/usr/lib/gpsman/maptransf.tcl is in gpsman 6.4.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 | #
# This file is part of:
#
# gpsman --- GPS Manager: a manager for GPS receiver data
#
# Copyright (c) 1998-2013 Miguel Filgueiras migfilg@t-online.de
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.
#
# File: maptransf.tcl
# Last change: 6 October 2013
#
## Uses information kindly supplied by
# Jose Alberto Goncalves, Universidade do Porto
# J. B. Mehl
##
## transformations for geo-referencing of images
#
# (xt,yt) terrain coordinates (metre)
# (xm,-ym) map coordinates (pixel, ym grows downwards!)
#
# affine transformation, 6 parameters
# (xt,yt) = [ aij ] x (xm,ym) + (e,f)
# where a11 = a a12 = b a21 = c a22 = d
#
# affine conformal transformation, 4 parameters
# (xt,yt) = lambda [ aij ] x (xm,ym) + (e,f)
# where a11 = cos a a12 = -sin a a21 = sin a a22 = cos a
# rotation angle: a scaling factor: lambda
#
# affine conformal no rotation transformation, 3 parameters
# (xt,yt) = lambda (xm,ym) + (e,f)
##
## when adding new transformation procedures the variables MAPTRANSFNPTS and
# MAPKNOWNTRANSFS must be changed in metadata.tcl
# see also relevant procedures in map.tcl, command_parse.tcl, command.tcl
# indices of MTData array used for each transformation
array set MAPTRANSFDATA {
NoRot {lambda e f}
Affine {a b c d e f det k2m1 k4m3}
AffineConf {a b e f det k2m1 k4m3}
}
proc MapTransfIs {transf} {
# set global variables so that map transformation is $transf
# $transf in $MAPKNOWNTRANSFS
global MapTransf MapTransfTitle TXT
set MapTransf $transf ; set MapTransfTitle $TXT(TRNSF$transf)
return
}
## transformation procs
proc MapInitNoRotTransf {scale xt0 yt0 xm0 ym0} {
# compute parameters of affine conformal transformation with no rotation
# $scale is in metre/pixel
# $xt0,$yt0: terrain coordinates of the map point at $xm0,$ym0 pixel
global MTData
MapTransfIs NoRot
# to avoid integer divisions
set MTData(lambda) [expr $scale*1.0]
set MTData(e) [expr $xt0-$scale*$xm0]
set MTData(f) [expr $yt0+$scale*$ym0]
return 0
}
proc InitNoRotTransf {} {
# compute representation of affine conformal transformation with no
# rotation transformation from 2 WPs
# $MapLoadWPs is list of indices of relevant WPs
# $MapLoadPos($n,x), $MapLoadPos($n,y) $n in 0..2 give pixel coordinates
# set MapScale to appropriate value in metre/pixel
# return 0 if failed to solve equations
global MapLoadPos MapScale MTData
MapTransfIs NoRot
foreach p "0 1" tcs [MapGeoRefPoints 2] {
foreach "xt$p yt$p" $tcs {}
}
# distance between points in the terrain (metre)
set dxt [expr $xt0-$xt1] ; set dyt [expr $yt0-$yt1]
# must have both multiplications by 1.0 !!!
set lt [expr sqrt(1.0*$dxt*$dxt+1.0*$dyt*$dyt)]
# distance between points in the map (pixel)
set dxm [expr $MapLoadPos(0,x)-$MapLoadPos(1,x)]
set dym [expr $MapLoadPos(0,y)-$MapLoadPos(1,y)]
# must have both multiplications by 1.0 !!!
set lm [expr sqrt(1.0*$dxm*$dxm+1.0*$dym*$dym)]
# scale
if { [catch {set scale [expr 1.0*$lt/$lm]}] } { return 0 }
set MapScale $scale
set MTData(lambda) [expr $scale*1.0]
set MTData(e) [expr $xt0-$scale*$MapLoadPos(0,x)]
set MTData(f) [expr $yt0+$scale*$MapLoadPos(0,y)]
return 1
}
proc MapApplyNoRotTransf {xt yt} {
# apply affine conformal transformation with no rotation
global MTData
set s $MTData(lambda)
return [list [expr ($xt-$MTData(e))/$s] [expr ($MTData(f)-$yt)/$s]]
}
proc MapInvertNoRotTransf {xm ym} {
# invert affine conformal transformation with no rotation
global MTData
set s $MTData(lambda)
return [list [expr $s*$xm+$MTData(e)] [expr $MTData(f)-$s*$ym]]
}
proc MapNewScaleNoRotTransf {scale} {
# set transformation parameters after change in map scale
# return 1 if possible
global MTData
set MTData(lambda) [expr $scale*1.0]
return 1
}
proc MapInitAffineTransf {args} {
# compute representation of affine transformation from 3 points
# $args=="" points are WPs, with $MapLoadWPs the list of
# indices of relevant WPs, used by proc MapGeoRefPoints
# that sets MapLoadPos(_,_) to the pixel coordinates
# ==list of projected coordinates, MapLoadPos(_,_) was already set
# $MapLoadPos($n,x), $MapLoadPos($n,y) $n in 0..2 give pixel coordinates
# set MapScale to appropriate value in metre/pixel
# return 0 if failed to solve equations
global MapLoadPos MapScale MTData Mat Rx
MapTransfIs Affine
if { $args == "" } {
if { [set tcs [MapGeoRefPoints 3]] == -1 } { return 0 }
} else { set tcs [lindex $args 0] }
foreach ps [list "a b e" "c d f"] d "0 1" {
foreach i "0 1 2" {
set Mat($i,0) $MapLoadPos($i,x)
set Mat($i,1) $MapLoadPos($i,y)
set Mat($i,2) 1
set Mat($i,3) [lindex [lindex $tcs $i] $d]
}
if { [GaussReduce 3] != 1 } { return 0 }
foreach p $ps i "0 1 2" {
set MTData($p) $Mat($Rx($i),3)
}
}
# the following parameters simplify computations
set MTData(det) [expr $MTData(a)*$MTData(d)-$MTData(b)*$MTData(c)]
set MTData(k2m1) [expr $MTData(b)*$MTData(f)-$MTData(d)*$MTData(e)]
set MTData(k4m3) [expr $MTData(c)*$MTData(e)-$MTData(a)*$MTData(f)]
# scale along the xm-axis when variation of ym=0
set MapScale [expr abs($MTData(a))]
return 1
}
proc MapApplyAffineTransf {xt yt} {
# apply affine transformation
global MTData
set x [expr ($MTData(d)*$xt-$MTData(b)*$yt+$MTData(k2m1))/$MTData(det)]
set y [expr ($MTData(a)*$yt-$MTData(c)*$xt+$MTData(k4m3))/$MTData(det)]
return [list $x $y]
}
proc MapInvertAffineTransf {xm ym} {
# invert affine transformation
global MTData
set xt [expr $MTData(a)*$xm+$MTData(b)*$ym+$MTData(e)]
set yt [expr $MTData(c)*$xm+$MTData(d)*$ym+$MTData(f)]
return [list $xt $yt]
}
proc MapNewScaleAffineTransf {scale} {
# set transformation parameters after change in map scale
# return 1 if possible
return 0
}
proc MapInitAffineConfTransf {args} {
# compute representation of affine conformal transformation from 2 points
# $args=="" points are WPs, with $MapLoadWPs the list of
# indices of relevant WPs, used by proc MapGeoRefPoints
# that sets MapLoadPos(_,_) to the pixel coordinates
# ==list of projected coordinates, MapLoadPos(_,_) was already set
# $MapLoadPos($n,x), $MapLoadPos($n,y) $n in 0..1 give pixel coordinates
# set MapScale to appropriate value in metre/pixel
# return 0 if failed to solve equations
global MapLoadPos MapScale MTData Mat Rx
MapTransfIs AffineConf
catch {unset MTData}
if { $args == "" } {
if { [set tcs [MapGeoRefPoints 2]] == -1 } { return 0 }
} else { set tcs [lindex $args 0] }
foreach e "0 2" i "0 1" {
set xyt [lindex $tcs $i]
set Mat($e,0) $MapLoadPos($i,x)
set Mat($e,1) [expr -$MapLoadPos($i,y)]
set Mat($e,2) 1 ; set Mat($e,3) 0
set Mat($e,4) [lindex $xyt 0]
incr e
set Mat($e,0) [expr -$MapLoadPos($i,y)]
set Mat($e,1) [expr -$MapLoadPos($i,x)]
set Mat($e,2) 0 ; set Mat($e,3) 1
set Mat($e,4) [lindex $xyt 1]
}
if { [GaussReduce 4] != 1 } { return 0 }
foreach p "a b e f" i "0 1 2 3" {
set MTData($p) $Mat($Rx($i),4)
}
# the following parameters make calculations easier
set MTData(det) [expr $MTData(a)*$MTData(a)+$MTData(b)*$MTData(b)]
set MTData(k2m1) [expr $MTData(b)*$MTData(f)-$MTData(a)*$MTData(e)]
set MTData(k4m3) [expr $MTData(b)*$MTData(e)+$MTData(a)*$MTData(f)]
# scale along the xm-axis when variation of ym=0
set MapScale [expr abs($MTData(a))]
return 1
}
proc MapApplyAffineConfTransf {xt yt} {
# apply affine conformal transformation
global MTData
set xm [expr ($MTData(a)*$xt-$MTData(b)*$yt+$MTData(k2m1))/$MTData(det)]
set ym [expr -($MTData(a)*$yt+$MTData(b)*$xt-$MTData(k4m3))/$MTData(det)]
return [list $xm $ym]
}
proc MapInvertAffineConfTransf {xm ym} {
# invert affine conformal transformation
global MTData
set xt [expr $MTData(a)*$xm-$MTData(b)*$ym+$MTData(e)]
set yt [expr -$MTData(b)*$xm-$MTData(a)*$ym+$MTData(f)]
return [list $xt $yt]
}
proc MapNewScaleAffineConfTransf {scale} {
# set transformation parameters after change in map scale
# return 1 if possible
return 0
}
proc MapAffineParams {} {
# convert parameters of current map transformation to corresponding
# parameters of an affine transformation
# return list of a parameter name followed by its value, where the
# parameter names are at least the following ones a, b, c, d, e, f
# as described above for the affine transformation
global MapTransf MTData
parray MTData
switch $MapTransf {
Affine { return [array get MTData] }
AffineConf {
set ps {}
foreach p {a b c d e f} cp {a b b a e f} s {1 -1 -1 -1 1 1} {
lappend ps $p [expr $s*$MTData($cp)]
puts "p=$p, cp=$cp v=$MTData($cp) e=[expr $s*$MTData($cp)]"
}
}
NoRot {
set lambda $MTData(lambda)
return [list a $lambda b 0 c 0 d $lambda \
e $MTData(e) f $MTData(f)]
}
}
return $ps
}
## solving a linear system of equations nxn by Gauss-Jordan elimination
# code adopted from the Slopes Algorithm implementation in C
# by M Filgueiras and A P Tomas / Universidade do Porto / 1996, 1997
#
proc GaussNullFirst {k n} {
# check first row with non-null element in $k,$k using Rx, Cx and
# exchange rows if needs be
# $n is dimension of matrix
# return 0 if non-null element found
global Rx Cx Mat
for { set i [expr $k+1] } { $i < $n } { incr i } {
if { $Mat($Rx($i),$Cx($k)) != 0 } {
set l $Rx($k) ; set Rx($k) $Rx($i) ; set Rx($i) $l
return 0
}
}
return 1
}
proc GaussElim {i k n p} {
# eliminate $i,$k element on ?x($n+1) matrix, pivot $p at $k,$k,
# using Rx, Cx; the $i,$k element is assumed to be non-null
global Rx Cx Mat
set ii $Rx($i) ; set ik $Rx($k)
set m [expr 1.0*$Mat($ii,$Cx($k))/$p]
for { set j [expr $k+1] } { $j <= $n } { incr j } {
set jj $Cx($j)
set Mat($ii,$jj) [expr $Mat($ii,$jj)-$m*$Mat($ik,$jj)]
}
set Mat($ii,$Cx($k)) 0
return
}
proc GaussSubelim {k n} {
# eliminate below $k on nx(n+1) matrix, using Rx, Cx[]
global Rx Cx Mat
set ck $Cx($k)
set p $Mat($Rx($k),$ck)
for { set i [expr $k+1] } { $i < $n } { incr i } {
if { $Mat($Rx($i),$ck) != 0 } {
GaussElim $i $k $n $p
}
}
return
}
proc GaussSupraelim {i n} {
# eliminate above $i on _x($n1) matrix, using Rx, Cx
global Rx Cx Mat
set ci $Cx($i)
set p $Mat($Rx($i),$ci)
for { set a 0 } { $a < $i } { incr a } {
if { $Mat($Rx($a),$ci) != 0 } {
GaussElim $a $i $n $p
}
}
return
}
proc GaussReduce {n} {
# reduction of $nx($n+1) matrix, using Rx, Cx to index rows and columns
# indices start from 0
# values in global array $Mat are changed by this procedure
# return 1 if there are is only one solution
# solutions to be retrived from $Mat($Rx($i),$n) for each $i from 0 to $n-1
global Rx Cx Mat
for { set i 0 } { $i < $n } { incr i } {
set Rx($i) $i ; set Cx($i) $i
}
set Cx($n) $n
for { set i 0 } { $i < $n } { incr i } {
if { $Mat($Rx($i),$Cx($i))==0 && [GaussNullFirst $i $n] } { return 0 }
GaussSubelim $i $n
}
for { set i [expr $n-1] } { $i > -1 } { incr i -1 } {
set Mat($Rx($i),$n) [expr $Mat($Rx($i),$n)/$Mat($Rx($i),$Cx($i))]
set Mat($Rx($i),$Cx($i)) 1
GaussSupraelim $i $n
}
return 1
}
### new version of least squares fit yielding one of the affine,
# affine conformal, or affine conformal without rotation transformation
## using equations worked out by J. B. Mehl 20070712, corrected 20070808
#
# (xt,yt) terrain coordinates
# (xm,-ym) map coordinates (pixel, ym grows downwards!)
# with origin of pixel coordinates in the upper left corner of image
#
# (e,f) terrain coordinates of upper left corner, map (0,0)
#
# with n = number of points
# Sxm = sum_i xm_i
# Sxtxm = sum_i xt_i xm_i
# ...
#
# parameters of an affine conformal with no rotation transformation
#
# (xt,yt) = lambda (xm,ym) + (e,f)
#
# (e,f) = lambda (xm_0,H-ym_0) + (xt_0,yt_0)
# where H is map height and (xt_0,yt_0) the terrain coordinates of
# map lower corner
#
# for all control points replace vertical coordinate ym_i by
# H-ym-i
#
# F = sum_i (xt_i-xt_0-lambda xm_i)^2+(yt_i-yt_0-lambda ym_i)^2
# min
#
# d(F,xt_0)=0 => Sxt - n xt_0 - lambda Sxm = 0
# => xt_0 = (Sxt - lambda Sxm) / n
# d(F,yt_0)=0 => Syt - n yt_0 - lambda Sym = 0
# => yt_0 = (Syt - lambda Sym) / n
# d(F,lambda)=0 => Sxtxm - xt_0 Sxm - lambda Sxmxm +
# Sytm - y_t0 Sym - lambda Symym
#
# lambda = (n (Sxtxm + Sytym) - Sxt Sxm - Syt Sym) /
# (n (Sxmxm + Symym) - Sxm^2 - Sym^2)
#
# e = (Sxt - lambda Sxm) / n
#
# f = (Syt + lambda Sym) / n
#
# parameters of an affine conformal transformation
#
# | a b |
# (xt,yt) = | c d | (xm,ym) + (e,f)
#
# with a = -d = s cos r b = c = s sin r
# NB: as GPSMan procs use b = c = -s sin r, the equation for b below
# must be preceded by a minus sign
#
# minimize sum_i d(xt_i)^2+d(yt_i)^2
# where
# d(xt_i) = xt_i - e - a xm_i - b ym_i
# d(yt_i) = yt_i - f - b xm_i + a ym_i
#
# | n 0 Sxm Sym | | e | | Sxt |
# | 0 n -Sym Sxm | | f | | Syt |
# M = | Sxm -Sym Sxmxm+Symym 0 | | a | = | Sxtxm-Sytym |
# | Sym Sxm 0 Sxmxm+Symym | | b | | Sxtym+Sytxm |
#
# e = (Sxm (Sxtxm-Sytym)+Sym (Sxtym+Sytxm)-Sxt (Sxmxm+Symym)) /
# (Sxm^2 + Sym^2 - n (Sxmxm+Symym))
#
# f = (Sym (Sytym-Sxtxm)+Sxm (Sxtym+Sytxm)-Syt (Sxmxm+Symym)) /
# (Sxm^2 + Sym^2 - n (Sxmxm+Symym))
#
# a = (Sxt Sxm - Syt Sym - n (Sxtxm - Sytym)) /
# (Sxm^2 + Sym^2 - n (Sxmxm+Symym))
#
# b = (Sxt Sym + Syt Sxm - n (Sxtym + Sytxm)) /
# (Sxm^2 + Sym^2 - n (Sxmxm+Symym))
#
# parameters of an affine transformation
#
# | a b |
# (xt,yt) = | c d | (xm,ym) + (e,f)
#
# minimize sum_i d(xt_i)^2+d(yt_i)^2
# where
# d(xt_i) = xt_i - xt(xm_i,ym_i,a,...,f)
# similarly for d(yt_i)
#
# => minimize sum_i (xt_i-e-a xm_i-ab ym_i)^2 +
# (yt_i-f-ac xm_i-ad ym_i)^2
#
# | n Sxm Sym | | e | | Sxt |
# M = | Sxm Sxmxm Sxmym | Vx = | a | Cx = | Sxtxm |
# | Sym Sxmym Symym | | b | | Sxtym |
#
#
# | f | | Syt |
# Vy = | c | Cy = | Sytxm |
# | d | | Sytym |
#
# equations: M Vx = Cx, M Vy = Cy yield [aij], e, f
#
proc MapInitLeastSquaresTransf {args} {
# use datum and geodetic and pixel coordinates of points either
# from the graphical interface or from a GPSMan least-squares
# info file to compute parameters of transformation using a
# least-squares fit
# $LSqsTransf in {Affine, AffineConf, NoRot} is the transformation type
# $args=="" points are WPs, with $MapLoadWPs the list of
# indices of relevant WPs, used by proc MapGeoRefPoints
# that sets MapLoadPos(_,_) to the pixel coordinates
# ==pair whose 2nd element is the projection and 1st element is
# a list with list of latd, longd and datum, a list of pairs
# with pixel coordinates (x, y, in Tcl sign convention with
# origin at upper left corner), a list with waypoints names (empty
# for positions given explictly), and the input file path
# return list of WP names to be displayed or 0 on error or operation being
# cancelled
global MPData MTData MapScale MPData MapLoadWPs MapLoadPos MapImageHeight \
LSqsTransf Mat Rx SUBDTUNIT DSCALE SUBDSCALE TXT GFShowInfo GFVisible
set dispWPs ""
if { $args == "" } {
# from interface: always show fit information, no WPs to display
set showinfo 1
set names ""
set fpath ""
set n [llength $MapLoadWPs]
if { [set tcs [MapGeoRefPoints $n]] == -1 } { return 0 }
set xys ""
for { set k 0 } { $k < $n } { incr k } {
lappend xys [list $MapLoadPos($k,x) $MapLoadPos($k,y)]
}
foreach ix $MapLoadWPs {
lappend names [NameOf WP $ix]
}
} else {
# from file: show fit information and display WPs if required
set showinfo $GFShowInfo
foreach "p proj" $args { break }
foreach "ldds xys names fpath" $p { break }
set tcs ""
foreach ldd $ldds {
foreach "latd longd datum" $ldd {}
lappend tcs [Proj${proj}Point MPData $latd $longd $datum]
}
set n [llength $names]
if { $GFVisible } { set dispWPs $names }
}
# least-squares on $tcs and $xys
MapTransfIs $LSqsTransf
if { $LSqsTransf == "NoRot" } {
set ymoff $MapImageHeight ; set ymsign -1
} else { set ymoff 0 ; set ymsign 1 }
foreach i "xt xtxm xtym yt ytxm ytym xm xmxm xmym ym ymym" {
set s($i) 0.0
}
foreach tc $tcs pc $xys {
foreach "xt yt" $tc {}
foreach "xm ym" $pc {}
set ym [expr $ymoff+$ymsign*$ym]
foreach i "xt yt xm ym" {
set s($i) [expr $s($i)+[set $i]]
}
set s(xmym) [expr $s(xmym)+1.0*$xm*$ym]
foreach j "x y" {
set z [set ${j}m]
set w "${j}m${j}m"
set s($w) [expr $s($w)+1.0*$z*$z]
foreach i "x y" {
set w "${i}t${j}m"
set s($w) [expr $s($w)+1.0*[set ${i}t]*$z]
}
}
}
set dfreedom [expr $n+$n]
set n [expr 1.0*$n]
switch $LSqsTransf {
Affine {
incr dfreedom -6
foreach d "xt yt" ps [list "e a b" "f c d"] {
catch {unset Mat}
set Mat(0,0) $n
set Mat(0,1) [set Mat(1,0) $s(xm)]
set Mat(0,2) [set Mat(2,0) $s(ym)]
set Mat(1,1) $s(xmxm)
set Mat(1,2) [set Mat(2,1) $s(xmym)]
set Mat(2,2) $s(ymym)
set Mat(0,3) $s($d)
set Mat(1,3) $s(${d}xm)
set Mat(2,3) $s(${d}ym)
if { [GaussReduce 3] != 1 } { return 0 }
foreach p $ps i "0 1 2" {
set MTData($p) $Mat($Rx($i),3)
}
}
# the following parameters simplify computations
set MTData(det) [expr $MTData(a)*$MTData(d)-$MTData(b)*$MTData(c)]
set MTData(k2m1) [expr $MTData(b)*$MTData(f)-$MTData(d)*$MTData(e)]
set MTData(k4m3) [expr $MTData(c)*$MTData(e)-$MTData(a)*$MTData(f)]
# scale along the xm-axis when variation of ym=0
set MapScale [expr abs($MTData(a))]
}
AffineConf {
incr dfreedom -4
set zxym [expr $s(xmxm)+$s(ymym)]
set zuyvx [expr $s(xtym)+$s(ytxm)]
set zuxMvy [expr $s(xtxm)-$s(ytym)]
if { abs([set den [expr $s(xm)*$s(xm)+$s(ym)*$s(ym)-$n*$zxym]]) \
< 1e-50 } { return 0 }
set MTData(a) [expr ($s(xt)*$s(xm)-$s(yt)*$s(ym)-$n*$zuxMvy) \
/ $den]
# b sign is changed in GPSMan affine conformal procs
set MTData(b) [expr -($s(xt)*$s(ym)+$s(yt)*$s(xm)-$n*$zuyvx) /$den]
set MTData(e) [expr ($s(xm)*$zuxMvy+$s(ym)*$zuyvx-$s(xt)*$zxym) \
/ $den]
set MTData(f) [expr ($s(xm)*$zuyvx-$s(ym)*$zuxMvy-$s(yt)*$zxym) \
/ $den]
# the following parameters make calculations easier
set MTData(det) [expr $MTData(a)*$MTData(a)+$MTData(b)*$MTData(b)]
set MTData(k2m1) [expr $MTData(b)*$MTData(f)-$MTData(a)*$MTData(e)]
set MTData(k4m3) [expr $MTData(b)*$MTData(e)+$MTData(a)*$MTData(f)]
# scale along the xm-axis when variation of ym=0
set MapScale [expr abs($MTData(a))]
}
NoRot {
incr dfreedom -3
if { [catch {set k [expr 1.0*($n*($s(xtxm)+$s(ytym))- \
$s(xt)*$s(xm)-$s(yt)*$s(ym)) / \
($n*($s(xmxm)+$s(ymym)) - $s(xm)*$s(xm) - \
$s(ym)*$s(ym))]}] } {
return 0
}
# assuming:
# set MapLoadPos(origin,x) 0
# set MapLoadPos(origin,y) 0
set MTData(lambda) [set MapScale $k]
set MTData(e) [expr 1.0*($s(xt)-$k*$s(xm))/$n]
set MTData(f) [expr 1.0*($s(yt)-$k*$s(ym))/$n+$k*$MapImageHeight]
}
}
if { $showinfo } {
# deviations of control points in user units (m, ft)
set sc [expr $MapScale*$DSCALE/$SUBDSCALE/1000.0]
append info $TXT(lstsqs) " / " $TXT(TRNSF$LSqsTransf) "\n"
if { $fpath != "" } {
append info $TXT(file) ": " $fpath "\n"
}
set xt $TXT(xtcoord) ; set yt $TXT(ytcoord)
set delta $TXT(delta)
append info \
"\t\t$xt\t$yt\t$delta $xt\t$delta $yt\t$delta $TXT(residual)\n" \
"\t\tm\tm\t$SUBDTUNIT\t$SUBDTUNIT\t$SUBDTUNIT\n"
set sumdrt2 0
foreach tc $tcs pc $xys name $names {
foreach "xt yt" $tc {}
foreach "xm ym" $pc {}
foreach "nxm nym" [MapApply${LSqsTransf}Transf $xt $yt] {}
set dxt [expr $sc*($nxm-$xm)]
set dyt [expr $sc*($nym-$ym)]
set drt [expr sqrt($dxt*$dxt+$dyt*$dyt)]
set sumdrt2 [expr $sumdrt2+$drt*$drt]
foreach v "dxt dyt drt" { set $v [format %7.2f [set $v]] }
append info $name "\t\t" [format %.2f $xt] "\t" [format %.2f $yt] \
"\t" $dxt "\t" $dyt "\t" $drt "\n"
}
set rms [expr sqrt($sumdrt2/($n+$n))]
set rmsdf [expr sqrt(1.0*$sumdrt2/$dfreedom)]
append info "$TXT(rmsxydev) = " [format %.2f $rms] $SUBDTUNIT "\n" \
"$TXT(resstderr) = " [format %.2f $rmsdf] $SUBDTUNIT "\n"
DisplayInfo $info tabs \
[list -10 right -24 right -38 right -46 right -54 right -62 right]
}
return $dispWPs
}
##### TFW metadata file
proc MapInitTFWTransf {data proj} {
# compute parameters of affine transformation from the values in a
# TFW metadata file
# based on the ESRI ArcGIS 2.9 manual (consulted November 2009) at
# http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?id=2676&pid=2664&topicname=World_files_for_raster_datasets
# this is an affine transformation with
# (xt,yt) = [ Aij ] x (xm,ym) + (C,F)
# where A11 = A = tfw1
# A12 = B = tfw3
# A21 = D = tfw2
# A22 = E = tfw4 (correct sign for y map coordinates growing down)
# C = tfw5, F = tfw6
#
# therefore in the GPSMan notation
# a = A, b = B, e = C
# c = D, d = E, f = F
#
# $data is a pair with an empty list and a list with the 6 parameters
# (tfw_ in the formulae above)
# $proj is the projection
# return 0 if determinant is 0
global MTData MapScale
MapTransfIs Affine
foreach m {a c b d e f} v [lindex $data 1] {
# to avoid integer divisions
set MTData($m) [expr 0.0+$v]
}
set MTData(det) [expr $MTData(a)*$MTData(d)-$MTData(b)*$MTData(c)]
if { abs($MTData(det)) < 1e-30 } {
return 0
}
# the following parameters simplify computations
set MTData(k2m1) [expr $MTData(b)*$MTData(f)-$MTData(d)*$MTData(e)]
set MTData(k4m3) [expr $MTData(c)*$MTData(e)-$MTData(a)*$MTData(f)]
# scale along the xm-axis when variation of ym=0
set MapScale [expr abs($MTData(a))]
return 1
}
##### partial support for OziExplorer .map files
proc MapInitOziMapTransf {data proj} {
# use datum and geodetic and pixel coordinates of points in Ozi .map
# file to compute parameters of affine or affine conformal transformation
# $data is pair with list of latd,longd,datum and
# list of pairs with pixel coordinates (in Tcl sign convention)
# aligned with the previous one
# $proj is the projection
# return 0 on error
global MTData MapScale MPData MapLoadPos
foreach "opds opxs" $data {}
if { [set sel [MapReduceCPoints $opxs]] == "" } { return 0 }
set n 0
set projcs ""
foreach ix $sel {
foreach "x y" [lindex $opxs $ix] {}
set MapLoadPos($n,x) $x ; set MapLoadPos($n,y) $y
set lld [lindex $opds $ix]
lappend projcs [eval Proj${proj}Point MPData $lld]
incr n
}
if { $n == 3 } {
set r [MapInitAffineTransf $projcs]
} else { set r [MapInitAffineConfTransf $projcs] }
if { $r != 0 } {
FixMapScale $proj
}
return $r
}
proc MapReduceCPoints {xys} {
# reduce a set of points given by a list of their planar
# coordinates to 3 or 2
# return list of indices in $xys of selected points or "" if less than 2
#
# reduction principle (suggested by Luis Damas): maximize the
# minimum distance between each 2 points in a triangle
# algorithm: find the leftmost 3 edges forming a triangle
# in a list of triples with distance between two points and
# the 2 points indices, sorted by decreasing distance
if { [set n [llength $xys]] < 2 } { return "" }
if { $n == 2 } { return "0 1" }
# form list of triples
set ds ""
set ix 0
foreach p [lrange $xys 0 end-1] {
foreach "x y" $p {}
set ixi [expr $ix+1]
foreach pi [lrange $xys 1 end] {
foreach "xi yi" $pi {}
set dx [expr $x-$xi] ; set dy [expr $y-$yi]
lappend ds [list [expr sqrt($dx*$dx+$dy*$dy)] $ix $ixi]
incr ixi
}
incr ix
}
set ds [lsort -decreasing -real -index 0 $ds]
foreach t $ds {
foreach "d ix0 ix1" $t {}
# $ix0 < $ix1 by construction
if { [catch {set s0 $seen($ix0)}] } {
set seen($ix0) $ix1
if { [catch {set seen($ix1)}] } {
set seen($ix1) $ix0
} else { lappend seen($ix1) $ix0 }
} elseif { [catch {set s1 $seen($ix1)}] } {
set seen($ix1) $ix0
lappend seen($ix0) $ix1
} elseif { [set ix2 [Intersect1 $s0 $s1]] == "" } {
lappend seen($ix0) $ix1
lappend seen($ix1) $ix0
} else {
# distance between $ix0 and $ix1 is the minimum of the
# 3 distances, therefore if the points are colinear
# $ix2 is an extreme
break
}
}
foreach n "0 1 2" {
foreach "x$n y$n" [lindex $xys [set ix$n]] {}
}
# colinear?
if { $x0 == $x2 || $x1 == $x2 } {
if { abs ($x0-$x1) < 10 } {
if { abs($y0-$y2) > abs($y1-$y2) } {
return [list $ix2 $ix0]
}
return [list $ix2 $ix1]
}
} else {
set dd02 [expr 1.0*($y0-$y2)/($x0-$x2)]
set dd12 [expr 1.0*($y1-$y2)/($x1-$x2)]
set ddm [expr { abs($dd02) > abs($dd12) } ? $dd02 : $dd12]
if { abs(($dd02-$dd12)/$ddm) < 0.5 } {
if { abs($x0-$x2) > abs($x1-$x2) } {
return [list $ix2 $ix0]
}
return [list $ix2 $ix1]
}
}
return [list $ix2 $ix1 $ix0]
}
|