZeroMagma(T);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:=Transformation( [ 7, 7, 7, 3, 7, 3, 7 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x^map;</span>
<monoid with 0 adjoined elt: Transformation( [ 7, 7, 7, 3, 7, 3, 7 ]
)>
<span class="GAPprompt">gap></span> <span class="GAPinput">PreImage(map, x^map)=x;</span>
true
</pre></div>
<p><a id="X7B353674859BF659" name="X7B353674859BF659"></a></p>
<h5>35.2-14 UnderlyingInjectionZeroMagma</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ UnderlyingInjectionZeroMagma</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p><code class="code">UnderlyingInjectionZeroMagma</code> returns the embedding used to create the magma with zero adjoined <var class="Arg">M</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=Monoid(Transformation( [ 8, 7, 5, 3, 1, 3, 8, 8 ] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput">Transformation( [ 5, 1, 4, 1, 4, 4, 7, 8 ] ));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">MultiplicativeZero(S);</span>
Transformation( [ 8, 8, 8, 8, 8, 8, 8, 8 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">T:=MagmaWithZeroAdjoined(S);</span>
<<transformation monoid of degree 8 with 2 generators>
with 0 adjoined>
<span class="GAPprompt">gap></span> <span class="GAPinput">UnderlyingInjectionZeroMagma(T);</span>
MappingByFunction( <transformation monoid of degree 8 with 2
generators>, <<transformation monoid of degree 8 with 2 generators>
with 0 adjoined>, function( elt ) ... end, function( x ) ... end )
</pre></div>
<p><a id="X782215B982F2F01C" name="X782215B982F2F01C"></a></p>
<h4>35.3 <span class="Heading">Magmas Defined by Multiplication Tables</span></h4>
<p>The most elementary (but of course usually not recommended) way to implement a magma with only few elements is via a multiplication table.</p>
<p><a id="X85CD1E7678295CA6" name="X85CD1E7678295CA6"></a></p>
<h5>35.3-1 MagmaByMultiplicationTable</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MagmaByMultiplicationTable</code>( <var class="Arg">A</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>For a square matrix <var class="Arg">A</var> with <span class="SimpleMath">n</span> rows such that all entries of <var class="Arg">A</var> are in the range <span class="SimpleMath">[ 1 .. n ]</span>, <code class="func">MagmaByMultiplicationTable</code> returns a magma <span class="SimpleMath">M</span> with multiplication <code class="code">*</code> defined by <var class="Arg">A</var>. That is, <span class="SimpleMath">M</span> consists of the elements <span class="SimpleMath">m_1, m_2, ..., m_n</span>, and <span class="SimpleMath">m_i * m_j = m_k</span>, with <span class="SimpleMath">k =</span> <var class="Arg">A</var><span class="SimpleMath">[i][j]</span>.</p>
<p>The ordering of elements is defined by <span class="SimpleMath">m_1 < m_2 < ⋯ < m_n</span>, so <span class="SimpleMath">m_i</span> can be accessed as <code class="code">MagmaElement( <var class="Arg">M</var>, <var class="Arg">i</var> )</code>, see <code class="func">MagmaElement</code> (<a href="chap35.html#X828BED4580D28FB8"><span class="RefLink">35.3-4</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">MagmaByMultiplicationTable([[1,2,3],[2,3,1],[1,1,1]]);</span>
<magma with 3 generators>
</pre></div>
<p><a id="X865526C881645D65" name="X865526C881645D65"></a></p>
<h5>35.3-2 MagmaWithOneByMultiplicationTable</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MagmaWithOneByMultiplicationTable</code>( <var class="Arg">A</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The only differences between <code class="func">MagmaByMultiplicationTable</code> (<a href="chap35.html#X85CD1E7678295CA6"><span class="RefLink">35.3-1</span></a>) and <code class="func">MagmaWithOneByMultiplicationTable</code> are that the latter returns a magma-with-one (see <code class="func">MagmaWithOne</code> (<a href="chap35.html#X7854B23286B17321"><span class="RefLink">35.2-2</span></a>)) if the magma described by the matrix <var class="Arg">A</var> has an identity, and returns <code class="keyw">fail</code> if not.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">MagmaWithOneByMultiplicationTable([[1,2,3],[2,3,1],[3,1,1]]);</span>
<magma-with-one with 3 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">MagmaWithOneByMultiplicationTable([[1,2,3],[2,3,1],[1,1,1]]);</span>
fail
</pre></div>
<p><a id="X7EDAFB987EE8A770" name="X7EDAFB987EE8A770"></a></p>
<h5>35.3-3 MagmaWithInversesByMultiplicationTable</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MagmaWithInversesByMultiplicationTable</code>( <var class="Arg">A</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">MagmaByMultiplicationTable</code> (<a href="chap35.html#X85CD1E7678295CA6"><span class="RefLink">35.3-1</span></a>) and <code class="func">MagmaWithInversesByMultiplicationTable</code> differ only in that the latter returns magma-with-inverses (see <code class="func">MagmaWithInverses</code> (<a href="chap35.html#X7A2B51F67EF4DA28"><span class="RefLink">35.2-3</span></a>)) if each element in the magma described by the matrix <var class="Arg">A</var> has an inverse, and returns <code class="keyw">fail</code> if not.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">MagmaWithInversesByMultiplicationTable([[1,2,3],[2,3,1],[3,1,2]]);</span>
<magma-with-inverses with 3 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">MagmaWithInversesByMultiplicationTable([[1,2,3],[2,3,1],[3,2,1]]);</span>
fail
</pre></div>
<p><a id="X828BED4580D28FB8" name="X828BED4580D28FB8"></a></p>
<h5>35.3-4 MagmaElement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MagmaElement</code>( <var class="Arg">M</var>, <var class="Arg">i</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>For a magma <var class="Arg">M</var> and a positive integer <var class="Arg">i</var>, <code class="func">MagmaElement</code> returns the <var class="Arg">i</var>-th element of <var class="Arg">M</var>, w.r.t. the ordering <code class="code"><</code>. If <var class="Arg">M</var> has less than <var class="Arg">i</var> elements then <code class="keyw">fail</code> is returned.</p>
<p><a id="X849BDCC27C4C3191" name="X849BDCC27C4C3191"></a></p>
<h5>35.3-5 <span class="Heading">MultiplicationTable</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MultiplicationTable</code>( <var class="Arg">elms</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MultiplicationTable</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For a list <var class="Arg">elms</var> of elements that form a magma <span class="SimpleMath">M</span>, <code class="func">MultiplicationTable</code> returns a square matrix <span class="SimpleMath">A</span> of positive integers such that <span class="SimpleMath">A[i][j] = k</span> holds if and only if <var class="Arg">elms</var><span class="SimpleMath">[i] *</span> <var class="Arg">elms</var><span class="SimpleMath">[j] =</span> <var class="Arg">elms</var><span class="SimpleMath">[k]</span>. This matrix can be used to construct a magma isomorphic to <span class="SimpleMath">M</span>, using <code class="func">MagmaByMultiplicationTable</code> (<a href="chap35.html#X85CD1E7678295CA6"><span class="RefLink">35.3-1</span></a>).</p>
<p>For a magma <var class="Arg">M</var>, <code class="func">MultiplicationTable</code> returns the multiplication table w.r.t. the sorted list of elements of <var class="Arg">M</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">l:= [ (), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:= MultiplicationTable( l );</span>
[ [ 1, 2, 3, 4 ], [ 2, 1, 4, 3 ], [ 3, 4, 1, 2 ], [ 4, 3, 2, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= MagmaByMultiplicationTable( a );</span>
<magma with 4 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">One( m );</span>
m1
<span class="GAPprompt">gap></span> <span class="GAPinput">elm:= MagmaElement( m, 2 ); One( elm ); elm^2;</span>
m2
m1
m1
<span class="GAPprompt">gap></span> <span class="GAPinput">Inverse( elm );</span>
m2
<span class="GAPprompt">gap></span> <span class="GAPinput">AsGroup( m );</span>
<group of size 4 with 2 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:= [ [ 1, 2 ], [ 2, 2 ] ];</span>
[ [ 1, 2 ], [ 2, 2 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= MagmaByMultiplicationTable( a );</span>
<magma with 2 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">One( m ); Inverse( MagmaElement( m, 2 ) );</span>
m1
fail
</pre></div>
<p><a id="X87036FCE868FFEE9" name="X87036FCE868FFEE9"></a></p>
<h4>35.4 <span class="Heading">Attributes and Properties for Magmas</span></h4>
<p><em>Note</em> that <code class="func">IsAssociative</code> (<a href="chap35.html#X7C83B5A47FD18FB7"><span class="RefLink">35.4-7</span></a>) and <code class="func">IsCommutative</code> (<a href="chap35.html#X830A4A4C795FBC2D"><span class="RefLink">35.4-9</span></a>) always refer to the multiplication of a domain. If a magma <var class="Arg">M</var> has also an <em>additive structure</em>, e.g., if <var class="Arg">M</var> is a ring (see <a href="chap56.html#X81897F6082CACB59"><span class="RefLink">56</span></a>), then the addition <code class="code">+</code> is always assumed to be associative and commutative, see <a href="chap31.html#X7A2914307963E370"><span class="RefLink">31.12</span></a>.</p>
<p><a id="X872E05B478EC20CA" name="X872E05B478EC20CA"></a></p>
<h5>35.4-1 GeneratorsOfMagma</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsOfMagma</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is a list <var class="Arg">gens</var> of elements of the magma <var class="Arg">M</var> that generates <var class="Arg">M</var> as a magma, that is, the closure of <var class="Arg">gens</var> under multiplication <code class="func">\*</code> (<a href="chap31.html#X8481C9B97B214C23"><span class="RefLink">31.12-1</span></a>) is <var class="Arg">M</var>.</p>
<p>For a free magma, each generator can also be accessed using the <code class="code">.</code> operator (see <code class="func">GeneratorsOfDomain</code> (<a href="chap31.html#X7E353DD1838AB223"><span class="RefLink">31.9-2</span></a>)).</p>
<p><a id="X87DD93EC8061DD81" name="X87DD93EC8061DD81"></a></p>
<h5>35.4-2 GeneratorsOfMagmaWithOne</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsOfMagmaWithOne</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is a list <var class="Arg">gens</var> of elements of the magma-with-one <var class="Arg">M</var> that generates <var class="Arg">M</var> as a magma-with-one, that is, the closure of <var class="Arg">gens</var> under multiplication <code class="func">\*</code> (<a href="chap31.html#X8481C9B97B214C23"><span class="RefLink">31.12-1</span></a>) and <code class="func">One</code> (<a href="chap31.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>) is <var class="Arg">M</var>.</p>
<p>For a free magma with one, each generator can also be accessed using the <code class="code">.</code> operator (see <code class="func">GeneratorsOfDomain</code> (<a href="chap31.html#X7E353DD1838AB223"><span class="RefLink">31.9-2</span></a>)).</p>
<p><a id="X83A901B1857C8489" name="X83A901B1857C8489"></a></p>
<h5>35.4-3 GeneratorsOfMagmaWithInverses</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsOfMagmaWithInverses</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is a list <var class="Arg">gens</var> of elements of the magma-with-inverses <var class="Arg">M</var> that generates <var class="Arg">M</var> as a magma-with-inverses, that is, the closure of <var class="Arg">gens</var> under multiplication <code class="func">\*</code> (<a href="chap31.html#X8481C9B97B214C23"><span class="RefLink">31.12-1</span></a>) and taking inverses (see <code class="func">Inverse</code> (<a href="chap31.html#X78EE524E83624057"><span class="RefLink">31.10-8</span></a>)) is <var class="Arg">M</var>.</p>
<p><a id="X7DE33AFC823C7873" name="X7DE33AFC823C7873"></a></p>
<h5>35.4-4 Centralizer</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Centralizer</code>( <var class="Arg">M</var>, <var class="Arg">elm</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Centralizer</code>( <var class="Arg">M</var>, <var class="Arg">S</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Centralizer</code>( <var class="Arg">class</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For an element <var class="Arg">elm</var> of the magma <var class="Arg">M</var> this operation returns the <em>centralizer</em> of <var class="Arg">elm</var>. This is the domain of those elements <var class="Arg">m</var> <span class="SimpleMath">∈</span> <var class="Arg">M</var> that commute with <var class="Arg">elm</var>.</p>
<p>For a submagma <var class="Arg">S</var> it returns the domain of those elements that commute with <em>all</em> elements <var class="Arg">s</var> of <var class="Arg">S</var>.</p>
<p>If <var class="Arg">class</var> is a class of objects of a magma (this magma then is stored as the <code class="code">ActingDomain</code> of <var class="Arg">class</var>) such as given by <code class="func">ConjugacyClass</code> (<a href="chap39.html#X7B2F207F7F85F5B8"><span class="RefLink">39.10-1</span></a>), <code class="func">Centralizer</code> returns the centralizer of <code class="code">Representative(<var class="Arg">class</var>)</code> (which is a slight abuse of the notation).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Group((1,2,3,4),(1,2));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Centralizer(g,(1,2,3));</span>
Group([ (1,2,3) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">Centralizer(g,Subgroup(g,[(1,2,3)]));</span>
Group([ (1,2,3) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">Centralizer(g,Subgroup(g,[(1,2,3),(1,2)]));</span>
Group(())
</pre></div>
<p><a id="X847ABE6F781C7FE8" name="X847ABE6F781C7FE8"></a></p>
<h5>35.4-5 Centre</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Centre</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Center</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p><code class="func">Centre</code> returns the <em>centre</em> of the magma <var class="Arg">M</var>, i.e., the domain of those elements <var class="Arg">m</var> <span class="SimpleMath">∈</span> <var class="Arg">M</var> that commute and associate with all elements of <var class="Arg">M</var>. That is, the set <span class="SimpleMath">{ m ∈ M; ∀ a, b ∈ M: ma = am, (ma)b = m(ab), (am)b = a(mb), (ab)m = a(bm) }</span>.</p>
<p><code class="func">Center</code> is just a synonym for <code class="func">Centre</code>.</p>
<p>For associative magmas we have that <code class="code">Centre( <var class="Arg">M</var> ) = Centralizer( <var class="Arg">M</var>, <var class="Arg">M</var> )</code>, see <code class="func">Centralizer</code> (<a href="chap35.html#X7DE33AFC823C7873"><span class="RefLink">35.4-4</span></a>).</p>
<p>The centre of a magma is always commutative (see <code class="func">IsCommutative</code> (<a href="chap35.html#X830A4A4C795FBC2D"><span class="RefLink">35.4-9</span></a>)). (When one installs a new method for <code class="func">Centre</code>, one should set the <code class="func">IsCommutative</code> (<a href="chap35.html#X830A4A4C795FBC2D"><span class="RefLink">35.4-9</span></a>) value of the result to <code class="keyw">true</code>, in order to make this information available.)</p>
<p><a id="X7C651C9C78398FFF" name="X7C651C9C78398FFF"></a></p>
<h5>35.4-6 Idempotents</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Idempotents</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The set of elements of <var class="Arg">M</var> which are their own squares.</p>
<p><a id="X7C83B5A47FD18FB7" name="X7C83B5A47FD18FB7"></a></p>
<h5>35.4-7 IsAssociative</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsAssociative</code>( <var class="Arg">M</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A magma <var class="Arg">M</var> is <em>associative</em> if for all elements <span class="SimpleMath">a, b, c ∈</span> <var class="Arg">M</var> the equality <span class="SimpleMath">(a</span><code class="code"> * </code><span class="SimpleMath">b)</span><code class="code"> * </code><span class="SimpleMath">c = a</span><code class="code"> * </code><span class="SimpleMath">(b</span><code class="code"> * </code><span class="SimpleMath">c)</span> holds.</p>
<p>An associative magma is called a <em>semigroup</em> (see <a href="chap51.html#X8665D8737FDD5B10"><span class="RefLink">51</span></a>), an associative magma-with-one is called a <em>monoid</em> (see <a href="chap51.html#X8665D8737FDD5B10"><span class="RefLink">51</span></a>), and an associative magma-with-inverses is called a <em>group</em> (see <a href="chap39.html#X8716635F7951801B"><span class="RefLink">39</span></a>).</p>
<p><a id="X857B0E507D745ADB" name="X857B0E507D745ADB"></a></p>
<h5>35.4-8 IsCentral</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsCentral</code>( <var class="Arg">M</var>, <var class="Arg">obj</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">IsCentral</code> returns <code class="keyw">true</code> if the object <var class="Arg">obj</var>, which must either be an element or a magma, commutes with all elements in the magma <var class="Arg">M</var>.</p>
<p><a id="X830A4A4C795FBC2D" name="X830A4A4C795FBC2D"></a></p>
<h5>35.4-9 IsCommutative</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsCommutative</code>( <var class="Arg">M</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsAbelian</code>( <var class="Arg">M</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A magma <var class="Arg">M</var> is <em>commutative</em> if for all elements <span class="SimpleMath">a, b ∈</span> <var class="Arg">M</var> the equality <span class="SimpleMath">a</span><code class="code"> * </code><span class="SimpleMath">b = b</span><code class="code"> * </code><span class="SimpleMath">a</span> holds. <code class="func">IsAbelian</code> is a synonym of <code class="func">IsCommutative</code>.</p>
<p>Note that the commutativity of the <em>addition</em> <code class="func">\+</code> (<a href="chap31.html#X8481C9B97B214C23"><span class="RefLink">31.12-1</span></a>) in an additive structure can be tested with <code class="func">IsAdditivelyCommutative</code> (<a href="chap55.html#X82D471327A9CA960"><span class="RefLink">55.3-1</span></a>).</p>
<p><a id="X7EE2EA5F7EB7FEC2" name="X7EE2EA5F7EB7FEC2"></a></p>
<h5>35.4-10 MultiplicativeNeutralElement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MultiplicativeNeutralElement</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the element <span class="SimpleMath">e</span> in the magma <var class="Arg">M</var> with the property that <span class="SimpleMath">e</span><code class="code"> * </code><span class="SimpleMath">m = m = m</span><code class="code"> * </code><span class="SimpleMath">e</span> holds for all <span class="SimpleMath">m ∈</span> <var class="Arg">M</var>, if such an element exists. Otherwise <code class="keyw">fail</code> is returned.</p>
<p>A magma that is not a magma-with-one can have a multiplicative neutral element <span class="SimpleMath">e</span>; in this case, <span class="SimpleMath">e</span> <em>cannot</em> be obtained as <code class="code">One( <var class="Arg">M</var> )</code>, see <code class="func">One</code> (<a href="chap31.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>).</p>
<p><a id="X7B39F93C8136D642" name="X7B39F93C8136D642"></a></p>
<h5>35.4-11 MultiplicativeZero</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MultiplicativeZero</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsMultiplicativeZero</code>( <var class="Arg">M</var>, <var class="Arg">z</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="code">MultiplicativeZero</code> returns the multiplicative zero of the magma <var class="Arg">M</var> which is the element <code class="code">z</code> in <var class="Arg">M</var> such that <code class="code"><var class="Arg">z</var> * <var class="Arg">m</var> = <var class="Arg">m</var> * <var class="Arg">z</var> = <var class="Arg">z</var></code> for all <var class="Arg">m</var> in <var class="Arg">M</var>.</p>
<p><code class="code">IsMultiplicativeZero</code> returns <code class="keyw">true</code> if the element <var class="Arg">z</var> of the magma <var class="Arg">M</var> equals the multiplicative zero of <var class="Arg">M</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=Semigroup( Transformation( [ 1, 1, 1 ] ), </span>
<span class="GAPprompt">></span> <span class="GAPinput">Transformation( [ 2, 3, 1 ] ) );</span>
<transformation semigroup of degree 3 with 2 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">MultiplicativeZero(S);</span>
fail
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=Semigroup( Transformation( [ 1, 1, 1 ] ), </span>
<span class="GAPprompt">></span> <span class="GAPinput">Transformation( [ 1, 3, 2 ] ) );</span>
<transformation semigroup of degree 3 with 2 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">MultiplicativeZero(S);</span>
Transformation( [ 1, 1, 1 ] )
</pre></div>
<p><a id="X867DB05A8218FB1E" name="X867DB05A8218FB1E"></a></p>
<h5>35.4-12 SquareRoots</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SquareRoots</code>( <var class="Arg">M</var>, <var class="Arg">elm</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>is the proper set of all elements <span class="SimpleMath">r</span> in the magma <var class="Arg">M</var> such that <span class="SimpleMath">r * r =</span> <var class="Arg">elm</var> holds.</p>
<p><a id="X837DA95883CFB985" name="X837DA95883CFB985"></a></p>
<h5>35.4-13 TrivialSubmagmaWithOne</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TrivialSubmagmaWithOne</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is the magma-with-one that has the identity of the magma-with-one <var class="Arg">M</var> as only element.</p>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap34.html">[Previous Chapter]</a> <a href="chap36.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chap41.html">41</a> <a href="chap42.html">42</a> <a href="chap43.html">43</a> <a href="chap44.html">44</a> <a href="chap45.html">45</a> <a href="chap46.html">46</a> <a href="chap47.html">47</a> <a href="chap48.html">48</a> <a href="chap49.html">49</a> <a href="chap50.html">50</a> <a href="chap51.html">51</a> <a href="chap52.html">52</a> <a href="chap53.html">53</a> <a href="chap54.html">54</a> <a href="chap55.html">55</a> <a href="chap56.html">56</a> <a href="chap57.html">57</a> <a href="chap58.html">58</a> <a href="chap59.html">59</a> <a href="chap60.html">60</a> <a href="chap61.html">61</a> <a href="chap62.html">62</a> <a href="chap63.html">63</a> <a href="chap64.html">64</a> <a href="chap65.html">65</a> <a href="chap66.html">66</a> <a href="chap67.html">67</a> <a href="chap68.html">68</a> <a href="chap69.html">69</a> <a href="chap70.html">70</a> <a href="chap71.html">71</a> <a href="chap72.html">72</a> <a href="chap73.html">73</a> <a href="chap74.html">74</a> <a href="chap75.html">75</a> <a href="chap76.html">76</a> <a href="chap77.html">77</a> <a href="chap78.html">78</a> <a href="chap79.html">79</a> <a href="chap80.html">80</a> <a href="chap81.html">81</a> <a href="chap82.html">82</a> <a href="chap83.html">83</a> <a href="chap84.html">84</a> <a href="chap85.html">85</a> <a href="chap86.html">86</a> <a href="chap87.html">87</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|