This file is indexed.

/usr/share/gap/pkg/grape/htm/CHAP004.htm is in gap-grape 4r7+ds-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
<html><head><title>[grape] 4 Functions to determine regularity properties of graphs</title></head>
<body text="#000000" bgcolor="#ffffff">
[<a href = "chapters.htm">Up</a>] [<a href ="CHAP003.htm">Previous</a>] [<a href ="CHAP005.htm">Next</a>] [<a href = "theindex.htm">Index</a>]
<h1>4 Functions to determine regularity properties of graphs</h1><p>
<P>
<H3>Sections</H3>
<oL>
<li> <A HREF="CHAP004.htm#SECT001">IsRegularGraph</a>
<li> <A HREF="CHAP004.htm#SECT002">LocalParameters</a>
<li> <A HREF="CHAP004.htm#SECT003">GlobalParameters</a>
<li> <A HREF="CHAP004.htm#SECT004">IsDistanceRegular</a>
<li> <A HREF="CHAP004.htm#SECT005">CollapsedAdjacencyMat</a>
<li> <A HREF="CHAP004.htm#SECT006">OrbitalGraphColadjMats</a>
<li> <A HREF="CHAP004.htm#SECT007">VertexTransitiveDRGs</a>
</ol><p>
<p>
This chapter describes functions to determine regularity properties of
graphs, and a function <code>VertexTransitiveDRGs</code> which determines the
distance-regular graphs on which a given transitive permutation group
acts as a vertex-transitive group of automorphisms.
<p>
<p>
<h2><a name="SECT001">4.1 IsRegularGraph</a></h2>
<p><p>
<a name = "SSEC001.1"></a>
<li><code>IsRegularGraph( </code><var>gamma</var><code> )</code>
<p>
This boolean function returns <code>true</code>  if and only if the graph <var>gamma</var> is
(out)regular.
<p>
<pre>
gap&gt; IsRegularGraph( JohnsonGraph(4,2) );
true
gap&gt; IsRegularGraph( EdgeOrbitsGraph(Group(()),[[1,2]],2) );
false 
</pre>
<p>
<p>
<h2><a name="SECT002">4.2 LocalParameters</a></h2>
<p><p>
<a name = "SSEC002.1"></a>
<li><code>LocalParameters( </code><var>gamma</var><code>, </code><var>V</var><code> )</code>
<li><code>LocalParameters( </code><var>gamma</var><code>, </code><var>V</var><code>, </code><var>G</var><code> )</code>
<p>
Let <var>gamma</var> be a simple connected graph.  Then this function determines
all local parameters <i>c</i><sub><i>i</i></sub>(<i>V</i> ), <i>a</i><sub><i>i</i></sub>(<i>V</i> ), and <i>b</i><sub><i>i</i></sub>(<i>V</i> ) that <var>gamma</var>
may have, with respect to the singleton vertex or nonempty list of
vertices <var>V</var>.  We say that <var>gamma</var> has the <strong>local parameter</strong> <i>c</i><sub><i>i</i></sub>(<i>V</i>)
(respectively <i>a</i><sub><i>i</i></sub>(<i>V</i>), <i>b</i><sub><i>i</i></sub>(<i>V</i>)), with respect to <i>V</i>, if the number
of vertices at distance <i>i</i>&#8722;1 (respectively <i>i</i>, <i>i</i>+1) from <i>V</i> that
are adjacent to a vertex <i>w</i> at distance <i>i</i> from <i>V</i> (see <a href="CHAP003.htm#SSEC015.1">Distance</a>)
is the constant <i>c</i><sub><i>i</i></sub>(<i>V</i>) (respectively <i>a</i><sub><i>i</i></sub>(<i>V</i>), <i>b</i><sub><i>i</i></sub>(<i>V</i>)) depending
only on <i>i</i> and <i>V</i> (and not <i>w</i>).
<p>
The function <code>LocalParameters</code> returns a list whose <i>i</i>-th element is
the list [<i>c</i><sub><i>i</i>&#8722;1</sub>(<i>V</i> ), <i>a</i><sub><i>i</i>&#8722;1</sub>(<i>V</i> ), <i>b</i><sub><i>i</i>&#8722;1</sub>(<i>V</i> )], except that if
some local parameter does not exist then &#8722;1 is put in its place.
<p>
This function can be used to determine whether a given subset of the
vertices of a graph is a distance-regular code in that graph.
<p>
The optional parameter <var>G</var>, if present, is assumed to be a subgroup of
\Aut(<i>gamma</i> ) fixing <var>V</var> setwise. Including such a <var>G</var> can speed up
the function.
<p>
<pre>
gap&gt; gamma := JohnsonGraph(4,2);;
gap&gt; LocalParameters( gamma, 1 );
[ [ 0, 0, 4 ], [ 1, 2, 1 ], [ 4, 0, 0 ] ]
gap&gt; LocalParameters( gamma, [1,6] );
[ [ 0, 0, 4 ], [ 2, 2, 0 ] ]
gap&gt; LocalParameters( gamma, [1,2] );
[ [ 0, 1, 3 ], [ -1, -1, 0 ] ]
</pre>
<p>
<p>
<h2><a name="SECT003">4.3 GlobalParameters</a></h2>
<p><p>
<a name = "SSEC003.1"></a>
<li><code>GlobalParameters( </code><var>gamma</var><code> )</code>
<p>
Let <var>gamma</var> be a simple connected graph, and 0  &#8804; <i>i</i>  &#8804; <tt>Diameter</tt><tt>(</tt><i>gamma</i> <tt>)</tt>.  This function determines all global parameters
<i>c</i><sub><i>i</i></sub>, <i>a</i><sub><i>i</i></sub>, and <i>b</i><sub><i>i</i></sub> that <var>gamma</var> may have. We say that <var>gamma</var> has
the <strong>global parameter</strong> <i>c</i><sub><i>i</i></sub> (respectively <i>a</i><sub><i>i</i></sub>, <i>b</i><sub><i>i</i></sub>) if the number
of vertices at distance <i>i</i>&#8722;1 (respectively <i>i</i>, <i>i</i>+1) from a vertex
<i>v</i> that are adjacent to a vertex <i>w</i> at distance <i>i</i> from <i>v</i> is the
constant <i>c</i><sub><i>i</i></sub> (respectively <i>a</i><sub><i>i</i></sub>, <i>b</i><sub><i>i</i></sub>) depending only on <i>i</i> (and
not <i>v</i> and <i>w</i>).
<p>
The function <code>GlobalParameters</code> returns a list of length
<code>Diameter</code>(<var>gamma</var>)+1, whose <i>i</i>-th element is the list [<i>c</i><sub><i>i</i>&#8722;1</sub>, <i>a</i><sub><i>i</i>&#8722;1</sub>, <i>b</i><sub><i>i</i>&#8722;1</sub>], except that if some global parameter does not exist
then &#8722;1 is put in its place.
<p>
Note that <var>gamma</var> is <strong>distance-regular</strong> if and only if this function
returns no &#8722;1 in place of a global parameter (see <a href="biblio.htm#BCN89"><cite>BCN89</cite></a>).
<p>
See also <a href="CHAP004.htm#SSEC002.1">LocalParameters</a> and <a href="CHAP004.htm#SSEC004.1">IsDistanceRegular</a>.
<p>
<pre>
gap&gt; gamma := JohnsonGraph(4,2);;
gap&gt; GlobalParameters( gamma );
[ [ 0, 0, 4 ], [ 1, 2, 1 ], [ 4, 0, 0 ] ]
gap&gt; GlobalParameters( BipartiteDouble(gamma) );
[ [ 0, 0, 4 ], [ 1, 0, 3 ], [ -1, 0, -1 ], [ 4, 0, 0 ] ]
</pre>
<p>
<p>
<h2><a name="SECT004">4.4 IsDistanceRegular</a></h2>
<p><p>
<a name = "SSEC004.1"></a>
<li><code>IsDistanceRegular( </code><var>gamma</var><code> )</code>
<p>
This boolean function returns <code>true</code> if and only if <var>gamma</var> is
<strong>distance-regular</strong>, i.e. <var>gamma</var> is simple, connected, and all global
parameters <i>c</i><sub><i>i</i></sub>,<i>a</i><sub><i>i</i></sub>,<i>b</i><sub><i>i</i></sub> exist for 0  &#8804; <i>i</i>  &#8804; <tt>Diameter</tt><tt>(</tt><i>gamma</i> <tt>)</tt>
(see <a href="biblio.htm#BCN89"><cite>BCN89</cite></a>).
<p>
See also <a href="CHAP004.htm#SSEC003.1">GlobalParameters</a>.
<p>
<pre>
gap&gt; gamma := JohnsonGraph(4,2);;
gap&gt; IsDistanceRegular( gamma );
true
gap&gt; IsDistanceRegular( BipartiteDouble(gamma) );
false 
</pre>
<p>
<p>
<h2><a name="SECT005">4.5 CollapsedAdjacencyMat</a></h2>
<p><p>
<a name = "SSEC005.1"></a>
<li><code>CollapsedAdjacencyMat( </code><var>gamma</var><code> )</code>
<li><code>CollapsedAdjacencyMat( </code><var>G</var><code>, </code><var>gamma</var><code> )</code>
<p>
The second form of this function returns  the  collapsed adjacency
matrix for <var>gamma</var>, where the  collapsing group  is <var>G</var>.  It is
assumed that <var>G</var> is a subgroup of \Aut(<i>gamma</i> ).
<p>
The (<i>i</i>,<i>j</i>)-entry of the collapsed adjacency matrix  equals the number of
edges in   { [<i>x</i>,<i>y</i>] | <i>y</i>  &#8712; <i>j</i>-th <var>G</var>-orbit}, where  <i>x</i> is  a fixed
vertex in the <i>i</i>-th <var>G</var>-orbit.
<p>
In the case where this function is given just one argument, then it must
be a graph <var>gamma</var> with the property that <code></code><var>gamma</var><code>.group</code> is transitive on
the vertex-set of <var>gamma</var>.  In this case, the returned collapsed adjacency
matrix for <var>gamma</var> is with respect to the stabilizer in <code></code><var>gamma</var><code>.group</code>
of 1.
<p>
The reader is warned that collapsed adjacency matrices can have different,
but related meanings depending on the setting and the author.
<p>
See also <a href="CHAP004.htm#SSEC006.1">OrbitalGraphColadjMats</a>.
<p>
<pre>
gap&gt; gamma := JohnsonGraph(4,2);
rec( isGraph := true, order := 6,
  group := Group([ (1,4,6,3)(2,5), (2,4)(3,5) ]),
  schreierVector := [ -1, 2, 1, 1, 1, 1 ], adjacencies := [ [ 2, 3, 4, 5 ] ],
  representatives := [ 1 ],
  names := [ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 3 ], [ 2, 4 ], [ 3, 4 ] ],
  isSimple := true )
gap&gt; G := Stabilizer( gamma.group, [1,6], OnSets );;
gap&gt; CollapsedAdjacencyMat( G, gamma );
[ [ 0, 4 ], [ 2, 2 ] ]
gap&gt; CollapsedAdjacencyMat( gamma );
[ [ 0, 4, 0 ], [ 1, 2, 1 ], [ 0, 4, 0 ] ]
</pre>
<p>
<p>
<h2><a name="SECT006">4.6 OrbitalGraphColadjMats</a></h2>
<p><p>
<a name = "SSEC006.1"></a>
<li><code>OrbitalGraphColadjMats( </code><var>G</var><code> )</code>
<li><code>OrbitalGraphColadjMats( </code><var>G</var><code>, </code><var>H</var><code> )</code>
<p>
This function returns a list of collapsed adjacency matrices for the
orbital digraphs of the transitive permutation group <var>G</var>, collapsed
with respect to <code>Stabilizer(</code><var>G</var><code>,1)</code> (creating collapsed adjacency
matrices for the orbital digraphs in the sense of <a href="biblio.htm#PS97"><cite>PS97</cite></a>). Also,
the matrices are collapsed with respect to a fixed ordering of the
orbits of <code>Stabilizer(</code><var>G</var><code>,1)</code>, with the trivial orbit <code>[1]</code> coming
first.
<p>
The optional parameter <var>H</var>, if included, should be equal to
<code>Stabilizer(</code><var>G</var><code>,1)</code>. The knowledge of this stabilizer can speed up the
function.
<p>
The reader is warned that collapsed adjacency matrices can have different,
but related meanings depending on the setting and the author.
<p>
See also <a href="CHAP004.htm#SSEC005.1">CollapsedAdjacencyMat</a>.
<p>
<pre>
gap&gt; OrbitalGraphColadjMats( SymmetricGroup(7) );
[ [ [ 1, 0 ], [ 0, 1 ] ], [ [ 0, 6 ], [ 1, 5 ] ] ] 
</pre>
<p>
<p>
<h2><a name="SECT007">4.7 VertexTransitiveDRGs</a></h2>
<p><p>
<a name = "SSEC007.1"></a>
<li><code>VertexTransitiveDRGs( </code><var>coladjmats</var><code> )</code>
<li><code>VertexTransitiveDRGs( </code><var>G</var><code> )</code>
<p>
This function can determine (among other things) all the
distance-regular graphs on which a given transitive permutation group
<var>G</var> acts as a vertex-transitive group of automorphisms (as long as the
permutation rank of <var>G</var> is not too large).
<p>
In the first form of this function, the input parameter <var>coladjmats</var>
must be a list of collapsed adjacency matrices for the orbital digraphs
of some transitive permutation group <var>G</var>, collapsed with respect to a
point stabilizer (such as the list of matrices produced by the function
<code>OrbitalGraphColadjMats</code>).  It is assumed that the orbital/suborbit
indexing used is the same as that for the rows (and columns) of each of
the matrices, as well as for the indexing of the matrices themselves,
with the trivial orbital first, so that, in particular,
<code></code><var>coladjmats</var><code>[1]</code> must be an identity matrix.
<p>
In the second form of this function, the input parameter <var>G</var> must be a
transitive permutation group, and then the result returned will be
the same as <code>VertexTransitiveDRGs( OrbitalGraphColadjMats( </code><var>G</var><code> ) )</code>.
<p>
In either case, this function returns a record <var>result</var>, which gives
information on the transitive group <var>G</var> acting on its natural set <i>V</i>.
The most important component of this record is the list
<code>orbitalCombinations</code>, whose elements give the sets of (the indices of)
the <var>G</var>-orbitals whose union gives the edge-set of a distance-regular
graph with vertex-set <i>V</i>. The component <code>intersectionArrays</code> gives the
corresponding intersection arrays. The component <code>degree</code> is the degree
of the permutation group <var>G</var>, <code>rank</code> is its (permutation) rank, and
<code>isPrimitive</code> is true if <var>G</var> is primitive, and <code>false</code> otherwise.
<p>
The techniques used in this function and definitions of the terms used
above can be found in <a href="biblio.htm#PS97"><cite>PS97</cite></a>.
<p>
<strong>Warning</strong> This function checks all subsets of <code>[2..</code><var>result</var><code>.rank]</code>, so
the permutation rank of <var>G</var> must not be large!
<p>
<pre>
gap&gt; m22:=PrimitiveGroup(22,1);;
gap&gt; syl:=SylowSubgroup(m22,11);;
gap&gt; part:=Set(Orbit(syl,1));;
gap&gt; l211:=Stabilizer(m22,part,OnSets);;
gap&gt; rt:=RightTransversal(m22,l211);;
gap&gt; m22big:=Action(m22,rt,OnRight);;
gap&gt; v:=VertexTransitiveDRGs(m22big);
rec( degree := 672, rank := 6, isPrimitive := true, 
  orbitalCombinations := [ [ 2, 3, 4, 5, 6 ], [ 2, 4 ], [ 3, 5, 6 ], [ 3, 6 ] 
     ], 
  intersectionArrays := [ [ [ 0, 0, 671 ], [ 1, 670, 0 ] ], [ [ 0, 0, 495 ], 
          [ 1, 366, 128 ], [ 360, 135, 0 ] ], 
      [ [ 0, 0, 176 ], [ 1, 40, 135 ], [ 48, 128, 0 ] ], 
      [ [ 0, 0, 110 ], [ 1, 28, 81 ], [ 18, 80, 12 ], [ 90, 20, 0 ] ] ] )
</pre>
<p>
[<a href = "chapters.htm">Up</a>] [<a href ="CHAP003.htm">Previous</a>] [<a href ="CHAP005.htm">Next</a>] [<a href = "theindex.htm">Index</a>]
<P>
<address>grape manual<br>January 2016 (Debian 4r7+ds-3)
</address></body></html>