This file is indexed.

/usr/share/gretl/data/nist/Wampler1.dat is in gretl-data 2016d-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
NIST/ITL StRD
Dataset Name:  Wampler1 (Wampler1.dat)

File Format:   ASCII
               Certified Values  (lines 31 to 50)
               Data              (lines 61 to 81)

Procedure:     Linear Least Squares Regression

Reference:     Wampler, R. H. (1970). 
               A Report of the Accuracy of Some Widely-Used Least 
               Squares Computer Programs. 
               Journal of the American Statistical Association, 65, pp. 549-565.
           
Data:          1 Response Variable (y)
               1 Predictor Variable (x)
               21 Observations
               Higher Level of Difficulty
               Generated Data

Model:         Polynomial Class
               6 Parameters (B0,B1,...,B5)

               y = B0 + B1*x + B2*(x**2) + B3*(x**3)+ B4*(x**4) + B5*(x**5)

               Certified Regression Statistics

                                          Standard Deviation
     Parameter        Estimate               of Estimate

        B0        1.00000000000000        0.000000000000000
        B1        1.00000000000000        0.000000000000000
        B2        1.00000000000000        0.000000000000000
        B3        1.00000000000000        0.000000000000000
        B4        1.00000000000000        0.000000000000000
        B5        1.00000000000000        0.000000000000000

     Residual
     Standard Deviation   0.000000000000000

     R-Squared            1.00000000000000


               Certified Analysis of Variance Table

Source of Degrees of     Sums of               Mean  
Variation  Freedom       Squares              Squares           F Statistic
              
Regression    5      18814317208116.7     3762863441623.33       Infinity
Residual     15      0.000000000000000    0.000000000000000
              








Data:            y     x
                 1     0
                 6     1
                63     2
               364     3
              1365     4
              3906     5
              9331     6
             19608     7
             37449     8
             66430     9
            111111    10
            177156    11
            271453    12
            402234    13
            579195    14
            813616    15
           1118481    16
           1508598    17
           2000719    18
           2613660    19
           3368421    20