/usr/share/gap/doc/ref/chap62.html is in gap-doc 4r8p6-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 | <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 62: Algebras</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap62" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chap41.html">41</a> <a href="chap42.html">42</a> <a href="chap43.html">43</a> <a href="chap44.html">44</a> <a href="chap45.html">45</a> <a href="chap46.html">46</a> <a href="chap47.html">47</a> <a href="chap48.html">48</a> <a href="chap49.html">49</a> <a href="chap50.html">50</a> <a href="chap51.html">51</a> <a href="chap52.html">52</a> <a href="chap53.html">53</a> <a href="chap54.html">54</a> <a href="chap55.html">55</a> <a href="chap56.html">56</a> <a href="chap57.html">57</a> <a href="chap58.html">58</a> <a href="chap59.html">59</a> <a href="chap60.html">60</a> <a href="chap61.html">61</a> <a href="chap62.html">62</a> <a href="chap63.html">63</a> <a href="chap64.html">64</a> <a href="chap65.html">65</a> <a href="chap66.html">66</a> <a href="chap67.html">67</a> <a href="chap68.html">68</a> <a href="chap69.html">69</a> <a href="chap70.html">70</a> <a href="chap71.html">71</a> <a href="chap72.html">72</a> <a href="chap73.html">73</a> <a href="chap74.html">74</a> <a href="chap75.html">75</a> <a href="chap76.html">76</a> <a href="chap77.html">77</a> <a href="chap78.html">78</a> <a href="chap79.html">79</a> <a href="chap80.html">80</a> <a href="chap81.html">81</a> <a href="chap82.html">82</a> <a href="chap83.html">83</a> <a href="chap84.html">84</a> <a href="chap85.html">85</a> <a href="chap86.html">86</a> <a href="chap87.html">87</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap61.html">[Previous Chapter]</a> <a href="chap63.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap62_mj.html">[MathJax on]</a></p>
<p><a id="X7DDBF6F47A2E021C" name="X7DDBF6F47A2E021C"></a></p>
<div class="ChapSects"><a href="chap62.html#X7DDBF6F47A2E021C">62 <span class="Heading">Algebras</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap62.html#X830EDB5F85645FFB">62.1 <span class="Heading">InfoAlgebra (Info Class)</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X8665F459841AAD53">62.1-1 InfoAlgebra</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap62.html#X8686DEBA85D3F3B6">62.2 <span class="Heading">Constructing Algebras by Generators</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7B213851791A594B">62.2-1 Algebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X80FE16EA84EE56CD">62.2-2 AlgebraWithOne</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap62.html#X7A7B00127DC9DD40">62.3 <span class="Heading">Constructing Algebras as Free Algebras</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X83484C917D8F7A1A">62.3-1 FreeAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7FBD04B07B85623D">62.3-2 FreeAlgebraWithOne</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X87835FFE79D2E068">62.3-3 FreeAssociativeAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X845A777584A7D711">62.3-4 FreeAssociativeAlgebraWithOne</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap62.html#X7E8F45547CC07CE5">62.4 <span class="Heading">Constructing Algebras by Structure Constants</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7CC58DFD816E6B65">62.4-1 AlgebraByStructureConstants</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X804ADF0280F67CDC">62.4-2 StructureConstantsTable</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7F1203A1793411DF">62.4-3 EmptySCTable</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X817BD086876EC1C4">62.4-4 SetEntrySCTable</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7F333822780B6731">62.4-5 GapInputSCTable</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7C23ED85814C0371">62.4-6 TestJacobi</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X78B633CE7A5B9F9A">62.4-7 IdentityFromSCTable</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7F2A71608602635D">62.4-8 QuotientFromSCTable</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap62.html#X79B7C3078112E7E1">62.5 <span class="Heading">Some Special Algebras</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X83DF4BCC7CE494FC">62.5-1 QuaternionAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7B807702782F56FF">62.5-2 ComplexificationQuat</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X78C88A38853A8443">62.5-3 OctaveAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7D88E42B7DE087B0">62.5-4 FullMatrixAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X78B8BA77869DAA13">62.5-5 NullAlgebra</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap62.html#X7DF5989886BE611E">62.6 <span class="Heading">Subalgebras</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X8396643D7A49EEAD">62.6-1 Subalgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7C6B08657BD836C3">62.6-2 SubalgebraNC</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X83ECF489846F00B0">62.6-3 SubalgebraWithOne</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7A11B177868E76AA">62.6-4 SubalgebraWithOneNC</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7FDD953A84CFC3D2">62.6-5 TrivialSubalgebra</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap62.html#X81EE8C1F7D7A7CF8">62.7 <span class="Heading">Ideals of Algebras</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap62.html#X7DC95D6982C9D7B0">62.8 <span class="Heading">Categories and Properties of Algebras</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7FEDFAA383AB20D2">62.8-1 IsFLMLOR</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X85C1E13A877DF2C8">62.8-2 IsFLMLORWithOne</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X801ED693808F6C84">62.8-3 IsAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X80B21AC27DE6D068">62.8-4 IsAlgebraWithOne</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X839BAC687B4E1A1D">62.8-5 IsLieAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X877DF13387831A6A">62.8-6 IsSimpleAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7C5AECE87D79D075">62.8-7 IsFiniteDimensional</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X82B3A9077D0CB453">62.8-8 IsQuaternion</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap62.html#X7E9273E47CF38CF1">62.9 <span class="Heading">Attributes and Operations for Algebras</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X83B055F37EBF2438">62.9-1 GeneratorsOfAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7FA408307A5A420E">62.9-2 GeneratorsOfAlgebraWithOne</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7D309FD37D94B196">62.9-3 ProductSpace</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X875CD2B37EE9A8A2">62.9-4 PowerSubalgebraSeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X788F4E6184E5C863">62.9-5 AdjointBasis</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X800A410B8536E6DD">62.9-6 IndicesOfAdjointBasis</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7BA35CB28062D407">62.9-7 AsAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X878323367D0B68EB">62.9-8 AsAlgebraWithOne</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7A922D26805AFF99">62.9-9 AsSubalgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7B964BC37A975E48">62.9-10 AsSubalgebraWithOne</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7C280DAC7F840B60">62.9-11 MutableBasisOfClosureUnderAction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7BA1739D7F8B3A2B">62.9-12 MutableBasisOfNonassociativeAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X8467B687823371F9">62.9-13 MutableBasisOfIdealInNonassociativeAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7C591B7C7DEA7EEB">62.9-14 DirectSumOfAlgebras</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7D0EB1437D3D9495">62.9-15 FullMatrixAlgebraCentralizer</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X850C29907A509533">62.9-16 RadicalOfAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X82571785846CF05C">62.9-17 CentralIdempotentsOfAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7CFB230582C26DAA">62.9-18 DirectSumDecomposition</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X85C58364833E014C">62.9-19 LeviMalcevDecomposition</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7DCA2568870A2D34">62.9-20 Grading</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap62.html#X7E94B857847F95C1">62.10 <span class="Heading">Homomorphisms of Algebras</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X83CE798C7D39E368">62.10-1 AlgebraGeneralMappingByImages</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7A7F97ED8608C882">62.10-2 AlgebraHomomorphismByImages</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X8326D1BD79725462">62.10-3 AlgebraHomomorphismByImagesNC</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X8057E55B864567AD">62.10-4 AlgebraWithOneGeneralMappingByImages</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X866F32B5846E5857">62.10-5 AlgebraWithOneHomomorphismByImages</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X80BF4D6A7FDC959A">62.10-6 AlgebraWithOneHomomorphismByImagesNC</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X8712E5C1861CC32C">62.10-7 NaturalHomomorphismByIdeal</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X8705A9C68102FEA3">62.10-8 OperationAlgebraHomomorphism</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7B249E8E86D895F0">62.10-9 NiceAlgebraMonomorphism</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X79D770777D873F80">62.10-10 IsomorphismFpAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7FB760F9813B0789">62.10-11 IsomorphismMatrixAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7F8D3DF2863EC50D">62.10-12 IsomorphismSCAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7F34244B81979696">62.10-13 RepresentativeLinearOperation</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap62.html#X818DE6C57D1A4B33">62.11 <span class="Heading">Representations of Algebras</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X8055B87F7ADBD66B">62.11-1 LeftAlgebraModuleByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X8026B99B7955A355">62.11-2 RightAlgebraModuleByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7F28A47E876427E0">62.11-3 BiAlgebraModuleByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X852524F581613359">62.11-4 LeftAlgebraModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X8222F2B67D753036">62.11-5 RightAlgebraModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X84517770868DDA02">62.11-6 BiAlgebraModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X79AAB50D83A14A43">62.11-7 GeneratorsOfAlgebraModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X82B708BD84F3DAB1">62.11-8 IsAlgebraModuleElement</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X80E786467F9163F9">62.11-9 IsLeftAlgebraModuleElement</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X863756787E2B6E75">62.11-10 IsRightAlgebraModuleElement</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X85654EF07F708AC3">62.11-11 LeftActingAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X826298B37E1B1520">62.11-12 RightActingAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X8308408D86CFC3C9">62.11-13 ActingAlgebra</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7C325A507EC9BA18">62.11-14 IsBasisOfAlgebraModuleElementSpace</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X789863037B0E35D2">62.11-15 MatrixOfAction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X8742A7D27F26AFAB">62.11-16 SubAlgebraModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X86E0515987192F0E">62.11-17 LeftModuleByHomomorphismToMatAlg</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7EE41297867E41A8">62.11-18 RightModuleByHomomorphismToMatAlg</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X8729F0A678A4A09C">62.11-19 AdjointModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X84813BCD80BDF3C4">62.11-20 FaithfulModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7E16630185CE2C10">62.11-21 ModuleByRestriction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7885AAC87FDCF649">62.11-22 NaturalHomomorphismBySubAlgebraModule</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X85D0F3758551DADC">62.11-23 DirectSumOfAlgebraModules</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap62.html#X7D7A6486803B15CE">62.11-24 TranslatorSubalgebra</a></span>
</div></div>
</div>
<h3>62 <span class="Heading">Algebras</span></h3>
<p>An algebra is a vector space equipped with a bilinear map (multiplication). This chapter describes the functions in <strong class="pkg">GAP</strong> that deal with general algebras and associative algebras.</p>
<p>Algebras in <strong class="pkg">GAP</strong> are vector spaces in a natural way. So all the functionality for vector spaces (see Chapter <a href="chap61.html#X7DAD6700787EC845"><span class="RefLink">61</span></a>) is also applicable to algebras.</p>
<p><a id="X830EDB5F85645FFB" name="X830EDB5F85645FFB"></a></p>
<h4>62.1 <span class="Heading">InfoAlgebra (Info Class)</span></h4>
<p><a id="X8665F459841AAD53" name="X8665F459841AAD53"></a></p>
<h5>62.1-1 InfoAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InfoAlgebra</code></td><td class="tdright">( info class )</td></tr></table></div>
<p>is the info class for the functions dealing with algebras (see <a href="chap7.html#X7A9C902479CB6F7C"><span class="RefLink">7.4</span></a>).</p>
<p><a id="X8686DEBA85D3F3B6" name="X8686DEBA85D3F3B6"></a></p>
<h4>62.2 <span class="Heading">Constructing Algebras by Generators</span></h4>
<p><a id="X7B213851791A594B" name="X7B213851791A594B"></a></p>
<h5>62.2-1 Algebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Algebra</code>( <var class="Arg">F</var>, <var class="Arg">gens</var>[, <var class="Arg">zero</var>][, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">Algebra( <var class="Arg">F</var>, <var class="Arg">gens</var> )</code> is the algebra over the division ring <var class="Arg">F</var>, generated by the vectors in the list <var class="Arg">gens</var>.</p>
<p>If there are three arguments, a division ring <var class="Arg">F</var> and a list <var class="Arg">gens</var> and an element <var class="Arg">zero</var>, then <code class="code">Algebra( <var class="Arg">F</var>, <var class="Arg">gens</var>, <var class="Arg">zero</var> )</code> is the <var class="Arg">F</var>-algebra generated by <var class="Arg">gens</var>, with zero element <var class="Arg">zero</var>.</p>
<p>If the last argument is the string <code class="code">"basis"</code> then the vectors in <var class="Arg">gens</var> are known to form a basis of the algebra (as an <var class="Arg">F</var>-vector space).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= [ [ 0, 1, 2 ], [ 0, 0, 3], [ 0, 0, 0 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= Algebra( Rationals, [ m ] );</span>
<algebra over Rationals, with 1 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">Dimension( A );</span>
2
</pre></div>
<p><a id="X80FE16EA84EE56CD" name="X80FE16EA84EE56CD"></a></p>
<h5>62.2-2 AlgebraWithOne</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AlgebraWithOne</code>( <var class="Arg">F</var>, <var class="Arg">gens</var>[, <var class="Arg">zero</var>][, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">AlgebraWithOne( <var class="Arg">F</var>, <var class="Arg">gens</var> )</code> is the algebra-with-one over the division ring <var class="Arg">F</var>, generated by the vectors in the list <var class="Arg">gens</var>.</p>
<p>If there are three arguments, a division ring <var class="Arg">F</var> and a list <var class="Arg">gens</var> and an element <var class="Arg">zero</var>, then <code class="code">AlgebraWithOne( <var class="Arg">F</var>, <var class="Arg">gens</var>, <var class="Arg">zero</var> )</code> is the <var class="Arg">F</var>-algebra-with-one generated by <var class="Arg">gens</var>, with zero element <var class="Arg">zero</var>.</p>
<p>If the last argument is the string <code class="code">"basis"</code> then the vectors in <var class="Arg">gens</var> are known to form a basis of the algebra (as an <var class="Arg">F</var>-vector space).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= [ [ 0, 1, 2 ], [ 0, 0, 3], [ 0, 0, 0 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= AlgebraWithOne( Rationals, [ m ] );</span>
<algebra-with-one over Rationals, with 1 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">Dimension( A );</span>
3
<span class="GAPprompt">gap></span> <span class="GAPinput">One(A);</span>
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
</pre></div>
<p><a id="X7A7B00127DC9DD40" name="X7A7B00127DC9DD40"></a></p>
<h4>62.3 <span class="Heading">Constructing Algebras as Free Algebras</span></h4>
<p><a id="X83484C917D8F7A1A" name="X83484C917D8F7A1A"></a></p>
<h5>62.3-1 FreeAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeAlgebra</code>( <var class="Arg">R</var>, <var class="Arg">rank</var>[, <var class="Arg">name</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeAlgebra</code>( <var class="Arg">R</var>, <var class="Arg">name1</var>, <var class="Arg">name2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>is a free (nonassociative) algebra of rank <var class="Arg">rank</var> over the division ring <var class="Arg">R</var>. Here <var class="Arg">name</var>, and <var class="Arg">name1</var>, <var class="Arg">name2</var>, ... are optional strings that can be used to provide names for the generators.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= FreeAlgebra( Rationals, "a", "b" );</span>
<algebra over Rationals, with 2 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= GeneratorsOfAlgebra( A );</span>
[ (1)*a, (1)*b ]
<span class="GAPprompt">gap></span> <span class="GAPinput">(g[1]*g[2])*((g[2]*g[1])*g[1]);</span>
(1)*((a*b)*((b*a)*a))
</pre></div>
<p><a id="X7FBD04B07B85623D" name="X7FBD04B07B85623D"></a></p>
<h5>62.3-2 FreeAlgebraWithOne</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeAlgebraWithOne</code>( <var class="Arg">R</var>, <var class="Arg">rank</var>[, <var class="Arg">name</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeAlgebraWithOne</code>( <var class="Arg">R</var>, <var class="Arg">name1</var>, <var class="Arg">name2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>is a free (nonassociative) algebra-with-one of rank <var class="Arg">rank</var> over the division ring <var class="Arg">R</var>. Here <var class="Arg">name</var>, and <var class="Arg">name1</var>, <var class="Arg">name2</var>, ... are optional strings that can be used to provide names for the generators.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= FreeAlgebraWithOne( Rationals, 4, "q" );</span>
<algebra-with-one over Rationals, with 4 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfAlgebra( A );</span>
[ (1)*<identity ...>, (1)*q.1, (1)*q.2, (1)*q.3, (1)*q.4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">One( A );</span>
(1)*<identity ...>
</pre></div>
<p><a id="X87835FFE79D2E068" name="X87835FFE79D2E068"></a></p>
<h5>62.3-3 FreeAssociativeAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeAssociativeAlgebra</code>( <var class="Arg">R</var>, <var class="Arg">rank</var>[, <var class="Arg">name</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeAssociativeAlgebra</code>( <var class="Arg">R</var>, <var class="Arg">name1</var>, <var class="Arg">name2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>is a free associative algebra of rank <var class="Arg">rank</var> over the division ring <var class="Arg">R</var>. Here <var class="Arg">name</var>, and <var class="Arg">name1</var>, <var class="Arg">name2</var>, ... are optional strings that can be used to provide names for the generators.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= FreeAssociativeAlgebra( GF( 5 ), 4, "a" );</span>
<algebra over GF(5), with 4 generators>
</pre></div>
<p><a id="X845A777584A7D711" name="X845A777584A7D711"></a></p>
<h5>62.3-4 FreeAssociativeAlgebraWithOne</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeAssociativeAlgebraWithOne</code>( <var class="Arg">R</var>, <var class="Arg">rank</var>[, <var class="Arg">name</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeAssociativeAlgebraWithOne</code>( <var class="Arg">R</var>, <var class="Arg">name1</var>, <var class="Arg">name2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>is a free associative algebra-with-one of rank <var class="Arg">rank</var> over the division ring <var class="Arg">R</var>. Here <var class="Arg">name</var>, and <var class="Arg">name1</var>, <var class="Arg">name2</var>, ... are optional strings that can be used to provide names for the generators.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= FreeAssociativeAlgebraWithOne( Rationals, "a", "b", "c" );</span>
<algebra-with-one over Rationals, with 3 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfAlgebra( A );</span>
[ (1)*<identity ...>, (1)*a, (1)*b, (1)*c ]
<span class="GAPprompt">gap></span> <span class="GAPinput">One( A );</span>
(1)*<identity ...>
</pre></div>
<p><a id="X7E8F45547CC07CE5" name="X7E8F45547CC07CE5"></a></p>
<h4>62.4 <span class="Heading">Constructing Algebras by Structure Constants</span></h4>
<p>For an introduction into structure constants and how they are handled by <strong class="pkg">GAP</strong>, we refer to Section <a href="../../doc/tut/chap6.html#X7DDBF6F47A2E021C"><span class="RefLink">Tutorial: Algebras</span></a> of the user's tutorial.</p>
<p><a id="X7CC58DFD816E6B65" name="X7CC58DFD816E6B65"></a></p>
<h5>62.4-1 AlgebraByStructureConstants</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AlgebraByStructureConstants</code>( <var class="Arg">R</var>, <var class="Arg">sctable</var>[, <var class="Arg">nameinfo</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a free left module <span class="SimpleMath">A</span> over the division ring <var class="Arg">R</var>, with multiplication defined by the structure constants table <var class="Arg">sctable</var>. The optional argument <var class="Arg">nameinfo</var> can be used to prescribe names for the elements of the canonical basis of <span class="SimpleMath">A</span>; it can be either a string <var class="Arg">name</var> (then <var class="Arg">name</var><code class="code">1</code>, <var class="Arg">name</var><code class="code">2</code> etc. are chosen) or a list of strings which are then chosen. The vectors of the canonical basis of <span class="SimpleMath">A</span> correspond to the vectors of the basis given by <var class="Arg">sctable</var>.</p>
<p>It is <em>not</em> checked whether the coefficients in <var class="Arg">sctable</var> are really elements in <var class="Arg">R</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:= EmptySCTable( 2, 0 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 1, 1, [ 1/2, 1, 2/3, 2 ] );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= AlgebraByStructureConstants( Rationals, T );</span>
<algebra of dimension 2 over Rationals>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= BasisVectors( Basis( A ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b[1]^2;</span>
(1/2)*v.1+(2/3)*v.2
<span class="GAPprompt">gap></span> <span class="GAPinput">b[1]*b[2];</span>
0*v.1
</pre></div>
<p><a id="X804ADF0280F67CDC" name="X804ADF0280F67CDC"></a></p>
<h5>62.4-2 StructureConstantsTable</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ StructureConstantsTable</code>( <var class="Arg">B</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Let <var class="Arg">B</var> be a basis of a free left module <span class="SimpleMath">R</span>, say, that is also a ring. In this case <code class="func">StructureConstantsTable</code> returns a structure constants table <span class="SimpleMath">T</span> in sparse representation, as used for structure constants algebras (see Section <a href="../../doc/tut/chap6.html#X7DDBF6F47A2E021C"><span class="RefLink">Tutorial: Algebras</span></a> of the <strong class="pkg">GAP</strong> User's Tutorial).</p>
<p>If <var class="Arg">B</var> has length <span class="SimpleMath">n</span> then <span class="SimpleMath">T</span> is a list of length <span class="SimpleMath">n+2</span>. The first <span class="SimpleMath">n</span> entries of <span class="SimpleMath">T</span> are lists of length <span class="SimpleMath">n</span>. <span class="SimpleMath">T[ n+1 ]</span> is one of <span class="SimpleMath">1</span>, <span class="SimpleMath">-1</span>, or <span class="SimpleMath">0</span>; in the case of <span class="SimpleMath">1</span> the table is known to be symmetric, in the case of <span class="SimpleMath">-1</span> it is known to be antisymmetric, and <span class="SimpleMath">0</span> occurs in all other cases. <span class="SimpleMath">T[ n+2 ]</span> is the zero element of the coefficient domain.</p>
<p>The coefficients w.r.t. <var class="Arg">B</var> of the product of the <span class="SimpleMath">i</span>-th and <span class="SimpleMath">j</span>-th basis vector of <var class="Arg">B</var> are stored in <span class="SimpleMath">T[i][j]</span> as a list of length <span class="SimpleMath">2</span>; its first entry is the list of positions of nonzero coefficients, the second entry is the list of these coefficients themselves.</p>
<p>The multiplication in an algebra <span class="SimpleMath">A</span> with vector space basis <var class="Arg">B</var> with basis vectors <span class="SimpleMath">[ v_1, ..., v_n ]</span> is determined by the so-called structure matrices <span class="SimpleMath">M_k = [ m_ijk ]_ij</span>, <span class="SimpleMath">1 ≤ k ≤ n</span>. The <span class="SimpleMath">M_k</span> are defined by <span class="SimpleMath">v_i v_j = ∑_k m_ijk v_k</span>. Let <span class="SimpleMath">a = [ a_1, ..., a_n ]</span> and <span class="SimpleMath">b = [ b_1, ..., b_n ]</span>. Then</p>
<p class="pcenter">( ∑_i a_i v_i ) ( ∑_j b_j v_j ) = ∑_{i,j} a_i b_j ( v_i v_j ) = ∑_k ( ∑_j ( ∑_i a_i m_ijk ) b_j ) v_k = ∑_k ( a M_k b^tr ) v_k.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= QuaternionAlgebra( Rationals );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureConstantsTable( Basis( A ) );</span>
[ [ [ [ 1 ], [ 1 ] ], [ [ 2 ], [ 1 ] ], [ [ 3 ], [ 1 ] ],
[ [ 4 ], [ 1 ] ] ],
[ [ [ 2 ], [ 1 ] ], [ [ 1 ], [ -1 ] ], [ [ 4 ], [ 1 ] ],
[ [ 3 ], [ -1 ] ] ],
[ [ [ 3 ], [ 1 ] ], [ [ 4 ], [ -1 ] ], [ [ 1 ], [ -1 ] ],
[ [ 2 ], [ 1 ] ] ],
[ [ [ 4 ], [ 1 ] ], [ [ 3 ], [ 1 ] ], [ [ 2 ], [ -1 ] ],
[ [ 1 ], [ -1 ] ] ], 0, 0 ]
</pre></div>
<p><a id="X7F1203A1793411DF" name="X7F1203A1793411DF"></a></p>
<h5>62.4-3 EmptySCTable</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EmptySCTable</code>( <var class="Arg">dim</var>, <var class="Arg">zero</var>[, <var class="Arg">flag</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">EmptySCTable</code> returns a structure constants table for an algebra of dimension <var class="Arg">dim</var>, describing trivial multiplication. <var class="Arg">zero</var> must be the zero of the coefficients domain. If the multiplication is known to be (anti)commutative then this can be indicated by the optional third argument <var class="Arg">flag</var>, which must be one of the strings <code class="code">"symmetric"</code>, <code class="code">"antisymmetric"</code>.</p>
<p>For filling up the structure constants table, see <code class="func">SetEntrySCTable</code> (<a href="chap62.html#X817BD086876EC1C4"><span class="RefLink">62.4-4</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">EmptySCTable( 2, Zero( GF(5) ), "antisymmetric" );</span>
[ [ [ [ ], [ ] ], [ [ ], [ ] ] ],
[ [ [ ], [ ] ], [ [ ], [ ] ] ], -1, 0*Z(5) ]
</pre></div>
<p><a id="X817BD086876EC1C4" name="X817BD086876EC1C4"></a></p>
<h5>62.4-4 SetEntrySCTable</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SetEntrySCTable</code>( <var class="Arg">T</var>, <var class="Arg">i</var>, <var class="Arg">j</var>, <var class="Arg">list</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>sets the entry of the structure constants table <var class="Arg">T</var> that describes the product of the <var class="Arg">i</var>-th basis element with the <var class="Arg">j</var>-th basis element to the value given by the list <var class="Arg">list</var>.</p>
<p>If <var class="Arg">T</var> is known to be antisymmetric or symmetric then also the value <code class="code"><var class="Arg">T</var>[<var class="Arg">j</var>][<var class="Arg">i</var>]</code> is set.</p>
<p><var class="Arg">list</var> must be of the form <span class="SimpleMath">[ c_ij^{k_1}, k_1, c_ij^{k_2}, k_2, ... ]</span>.</p>
<p>The entries at the odd positions of <var class="Arg">list</var> must be compatible with the zero element stored in <var class="Arg">T</var>. For convenience, these entries may also be rational numbers that are automatically replaced by the corresponding elements in the appropriate prime field in finite characteristic if necessary.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:= EmptySCTable( 2, 0 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 1, 1, [ 1/2, 1, 2/3, 2 ] );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">T;</span>
[ [ [ [ 1, 2 ], [ 1/2, 2/3 ] ], [ [ ], [ ] ] ],
[ [ [ ], [ ] ], [ [ ], [ ] ] ], 0, 0 ]
</pre></div>
<p><a id="X7F333822780B6731" name="X7F333822780B6731"></a></p>
<h5>62.4-5 GapInputSCTable</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GapInputSCTable</code>( <var class="Arg">T</var>, <var class="Arg">varname</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>is a string that describes the structure constants table <var class="Arg">T</var> in terms of <code class="func">EmptySCTable</code> (<a href="chap62.html#X7F1203A1793411DF"><span class="RefLink">62.4-3</span></a>) and <code class="func">SetEntrySCTable</code> (<a href="chap62.html#X817BD086876EC1C4"><span class="RefLink">62.4-4</span></a>). The assignments are made to the variable <var class="Arg">varname</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:= EmptySCTable( 2, 0 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 1, 2, [ 1, 2 ] );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 2, 1, [ 1, 2 ] );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GapInputSCTable( T, "T" );</span>
"T:= EmptySCTable( 2, 0 );\nSetEntrySCTable( T, 1, 2, [1,2] );\nSetEnt\
rySCTable( T, 2, 1, [1,2] );\n"
</pre></div>
<p><a id="X7C23ED85814C0371" name="X7C23ED85814C0371"></a></p>
<h5>62.4-6 TestJacobi</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TestJacobi</code>( <var class="Arg">T</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>tests whether the structure constants table <var class="Arg">T</var> satisfies the Jacobi identity <span class="SimpleMath">v_i * (v_j * v_k) + v_j * (v_k * v_i) + v_k * (v_i * v_j) = 0</span> for all basis vectors <span class="SimpleMath">v_i</span> of the underlying algebra, where <span class="SimpleMath">i ≤ j ≤ k</span>. (Thus antisymmetry is assumed.)</p>
<p>The function returns <code class="keyw">true</code> if the Jacobi identity is satisfied, and a failing triple <span class="SimpleMath">[ i, j, k ]</span> otherwise.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:= EmptySCTable( 2, 0, "antisymmetric" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 1, 2, [ 1, 2 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">TestJacobi( T );</span>
true
</pre></div>
<p><a id="X78B633CE7A5B9F9A" name="X78B633CE7A5B9F9A"></a></p>
<h5>62.4-7 IdentityFromSCTable</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IdentityFromSCTable</code>( <var class="Arg">T</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <var class="Arg">T</var> be a structure constants table of an algebra <span class="SimpleMath">A</span> of dimension <span class="SimpleMath">n</span>. <code class="code">IdentityFromSCTable( <var class="Arg">T</var> )</code> is either <code class="keyw">fail</code> or the vector of length <span class="SimpleMath">n</span> that contains the coefficients of the multiplicative identity of <span class="SimpleMath">A</span> with respect to the basis that belongs to <var class="Arg">T</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:= EmptySCTable( 2, 0 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 1, 1, [ 1, 1 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 1, 2, [ 1, 2 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 2, 1, [ 1, 2 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IdentityFromSCTable( T );</span>
[ 1, 0 ]
</pre></div>
<p><a id="X7F2A71608602635D" name="X7F2A71608602635D"></a></p>
<h5>62.4-8 QuotientFromSCTable</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ QuotientFromSCTable</code>( <var class="Arg">T</var>, <var class="Arg">num</var>, <var class="Arg">den</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <var class="Arg">T</var> be a structure constants table of an algebra <span class="SimpleMath">A</span> of dimension <span class="SimpleMath">n</span>. <code class="code">QuotientFromSCTable( <var class="Arg">T</var> )</code> is either <code class="keyw">fail</code> or the vector of length <span class="SimpleMath">n</span> that contains the coefficients of the quotient of <var class="Arg">num</var> and <var class="Arg">den</var> with respect to the basis that belongs to <var class="Arg">T</var>.</p>
<p>We solve the equation system <var class="Arg">num</var><span class="SimpleMath">= x *</span> <var class="Arg">den</var>. If no solution exists, <code class="keyw">fail</code> is returned.</p>
<p>In terms of the basis <span class="SimpleMath">B</span> with vectors <span class="SimpleMath">b_1, ..., b_n</span> this means for <span class="SimpleMath"><var class="Arg">num</var> = ∑_{i = 1}^n a_i b_i</span>, <span class="SimpleMath"><var class="Arg">den</var> = ∑_{i = 1}^n c_i b_i</span>, <span class="SimpleMath">x = ∑_{i = 1}^n x_i b_i</span> that <span class="SimpleMath">a_k = ∑_{i,j} c_i x_j c_ijk</span> for all <span class="SimpleMath">k</span>. Here <span class="SimpleMath">c_ijk</span> denotes the structure constants with respect to <span class="SimpleMath">B</span>. This means that (as a vector) <span class="SimpleMath">a = x M</span> with <span class="SimpleMath">M_jk = ∑_{i = 1}^n c_ijk c_i</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:= EmptySCTable( 2, 0 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 1, 1, [ 1, 1 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 2, 1, [ 1, 2 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 1, 2, [ 1, 2 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">QuotientFromSCTable( T, [0,1], [1,0] );</span>
[ 0, 1 ]
</pre></div>
<p><a id="X79B7C3078112E7E1" name="X79B7C3078112E7E1"></a></p>
<h4>62.5 <span class="Heading">Some Special Algebras</span></h4>
<p><a id="X83DF4BCC7CE494FC" name="X83DF4BCC7CE494FC"></a></p>
<h5>62.5-1 QuaternionAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ QuaternionAlgebra</code>( <var class="Arg">F</var>[, <var class="Arg">a</var>, <var class="Arg">b</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: a quaternion algebra over <var class="Arg">F</var>, with parameters <var class="Arg">a</var> and <var class="Arg">b</var>.</p>
<p>Let <var class="Arg">F</var> be a field or a list of field elements, let <span class="SimpleMath">F</span> be the field generated by <var class="Arg">F</var>, and let <var class="Arg">a</var> and <var class="Arg">b</var> two elements in <span class="SimpleMath">F</span>. <code class="func">QuaternionAlgebra</code> returns a quaternion algebra over <span class="SimpleMath">F</span>, with parameters <var class="Arg">a</var> and <var class="Arg">b</var>, i.e., a four-dimensional associative <span class="SimpleMath">F</span>-algebra with basis <span class="SimpleMath">(e,i,j,k)</span> and multiplication defined by <span class="SimpleMath">e e = e</span>, <span class="SimpleMath">e i = i e = i</span>, <span class="SimpleMath">e j = j e = j</span>, <span class="SimpleMath">e k = k e = k</span>, <span class="SimpleMath">i i = <var class="Arg">a</var> e</span>, <span class="SimpleMath">i j = - j i = k</span>, <span class="SimpleMath">i k = - k i = <var class="Arg">a</var> j</span>, <span class="SimpleMath">j j = <var class="Arg">b</var> e</span>, <span class="SimpleMath">j k = - k j = <var class="Arg">b</var> i</span>, <span class="SimpleMath">k k = - <var class="Arg">a</var> <var class="Arg">b</var> e</span>. The default value for both <var class="Arg">a</var> and <var class="Arg">b</var> is <span class="SimpleMath">-1 ∈ F</span>.</p>
<p>The <code class="func">GeneratorsOfAlgebra</code> (<a href="chap62.html#X83B055F37EBF2438"><span class="RefLink">62.9-1</span></a>) and <code class="func">CanonicalBasis</code> (<a href="chap61.html#X7C8EBFF5805F8C51"><span class="RefLink">61.5-3</span></a>) value of an algebra constructed with <code class="func">QuaternionAlgebra</code> is the list <span class="SimpleMath">[ e, i, j, k ]</span>.</p>
<p>Two quaternion algebras with the same parameters <var class="Arg">a</var>, <var class="Arg">b</var> lie in the same family, so it makes sense to consider their intersection or to ask whether they are contained in each other. (This is due to the fact that the results of <code class="func">QuaternionAlgebra</code> are cached, in the global variable <code class="code">QuaternionAlgebraData</code>.)</p>
<p>The embedding of the field <code class="func">GaussianRationals</code> (<a href="chap60.html#X82F53C65802FF551"><span class="RefLink">60.1-3</span></a>) into a quaternion algebra <span class="SimpleMath">A</span> over <code class="func">Rationals</code> (<a href="chap17.html#X7B6029D18570C08A"><span class="RefLink">17.1-1</span></a>) is not uniquely determined. One can specify one embedding as a vector space homomorphism that maps <code class="code">1</code> to the first algebra generator of <span class="SimpleMath">A</span>, and <code class="code">E(4)</code> to one of the others.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">QuaternionAlgebra( Rationals );</span>
<algebra-with-one of dimension 4 over Rationals>
</pre></div>
<p><a id="X7B807702782F56FF" name="X7B807702782F56FF"></a></p>
<h5>62.5-2 ComplexificationQuat</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ComplexificationQuat</code>( <var class="Arg">vector</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ComplexificationQuat</code>( <var class="Arg">matrix</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <span class="SimpleMath">A = e F ⊕ i F ⊕ j F ⊕ k F</span> be a quaternion algebra over the field <span class="SimpleMath">F</span> of cyclotomics, with basis <span class="SimpleMath">(e,i,j,k)</span>.</p>
<p>If <span class="SimpleMath">v = v_1 + v_2 j</span> is a row vector over <span class="SimpleMath">A</span> with <span class="SimpleMath">v_1 = e w_1 + i w_2</span> and <span class="SimpleMath">v_2 = e w_3 + i w_4</span> then <code class="func">ComplexificationQuat</code> called with argument <span class="SimpleMath">v</span> returns the concatenation of <span class="SimpleMath">w_1 +</span><code class="code">E(4)</code><span class="SimpleMath">w_2</span> and <span class="SimpleMath">w_3 +</span><code class="code">E(4)</code><span class="SimpleMath">w_4</span>.</p>
<p>If <span class="SimpleMath">M = M_1 + M_2 j</span> is a matrix over <span class="SimpleMath">A</span> with <span class="SimpleMath">M_1 = e N_1 + i N_2</span> and <span class="SimpleMath">M_2 = e N_3 + i N_4</span> then <code class="func">ComplexificationQuat</code> called with argument <span class="SimpleMath">M</span> returns the block matrix <span class="SimpleMath">A</span> over <span class="SimpleMath">e F ⊕ i F</span> such that <span class="SimpleMath">A(1,1) = N_1 +</span><code class="code">E(4)</code><span class="SimpleMath">N_2</span>, <span class="SimpleMath">A(2,2) = N_1 -</span><code class="code">E(4)</code><span class="SimpleMath">N_2</span>, <span class="SimpleMath">A(1,2) = N_3 +</span><code class="code">E(4)</code><span class="SimpleMath">N_4</span>, and <span class="SimpleMath">A(2,1) = - N_3 +</span><code class="code">E(4)</code><span class="SimpleMath">N_4</span>.</p>
<p>Then <code class="code">ComplexificationQuat(<var class="Arg">v</var>) * ComplexificationQuat(<var class="Arg">M</var>)= ComplexificationQuat(<var class="Arg">v</var> * <var class="Arg">M</var>)</code>, since</p>
<p class="pcenter">v M = v_1 M_1 + v_2 j M_1 + v_1 M_2 j + v_2 j M_2 j = ( v_1 M_1 - v_2 overline{M_2} ) + ( v_1 M_2 + v_2 overline{M_1} ) j.</p>
<p><a id="X78C88A38853A8443" name="X78C88A38853A8443"></a></p>
<h5>62.5-3 OctaveAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ OctaveAlgebra</code>( <var class="Arg">F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The algebra of octonions over <var class="Arg">F</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">OctaveAlgebra( Rationals );</span>
<algebra of dimension 8 over Rationals>
</pre></div>
<p><a id="X7D88E42B7DE087B0" name="X7D88E42B7DE087B0"></a></p>
<h5>62.5-4 FullMatrixAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FullMatrixAlgebra</code>( <var class="Arg">R</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MatrixAlgebra</code>( <var class="Arg">R</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MatAlgebra</code>( <var class="Arg">R</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>is the full matrix algebra of <span class="SimpleMath"><var class="Arg">n</var> × <var class="Arg">n</var></span> matrices over the ring <var class="Arg">R</var>, for a nonnegative integer <var class="Arg">n</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=FullMatrixAlgebra( Rationals, 20 );</span>
( Rationals^[ 20, 20 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">Dimension( A );</span>
400
</pre></div>
<p><a id="X78B8BA77869DAA13" name="X78B8BA77869DAA13"></a></p>
<h5>62.5-5 NullAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NullAlgebra</code>( <var class="Arg">R</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The zero-dimensional algebra over <var class="Arg">R</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= NullAlgebra( Rationals );</span>
<algebra over Rationals>
<span class="GAPprompt">gap></span> <span class="GAPinput">Dimension( A );</span>
0
</pre></div>
<p><a id="X7DF5989886BE611E" name="X7DF5989886BE611E"></a></p>
<h4>62.6 <span class="Heading">Subalgebras</span></h4>
<p><a id="X8396643D7A49EEAD" name="X8396643D7A49EEAD"></a></p>
<h5>62.6-1 Subalgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Subalgebra</code>( <var class="Arg">A</var>, <var class="Arg">gens</var>[, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>is the <span class="SimpleMath">F</span>-algebra generated by <var class="Arg">gens</var>, with parent algebra <var class="Arg">A</var>, where <span class="SimpleMath">F</span> is the left acting domain of <var class="Arg">A</var>.</p>
<p><em>Note</em> that being a subalgebra of <var class="Arg">A</var> means to be an algebra, to be contained in <var class="Arg">A</var>, <em>and</em> to have the same left acting domain as <var class="Arg">A</var>.</p>
<p>An optional argument <code class="code">"basis"</code> may be added if it is known that the generators already form a basis of the algebra. Then it is <em>not</em> checked whether <var class="Arg">gens</var> really are linearly independent and whether all elements in <var class="Arg">gens</var> lie in <var class="Arg">A</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= [ [ 0, 1, 2 ], [ 0, 0, 3], [ 0, 0, 0 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= Algebra( Rationals, [ m ] );</span>
<algebra over Rationals, with 1 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= Subalgebra( A, [ m^2 ] );</span>
<algebra over Rationals, with 1 generators>
</pre></div>
<p><a id="X7C6B08657BD836C3" name="X7C6B08657BD836C3"></a></p>
<h5>62.6-2 SubalgebraNC</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubalgebraNC</code>( <var class="Arg">A</var>, <var class="Arg">gens</var>[, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">SubalgebraNC</code> does the same as <code class="func">Subalgebra</code> (<a href="chap62.html#X8396643D7A49EEAD"><span class="RefLink">62.6-1</span></a>), except that it does not check whether all elements in <var class="Arg">gens</var> lie in <var class="Arg">A</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= RandomMat( 3, 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= Algebra( Rationals, [ m ] );</span>
<algebra over Rationals, with 1 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">SubalgebraNC( A, [ IdentityMat( 3, 3 ) ], "basis" );</span>
<algebra of dimension 1 over Rationals>
</pre></div>
<p><a id="X83ECF489846F00B0" name="X83ECF489846F00B0"></a></p>
<h5>62.6-3 SubalgebraWithOne</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubalgebraWithOne</code>( <var class="Arg">A</var>, <var class="Arg">gens</var>[, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>is the algebra-with-one generated by <var class="Arg">gens</var>, with parent algebra <var class="Arg">A</var>.</p>
<p>The optional third argument, the string <code class="code">"basis"</code>, may be added if it is known that the elements from <var class="Arg">gens</var> are linearly independent. Then it is <em>not</em> checked whether <var class="Arg">gens</var> really are linearly independent and whether all elements in <var class="Arg">gens</var> lie in <var class="Arg">A</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= [ [ 0, 1, 2 ], [ 0, 0, 3], [ 0, 0, 0 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= AlgebraWithOne( Rationals, [ m ] );</span>
<algebra-with-one over Rationals, with 1 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">B1:= SubalgebraWithOne( A, [ m ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B2:= Subalgebra( A, [ m ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Dimension( B1 );</span>
3
<span class="GAPprompt">gap></span> <span class="GAPinput">Dimension( B2 );</span>
2
</pre></div>
<p><a id="X7A11B177868E76AA" name="X7A11B177868E76AA"></a></p>
<h5>62.6-4 SubalgebraWithOneNC</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubalgebraWithOneNC</code>( <var class="Arg">A</var>, <var class="Arg">gens</var>[, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">SubalgebraWithOneNC</code> does the same as <code class="func">SubalgebraWithOne</code> (<a href="chap62.html#X83ECF489846F00B0"><span class="RefLink">62.6-3</span></a>), except that it does not check whether all elements in <var class="Arg">gens</var> lie in <var class="Arg">A</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= RandomMat( 3, 3 );; A:= Algebra( Rationals, [ m ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SubalgebraWithOneNC( A, [ m ] );</span>
<algebra-with-one over Rationals, with 1 generators>
</pre></div>
<p><a id="X7FDD953A84CFC3D2" name="X7FDD953A84CFC3D2"></a></p>
<h5>62.6-5 TrivialSubalgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TrivialSubalgebra</code>( <var class="Arg">A</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The zero dimensional subalgebra of the algebra <var class="Arg">A</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= QuaternionAlgebra( Rationals );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= TrivialSubalgebra( A );</span>
<algebra over Rationals>
<span class="GAPprompt">gap></span> <span class="GAPinput">Dimension( B );</span>
0
</pre></div>
<p><a id="X81EE8C1F7D7A7CF8" name="X81EE8C1F7D7A7CF8"></a></p>
<h4>62.7 <span class="Heading">Ideals of Algebras</span></h4>
<p>For constructing and working with ideals in algebras the same functions are available as for ideals in rings. So for the precise description of these functions we refer to Chapter <a href="chap56.html#X81897F6082CACB59"><span class="RefLink">56</span></a>. Here we give examples demonstrating the use of ideals in algebras. For an introduction into the construction of quotient algebras we refer to Chapter <a href="../../doc/tut/chap6.html#X7DDBF6F47A2E021C"><span class="RefLink">Tutorial: Algebras</span></a> of the user's tutorial.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= [ [ 0, 2, 3 ], [ 0, 0, 4 ], [ 0, 0, 0] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= AlgebraWithOne( Rationals, [ m ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">I:= Ideal( A, [ m ] ); # the two-sided ideal of `A' generated by `m'</span>
<two-sided ideal in <algebra-with-one of dimension 3 over Rationals>,
(1 generators)>
<span class="GAPprompt">gap></span> <span class="GAPinput">Dimension( I );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfIdeal( I );</span>
[ [ [ 0, 2, 3 ], [ 0, 0, 4 ], [ 0, 0, 0 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">BasisVectors( Basis( I ) );</span>
[ [ [ 0, 1, 3/2 ], [ 0, 0, 2 ], [ 0, 0, 0 ] ],
[ [ 0, 0, 1 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= FullMatrixAlgebra( Rationals, 4 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= NullMat( 4, 4 );; m[1][4]:=1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">I:= LeftIdeal( A, [ m ] );</span>
<left ideal in ( Rationals^[ 4, 4 ] ), (1 generators)>
<span class="GAPprompt">gap></span> <span class="GAPinput">Dimension( I );</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfLeftIdeal( I );</span>
[ [ [ 0, 0, 0, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">mats:= [ [[1,0],[0,0]], [[0,1],[0,0]], [[0,0],[0,1]] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= Algebra( Rationals, mats );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput"># Form the two-sided ideal for which `mats[2]' is known to be</span>
<span class="GAPprompt">gap></span> <span class="GAPinput"># the unique basis element.</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">I:= Ideal( A, [ mats[2] ], "basis" );</span>
<two-sided ideal in <algebra of dimension 3 over Rationals>,
(dimension 1)>
</pre></div>
<p><a id="X7DC95D6982C9D7B0" name="X7DC95D6982C9D7B0"></a></p>
<h4>62.8 <span class="Heading">Categories and Properties of Algebras</span></h4>
<p><a id="X7FEDFAA383AB20D2" name="X7FEDFAA383AB20D2"></a></p>
<h5>62.8-1 IsFLMLOR</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsFLMLOR</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A FLMLOR ("free left module left operator ring") in <strong class="pkg">GAP</strong> is a ring that is also a free left module.</p>
<p>Note that this means that being a FLMLOR is not a property a ring can get, since a ring is usually not represented as an external left set.</p>
<p>Examples are magma rings (e.g. over the integers) or algebras.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= FullMatrixAlgebra( Rationals, 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsFLMLOR ( A );</span>
true
</pre></div>
<p><a id="X85C1E13A877DF2C8" name="X85C1E13A877DF2C8"></a></p>
<h5>62.8-2 IsFLMLORWithOne</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsFLMLORWithOne</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A FLMLOR-with-one in <strong class="pkg">GAP</strong> is a ring-with-one that is also a free left module.</p>
<p>Note that this means that being a FLMLOR-with-one is not a property a ring-with-one can get, since a ring-with-one is usually not represented as an external left set.</p>
<p>Examples are magma rings-with-one or algebras-with-one (but also over the integers).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= FullMatrixAlgebra( Rationals, 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsFLMLORWithOne ( A );</span>
true
</pre></div>
<p><a id="X801ED693808F6C84" name="X801ED693808F6C84"></a></p>
<h5>62.8-3 IsAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsAlgebra</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>An algebra in <strong class="pkg">GAP</strong> is a ring that is also a left vector space. Note that this means that being an algebra is not a property a ring can get, since a ring is usually not represented as an external left set.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= MatAlgebra( Rationals, 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsAlgebra( A );</span>
true
</pre></div>
<p><a id="X80B21AC27DE6D068" name="X80B21AC27DE6D068"></a></p>
<h5>62.8-4 IsAlgebraWithOne</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsAlgebraWithOne</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>An algebra-with-one in <strong class="pkg">GAP</strong> is a ring-with-one that is also a left vector space. Note that this means that being an algebra-with-one is not a property a ring-with-one can get, since a ring-with-one is usually not represented as an external left set.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= MatAlgebra( Rationals, 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsAlgebraWithOne( A );</span>
true
</pre></div>
<p><a id="X839BAC687B4E1A1D" name="X839BAC687B4E1A1D"></a></p>
<h5>62.8-5 IsLieAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsLieAlgebra</code>( <var class="Arg">A</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<p>An algebra <var class="Arg">A</var> is called Lie algebra if <span class="SimpleMath">a * a = 0</span> for all <span class="SimpleMath">a</span> in <var class="Arg">A</var> and <span class="SimpleMath">( a * ( b * c ) ) + ( b * ( c * a ) ) + ( c * ( a * b ) ) = 0</span> for all <span class="SimpleMath">a, b, c ∈</span><var class="Arg">A</var> (Jacobi identity).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= FullMatrixLieAlgebra( Rationals, 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsLieAlgebra( A );</span>
true
</pre></div>
<p><a id="X877DF13387831A6A" name="X877DF13387831A6A"></a></p>
<h5>62.8-6 IsSimpleAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsSimpleAlgebra</code>( <var class="Arg">A</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>is <code class="keyw">true</code> if the algebra <var class="Arg">A</var> is simple, and <code class="keyw">false</code> otherwise. This function is only implemented for the cases where <var class="Arg">A</var> is an associative or a Lie algebra. And for Lie algebras it is only implemented for the case where the ground field is of characteristic zero.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= FullMatrixLieAlgebra( Rationals, 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSimpleAlgebra( A );</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= MatAlgebra( Rationals, 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSimpleAlgebra( A );</span>
true
</pre></div>
<p><a id="X7C5AECE87D79D075" name="X7C5AECE87D79D075"></a></p>
<h5>62.8-7 IsFiniteDimensional</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsFiniteDimensional</code>( <var class="Arg">matalg</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns <code class="keyw">true</code> (always) for a matrix algebra <var class="Arg">matalg</var>, since matrix algebras are always finite dimensional.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= MatAlgebra( Rationals, 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsFiniteDimensional( A );</span>
true
</pre></div>
<p><a id="X82B3A9077D0CB453" name="X82B3A9077D0CB453"></a></p>
<h5>62.8-8 IsQuaternion</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsQuaternion</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsQuaternionCollection</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsQuaternionCollColl</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p><code class="func">IsQuaternion</code> is the category of elements in an algebra constructed by <code class="func">QuaternionAlgebra</code> (<a href="chap62.html#X83DF4BCC7CE494FC"><span class="RefLink">62.5-1</span></a>). A collection of quaternions lies in the category <code class="func">IsQuaternionCollection</code>. Finally, a collection of quaternion collections (e.g., a matrix of quaternions) lies in the category <code class="func">IsQuaternionCollColl</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= QuaternionAlgebra( Rationals );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= BasisVectors( Basis( A ) );</span>
[ e, i, j, k ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsQuaternion( b[1] );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsQuaternionCollColl( [ [ b[1], b[2] ], [ b[3], b[4] ] ] );</span>
true
</pre></div>
<p><a id="X7E9273E47CF38CF1" name="X7E9273E47CF38CF1"></a></p>
<h4>62.9 <span class="Heading">Attributes and Operations for Algebras</span></h4>
<p><a id="X83B055F37EBF2438" name="X83B055F37EBF2438"></a></p>
<h5>62.9-1 GeneratorsOfAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsOfAlgebra</code>( <var class="Arg">A</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of elements that generate <var class="Arg">A</var> as an algebra.</p>
<p>For a free algebra, each generator can also be accessed using the <code class="code">.</code> operator (see <code class="func">GeneratorsOfDomain</code> (<a href="chap31.html#X7E353DD1838AB223"><span class="RefLink">31.9-2</span></a>)).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= [ [ 0, 1, 2 ], [ 0, 0, 3 ], [ 0, 0, 0 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= AlgebraWithOne( Rationals, [ m ] );</span>
<algebra-with-one over Rationals, with 1 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfAlgebra( A );</span>
[ [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
[ [ 0, 1, 2 ], [ 0, 0, 3 ], [ 0, 0, 0 ] ] ]
</pre></div>
<p><a id="X7FA408307A5A420E" name="X7FA408307A5A420E"></a></p>
<h5>62.9-2 GeneratorsOfAlgebraWithOne</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsOfAlgebraWithOne</code>( <var class="Arg">A</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of elements of <var class="Arg">A</var> that generate <var class="Arg">A</var> as an algebra with one.</p>
<p>For a free algebra with one, each generator can also be accessed using the <code class="code">.</code> operator (see <code class="func">GeneratorsOfDomain</code> (<a href="chap31.html#X7E353DD1838AB223"><span class="RefLink">31.9-2</span></a>)).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= [ [ 0, 1, 2 ], [ 0, 0, 3 ], [ 0, 0, 0 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= AlgebraWithOne( Rationals, [ m ] );</span>
<algebra-with-one over Rationals, with 1 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfAlgebraWithOne( A );</span>
[ [ [ 0, 1, 2 ], [ 0, 0, 3 ], [ 0, 0, 0 ] ] ]
</pre></div>
<p><a id="X7D309FD37D94B196" name="X7D309FD37D94B196"></a></p>
<h5>62.9-3 ProductSpace</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ProductSpace</code>( <var class="Arg">U</var>, <var class="Arg">V</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>is the vector space <span class="SimpleMath">⟨ u * v ; u ∈ U, v ∈ V ⟩</span>, where <span class="SimpleMath">U</span> and <span class="SimpleMath">V</span> are subspaces of the same algebra.</p>
<p>If <span class="SimpleMath"><var class="Arg">U</var> = <var class="Arg">V</var></span> is known to be an algebra then the product space is also an algebra, moreover it is an ideal in <var class="Arg">U</var>. If <var class="Arg">U</var> and <var class="Arg">V</var> are known to be ideals in an algebra <span class="SimpleMath">A</span> then the product space is known to be an algebra and an ideal in <span class="SimpleMath">A</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= QuaternionAlgebra( Rationals );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= BasisVectors( Basis( A ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= Subalgebra( A, [ b[4] ] );</span>
<algebra over Rationals, with 1 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">ProductSpace( A, B );</span>
<vector space of dimension 4 over Rationals>
</pre></div>
<p><a id="X875CD2B37EE9A8A2" name="X875CD2B37EE9A8A2"></a></p>
<h5>62.9-4 PowerSubalgebraSeries</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PowerSubalgebraSeries</code>( <var class="Arg">A</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of subalgebras of <var class="Arg">A</var>, the first term of which is <var class="Arg">A</var>; and every next term is the product space of the previous term with itself.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= QuaternionAlgebra( Rationals );</span>
<algebra-with-one of dimension 4 over Rationals>
<span class="GAPprompt">gap></span> <span class="GAPinput">PowerSubalgebraSeries( A );</span>
[ <algebra-with-one of dimension 4 over Rationals> ]
</pre></div>
<p><a id="X788F4E6184E5C863" name="X788F4E6184E5C863"></a></p>
<h5>62.9-5 AdjointBasis</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AdjointBasis</code>( <var class="Arg">B</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The <em>adjoint map</em> <span class="SimpleMath">ad(x)</span> of an element <span class="SimpleMath">x</span> in an <span class="SimpleMath">F</span>-algebra <span class="SimpleMath">A</span>, say, is the left multiplication by <span class="SimpleMath">x</span>. This map is <span class="SimpleMath">F</span>-linear and thus, w.r.t. the given basis <var class="Arg">B</var><span class="SimpleMath">= (x_1, x_2, ..., x_n)</span> of <span class="SimpleMath">A</span>, <span class="SimpleMath">ad(x)</span> can be represented by a matrix over <span class="SimpleMath">F</span>. Let <span class="SimpleMath">V</span> denote the <span class="SimpleMath">F</span>-vector space of the matrices corresponding to <span class="SimpleMath">ad(x)</span>, for <span class="SimpleMath">x ∈ A</span>. Then <code class="func">AdjointBasis</code> returns the basis of <span class="SimpleMath">V</span> that consists of the matrices for <span class="SimpleMath">ad(x_1), ..., ad(x_n)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= QuaternionAlgebra( Rationals );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AdjointBasis( Basis( A ) );</span>
Basis( <vector space over Rationals, with 4 generators>,
[ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
[ [ 0, -1, 0, 0 ], [ 1, 0, 0, 0 ], [ 0, 0, 0, -1 ], [ 0, 0, 1, 0 ] ]
,
[ [ 0, 0, -1, 0 ], [ 0, 0, 0, 1 ], [ 1, 0, 0, 0 ], [ 0, -1, 0, 0 ] ]
,
[ [ 0, 0, 0, -1 ], [ 0, 0, -1, 0 ], [ 0, 1, 0, 0 ], [ 1, 0, 0, 0 ]
] ] )
</pre></div>
<p><a id="X800A410B8536E6DD" name="X800A410B8536E6DD"></a></p>
<h5>62.9-6 IndicesOfAdjointBasis</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IndicesOfAdjointBasis</code>( <var class="Arg">B</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Let <var class="Arg">A</var> be an algebra and let <var class="Arg">B</var> be the basis that is output by <code class="code">AdjointBasis( Basis( <var class="Arg">A</var> ) )</code>. This function returns a list of indices. If <span class="SimpleMath">i</span> is an index belonging to this list, then <span class="SimpleMath">ad x_i</span> is a basis vector of the matrix space spanned by <span class="SimpleMath">ad A</span>, where <span class="SimpleMath">x_i</span> is the <span class="SimpleMath">i</span>-th basis vector of the basis <var class="Arg">B</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:= FullMatrixLieAlgebra( Rationals, 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= AdjointBasis( Basis( L ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IndicesOfAdjointBasis( B );</span>
[ 1, 2, 3, 4, 5, 6, 7, 8 ]
</pre></div>
<p><a id="X7BA35CB28062D407" name="X7BA35CB28062D407"></a></p>
<h5>62.9-7 AsAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AsAlgebra</code>( <var class="Arg">F</var>, <var class="Arg">A</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns the algebra over <var class="Arg">F</var> generated by <var class="Arg">A</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= VectorSpace( Rationals, [ IdentityMat( 2 ) ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AsAlgebra( Rationals, V );</span>
<algebra of dimension 1 over Rationals>
</pre></div>
<p><a id="X878323367D0B68EB" name="X878323367D0B68EB"></a></p>
<h5>62.9-8 AsAlgebraWithOne</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AsAlgebraWithOne</code>( <var class="Arg">F</var>, <var class="Arg">A</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>If the algebra <var class="Arg">A</var> has an identity, then it can be viewed as an algebra with one over <var class="Arg">F</var>. This function returns this algebra with one.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= VectorSpace( Rationals, [ IdentityMat( 2 ) ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= AsAlgebra( Rationals, V );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AsAlgebraWithOne( Rationals, A );</span>
<algebra-with-one over Rationals, with 1 generators>
</pre></div>
<p><a id="X7A922D26805AFF99" name="X7A922D26805AFF99"></a></p>
<h5>62.9-9 AsSubalgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AsSubalgebra</code>( <var class="Arg">A</var>, <var class="Arg">B</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>If all elements of the algebra <var class="Arg">B</var> happen to be contained in the algebra <var class="Arg">A</var>, then <var class="Arg">B</var> can be viewed as a subalgebra of <var class="Arg">A</var>. This function returns this subalgebra.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= FullMatrixAlgebra( Rationals, 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= VectorSpace( Rationals, [ IdentityMat( 2 ) ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= AsAlgebra( Rationals, V );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">BA:= AsSubalgebra( A, B );</span>
<algebra of dimension 1 over Rationals>
</pre></div>
<p><a id="X7B964BC37A975E48" name="X7B964BC37A975E48"></a></p>
<h5>62.9-10 AsSubalgebraWithOne</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AsSubalgebraWithOne</code>( <var class="Arg">A</var>, <var class="Arg">B</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>If <var class="Arg">B</var> is an algebra with one, all elements of which happen to be contained in the algebra with one <var class="Arg">A</var>, then <var class="Arg">B</var> can be viewed as a subalgebra with one of <var class="Arg">A</var>. This function returns this subalgebra with one.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= FullMatrixAlgebra( Rationals, 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= VectorSpace( Rationals, [ IdentityMat( 2 ) ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= AsAlgebra( Rationals, V );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:= AsAlgebraWithOne( Rationals, B );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AC:= AsSubalgebraWithOne( A, C );</span>
<algebra-with-one over Rationals, with 1 generators>
</pre></div>
<p><a id="X7C280DAC7F840B60" name="X7C280DAC7F840B60"></a></p>
<h5>62.9-11 MutableBasisOfClosureUnderAction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MutableBasisOfClosureUnderAction</code>( <var class="Arg">F</var>, <var class="Arg">Agens</var>, <var class="Arg">from</var>, <var class="Arg">init</var>, <var class="Arg">opr</var>, <var class="Arg">zero</var>, <var class="Arg">maxdim</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <var class="Arg">F</var> be a ring, <var class="Arg">Agens</var> a list of generators for an <var class="Arg">F</var>-algebra <span class="SimpleMath">A</span>, and <var class="Arg">from</var> one of <code class="code">"left"</code>, <code class="code">"right"</code>, <code class="code">"both"</code>; this means that elements of <span class="SimpleMath">A</span> act via multiplication from the respective side(s). <var class="Arg">init</var> must be a list of initial generating vectors, and <var class="Arg">opr</var> the operation (a function of two arguments).</p>
<p><code class="func">MutableBasisOfClosureUnderAction</code> returns a mutable basis of the <var class="Arg">F</var>-free left module generated by the vectors in <var class="Arg">init</var> and their images under the action of <var class="Arg">Agens</var> from the respective side(s).</p>
<p><var class="Arg">zero</var> is the zero element of the desired module. <var class="Arg">maxdim</var> is an upper bound for the dimension of the closure; if no such upper bound is known then the value of <var class="Arg">maxdim</var> must be <code class="func">infinity</code> (<a href="chap18.html#X8511B8DF83324C27"><span class="RefLink">18.2-1</span></a>).</p>
<p><code class="func">MutableBasisOfClosureUnderAction</code> can be used to compute a basis of an <em>associative</em> algebra generated by the elements in <var class="Arg">Agens</var>. In this case <var class="Arg">from</var> may be <code class="code">"left"</code> or <code class="code">"right"</code>, <var class="Arg">opr</var> is the multiplication <code class="code">*</code>, and <var class="Arg">init</var> is a list containing either the identity of the algebra or a list of algebra generators. (Note that if the algebra has an identity then it is in general not sufficient to take algebra-with-one generators as <var class="Arg">init</var>, whereas of course <var class="Arg">Agens</var> need not contain the identity.)</p>
<p>(Note that bases of <em>not</em> necessarily associative algebras can be computed using <code class="func">MutableBasisOfNonassociativeAlgebra</code> (<a href="chap62.html#X7BA1739D7F8B3A2B"><span class="RefLink">62.9-12</span></a>).)</p>
<p>Other applications of <code class="func">MutableBasisOfClosureUnderAction</code> are the computations of bases for (left/ right/ two-sided) ideals <span class="SimpleMath">I</span> in an <em>associative</em> algebra <span class="SimpleMath">A</span> from ideal generators of <span class="SimpleMath">I</span>; in these cases <var class="Arg">Agens</var> is a list of algebra generators of <span class="SimpleMath">A</span>, <var class="Arg">from</var> denotes the appropriate side(s), <var class="Arg">init</var> is a list of ideal generators of <span class="SimpleMath">I</span>, and <var class="Arg">opr</var> is again <code class="code">*</code>.</p>
<p>(Note that bases of ideals in <em>not</em> necessarily associative algebras can be computed using <code class="func">MutableBasisOfIdealInNonassociativeAlgebra</code> (<a href="chap62.html#X8467B687823371F9"><span class="RefLink">62.9-13</span></a>).)</p>
<p>Finally, bases of right <span class="SimpleMath">A</span>-modules also can be computed using <code class="func">MutableBasisOfClosureUnderAction</code>. The only difference to the ideal case is that <var class="Arg">init</var> is now a list of right module generators, and <var class="Arg">opr</var> is the operation of the module.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= QuaternionAlgebra( Rationals );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= GeneratorsOfAlgebra( A );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= MutableBasisOfClosureUnderAction( Rationals, </span>
<span class="GAPprompt">></span> <span class="GAPinput"> g, "left", [ g[1] ], \*, Zero(A), 4 );</span>
<mutable basis over Rationals, 4 vectors>
<span class="GAPprompt">gap></span> <span class="GAPinput">BasisVectors( B );</span>
[ e, i, j, k ]
</pre></div>
<p><a id="X7BA1739D7F8B3A2B" name="X7BA1739D7F8B3A2B"></a></p>
<h5>62.9-12 MutableBasisOfNonassociativeAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MutableBasisOfNonassociativeAlgebra</code>( <var class="Arg">F</var>, <var class="Arg">Agens</var>, <var class="Arg">zero</var>, <var class="Arg">maxdim</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>is a mutable basis of the (not necessarily associative) <var class="Arg">F</var>-algebra that is generated by <var class="Arg">Agens</var>, has zero element <var class="Arg">zero</var>, and has dimension at most <var class="Arg">maxdim</var>. If no finite bound for the dimension is known then <code class="func">infinity</code> (<a href="chap18.html#X8511B8DF83324C27"><span class="RefLink">18.2-1</span></a>) must be the value of <var class="Arg">maxdim</var>.</p>
<p>The difference to <code class="func">MutableBasisOfClosureUnderAction</code> (<a href="chap62.html#X7C280DAC7F840B60"><span class="RefLink">62.9-11</span></a>) is that in general it is not sufficient to multiply just with algebra generators. (For special cases of nonassociative algebras, especially for Lie algebras, multiplying with algebra generators suffices.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:= FullMatrixLieAlgebra( Rationals, 4 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m1:= Random( L );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m2:= Random( L );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">MutableBasisOfNonassociativeAlgebra( Rationals, [ m1, m2 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput">Zero( L ), 16 );</span>
<mutable basis over Rationals, 16 vectors>
</pre></div>
<p><a id="X8467B687823371F9" name="X8467B687823371F9"></a></p>
<h5>62.9-13 MutableBasisOfIdealInNonassociativeAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MutableBasisOfIdealInNonassociativeAlgebra</code>( <var class="Arg">F</var>, <var class="Arg">Vgens</var>, <var class="Arg">Igens</var>, <var class="Arg">zero</var>, <var class="Arg">from</var>, <var class="Arg">maxdim</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>is a mutable basis of the ideal generated by <var class="Arg">Igens</var> under the action of the (not necessarily associative) <var class="Arg">F</var>-algebra with vector space generators <var class="Arg">Vgens</var>. The zero element of the ideal is <var class="Arg">zero</var>, <var class="Arg">from</var> is one of <code class="code">"left"</code>, <code class="code">"right"</code>, <code class="code">"both"</code> (with the same meaning as in <code class="func">MutableBasisOfClosureUnderAction</code> (<a href="chap62.html#X7C280DAC7F840B60"><span class="RefLink">62.9-11</span></a>)), and <var class="Arg">maxdim</var> is a known upper bound on the dimension of the ideal; if no finite bound for the dimension is known then <code class="func">infinity</code> (<a href="chap18.html#X8511B8DF83324C27"><span class="RefLink">18.2-1</span></a>) must be the value of <var class="Arg">maxdim</var>.</p>
<p>The difference to <code class="func">MutableBasisOfClosureUnderAction</code> (<a href="chap62.html#X7C280DAC7F840B60"><span class="RefLink">62.9-11</span></a>) is that in general it is not sufficient to multiply just with algebra generators. (For special cases of nonassociative algebras, especially for Lie algebras, multiplying with algebra generators suffices.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">mats:= [ [[ 1, 0 ], [ 0, -1 ]], [[0,1],[0,0]] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= Algebra( Rationals, mats );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">basA:= BasisVectors( Basis( A ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= MutableBasisOfIdealInNonassociativeAlgebra( Rationals, basA,</span>
<span class="GAPprompt">></span> <span class="GAPinput">[ mats[2] ], 0*mats[1], "both", infinity );</span>
<mutable basis over Rationals, 1 vectors>
<span class="GAPprompt">gap></span> <span class="GAPinput">BasisVectors( B );</span>
[ [ [ 0, 1 ], [ 0, 0 ] ] ]
</pre></div>
<p><a id="X7C591B7C7DEA7EEB" name="X7C591B7C7DEA7EEB"></a></p>
<h5>62.9-14 DirectSumOfAlgebras</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DirectSumOfAlgebras</code>( <var class="Arg">A1</var>, <var class="Arg">A2</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DirectSumOfAlgebras</code>( <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>is the direct sum of the two algebras <var class="Arg">A1</var> and <var class="Arg">A2</var> respectively of the algebras in the list <var class="Arg">list</var>.</p>
<p>If all involved algebras are associative algebras then the result is also known to be associative. If all involved algebras are Lie algebras then the result is also known to be a Lie algebra.</p>
<p>All involved algebras must have the same left acting domain.</p>
<p>The default case is that the result is a structure constants algebra. If all involved algebras are matrix algebras, and either both are Lie algebras or both are associative then the result is again a matrix algebra of the appropriate type.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= QuaternionAlgebra( Rationals );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">DirectSumOfAlgebras( [A, A, A] );</span>
<algebra of dimension 12 over Rationals>
</pre></div>
<p><a id="X7D0EB1437D3D9495" name="X7D0EB1437D3D9495"></a></p>
<h5>62.9-15 FullMatrixAlgebraCentralizer</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FullMatrixAlgebraCentralizer</code>( <var class="Arg">F</var>, <var class="Arg">lst</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <var class="Arg">lst</var> be a nonempty list of square matrices of the same dimension <span class="SimpleMath">n</span>, say, with entries in the field <var class="Arg">F</var>. <code class="func">FullMatrixAlgebraCentralizer</code> returns the (pointwise) centralizer of all matrices in <var class="Arg">lst</var>, inside the full matrix algebra of <span class="SimpleMath">n × n</span> matrices over <var class="Arg">F</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= QuaternionAlgebra( Rationals );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= Basis( A );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mats:= List( BasisVectors( b ), x -> AdjointMatrix( b, x ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">FullMatrixAlgebraCentralizer( Rationals, mats );</span>
<algebra-with-one of dimension 4 over Rationals>
</pre></div>
<p><a id="X850C29907A509533" name="X850C29907A509533"></a></p>
<h5>62.9-16 RadicalOfAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RadicalOfAlgebra</code>( <var class="Arg">A</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is the maximal nilpotent ideal of <var class="Arg">A</var>, where <var class="Arg">A</var> is an associative algebra.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= [ [ 0, 1, 2 ], [ 0, 0, 3 ], [ 0, 0, 0 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= AlgebraWithOneByGenerators( Rationals, [ m ] );</span>
<algebra-with-one over Rationals, with 1 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">RadicalOfAlgebra( A );</span>
<algebra of dimension 2 over Rationals>
</pre></div>
<p><a id="X82571785846CF05C" name="X82571785846CF05C"></a></p>
<h5>62.9-17 CentralIdempotentsOfAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CentralIdempotentsOfAlgebra</code>( <var class="Arg">A</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For an associative algebra <var class="Arg">A</var>, this function returns a list of central primitive idempotents such that their sum is the identity element of <var class="Arg">A</var>. Therefore <var class="Arg">A</var> is required to have an identity.</p>
<p>(This is a synonym of <code class="code">CentralIdempotentsOfSemiring</code>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= QuaternionAlgebra( Rationals );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= DirectSumOfAlgebras( [A, A, A] );</span>
<algebra of dimension 12 over Rationals>
<span class="GAPprompt">gap></span> <span class="GAPinput">CentralIdempotentsOfAlgebra( B );</span>
[ v.9, v.5, v.1 ]
</pre></div>
<p><a id="X7CFB230582C26DAA" name="X7CFB230582C26DAA"></a></p>
<h5>62.9-18 DirectSumDecomposition</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DirectSumDecomposition</code>( <var class="Arg">L</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>This function calculates a list of ideals of the algebra <var class="Arg">L</var> such that <var class="Arg">L</var> is equal to their direct sum. Currently this is only implemented for semisimple associative algebras, and for Lie algebras (semisimple or not).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= SymmetricGroup( 4 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= GroupRing( Rationals, G );</span>
<algebra-with-one over Rationals, with 2 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">dd:= DirectSumDecomposition( A );</span>
[ <two-sided ideal in
<algebra-with-one of dimension 24 over Rationals>,
(1 generators)>,
<two-sided ideal in
<algebra-with-one of dimension 24 over Rationals>,
(1 generators)>,
<two-sided ideal in
<algebra-with-one of dimension 24 over Rationals>,
(1 generators)>,
<two-sided ideal in
<algebra-with-one of dimension 24 over Rationals>,
(1 generators)>,
<two-sided ideal in
<algebra-with-one of dimension 24 over Rationals>,
(1 generators)> ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( dd, Dimension );</span>
[ 1, 1, 4, 9, 9 ]
</pre></div>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:= FullMatrixLieAlgebra( Rationals, 5 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">DirectSumDecomposition( L );</span>
[ <two-sided ideal in
<two-sided ideal in <Lie algebra of dimension 25 over Rationals>
, (dimension 1)>, (dimension 1)>,
<two-sided ideal in
<two-sided ideal in <Lie algebra of dimension 25 over Rationals>
, (dimension 24)>, (dimension 24)> ]
</pre></div>
<p><a id="X85C58364833E014C" name="X85C58364833E014C"></a></p>
<h5>62.9-19 LeviMalcevDecomposition</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LeviMalcevDecomposition</code>( <var class="Arg">L</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>A Levi-Malcev subalgebra of the algebra <var class="Arg">L</var> is a semisimple subalgebra complementary to the radical of <var class="Arg">L</var>. This function returns a list with two components. The first component is a Levi-Malcev subalgebra, the second the radical. This function is implemented for associative and Lie algebras.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m:= [ [ 1, 2, 0 ], [ 0, 1, 3 ], [ 0, 0, 1] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= Algebra( Rationals, [ m ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">LeviMalcevDecomposition( A );</span>
[ <algebra of dimension 1 over Rationals>,
<algebra of dimension 2 over Rationals> ]
</pre></div>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:= FullMatrixLieAlgebra( Rationals, 5 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">LeviMalcevDecomposition( L );</span>
[ <Lie algebra of dimension 24 over Rationals>,
<two-sided ideal in <Lie algebra of dimension 25 over Rationals>,
(dimension 1)> ]
</pre></div>
<p><a id="X7DCA2568870A2D34" name="X7DCA2568870A2D34"></a></p>
<h5>62.9-20 Grading</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Grading</code>( <var class="Arg">A</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Let <span class="SimpleMath">G</span> be an Abelian group and <span class="SimpleMath">A</span> an algebra. Then <span class="SimpleMath">A</span> is said to be graded over <span class="SimpleMath">G</span> if for every <span class="SimpleMath">g ∈ G</span> there is a subspace <span class="SimpleMath">A_g</span> of <span class="SimpleMath">A</span> such that <span class="SimpleMath">A_g ⋅ A_h ⊂ A_{g+h}</span> for <span class="SimpleMath">g, h ∈ G</span>. In <strong class="pkg">GAP</strong> 4 a <em>grading</em> of an algebra is a record containing the following components.</p>
<dl>
<dt><strong class="Mark"><code class="code">source</code></strong></dt>
<dd><p>the Abelian group over which the algebra is graded.</p>
</dd>
<dt><strong class="Mark"><code class="code">hom_components</code></strong></dt>
<dd><p>a function assigning to each element from the source a subspace of the algebra.</p>
</dd>
<dt><strong class="Mark"><code class="code">min_degree</code></strong></dt>
<dd><p>in the case where the algebra is graded over the integers this is the minimum number for which <code class="code">hom_components</code> returns a nonzero subspace.</p>
</dd>
<dt><strong class="Mark"><code class="code">max_degree</code></strong></dt>
<dd><p>is analogous to <code class="code">min_degree</code>.</p>
</dd>
</dl>
<p>We note that there are no methods to compute a grading of an arbitrary algebra; however some algebras get a natural grading when they are constructed (see <code class="func">JenningsLieAlgebra</code> (<a href="chap64.html#X8692ADD581359CA1"><span class="RefLink">64.8-4</span></a>), <code class="func">NilpotentQuotientOfFpLieAlgebra</code> (<a href="chap64.html#X79FD70C487EA9438"><span class="RefLink">64.11-2</span></a>)).</p>
<p>We note also that these components may be not enough to handle the grading efficiently, and another record component may be needed. For instance in a Lie algebra <span class="SimpleMath">L</span> constructed by <code class="func">JenningsLieAlgebra</code> (<a href="chap64.html#X8692ADD581359CA1"><span class="RefLink">64.8-4</span></a>), the length of the of the range <code class="code">[ Grading(L)!.min_degree .. Grading(L)!.max_degree ]</code> may be non-polynomial in the dimension of <span class="SimpleMath">L</span>. To handle efficiently this situation, an optional component can be used:</p>
<dl>
<dt><strong class="Mark"><code class="code">non_zero_hom_components</code></strong></dt>
<dd><p>the subset of <code class="code">source</code> for which <code class="code">hom_components</code> returns a nonzero subspace.</p>
</dd>
</dl>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= SmallGroup(3^6, 100 );</span>
<pc group of size 729 with 6 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:= JenningsLieAlgebra( G );</span>
<Lie algebra of dimension 6 over GF(3)>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:= Grading( L );</span>
rec( hom_components := function( d ) ... end, max_degree := 9,
min_degree := 1, source := Integers )
<span class="GAPprompt">gap></span> <span class="GAPinput">g.hom_components( 3 );</span>
<vector space over GF(3), with 1 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">g.hom_components( 14 );</span>
<vector space over GF(3), with 0 generators>
</pre></div>
<p><a id="X7E94B857847F95C1" name="X7E94B857847F95C1"></a></p>
<h4>62.10 <span class="Heading">Homomorphisms of Algebras</span></h4>
<p>Algebra homomorphisms are vector space homomorphisms that preserve the multiplication. So the default methods for vector space homomorphisms work, and in fact there is not much use of the fact that source and range are algebras, except that preimages and images are algebras (or even ideals) in certain cases.</p>
<p><a id="X83CE798C7D39E368" name="X83CE798C7D39E368"></a></p>
<h5>62.10-1 AlgebraGeneralMappingByImages</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AlgebraGeneralMappingByImages</code>( <var class="Arg">A</var>, <var class="Arg">B</var>, <var class="Arg">gens</var>, <var class="Arg">imgs</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>is a general mapping from the <span class="SimpleMath">F</span>-algebra <var class="Arg">A</var> to the <span class="SimpleMath">F</span>-algebra <var class="Arg">B</var>. This general mapping is defined by mapping the entries in the list <var class="Arg">gens</var> (elements of <var class="Arg">A</var>) to the entries in the list <var class="Arg">imgs</var> (elements of <var class="Arg">B</var>), and taking the <span class="SimpleMath">F</span>-linear and multiplicative closure.</p>
<p><var class="Arg">gens</var> need not generate <var class="Arg">A</var> as an <span class="SimpleMath">F</span>-algebra, and if the specification does not define a linear and multiplicative mapping then the result will be multivalued. Hence, in general it is not a mapping. For constructing a linear map that is not necessarily multiplicative, we refer to <code class="func">LeftModuleHomomorphismByImages</code> (<a href="chap61.html#X85F5293983E47B5A"><span class="RefLink">61.10-2</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= QuaternionAlgebra( Rationals );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= FullMatrixAlgebra( Rationals, 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bA:= BasisVectors( Basis( A ) );; bB:= BasisVectors( Basis( B ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= AlgebraGeneralMappingByImages( A, B, bA, bB );</span>
[ e, i, j, k ] -> [ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 0, 1 ], [ 0, 0 ] ],
[ [ 0, 0 ], [ 1, 0 ] ], [ [ 0, 0 ], [ 0, 1 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Images( f, bA[1] );</span>
<add. coset of <algebra over Rationals, with 16 generators>>
</pre></div>
<p><a id="X7A7F97ED8608C882" name="X7A7F97ED8608C882"></a></p>
<h5>62.10-2 AlgebraHomomorphismByImages</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AlgebraHomomorphismByImages</code>( <var class="Arg">A</var>, <var class="Arg">B</var>, <var class="Arg">gens</var>, <var class="Arg">imgs</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">AlgebraHomomorphismByImages</code> returns the algebra homomorphism with source <var class="Arg">A</var> and range <var class="Arg">B</var> that is defined by mapping the list <var class="Arg">gens</var> of generators of <var class="Arg">A</var> to the list <var class="Arg">imgs</var> of images in <var class="Arg">B</var>.</p>
<p>If <var class="Arg">gens</var> does not generate <var class="Arg">A</var> or if the homomorphism does not exist (i.e., if mapping the generators describes only a multi-valued mapping) then <code class="keyw">fail</code> is returned.</p>
<p>One can avoid the checks by calling <code class="func">AlgebraHomomorphismByImagesNC</code> (<a href="chap62.html#X8326D1BD79725462"><span class="RefLink">62.10-3</span></a>), and one can construct multi-valued mappings with <code class="func">AlgebraGeneralMappingByImages</code> (<a href="chap62.html#X83CE798C7D39E368"><span class="RefLink">62.10-1</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:= EmptySCTable( 2, 0 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 1, 1, [1,1] ); SetEntrySCTable( T, 2, 2, [1,2] );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= AlgebraByStructureConstants( Rationals, T );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= AlgebraByGenerators( Rationals, [ m1, m2 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bA:= BasisVectors( Basis( A ) );; bB:= BasisVectors( Basis( B ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= AlgebraHomomorphismByImages( A, B, bA, bB );</span>
[ v.1, v.2 ] -> [ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 0, 0 ], [ 0, 1 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Image( f, bA[1]+bA[2] );</span>
[ [ 1, 0 ], [ 0, 1 ] ]
</pre></div>
<p><a id="X8326D1BD79725462" name="X8326D1BD79725462"></a></p>
<h5>62.10-3 AlgebraHomomorphismByImagesNC</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AlgebraHomomorphismByImagesNC</code>( <var class="Arg">A</var>, <var class="Arg">B</var>, <var class="Arg">gens</var>, <var class="Arg">imgs</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">AlgebraHomomorphismByImagesNC</code> is the operation that is called by the function <code class="func">AlgebraHomomorphismByImages</code> (<a href="chap62.html#X7A7F97ED8608C882"><span class="RefLink">62.10-2</span></a>). Its methods may assume that <var class="Arg">gens</var> generates <var class="Arg">A</var> and that the mapping of <var class="Arg">gens</var> to <var class="Arg">imgs</var> defines an algebra homomorphism. Results are unpredictable if these conditions do not hold.</p>
<p>For creating a possibly multi-valued mapping from <var class="Arg">A</var> to <var class="Arg">B</var> that respects addition, multiplication, and scalar multiplication, <code class="func">AlgebraGeneralMappingByImages</code> (<a href="chap62.html#X83CE798C7D39E368"><span class="RefLink">62.10-1</span></a>) can be used.</p>
<p>For the definitions of the algebras <code class="code">A</code> and <code class="code">B</code> in the next example we refer to the previous example.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= AlgebraHomomorphismByImagesNC( A, B, bA, bB );</span>
[ v.1, v.2 ] -> [ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 0, 0 ], [ 0, 1 ] ] ]
</pre></div>
<p><a id="X8057E55B864567AD" name="X8057E55B864567AD"></a></p>
<h5>62.10-4 AlgebraWithOneGeneralMappingByImages</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AlgebraWithOneGeneralMappingByImages</code>( <var class="Arg">A</var>, <var class="Arg">B</var>, <var class="Arg">gens</var>, <var class="Arg">imgs</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>This function is analogous to <code class="func">AlgebraGeneralMappingByImages</code> (<a href="chap62.html#X83CE798C7D39E368"><span class="RefLink">62.10-1</span></a>); the only difference being that the identity of <var class="Arg">A</var> is automatically mapped to the identity of <var class="Arg">B</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= QuaternionAlgebra( Rationals );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= FullMatrixAlgebra( Rationals, 2 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bA:= BasisVectors( Basis( A ) );; bB:= BasisVectors( Basis( B ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=AlgebraWithOneGeneralMappingByImages(A,B,bA{[2,3,4]},bB{[1,2,3]});</span>
[ i, j, k, e ] -> [ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 0, 1 ], [ 0, 0 ] ],
[ [ 0, 0 ], [ 1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ]
</pre></div>
<p><a id="X866F32B5846E5857" name="X866F32B5846E5857"></a></p>
<h5>62.10-5 AlgebraWithOneHomomorphismByImages</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AlgebraWithOneHomomorphismByImages</code>( <var class="Arg">A</var>, <var class="Arg">B</var>, <var class="Arg">gens</var>, <var class="Arg">imgs</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">AlgebraWithOneHomomorphismByImages</code> returns the algebra-with-one homomorphism with source <var class="Arg">A</var> and range <var class="Arg">B</var> that is defined by mapping the list <var class="Arg">gens</var> of generators of <var class="Arg">A</var> to the list <var class="Arg">imgs</var> of images in <var class="Arg">B</var>.</p>
<p>The difference between an algebra homomorphism and an algebra-with-one homomorphism is that in the latter case, it is assumed that the identity of <var class="Arg">A</var> is mapped to the identity of <var class="Arg">B</var>, and therefore <var class="Arg">gens</var> needs to generate <var class="Arg">A</var> only as an algebra-with-one.</p>
<p>If <var class="Arg">gens</var> does not generate <var class="Arg">A</var> or if the homomorphism does not exist (i.e., if mapping the generators describes only a multi-valued mapping) then <code class="keyw">fail</code> is returned.</p>
<p>One can avoid the checks by calling <code class="func">AlgebraWithOneHomomorphismByImagesNC</code> (<a href="chap62.html#X80BF4D6A7FDC959A"><span class="RefLink">62.10-6</span></a>), and one can construct multi-valued mappings with <code class="func">AlgebraWithOneGeneralMappingByImages</code> (<a href="chap62.html#X8057E55B864567AD"><span class="RefLink">62.10-4</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m1:= NullMat( 2, 2 );; m1[1][1]:=1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m2:= NullMat( 2, 2 );; m2[2][2]:=1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= AlgebraByGenerators( Rationals, [m1,m2] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:= EmptySCTable( 2, 0 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 1, 1, [1,1] );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 2, 2, [1,2] );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= AlgebraByStructureConstants(Rationals, T);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bA:= BasisVectors( Basis( A ) );; bB:= BasisVectors( Basis( B ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= AlgebraWithOneHomomorphismByImages( A, B, bA{[1]}, bB{[1]} );</span>
[ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ] -> [ v.1, v.1+v.2 ]
</pre></div>
<p><a id="X80BF4D6A7FDC959A" name="X80BF4D6A7FDC959A"></a></p>
<h5>62.10-6 AlgebraWithOneHomomorphismByImagesNC</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AlgebraWithOneHomomorphismByImagesNC</code>( <var class="Arg">A</var>, <var class="Arg">B</var>, <var class="Arg">gens</var>, <var class="Arg">imgs</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">AlgebraWithOneHomomorphismByImagesNC</code> is the operation that is called by the function <code class="func">AlgebraWithOneHomomorphismByImages</code> (<a href="chap62.html#X866F32B5846E5857"><span class="RefLink">62.10-5</span></a>). Its methods may assume that <var class="Arg">gens</var> generates <var class="Arg">A</var> and that the mapping of <var class="Arg">gens</var> to <var class="Arg">imgs</var> defines an algebra-with-one homomorphism. Results are unpredictable if these conditions do not hold.</p>
<p>For creating a possibly multi-valued mapping from <var class="Arg">A</var> to <var class="Arg">B</var> that respects addition, multiplication, identity, and scalar multiplication, <code class="func">AlgebraWithOneGeneralMappingByImages</code> (<a href="chap62.html#X8057E55B864567AD"><span class="RefLink">62.10-4</span></a>) can be used.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m1:= NullMat( 2, 2 );; m1[1][1]:=1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m2:= NullMat( 2, 2 );; m2[2][2]:=1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= AlgebraByGenerators( Rationals, [m1,m2] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:= EmptySCTable( 2, 0 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 1, 1, [1,1] );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 2, 2, [1,2] );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= AlgebraByStructureConstants( Rationals, T);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bA:= BasisVectors( Basis( A ) );; bB:= BasisVectors( Basis( B ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= AlgebraWithOneHomomorphismByImagesNC( A, B, bA{[1]}, bB{[1]} );</span>
[ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ] -> [ v.1, v.1+v.2 ]
</pre></div>
<p><a id="X8712E5C1861CC32C" name="X8712E5C1861CC32C"></a></p>
<h5>62.10-7 NaturalHomomorphismByIdeal</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NaturalHomomorphismByIdeal</code>( <var class="Arg">A</var>, <var class="Arg">I</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>For an algebra <var class="Arg">A</var> and an ideal <var class="Arg">I</var> in <var class="Arg">A</var>, the return value of <code class="func">NaturalHomomorphismByIdeal</code> (<a href="chap56.html#X83D53D98809EC461"><span class="RefLink">56.8-4</span></a>) is a homomorphism of algebras, in particular the range of this mapping is also an algebra.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:= FullMatrixLieAlgebra( Rationals, 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:= LieCentre( L );</span>
<two-sided ideal in <Lie algebra of dimension 9 over Rationals>,
(dimension 1)>
<span class="GAPprompt">gap></span> <span class="GAPinput">hom:= NaturalHomomorphismByIdeal( L, C );</span>
<linear mapping by matrix, <Lie algebra of dimension
9 over Rationals> -> <Lie algebra of dimension 8 over Rationals>>
<span class="GAPprompt">gap></span> <span class="GAPinput">ImagesSource( hom );</span>
<Lie algebra of dimension 8 over Rationals>
</pre></div>
<p><a id="X8705A9C68102FEA3" name="X8705A9C68102FEA3"></a></p>
<h5>62.10-8 OperationAlgebraHomomorphism</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ OperationAlgebraHomomorphism</code>( <var class="Arg">A</var>, <var class="Arg">B</var>[, <var class="Arg">opr</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ OperationAlgebraHomomorphism</code>( <var class="Arg">A</var>, <var class="Arg">V</var>[, <var class="Arg">opr</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">OperationAlgebraHomomorphism</code> returns an algebra homomorphism from the <span class="SimpleMath">F</span>-algebra <var class="Arg">A</var> into a matrix algebra over <span class="SimpleMath">F</span> that describes the <span class="SimpleMath">F</span>-linear action of <var class="Arg">A</var> on the basis <var class="Arg">B</var> of a free left module respectively on the free left module <var class="Arg">V</var> (in which case some basis of <var class="Arg">V</var> is chosen), via the operation <var class="Arg">opr</var>.</p>
<p>The homomorphism need not be surjective. The default value for <var class="Arg">opr</var> is <code class="func">OnRight</code> (<a href="chap41.html#X7960924D84B5B18F"><span class="RefLink">41.2-2</span></a>).</p>
<p>If <var class="Arg">A</var> is an algebra-with-one then the operation homomorphism is an algebra-with-one homomorphism because the identity of <var class="Arg">A</var> must act as the identity.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= AlgebraByGenerators( Rationals, [ m1, m2 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= FullRowSpace( Rationals, 2 );</span>
( Rationals^2 )
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=OperationAlgebraHomomorphism( B, Basis( V ), OnRight );</span>
<op. hom. Algebra( Rationals,
[ [ [ 1, 0 ], [ 0, 0 ] ], [ [ 0, 0 ], [ 0, 1 ] ]
] ) -> matrices of dim. 2>
<span class="GAPprompt">gap></span> <span class="GAPinput">Image( f, m1 );</span>
[ [ 1, 0 ], [ 0, 0 ] ]
</pre></div>
<p><a id="X7B249E8E86D895F0" name="X7B249E8E86D895F0"></a></p>
<h5>62.10-9 NiceAlgebraMonomorphism</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NiceAlgebraMonomorphism</code>( <var class="Arg">A</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>If <var class="Arg">A</var> is an associative algebra with one, returns an isomorphism from <var class="Arg">A</var> onto a matrix algebra (see <code class="func">IsomorphismMatrixAlgebra</code> (<a href="chap62.html#X7FB760F9813B0789"><span class="RefLink">62.10-11</span></a>) for an example). If <var class="Arg">A</var> is a finitely presented Lie algebra, returns an isomorphism from <var class="Arg">A</var> onto a Lie algebra defined by a structure constants table (see <a href="chap64.html#X7B8C71E07F50B286"><span class="RefLink">64.11</span></a> for an example).</p>
<p><a id="X79D770777D873F80" name="X79D770777D873F80"></a></p>
<h5>62.10-10 IsomorphismFpAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsomorphismFpAlgebra</code>( <var class="Arg">A</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>isomorphism from the algebra <var class="Arg">A</var> onto a finitely presented algebra. Currently this is only implemented for associative algebras with one.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= QuaternionAlgebra( Rationals );</span>
<algebra-with-one of dimension 4 over Rationals>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= IsomorphismFpAlgebra( A );</span>
[ e, i, j, k, e ] -> [ [(1)*x.1], [(1)*x.2], [(1)*x.3], [(1)*x.4],
[(1)*<identity ...>] ]
</pre></div>
<p><a id="X7FB760F9813B0789" name="X7FB760F9813B0789"></a></p>
<h5>62.10-11 IsomorphismMatrixAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsomorphismMatrixAlgebra</code>( <var class="Arg">A</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>isomorphism from the algebra <var class="Arg">A</var> onto a matrix algebra. Currently this is only implemented for associative algebras with one.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:= EmptySCTable( 2, 0 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 1, 1, [1,1] ); SetEntrySCTable( T, 2, 2, [1,2] );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= AlgebraByStructureConstants( Rationals, T );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= AsAlgebraWithOne( Rationals, A );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=IsomorphismMatrixAlgebra( A );</span>
<op. hom. AlgebraWithOne( Rationals, ... ) -> matrices of dim. 2>
<span class="GAPprompt">gap></span> <span class="GAPinput">Image( f, BasisVectors( Basis( A ) )[1] );</span>
[ [ 1, 0 ], [ 0, 0 ] ]
</pre></div>
<p><a id="X7F8D3DF2863EC50D" name="X7F8D3DF2863EC50D"></a></p>
<h5>62.10-12 IsomorphismSCAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsomorphismSCAlgebra</code>( <var class="Arg">B</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsomorphismSCAlgebra</code>( <var class="Arg">A</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For a basis <var class="Arg">B</var> of an algebra <span class="SimpleMath">A</span>, say, <code class="func">IsomorphismSCAlgebra</code> returns an algebra isomorphism from <span class="SimpleMath">A</span> to an algebra <span class="SimpleMath">S</span> given by structure constants (see <a href="chap62.html#X7E8F45547CC07CE5"><span class="RefLink">62.4</span></a>), such that the canonical basis of <span class="SimpleMath">S</span> is the image of <var class="Arg">B</var>.</p>
<p>For an algebra <var class="Arg">A</var>, <code class="func">IsomorphismSCAlgebra</code> chooses a basis of <var class="Arg">A</var> and returns the <code class="func">IsomorphismSCAlgebra</code> value for that basis.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsomorphismSCAlgebra( GF(8) );</span>
CanonicalBasis( GF(2^3) ) -> CanonicalBasis( <algebra of dimension
3 over GF(2)> )
<span class="GAPprompt">gap></span> <span class="GAPinput">IsomorphismSCAlgebra( GF(2)^[2,2] );</span>
CanonicalBasis( ( GF(2)^
[ 2, 2 ] ) ) -> CanonicalBasis( <algebra of dimension 4 over GF(2)> )
</pre></div>
<p><a id="X7F34244B81979696" name="X7F34244B81979696"></a></p>
<h5>62.10-13 RepresentativeLinearOperation</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RepresentativeLinearOperation</code>( <var class="Arg">A</var>, <var class="Arg">v</var>, <var class="Arg">w</var>, <var class="Arg">opr</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>is an element of the algebra <var class="Arg">A</var> that maps the vector <var class="Arg">v</var> to the vector <var class="Arg">w</var> under the linear operation described by the function <var class="Arg">opr</var>. If no such element exists then <code class="keyw">fail</code> is returned.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= AlgebraByGenerators( Rationals, [ m1, m2 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RepresentativeLinearOperation( B, [1,0], [1,0], OnRight );</span>
[ [ 1, 0 ], [ 0, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">RepresentativeLinearOperation( B, [1,0], [0,1], OnRight );</span>
fail
</pre></div>
<p><a id="X818DE6C57D1A4B33" name="X818DE6C57D1A4B33"></a></p>
<h4>62.11 <span class="Heading">Representations of Algebras</span></h4>
<p>An algebra module is a vector space together with an action of an algebra. So a module over an algebra is constructed by giving generators of a vector space, and a function for calculating the action of algebra elements on elements of the vector space. When creating an algebra module, the generators of the vector space are wrapped up and given the category <code class="code">IsLeftAlgebraModuleElement</code> or <code class="code">IsRightModuleElement</code> if the algebra acts from the left, or right respectively. (So in the case of a bi-module the elements get both categories.) Most linear algebra computations are delegated to the original vector space.</p>
<p>The transition between the original vector space and the corresponding algebra module is handled by <code class="code">ExtRepOfObj</code> and <code class="code">ObjByExtRep</code>. For an element <code class="code">v</code> of the algebra module, <code class="code">ExtRepOfObj( v )</code> returns the underlying element of the original vector space. Furthermore, if <code class="code">vec</code> is an element of the original vector space, and <code class="code">fam</code> the elements family of the corresponding algebra module, then <code class="code">ObjByExtRep( fam, vec )</code> returns the corresponding element of the algebra module. Below is an example of this.</p>
<p>The action of the algebra on elements of the algebra module is constructed by using the operator <code class="code">^</code>. If <code class="code">x</code> is an element of an algebra <code class="code">A</code>, and <code class="code">v</code> an element of a left <code class="code">A</code>-module, then <code class="code">x^v</code> calculates the result of the action of <code class="code">x</code> on <code class="code">v</code>. Similarly, if <code class="code">v</code> is an element of a right <code class="code">A</code>-module, then <code class="code">v^x</code> calculates the action of <code class="code">x</code> on <code class="code">v</code>.</p>
<p><a id="X8055B87F7ADBD66B" name="X8055B87F7ADBD66B"></a></p>
<h5>62.11-1 LeftAlgebraModuleByGenerators</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LeftAlgebraModuleByGenerators</code>( <var class="Arg">A</var>, <var class="Arg">op</var>, <var class="Arg">gens</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Constructs the left algebra module over <var class="Arg">A</var> generated by the list of vectors <var class="Arg">gens</var>. The action of <var class="Arg">A</var> is described by the function <var class="Arg">op</var>. This must be a function of two arguments; the first argument is the algebra element, and the second argument is a vector; it outputs the result of applying the algebra element to the vector.</p>
<p><a id="X8026B99B7955A355" name="X8026B99B7955A355"></a></p>
<h5>62.11-2 RightAlgebraModuleByGenerators</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RightAlgebraModuleByGenerators</code>( <var class="Arg">A</var>, <var class="Arg">op</var>, <var class="Arg">gens</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Constructs the right algebra module over <var class="Arg">A</var> generated by the list of vectors <var class="Arg">gens</var>. The action of <var class="Arg">A</var> is described by the function <var class="Arg">op</var>. This must be a function of two arguments; the first argument is a vector, and the second argument is the algebra element; it outputs the result of applying the algebra element to the vector.</p>
<p><a id="X7F28A47E876427E0" name="X7F28A47E876427E0"></a></p>
<h5>62.11-3 BiAlgebraModuleByGenerators</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BiAlgebraModuleByGenerators</code>( <var class="Arg">A</var>, <var class="Arg">B</var>, <var class="Arg">opl</var>, <var class="Arg">opr</var>, <var class="Arg">gens</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Constructs the algebra bi-module over <var class="Arg">A</var> and <var class="Arg">B</var> generated by the list of vectors <var class="Arg">gens</var>. The left action of <var class="Arg">A</var> is described by the function <var class="Arg">opl</var>, and the right action of <var class="Arg">B</var> by the function <var class="Arg">opr</var>. <var class="Arg">opl</var> must be a function of two arguments; the first argument is the algebra element, and the second argument is a vector; it outputs the result of applying the algebra element on the left to the vector. <var class="Arg">opr</var> must be a function of two arguments; the first argument is a vector, and the second argument is the algebra element; it outputs the result of applying the algebra element on the right to the vector.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= Rationals^[3,3];</span>
( Rationals^[ 3, 3 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= LeftAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );</span>
<left-module over ( Rationals^[ 3, 3 ] )>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:= RightAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );</span>
<right-module over ( Rationals^[ 3, 3 ] )>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:= BiAlgebraModuleByGenerators( A, A, \*, \*, [ [ 1, 0, 0 ] ] );</span>
<bi-module over ( Rationals^[ 3, 3 ] ) (left) and ( Rationals^
[ 3, 3 ] ) (right)>
</pre></div>
<p>In the above examples, the modules <code class="code">V</code>, <code class="code">W</code>, and <code class="code">M</code> are <span class="SimpleMath">3</span>-dimensional vector spaces over the rationals. The algebra <code class="code">A</code> acts from the left on <code class="code">V</code>, from the right on <code class="code">W</code>, and from the left and from the right on <code class="code">M</code>.</p>
<p><a id="X852524F581613359" name="X852524F581613359"></a></p>
<h5>62.11-4 LeftAlgebraModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LeftAlgebraModule</code>( <var class="Arg">A</var>, <var class="Arg">op</var>, <var class="Arg">V</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Constructs the left algebra module over <var class="Arg">A</var> with underlying space <var class="Arg">V</var>. The action of <var class="Arg">A</var> is described by the function <var class="Arg">op</var>. This must be a function of two arguments; the first argument is the algebra element, and the second argument is a vector from <var class="Arg">V</var>; it outputs the result of applying the algebra element to the vector.</p>
<p><a id="X8222F2B67D753036" name="X8222F2B67D753036"></a></p>
<h5>62.11-5 RightAlgebraModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RightAlgebraModule</code>( <var class="Arg">A</var>, <var class="Arg">op</var>, <var class="Arg">V</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Constructs the right algebra module over <var class="Arg">A</var> with underlying space <var class="Arg">V</var>. The action of <var class="Arg">A</var> is described by the function <var class="Arg">op</var>. This must be a function of two arguments; the first argument is a vector, from <var class="Arg">V</var> and the second argument is the algebra element; it outputs the result of applying the algebra element to the vector.</p>
<p><a id="X84517770868DDA02" name="X84517770868DDA02"></a></p>
<h5>62.11-6 BiAlgebraModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BiAlgebraModule</code>( <var class="Arg">A</var>, <var class="Arg">B</var>, <var class="Arg">opl</var>, <var class="Arg">opr</var>, <var class="Arg">V</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Constructs the algebra bi-module over <var class="Arg">A</var> and <var class="Arg">B</var> with underlying space <var class="Arg">V</var>. The left action of <var class="Arg">A</var> is described by the function <var class="Arg">opl</var>, and the right action of <var class="Arg">B</var> by the function <var class="Arg">opr</var>. <var class="Arg">opl</var> must be a function of two arguments; the first argument is the algebra element, and the second argument is a vector from <var class="Arg">V</var>; it outputs the result of applying the algebra element on the left to the vector. <var class="Arg">opr</var> must be a function of two arguments; the first argument is a vector from <var class="Arg">V</var>, and the second argument is the algebra element; it outputs the result of applying the algebra element on the right to the vector.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= Rationals^[3,3];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= Rationals^3;</span>
( Rationals^3 )
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= Rationals^3;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:= BiAlgebraModule( A, A, \*, \*, V );</span>
<bi-module over ( Rationals^[ 3, 3 ] ) (left) and ( Rationals^
[ 3, 3 ] ) (right)>
<span class="GAPprompt">gap></span> <span class="GAPinput">Dimension( M );</span>
3
</pre></div>
<p><a id="X79AAB50D83A14A43" name="X79AAB50D83A14A43"></a></p>
<h5>62.11-7 GeneratorsOfAlgebraModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsOfAlgebraModule</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>A list of elements of <var class="Arg">M</var> that generate <var class="Arg">M</var> as an algebra module.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= Rationals^[3,3];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= LeftAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfAlgebraModule( V );</span>
[ [ 1, 0, 0 ] ]
</pre></div>
<p><a id="X82B708BD84F3DAB1" name="X82B708BD84F3DAB1"></a></p>
<h5>62.11-8 IsAlgebraModuleElement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsAlgebraModuleElement</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsAlgebraModuleElementCollection</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsAlgebraModuleElementFamily</code>( <var class="Arg">fam</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>Category of algebra module elements. If an object has <code class="code">IsAlgebraModuleElementCollection</code>, then it is an algebra module. If a family has <code class="code">IsAlgebraModuleElementFamily</code>, then it is a family of algebra module elements (every algebra module has its own elements family).</p>
<p><a id="X80E786467F9163F9" name="X80E786467F9163F9"></a></p>
<h5>62.11-9 IsLeftAlgebraModuleElement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsLeftAlgebraModuleElement</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsLeftAlgebraModuleElementCollection</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>Category of left algebra module elements. If an object has <code class="code">IsLeftAlgebraModuleElementCollection</code>, then it is a left-algebra module.</p>
<p><a id="X863756787E2B6E75" name="X863756787E2B6E75"></a></p>
<h5>62.11-10 IsRightAlgebraModuleElement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsRightAlgebraModuleElement</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsRightAlgebraModuleElementCollection</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>Category of right algebra module elements. If an object has <code class="code">IsRightAlgebraModuleElementCollection</code>, then it is a right-algebra module.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= Rationals^[3,3];</span>
( Rationals^[ 3, 3 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">M:= BiAlgebraModuleByGenerators( A, A, \*, \*, [ [ 1, 0, 0 ] ] );</span>
<bi-module over ( Rationals^[ 3, 3 ] ) (left) and ( Rationals^
[ 3, 3 ] ) (right)>
<span class="GAPprompt">gap></span> <span class="GAPinput">vv:= BasisVectors( Basis( M ) );</span>
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsLeftAlgebraModuleElement( vv[1] );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRightAlgebraModuleElement( vv[1] );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">vv[1] = [ 1, 0, 0 ];</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">ExtRepOfObj( vv[1] ) = [ 1, 0, 0 ];</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">ObjByExtRep( ElementsFamily( FamilyObj( M ) ), [ 1, 0, 0 ] ) in M;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">xx:= BasisVectors( Basis( A ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">xx[4]^vv[1]; # left action</span>
[ 0, 1, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">vv[1]^xx[2]; # right action</span>
[ 0, 1, 0 ]
</pre></div>
<p><a id="X85654EF07F708AC3" name="X85654EF07F708AC3"></a></p>
<h5>62.11-11 LeftActingAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LeftActingAlgebra</code>( <var class="Arg">V</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Here <var class="Arg">V</var> is a left-algebra module; this function returns the algebra that acts from the left on <var class="Arg">V</var>.</p>
<p><a id="X826298B37E1B1520" name="X826298B37E1B1520"></a></p>
<h5>62.11-12 RightActingAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RightActingAlgebra</code>( <var class="Arg">V</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Here <var class="Arg">V</var> is a right-algebra module; this function returns the algebra that acts from the right on <var class="Arg">V</var>.</p>
<p><a id="X8308408D86CFC3C9" name="X8308408D86CFC3C9"></a></p>
<h5>62.11-13 ActingAlgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ActingAlgebra</code>( <var class="Arg">V</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Here <var class="Arg">V</var> is an algebra module; this function returns the algebra that acts on <var class="Arg">V</var> (this is the same as <code class="code">LeftActingAlgebra( <var class="Arg">V</var> )</code> if <var class="Arg">V</var> is a left module, and <code class="code">RightActingAlgebra( <var class="Arg">V</var> )</code> if <var class="Arg">V</var> is a right module; it will signal an error if <var class="Arg">V</var> is a bi-module).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= Rationals^[3,3];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:= BiAlgebraModuleByGenerators( A, A, \*, \*, [ [ 1, 0, 0 ] ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">LeftActingAlgebra( M );</span>
( Rationals^[ 3, 3 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">RightActingAlgebra( M );</span>
( Rationals^[ 3, 3 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= RightAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ActingAlgebra( V );</span>
( Rationals^[ 3, 3 ] )
</pre></div>
<p><a id="X7C325A507EC9BA18" name="X7C325A507EC9BA18"></a></p>
<h5>62.11-14 IsBasisOfAlgebraModuleElementSpace</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsBasisOfAlgebraModuleElementSpace</code>( <var class="Arg">B</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>If a basis <var class="Arg">B</var> lies in the category <code class="code">IsBasisOfAlgebraModuleElementSpace</code>, then <var class="Arg">B</var> is a basis of a subspace of an algebra module. This means that <var class="Arg">B</var> has the record field <code class="code"><var class="Arg">B</var>!.delegateBasis</code> set. This last object is a basis of the corresponding subspace of the vector space underlying the algebra module (i.e., the vector space spanned by all <code class="code">ExtRepOfObj( v )</code> for <code class="code">v</code> in the algebra module).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= Rationals^[3,3];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:= BiAlgebraModuleByGenerators( A, A, \*, \*, [ [ 1, 0, 0 ] ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= Basis( M );</span>
Basis( <3-dimensional bi-module over ( Rationals^
[ 3, 3 ] ) (left) and ( Rationals^[ 3, 3 ] ) (right)>,
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">IsBasisOfAlgebraModuleElementSpace( B );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">B!.delegateBasis;</span>
SemiEchelonBasis( <vector space of dimension 3 over Rationals>,
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] )
</pre></div>
<p><a id="X789863037B0E35D2" name="X789863037B0E35D2"></a></p>
<h5>62.11-15 MatrixOfAction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MatrixOfAction</code>( <var class="Arg">B</var>, <var class="Arg">x</var>[, <var class="Arg">side</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Here <var class="Arg">B</var> is a basis of an algebra module and <var class="Arg">x</var> is an element of the algebra that acts on this module. This function returns the matrix of the action of <var class="Arg">x</var> with respect to <var class="Arg">B</var>. If <var class="Arg">x</var> acts from the left, then the coefficients of the images of the basis elements of <var class="Arg">B</var> (under the action of <var class="Arg">x</var>) are the columns of the output. If <var class="Arg">x</var> acts from the right, then they are the rows of the output.</p>
<p>If the module is a bi-module, then the third parameter <var class="Arg">side</var> must be specified. This is the string <code class="code">"left"</code>, or <code class="code">"right"</code> depending whether <var class="Arg">x</var> acts from the left or the right.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:= LeftAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= Basis(A)[3];</span>
[ [ 0, 0, 1 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">MatrixOfAction( Basis( M ), x );</span>
[ [ 0, 0, 1 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ]
</pre></div>
<p><a id="X8742A7D27F26AFAB" name="X8742A7D27F26AFAB"></a></p>
<h5>62.11-16 SubAlgebraModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubAlgebraModule</code>( <var class="Arg">M</var>, <var class="Arg">gens</var>[, <var class="Arg">"basis"</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>is the sub-module of the algebra module <var class="Arg">M</var>, generated by the vectors in <var class="Arg">gens</var>. If as an optional argument the string <code class="code">basis</code> is added, then it is assumed that the vectors in <var class="Arg">gens</var> form a basis of the submodule.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= Algebra( Rationals, [ m1, m2 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:= LeftAlgebraModuleByGenerators( A, \*, [ [ 1, 0 ], [ 0, 1 ] ] );</span>
<left-module over <algebra over Rationals, with 2 generators>>
<span class="GAPprompt">gap></span> <span class="GAPinput">bb:= BasisVectors( Basis( M ) );</span>
[ [ 1, 0 ], [ 0, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= SubAlgebraModule( M, [ bb[1] ] );</span>
<left-module over <algebra over Rationals, with 2 generators>>
<span class="GAPprompt">gap></span> <span class="GAPinput">Dimension( V );</span>
1
</pre></div>
<p><a id="X86E0515987192F0E" name="X86E0515987192F0E"></a></p>
<h5>62.11-17 LeftModuleByHomomorphismToMatAlg</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LeftModuleByHomomorphismToMatAlg</code>( <var class="Arg">A</var>, <var class="Arg">hom</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Here <var class="Arg">A</var> is an algebra and <var class="Arg">hom</var> a homomorphism from <var class="Arg">A</var> into a matrix algebra. This function returns the left <var class="Arg">A</var>-module defined by the homomorphism <var class="Arg">hom</var>.</p>
<p><a id="X7EE41297867E41A8" name="X7EE41297867E41A8"></a></p>
<h5>62.11-18 RightModuleByHomomorphismToMatAlg</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RightModuleByHomomorphismToMatAlg</code>( <var class="Arg">A</var>, <var class="Arg">hom</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Here <var class="Arg">A</var> is an algebra and <var class="Arg">hom</var> a homomorphism from <var class="Arg">A</var> into a matrix algebra. This function returns the right <var class="Arg">A</var>-module defined by the homomorphism <var class="Arg">hom</var>.</p>
<p>First we produce a structure constants algebra with basis elements <span class="SimpleMath">x</span>, <span class="SimpleMath">y</span>, <span class="SimpleMath">z</span> such that <span class="SimpleMath">x^2 = x</span>, <span class="SimpleMath">y^2 = y</span>, <span class="SimpleMath">xz = z</span>, <span class="SimpleMath">zy = z</span> and all other products are zero.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:= EmptySCTable( 3, 0 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 1, 1, [ 1, 1 ]);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 2, 2, [ 1, 2 ]);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 1, 3, [ 1, 3 ]);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 3, 2, [ 1, 3 ]);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= AlgebraByStructureConstants( Rationals, T );</span>
<algebra of dimension 3 over Rationals>
</pre></div>
<p>Now we construct an isomorphic matrix algebra.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m3:= NullMat( 2, 2 );; m3[1][2]:= 1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= Algebra( Rationals, [ m1, m2, m3 ] );</span>
<algebra over Rationals, with 3 generators>
</pre></div>
<p>Finally we construct the homomorphism and the corresponding right module.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= AlgebraHomomorphismByImages( A, B, Basis(A), [ m1, m2, m3 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RightModuleByHomomorphismToMatAlg( A, f );</span>
<right-module over <algebra of dimension 3 over Rationals>>
</pre></div>
<p><a id="X8729F0A678A4A09C" name="X8729F0A678A4A09C"></a></p>
<h5>62.11-19 AdjointModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AdjointModule</code>( <var class="Arg">A</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the <var class="Arg">A</var>-module defined by the left action of <var class="Arg">A</var> on itself.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">m3:= NullMat( 2, 2 );; m3[1][2]:= 1;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= Algebra( Rationals, [ m1, m2, m3 ] );</span>
<algebra over Rationals, with 3 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= AdjointModule( A );</span>
<3-dimensional left-module over <algebra of dimension
3 over Rationals>>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:= Basis( V )[3];</span>
[ [ 0, 1 ], [ 0, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">W:= SubAlgebraModule( V, [ v ] );</span>
<left-module over <algebra of dimension 3 over Rationals>>
<span class="GAPprompt">gap></span> <span class="GAPinput">Dimension( W );</span>
1
</pre></div>
<p><a id="X84813BCD80BDF3C4" name="X84813BCD80BDF3C4"></a></p>
<h5>62.11-20 FaithfulModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FaithfulModule</code>( <var class="Arg">A</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a faithful finite-dimensional left-module over the algebra <var class="Arg">A</var>. This is only implemented for associative algebras, and for Lie algebras of characteristic <span class="SimpleMath">0</span>. (It may also work for certain Lie algebras of characteristic <span class="SimpleMath">p > 0</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:= EmptySCTable( 2, 0 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= AlgebraByStructureConstants( Rationals, T );</span>
<algebra of dimension 2 over Rationals>
</pre></div>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:= EmptySCTable( 3, 0, "antisymmetric" );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( T, 1, 2, [ 1, 3 ]);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:= LieAlgebraByStructureConstants( Rationals, T );</span>
<Lie algebra of dimension 3 over Rationals>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= FaithfulModule( L );</span>
<left-module over <Lie algebra of dimension 3 over Rationals>>
<span class="GAPprompt">gap></span> <span class="GAPinput">vv:= BasisVectors( Basis( V ) );</span>
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">x:= Basis( L )[3];</span>
v.3
<span class="GAPprompt">gap></span> <span class="GAPinput">List( vv, v -> x^v );</span>
[ [ 0, 0, 0 ], [ 1, 0, 0 ], [ 0, 0, 0 ] ]
</pre></div>
<p><code class="code">A</code> is a <span class="SimpleMath">2</span>-dimensional algebra where all products are zero.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= FaithfulModule( A );</span>
<left-module over <algebra of dimension 2 over Rationals>>
<span class="GAPprompt">gap></span> <span class="GAPinput">vv:= BasisVectors( Basis( V ) );</span>
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">xx:= BasisVectors( Basis( A ) );</span>
[ v.1, v.2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">xx[1]^vv[3];</span>
[ 1, 0, 0 ]
</pre></div>
<p><a id="X7E16630185CE2C10" name="X7E16630185CE2C10"></a></p>
<h5>62.11-21 ModuleByRestriction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ModuleByRestriction</code>( <var class="Arg">V</var>, <var class="Arg">sub1</var>[, <var class="Arg">sub2</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Here <var class="Arg">V</var> is an algebra module and <var class="Arg">sub1</var> is a subalgebra of the acting algebra of <var class="Arg">V</var>. This function returns the module that is the restriction of <var class="Arg">V</var> to <var class="Arg">sub1</var>. So it has the same underlying vector space as <var class="Arg">V</var>, but the acting algebra is <var class="Arg">sub</var>. If two subalgebras <var class="Arg">sub1</var>, <var class="Arg">sub2</var> are given then <var class="Arg">V</var> is assumed to be a bi-module, and <var class="Arg">sub1</var> a subalgebra of the algebra acting on the left, and <var class="Arg">sub2</var> a subalgebra of the algebra acting on the right.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= Rationals^[3,3];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= LeftAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= Subalgebra( A, [ Basis(A)[1] ] );</span>
<algebra over Rationals, with 1 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:= ModuleByRestriction( V, B );</span>
<left-module over <algebra over Rationals, with 1 generators>>
</pre></div>
<p><a id="X7885AAC87FDCF649" name="X7885AAC87FDCF649"></a></p>
<h5>62.11-22 NaturalHomomorphismBySubAlgebraModule</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NaturalHomomorphismBySubAlgebraModule</code>( <var class="Arg">V</var>, <var class="Arg">W</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Here <var class="Arg">V</var> must be a sub-algebra module of <var class="Arg">V</var>. This function returns the projection from <var class="Arg">V</var> onto <code class="code"><var class="Arg">V</var>/<var class="Arg">W</var></code>. It is a linear map, that is also a module homomorphism. As usual images can be formed with <code class="code">Image( f, v )</code> and pre-images with <code class="code">PreImagesRepresentative( f, u )</code>.</p>
<p>The quotient module can also be formed by entering <code class="code"><var class="Arg">V</var>/<var class="Arg">W</var></code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= Rationals^[3,3];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:= DirectSumOfAlgebras( A, A );</span>
<algebra over Rationals, with 6 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:= StructureConstantsTable( Basis( B ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:= AlgebraByStructureConstants( Rationals, T );</span>
<algebra of dimension 18 over Rationals>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= AdjointModule( C );</span>
<left-module over <algebra of dimension 18 over Rationals>>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:= SubAlgebraModule( V, [ Basis(V)[1] ] );</span>
<left-module over <algebra of dimension 18 over Rationals>>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= NaturalHomomorphismBySubAlgebraModule( V, W );</span>
<linear mapping by matrix, <
18-dimensional left-module over <algebra of dimension
18 over Rationals>> -> <
9-dimensional left-module over <algebra of dimension
18 over Rationals>>>
<span class="GAPprompt">gap></span> <span class="GAPinput">quo:= ImagesSource( f ); # i.e., the quotient module</span>
<9-dimensional left-module over <algebra of dimension
18 over Rationals>>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:= Basis( quo )[1];</span>
[ 1, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PreImagesRepresentative( f, v );</span>
v.4
<span class="GAPprompt">gap></span> <span class="GAPinput">Basis( C )[4]^v;</span>
[ 1, 0, 0, 0, 0, 0, 0, 0, 0 ]
</pre></div>
<p><a id="X85D0F3758551DADC" name="X85D0F3758551DADC"></a></p>
<h5>62.11-23 DirectSumOfAlgebraModules</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DirectSumOfAlgebraModules</code>( <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DirectSumOfAlgebraModules</code>( <var class="Arg">V</var>, <var class="Arg">W</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Here <var class="Arg">list</var> must be a list of algebra modules. This function returns the direct sum of the elements in the list (as an algebra module). The modules must be defined over the same algebras.</p>
<p>In the second form is short for <code class="code">DirectSumOfAlgebraModules( [ <var class="Arg">V</var>, <var class="Arg">W</var> ] )</code></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= FullMatrixAlgebra( Rationals, 3 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= BiAlgebraModuleByGenerators( A, A, \*, \*, [ [1,0,0] ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:= DirectSumOfAlgebraModules( V, V );</span>
<6-dimensional left-module over ( Rationals^[ 3, 3 ] )>
<span class="GAPprompt">gap></span> <span class="GAPinput">BasisVectors( Basis( W ) );</span>
[ ( [ 1, 0, 0 ] )(+)( [ 0, 0, 0 ] ), ( [ 0, 1, 0 ] )(+)( [ 0, 0, 0 ] )
, ( [ 0, 0, 1 ] )(+)( [ 0, 0, 0 ] ),
( [ 0, 0, 0 ] )(+)( [ 1, 0, 0 ] ), ( [ 0, 0, 0 ] )(+)( [ 0, 1, 0 ] )
, ( [ 0, 0, 0 ] )(+)( [ 0, 0, 1 ] ) ]
</pre></div>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:= SimpleLieAlgebra( "C", 3, Rationals );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= HighestWeightModule( L, [ 1, 1, 0 ] );</span>
<64-dimensional left-module over <Lie algebra of dimension
21 over Rationals>>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:= HighestWeightModule( L, [ 0, 0, 2 ] );</span>
<84-dimensional left-module over <Lie algebra of dimension
21 over Rationals>>
<span class="GAPprompt">gap></span> <span class="GAPinput">U:= DirectSumOfAlgebraModules( V, W );</span>
<148-dimensional left-module over <Lie algebra of dimension
21 over Rationals>>
</pre></div>
<p><a id="X7D7A6486803B15CE" name="X7D7A6486803B15CE"></a></p>
<h5>62.11-24 TranslatorSubalgebra</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TranslatorSubalgebra</code>( <var class="Arg">M</var>, <var class="Arg">U</var>, <var class="Arg">W</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Here <var class="Arg">M</var> is an algebra module, and <var class="Arg">U</var> and <var class="Arg">W</var> are two subspaces of <var class="Arg">M</var>. Let <var class="Arg">A</var> be the algebra acting on <var class="Arg">M</var>. This function returns the subspace of elements of <var class="Arg">A</var> that map <var class="Arg">U</var> into <var class="Arg">W</var>. If <var class="Arg">W</var> is a sub-algebra-module (i.e., closed under the action of <var class="Arg">A</var>), then this space is a subalgebra of <var class="Arg">A</var>.</p>
<p>This function works for left, or right modules over a finite-dimensional algebra. We stress that it is not checked whether <var class="Arg">U</var> and <var class="Arg">W</var> are indeed subspaces of <var class="Arg">M</var>. If this is not the case nothing is guaranteed about the behaviour of the function.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:= FullMatrixAlgebra( Rationals, 3 );</span>
( Rationals^[ 3, 3 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">V:= Rationals^[3,2];</span>
( Rationals^[ 3, 2 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">M:= LeftAlgebraModule( A, \*, V );</span>
<left-module over ( Rationals^[ 3, 3 ] )>
<span class="GAPprompt">gap></span> <span class="GAPinput">bm:= Basis(M);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">U:= SubAlgebraModule( M, [ bm[1] ] ); </span>
<left-module over ( Rationals^[ 3, 3 ] )>
<span class="GAPprompt">gap></span> <span class="GAPinput">TranslatorSubalgebra( M, U, M );</span>
<algebra of dimension 9 over Rationals>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:= SubAlgebraModule( M, [ bm[4] ] );</span>
<left-module over ( Rationals^[ 3, 3 ] )>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:=TranslatorSubalgebra( M, U, W );</span>
<algebra of dimension 0 over Rationals>
</pre></div>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap61.html">[Previous Chapter]</a> <a href="chap63.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chap41.html">41</a> <a href="chap42.html">42</a> <a href="chap43.html">43</a> <a href="chap44.html">44</a> <a href="chap45.html">45</a> <a href="chap46.html">46</a> <a href="chap47.html">47</a> <a href="chap48.html">48</a> <a href="chap49.html">49</a> <a href="chap50.html">50</a> <a href="chap51.html">51</a> <a href="chap52.html">52</a> <a href="chap53.html">53</a> <a href="chap54.html">54</a> <a href="chap55.html">55</a> <a href="chap56.html">56</a> <a href="chap57.html">57</a> <a href="chap58.html">58</a> <a href="chap59.html">59</a> <a href="chap60.html">60</a> <a href="chap61.html">61</a> <a href="chap62.html">62</a> <a href="chap63.html">63</a> <a href="chap64.html">64</a> <a href="chap65.html">65</a> <a href="chap66.html">66</a> <a href="chap67.html">67</a> <a href="chap68.html">68</a> <a href="chap69.html">69</a> <a href="chap70.html">70</a> <a href="chap71.html">71</a> <a href="chap72.html">72</a> <a href="chap73.html">73</a> <a href="chap74.html">74</a> <a href="chap75.html">75</a> <a href="chap76.html">76</a> <a href="chap77.html">77</a> <a href="chap78.html">78</a> <a href="chap79.html">79</a> <a href="chap80.html">80</a> <a href="chap81.html">81</a> <a href="chap82.html">82</a> <a href="chap83.html">83</a> <a href="chap84.html">84</a> <a href="chap85.html">85</a> <a href="chap86.html">86</a> <a href="chap87.html">87</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|