This file is indexed.

/usr/include/gnucash/gnc-numeric.h is in gnucash-common 1:2.6.15-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
/********************************************************************
 * gnc-numeric.h - A rational number library                        *
 * This program is free software; you can redistribute it and/or    *
 * modify it under the terms of the GNU General Public License as   *
 * published by the Free Software Foundation; either version 2 of   *
 * the License, or (at your option) any later version.              *
 *                                                                  *
 * This program is distributed in the hope that it will be useful,  *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of   *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the    *
 * GNU General Public License for more details.                     *
 *                                                                  *
 * You should have received a copy of the GNU General Public License*
 * along with this program; if not, contact:                        *
 *                                                                  *
 * Free Software Foundation           Voice:  +1-617-542-5942       *
 * 51 Franklin Street, Fifth Floor    Fax:    +1-617-542-2652       *
 * Boston, MA  02110-1301,  USA       gnu@gnu.org                   *
 *                                                                  *
 *******************************************************************/

/** @addtogroup Numeric

    The 'Numeric' functions provide a way of working with rational
    numbers while maintaining strict control over rounding errors
    when adding rationals with different denominators.  The Numeric
    class is primarily used for working with monetary amounts,
    where the denominator typically represents the smallest fraction
    of the currency (e.g. pennies, centimes).  The numeric class
    can handle any fraction (e.g. twelfth's) and is not limited
    to fractions that are powers of ten.

    A 'Numeric' value represents a number in rational form, with a
    64-bit integer as numerator and denominator.  Rationals are
    ideal for many uses, such as performing exact, roundoff-error-free
    addition and multiplication, but 64-bit rationals do not have
    the dynamic range of floating point numbers.

See \ref gncnumericexample

@{ */
/** @file gnc-numeric.h
    @brief An exact-rational-number library for gnucash.
	(to be renamed qofnumeric.h in libqof2)
    @author Copyright (C) 2000 Bill Gribble
    @author Copyright (C) 2004 Linas Vepstas <linas@linas.org>
*/


#ifndef GNC_NUMERIC_H
#define GNC_NUMERIC_H

#include <glib-object.h>

struct _gnc_numeric
{
    gint64  num;
    gint64  denom;
};

/** @brief An rational-number type
 *
 * This is a rational number, defined by numerator and denominator. */
typedef struct _gnc_numeric gnc_numeric;

/** @name Arguments Standard Arguments to most functions

    Most of the gnc_numeric arithmetic functions take two arguments
    in addition to their numeric args: 'denom', which is the denominator
    to use in the output gnc_numeric object, and 'how'. which
    describes how the arithmetic result is to be converted to that
    denominator. This combination of output denominator and rounding policy
    allows the results of financial and other rational computations to be
    properly rounded to the appropriate units.

    Watch out: You \e must specifiy a rounding policy such as
    GNC_HOW_RND_NEVER, otherwise the fractional part of the input
    value might silently get discarded!

    Valid values for denom are:
    GNC_DENOM_AUTO  -- compute denominator exactly
    integer n       -- Force the denominator of the result to be this integer
    GNC_DENOM_RECIPROCAL -- Use 1/n as the denominator (???huh???)

    Valid values for 'how' are bitwise combinations of zero or one
    "rounding instructions" with zero or one "denominator types".
    Valid rounding instructions are:
        GNC_HOW_RND_FLOOR
        GNC_HOW_RND_CEIL
        GNC_HOW_RND_TRUNC
        GNC_HOW_RND_PROMOTE
        GNC_HOW_RND_ROUND_HALF_DOWN
        GNC_HOW_RND_ROUND_HALF_UP
        GNC_HOW_RND_ROUND
        GNC_HOW_RND_NEVER

    The denominator type specifies how to compute a denominator if
    GNC_DENOM_AUTO is specified as the 'denom'. Valid
    denominator types are:
        GNC_HOW_DENOM_EXACT
        GNC_HOW_DENOM_REDUCE
        GNC_HOW_DENOM_LCD
        GNC_HOW_DENOM_FIXED
        GNC_HOW_DENOM_SIGFIGS(N)

   To use traditional rational-number operational semantics (all results
   are exact and are reduced to relatively-prime fractions) pass the
   argument GNC_DENOM_AUTO as 'denom' and
   GNC_HOW_DENOM_REDUCE| GNC_HOW_RND_NEVER as 'how'.

   To enforce strict financial semantics (such that all operands must have
   the same denominator as each other and as the result), use
   GNC_DENOM_AUTO as 'denom' and
   GNC_HOW_DENOM_FIXED | GNC_HOW_RND_NEVER as 'how'.
@{
*/

/** \brief bitmasks for HOW flags.

 * bits 8-15 of 'how' are reserved for the number of significant
 * digits to use in the output with GNC_HOW_DENOM_SIGFIG
 */
#define GNC_NUMERIC_RND_MASK     0x0000000f
#define GNC_NUMERIC_DENOM_MASK   0x000000f0
#define GNC_NUMERIC_SIGFIGS_MASK 0x0000ff00

/** \brief Rounding/Truncation modes for operations.

 *  Rounding instructions control how fractional parts in the specified
 *  denominator affect the result. For example, if a computed result is
 *  "3/4" but the specified denominator for the return value is 2, should
 *  the return value be "1/2" or "2/2"?
 *
 * Watch out: You \e must specifiy a rounding policy such as
 * GNC_HOW_RND_NEVER, otherwise the fractional part of the input value
 * might silently get discarded!
 *
 * Possible rounding instructions are:
 */
enum
{
    /** Round toward -infinity */
    GNC_HOW_RND_FLOOR            = 0x01,

    /** Round toward +infinity */
    GNC_HOW_RND_CEIL             = 0x02,

    /** Truncate fractions (round toward zero) */
    GNC_HOW_RND_TRUNC            = 0x03,

    /** Promote fractions (round away from zero) */
    GNC_HOW_RND_PROMOTE          = 0x04,

    /** Round to the nearest integer, rounding toward zero
     *  when there are two equidistant nearest integers.
     */
    GNC_HOW_RND_ROUND_HALF_DOWN  = 0x05,

    /** Round to the nearest integer, rounding away from zero
     *  when there are two equidistant nearest integers.
     */
    GNC_HOW_RND_ROUND_HALF_UP    = 0x06,

    /** Use unbiased ("banker's") rounding. This rounds to the
     *  nearest integer, and to the nearest even integer when there
     *  are two equidistant nearest integers. This is generally the
     *  one you should use for financial quantities.
     */
    GNC_HOW_RND_ROUND            = 0x07,

    /** Never round at all, and signal an error if there is a
     *  fractional result in a computation.
     */
    GNC_HOW_RND_NEVER            = 0x08
};

/** How to compute a denominator, or'ed into the "how" field. */
enum
{
    /** Use any denominator which gives an exactly correct ratio of
     *  numerator to denominator. Use EXACT when you do not wish to
     *  lose any information in the result but also do not want to
     *  spend any time finding the "best" denominator.
     */
    GNC_HOW_DENOM_EXACT  = 0x10,

    /** Reduce the result value by common factor elimination,
     *  using the smallest possible value for the denominator that
     *  keeps the correct ratio. The numerator and denominator of
     *  the result are relatively prime.
     */
    GNC_HOW_DENOM_REDUCE = 0x20,

    /** Find the least common multiple of the arguments' denominators
     *  and use that as the denominator of the result.
     */
    GNC_HOW_DENOM_LCD    = 0x30,

    /** All arguments are required to have the same denominator,
     *  that denominator is to be used in the output, and an error
     *  is to be signaled if any argument has a different denominator.
     */
    GNC_HOW_DENOM_FIXED  = 0x40,

    /** Round to the number of significant figures given in the rounding
     *  instructions by the GNC_HOW_DENOM_SIGFIGS () macro.
     */
    GNC_HOW_DENOM_SIGFIG = 0x50
};

/** Build a 'how' value that will generate a denominator that will
 *  keep at least n significant figures in the result.
 */
#define GNC_HOW_DENOM_SIGFIGS( n ) ( ((( n ) & 0xff) << 8) | GNC_HOW_DENOM_SIGFIG)
#define GNC_HOW_GET_SIGFIGS( a ) ( (( a ) & 0xff00 ) >> 8)

/** Error codes */
typedef enum
{
    GNC_ERROR_OK         =  0,   /**< No error */
    GNC_ERROR_ARG        = -1,   /**< Argument is not a valid number */
    GNC_ERROR_OVERFLOW   = -2,   /**< Intermediate result overflow */

    /** GNC_HOW_DENOM_FIXED was specified, but argument denominators differed.  */
    GNC_ERROR_DENOM_DIFF = -3,

    /** GNC_HOW_RND_NEVER  was specified, but the result could not be
     *  converted to the desired denominator without a remainder. */
    GNC_ERROR_REMAINDER  = -4
} GNCNumericErrorCode;


/** Values that can be passed as the 'denom' argument.
 *  The include a positive number n to be used as the
 *  denominator of the output value.  Other possibilities
 *  include the list below:
 */

/** Compute an appropriate denominator automatically. Flags in
 *  the 'how' argument will specify how to compute the denominator.
 */
#define GNC_DENOM_AUTO 0

/** Use the value 1/n as the denominator of the output value. */
#define GNC_DENOM_RECIPROCAL( a ) (- ( a ))

/**  @} */

/** @name Constructors
@{
*/
/** Returns a newly created gnc_numeric with the given numerator and
 * denominator, that is "num/denom". */
static inline
gnc_numeric gnc_numeric_create(gint64 num, gint64 denom)
{
    gnc_numeric out;
    out.num = num;
    out.denom = denom;
    return out;
}

/** Returns a newly created gnc_numeric of value zero, that is "0/1". */
static inline
gnc_numeric gnc_numeric_zero(void)
{
    return gnc_numeric_create(0, 1);
}

/** Convert a floating-point number to a gnc_numeric.
 *
 * Both 'denom' and 'how' are used as in arithmetic, but
 * GNC_DENOM_AUTO is not recognized; a denominator must be specified
 * either explicitly or through sigfigs.
 *
 * \sa \ref Arguments
 *
 * \param n The double value that is converted into a gnc_numeric
 *
 * \param denom The denominator of the gnc_numeric return value. If
 * the 'how' argument contains the GNC_HOW_DENOM_SIGFIG flag, this
 * value will be ignored.
 *
 * \param how Describes the rounding policy and output
 * denominator. Watch out: You \e must specifiy a rounding policy such
 * as GNC_HOW_RND_NEVER, otherwise the fractional part of the input
 * value is silently discarded! Common values for 'how' are
 * (GNC_HOW_DENOM_REDUCE|GNC_HOW_RND_NEVER) or
 * (GNC_HOW_DENOM_FIXED|GNC_HOW_RND_NEVER). As mentioned above,
 * GNC_DENOM_AUTO is not allowed here.
 *
 * \return The newly created gnc_numeric rational value.
 */
gnc_numeric double_to_gnc_numeric(double n, gint64 denom,
                                  gint how);

/** Read a gnc_numeric from str, skipping any leading whitespace.
 *  Return TRUE on success and store the resulting value in "n".
 *  Return NULL on error. */
gboolean string_to_gnc_numeric(const gchar* str, gnc_numeric *n);

/** Create a gnc_numeric object that signals the error condition
 *  noted by error_code, rather than a number.
 */
gnc_numeric gnc_numeric_error(GNCNumericErrorCode error_code);

/** Returns a string representation of the given GNCNumericErrorCode.
 */
const char* gnc_numeric_errorCode_to_string(GNCNumericErrorCode error_code);
/** @} */

/** @name Value Accessors
 @{
*/
/** Returns the numerator of the given gnc_numeric value. */
static inline
gint64 gnc_numeric_num(gnc_numeric a)
{
    return a.num;
}
/** Returns the denominator of the given gnc_numeric value. */
static inline
gint64 gnc_numeric_denom(gnc_numeric a)
{
    return a.denom;
}

/** Convert numeric to floating-point value. */
gdouble      gnc_numeric_to_double(gnc_numeric n);

/** Convert to string. The returned buffer is to be g_free'd by the
 *  caller (it was allocated through g_strdup) */
gchar *gnc_numeric_to_string(gnc_numeric n);

/** Convert to string. Uses a static, non-thread-safe buffer.
 *  For internal use only. */
gchar * gnc_num_dbg_to_string(gnc_numeric n);
/** @}*/

/** @name Comparisons and Predicates
 @{
*/
/** Check for error signal in value. Returns GNC_ERROR_OK (==0) if
 *  the number appears to be valid, otherwise it returns the
 *  type of error.  Error values always have a denominator of zero.
 */
GNCNumericErrorCode  gnc_numeric_check(gnc_numeric a);

/** Returns 1 if a>b, -1 if b>a, 0 if a == b  */
gint gnc_numeric_compare(gnc_numeric a, gnc_numeric b);

/** Returns 1 if the given gnc_numeric is 0 (zero), else returns 0. */
gboolean gnc_numeric_zero_p(gnc_numeric a);

/** Returns 1 if a < 0, otherwise returns 0. */
gboolean gnc_numeric_negative_p(gnc_numeric a);

/** Returns 1 if a > 0, otherwise returns 0. */
gboolean gnc_numeric_positive_p(gnc_numeric a);

/** Equivalence predicate: Returns TRUE (1) if a and b are
 *  exactly the same (have the same numerator and denominator)
 */
gboolean gnc_numeric_eq(gnc_numeric a, gnc_numeric b);

/** Equivalence predicate: Returns TRUE (1) if a and b represent
 *  the same number.  That is, return TRUE if the ratios, when
 *  reduced by eliminating common factors, are identical.
 */
gboolean gnc_numeric_equal(gnc_numeric a, gnc_numeric b);

/** Equivalence predicate:
 *  Convert both a and b to denom using the
 *  specified DENOM and method HOW, and compare numerators
 *  the results using gnc_numeric_equal.
 *
  For example, if a == 7/16 and b == 3/4,
  gnc_numeric_same(a, b, 2, GNC_HOW_RND_TRUNC) == 1
  because both 7/16 and 3/4 round to 1/2 under truncation. However,
  gnc_numeric_same(a, b, 2, GNC_HOW_RND_ROUND) == 0
  because 7/16 rounds to 1/2 under unbiased rounding but 3/4 rounds
  to 2/2.
 */
gint gnc_numeric_same(gnc_numeric a, gnc_numeric b,
                      gint64 denom, gint how);
/** @} */

/** @name Arithmetic Operations
 @{
*/
/** Return a+b. */
gnc_numeric gnc_numeric_add(gnc_numeric a, gnc_numeric b,
                            gint64 denom, gint how);

/** Return a-b. */
gnc_numeric gnc_numeric_sub(gnc_numeric a, gnc_numeric b,
                            gint64 denom, gint how);

/** Multiply a times b, returning the product.  An overflow
 *  may occur if the result of the multiplication can't
 *  be represented as a ratio of 64-bit int's after removing
 *  common factors.
 */
gnc_numeric gnc_numeric_mul(gnc_numeric a, gnc_numeric b,
                            gint64 denom, gint how);

/** Division.  Note that division can overflow, in the following
 *  sense: if we write x=a/b and y=c/d  then x/y = (a*d)/(b*c)
 *  If, after eliminating all common factors between the numerator
 *  (a*d) and the denominator (b*c),  then if either the numerator
 *  and/or the denominator are *still* greater than 2^63, then
 *  the division has overflowed.
 */
gnc_numeric gnc_numeric_div(gnc_numeric x, gnc_numeric y,
                            gint64 denom, gint how);
/** Returns a newly created gnc_numeric that is the negative of the
 * given gnc_numeric value. For a given gnc_numeric "a/b" the returned
 * value is "-a/b".  */
gnc_numeric gnc_numeric_neg(gnc_numeric a);

/** Returns a newly created gnc_numeric that is the absolute value of
 * the given gnc_numeric value. For a given gnc_numeric "a/b" the
 * returned value is "|a/b|". */
gnc_numeric gnc_numeric_abs(gnc_numeric a);

/**
 * Shortcut for common case: gnc_numeric_add(a, b, GNC_DENOM_AUTO,
 *                        GNC_HOW_DENOM_FIXED | GNC_HOW_RND_NEVER);
 */
static inline
gnc_numeric gnc_numeric_add_fixed(gnc_numeric a, gnc_numeric b)
{
    return gnc_numeric_add(a, b, GNC_DENOM_AUTO,
                           GNC_HOW_DENOM_FIXED | GNC_HOW_RND_NEVER);
}

/**
 * Shortcut for most common case: gnc_numeric_sub(a, b, GNC_DENOM_AUTO,
 *                        GNC_HOW_DENOM_FIXED | GNC_HOW_RND_NEVER);
 */
static inline
gnc_numeric gnc_numeric_sub_fixed(gnc_numeric a, gnc_numeric b)
{
    return gnc_numeric_sub(a, b, GNC_DENOM_AUTO,
                           GNC_HOW_DENOM_FIXED | GNC_HOW_RND_NEVER);
}
/** @} */

/** @name Arithmetic Functions with Exact Error Returns
 @{
*/
/** The same as gnc_numeric_add, but uses 'error' for accumulating
 *  conversion roundoff error. */
gnc_numeric gnc_numeric_add_with_error(gnc_numeric a, gnc_numeric b,
                                       gint64 denom, gint how,
                                       gnc_numeric * error);

/** The same as gnc_numeric_sub, but uses error for accumulating
 *  conversion roundoff error. */
gnc_numeric gnc_numeric_sub_with_error(gnc_numeric a, gnc_numeric b,
                                       gint64 denom, gint how,
                                       gnc_numeric * error);

/** The same as gnc_numeric_mul, but uses error for
 *  accumulating conversion roundoff error.
 */
gnc_numeric gnc_numeric_mul_with_error(gnc_numeric a, gnc_numeric b,
                                       gint64 denom, gint how,
                                       gnc_numeric * error);

/** The same as gnc_numeric_div, but uses error for
 *  accumulating conversion roundoff error.
 */
gnc_numeric gnc_numeric_div_with_error(gnc_numeric a, gnc_numeric b,
                                       gint64 denom, gint how,
                                       gnc_numeric * error);
/** @} */

/** @name Change Denominator
 @{
*/
/** Change the denominator of a gnc_numeric value to the
 *  specified denominator under standard arguments
 *  'denom' and 'how'.
 */
gnc_numeric gnc_numeric_convert(gnc_numeric n, gint64 denom,
                                gint how);

/** Return input after reducing it by Greated Common Factor (GCF)
 *  elimination */
gnc_numeric gnc_numeric_reduce(gnc_numeric n);

/** Attempt to convert the denominator to an exact power of ten without
 *  rounding.
 *
 *  @param a the ::gnc_numeric value to convert
 *
 *  @param max_decimal_places the number of decimal places of the
 *  converted value. This parameter may be @c NULL.
 *
 *  @return @c TRUE if @a a has been converted or was already decimal.
 *  Otherwise, @c FALSE is returned and @a a and @a max_decimal_places
 *  remain unchanged.
 ********************************************************************/
gboolean gnc_numeric_to_decimal(gnc_numeric * a,
                                guint8 * max_decimal_places);

/** Invert a gnc_numeric.
 * Much faster than dividing 1 by it.
 * @param num The number to be inverted
 * @return a gnc_numeric that is the inverse of num
 */
gnc_numeric gnc_numeric_invert (gnc_numeric num);
/** @} */

/** @name GValue
  @{
*/
GType gnc_numeric_get_type( void );
#define GNC_TYPE_NUMERIC (gnc_numeric_get_type ())

/** @} */
/** Int 64 exponentiation. Faster and more robust than casting the result of pow().
 * @param op The number to raise to exp.
 * @param exp The exponent
 * @return A gint64
 */
gint64 pwr64 (gint64 op, int exp);
/** @} */
#endif