This file is indexed.

/usr/share/gap/lib/ringsc.gd is in gap-libs 4r8p6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#############################################################################
##
#W  ringsc.gd                   GAP library                 Alexander Hulpke
##
##
#Y  Copyright (C) 2008 The GAP Group
##
##  This file contains declarations for elements of rings, given as Z-modules
##  with structure constants for multiplication. Is is based on algsc.gd
##

#############################################################################
##
#C  IsSCRingObj( <obj> )
#C  IsSCRingObjCollection( <obj> )
#C  IsSCRingObjFamily( <obj> )
##
##  S.~c. ring elements may have inverses, in order to allow `One' and
##  `Inverse' we make them scalars.
##
DeclareCategory( "IsSCRingObj", IsScalar );
DeclareCategoryCollections( "IsSCRingObj" );
DeclareCategoryCollections( "IsSCRingObjCollection" );
DeclareCategoryCollections( "IsSCRingObjCollColl" );
DeclareCategoryFamily( "IsSCRingObj" );

DeclareSynonym("IsSubringSCRing",IsRing and IsSCRingObjCollection);

#############################################################################
##
#F  RingByStructureConstants( <moduli>, <sctable>[, <nameinfo>] )
##
##  <#GAPDoc Label="RingByStructureConstants">
##  <ManSection>
##  <Func Name="RingByStructureConstants" Arg='moduli, sctable[, nameinfo]'/>
##
##  <Description>
##  returns a ring <M>R</M> whose additive group is described by the list
##  <A>moduli</A>,
##  with multiplication defined by the structure constants table
##  <A>sctable</A>.
##  The optional argument <A>nameinfo</A> can be used to prescribe names for
##  the elements of the canonical generators of <M>R</M>;
##  it can be either a string <A>name</A>
##  (then <A>name</A><C>1</C>, <A>name</A><C>2</C> etc. are chosen)
##  or a list of strings which are then chosen.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RingByStructureConstants" );

#############################################################################
##
#F  StandardGeneratorsSubringSCRing( <S> )
##
##  for a subring <S> of an SC ring <R> this command returns a list of length 3.
##  The first entry are generators for <S> as addive group, given with
##  respect to the additive group basis for <R> and being in hermite normal
##  form. The second entries are pivot positions for these generators. The third
##  entry are the generators as actual ring elements.
DeclareAttribute("StandardGeneratorsSubringSCRing",IsSubringSCRing);

#############################################################################
##
#A  Subrings( <R> )
##
##  <#GAPDoc Label="Subrings">
##  <ManSection>
##  <Attr Name="Subrings" Arg='R'/>
##
##  <Description>
##  for a finite ring <A>R</A> this function returns a list of all 
##  subrings of <A>R</A>.
##  <Example><![CDATA[
##  gap> Subrings(SmallRing(8,37));     
##  [ <ring with 1 generators>, <ring with 1 generators>, 
##    <ring with 1 generators>, <ring with 1 generators>, 
##    <ring with 1 generators>, <ring with 1 generators>, 
##    <ring with 2 generators>, <ring with 2 generators>, 
##    <ring with 2 generators>, <ring with 2 generators>, 
##    <ring with 3 generators> ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("Subrings",IsRing);

#############################################################################
##
#A  Ideals( <R> )
##
##  <#GAPDoc Label="Ideals">
##  <ManSection>
##  <Attr Name="Ideals" Arg='R'/>
##
##  <Description>
##  for a finite ring <A>R</A> this function returns a list of all
##  ideals of <A>R</A>.
##  <Example><![CDATA[
##  gap> Ideals(SmallRing(8,37));
##  [ <ring with 1 generators>, <ring with 1 generators>, 
##    <ring with 1 generators>, <ring with 2 generators>, 
##    <ring with 3 generators> ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("Ideals",IsRing);

#############################################################################
##
#F  NumberSmallRings( <s> )
##
##  <#GAPDoc Label="NumberSmallRings">
##  <ManSection>
##  <Func Name="NumberSmallRings" Arg='s'/>
##
##  <Description>
##  returns the number of (nonisomorphic) rings of order <M>s</M> 
##  stored in the library of small rings.
##  <Example><![CDATA[
##  gap> List([1..15],NumberSmallRings);
##  [ 1, 2, 2, 11, 2, 4, 2, 52, 11, 4, 2, 22, 2, 4, 4 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("NumberSmallRings");

#############################################################################
##
#F  SmallRing( <s>,<n> )
##
##  <#GAPDoc Label="SmallRing">
##  <ManSection>
##  <Func Name="SmallRing" Arg='s n'/>
##
##  <Description>
##  returns the <M>n</M>-th ring of order <M>s</M> from a library of 
##  rings of small order (up to isomorphism).
##  <Example><![CDATA[
##  gap> R:=SmallRing(8,37);
##  <ring with 3 generators>
##  gap> ShowMultiplicationTable(R);                 
##  *     | 0*a   c     b     b+c   a     a+c   a+b   a+b+c
##  ------+------------------------------------------------
##  0*a   | 0*a   0*a   0*a   0*a   0*a   0*a   0*a   0*a  
##  c     | 0*a   0*a   0*a   0*a   0*a   0*a   0*a   0*a  
##  b     | 0*a   0*a   0*a   0*a   b     b     b     b    
##  b+c   | 0*a   0*a   0*a   0*a   b     b     b     b    
##  a     | 0*a   c     b     b+c   a+b   a+b+c a     a+c  
##  a+c   | 0*a   c     b     b+c   a+b   a+b+c a     a+c  
##  a+b   | 0*a   c     b     b+c   a     a+c   a+b   a+b+c
##  a+b+c | 0*a   c     b     b+c   a     a+c   a+b   a+b+c
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("SmallRing");

#############################################################################
##
#F  DirectSum( <R>{, <S>} )
#O  DirectSumOp( <list>, <expl> )
##
##  <#GAPDoc Label="DirectSum">
##  <ManSection>
##  <Func Name="DirectSum" Arg='R{, S}'/>
##  <Oper Name="DirectSumOp" Arg='list, expl'/>
##
##  <Description>
##  These functions construct the direct sum of the rings given as
##  arguments.
##  <C>DirectSum</C> takes an arbitrary positive number of arguments
##  and calls the operation <C>DirectSumOp</C>, which takes exactly two
##  arguments, namely a nonempty list of rings and one of these rings.
##  (This somewhat strange syntax allows the method selection to choose
##  a reasonable method for special cases.)
##  <Example><![CDATA[
##  gap> DirectSum(SmallRing(5,1),SmallRing(5,1));
##  <ring with 2 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "DirectSum" );
DeclareOperation( "DirectSumOp", [ IsList, IsRing ] );
DeclareAttribute( "DirectSumInfo", IsGroup, "mutable" );