This file is indexed.

/usr/share/gap/doc/ref/chap53.html is in gap-doc 4r8p6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 53: Transformations</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap53"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap52.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap54.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap53_mj.html">[MathJax on]</a></p>
<p><a id="X860026B880BCB2A5" name="X860026B880BCB2A5"></a></p>
<div class="ChapSects"><a href="chap53.html#X860026B880BCB2A5">53 <span class="Heading">Transformations</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap53.html#X7CF9291C7CC42340">53.1 <span class="Heading">The family and categories of transformations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7B6259467974FB70">53.1-1 IsTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7A6747CE85F2E6EA">53.1-2 IsTransformationCollection</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7E58AFA1832FF064">53.1-3 TransformationFamily</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap53.html#X80F3086F87E93DF8">53.2 <span class="Heading">Creating transformations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X86ADBDE57A20E323">53.2-1 Transformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X8040642687531E7F">53.2-2 Transformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7E82EBD68455EE4A">53.2-3 TransformationByImageAndKernel</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X85D1071484CE004C">53.2-4 Idempotent</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7C2A3FC9782F2099">53.2-5 TransformationOp</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7D6FCC417DE86CD1">53.2-6 TransformationNumber</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X8475448F87E8CB8A">53.2-7 <span class="Heading">RandomTransformation</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X8268A58685BEFD6F">53.2-8 IdentityTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7F1E4B5184210D2B">53.2-9 ConstantTransformation</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap53.html#X7F81A18B813C9DF0">53.3 <span class="Heading">Changing the representation of a transformation</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7C5360B2799943F3">53.3-1 AsTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X846A6F6B7B715188">53.3-2 RestrictedTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X8708AE247F5B129B">53.3-3 PermutationOfImage</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap53.html#X812CEC008609A8A2">53.4 <span class="Heading">Operators for transformations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X83DBA2A18719EFA8">53.4-1 PermLeftQuoTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X8275DFAA8270BB59">53.4-2 IsInjectiveListTrans</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X834A313B7DAF06D5">53.4-3 ComponentTransformationInt</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X82F5DEEC837B60A3">53.4-4 PreImagesOfTransformation</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap53.html#X86DE4F7A7C535820">53.5 <span class="Heading">Attributes for transformations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X78A209C87CF0E32B">53.5-1 DegreeOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7AEC9E6687B3505A">53.5-2 ImageListOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X839A6D6082A21D1F">53.5-3 ImageSetOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X818EBB167C7EA37B">53.5-4 RankOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X844F00F982D5BD3C">53.5-5 MovedPoints</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7FA6A4B57FDA003D">53.5-6 NrMovedPoints</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X86C0DDDC7881273A">53.5-7 SmallestMovedPoint</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X8383A7727AC97724">53.5-8 LargestMovedPoint</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7CCFE27E83676572">53.5-9 SmallestImageOfMovedPoint</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7E7172567C3A3E63">53.5-10 LargestImageOfMovedPoint</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X8083794579274E87">53.5-11 FlatKernelOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X80FCB5048789CF75">53.5-12 KernelOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X860306EB7FAAD2D4">53.5-13 InverseOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7BB9DB6E8558356D">53.5-14 Inverse</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X863216CB7AF88BED">53.5-15 IndexPeriodOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X85FE9F20810BCC70">53.5-16 SmallestIdempotentPower</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X858E944481F6B591">53.5-17 ComponentsOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X8640AE1C79201470">53.5-18 NrComponentsOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X784650B583CEAF7D">53.5-19 ComponentRepsOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7EAA15557D55D93B">53.5-20 CyclesOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X786EB02A829260DB">53.5-21 CycleTransformationInt</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X845869E0815A6AA6">53.5-22 LeftOne</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7F19C9C77F9F8981">53.5-23 TrimTransformation</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap53.html#X810D23017A5527B7">53.6 <span class="Heading">Displaying transformations</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap53.html#X7B51CE257B814B09">53.7 <span class="Heading">Semigroups of transformations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7EAF835D7FE4026F">53.7-1 IsTransformationSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7EA699C687952544">53.7-2 DegreeOfTransformationSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X7D2B0685815B4053">53.7-3 FullTransformationSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X85C58E1E818C838C">53.7-4 IsFullTransformationSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X78F29C817CF6827F">53.7-5 IsomorphismTransformationSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53.html#X820ECE00846E480F">53.7-6 AntiIsomorphismTransformationSemigroup</a></span>
</div></div>
</div>

<h3>53 <span class="Heading">Transformations</span></h3>

<p>This chapter describes the functions in <strong class="pkg">GAP</strong> for transformations.</p>

<p>A <em>transformation</em> in <strong class="pkg">GAP</strong> is simply a function from the positive integers to the positive integers. Transformations are to semigroup theory what permutations are to group theory, in the sense that every semigroup can be realised as a semigroup of transformations. In <strong class="pkg">GAP</strong> transformation semigroups are always finite, and so only finite semigroups can be realised in this way.</p>

<p>A transformation in <strong class="pkg">GAP</strong> acts on the positive integers (up to some architecture dependent limit) on the right. The image of a point <code class="code">i</code> under a transformation <code class="code">f</code> is expressed as <code class="code">i^f</code> in <strong class="pkg">GAP</strong>. This action is also implemented by the function <code class="func">OnPoints</code> (<a href="chap41.html#X7FE417DD837987B4"><span class="RefLink">41.2-1</span></a>). If <code class="code">i^f</code> is different from <code class="code">i</code>, then <code class="code">i</code> is <em>moved</em> by <em>f</em> and otherwise it is <em>fixed</em> by <code class="code">f</code>. Transformations in <strong class="pkg">GAP</strong> are created using the operations described in Section <a href="chap53.html#X80F3086F87E93DF8"><span class="RefLink">53.2</span></a>.</p>

<p>The <em>degree</em> of a transformation <code class="code">f</code> is usually defined as the largest positive integer where <code class="code">f</code> is defined. In previous versions of <strong class="pkg">GAP</strong>, transformations were only defined on positive integers less than their degree, it was only possible to multiply transformations of equal degree, and a transformation did not act on any point exceeding its degree. Starting with version 4.7 of <strong class="pkg">GAP</strong>, transformations behave more like permutations, in that they fix unspecified points and it is possible to multiply arbitrary transformations; see Chapter <a href="chap42.html#X80F808307A2D5AB8"><span class="RefLink">42</span></a>. The definition of the degree of a transformation <code class="code">f</code> in the current version of <strong class="pkg">GAP</strong> is the largest value <code class="code">n</code> such that <code class="code">n^f&lt;&gt;n</code> or <code class="code">i^f=n</code> for some <code class="code">i&lt;&gt;n</code>. Equivalently, the degree of a transformation is the least value <code class="code">n</code> such that <code class="code">[n+1,n+2,...]</code> is fixed pointwise by <code class="code">f</code>.</p>

<p>The transformations of a given degree belong to the full transformation semigroup of that degree; see <code class="func">FullTransformationSemigroup</code> (<a href="chap53.html#X7D2B0685815B4053"><span class="RefLink">53.7-3</span></a>). Transformation semigroups are hence subsemigroups of the full transformation semigroup.</p>

<p>It is possible to use transformations in <strong class="pkg">GAP</strong> without reference to the degree, much as it is possible to use permutations in this way. However, for backwards compatibility, and because it is sometimes useful, it is possible to access the degree of a transformation using <code class="func">DegreeOfTransformation</code> (<a href="chap53.html#X78A209C87CF0E32B"><span class="RefLink">53.5-1</span></a>). Certain attributes of transformations are also calculated with respect to the degree, such as the rank, image set, or kernel (these values can also be calculated with respect to any positive integer). So, it is possible to ignore the degree of a transformation if you prefer to think of transformations as acting on the positive integers in a similar way to permutations. For example, this approach is used in the <strong class="pkg">FR</strong> package. It is also possible to think of transformations as only acting on the positive integers not exceeding their degree. For example, this was the approach formerly used in <strong class="pkg">GAP</strong> and it is also useful in the <strong class="pkg">Semigroups</strong> package.</p>

<p>Transformations are displayed, by default, using the list <code class="code">[1^f..n^f]</code> where <code class="code">n</code> is the degree of <code class="code">f</code>. This behaviour differs from versions of <strong class="pkg">GAP</strong> earlier than 4.7. See Section <a href="chap53.html#X810D23017A5527B7"><span class="RefLink">53.6</span></a> for more information.</p>

<p>The <em>rank</em> of a transformation on the positive integers up to <code class="code">n</code> is the number of distinct points in <code class="code">[1^f..n^f]</code>. The <em>kernel</em> of a transformation <code class="code">f</code> on <code class="code">[1..n]</code> is the equivalence relation on <code class="code">[1..n]</code> consisting of those <code class="code">(i, j)</code> such that <code class="code">i^f = j^f</code>. The kernel of a transformation is represented in two ways: as a partition of <code class="code">[1..n]</code> or as the image list of a transformation <code class="code">g</code> such that the kernel of <code class="code">g</code> on <code class="code">[1..n]</code> equals the kernel of <code class="code">f</code> and <code class="code">j^g=i</code> for all <code class="code">j</code> in <code class="code">i</code>th class. The latter is referred to as the flat kernel of <code class="code">f</code>. For any given transformation and value <code class="code">n</code>, there is a unique transformation with this property.</p>

<p>A <em>functional digraph</em> is a directed graph where every vertex has out-degree <span class="SimpleMath">1</span>. A transformation <var class="Arg">f</var> can be thought of as a functional digraph with vertices the positive integers and edges from <code class="code">i</code> to <code class="code">i^f</code> for every <code class="code">i</code>. A <em>component</em> of a transformation is defined as a component and a <em>cycle</em> is just a cycle (or strongly connected component) of the corresponding functional digraph. More specifically, <code class="code">i</code> and <code class="code">j</code> are in the same component if and only if there are <span class="SimpleMath">i=v_0, v_1, ..., v_n=j</span> such that either <span class="SimpleMath">v_k+1=v_k^f</span> or <span class="SimpleMath">v_k=v_k+1^f</span> for all <span class="SimpleMath">k</span>. A <em>cycle</em> of a transformation is defined as a cycle (or strongly connected component) of the corresponding functional digraph. More specifically, <code class="code">i</code> belongs to a cycle of <var class="Arg">f</var> if there are <span class="SimpleMath">i=v_0, v_1, ..., v_n=i</span> such that either <span class="SimpleMath">v_k+1=v_k^f</span> or <span class="SimpleMath">v_k=v_k+1^f</span> for all <span class="SimpleMath">k</span>.</p>

<p>Internally, <strong class="pkg">GAP</strong> stores a transformation <code class="code">f</code> as a list consisting of the images <code class="code">i^f</code> of the points in <code class="code">i</code> less than some value, which is at least the degree of <code class="code">f</code> and which is determined at the time of creation. When the degree of a transformation <code class="code">f</code> is at most 65536, the images of points under <code class="code">f</code> are stored as 16-bit integers, the kernel and image set are subobjects of <code class="code">f</code> which are plain lists of <strong class="pkg">GAP</strong> integers. When the degree of <code class="code">f</code> is greater than 65536, the images of points under <code class="code">f</code> are stored as 32-bit integers; the kernel and image set are stored in the same way as before. A transformation belongs to <code class="code">IsTrans2Rep</code> if it is stored using 16-bit integers and to <code class="code">IsTrans4Rep</code> if it is stored using 32-bit integers.</p>

<p><a id="X7CF9291C7CC42340" name="X7CF9291C7CC42340"></a></p>

<h4>53.1 <span class="Heading">The family and categories of transformations</span></h4>

<p><a id="X7B6259467974FB70" name="X7B6259467974FB70"></a></p>

<h5>53.1-1 IsTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsTransformation</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>Every transformation in <strong class="pkg">GAP</strong> belongs to the category <code class="code">IsTransformation</code>. Basic operations for transformations are <code class="func">ImageListOfTransformation</code> (<a href="chap53.html#X7AEC9E6687B3505A"><span class="RefLink">53.5-2</span></a>), <code class="func">ImageSetOfTransformation</code> (<a href="chap53.html#X839A6D6082A21D1F"><span class="RefLink">53.5-3</span></a>), <code class="func">KernelOfTransformation</code> (<a href="chap53.html#X80FCB5048789CF75"><span class="RefLink">53.5-12</span></a>), <code class="func">FlatKernelOfTransformation</code> (<a href="chap53.html#X8083794579274E87"><span class="RefLink">53.5-11</span></a>), <code class="func">RankOfTransformation</code> (<a href="chap53.html#X818EBB167C7EA37B"><span class="RefLink">53.5-4</span></a>), <code class="func">DegreeOfTransformation</code> (<a href="chap53.html#X78A209C87CF0E32B"><span class="RefLink">53.5-1</span></a>), multiplication of two transformations via <code class="keyw">*</code>, and exponentiation with the first argument a positive integer <code class="code">i</code> and second argument a transformation <code class="code">f</code> where the result is the image <code class="code">i^f</code> of the point <code class="code">i</code> under <code class="code">f</code>.</p>

<p><a id="X7A6747CE85F2E6EA" name="X7A6747CE85F2E6EA"></a></p>

<h5>53.1-2 IsTransformationCollection</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsTransformationCollection</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>Every collection of transformations belongs to the category <code class="code">IsTransformationCollection</code>. For example, transformation semigroups belong to <code class="code">IsTransformationCollection</code>.</p>

<p><a id="X7E58AFA1832FF064" name="X7E58AFA1832FF064"></a></p>

<h5>53.1-3 TransformationFamily</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationFamily</code></td><td class="tdright">( family )</td></tr></table></div>
<p>The family of all transformations is <code class="code">TransformationFamily</code>.</p>

<p><a id="X80F3086F87E93DF8" name="X80F3086F87E93DF8"></a></p>

<h4>53.2 <span class="Heading">Creating transformations</span></h4>

<p>There are several ways of creating transformations in <strong class="pkg">GAP</strong>, which are described in this section.</p>

<p><a id="X86ADBDE57A20E323" name="X86ADBDE57A20E323"></a></p>

<h5>53.2-1 Transformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Transformation</code>( <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Transformation</code>( <var class="Arg">list</var>, <var class="Arg">func</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationList</code>( <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A transformation or <code class="keyw">fail</code>.</p>

<p><code class="code">TransformationList</code> returns the transformation <code class="code">f</code> such that <code class="code">i^<var class="Arg">f</var>=<var class="Arg">list</var>[i]</code> if <code class="code">i</code> is between <code class="code">1</code> and the length of <var class="Arg">list</var> and <code class="code">i^<var class="Arg">f</var>=i</code> if <code class="code">i</code> is larger than the length of <var class="Arg">list</var>. <code class="code">TransformationList</code> will return <code class="keyw">fail</code> if <var class="Arg">list</var> is not dense, if <var class="Arg">list</var> contains an element which is not a positive integer, or if <var class="Arg">list</var> contains an integer not in <code class="code">[1..Length(<var class="Arg">list</var>)]</code>.</p>

<p>This is the analogue in the context of transformations of <code class="func">PermList</code> (<a href="chap42.html#X78D611D17EA6E3BC"><span class="RefLink">42.5-2</span></a>). <code class="code">Transformation</code> is a synonym of <code class="code">TransformationList</code> when the argument is a list.</p>

<p>When the arguments are a list of positive integers <var class="Arg">list</var> and a function <var class="Arg">func</var>, <code class="code">Transformation</code> returns the transformation <code class="code">f</code> such that <code class="code"><var class="Arg">list</var>[i]^f=<var class="Arg">func</var>(<var class="Arg">list</var>[i])</code> if <code class="code">i</code> is in the range <code class="code">[1..Length(<var class="Arg">list</var>)]</code> and <code class="code">f</code> fixes all other points.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference("NotationForTransformations", "input");</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 11, 10, 2, 11, 4, 4, 7, 6, 9, 10, 1, 11 ] );</span>
Transformation( [ 11, 10, 2, 11, 4, 4, 7, 6, 9, 10, 1, 11 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=TransformationList( [ 2, 3, 3, 1 ] );</span>
Transformation( [ 2, 3, 3, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference("NotationForTransformations", "fr");</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation([10, 11], x-&gt; x^2);</span>
&lt;transformation: 1,2,3,4,5,6,7,8,9,100,121&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference("NotationForTransformations", "input");</span>
</pre></div>

<p><a id="X8040642687531E7F" name="X8040642687531E7F"></a></p>

<h5>53.2-2 Transformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Transformation</code>( <var class="Arg">src</var>, <var class="Arg">dst</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationListList</code>( <var class="Arg">src</var>, <var class="Arg">dst</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A transformation or <code class="keyw">fail</code>.</p>

<p>If <var class="Arg">src</var> and <var class="Arg">dst</var> are lists of positive integers of the same length, such that <var class="Arg">src</var> contains no element twice, then <code class="code">TransformationListList(<var class="Arg">src</var>, <var class="Arg">dst</var>)</code> returns a transformation <code class="code">f</code> such that <code class="code">src[i]^<var class="Arg">f</var>= dst[i]</code>. The transformation <var class="Arg">f</var> fixes all points larger than the maximum of the entries in <var class="Arg">src</var> and <var class="Arg">dst</var>.</p>

<p>This is the analogue in the context of transformations of <code class="func">MappingPermListList</code> (<a href="chap42.html#X8087DCC780B9656A"><span class="RefLink">42.5-3</span></a>). <code class="code">Transformation</code> is a synonym of <code class="code">TransformationListList</code> when its arguments are two lists of positive integers.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Transformation( [ 10, 11 ],[ 11, 12 ] );</span>
Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 12 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationListList( [ 1, 2, 3 ], [ 4, 5, 6 ] );</span>
Transformation( [ 4, 5, 6, 4, 5, 6 ] )
</pre></div>

<p><a id="X7E82EBD68455EE4A" name="X7E82EBD68455EE4A"></a></p>

<h5>53.2-3 TransformationByImageAndKernel</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationByImageAndKernel</code>( <var class="Arg">im</var>, <var class="Arg">ker</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A transformation or <code class="keyw">fail</code>.</p>

<p><code class="code">Transformation</code> returns the transformation <code class="code">f</code> <code class="code">i^f=<var class="Arg">im</var>[<var class="Arg">ker</var>[i]]</code> for <code class="code">i</code> in the range <code class="code">[1..Length(<var class="Arg">ker</var>)]</code>. This transformation has flat kernel equal to <var class="Arg">ker</var> and image set equal to <code class="code">Set(<var class="Arg">im</var>)</code>.</p>

<p>The argument <var class="Arg">im</var> should be a duplicate free list of positive integers and <var class="Arg">ker</var> should be the flat kernel of a transformation with rank equal to the length of <var class="Arg">im</var>. If the arguments do not fulfil these conditions, then <code class="keyw">fail</code> is returned.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationByImageAndKernel([ 8, 1, 3, 4 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 1, 2, 3, 1, 2, 1, 2, 4 ]);</span>
Transformation( [ 8, 1, 3, 8, 1, 8, 1, 4 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationByImageAndKernel([ 1, 3, 8, 4 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 1, 2, 3, 1, 2, 1, 2, 4 ]);</span>
Transformation( [ 1, 3, 8, 1, 3, 1, 3, 4 ] )
</pre></div>

<p><a id="X85D1071484CE004C" name="X85D1071484CE004C"></a></p>

<h5>53.2-4 Idempotent</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Idempotent</code>( <var class="Arg">im</var>, <var class="Arg">ker</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A transformation or <code class="keyw">fail</code>.</p>

<p><code class="func">Idempotent</code> returns the idempotent transformation with image set <var class="Arg">im</var> and flat kernel <var class="Arg">ker</var> if such a transformation exists and <code class="keyw">fail</code> if it does not.</p>

<p>More specifically, a transformation is returned when the argument <var class="Arg">im</var> is a set of positive integers and <var class="Arg">ker</var> is the flat kernel of a transformation with rank equal to the length of <var class="Arg">im</var> and where <var class="Arg">im</var> has one element in every class of the kernel corresponding to <var class="Arg">ker</var>.</p>

<p>Note that this is function does not always return the same transformation as <code class="code">TransformationByImageAndKernel</code> with the same arguments.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Idempotent([ 2, 4, 6, 7, 8, 10, 11 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 1, 2, 1, 3, 3, 4, 5, 1, 6, 6, 7, 5 ] );</span>
Transformation( [ 8, 2, 8, 4, 4, 6, 7, 8, 10, 10, 11, 7 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationByImageAndKernel([ 2, 4, 6, 7, 8, 10, 11 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 1, 2, 1, 3, 3, 4, 5, 1, 6, 6, 7, 5 ] );</span>
Transformation( [ 2, 4, 2, 6, 6, 7, 8, 2, 10, 10, 11, 8 ] )
</pre></div>

<p><a id="X7C2A3FC9782F2099" name="X7C2A3FC9782F2099"></a></p>

<h5>53.2-5 TransformationOp</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationOp</code>( <var class="Arg">obj</var>, <var class="Arg">list</var>[, <var class="Arg">func</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationOpNC</code>( <var class="Arg">obj</var>, <var class="Arg">list</var>[, <var class="Arg">func</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A transformation or <code class="keyw">fail</code>.</p>

<p><code class="func">TransformationOp</code> returns the transformation that corresponds to the action of the object <var class="Arg">obj</var> on the domain or list <var class="Arg">list</var> via the function <var class="Arg">func</var>. If the optional third argument <var class="Arg">func</var> is not specified, then the action <code class="func">OnPoints</code> (<a href="chap41.html#X7FE417DD837987B4"><span class="RefLink">41.2-1</span></a>) is used by default. Note that the returned transformation refers to the positions in <var class="Arg">list</var> even if <var class="Arg">list</var> itself consists of integers.</p>

<p>This function is the analogue in the context of transformations of <code class="func">Permutation</code> (<a href="../../doc/ref/chap41.html#X7807A33381DCAB26"><span class="RefLink">Reference: Permutation (for a group, an action domain, etc.)</span></a>).</p>

<p>If <var class="Arg">obj</var> does not map elements of <var class="Arg">list</var> into <var class="Arg">list</var>, then <code class="keyw">fail</code> is returned.</p>

<p><code class="func">TransformationOpNC</code> does not check that <var class="Arg">obj</var> maps elements of <var class="Arg">list</var> to elements of <var class="Arg">list</var> or that a transformation is defined by the action of <var class="Arg">obj</var> on <var class="Arg">list</var> via <var class="Arg">func</var>. This function should be used only with caution, and in situations where it is guaranteed that the arguments have the required properties.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 10, 2, 3, 10, 5, 10, 7, 2, 5, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationOp(f, [ 2, 3 ] );</span>
IdentityTransformation
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationOp(f, [ 1, 2, 3 ] );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=SemigroupByMultiplicationTable( [ [ 1, 1, 1 ], [ 1, 1, 1 ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 1, 1, 2 ] ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationOp(Elements(S)[1], S, OnRight);</span>
Transformation( [ 1, 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationOp(Elements(S)[3], S, OnRight);</span>
Transformation( [ 1, 1, 2 ] )
</pre></div>

<p><a id="X7D6FCC417DE86CD1" name="X7D6FCC417DE86CD1"></a></p>

<h5>53.2-6 TransformationNumber</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationNumber</code>( <var class="Arg">m</var>, <var class="Arg">n</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NumberTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A transformation or a number.</p>

<p>These functions implement a bijection from the transformations with degree at most <var class="Arg">n</var> to the numbers <code class="code">[1..<var class="Arg">n</var>^<var class="Arg">n</var>]</code>.</p>

<p>More precisely, if <var class="Arg">m</var> and <var class="Arg">n</var> are positive integers such that <var class="Arg">m</var> is at most <code class="code"><var class="Arg">n</var>^<var class="Arg">n</var></code>, then <code class="code">TransformationNumber</code> returns the <var class="Arg">m</var>th transformation with degree at most <var class="Arg">n</var>.</p>

<p>If <var class="Arg">f</var> is a transformation and <var class="Arg">n</var> is a positive integer, which is greater than or equal to the degree of <var class="Arg">f</var>, then <code class="code">NumberTransformation</code> returns the number in <code class="code">[1..<var class="Arg">n</var>^<var class="Arg">n</var>]</code> that corresponds to <var class="Arg">f</var>. If the optional second argument <var class="Arg">n</var> is not specified, then the degree of <var class="Arg">f</var> is used by default.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 3, 3, 5, 3, 3 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NumberTransformation(f, 5);</span>
1613
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NumberTransformation(f, 10);</span>
2242256790
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationNumber(2242256790, 10);</span>
Transformation( [ 3, 3, 5, 3, 3 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationNumber(1613, 5); </span>
Transformation( [ 3, 3, 5, 3, 3 ] )
</pre></div>

<p><a id="X8475448F87E8CB8A" name="X8475448F87E8CB8A"></a></p>

<h5>53.2-7 <span class="Heading">RandomTransformation</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RandomTransformation</code>( <var class="Arg">n</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A random transformation.</p>

<p>If <var class="Arg">n</var> is a positive integer, then <code class="code">RandomTransformation</code> returns a random transformation with degree at most <var class="Arg">n</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomTransformation(6);             </span>
Transformation( [ 2, 1, 2, 1, 1, 2 ] )</pre></div>

<p><a id="X8268A58685BEFD6F" name="X8268A58685BEFD6F"></a></p>

<h5>53.2-8 IdentityTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IdentityTransformation</code></td><td class="tdright">( global variable )</td></tr></table></div>
<p>Returns: The identity transformation.</p>

<p>Returns the identity transformation, which has degree <code class="code">0</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=IdentityTransformation;</span>
IdentityTransformation
</pre></div>

<p><a id="X7F1E4B5184210D2B" name="X7F1E4B5184210D2B"></a></p>

<h5>53.2-9 ConstantTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ConstantTransformation</code>( <var class="Arg">m</var>, <var class="Arg">n</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A transformation.</p>

<p>This function returns a constant transformation <code class="code">f</code> such that <code class="code">i^f=<var class="Arg">n</var></code> for all <code class="code">i</code> less than or equal to <var class="Arg">m</var>, when <var class="Arg">n</var> and <var class="Arg">m</var> are positive integers.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstantTransformation(5, 1);</span>
Transformation( [ 1, 1, 1, 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstantTransformation(6, 4);</span>
Transformation( [ 4, 4, 4, 4, 4, 4 ] )
</pre></div>

<p><a id="X7F81A18B813C9DF0" name="X7F81A18B813C9DF0"></a></p>

<h4>53.3 <span class="Heading">Changing the representation of a transformation</span></h4>

<p>It is possible that a transformation in <strong class="pkg">GAP</strong> can be represented as another type of object, or that another type of <strong class="pkg">GAP</strong> object can be represented as a transformation.</p>

<p>The operations <code class="func">AsPermutation</code> (<a href="chap42.html#X8353AB8987E35DF3"><span class="RefLink">42.5-5</span></a>) and <code class="func">AsPartialPerm</code> (<a href="chap54.html#X87EC67747B260E98"><span class="RefLink">54.4-2</span></a>) can be used to convert transformations into permutations or partial permutations, where appropriate. In this section we describe functions for converting other types of objects into transformations.</p>

<p><a id="X7C5360B2799943F3" name="X7C5360B2799943F3"></a></p>

<h5>53.3-1 AsTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>] )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A transformation.</p>

<p><code class="code">AsTransformation</code> returns the permutation, transformation, partial permutation or binary relation <var class="Arg">f</var> as a transformation.</p>


<dl>
<dt><strong class="Mark">for permutations</strong></dt>
<dd><p>If <var class="Arg">f</var> is a permutation and <var class="Arg">n</var> is a non-negative integer, then <code class="code">AsTransformation(<var class="Arg">f</var>, <var class="Arg">n</var>)</code> returns the transformation <code class="code">g</code> such that <code class="code">i^g=i^f</code> for all <code class="code">i</code> in the range <code class="code">[1..<var class="Arg">n</var>]</code>.</p>

<p>If no non-negative integer <var class="Arg">n</var> is specified, then the largest moved point of <var class="Arg">f</var> is used as the value for <var class="Arg">n</var>; see <code class="func">LargestMovedPoint</code> (<a href="chap42.html#X84AA603987C94AC0"><span class="RefLink">42.3-2</span></a>).</p>

</dd>
<dt><strong class="Mark">for transformations</strong></dt>
<dd><p>If <var class="Arg">f</var> is a transformation and <var class="Arg">n</var> is a non-negative integer less than the degree of <var class="Arg">f</var> such that <var class="Arg">f</var> is a transformation of <code class="code">[1..<var class="Arg">n</var>]</code>, then <code class="code">AsTransformation</code> returns the restriction of <var class="Arg">f</var> to <code class="code">[1..<var class="Arg">n</var>]</code>.</p>

<p>If <var class="Arg">f</var> is a transformation and <var class="Arg">n</var> is not specified or equals a is greater than or equal to the degree of <var class="Arg">f</var>, then <var class="Arg">f</var> is returned.</p>

</dd>
<dt><strong class="Mark">for partial permutations</strong></dt>
<dd><p>A partial permutation <var class="Arg">f</var> can be converted into a transformation <code class="code">g</code> as follows. The degree <code class="code">m</code> of <code class="code">g</code> is equal to the maximum of <var class="Arg">n</var>, the largest moved point of <var class="Arg">f</var> plus <code class="code">1</code>, and the largest image of a moved point plus <code class="code">1</code>. The transformation <code class="code">g</code> agrees with <var class="Arg">f</var> on the domain of <var class="Arg">f</var> and maps the points in <code class="code">[1..m]</code>, which are not in the domain of <var class="Arg">f</var> to <code class="code">n</code>, i.e. <code class="code">i^g=i^<var class="Arg">f</var></code> for all <code class="code">i</code> in the domain of <var class="Arg">f</var>, <code class="code">i^g=n</code> for all <code class="code">i</code> in <code class="code">[1..n]</code>, and <code class="code">i^g=i</code> for all <code class="code">i</code> greater than <var class="Arg">n</var>. <code class="code">AsTransformation(<var class="Arg">f</var>)</code> returns the transformation <code class="code">g</code> defined in the previous sentences.</p>

<p>If the optional argument <var class="Arg">n</var> is not present, then the default value of the maximum of the largest moved point and the largest image of a moved point of <var class="Arg">f</var> plus <code class="code">1</code> is used.</p>

</dd>
<dt><strong class="Mark">for binary relations</strong></dt>
<dd><p>In the case that <var class="Arg">f</var> is a binary relation, which defines a transformation, then <code class="code">AsTransformation</code> returns that transformation.</p>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 3, 5, 3, 4, 1, 2 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation(f, 5);</span>
Transformation( [ 3, 5, 3, 4, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation(f, 10);</span>
Transformation( [ 3, 5, 3, 4, 1, 2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation((1, 3)(2, 4));</span>
Transformation( [ 3, 4, 1, 2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation((1, 3)(2, 4), 10);</span>
Transformation( [ 3, 4, 1, 2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 6 ], [ 6, 7, 1, 4, 3, 2 ] );</span>
[5,3,1,6,2,7](4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation(f, 11);</span>
Transformation( [ 6, 7, 1, 4, 3, 2, 11, 11, 11, 11, 11 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsPartialPerm(last, DomainOfPartialPerm(f));</span>
[5,3,1,6,2,7](4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation(f, 14);</span>
Transformation( [ 6, 7, 1, 4, 3, 2, 14, 14, 14, 14, 14, 14, 14, 14 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsPartialPerm(last, DomainOfPartialPerm(f));</span>
[5,3,1,6,2,7](4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation(f);</span>
Transformation( [ 6, 7, 1, 4, 3, 2, 8, 8 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation(Transformation( [ 1, 1, 2 ] ), 0);</span>
IdentityTransformation
</pre></div>

<p><a id="X846A6F6B7B715188" name="X846A6F6B7B715188"></a></p>

<h5>53.3-2 RestrictedTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RestrictedTransformation</code>( <var class="Arg">f</var>, <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RestrictedTransformationNC</code>( <var class="Arg">f</var>, <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A transformation.</p>

<p><code class="code">RestrictedTransformation</code> returns the new transformation <code class="code">g</code> such that <code class="code">i^g=i^<var class="Arg">f</var></code> for all <code class="code">i</code> in <var class="Arg">list</var> and such that <code class="code">i^g=i</code> for all <code class="code">i</code> not in <var class="Arg">list</var>.</p>

<p><code class="code">RestrictedTransformation</code> checks that <var class="Arg">list</var> is a duplicate free dense list consisting of positive integers, whereas <code class="code">RestrictedTransformationNC</code> performs no checks.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 2, 10, 5, 9, 10, 9, 6, 3, 8, 4, 6, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RestrictedTransformation(f, [ 1, 2, 3, 10, 11, 12 ] );</span>
Transformation( [ 2, 10, 5, 4, 5, 6, 7, 8, 9, 4, 6, 5 ] )
</pre></div>

<p><a id="X8708AE247F5B129B" name="X8708AE247F5B129B"></a></p>

<h5>53.3-3 PermutationOfImage</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermutationOfImage</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A permutation or <code class="keyw">fail</code>.</p>

<p>If the transformation <var class="Arg">f</var> is a permutation of the points in its image, then <code class="code">PermutationOfImage</code> returns this permutation. If <var class="Arg">f</var> does not permute its image, then <code class="keyw">fail</code> is returned.</p>

<p>If <var class="Arg">f</var> happens to be a permutation, then <code class="code">PermutationOfImage</code> with argument <var class="Arg">f</var> returns the same value as <code class="code">AsPermutation</code> with argument <var class="Arg">f</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 5, 8, 3, 5, 8, 6, 2, 2, 7, 8 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermutationOfImage(f);</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 8, 2, 10, 2, 4, 4, 7, 6, 9, 10 ] );; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermutationOfImage(f);</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 1, 3, 6, 6, 2, 10, 2, 3, 10, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermutationOfImage(f);</span>
(2,3,6,10,5)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 5, 2, 8, 4, 1, 8, 10, 3, 5, 7 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermutationOfImage(f);</span>
(1,5)(3,8)(7,10)
</pre></div>

<p><a id="X812CEC008609A8A2" name="X812CEC008609A8A2"></a></p>

<h4>53.4 <span class="Heading">Operators for transformations</span></h4>


<dl>
<dt><strong class="Mark"><code class="code"><var class="Arg">i</var> ^ <var class="Arg">f</var></code></strong></dt>
<dd><p>returns the image of the positive integer <var class="Arg">i</var> under the transformation <var class="Arg">f</var>.</p>

</dd>
<dt><strong class="Mark"><code class="code"><var class="Arg">f</var> ^ <var class="Arg">g</var></code></strong></dt>
<dd><p>returns <code class="code"><var class="Arg">g</var>^-1*<var class="Arg">f</var>*<var class="Arg">g</var></code> when <var class="Arg">f</var> is a transformation and <var class="Arg">g</var> is a permutation <code class="func">\^</code> (<a href="../../doc/ref/chap4.html#X7B66C8707B5DE10A"><span class="RefLink">Reference: ^</span></a>). This operation requires essentially the same number of steps as multiplying a transformation by a permutation, which is approximately one third of the number required to first invert <var class="Arg">g</var>, take the produce with <var class="Arg">f</var>, and then the product with <var class="Arg">g</var>.</p>

</dd>
<dt><strong class="Mark"><code class="code"><var class="Arg">f</var> * <var class="Arg">g</var></code></strong></dt>
<dd><p>returns the composition of <var class="Arg">f</var> and <var class="Arg">g</var> when <var class="Arg">f</var> and <var class="Arg">g</var> are transformations or permutations. The product of a permutation and a transformation is returned as a transformation.</p>

</dd>
<dt><strong class="Mark"><code class="code"><var class="Arg">f</var> / <var class="Arg">g</var></code></strong></dt>
<dd><p>returns <code class="code"><var class="Arg">f</var>*<var class="Arg">g</var>^-1</code> when <var class="Arg">f</var> is a transformation and <var class="Arg">g</var> is a permutation. This operation requires essentially the same number of steps as multiplying a transformation by a permutation, which is approximately half the number required to first invert <var class="Arg">g</var> and then take the produce with <var class="Arg">f</var>.</p>

</dd>
<dt><strong class="Mark"><code class="code">LQUO(<var class="Arg">g</var>, <var class="Arg">f</var>)</code></strong></dt>
<dd><p>returns <code class="code"><var class="Arg">g</var>^-1*<var class="Arg">f</var></code> when <var class="Arg">f</var> is a transformation and <var class="Arg">g</var> is a permutation. This operation uses essentially the same number of steps as multiplying a transformation by a permutation, which is approximately half the number required to first invert <var class="Arg">g</var> and then take the produce with <var class="Arg">f</var>.</p>

</dd>
<dt><strong class="Mark"><code class="code"><var class="Arg">f</var> &lt; <var class="Arg">g</var></code></strong></dt>
<dd><p>returns <code class="keyw">true</code> if the image list of <var class="Arg">f</var> is lexicographically less than the image list of <var class="Arg">g</var> and <code class="keyw">false</code> if it is not.</p>

</dd>
<dt><strong class="Mark"><code class="code"><var class="Arg">f</var> = <var class="Arg">g</var></code></strong></dt>
<dd><p>returns <code class="keyw">true</code> if the transformation <var class="Arg">f</var> equals the transformation <var class="Arg">g</var> and returns <code class="keyw">false</code> if it does not.</p>

</dd>
</dl>
<p><a id="X83DBA2A18719EFA8" name="X83DBA2A18719EFA8"></a></p>

<h5>53.4-1 PermLeftQuoTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermLeftQuoTransformation</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermLeftQuoTransformationNC</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A permutation.</p>

<p>Returns the permutation on the image set of <var class="Arg">f</var> induced by <code class="code"><var class="Arg">f</var>^-1*<var class="Arg">g</var></code> when the transformations <var class="Arg">f</var> and <var class="Arg">g</var> have equal kernel and image set.</p>

<p><code class="code">PermLeftQuoTransformation</code> verifies that <var class="Arg">f</var> and <var class="Arg">g</var> have equal kernels and image sets, and returns an error if they do not. <code class="code">PermLeftQuoTransformationNC</code> does no checks.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 5, 6, 7, 1, 4, 3, 2, 7 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=Transformation( [ 5, 7, 1, 6, 4, 3, 2, 1 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermLeftQuoTransformation(f, g);</span>
(1,6,7)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermLeftQuoTransformation(g, f);</span>
(1,7,6)
</pre></div>

<p><a id="X8275DFAA8270BB59" name="X8275DFAA8270BB59"></a></p>

<h5>53.4-2 IsInjectiveListTrans</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsInjectiveListTrans</code>( <var class="Arg">obj</var>, <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>The argument <var class="Arg">obj</var> should be a transformation or the list of images of a transformation and <var class="Arg">list</var> should be a list of positive integers. <code class="code">IsInjectiveListTrans</code> checks if <var class="Arg">obj</var> is injective on <var class="Arg">list</var>.</p>

<p>More precisely, if <var class="Arg">obj</var> is a transformation, then we define <code class="code">f:=<var class="Arg">obj</var></code> and if <var class="Arg">obj</var> is the image list of a transformation we define <code class="code">f:=Transformation(<var class="Arg">obj</var>)</code>. <code class="code">IsInjectiveListTrans</code> returns <code class="keyw">true</code> if <code class="code">f</code> is injective on <var class="Arg">list</var> and <code class="keyw">false</code> if it is not. If <var class="Arg">list</var> is not duplicate free, then <code class="keyw">false</code> is returned.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 1, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsInjectiveListTrans( [ 1, 5 ], f );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsInjectiveListTrans( [ 5, 1 ], f );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsInjectiveListTrans( [ 5, 1, 5, 1, 1, ], f );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsInjectiveListTrans( [ 5, 1, 2, 3 ], [ 1, 2, 3, 4, 5 ] );</span>
true
</pre></div>

<p><a id="X834A313B7DAF06D5" name="X834A313B7DAF06D5"></a></p>

<h5>53.4-3 ComponentTransformationInt</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ComponentTransformationInt</code>( <var class="Arg">f</var>, <var class="Arg">n</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A list of positive integers.</p>

<p>If <var class="Arg">f</var> is a transformation and <var class="Arg">n</var> is a positive integer, then <code class="code">ComponentTransformationInt</code> returns those elements <code class="code">i</code> such that <code class="code"><var class="Arg">n</var>^<var class="Arg">f</var>^j=i</code> for some positive integer <code class="code">j</code>, i.e. the elements of the component of <var class="Arg">f</var> containing <var class="Arg">n</var> that can be obtained by applying powers of <var class="Arg">f</var> to <var class="Arg">n</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 6, 2, 8, 4, 7, 5, 8, 3, 5, 8 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentTransformationInt(f, 1);</span>
[ 1, 6, 5, 7, 8, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentTransformationInt(f, 12);</span>
[ 12 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentTransformationInt(f, 5); </span>
[ 5, 7, 8, 3 ]
</pre></div>

<p><a id="X82F5DEEC837B60A3" name="X82F5DEEC837B60A3"></a></p>

<h5>53.4-4 PreImagesOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PreImagesOfTransformation</code>( <var class="Arg">f</var>, <var class="Arg">n</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A set of positive integers.</p>

<p>Returns the preimages of the positive integer <var class="Arg">n</var> under the transformation <var class="Arg">f</var>, i.e. the positive integers <code class="code">i</code> such that <code class="code">i^<var class="Arg">f</var>=n</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 1, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagesOfTransformation(f, 1);</span>
[ 8, 9 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagesOfTransformation(f, 3);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagesOfTransformation(f, 100);</span>
[ 100 ]
</pre></div>

<p><a id="X86DE4F7A7C535820" name="X86DE4F7A7C535820"></a></p>

<h4>53.5 <span class="Heading">Attributes for transformations</span></h4>

<p>In this section we describe the functions available in <strong class="pkg">GAP</strong> for finding various properties and attributes of transformations.</p>

<p><a id="X78A209C87CF0E32B" name="X78A209C87CF0E32B"></a></p>

<h5>53.5-1 DegreeOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreeOfTransformation</code>( <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreeOfTransformationCollection</code>( <var class="Arg">coll</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p>The <em>degree</em> of a transformation <var class="Arg">f</var> is the largest value such that <code class="code">n^<var class="Arg">f</var>&lt;&gt;n</code> or <code class="code">i^<var class="Arg">f</var>=n</code> for some <code class="code">i&lt;&gt;n</code>. Equivalently, the degree of a transformation is the least value <code class="code">n</code> such that <code class="code">[n+1,n+2,...]</code> is fixed pointwise by <var class="Arg">f</var>. The degree a collection of transformations <var class="Arg">coll</var> is the maximum degree of any transformation in <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreeOfTransformation(IdentityTransformation);</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreeOfTransformationCollection([ Transformation( [ 1, 3, 4, 1 ] ), </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation( [ 3, 1, 1, 3, 4 ]), Transformation( [ 2, 4, 1, 2 ] ) ]);</span>
5
</pre></div>

<p><a id="X7AEC9E6687B3505A" name="X7AEC9E6687B3505A"></a></p>

<h5>53.5-2 ImageListOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ImageListOfTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ListTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: The list of images of a transformation.</p>

<p>Returns the list of images of <code class="code">[1..<var class="Arg">n</var>]</code> under the transformation <var class="Arg">f</var>, which is <code class="code">[1^<var class="Arg">f</var>..<var class="Arg">n</var>^<var class="Arg">f</var>]</code>. If the optional second argument <var class="Arg">n</var> is not present, then the degree of <var class="Arg">f</var> is used by default.</p>

<p>This is the analogue for transformations of <code class="func">ListPerm</code> (<a href="chap42.html#X7A9DCFD986958C1E"><span class="RefLink">42.5-1</span></a>) for permutations.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 2 ,3, 4, 2, 4 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageListOfTransformation(f);</span>
[ 2, 3, 4, 2, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageListOfTransformation(f, 10);</span>
[ 2, 3, 4, 2, 4, 6, 7, 8, 9, 10 ]
</pre></div>

<p><a id="X839A6D6082A21D1F" name="X839A6D6082A21D1F"></a></p>

<h5>53.5-3 ImageSetOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ImageSetOfTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>] )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: The set of images of the transformation.</p>

<p>Returns the set of points in the list of images of <code class="code">[1..<var class="Arg">n</var>]</code> under <var class="Arg">f</var>, i.e. the sorted list of images with duplicates removed. If the optional second argument <var class="Arg">n</var> is not given, then the degree of <var class="Arg">f</var> is used.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 5, 6, 7, 1, 4, 3, 2, 7 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageSetOfTransformation(f);</span>
[ 1, 2, 3, 4, 5, 6, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageSetOfTransformation(f, 10);</span>
[ 1, 2, 3, 4, 5, 6, 7, 9, 10 ]
</pre></div>

<p><a id="X818EBB167C7EA37B" name="X818EBB167C7EA37B"></a></p>

<h5>53.5-4 RankOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RankOfTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>] )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RankOfTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">list</var>] )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: The rank of a transformation.</p>

<p>When the arguments are a transformation <var class="Arg">f</var> and a positive integer <var class="Arg">n</var>, <code class="code">RankOfTransformation</code> returns the size of the set of images of the transformation <var class="Arg">f</var> in the range <code class="code">[1..<var class="Arg">n</var>]</code>. If the optional second argument <var class="Arg">n</var> is not specified, then the degree of <var class="Arg">f</var> is used.</p>

<p>When the arguments are a transformation <var class="Arg">f</var> and a list <var class="Arg">list</var> of positive integers, this function returns the size of the set of images of the transformation <var class="Arg">f</var> on <var class="Arg">list</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 8, 5, 8, 2, 2, 8, 4, 7, 3, 1 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageSetOfTransformation(f);</span>
[ 1, 2, 3, 4, 5, 7, 8 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RankOfTransformation(f);</span>
7
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RankOfTransformation(f, 100);                   </span>
97
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RankOfTransformation(f, [ 2, 5, 8 ] );</span>
3
</pre></div>

<p><a id="X844F00F982D5BD3C" name="X844F00F982D5BD3C"></a></p>

<h5>53.5-5 MovedPoints</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MovedPoints</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MovedPoints</code>( <var class="Arg">coll</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A set of positive integers.</p>

<p>When the argument is a transformation, <code class="code">MovedPoints</code> returns the set of positive integers <code class="code">i</code> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code>. <code class="code">MovedPoints</code> returns the set of points moved by some element of the collection of transformations <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 6, 10, 1, 4, 6, 5, 1, 2, 3, 3 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MovedPoints(f); </span>
[ 1, 2, 3, 5, 6, 7, 8, 9, 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=IdentityTransformation;  </span>
IdentityTransformation
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MovedPoints(f);</span>
[  ]
</pre></div>

<p><a id="X7FA6A4B57FDA003D" name="X7FA6A4B57FDA003D"></a></p>

<h5>53.5-6 NrMovedPoints</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrMovedPoints</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrMovedPoints</code>( <var class="Arg">coll</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p>When the argument is a transformation,<code class="code">NrMovedPoints</code> returns the number of positive integers <code class="code">i</code> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code>. <code class="code">MovedPoints</code> returns the number of points which are moved by at least one element of the collection of transformations <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 7, 1, 4, 3, 2, 7, 7, 6, 6, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrMovedPoints(f);</span>
9
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrMovedPoints(IdentityTransformation);</span>
0
</pre></div>

<p><a id="X86C0DDDC7881273A" name="X86C0DDDC7881273A"></a></p>

<h5>53.5-7 SmallestMovedPoint</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestMovedPoint</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestMovedPoint</code>( <var class="Arg">coll</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>Returns: A positive integer or <code class="keyw">infinity</code>.</p>

<p><code class="code">SmallestMovedPoint</code> returns the smallest positive integer <code class="code">i</code> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code> if such an <code class="code">i</code> exists. If <var class="Arg">f</var> is the identity transformation, then <code class="keyw">infinity</code> is returned.</p>

<p>If the argument is a collection of transformations <var class="Arg">coll</var>, then the smallest point which is moved by at least one element of <var class="Arg">coll</var> is returned, if such a point exists. If <var class="Arg">coll</var> only contains identity transformations, then <code class="code">SmallestMovedPoint</code> returns <code class="keyw">infinity</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := FullTransformationSemigroup(5);    </span>
&lt;full transformation monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestMovedPoint(S);              </span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(IdentityTransformation);</span>
&lt;trivial transformation group of degree 0 with 1 generator&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestMovedPoint(S);</span>
infinity
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 1, 2, 3, 6, 6, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestMovedPoint(f);</span>
4
</pre></div>

<p><a id="X8383A7727AC97724" name="X8383A7727AC97724"></a></p>

<h5>53.5-8 LargestMovedPoint</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LargestMovedPoint</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LargestMovedPoint</code>( <var class="Arg">coll</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p><code class="code">LargestMovedPoint</code> returns the largest positive integers <code class="code">i</code> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code> if such an <code class="code">i</code> exists. If <var class="Arg">f</var> is the identity transformation, then <code class="code">0</code> is returned.</p>

<p>If the argument is a collection of transformations <var class="Arg">coll</var>, then the largest point which is moved by at least one element of <var class="Arg">coll</var> is returned, if such a point exists. If <var class="Arg">coll</var> only contains identity transformations, then <code class="code">LargestMovedPoint</code> returns <code class="code">0</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := FullTransformationSemigroup(5);    </span>
&lt;full transformation monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestMovedPoint(S);</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(IdentityTransformation);</span>
&lt;trivial transformation group of degree 0 with 1 generator&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestMovedPoint(S);</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 1, 2, 3, 6, 6, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestMovedPoint(f); </span>
5
</pre></div>

<p><a id="X7CCFE27E83676572" name="X7CCFE27E83676572"></a></p>

<h5>53.5-9 SmallestImageOfMovedPoint</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestImageOfMovedPoint</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestImageOfMovedPoint</code>( <var class="Arg">coll</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>Returns: A positive integer or <code class="keyw">infinity</code>.</p>

<p><code class="code">SmallestImageOfMovedPoint</code> returns the smallest positive integer <code class="code">i^<var class="Arg">f</var></code> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code> if such an <code class="code">i</code> exists. If <var class="Arg">f</var> is the identity transformation, then <code class="keyw">infinity</code> is returned.</p>

<p>If the argument is a collection of transformations <var class="Arg">coll</var>, then the smallest integer which is the image a point moved by at least one element of <var class="Arg">coll</var> is returned, if such a point exists. If <var class="Arg">coll</var> only contains identity transformations, then <code class="code">SmallestImageOfMovedPoint</code> returns <code class="keyw">infinity</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := FullTransformationSemigroup(5);    </span>
&lt;full transformation monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestImageOfMovedPoint(S);              </span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(IdentityTransformation);</span>
&lt;trivial transformation group of degree 0 with 1 generator&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestImageOfMovedPoint(S);</span>
infinity
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 1, 2, 3, 6, 6, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestImageOfMovedPoint(f);</span>
6
</pre></div>

<p><a id="X7E7172567C3A3E63" name="X7E7172567C3A3E63"></a></p>

<h5>53.5-10 LargestImageOfMovedPoint</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LargestImageOfMovedPoint</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LargestImageOfMovedPoint</code>( <var class="Arg">coll</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p><code class="code">LargestImageOfMovedPoint</code> returns the largest positive integer <code class="code">i^<var class="Arg">f</var></code> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code> if such an <code class="code">i</code> exists. If <var class="Arg">f</var> is the identity transformation, then <code class="code">0</code> is returned.</p>

<p>If the argument is a collection of transformations <var class="Arg">coll</var>, then the largest integer which is the image a point moved by at least one element of <var class="Arg">coll</var> is returned, if such a point exists. If <var class="Arg">coll</var> only contains identity transformations, then <code class="code">LargestImageOfMovedPoint</code> returns <code class="code">0</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := FullTransformationSemigroup(5);    </span>
&lt;full transformation monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestImageOfMovedPoint(S);</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(IdentityTransformation);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestImageOfMovedPoint(S);</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 1, 2, 3, 6, 6, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestImageOfMovedPoint(f); </span>
6
</pre></div>

<p><a id="X8083794579274E87" name="X8083794579274E87"></a></p>

<h5>53.5-11 FlatKernelOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FlatKernelOfTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>] )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: The flat kernel of a transformation.</p>

<p>If the kernel classes of the transformation <var class="Arg">f</var> on <code class="code">[1..<var class="Arg">n</var>]</code> are <span class="SimpleMath">K_1, dots, K_r</span>, then <code class="code">FlatKernelOfTransformation</code> returns a list <code class="code">L</code> such that <code class="code">L[i]=j</code> for all <code class="code">i</code> in <span class="SimpleMath">K_j</span>. For a given transformation and positive integer <var class="Arg">n</var>, there is a unique such list.</p>

<p>If the optional second argument <var class="Arg">n</var> is not present, then the degree of <var class="Arg">f</var> is used by defualt.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 10, 3, 7, 10, 1, 5, 9, 2, 6, 10 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FlatKernelOfTransformation(f);</span>
[ 1, 2, 3, 1, 4, 5, 6, 7, 8, 1 ]
</pre></div>

<p><a id="X80FCB5048789CF75" name="X80FCB5048789CF75"></a></p>

<h5>53.5-12 KernelOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; KernelOfTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>, <var class="Arg">bool</var>] )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: The kernel of a transformation.</p>

<p>When the arguments are a transformation <var class="Arg">f</var>, a positive integer <var class="Arg">n</var>, and <code class="keyw">true</code>, <code class="code">KernelOfTransformation</code> returns the kernel of the transformation <var class="Arg">f</var> on <code class="code">[1..<var class="Arg">n</var>]</code> as a set of sets of positive integers. If the argument <var class="Arg">bool</var> is <code class="keyw">false</code>, then only the non-singleton classes are returned.</p>

<p>The second and third arguments are optional, the default values are the degree of <var class="Arg">f</var> and <code class="keyw">true</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 11, 1, 12, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">KernelOfTransformation(f);</span>
[ [ 1, 4 ], [ 2, 5 ], [ 3 ], [ 6, 7 ], [ 8, 10 ], [ 9 ], [ 11 ], 
  [ 12 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">KernelOfTransformation(f, 5);</span>
[ [ 1, 4 ], [ 2, 5 ], [ 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">KernelOfTransformation(f, 5, false);</span>
[ [ 1, 4 ], [ 2, 5 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">KernelOfTransformation(f, 15);</span>
[ [ 1, 4 ], [ 2, 5 ], [ 3 ], [ 6, 7 ], [ 8, 10 ], [ 9 ], [ 11 ], 
  [ 12 ], [ 13 ], [ 14 ], [ 15 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">KernelOfTransformation(f, false);    </span>
[ [ 1, 4 ], [ 2, 5 ], [ 6, 7 ], [ 8, 10 ] ]
</pre></div>

<p><a id="X860306EB7FAAD2D4" name="X860306EB7FAAD2D4"></a></p>

<h5>53.5-13 InverseOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InverseOfTransformation</code>( <var class="Arg">f</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A transformation.</p>

<p><code class="code">InverseOfTransformation</code> returns a semigroup inverse of the transformation <var class="Arg">f</var> in the full transformation semigroup. An <em>inverse</em> of <var class="Arg">f</var> is any transformation <code class="code">g</code> such that <code class="code"><var class="Arg">f</var>*g*<var class="Arg">f</var>=<var class="Arg">f</var></code> and <code class="code">g*<var class="Arg">f</var>*g=g</code>. Every transformation has at least one inverse in a full transformation semigroup.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 1, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=InverseOfTransformation(f);</span>
Transformation( [ 8, 1, 1, 1, 10, 2, 3, 1, 6, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f*g*f;</span>
Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 1, 5 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g*f*g;</span>
Transformation( [ 8, 1, 1, 1, 10, 2, 3, 1, 6, 1 ] )
</pre></div>

<p><a id="X7BB9DB6E8558356D" name="X7BB9DB6E8558356D"></a></p>

<h5>53.5-14 Inverse</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Inverse</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A transformation.</p>

<p>If the transformation <var class="Arg">f</var> is a bijection, then <code class="code">Inverse</code> or <code class="code"><var class="Arg">f</var>^-1</code> returns the inverse of <var class="Arg">f</var>. If <var class="Arg">f</var> is not a bijection, then <code class="keyw">fail</code> is returned.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Transformation( [ 3, 8, 12, 1, 11, 9, 9, 4, 10, 5, 10, 6 ] )^-1;</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Transformation( [ 2, 3, 1 ] )^-1;</span>
Transformation( [ 3, 1, 2 ] )
</pre></div>

<p><a id="X863216CB7AF88BED" name="X863216CB7AF88BED"></a></p>

<h5>53.5-15 IndexPeriodOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IndexPeriodOfTransformation</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A pair of positive integers.</p>

<p>Returns the least positive integers <code class="code">m</code> and <code class="code">r</code> such that <code class="code"><var class="Arg">f</var>^(m+r)=<var class="Arg">f</var>^m</code>, which are known as the <em>index</em> and <em>period</em> of the transformation <var class="Arg">f</var>.</p>


<div class="example"><pre> 
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 3, 4, 4, 6, 1, 3, 3, 7, 1 ] );; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IndexPeriodOfTransformation(f); </span>
[ 2, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f^2=f^5; </span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IndexPeriodOfTransformation(IdentityTransformation);</span>
[ 1, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IndexPeriodOfTransformation(Transformation([1,2,1]));</span>
[ 1, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IndexPeriodOfTransformation(Transformation([1,2,3]));</span>
[ 1, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IndexPeriodOfTransformation(Transformation([1,3,2]));</span>
[ 1, 2 ]
</pre></div>

<p><a id="X85FE9F20810BCC70" name="X85FE9F20810BCC70"></a></p>

<h5>53.5-16 SmallestIdempotentPower</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestIdempotentPower</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p>This function returns the least positive integer <code class="code">n</code> such that the transformation <code class="code"><var class="Arg">f</var>^n</code> is an idempotent. The smallest idempotent power of <var class="Arg">f</var> is the least multiple of the period of <var class="Arg">f</var> that is greater than or equal to the index of <var class="Arg">f</var>; see <code class="func">IndexPeriodOfTransformation</code> (<a href="chap53.html#X863216CB7AF88BED"><span class="RefLink">53.5-15</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 6, 7, 4, 1, 7, 4, 6, 1, 3, 4 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestIdempotentPower(f);</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 6, 6, 6, 2, 7, 1, 5, 3, 10, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestIdempotentPower(f);</span>
2
</pre></div>

<p><a id="X858E944481F6B591" name="X858E944481F6B591"></a></p>

<h5>53.5-17 ComponentsOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ComponentsOfTransformation</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A list of lists of positive integers.</p>

<p><code class="code">ComponentsOfTransformation</code> returns a list of the components of the transformation <var class="Arg">f</var>. Each component is a subset of <code class="code">[1..DegreeOfTransformation(f)]</code>, and the union of the components is <code class="code">[1..DegreeOfTransformation(f)]</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] );</span>
Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentsOfTransformation(f);  </span>
[ [ 1, 4, 6, 9 ], [ 2, 3, 5, 7, 10, 11, 12 ], [ 8 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=AsTransformation((1,8,2,4,11,5,10)(3,7)(9,12));</span>
Transformation( [ 8, 4, 7, 11, 10, 6, 3, 2, 12, 1, 5, 9 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentsOfTransformation(f);  </span>
[ [ 1, 2, 4, 5, 8, 10, 11 ], [ 3, 7 ], [ 6 ], [ 9, 12 ] ]
</pre></div>

<p><a id="X8640AE1C79201470" name="X8640AE1C79201470"></a></p>

<h5>53.5-18 NrComponentsOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrComponentsOfTransformation</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p><code class="code">NrComponentsOfTransformation</code> returns the number of components of the transformation <var class="Arg">f</var> on the range <code class="code">[1..DegreeOfTransformation(<var class="Arg">f</var>)]</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] );</span>
Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrComponentsOfTransformation(f);</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=AsTransformation((1,8,2,4,11,5,10)(3,7)(9,12));</span>
Transformation( [ 8, 4, 7, 11, 10, 6, 3, 2, 12, 1, 5, 9 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrComponentsOfTransformation(f);</span>
4
</pre></div>

<p><a id="X784650B583CEAF7D" name="X784650B583CEAF7D"></a></p>

<h5>53.5-19 ComponentRepsOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ComponentRepsOfTransformation</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A list of lists of positive integers.</p>

<p><code class="code">ComponentRepsOfTransformation</code> returns the representatives, in the following sense, of the components of the transformation <var class="Arg">f</var>. For every <code class="code">i</code> in <code class="code">[1..DegreeOfTransformation(f)]</code> there exists a representative <code class="code">j</code> and a positive integer <code class="code">k</code> such that <code class="code">i^(<var class="Arg">f</var>^k)=j</code>. The representatives returned by <code class="code">ComponentRepsOfTransformation</code> are partitioned according to the component they belong to. <code class="code">ComponentRepsOfTransformation</code> returns the least number of representatives.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] );</span>
Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentRepsOfTransformation(f);</span>
[ [ 3, 10 ], [ 9 ], [ 8 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=AsTransformation((1,8,2,4,11,5,10)(3,7)(9,12));</span>
Transformation( [ 8, 4, 7, 11, 10, 6, 3, 2, 12, 1, 5, 9 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentRepsOfTransformation(f);</span>
[ [ 1 ], [ 3 ], [ 6 ], [ 9 ] ]
</pre></div>

<p><a id="X7EAA15557D55D93B" name="X7EAA15557D55D93B"></a></p>

<h5>53.5-20 CyclesOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CyclesOfTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">list</var>] )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A list of lists of positive integers.</p>

<p>When the arguments of this function are a transformation<var class="Arg">f</var> and a list <var class="Arg">list</var>, it returns a list of the cycles of the components of <var class="Arg">f</var> containing any element of <var class="Arg">list</var>.</p>

<p>If the optional second argument is not present, then the range <code class="code">[1..DegreeOfTransformation(<var class="Arg">f</var>)]</code> is used as the default value for <var class="Arg">list</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] );</span>
Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CyclesOfTransformation(f);   </span>
[ [ 6 ], [ 12 ], [ 8 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CyclesOfTransformation(f, [ 1, 2, 4 ] ); </span>
[ [ 6 ], [ 12 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CyclesOfTransformation(f, [ 1 .. 17 ]);</span>
[ [ 6 ], [ 12 ], [ 8 ], [ 13 ], [ 14 ], [ 15 ], [ 16 ], [ 17 ] ]
</pre></div>

<p><a id="X786EB02A829260DB" name="X786EB02A829260DB"></a></p>

<h5>53.5-21 CycleTransformationInt</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CycleTransformationInt</code>( <var class="Arg">f</var>, <var class="Arg">n</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A list of positive integers.</p>

<p>If <var class="Arg">f</var> is a transformation and <var class="Arg">n</var> is a positive integer, then <code class="code">CycleTransformationInt</code> returns the cycle of the component of <var class="Arg">f</var> containing <var class="Arg">n</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 6, 2, 8, 4, 7, 5, 8, 3, 5, 8 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CycleTransformationInt(f, 1);</span>
[ 8, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CycleTransformationInt(f, 12);</span>
[ 12 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CycleTransformationInt(f, 5); </span>
[ 8, 3 ]
</pre></div>

<p><a id="X845869E0815A6AA6" name="X845869E0815A6AA6"></a></p>

<h5>53.5-22 LeftOne</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LeftOne</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RightOne</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A transformation.</p>

<p><code class="code">LeftOne</code> returns an idempotent transformation <code class="code">e</code> such that the kernel (with respect to the degree of <var class="Arg">f</var>) of <code class="code">e</code> equals the kernel of the transformation <var class="Arg">f</var> and <code class="code">e*<var class="Arg">f</var>=f</code>.</p>

<p><code class="code">RightOne</code> returns an idempotent transformation <code class="code">e</code> such that the image set (with respect to the degree of <var class="Arg">f</var>) of <code class="code">e</code> equals the image set of <var class="Arg">f</var> and <code class="code"><var class="Arg">f</var>*e=f</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 11, 10, 2, 11, 4, 4, 7, 6, 9, 10, 1, 11 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">e:=RightOne(f);</span>
Transformation( [ 1, 2, 2, 4, 4, 6, 7, 7, 9, 10, 11, 11 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsIdempotent(e);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f*e=f;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">e:=LeftOne(f);</span>
Transformation( [ 1, 2, 3, 1, 5, 5, 7, 8, 9, 2, 11, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">e*f=f;  </span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsIdempotent(e);</span>
true
</pre></div>

<p><a id="X7F19C9C77F9F8981" name="X7F19C9C77F9F8981"></a></p>

<h5>53.5-23 TrimTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TrimTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: Nothing.</p>

<p>It can happen that the internal representation of a transformation uses more memory than necessary. For example, this can happen when composing transformations where it is possible that the resulting transformation <var class="Arg">f</var> has belongs to <code class="code">IsTrans4Rep</code> and has its images stored as 32-bit integers, while none of its moved points exceeds 65536. The purpose of <code class="code">TrimTransformation</code> is to change the internal representation of such an <var class="Arg">f</var> to remove the trailing fixed points.</p>

<p>If the optional second argument <var class="Arg">n</var> is provided, then the internal representation of <var class="Arg">f</var> is reduced to the images of the first <var class="Arg">n</var> positive integers. Please note that it must be the case that <code class="code">i^<var class="Arg">f</var>&lt;=n</code> for all <code class="code">i</code> in the range <code class="code">[1..<var class="Arg">n</var>]</code> otherwise the resulting object will not define a transformation.</p>

<p>If the optional second argument is not included, then the degree of <var class="Arg">f</var> is used by default.</p>

<p>The transformation <var class="Arg">f</var> is changed in-place, and nothing is returned by this function.</p>


<div class="example"><pre> 
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 1 .. 2^16 ], x-&gt; x+1 );</span>
&lt;transformation on 65537 pts with rank 65536&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=Transformation( [ 1 .. 2^16+1 ], function(x)</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">if x=1 or x=65537 then return x; else return x-1; fi; end);</span>
&lt;transformation on 65536 pts with rank 65535&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">h:=g*f;</span>
Transformation( [ 2, 2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreeOfTransformation(h); IsTrans4Rep(h); MemoryUsage(h);</span>
65537
true
262188
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TrimTransformation(h); h;</span>
Transformation( [ 2, 2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreeOfTransformation(h); IsTrans4Rep(h); MemoryUsage(h);</span>
2
false
44
</pre></div>

<p><a id="X810D23017A5527B7" name="X810D23017A5527B7"></a></p>

<h4>53.6 <span class="Heading">Displaying transformations</span></h4>

<p>It is possible to change the way that <strong class="pkg">GAP</strong> displays transformations using the user preferences <code class="code">TransformationDisplayLimit</code> and <code class="code">NotationForTransformations</code>; see Section <code class="func">UserPreference</code> (<a href="chap3.html#X7B0AD104839B6C3C"><span class="RefLink">3.2-3</span></a>) for more information about user preferences.</p>

<p>If <code class="code">f</code> is a transformation where degree <code class="code">n</code> exceeds the value of the user preference <code class="code">TransformationDisplayLimit</code>, then <code class="code">f</code> is displayed as:</p>


<div class="example"><pre>&lt;transformation on n pts with rank r&gt;</pre></div>

<p>where <code class="code">r</code> is the rank of <code class="code">f</code> relative to <code class="code">n</code>. The idea is to abbreviate the display of transformations defined on many points. The default value for the <code class="code">TransformationDisplayLimit</code> is <code class="code">100</code>.</p>

<p>If the degree of <code class="code">f</code> does not exceed the value of <code class="code">TransformationDisplayLimit</code>, then how <code class="code">f</code> is displayed depends on the value of the user preference <code class="code">NotationForTransformations</code>.</p>

<p>There are two possible values for <code class="code">NotationForTransformations</code>:</p>


<dl>
<dt><strong class="Mark">input</strong></dt>
<dd><p>With this option a transformation <var class="Arg">f</var> is displayed in as: <code class="code">Transformation(ImageListOfTransformation(<var class="Arg">f</var>, n)</code> where <code class="code">n</code> is the degree of <var class="Arg">f</var>. The only exception is the identity transformation, which is displayed as: <code class="code">IdentityTransformation</code>.</p>

</dd>
<dt><strong class="Mark">fr</strong></dt>
<dd><p>With this option a transformation <var class="Arg">f</var> is displayed in as: <code class="code">&lt;transformation: ImageListOfTransformation(<var class="Arg">f</var>, n)&gt;</code> where <code class="code">n</code> is the largest moved point of <var class="Arg">f</var>. The only exception is the identity transformation, which is displayed as: <code class="code">&lt;identity transformation&gt;</code>.</p>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference("TransformationDisplayLimit", 12);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation([ 3, 8, 12, 1, 11, 9, 9, 4, 10, 5, 10, 6 ]);</span>
&lt;transformation on 12 pts with rank 10&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference("TransformationDisplayLimit", 100);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f;</span>
Transformation( [ 3, 8, 12, 1, 11, 9, 9, 4, 10, 5, 10, 6 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference("NotationForTransformations", "fr");</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f;</span>
&lt;transformation: 3,8,12,1,11,9,9,4,10,5,10,6&gt;
</pre></div>

<p><a id="X7B51CE257B814B09" name="X7B51CE257B814B09"></a></p>

<h4>53.7 <span class="Heading">Semigroups of transformations</span></h4>

<p>As mentioned at the start of the chapter, every semigroup is isomorphic to a semigroup of transformations, and in this section we describe the functions in <strong class="pkg">GAP</strong> specific to transformation semigroups. For more information about semigroups in general see Chapter <a href="chap51.html#X8665D8737FDD5B10"><span class="RefLink">51</span></a>.</p>

<p>The <strong class="pkg">Semigroups</strong> package contains many additional functions and methods for computing with semigroups of transformations. In particular, <strong class="pkg">Semigroups</strong> contains more efficient methods than those available in the <strong class="pkg">GAP</strong> library (and in many cases more efficient than any other software) for creating semigroups of transformations, calculating their Green"s classes, size, elements, group of units, minimal ideal, small generating sets, testing membership, finding the inverses of a regular element, factorizing elements over the generators, and more. Since a transformation semigroup is also a transformation collection, there are special methods for <code class="func">MovedPoints</code> (<a href="chap53.html#X844F00F982D5BD3C"><span class="RefLink">53.5-5</span></a>), <code class="func">NrMovedPoints</code> (<a href="chap53.html#X7FA6A4B57FDA003D"><span class="RefLink">53.5-6</span></a>), <code class="func">LargestMovedPoint</code> (<a href="chap53.html#X8383A7727AC97724"><span class="RefLink">53.5-8</span></a>), <code class="func">SmallestMovedPoint</code> (<a href="chap53.html#X86C0DDDC7881273A"><span class="RefLink">53.5-7</span></a>), <code class="func">LargestImageOfMovedPoint</code> (<a href="chap53.html#X7E7172567C3A3E63"><span class="RefLink">53.5-10</span></a>), and <code class="func">SmallestImageOfMovedPoint</code> (<a href="chap53.html#X7CCFE27E83676572"><span class="RefLink">53.5-9</span></a>), when applied to a transformation semigroup.</p>

<p><a id="X7EAF835D7FE4026F" name="X7EAF835D7FE4026F"></a></p>

<h5>53.7-1 IsTransformationSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsTransformationSemigroup</code>( <var class="Arg">obj</var> )</td><td class="tdright">( synonym )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsTransformationMonoid</code>( <var class="Arg">obj</var> )</td><td class="tdright">( synonym )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>A <em>transformation semigroup</em> is simply a semigroup consisting of transformations. An object <var class="Arg">obj</var> is a transformation semigroup in <strong class="pkg">GAP</strong> if it satisfies <code class="func">IsSemigroup</code> (<a href="chap51.html#X7B412E5B8543E9B7"><span class="RefLink">51.1-1</span></a>) and <code class="func">IsTransformationCollection</code> (<a href="chap53.html#X7A6747CE85F2E6EA"><span class="RefLink">53.1-2</span></a>).</p>

<p>A <em>transformation monoid</em> is a monoid consisting of transformations. An object <var class="Arg">obj</var> is a transformation monoid in <strong class="pkg">GAP</strong> if it satisfies <code class="func">IsMonoid</code> (<a href="chap51.html#X861C523483C6248C"><span class="RefLink">51.2-1</span></a>) and <code class="func">IsTransformationCollection</code> (<a href="chap53.html#X7A6747CE85F2E6EA"><span class="RefLink">53.1-2</span></a>).</p>

<p>Note that it is possible for a transformation semigroup to have a multiplicative neutral element (i.e. an identity element) but not to satisfy <code class="code">IsTransformationMonoid</code>. For example,</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 1, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(f, One(f));</span>
&lt;commutative transformation monoid of degree 10 with 1 generator&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMonoid(S);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsTransformationMonoid(S);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup( </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation( [ 3, 8, 1, 4, 5, 6, 7, 1, 10, 10 ] ), </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 10, 10 ] ) );</span>
&lt;transformation semigroup of degree 10 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">One(S);</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MultiplicativeNeutralElement(S);</span>
Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 10, 10 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMonoid(S);</span>
false
</pre></div>

<p>In this example <code class="code">S</code> cannot be converted into a monoid using <code class="func">AsMonoid</code> (<a href="chap51.html#X7B22038F832B9C0F"><span class="RefLink">51.2-5</span></a>) since the <code class="func">One</code> (<a href="chap31.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>) of any element in <code class="code">S</code> differs from the multiplicative neutral element.</p>

<p>For more details see <code class="func">IsMagmaWithOne</code> (<a href="chap35.html#X86071DE7835F1C7C"><span class="RefLink">35.1-2</span></a>).</p>

<p><a id="X7EA699C687952544" name="X7EA699C687952544"></a></p>

<h5>53.7-2 DegreeOfTransformationSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreeOfTransformationSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A non-negative integer.</p>

<p>The <em>degree</em> of a transformation semigroup <var class="Arg">S</var> is just the maximum of the degrees of the elements of <var class="Arg">S</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation( [ 3, 8, 1, 4, 5, 6, 7, 1, 10, 10, 11 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 11 ] ) );</span>
&lt;transformation semigroup of degree 10 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreeOfTransformationSemigroup(S);</span>
10
</pre></div>

<p><a id="X7D2B0685815B4053" name="X7D2B0685815B4053"></a></p>

<h5>53.7-3 FullTransformationSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FullTransformationSemigroup</code>( <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FullTransformationMonoid</code>( <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: The full transformation semigroup of degree <var class="Arg">n</var>.</p>

<p>If <var class="Arg">n</var> is a positive integer, then <code class="code">FullTransformationSemigroup</code> returns the monoid consisting of all transformations with degree at most <var class="Arg">n</var>, called the <em>full transformation semigroup</em>.</p>

<p>The full transformation semigroup is regular, has <code class="code"><var class="Arg">n</var>^<var class="Arg">n</var></code> elements, and is generated by any set containing transformations that generate the symmetric group on <var class="Arg">n</var> points and any transformation of rank <code class="code"><var class="Arg">n</var>-1</code>.</p>

<p><code class="code">FulTransformationMonoid</code> is a synonym for <code class="code">FullTransformationSemigroup</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FullTransformationSemigroup(1234); </span>
&lt;full transformation monoid of degree 1234&gt;
</pre></div>

<p><a id="X85C58E1E818C838C" name="X85C58E1E818C838C"></a></p>

<h5>53.7-4 IsFullTransformationSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsFullTransformationSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsFullTransformationMonoid</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>If the transformation semigroup <var class="Arg">S</var> of degree <code class="code">n</code> contains every transformation of degree at most <code class="code">n</code>, then <code class="code">IsFullTransformationSemigroup</code> return <code class="keyw">true</code> and otherwise it returns <code class="keyw">false</code>.</p>

<p><code class="code">IsFullTransformationMonoid</code> is a synonym of <code class="code">IsFullTransformationSemigroup</code>. It is common in the literature for the full transformation monoid to be referred to as the full transformation semigroup.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(AsTransformation((1,3,4,2), 5), </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  AsTransformation((1,3,5), 5),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                  Transformation( [ 1, 1, 2, 3, 4 ] ));</span>
&lt;transformation semigroup of degree 5 with 3 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsFullTransformationSemigroup(S);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S;</span>
&lt;full transformation monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsFullTransformationMonoid(S);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := FullTransformationSemigroup(5);; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsFullTransformationSemigroup(S);</span>
true
</pre></div>

<p><a id="X78F29C817CF6827F" name="X78F29C817CF6827F"></a></p>

<h5>53.7-5 IsomorphismTransformationSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismTransformationSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismTransformationMonoid</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: An isomorphism to a transformation semigroup or monoid.</p>

<p>Returns an isomorphism from the finite semigroup <var class="Arg">S</var> to a transformation semigroup. For most types of objects in <strong class="pkg">GAP</strong> the degree of this transformation semigroup will be equal to the size of <var class="Arg">S</var> plus <code class="code">1</code>.</p>

<p>Let <code class="code"><var class="Arg">S</var>^1</code> denote the monoid obtained from <var class="Arg">S</var> by adjoining an identity element. Then <var class="Arg">S</var> acts faithfully on <code class="code"><var class="Arg">S</var>^1</code> by right multiplication, i.e. every element of <var class="Arg">S</var> describes a transformation on <code class="code">1,..,|S|+1</code>. The isomorphism from <var class="Arg">S</var> to the transformation semigroup described in this way is called the <em>right regular representation</em> of <var class="Arg">S</var>. In most cases, <code class="code">IsomorphismTransformationSemigroup</code> will return the right regular representation of <var class="Arg">S</var>.</p>

<p>As exceptions, if <var class="Arg">S</var> is a permutation group or a partial perm semigroup, then the elements of <var class="Arg">S</var> act naturally and faithfully by transformations on the values from <code class="code">1</code> to the largest moved point of <var class="Arg">S</var>.</p>

<p>If <var class="Arg">S</var> is a finitely presented semigroup, then the Todd-Coxeter approach will be attempted.</p>

<p><code class="code">IsomorphismTransformationMonoid</code> differs from <code class="code">IsomorphismTransformationSemigroup</code> only in that its range is a transformation monoid, and not only a semigroup, when the semigroup <var class="Arg">S</var> is a monoid.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens := [ [ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3) ^ 0 ] ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"> [ [ Z(3), Z(3)^0 ], [ Z(3), 0*Z(3) ] ], </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"> [ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3) ] ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(gens);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(S);</span>
81
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsomorphismTransformationSemigroup(S);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := SymmetricInverseSemigroup(4);</span>
&lt;symmetric inverse semigroup on 4 pts&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsomorphismTransformationMonoid(S);</span>
MappingByFunction( &lt;symmetric inverse semigroup on 4 pts&gt;, 
&lt;transformation monoid on 5 pts with 4 generators&gt;
 , function( x ) ... end, &lt;Operation "AsPartialPerm"&gt; )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := Group((1,2,3));</span>
Group([ (1,2,3) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsomorphismTransformationMonoid(G);</span>
MappingByFunction( Group([ (1,2,3) ]), &lt;commutative transformation 
 monoid on 3 pts with 1 generator&gt;
 , function( x ) ... end, function( x ) ... end )</pre></div>

<p><a id="X820ECE00846E480F" name="X820ECE00846E480F"></a></p>

<h5>53.7-6 AntiIsomorphismTransformationSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AntiIsomorphismTransformationSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: An anti-isomorphism.</p>

<p>If <var class="Arg">S</var> is a semigroup, then <code class="code">AntiIsomorphismTransformationSemigroup</code> returns an anti-isomorphism from <var class="Arg">S</var> to a transformation semigroup. At present, the degree of the resulting transformation semigroup equals the size of <var class="Arg">S</var> plus <span class="SimpleMath">1</span>, and, consequently, this function is of limited use.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup( Transformation( [ 5, 5, 1, 1, 3 ] ), </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation( [ 2, 4, 1, 5, 5 ] ) );</span>
&lt;transformation semigroup of degree 5 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(S);</span>
172
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AntiIsomorphismTransformationSemigroup(S);</span>
MappingByFunction( &lt;transformation semigroup of size 172, degree 5 
 with 2 generators&gt;, &lt;transformation semigroup of degree 173 with 2 
 generators&gt;, function( x ) ... end, function( x ) ... end )
</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap52.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap54.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>