/usr/share/perl5/Grinder.pm is in grinder 0.5.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 | # This file is part of the Grinder package, copyright 2009-2013
# Florent Angly <florent.angly@gmail.com>, under the GPLv3 license
package Grinder;
use 5.006;
use strict;
use warnings;
use File::Spec;
use List::Util qw(max);
use Bio::SeqIO;
use Grinder::KmerCollection;
use Bio::Location::Split;
use Bio::Seq::SimulatedRead;
use Bio::SeqFeature::SubSeq;
use Bio::Tools::AmpliconSearch;
use Math::Random::MT qw(srand rand);
use Getopt::Euclid qw(:minimal_keys :defer);
use version; our $VERSION = version->declare('0.5.4');
#---------- GRINDER POD DOC ---------------------------------------------------#
=head1 NAME
Grinder - A versatile omics shotgun and amplicon sequencing read simulator
=head1 DESCRIPTION
Grinder is a versatile program to create random shotgun and amplicon sequence
libraries based on DNA, RNA or proteic reference sequences provided in a FASTA
file.
Grinder can produce genomic, metagenomic, transcriptomic, metatranscriptomic,
proteomic, metaproteomic shotgun and amplicon datasets from various sequencing
technologies such as Sanger, 454, Illumina. These simulated datasets can be used
to test the accuracy of bioinformatic tools under specific hypothesis, e.g. with
or without sequencing errors, or with low or high community diversity. Grinder
may also be used to help decide between alternative sequencing methods for a
sequence-based project, e.g. should the library be paired-end or not, how many
reads should be sequenced.
Grinder features include:
=over
=item *
shotgun or amplicon read libraries
=item *
omics support to generate genomic, transcriptomic, proteomic,
metagenomic, metatranscriptomic or metaproteomic datasets
=item *
arbitrary read length distribution and number of reads
=item *
simulation of PCR and sequencing errors (chimeras, point mutations, homopolymers)
=item *
support for paired-end (mate pair) datasets
=item *
specific rank-abundance settings or manually given abundance for each genome, gene or protein
=item *
creation of datasets with a given richness (alpha diversity)
=item *
independent datasets can share a variable number of genomes (beta diversity)
=item *
modeling of the bias created by varying genome lengths or gene copy number
=item *
profile mechanism to store preferred options
=item *
available to biologists or power users through multiple interfaces: GUI, CLI and API
=back
Briefly, given a FASTA file containing reference sequence (genomes, genes,
transcripts or proteins), Grinder performs the following steps:
=over
=item 1.
Read the reference sequences, and for amplicon datasets, extracts full-length
reference PCR amplicons using the provided degenerate PCR primers.
=item 2.
Determine the community structure based on the provided alpha diversity (number
of reference sequences in the library), beta diversity (number of reference
sequences in common between several independent libraries) and specified rank-
abundance model.
=item 3.
Take shotgun reads from the reference sequences or amplicon reads from the full-
length reference PCR amplicons. The reads may be paired-end reads when an insert
size distribution is specified. The length of the reads depends on the provided
read length distribution and their abundance depends on the relative abundance
in the community structure. Genome length may also biases the number of reads to
take for shotgun datasets at this step. Similarly, for amplicon datasets, the
number of copies of the target gene in the reference genomes may bias the number
of reads to take.
=item 4.
Alter reads by inserting sequencing errors (indels, substitutions and homopolymer
errors) following a position-specific model to simulate reads created by current
sequencing technologies (Sanger, 454, Illumina). Write the reads and their
quality scores in FASTA, QUAL and FASTQ files.
=back
=head1 CITATION
If you use Grinder in your research, please cite:
Angly FE, Willner D, Rohwer F, Hugenholtz P, Tyson GW (2012), Grinder: a
versatile amplicon and shotgun sequence simulator, Nucleic Acids Reseach
Available from L<http://dx.doi.org/10.1093/nar/gks251>.
=head1 VERSION
0.5.4
=head1 AUTHOR
Florent Angly <florent.angly@gmail.com>
=head1 INSTALLATION
=head2 Dependencies
You need to install these dependencies first:
=over
=item *
Perl (>= 5.6)
L<http://www.perl.com/download.csp>
=item *
make
Many systems have make installed by default. If your system does not, you should
install the implementation of make of your choice, e.g. GNU make: L<http://www.gnu.org/s/make/>
=back
The following CPAN Perl modules are dependencies that will be installed automatically
for you:
=over
=item *
Bioperl modules (>=1.6.923)
=item *
Getopt::Euclid (>= 0.4.4)
=item *
List::Util
First released with Perl v5.7.3
=item *
Math::Random::MT (>= 1.16)
=item *
version (>= 0.77)
First released with Perl v5.9.0
=back
=head2 Extra dependencies for Grinder development only
Perl modules:
=over
=item *
Module::Install
=item *
Module::Install::AuthorRequires
=item *
Module::Install::AutoLicense
=item *
Module::Install::PodFromEuclid
=item *
Module::Install::ReadmeFromPod (>= 0.14)
=item *
Module::Install::AutoManifest
=item *
Statistics::R (>= 0.32)
=back
The R interpreter (L<http://www.r-project.org>) and the following R library:
=over
=item *
fitdistrplus
=back
When running R, install the library with this command: install.packages("fitdistrplus")
=head2 Procedure
To install Grinder globally on your system, run the following commands in a
terminal or command prompt:
On Linux, Unix, MacOS:
perl Makefile.PL
make
And finally, with administrator privileges:
make install
On Windows, run the same commands but with nmake instead of make.
=head2 No administrator privileges?
If you do not have administrator privileges, Grinder needs to be installed in
your home directory.
First, follow the instructions to install local::lib
at L<http://search.cpan.org/~apeiron/local-lib-1.008004/lib/local/lib.pm#The_bootstrapping_technique>. After local::lib is installed, every Perl
module that you install manually or through the CPAN command-line application
will be installed in your home directory.
Then, install Grinder by following the instructions detailed in the "Procedure"
section.
=head1 RUNNING GRINDER
After installation, you can run Grinder using a command-line interface (CLI),
an application programming interface (API) or a graphical user interface (GUI)
in Galaxy.
To get the usage of the CLI, type:
grinder --help
More information, including the documentation of the Grinder API, which allows
you to run Grinder from within other Perl programs, is available by typing:
perldoc Grinder
To run the GUI, refer to the Galaxy documentation at L<http://wiki.g2.bx.psu.edu/FrontPage>.
The 'utils' folder included in the Grinder package contains some utilities:
=over
=item average genome size:
This calculates the average genome size (in bp) of a simulated random library
produced by Grinder.
=item change_paired_read_orientation:
This reverses the orientation of each second mate-pair read (ID ending in /2)
in a FASTA file.
=back
=head1 REFERENCE SEQUENCE DATABASE
A variety of FASTA databases can be used as input for Grinder. For example, the
GreenGenes database (L<http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/Isolated_named_strains_16S_aligned.fasta>)
contains over 180,000 16S rRNA clone sequences from various species which would
be appropriate to produce a 16S rRNA amplicon dataset. A set of over 41,000 OTU
representative sequences and their affiliation in seven different taxonomic
sytems can also be used for the same purpose (L<http://greengenes.lbl.gov/Download/OTUs/gg_otus_6oct2010/rep_set/gg_97_otus_6oct2010.fasta>
and L<http://greengenes.lbl.gov/Download/OTUs/gg_otus_6oct2010/taxonomies/>). The
RDP (L<http://rdp.cme.msu.edu/download/release10_27_unaligned.fa.gz>) and Silva
(L<http://www.arb-silva.de/no_cache/download/archive/release_108/Exports/>)
databases also provide many 16S rRNA sequences and Silva includes eukaryotic
sequences. While 16S rRNA is a popular gene, datasets containing any type of gene
could be used in the same fashion to generate simulated amplicon datasets, provided
appropriate primers are used.
The >2,400 curated microbial genome sequences in the NCBI RefSeq collection
(L<ftp://ftp.ncbi.nih.gov/refseq/release/microbial/>) would also be suitable for
producing 16S rRNA simulated datasets (using the adequate primers). However, the
lower diversity of this database compared to the previous two makes it more
appropriate for producing artificial microbial metagenomes. Individual genomes
from this database are also very suitable for the simulation of single or
double-barreled shotgun libraries. Similarly, the RefSeq database contains
over 3,100 curated viral sequences (L<ftp://ftp.ncbi.nih.gov/refseq/release/viral/>)
which can be used to produce artificial viral metagenomes.
Quite a few eukaryotic organisms have been sequenced and their genome or genes
can be the basis for simulating genomic, transcriptomic (RNA-seq) or proteomic
datasets. For example, you can use the human genome available at
L<ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/RefSeqGene/>, the human transcripts
downloadable from L<ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot/human.rna.fna.gz>
or the human proteome at L<ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot/human.protein.faa.gz>.
=head1 CLI EXAMPLES
Here are a few examples that illustrate the use of Grinder in a terminal:
=over
=item 1.
A shotgun DNA library with a coverage of 0.1X
grinder -reference_file genomes.fna -coverage_fold 0.1
=item 2.
Same thing but save the result files in a specific folder and with a specific name
grinder -reference_file genomes.fna -coverage_fold 0.1 -base_name my_name -output_dir my_dir
=item 3.
A DNA shotgun library with 1000 reads
grinder -reference_file genomes.fna -total_reads 1000
=item 4.
A DNA shotgun library where species are distributed according to a power law
grinder -reference_file genomes.fna -abundance_model powerlaw 0.1
=item 5.
A DNA shotgun library with 123 genomes taken random from the given genomes
grinder -reference_file genomes.fna -diversity 123
=item 6.
Two DNA shotgun libraries that have 50% of the species in common
grinder -reference_file genomes.fna -num_libraries 2 -shared_perc 50
=item 7.
Two DNA shotgun library with no species in common and distributed according to a
exponential rank-abundance model. Note that because the parameter value for the
exponential model is omitted, each library uses a different randomly chosen value:
grinder -reference_file genomes.fna -num_libraries 2 -abundance_model exponential
=item 8.
A DNA shotgun library where species relative abundances are manually specified
grinder -reference_file genomes.fna -abundance_file my_abundances.txt
=item 9.
A DNA shotgun library with Sanger reads
grinder -reference_file genomes.fna -read_dist 800 -mutation_dist linear 1 2 -mutation_ratio 80 20
=item 10.
A DNA shotgun library with first-generation 454 reads
grinder -reference_file genomes.fna -read_dist 100 normal 10 -homopolymer_dist balzer
=item 11.
A paired-end DNA shotgun library, where the insert size is normally distributed
around 2.5 kbp and has 0.2 kbp standard deviation
grinder -reference_file genomes.fna -insert_dist 2500 normal 200
=item 12.
A transcriptomic dataset
grinder -reference_file transcripts.fna
=item 13.
A unidirectional transcriptomic dataset
grinder -reference_file transcripts.fna -unidirectional 1
Note the use of -unidirectional 1 to prevent reads to be taken from the reverse-
complement of the reference sequences.
=item 14.
A proteomic dataset
grinder -reference_file proteins.faa -unidirectional 1
=item 15.
A 16S rRNA amplicon library
grinder -reference_file 16Sgenes.fna -forward_reverse 16Sprimers.fna -length_bias 0 -unidirectional 1
Note the use of -length_bias 0 because reference sequence length should not affect
the relative abundance of amplicons.
=item 16.
The same amplicon library with 20% of chimeric reads (90% bimera, 10% trimera)
grinder -reference_file 16Sgenes.fna -forward_reverse 16Sprimers.fna -length_bias 0 -unidirectional 1 -chimera_perc 20 -chimera_dist 90 10
=item 17.
Three 16S rRNA amplicon libraries with specified MIDs and no reference sequences
in common
grinder -reference_file 16Sgenes.fna -forward_reverse 16Sprimers.fna -length_bias 0 -unidirectional 1 -num_libraries 3 -multiplex_ids MIDs.fna
=item 18.
Reading reference sequences from the standard input, which allows you to
decompress FASTA files on the fly:
zcat microbial_db.fna.gz | grinder -reference_file - -total_reads 100
=back
=head1 CLI REQUIRED ARGUMENTS
=over
=item -rf <reference_file> | -reference_file <reference_file> | -gf <reference_file> | -genome_file <reference_file>
FASTA file that contains the input reference sequences (full genomes, 16S rRNA
genes, transcripts, proteins...) or '-' to read them from the standard input. See the
README file for examples of databases you can use and where to get them from.
Default: reference_file.default
=for Euclid:
reference_file.type: readable
reference_file.default: '-'
=back
=head1 CLI OPTIONAL ARGUMENTS
Basic parameters
=over
=item -tr <total_reads> | -total_reads <total_reads>
Number of shotgun or amplicon reads to generate for each library. Do not specify
this if you specify the fold coverage. Default: total_reads.default
=for Euclid:
total_reads.type: +integer
total_reads.default: 100
=item -cf <coverage_fold> | -coverage_fold <coverage_fold>
Desired fold coverage of the input reference sequences (the output FASTA length
divided by the input FASTA length). Do not specify this if you specify the number
of reads directly.
=for Euclid:
coverage_fold.type: +number
coverage_fold.excludes: total_reads
=back
Advanced shotgun and amplicon parameters
=over
=item -rd <read_dist>... | -read_dist <read_dist>...
Desired shotgun or amplicon read length distribution specified as:
average length, distribution ('uniform' or 'normal') and standard deviation.
Only the first element is required. Examples:
All reads exactly 101 bp long (Illumina GA 2x): 101
Uniform read distribution around 100+-10 bp: 100 uniform 10
Reads normally distributed with an average of 800 and a standard deviation of 100
bp (Sanger reads): 800 normal 100
Reads normally distributed with an average of 450 and a standard deviation of 50
bp (454 GS-FLX Ti): 450 normal 50
Reference sequences smaller than the specified read length are not used. Default:
read_dist.default
=for Euclid:
read_dist.type: string
read_dist.default: [100]
=item -id <insert_dist>... | -insert_dist <insert_dist>...
Create paired-end or mate-pair reads spanning the given insert length.
Important: the insert is defined in the biological sense, i.e. its length includes
the length of both reads and of the stretch of DNA between them:
0 : off,
or: insert size distribution in bp, in the same format as the read length
distribution (a typical value is 2,500 bp for mate pairs)
Two distinct reads are generated whether or not the mate pair overlaps. Default:
insert_dist.default
=for Euclid:
insert_dist.type: string
insert_dist.default: [0]
=item -mo <mate_orientation> | -mate_orientation <mate_orientation>
When generating paired-end or mate-pair reads (see <insert_dist>), specify the
orientation of the reads (F: forward, R: reverse):
FR: ---> <--- e.g. Sanger, Illumina paired-end, IonTorrent mate-pair
FF: ---> ---> e.g. 454
RF: <--- ---> e.g. Illumina mate-pair
RR: <--- <---
Default: mate_orientation.default
=for Euclid:
mate_orientation.type: string, mate_orientation eq 'FF' || mate_orientation eq 'FR' || mate_orientation eq 'RF' || mate_orientation eq 'RR'
mate_orientation.type.error: <mate_orientation> must be FR, FF, RF or RR (not mate_orientation)
mate_orientation.default: 'FR'
=item -ec <exclude_chars> | -exclude_chars <exclude_chars>
Do not create reads containing any of the specified characters (case insensitive).
For example, use 'NX' to prevent reads with ambiguities (N or X). Grinder will
error if it fails to find a suitable read (or pair of reads) after 10 attempts.
Consider using <delete_chars>, which may be more appropriate for your case.
Default: 'exclude_chars.default'
=for Euclid:
exclude_chars.type: string
exclude_chars.default: ''
=item -dc <delete_chars> | -delete_chars <delete_chars>
Remove the specified characters from the reference sequences (case-insensitive),
e.g. '-~*' to remove gaps (- or ~) or terminator (*). Removing these characters
is done once, when reading the reference sequences, prior to taking reads. Hence
it is more efficient than <exclude_chars>. Default: delete_chars.default
=for Euclid:
delete_chars.type: string
delete_chars.default: ''
=item -fr <forward_reverse> | -forward_reverse <forward_reverse>
Use DNA amplicon sequencing using a forward and reverse PCR primer sequence
provided in a FASTA file. The reference sequences and their reverse complement
will be searched for PCR primer matches. The primer sequences should use the
IUPAC convention for degenerate residues and the reference sequences that that
do not match the specified primers are excluded. If your reference sequences are
full genomes, it is recommended to use <copy_bias> = 1 and <length_bias> = 0 to
generate amplicon reads. To sequence from the forward strand, set <unidirectional>
to 1 and put the forward primer first and reverse primer second in the FASTA
file. To sequence from the reverse strand, invert the primers in the FASTA file
and use <unidirectional> = -1. The second primer sequence in the FASTA file is
always optional. Example: AAACTYAAAKGAATTGRCGG and ACGGGCGGTGTGTRC for the 926F
and 1392R primers that target the V6 to V9 region of the 16S rRNA gene.
=for Euclid:
forward_reverse.type: readable
=item -un <unidirectional> | -unidirectional <unidirectional>
Instead of producing reads bidirectionally, from the reference strand and its
reverse complement, proceed unidirectionally, from one strand only (forward or
reverse). Values: 0 (off, i.e. bidirectional), 1 (forward), -1 (reverse). Use
<unidirectional> = 1 for amplicon and strand-specific transcriptomic or
proteomic datasets. Default: unidirectional.default
=for Euclid:
unidirectional.type: integer, unidirectional >= -1 && unidirectional <= 1
unidirectional.type.error: <unidirectional> must be 0, 1 or -1 (not unidirectional)
unidirectional.default: 0
=item -lb <length_bias> | -length_bias <length_bias>
In shotgun libraries, sample reference sequences proportionally to their length.
For example, in simulated microbial datasets, this means that at the same
relative abundance, larger genomes contribute more reads than smaller genomes
(and all genomes have the same fold coverage).
0 = no, 1 = yes. Default: length_bias.default
=for Euclid:
length_bias.type: integer, length_bias == 0 || length_bias == 1
length_bias.type.error: <length_bias> must be 0 or 1 (not length_bias)
length_bias.default: 1
=item -cb <copy_bias> | -copy_bias <copy_bias>
In amplicon libraries where full genomes are used as input, sample species
proportionally to the number of copies of the target gene: at equal relative
abundance, genomes that have multiple copies of the target gene contribute more
amplicon reads than genomes that have a single copy. 0 = no, 1 = yes. Default:
copy_bias.default
=for Euclid:
copy_bias.type: integer, copy_bias == 0 || copy_bias == 1
copy_bias.type.error: <copy_bias> must be 0 or 1 (not copy_bias)
copy_bias.default: 1
=back
Aberrations and sequencing errors
=over
=item -md <mutation_dist>... | -mutation_dist <mutation_dist>...
Introduce sequencing errors in the reads, under the form of mutations
(substitutions, insertions and deletions) at positions that follow a specified
distribution (with replacement): model (uniform, linear, poly4), model parameters.
For example, for a uniform 0.1% error rate, use: uniform 0.1. To simulate Sanger
errors, use a linear model where the errror rate is 1% at the 5' end of reads and
2% at the 3' end: linear 1 2. To model Illumina errors using the 4th degree
polynome 3e-3 + 3.3e-8 * i^4 (Korbel et al 2009), use: poly4 3e-3 3.3e-8.
Use the <mutation_ratio> option to alter how many of these mutations are
substitutions or indels. Default: mutation_dist.default
=for Euclid:
mutation_dist.type: string
mutation_dist.default: ['uniform', 0, 0]
=item -mr <mutation_ratio>... | -mutation_ratio <mutation_ratio>...
Indicate the percentage of substitutions and the number of indels (insertions
and deletions). For example, use '80 20' (4 substitutions for each indel) for
Sanger reads. Note that this parameter has no effect unless you specify the
<mutation_dist> option. Default: mutation_ratio.default
=for Euclid:
mutation_ratio.type: num, mutation_ratio >= 0
mutation_ratio.default: [80, 20]
=item -hd <homopolymer_dist> | -homopolymer_dist <homopolymer_dist>
Introduce sequencing errors in the reads under the form of homopolymeric
stretches (e.g. AAA, CCCCC) using a specified model where the homopolymer length
follows a normal distribution N(mean, standard deviation) that is function of
the homopolymer length n:
Margulies: N(n, 0.15 * n) , Margulies et al. 2005.
Richter : N(n, 0.15 * sqrt(n)) , Richter et al. 2008.
Balzer : N(n, 0.03494 + n * 0.06856) , Balzer et al. 2010.
Default: homopolymer_dist.default
=for Euclid:
homopolymer_dist.type: string
homopolymer_dist.default: 0
=item -cp <chimera_perc> | -chimera_perc <chimera_perc>
Specify the percent of reads in amplicon libraries that should be chimeric
sequences. The 'reference' field in the description of chimeric reads will
contain the ID of all the reference sequences forming the chimeric template.
A typical value is 10% for amplicons. This option can be used to generate
chimeric shotgun reads as well. Default: chimera_perc.default %
=for Euclid:
chimera_perc.type: number, chimera_perc >= 0 && chimera_perc <= 100
chimera_perc.type.error: <chimera_perc> must be a number between 0 and 100 (not chimera_perc)
chimera_perc.default: 0
=item -cd <chimera_dist>... | -chimera_dist <chimera_dist>...
Specify the distribution of chimeras: bimeras, trimeras, quadrameras and
multimeras of higher order. The default is the average values from Quince et al.
2011: '314 38 1', which corresponds to 89% of bimeras, 11% of trimeras and 0.3%
of quadrameras. Note that this option only takes effect when you request the
generation of chimeras with the <chimera_perc> option. Default: chimera_dist.default
=for Euclid:
chimera_dist.type: number, chimera_dist >= 0
chimera_dist.type.error: <chimera_dist> must be a positive number (not chimera_dist)
chimera_dist.default: [314, 38, 1]
=item -ck <chimera_kmer> | -chimera_kmer <chimera_kmer>
Activate a method to form chimeras by picking breakpoints at places where k-mers
are shared between sequences. <chimera_kmer> represents k, the length of the
k-mers (in bp). The longer the kmer, the more similar the sequences have to be
to be eligible to form chimeras. The more frequent a k-mer is in the pool of
reference sequences (taking into account their relative abundance), the more
often this k-mer will be chosen. For example, CHSIM (Edgar et al. 2011) uses this
method with a k-mer length of 10 bp. If you do not want to use k-mer information
to form chimeras, use 0, which will result in the reference sequences and
breakpoints to be taken randomly on the "aligned" reference sequences. Note that
this option only takes effect when you request the generation of chimeras with
the <chimera_perc> option. Also, this options is quite memory intensive, so you
should probably limit yourself to a relatively small number of reference sequences
if you want to use it. Default: chimera_kmer.default bp
=for Euclid:
chimera_kmer.type: number, chimera_kmer == 0 || chimera_kmer >= 2
chimera_kmer.type.error: <chimera_kmer> must be 0 or an integer larger than 1 (not chimera_kmer)
chimera_kmer.default: 10
=back
Community structure and diversity
=over
=item -af <abundance_file> | -abundance_file <abundance_file>
Specify the relative abundance of the reference sequences manually in an input
file. Each line of the file should contain a sequence name and its relative
abundance (%), e.g. 'seqABC 82.1' or 'seqABC 82.1 10.2' if you are specifying two
different libraries.
=for Euclid:
abundance_file.type: readable
=item -am <abundance_model>... | -abundance_model <abundance_model>...
Relative abundance model for the input reference sequences: uniform, linear, powerlaw,
logarithmic or exponential. The uniform and linear models do not require a
parameter, but the other models take a parameter in the range [0, infinity). If
this parameter is not specified, then it is randomly chosen. Examples:
uniform distribution: uniform
powerlaw distribution with parameter 0.1: powerlaw 0.1
exponential distribution with automatically chosen parameter: exponential
Default: abundance_model.default
=for Euclid:
abundance_model.type: string
abundance_model.default: ['uniform', 1]
=item -nl <num_libraries> | -num_libraries <num_libraries>
Number of independent libraries to create. Specify how diverse and similar they
should be with <diversity>, <shared_perc> and <permuted_perc>. Assign them
different MID tags with <multiplex_mids>. Default: num_libraries.default
=for Euclid:
num_libraries.type: +integer
num_libraries.default: 1
=item -mi <multiplex_ids> | -multiplex_ids <multiplex_ids>
Specify an optional FASTA file that contains multiplex sequence identifiers
(a.k.a MIDs or barcodes) to add to the sequences (one sequence per library, in
the order given). The MIDs are included in the length specified with the
-read_dist option and can be altered by sequencing errors. See the MIDesigner or
BarCrawl programs to generate MID sequences.
=for Euclid:
multiplex_ids.type: readable
=item -di <diversity>... | -diversity <diversity>...
This option specifies alpha diversity, specifically the richness, i.e. number of
reference sequences to take randomly and include in each library. Use 0 for the
maximum richness possible (based on the number of reference sequences available).
Provide one value to make all libraries have the same diversity, or one richness
value per library otherwise. Default: diversity.default
=for Euclid:
diversity.type: 0+integer
diversity.default: [ 0 ]
=item -sp <shared_perc> | -shared_perc <shared_perc>
This option controls an aspect of beta-diversity. When creating multiple
libraries, specify the percent of reference sequences they should have in common
(relative to the diversity of the least diverse library). Default: shared_perc.default %
=for Euclid:
shared_perc.type: number, shared_perc >= 0 && shared_perc <= 100
shared_perc.type.error: <shared_perc> must be a number between 0 and 100 (not shared_perc)
shared_perc.default: 0
=item -pp <permuted_perc> | -permuted_perc <permuted_perc>
This option controls another aspect of beta-diversity. For multiple libraries,
choose the percent of the most-abundant reference sequences to permute (randomly
shuffle) the rank-abundance of. Default: permuted_perc.default %
=for Euclid:
permuted_perc.type: number, permuted_perc >= 0 && permuted_perc <= 100
permuted_perc.type.error: <permuted_perc> must be a number between 0 and 100 (not permuted_perc)
permuted_perc.default: 100
=back
Miscellaneous
=over
=item -rs <random_seed> | -random_seed <random_seed>
Seed number to use for the pseudo-random number generator.
=for Euclid:
random_seed.type: +integer
=item -dt <desc_track> | -desc_track <desc_track>
Track read information (reference sequence, position, errors, ...) by writing
it in the read description. Default: desc_track.default
=for Euclid:
desc_track.type: integer, desc_track == 0 || desc_track == 1
desc_track.type.error: <desc_track> must be 0 or 1 (not desc_track)
desc_track.default: 1
=item -ql <qual_levels>... | -qual_levels <qual_levels>...
Generate basic quality scores for the simulated reads. Good residues are given a
specified good score (e.g. 30) and residues that are the result of an insertion
or substitution are given a specified bad score (e.g. 10). Specify first the
good score and then the bad score on the command-line, e.g.: 30 10. Default:
qual_levels.default
=for Euclid:
qual_levels.type: 0+integer
qual_levels.default: [ ]
=item -fq <fastq_output> | -fastq_output <fastq_output>
Whether to write the generated reads in FASTQ format (with Sanger-encoded
quality scores) instead of FASTA and QUAL or not (1: yes, 0: no).
<qual_levels> need to be specified for this option to be effective. Default: fastq_output.default
=for Euclid:
fastq_output.type: integer, fastq_output == 0 || fastq_output == 1
fastq_output.type.error: <fastq_output> must be 0 or 1 (not fastq_output)
fastq_output.default: 0
=item -bn <base_name> | -base_name <base_name>
Prefix of the output files. Default: base_name.default
=for Euclid:
base_name.type: string
base_name.default: 'grinder'
=item -od <output_dir> | -output_dir <output_dir>
Directory where the results should be written. This folder will be created if
needed. Default: output_dir.default
=for Euclid:
output_dir.type: writable
output_dir.default: '.'
=item -pf <profile_file> | -profile_file <profile_file>
A file that contains Grinder arguments. This is useful if you use many options
or often use the same options. Lines with comments (#) are ignored. Consider the
profile file, 'simple_profile.txt':
# A simple Grinder profile
-read_dist 105 normal 12
-total_reads 1000
Running: grinder -reference_file viral_genomes.fa -profile_file simple_profile.txt
Translates into: grinder -reference_file viral_genomes.fa -read_dist 105 normal 12 -total_reads 1000
Note that the arguments specified in the profile should not be specified again on the command line.
=back
=head1 CLI OUTPUT
For each shotgun or amplicon read library requested, the following files are
generated:
=over
=item *
A rank-abundance file, tab-delimited, that shows the relative abundance of the
different reference sequences
=item *
A file containing the read sequences in FASTA format. The read headers
contain information necessary to track from which reference sequence each read
was taken and what errors it contains. This file is not generated if <fastq_output>
option was provided.
=item *
If the <qual_levels> option was specified, a file containing the quality scores
of the reads (in QUAL format).
=item *
If the <fastq_output> option was provided, a file containing the read sequences
in FASTQ format.
=back
=head1 API EXAMPLES
The Grinder API allows to conveniently use Grinder within Perl scripts. The same
options as the CLI apply, but when passing multiple values to an options, you
will need to pass them as an array (not a scalar or arrayref). Here is a example:
use Grinder;
# Set up a new factory
my $factory = Grinder->new( -reference_file => 'genomes.fna',
-read_dist => (100, 'uniform', 10) );
# Process all shotgun libraries requested
while ( my $struct = $factory->next_lib ) {
# The ID and abundance of the 3rd most abundant genome in this community
my $id = $struct->{ids}->[2];
my $ab = $struct->{abs}->[2];
# Create shotgun reads
while ( my $read = $factory->next_read) {
# The read is a Bioperl sequence object with these properties:
my $read_id = $read->id; # read ID given by Grinder
my $read_seq = $read->seq; # nucleotide sequence
my $read_mid = $read->mid; # MID or tag attached to the read
my $read_errors = $read->errors; # errors that the read contains
# Where was the read taken from? The reference sequence refers to the
# database sequence for shotgun libraries, amplicon obtained from the
# database sequence, or could even be a chimeric sequence
my $ref_id = $read->reference->id; # ID of the reference sequence
my $ref_start = $read->start; # start of the read on the reference
my $ref_end = $read->end; # end of the read on the reference
my $ref_strand = $read->strand; # strand of the reference
}
}
# Similarly, for shotgun mate pairs
my $factory = Grinder->new( -reference_file => 'genomes.fna',
-insert_dist => 250 );
while ( $factory->next_lib ) {
while ( my $read = $factory->next_read ) {
# The first read is the first mate of the mate pair
# The second read is the second mate of the mate pair
# The third read is the first mate of the next mate pair
# ...
}
}
# To generate an amplicon library
my $factory = Grinder->new( -reference_file => 'genomes.fna',
-forward_reverse => '16Sgenes.fna',
-length_bias => 0,
-unidirectional => 1 );
while ( $factory->next_lib ) {
while ( my $read = $factory->next_read) {
# ...
}
}
=head1 API METHODS
The rest of the documentation details the available Grinder API methods.
=head2 new
Title : new
Function: Create a new Grinder factory initialized with the passed arguments.
Available parameters described in the OPTIONS section.
Usage : my $factory = Grinder->new( -reference_file => 'genomes.fna' );
Returns : a new Grinder object
=head2 next_lib
Title : next_lib
Function: Go to the next shotgun library to process.
Usage : my $struct = $factory->next_lib;
Returns : Community structure to be used for this library, where $struct->{ids}
is an array reference containing the IDs of the genome making up the
community (sorted by decreasing relative abundance) and $struct->{abs}
is an array reference of the genome abundances (in the same order as
the IDs).
=head2 next_read
Title : next_read
Function: Create an amplicon or shotgun read for the current library.
Usage : my $read = $factory->next_read; # for single read
my $mate1 = $factory->next_read; # for mate pairs
my $mate2 = $factory->next_read;
Returns : A sequence represented as a Bio::Seq::SimulatedRead object
=head2 get_random_seed
Title : get_random_seed
Function: Return the number used to seed the pseudo-random number generator
Usage : my $seed = $factory->get_random_seed;
Returns : seed number
=head1 COPYRIGHT
Copyright 2009-2013 Florent ANGLY <florent.angly@gmail.com>
Grinder is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License (GPL) as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grinder is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grinder. If not, see <http://www.gnu.org/licenses/>.
=head1 BUGS
All complex software has bugs lurking in it, and this program is no exception.
If you find a bug, please report it on the SourceForge Tracker for Grinder:
L<http://sourceforge.net/tracker/?group_id=244196&atid=1124737>
Bug reports, suggestions and patches are welcome. Grinder's code is developed
on Sourceforge (L<http://sourceforge.net/scm/?type=git&group_id=244196>) and is
under Git revision control. To get started with a patch, do:
git clone git://biogrinder.git.sourceforge.net/gitroot/biogrinder/biogrinder
=cut
#---------- GRINDER FUNCTIONAL API --------------------------------------------#
sub Grinder {
# This is the main function and is called by the script 'grinder'
my (@args) = @_;
# Create Grinder object
my $factory = Grinder->new(@args);
# Print diversity and percent shared and permuted
diversity_report( $factory->{num_libraries}, $factory->{shared_perc},
$factory->{permuted_perc}, $factory->{overall_diversity} );
# Create the output directory if needed
if ( not -d $factory->{output_dir} ) {
mkdir $factory->{output_dir} or die "Error: Could not create output folder ".
$factory->{output_dir}."\n$!\n";
}
# Generate sequences
while ( my $c_struct = $factory->next_lib ) {
my $cur_lib = $factory->{cur_lib};
# Output filenames
my $lib_str = '';
if ($factory->{num_libraries} > 1) {
$lib_str = '-'.sprintf('%0'.length($factory->{num_libraries}).'d', $cur_lib);
}
my $out_reads_basename = File::Spec->catfile($factory->{output_dir},
$factory->{base_name}.$lib_str.'-reads.');
my $out_fasta_file;
my $out_qual_file;
my $out_fastq_file;
if ( $factory->{fastq_output} ) {
$out_fastq_file = $out_reads_basename . 'fastq';
} else {
$out_fasta_file = $out_reads_basename . 'fa';
if (scalar @{$factory->{qual_levels}} > 0) {
$out_qual_file = $out_reads_basename . 'qual';
}
}
my $out_ranks_file = File::Spec->catfile($factory->{output_dir},
$factory->{base_name}.$lib_str."-ranks.txt");
# Write community structure file
$factory->write_community_structure($c_struct, $out_ranks_file);
# Prepare output FASTA file
my $out_fastq;
if ( defined $out_fastq_file ) {
$out_fastq = Bio::SeqIO->new( -format => 'fastq',
-variant => 'sanger',
-flush => 0,
-file => ">$out_fastq_file" );
}
my $out_fasta;
if ( defined $out_fasta_file ) {
$out_fasta = Bio::SeqIO->new( -format => 'fasta',
-flush => 0,
-file => ">$out_fasta_file" );
}
my $out_qual;
if ( defined $out_qual_file ) {
$out_qual = Bio::SeqIO->new( -format => 'qual',
-flush => 0,
-file => ">$out_qual_file" );
}
# Library report
my $diversity = $factory->{diversity}[$cur_lib-1];
library_report( $cur_lib, $factory->{alphabet}, $factory->{forward_reverse},
$out_ranks_file, $out_fastq_file, $out_fasta_file, $out_qual_file,
$factory->{cur_coverage_fold}, $factory->{cur_total_reads}, $diversity);
# Generate shotgun or amplicon reads and write them to a file
while ( my $read = $factory->next_read ) {
$out_fastq->write_seq($read) if defined $out_fastq;
$out_fasta->write_seq($read) if defined $out_fasta;
$out_qual->write_seq($read) if defined $out_qual
}
$out_fastq->close if defined $out_fastq;
$out_fasta->close if defined $out_fasta;
$out_qual->close if defined $out_qual;
}
return 1;
}
sub diversity_report {
my ($num_libraries, $perc_shared, $perc_permuted, $overall_diversity) = @_;
my $format = '%.1f';
print "Overall diversity = $overall_diversity genomes\n";
if ($num_libraries > 1) {
my $nof_shared = $perc_shared / 100 * $overall_diversity;
$perc_shared = sprintf($format, $perc_shared);
print "Percent shared = $perc_shared % ($nof_shared genomes)\n";
my $nof_permuted = $perc_permuted / 100 * $overall_diversity;
$perc_permuted = sprintf($format, $perc_permuted);
print "Percent permuted = $perc_permuted % ($nof_permuted top genomes)\n";
}
return 1;
}
sub write_community_structure {
my ($self, $c_struct, $filename) = @_;
open(OUT, ">$filename") || die("Error: Could not write in file $filename: $!\n");
print OUT "# rank\tseq_id\trel_abund_perc\n";
my $diversity = scalar @{$c_struct->{ids}};
my %species_abs;
for my $rank ( 1 .. $diversity ) {
my $oid = $c_struct->{'ids'}->[$rank-1];
my $species_id = $self->database_get_parent_id($oid);
my $seq_ab = $c_struct->{'abs'}->[$rank-1];
$species_abs{$species_id} += $seq_ab;
}
my $rank = 0;
for my $species_id ( sort { $species_abs{$b} <=> $species_abs{$a} } keys %species_abs ) {
$rank++;
my $species_ab = $species_abs{$species_id};
$species_ab *= 100; # in percentage
print OUT "$rank\t$species_id\t$species_ab\n";
}
close OUT;
return 1;
}
sub library_report {
my ($cur_lib, $alphabet, $forward_reverse, $ranks_file, $fastq_file, $fasta_file,
$qual_file, $coverage, $nof_seqs, $diversity) = @_;
my $format = '%.3f';
$coverage = sprintf($format, $coverage);
my $lib_alphabet = uc $alphabet;
$lib_alphabet =~ s/protein/Proteic/i;
my $lib_type = defined $forward_reverse ? 'amplicon' : 'shotgun';
print "$lib_alphabet $lib_type library $cur_lib:\n";
print " Community structure = $ranks_file\n";
print " FASTQ file = $fastq_file\n" if defined $fastq_file;
print " FASTA file = $fasta_file\n" if defined $fasta_file;
print " QUAL file = $qual_file\n" if defined $qual_file;
print " Library coverage = $coverage x\n";
print " Number of reads = $nof_seqs\n";
print " Diversity (richness) = $diversity\n";
return 1;
}
#---------- GRINDER OO API ----------------------------------------------------#
sub new {
my ($class, @args) = @_;
my $self = {};
bless $self, ref($class) || $class;
$self->argparse(\@args);
$self->initialize();
return $self;
}
sub next_lib {
my ($self) = @_;
$self->{cur_lib}++;
$self->{cur_read} = 0;
$self->{cur_total_reads} = 0;
$self->{cur_coverage_fold} = 0;
$self->{next_mate} = undef;
$self->{positions} = undef;
# Prepare sampling from this community
my $c_struct = $self->{c_structs}[$self->{cur_lib}-1];
if ( defined $c_struct ) {
# Create probabilities of picking genomes from community structure
$self->{positions} = $self->proba_create($c_struct, $self->{length_bias},
$self->{copy_bias});
# Calculate needed number of sequences based on desired coverage
($self->{cur_total_reads}, $self->{cur_coverage_fold}) = $self->lib_coverage($c_struct);
# If chimeras are needed, update the kmer collection with sequence abundance
my $kmer_col = $self->{chimera_kmer_col};
if ($kmer_col) {
my $weights;
for (my $i = 0; $i < scalar @{$c_struct->{'ids'}}; $i++) {
my $id = $c_struct->{'ids'}->[$i];
my $weight = $c_struct->{'abs'}->[$i];
$weights->{$id} = $weight;
}
$kmer_col->weights($weights);
my ($kmers, $freqs) = $kmer_col->counts(undef, undef, 1);
$self->{chimera_kmer_arr} = $kmers;
$self->{chimera_kmer_cdf} = $self->proba_cumul($freqs);
}
}
return $c_struct;
}
sub next_read {
my ($self) = @_;
$self->next_lib if not $self->{cur_lib};
$self->{cur_read}++;
my $read;
if ( $self->{cur_read} <= $self->{cur_total_reads} ) {
# Generate the next read
if ($self->{mate_length}) {
# Generate a mate pair read
if ( not $self->{next_mate} ) {
# Generate a new pair of reads
($read, my $read2) = $self->next_mate_pair( );
# Save second read of the pair for later
$self->{next_mate} = $read2;
} else {
# Use saved read
$read = $self->{next_mate};
$self->{next_mate} = undef;
}
} else {
# Generate a single shotgun or amplicon read
$read = $self->next_single_read( );
}
}
return $read;
}
sub get_random_seed {
my ($self) = @_;
return $self->{random_seed};
}
#---------- GRINDER INTERNALS -------------------------------------------------#
sub argparse {
# Process arguments
my ($self, $args) = @_;
my @old_args = @$args;
# Read profile file
$args = process_profile_file($args);
# Parse and validate arguments with Getopt::Euclid
Getopt::Euclid->process_args($args);
# Check that Euclid worked, i.e. that there is at least one parameter in %ARGV
if ( scalar keys %ARGV == 0 ) {
die "Error: the command line arguments could not be parsed because of an ".
"internal problem\n";
}
# Get parsed arguments from %ARGV and put them in $self
while (my ($arg, $val) = each %ARGV) {
# Skip short argument names (they are also represented with long names)
next if length($arg) <= 2;
# Process long argument names. Copy their value into $self
my $ref = ref($val);
if (not $ref) {
$self->{$arg} = $val;
} elsif ($ref eq 'ARRAY') {
@{$self->{$arg}} = @{$val};
} else {
die "Error: unsupported operation on argument '$arg' which is a reference".
"of type $ref\n";
}
}
return 1;
}
sub process_profile_file {
# Find profile file in arguments and read the profiles. The profile file
# only contains Grinder arguments, and lines starting with a '#' are comments.
my ($args) = @_;
my $file;
for (my $i = 0; $i < scalar @$args; $i++) {
my $arg = $$args[$i];
if ($arg =~ m/^-profile_file/ || $arg =~ m/-pf/) {
$file = $$args[$i+1];
if ( (not defined $file) || ($file =~ m/^-/) ) {
die "Error: no value was given to --profile_file\n";
}
}
}
if (defined $file) {
open my $in, '<', $file or die "Error: Could not read file '$file'\n$!\n";
my $profile = '';
while (my $line = <$in>) {
chomp $line;
next if $line =~ m/^\s*$/;
next if $line =~ m/^\s*#/;
$profile .= "$line ";
}
close $in;
push @$args, split /\s+/, $profile;
}
return $args;
}
sub initialize {
my ($self) = @_;
# Parameter processing: read length distribution
if ( (not ref $self->{read_dist}) or (ref $self->{read_dist} eq 'SCALAR') ){
$self->{read_dist} = [$self->{read_dist}];
}
$self->{read_length} = $self->{read_dist}[0] || 100;
$self->{read_model} = $self->{read_dist}[1] || 'uniform';
$self->{read_delta} = $self->{read_dist}[2] || 0;
delete $self->{read_dist};
# Parameter processing: mate insert length distribution
if ( (not ref $self->{insert_dist}) or (ref $self->{insert_dist} eq 'SCALAR') ){
$self->{insert_dist} = [$self->{insert_dist}];
}
$self->{mate_length} = $self->{insert_dist}[0] || 0;
$self->{mate_model} = $self->{insert_dist}[1] || 'uniform';
$self->{mate_delta} = $self->{insert_dist}[2] || 0;
delete $self->{insert_dist};
# Parameter processing: genome abundance distribution
if ( (not ref $self->{abundance_model}) or (ref $self->{abundance_model} eq 'SCALAR') ){
$self->{abundance_model} = [$self->{abundance_model}];
}
$self->{distrib} = $self->{abundance_model}[0] || 'uniform';
$self->{param} = $self->{abundance_model}[1];
delete $self->{abundance_model};
# Parameter processing: point sequencing error distribution
if ( (not ref $self->{mutation_dist}) or (ref $self->{mutation_dist} eq 'SCALAR') ) {
$self->{mutation_dist} = [$self->{mutation_dist}];
}
$self->{mutation_model} = $self->{mutation_dist}[0] || 'uniform';
$self->{mutation_para1} = $self->{mutation_dist}[1] || 0;
$self->{mutation_para2} = $self->{mutation_dist}[2] || 0;
delete $self->{mutation_dist};
# Parameter processing: mutation ratio
$self->{mutation_ratio}[0] = $self->{mutation_ratio}[0] || 0;
$self->{mutation_ratio}[1] = $self->{mutation_ratio}[1] || 0;
my $sum = $self->{mutation_ratio}[0] + $self->{mutation_ratio}[1];
if ($sum == 0) {
$self->{mutation_ratio}[0] = 50;
$self->{mutation_ratio}[1] = 50;
} else {
$self->{mutation_ratio}[0] = $self->{mutation_ratio}[0] *100 / $sum;
$self->{mutation_ratio}[1] = $self->{mutation_ratio}[1] *100 / $sum;
}
# Parameter processing: homopolymer model
$self->{homopolymer_dist} = lc $self->{homopolymer_dist} if defined $self->{homopolymer_dist};
# Parameter processing: chimera_distribution
if ( (not ref $self->{chimera_dist}) or (ref $self->{chimera_dist} eq 'SCALAR') ) {
$self->{chimera_dist} = [$self->{chimera_dist}];
}
if ($self->{chimera_dist}) {
# Normalize to 1
my $total = 0;
for my $multimera_abundance (@{$self->{chimera_dist}}) {
$total += $multimera_abundance;
}
$self->{chimera_dist} = undef if $total == 0;
$self->{chimera_dist} = normalize($self->{chimera_dist}, $total);
# Calculate cdf
if ($self->{chimera_perc}) {
$self->{chimera_dist_cdf} = $self->proba_cumul( $self->{chimera_dist} );
}
}
# Parameter processing: fastq_output requires qual_levels
if ( ($self->{fastq_output}) &&
(not scalar @{$self->{qual_levels}} > 0) ) {
die "Error: <qual_levels> needs to be specified to output FASTQ reads\n";
}
# Random number generator: seed or be auto-seeded
if (defined $self->{random_seed}) {
srand( $self->{random_seed} );
} else {
$self->{random_seed} = srand( );
}
# Sequence length check
my $max_read_length = $self->{read_length} + $self->{read_delta}; # approximation
if ($self->{mate_length}) {
my $min_mate_length = $self->{mate_length} - $self->{mate_delta};
if ($max_read_length > $min_mate_length) {
die("Error: The mate insert length cannot be smaller than read length. ".
"Try increasing the mate insert length or decreasing the read length\n");
}
}
# Pre-compile regular expression to check if reads are valid
if ( (defined $self->{exclude_chars}) && (not $self->{exclude_chars} eq '') ) {
$self->{exclude_re} = qr/[${\$self->{exclude_chars}}]/i; # Match any of the chars
}
# Read MIDs
$self->{multiplex_ids} = $self->read_multiplex_id_file($self->{multiplex_ids},
$self->{num_libraries}) if defined $self->{multiplex_ids};
# Import reference sequences
my $min_seq_len;
if ($self->{chimera_dist_cdf}) {
# Each chimera needs >= 1 bp. Use # sequences required by largest chimera.
$min_seq_len = scalar @{$self->{chimera_dist}} + 1;
} else {
$min_seq_len = 1;
}
$self->{database} = $self->database_create( $self->{reference_file},
$self->{unidirectional}, $self->{forward_reverse}, $self->{abundance_file},
$self->{delete_chars}, $min_seq_len );
$self->initialize_alphabet;
if ( ($self->{alphabet} eq 'protein') &&
($self->{mate_length} != 0) &&
(not $self->{mate_orientation} eq 'FF') ) {
die "Error: Can only use <mate_orientation> FF with proteic reference sequences\n";
}
# Genome relative abundance in the different independent libraries to create
$self->{c_structs} = $self->community_structures( $self->{database}->{ids},
$self->{abundance_file}, $self->{distrib}, $self->{param},
$self->{num_libraries}, $self->{shared_perc}, $self->{permuted_perc},
$self->{diversity}, $self->{forward_reverse} );
# Count kmers in the database if we need to form kmer-based chimeras
if ($self->{chimera_perc} && $self->{chimera_kmer}) {
# Get all wanted sequences (not all the sequences in the database)
my %ids_hash;
my @ids;
my @seqs;
for my $c_struct ( @{ $self->{c_structs} } ) {
for my $id (@{$c_struct->{ids}}) {
if (not exists $ids_hash{$id}) {
$ids_hash{$id} = undef;
push @ids, $id;
push @seqs, $self->database_get_seq($id);
}
}
}
%ids_hash = ();
# Now create a collection of kmers
$self->{chimera_kmer_col} = Grinder::KmerCollection->new(
-k => $self->{chimera_kmer},
-seqs => \@seqs,
-ids => \@ids,
)->filter_shared(2);
}
# Markers to keep track of computation progress
$self->{cur_lib} = 0;
$self->{cur_read} = 0;
return $self;
}
sub initialize_alphabet {
# Store the characters of the alphabet to use and calculate their cdf so that
# we can easily pick them at random later
my ($self) = @_;
my $alphabet = $self->{alphabet};
# Characters available in alphabet
my %alphabet_hash;
if ($alphabet eq 'dna') {
%alphabet_hash = (
'A' => undef,
'C' => undef,
'G' => undef,
'T' => undef,
);
} elsif ($alphabet eq 'rna') {
%alphabet_hash = (
'A' => undef,
'C' => undef,
'G' => undef,
'U' => undef,
);
} elsif ($alphabet eq 'protein') {
%alphabet_hash = (
'A' => undef,
'R' => undef,
'N' => undef,
'D' => undef,
'C' => undef,
'Q' => undef,
'E' => undef,
'G' => undef,
'H' => undef,
'I' => undef,
'L' => undef,
'K' => undef,
'M' => undef,
'F' => undef,
'P' => undef,
'S' => undef,
'T' => undef,
'W' => undef,
'Y' => undef,
'V' => undef,
#'B' => undef, # D or N
#'Z' => undef, # Q or E
#'X' => undef, # any amino-acid
# J, O and U are the only unused letters
);
} else {
die "Error: unknown alphabet '$alphabet'\n";
}
my $num_chars = scalar keys %alphabet_hash;
$self->{alphabet_hash} = \%alphabet_hash;
$self->{alphabet_arr} = [sort keys %alphabet_hash];
# CDF for this alphabet
$self->{alphabet_complete_cdf} = $self->proba_cumul([(1/$num_chars) x $num_chars]);
$self->{alphabet_truncated_cdf} = $self->proba_cumul([(1/($num_chars-1)) x ($num_chars-1)]);
return 1;
}
sub read_multiplex_id_file {
my ($self, $file, $nof_indep) = @_;
my @mids;
# Read FASTA file containing the MIDs
my $in = Bio::SeqIO->newFh(
-file => $file,
-format => 'fasta',
);
while (my $mid = <$in>) {
push @mids, $mid->seq;
}
undef $in;
# Sanity check
my $nof_mids = scalar @mids;
if ($nof_mids < $nof_indep) {
die "Error: $nof_indep communities were requested but the MID file ".
"had only $nof_mids sequences.\n";
} elsif ($nof_mids > $nof_indep) {
warn "Warning: $nof_indep communities were requested but the MID file ".
"contained $nof_mids sequences. Ignoring extraneous MIDs...\n";
}
return \@mids;
}
sub community_structures {
# Create communities with a specified structure, alpha and beta-diversity
my ($self, $seq_ids, $abundance_file, $distrib, $param, $nof_indep,
$perc_shared, $perc_permuted, $diversities, $forward_reverse) = @_;
# Calculate community structures
my $c_structs;
if ($abundance_file) {
# Sanity check
if ( (scalar @$diversities > 1) || $$diversities[0] ) {
warn "Warning: Diversity cannot be specified when an abundance file is specified. Ignoring it...\n";
}
if ( ($perc_shared > 0) || ($perc_permuted < 100) ) {
warn "Warning: Percent shared and percent permuted cannot be specified when an abundance file is specified. Ignoring them...\n";
}
# One or several communities with specified rank-abundances
$c_structs = community_given_abundances($abundance_file, $seq_ids);
# Calculate number of libraries
my $got_indep = scalar @$c_structs;
if ($nof_indep != 1) { # 1 is the default value
if ($nof_indep > $got_indep) {
die "Error: $nof_indep communities were requested but the abundance file".
" specified the abundances for only $got_indep.\n";
} elsif ($nof_indep < $got_indep) {
warn "Warning: $nof_indep communities were requested by the abundance ".
"file specified the abundances for $got_indep. Ignoring extraneous ".
"communities specified in the file.\n";
}
}
$nof_indep = $got_indep;
$self->{num_libraries} = $nof_indep;
# Calculate diversities based on given community abundances
($self->{diversity}, $self->{overall_diversity}, $self->{shared_perc},
$self->{permuted_perc}) = community_calculate_diversities($c_structs);
} else {
# One or several communities with rank-abundance to be calculated
# Sanity check
if ($nof_indep == 1) { # 1 is the default value
$nof_indep = scalar @$diversities;
}
if ($nof_indep != scalar @$diversities) {
if (scalar @$diversities == 1) {
# Use same diversity for all libraries
my $diversity = $$diversities[0];
for my $i (1 .. $nof_indep-1) {
push @$diversities, $diversity;
}
} else {
die "Error: The number of richness values provided (".(scalar @$diversities).
") did not match the requested number of libraries ($nof_indep).\n";
}
}
$self->{num_libraries} = $nof_indep;
# Select shared species
my $c_ids;
my $overall_diversity = 0;
($c_ids, $overall_diversity, $diversities, $perc_shared) = community_shared(
$seq_ids, $nof_indep, $perc_shared, $diversities );
# Shuffle the abundance-ranks of the most abundant genomes
($c_ids, $perc_permuted) = community_permuted($c_ids, $perc_permuted);
# Update values in $self object
$self->{overall_diversity} = $overall_diversity;
$self->{diversity} = $diversities;
$self->{shared_perc} = $perc_shared;
$self->{permuted_perc} = $perc_permuted;
# Put results in a community structure "object"
for my $c (1 .. $nof_indep) {
# Assign a random parameter if needed
my $comm_param = defined $param ? $param : randig(1,0.05);
# Calculate relative abundance of the community members
my $diversity = $self->{diversity}[$c-1];
my $c_abs = community_calculate_species_abundance($distrib, $comm_param,
$diversity);
my $c_ids = $$c_ids[$c-1];
my $c_struct;
$c_struct->{'ids'} = $c_ids;
$c_struct->{'abs'} = $c_abs;
$c_struct->{'param'} = $comm_param;
$c_struct->{'model'} = $distrib;
push @$c_structs, $c_struct;
}
}
# Convert sequence IDs to object IDs
for my $c_struct (@$c_structs) {
($c_struct->{'abs'}, $c_struct->{'ids'}) = community_calculate_amplicon_abundance(
$c_struct->{'abs'}, $c_struct->{'ids'}, $seq_ids );
}
return $c_structs;
}
sub community_calculate_diversities {
my ($c_structs) = @_;
my ($diversities, $overall_diversity, $perc_shared, $perc_permuted) = (0, 0, 0, 0);
# Calculate diversity (richness) based on given community abundances
my $nof_libs = scalar @$c_structs;
my %all_ids;
my @richnesses;
for my $c_struct (@$c_structs) {
my $richness = 0;
for my $i (0 .. scalar @{$$c_struct{ids}} - 1) {
my $id = $$c_struct{ids}[$i];
my $ab = $$c_struct{abs}[$i];
next if not $ab;
$richness++;
if (defined $all_ids{$id}) {
$all_ids{$id}++;
} else {
$all_ids{$id} = 1;
}
}
push @richnesses, $richness;
}
$overall_diversity = scalar keys %all_ids;
# Calculate percent shared
my $nof_non_shared = 0;
while (my ($id, $nof_samples) = each %all_ids) {
if ($nof_samples < $nof_libs) {
$nof_non_shared++;
}
}
$perc_shared = ($overall_diversity - $nof_non_shared) * 100 / $overall_diversity;
# TODO: Could calculate percent permuted
return \@richnesses, $overall_diversity, $perc_shared, $perc_permuted;
}
sub community_given_abundances {
# Read a file of genome abundances. The file should be space or tab-delimited.
# The first column should be the IDs of genomes, and the subsequent columns is
# for their relative abundance in different communities. An optional list of
# valid IDs can be provided. Then the abundances are normalized so that their
# sum is 1.
my ($file, $seq_ids) = @_;
# Read abundances
my ($ids, $abs) = community_read_abundances($file);
# Remove genomes with unknown IDs and calculate cumulative abundance
my $totals;
for my $comm_num (0 .. $#$ids) {
my $i = 0;
while ( $i < scalar @{$$ids[$comm_num]} ) {
my $id = $$ids[$comm_num][$i];
my $ab = $$abs[$comm_num][$i];
if ( (scalar keys %$seq_ids == 0) || (exists $$seq_ids{$id}) ) {
$$totals[$comm_num] += $ab;
$i++;
} else {
die "Error: Requested reference sequence '$id' in file '$file' does not".
" exist in the input database.\n";
splice @{$$ids[$comm_num]}, $i, 1;
splice @{$$abs[$comm_num]}, $i, 1;
}
}
}
# Process the communities
my @c_structs;
for my $comm_num (0 .. scalar @$ids - 1) {
my $comm_ids = $$ids[$comm_num];
my $comm_abs = $$abs[$comm_num];
my $comm_total = $$totals[$comm_num];
if ($comm_total == 0) {
warn "Warning: The abundance of all the genomes for community ".($comm_num+1)." was zero. Skipping this community...\n";
next;
}
# Normalize the abundances
$comm_abs = normalize($comm_abs, $comm_total);
# Sort relative abundances by decreasing
($comm_abs, $comm_ids) = two_array_sort($comm_abs, $comm_ids);
$comm_abs = [reverse(@$comm_abs)];
$comm_ids = [reverse(@$comm_ids)];
# Save community structure
my $c_struct = { 'ids' => $comm_ids, 'abs' => $comm_abs };
push @c_structs, $c_struct;
}
return \@c_structs;
}
sub community_read_abundances {
my ($file) = @_;
# Read abundances of genomes from a file
my $ids; # genome IDs
my $abs; # genome relative abundance
open my $io, '<', $file or die "Error: Could not read file '$file'\n$!\n";
while ( my $line = <$io> ) {
# Ignore comment or empty lines
if ( $line =~ m/^\s*$/ || $line =~ m/^#/ ) {
next;
}
# Read abundance info from line
my ($id, @rel_abs) = ($line =~ m/(\S+)/g);
if (defined $id) {
for my $comm_num (0 .. $#rel_abs) {
my $rel_ab = $rel_abs[$comm_num];
push @{$$ids[$comm_num]}, $id;
push @{$$abs[$comm_num]}, $rel_ab;
}
} else {
warn "Warning: Line $. of file '$file' has an unknown format. Skipping it...\n";
}
}
close $io;
return $ids, $abs;
}
sub community_permuted {
# Change the abundance rank of species in all but the first community.
# The number of species changed in abundance is determined by the percent
# permuted, i.e. a given percentage of the most abundant species in this community.
my ($c_ids, $perc_permuted) = @_;
my $nof_indep = scalar @$c_ids;
# Leave the first community alone, but permute the ones after
for my $c ( 2 .. $nof_indep ) {
my $ids = $$c_ids[$c-1];
my $diversity = scalar @$ids;
# Number of top genomes to permute
# Percent permuted is relative to diversity in this community
my $nof_permuted = $perc_permuted / 100 * $diversity;
$nof_permuted = int($nof_permuted + 0.5); # round number
# Method published in Angly et al 2006 PLOS Biology
# Take the $nof_permuted first ranks (most abundant genomes) and shuffle
# (permute) their ranks amongst the $nof_permuted first ranks.
# Caveat: cannot permute only 1 genome
my $idxs;
if ($nof_permuted > 0) {
# Add shuffled top genomes
my $permuted_idxs = randomize( [0 .. $nof_permuted-1] );
push @$idxs, @$permuted_idxs;
}
if ($diversity - $nof_permuted > 0) {
# Add other genomes in same order
my $non_permuted_idxs = [$nof_permuted .. $diversity-1];
push @$idxs, @$non_permuted_idxs;
}
@$ids = @$ids [ @$idxs ];
}
return $c_ids, $perc_permuted;
}
sub community_shared {
# Randomly split a library of sequences into a given number of groups that
# share a specified percent of their genomes.
# The % shared is the number of species shared / the total diversity in all communities
# Input: arrayref of sequence ids
# number of communities to produce
# percentage of genomes shared between the communities
# diversity (optional, will use all genomes if not specified)
# Return: arrayref of IDs that are shared
# arrayref of arrayref with the unique IDs for each community
my ($seq_ids, $nof_indep, $perc_shared, $diversities) = @_;
# If diversity is not specified (is '0'), use the maximum value possible
my $nof_refs = scalar keys %$seq_ids;
my $min_diversity = 1E99;
for my $i (0 .. scalar @$diversities - 1) {
if ($$diversities[$i] == 0) {
$$diversities[$i] = $nof_refs / ( $perc_shared/100 + $nof_indep*(1-$perc_shared/100) );
$$diversities[$i] = int( $$diversities[$i] );
if ( ($i > 0) && ($$diversities[$i-1] != $$diversities[$i]) ) {
die "Error: Define either all the diversities or none.\n";
}
}
if ($$diversities[$i] < $min_diversity) {
$min_diversity = $$diversities[$i];
}
}
if ($min_diversity == 0) {
die "Error: Cannot make $nof_indep libraries sharing $perc_shared % species".
" from $nof_refs references\n";
}
# Calculate the number of sequences to share, noting that the percent shared
# is relative to the diversity of the least abundant library
my $nof_shared = int($min_diversity * $perc_shared / 100);
$perc_shared = $nof_shared * 100 / $min_diversity;
# Unique sequences
my @nof_uniques;
my $sum_not_uniques = 0;
for my $diversity (@$diversities) {
my $nof_unique = $diversity - $nof_shared;
$sum_not_uniques += $nof_unique;
push @nof_uniques, $nof_unique;
}
# Overall diversity
my $overall_diversity = $nof_shared + $sum_not_uniques;
if ($nof_refs < $overall_diversity) {
die "Error: The number of reference sequences available ($nof_refs) is not".
" large enough to support the requested diversity ($overall_diversity ".
"genomes overall with $perc_shared % genomes shared between $nof_indep ".
"libraries)\n";
}
# Add shared sequences
my @ids = sort keys %$seq_ids;
my @shared_ids;
for (0 .. $nof_shared - 1) {
# Pick a random sequence
my $rand_offset = int(rand($nof_refs));
my $rand_id = splice @ids, $rand_offset, 1;
$nof_refs = scalar(@ids);
# Add this sequence in all independent libraries
push @shared_ids, $rand_id;
}
# Add sequences not shared
my @unique_ids;
for my $lib_num (0 .. $nof_indep-1) {
my $nof_unique = $nof_uniques[$lib_num];
for (0 .. $nof_unique - 1) {
# Pick a random sequence
my $rand_offset = int(rand($nof_refs));
my $rand_id = splice @ids, $rand_offset, 1;
$nof_refs = scalar(@ids);
# Add this sequence in this independent library only
push @{$unique_ids[$lib_num]}, $rand_id;
}
}
# Randomly pick the rank of the shared IDs
my $shared_ranks = randomize( [1 .. $min_diversity] );
@$shared_ranks = splice @$shared_ranks, 0, $nof_shared;
# Construct community ranks
my @c_ranks;
for my $lib_num (0 .. $nof_indep-1) {
my $diversity = $$diversities[$lib_num];
my @ranks = (undef) x $diversity;
# Add shared IDs
for my $i (0 .. $nof_shared-1) {
my $id = $shared_ids[$i];
my $rank = $$shared_ranks[$i];
$ranks[$rank-1] = $id;
}
# Add unique IDs
my $ids = $unique_ids[$lib_num];
for my $rank (1 .. $diversity) {
next if defined $ranks[$rank-1];
$ranks[$rank-1] = pop @$ids;
}
push @c_ranks, \@ranks;
}
return \@c_ranks, $overall_diversity, $diversities, $perc_shared;
}
sub community_calculate_species_abundance {
# Calculate relative abundance based on a distribution and its parameters.
# Input is a model, its 2 parameters, and the number of values to generate
# Output is a reference to a list of relative abundance. The abundance adds up
# to 1
my ($distrib, $param, $diversity) = @_;
# First calculate rank-abundance values
my $rel_ab;
my $total = 0;
if ($distrib eq 'uniform') {
# no parameter
my $val = 1 / $diversity;
for (my $index = 0 ; $index < $diversity ; $index++) {
$$rel_ab[$index] = $val;
}
$total = 1;
} elsif ($distrib eq 'linear') {
# no parameter
my $slope = 1 / $diversity;
for (my $index = 0 ; $index < $diversity ; $index++) {
$$rel_ab[$index] = 1 - $slope * $index;
$total += $$rel_ab[$index];
}
} elsif ($distrib eq 'powerlaw') {
# 1 parameter
die "Error: The powerlaw model requires an input parameter (-p option)\n"
if not defined $param;
for (my $index = 0 ; $index < $diversity ; $index++) {
$$rel_ab[$index] = ($index+1)**-$param;
$total += $$rel_ab[$index];
}
} elsif ($distrib eq 'logarithmic') {
# 1 parameter
die "Error: The logarithmic model requires an input parameter (-p option)\n"
if not defined $param;
for (my $index = 0 ; $index < $diversity ; $index++) {
$$rel_ab[$index] = log($index+2)**-$param;
$total += $$rel_ab[$index];
}
} elsif ($distrib eq 'exponential') {
# 1 parameter
die "Error: The exponential model requires an input parameter (-p option)\n"
if not defined $param;
for (my $index = 0 ; $index < $diversity ; $index++) {
$$rel_ab[$index] = exp(-($index+1)*$param);
$total += $$rel_ab[$index];
}
} else {
die "Error: $distrib is not a valid rank-abundance distribution\n";
}
# Normalize to 1 if needed
if ($total != 1) {
$rel_ab = normalize($rel_ab, $total);
}
return $rel_ab;
}
sub community_calculate_amplicon_abundance {
my ($r_spp_abs, $r_spp_ids, $seq_ids) = @_;
# Convert abundance of species into abundance of their amplicons because there
# can be multiple amplicon per species and the amplicons have a different ID
# from the species. The r_spp_ids and r_spp_abs arrays are the ID and abundance
# of the species, sorted by decreasing abundance.
# Give amplicons from the same species the same sampling probability
for (my $i = 0; $i < scalar @$r_spp_ids; $i++) {
my $species_ab = $$r_spp_abs[$i];
my $species_id = $$r_spp_ids[$i];
my @amplicon_ids = keys %{$seq_ids->{$species_id}};
my $nof_amplicons = scalar @amplicon_ids;
my @amplicon_abs = ($species_ab / $nof_amplicons) x $nof_amplicons;
splice @$r_spp_abs, $i, 1, @amplicon_abs;
splice @$r_spp_ids, $i, 1, @amplicon_ids;
$i += $nof_amplicons - 1;
}
return $r_spp_abs, $r_spp_ids;
}
sub next_single_read {
# Generate a single shotgun or amplicon read
my ($self) = @_;
my $oids = $self->{c_structs}->[$self->{cur_lib}-1]->{ids};
my $mid = $self->{multiplex_ids}->[$self->{cur_lib}-1] || '';
my $lib_num = $self->{num_libraries} > 1 ? $self->{cur_lib} : undef;
my $max_nof_tries = $self->{forward_reverse} ? 1 : 10;
# Choose a random genome or amplicon
my $genome = $self->rand_seq($self->{positions}, $oids);
my $nof_tries = 0;
my $shotgun_seq;
do {
# Error if we have exceeded the maximum number attempts
$nof_tries++;
if ($nof_tries > $max_nof_tries) {
my $message = "Error: Could not take a random shotgun read without ".
"forbidden characters from reference sequence ".$genome->seq->id;
$message .= " ($max_nof_tries attempts made)" if ($max_nof_tries > 1);
$message .= ".\n";
die $message;
}
# Chimerize the template sequence if needed
$genome = $self->rand_seq_chimera($genome, $self->{chimera_perc},
$self->{positions}, $oids) if $self->{chimera_perc};
# Take a random orientation if needed
my $orientation = ($self->{unidirectional} != 0) ? 1 : rand_seq_orientation();
# Choose a read size according to the specified distribution
my $length = rand_seq_length($self->{read_length}, $self->{read_model},
$self->{read_delta});
# Shorten read length if too long
my $max_length = $genome->length + length($mid);
if ( $length > $max_length) {
$length = $max_length;
}
# Read position on genome or amplicon
my ($start, $end) = rand_seq_pos($genome, $length, $self->{forward_reverse},
$mid);
# New sequence object
$shotgun_seq = new_subseq($self->{cur_read}, $genome, $self->{unidirectional},
$orientation, $start, $end, $mid, undef, $lib_num, $self->{desc_track},
$self->{qual_levels});
# Simulate sequence aberrations and sequencing error if needed
$shotgun_seq = $self->rand_seq_errors($shotgun_seq)
if ($self->{homopolymer_dist} || $self->{mutation_para1});
} while (
$self->{exclude_re} && not $self->is_valid($shotgun_seq)
);
return $shotgun_seq;
}
sub next_mate_pair {
# Generate a shotgun mate pair
my ($self) = @_;
my $oids = $self->{c_structs}->[$self->{cur_lib}-1]->{ids};
my $mid = $self->{multiplex_ids}->[$self->{cur_lib}-1] || '';
my $lib_num = $self->{num_libraries} > 1 ? $self->{cur_lib} : undef;
my $pair_num = int( $self->{cur_read} / 2 + 0.5 );
my $max_nof_tries = $self->{forward_reverse} ? 1 : 10;
# Deal with mate orientation
my @mate_orientations = split('', $self->{mate_orientation} );
my $mate_1_orientation = $mate_orientations[0] eq 'F' ? 1 : -1;
my $mate_2_orientation = $mate_orientations[1] eq 'F' ? 1 : -1;
# Choose a random genome
my $genome = $self->rand_seq($self->{positions}, $oids);
my $nof_tries = 0;
my ($shotgun_seq_1, $shotgun_seq_2);
while (1) {
# Error if we have exceeded the maximum number of attempts
$nof_tries++;
if ($nof_tries > $max_nof_tries) {
my $message = "Error: Could not take a pair of random shotgun read ".
"without forbidden characters from reference sequence ".$genome->seq->id;
$message .= " ($max_nof_tries attempts made)" if ($max_nof_tries > 1);
$message .= ".\n";
die $message;
}
# Chimerize the template sequence if needed
$genome = $self->rand_seq_chimera($genome, $self->{chimera_perc},
$self->{positions}, $oids) if $self->{chimera_perc};
# Take from a random strand if needed
my $orientation = ($self->{unidirectional} != 0) ? 1 : rand_seq_orientation();
# Choose a mate pair length according to the specified distribution
my $mate_length = rand_seq_length($self->{mate_length}, $self->{mate_model},
$self->{mate_delta});
# Shorten mate length if too long
my $max_length = $genome->length + length($mid);
if ( $mate_length > $max_length) {
$mate_length = $max_length;
}
# Mate position on genome or amplicon
my ($mate_start, $mate_end) = rand_seq_pos($genome, $mate_length,
$self->{forward_reverse}, $mid);
# Determine mate-pair position
my $read_length = rand_seq_length($self->{read_length}, $self->{read_model}, $self->{read_delta});
my $seq_1_start = $mate_start;
my $seq_1_end = $mate_start + $read_length - 1;
$read_length = rand_seq_length($self->{read_length}, $self->{read_model}, $self->{read_delta});
my $seq_2_start = $mate_end - $read_length + 1;
my $seq_2_end = $mate_end;
if ($orientation == -1) {
$mate_1_orientation = $orientation * $mate_1_orientation;
$mate_2_orientation = $orientation * $mate_2_orientation;
($seq_1_start, $seq_2_start) = ($seq_2_start, $seq_1_start);
($seq_1_end , $seq_2_end ) = ($seq_2_end , $seq_1_end );
}
# Generate first mate read
$shotgun_seq_1 = new_subseq($pair_num, $genome, $self->{unidirectional},
$mate_1_orientation, $seq_1_start, $seq_1_end, $mid, '1', $lib_num, $self->{desc_track},
$self->{qual_levels});
$shotgun_seq_1 = $self->rand_seq_errors($shotgun_seq_1)
if ($self->{homopolymer_dist} || $self->{mutation_para1});
if ($self->{exclude_re} && not $self->is_valid($shotgun_seq_1)) {
next;
}
# Generate second mate read
$shotgun_seq_2 = new_subseq($pair_num, $genome, $self->{unidirectional},
$mate_2_orientation, $seq_2_start, $seq_2_end, $mid, '2', $lib_num, $self->{desc_track},
$self->{qual_levels});
$shotgun_seq_2 = $self->rand_seq_errors($shotgun_seq_2)
if ($self->{homopolymer_dist} || $self->{mutation_para1});
if ($self->{exclude_re} && not $self->is_valid($shotgun_seq_2)) {
next;
}
# Both shotgun reads were valid
last;
}
return $shotgun_seq_1, $shotgun_seq_2;
}
sub is_valid {
# Return 1 if the sequence object is valid (is not empty and does not have any
# of the specified forbidden characters), 0 otherwise. Specify the forbidden
# characters as a single string, e.g. 'N-' to prevent any reads to have 'N' or
# '-'. The search is case-insensitive.
my ($self, $seq) = @_;
if ($seq->seq =~ $self->{exclude_re}) {
return 0;
}
return 1;
}
sub proba_create {
my ($self, $c_struct, $size_dep, $copy_bias) = @_;
# 1/ Calculate size-dependent, copy number-dependent probabilities
my $probas = $self->proba_bias_dependency($c_struct, $size_dep, $copy_bias);
# 2/ Generate proba starting position
my $positions = $self->proba_cumul($probas);
return $positions;
}
sub proba_bias_dependency {
# Affect probability of picking a species by considering genome length or gene
# copy number bias
my ($self, $c_struct, $size_dep, $copy_bias) = @_;
# Calculate probability
my $probas;
my $totproba = 0;
my $diversity = scalar @{$c_struct->{'ids'}};
for my $i (0 .. scalar $diversity - 1) {
my $proba = $c_struct->{'abs'}[$i];
if ( defined $self->{forward_reverse} ) {
# Gene copy number bias
if ($copy_bias) {
my $refseq_id = $self->database_get_parent_id($c_struct->{'ids'}[$i]);
my $nof_amplicons = scalar @{ $self->database_get_children_seq($refseq_id) };
$proba *= $nof_amplicons;
}
} else {
# Genome length bias
if ($size_dep) {
my $id = $c_struct->{'ids'}[$i];
my $seq = $self->database_get_seq($id);
my $len = $seq->length;
$proba *= $len;
}
}
push @$probas, $proba;
$totproba += $proba;
}
# Normalize if necessary
if ($totproba != 1) {
$probas = normalize($probas, $totproba);
}
return $probas;
}
sub proba_cumul {
# Put the probas end to end on a line and generate their start position on the
# line (cumulative distribution). This will help with picking genomes or
# nucleotides at random using the rand_weighted() subroutine.
my ($self, $probas) = @_;
my $sum = 0;
return [ 0, map { $sum += $_ } @$probas ];
}
sub rand_weighted {
# Pick a random number based on the given cumulative probabilities.
# Cumulative weights can be obtained from the proba_cumul() subroutine.
my ($cum_probas, $pick, $index) = (shift, rand, -1);
map { $pick >= $_ ? $index++ : return $index } @$cum_probas;
}
sub rand_seq {
# Choose a sequence object randomly using a probability distribution
my ($self, $positions, $oids) = @_;
return $self->database_get_seq( $$oids[rand_weighted($positions)] );
}
sub rand_seq_chimera {
my ($self, $sequence, $chimera_perc, $positions, $oids) = @_;
# Produce an amplicon that is a chimera of multiple sequences
my $chimera;
# Sanity check
if ( (scalar @$oids < 2) && ($chimera_perc > 0) ) {
die "Error: Not enough sequences to produce chimeras\n";
}
# Fate now decides to produce a chimera or not
if ( rand(100) <= $chimera_perc ) {
# Pick multimera size
my $m = $self->rand_chimera_size();
# Pick chimera fragments
my @pos;
if ($self->{chimera_kmer}) {
@pos = $self->kmer_chimera_fragments($m);
} else {
# TODO: try to not provide $positions and $oids
@pos = $self->rand_chimera_fragments($m, $sequence, $positions, $oids);
}
# Join chimera fragments
$chimera = assemble_chimera(@pos);
} else {
# No chimera needed
$chimera = $sequence;
}
return $chimera;
}
sub rand_chimera_size {
# Decide of the number of sequences that the chimera will have, based on the
# user-defined chimera distribution
my ($self) = @_;
return rand_weighted( $self->{chimera_dist_cdf} ) + 2;
}
sub kmer_chimera_fragments {
# Return a kmer-based chimera of the required size. It is impossible to
# randomly make one that will meet the required size. So, make multiple
# attempts and save failed attempts in a pool for later reuse.
my ($self, $m) = @_;
my $frags;
my $pool = $self->{chimera_kmer_pool}->{$m};
if ( (defined $pool) && (scalar @$pool > 0) ) {
# Pick a chimera from the pool if possible
$frags = shift @$pool;
} else {
# Attempt multiple times to generate a suitable chimera
my $actual_m = 0;
my $nof_tries = 0;
my $max_nof_tries = 100;
while ( ($actual_m < $m) && ($nof_tries <= $max_nof_tries) ) {
$nof_tries++;
$frags = [ $self->kmer_chimera_fragments_backend($m) ];
my $actual_m = scalar @$frags / 3;
if ($nof_tries >= $max_nof_tries) {
# Could not make a suitable chimera, accept the current chimera
warn "Warning: Could not make a chimera of $m sequences after ".
"$max_nof_tries attempts. Accepting a chimera of $actual_m sequences".
" instead...\n";
$actual_m = $m;
}
if ($actual_m < $m) {
# Add unsuitable chimera to the pool
$pool = $self->{chimera_kmer_pool}->{$actual_m};
push @$pool, $frags;
# Prevent the pool from growing too big
my $max_pool_size = 100;
shift @$pool if scalar @$pool > $max_pool_size;
} else {
# We got a suitable chimera... done
last;
}
}
}
return @$frags;
}
sub kmer_chimera_fragments_backend {
# Pick sequence fragments for multimeras where breakpoints are located on
# shared kmers. A smaller chimera than requested may be returned.
my ($self, $m) = @_;
# Initial pair of fragments
my @pos = $self->rand_kmer_chimera_initial();
# Append sequence to chimera
for my $i (3 .. $m) {
my ($seqid1, $start1, $end1, $seqid2, $start2, $end2) =
$self->rand_kmer_chimera_extend($pos[-3], $pos[-2], $pos[-1]);
if (not defined $seqid2) {
# Could not find a sequence that shared a suitable kmer
last;
}
@pos[-3..-1] = ($seqid1, $start1, $end1);
push @pos, ($seqid2, $start2, $end2);
}
# Put sequence objects instead of sequence IDs
for (my $i = 0; $i < scalar @pos; $i = $i+3) {
my $seqid = $pos[$i];
my $seq = $self->database_get_seq($seqid);
$pos[$i] = $seq;
}
return @pos;
}
sub rand_kmer_chimera_extend {
# Pick another fragment to add to a kmer-based chimera. Return undef if none
# can be found
my ($self, $seqid1, $start1, $end1) = @_;
my ($seqid2, $start2, $end2);
# Get kmer frequencies in the end part of sequence 1
my ($kmer_arr, $freqs) = $self->{chimera_kmer_col}->counts($seqid1, $start1, 1);
if (defined $kmer_arr) {
# Pick a random kmer
my $kmer_cdf = $self->proba_cumul($freqs);
my $kmer = $self->rand_kmer_from_collection($kmer_arr, $kmer_cdf);
# Get a sequence that has the same kmer as the first but is not the first
$seqid2 = $self->rand_seq_with_kmer( $kmer, $seqid1 );
# Pick a suitable kmer start on that sequence
if (defined $seqid2) {
# Pick a random breakpoint
# TODO: can we prefer a position not too crazy?
my $pos1 = $self->rand_kmer_start( $kmer, $seqid1, $start1 );
my $pos2 = $self->rand_kmer_start( $kmer, $seqid2 );
# Place breakpoint about the middle of the kmer (kmers are at least 2 bp long)
my $middle = int($self->{chimera_kmer} / 2);
#$start1 = $start1;
$end1 = $pos1 + $middle - 1;
$start2 = $pos2 + $middle;
$end2 = $self->database_get_seq($seqid2)->length;
}
}
return $seqid1, $start1, $end1, $seqid2, $start2, $end2;
}
sub rand_kmer_chimera_initial {
# Pick two sequences and start points to assemble a kmer-based bimera.
# An optional starting sequence can be provided.
my ($self, $seqid1) = @_;
my $kmer;
if (defined $seqid1) {
# Try to pick a kmer from the requested sequence
$kmer = $self->rand_kmer_of_seq( $seqid1 );
if (not defined $kmer) {
die "Error: Sequence $seqid1 did not contain a suitable kmer\n";
}
} else {
# Pick a random kmer and sequence containing that kmer
$kmer = $self->rand_kmer_from_collection();
$seqid1 = $self->rand_seq_with_kmer( $kmer );
}
# Get a sequence that has the same kmer as the first but is not the first
my $seqid2 = $self->rand_seq_with_kmer( $kmer, $seqid1 );
if (not defined $seqid2) {
die "Error: Could not find another sequence that contains kmer $kmer\n";
}
# Pick random breakpoint positions
my $pos1 = $self->rand_kmer_start( $kmer, $seqid1 );
my $pos2 = $self->rand_kmer_start( $kmer, $seqid2 );
# Swap sequences so that pos1 < pos2
if ($pos1 > $pos2) {
($seqid1, $seqid2) = ($seqid2, $seqid1);
($pos1, $pos2) = ($pos2, $pos1);
}
# Place breakpoint about the middle of the kmer (kmers are at least 2 bp long)
my $middle = int($self->{chimera_kmer} / 2);
my $start1 = 1;
my $end1 = $pos1 + $middle - 1;
my $start2 = $pos2 + $middle;
my $end2 = $self->database_get_seq($seqid2)->length;
return $seqid1, $start1, $end1, $seqid2, $start2, $end2;
}
sub rand_kmer_from_collection {
# Pick a kmer at random amongst all possible kmers in the collection
my ($self, $kmer_arr, $kmer_cdf) = @_;
my $kmers = defined $kmer_arr ? $kmer_arr : $self->{chimera_kmer_arr};
my $cdf = defined $kmer_cdf ? $kmer_cdf : $self->{chimera_kmer_cdf};
my $kmer = $$kmers[rand_weighted($cdf)];
return $kmer;
}
sub rand_seq_with_kmer {
# Pick a random sequence ID that contains the given kmer. An optional sequence
# ID to exclude can be provided.
my ($self, $kmer, $excl) = @_;
my $source;
my ($sources, $freqs) = $self->{chimera_kmer_col}->sources($kmer, $excl, 1);
my $num_sources = scalar @$sources;
if ($num_sources > 0) {
my $cdf = $self->proba_cumul($freqs);
$source = $$sources[rand_weighted($cdf)];
}
return $source;
}
sub rand_kmer_of_seq {
# Pick a kmer amongst the possible kmers of the given sequence
my ($self, $seqid) = @_;
my $kmer;
my ($kmers, $freqs) = $self->{chimera_kmer_col}->kmers($seqid, 1);
if (scalar @$kmers > 0) {
my $cdf = $self->proba_cumul($freqs);
$kmer = $$kmers[rand_weighted($cdf)];
}
return $kmer;
}
sub rand_kmer_start {
# Pick a kmer starting position at random for the given kmer and sequence ID.
# An optional minimum start position can be given.
my ($self, $kmer, $source, $min_start) = @_;
my $start;
$min_start ||= 1;
my $kmer_col = $self->{chimera_kmer_col};
my $kmer_starts = $kmer_col->positions($kmer, $source);
# Find index of first index min_idx where position respects min_start
my $min_idx;
for (my $i = 0; $i < scalar @$kmer_starts; $i++) {
my $start = $kmer_starts->[$i];
if ($start >= $min_start) {
$min_idx = $i;
last;
}
}
if (defined $min_idx) {
# Get a random index between min_idx and the end of the array
my $rand_idx = $min_idx + int rand (scalar @$kmer_starts - $min_idx);
# Get the value for this random index
$start = $kmer_starts->[ $rand_idx ];
}
return $start;
}
sub rand_chimera_fragments {
# Pick which sequences and breakpoints to use to form a chimera
my ($self, $m, $sequence, $positions, $oids) = @_;
# Pick random sequences
my @seqs = ($sequence);
my $min_len = $sequence->length;
for (my $i = 2; $i <= $m; $i++) {
my $prev_seq = $seqs[-1];
my $seq;
do {
$seq = $self->rand_seq($positions, $oids);
} while ($seq->seq->id eq $prev_seq->seq->id);
push @seqs, $seq;
my $seq_len = $seq->length;
if ( (not defined $min_len) || ($seq_len < $min_len) ) {
$min_len = $seq_len;
}
}
# Pick random breakpoints
my $nof_breaks = $m - 1;
my %breaks = ();
while ( scalar keys %breaks < $nof_breaks ) {
# pick a random break
my $rand_pos = 1 + int( rand($min_len - 1) );
$breaks{$rand_pos} = undef;
}
my @breaks = (1, sort {$a <=> $b} (keys %breaks));
undef %breaks;
# Assemble the positional array
my @pos;
for (my $i = 1; $i <= $m; $i++) {
my $seq = $seqs[$i-1];
my $start = shift @breaks;
my $end = $breaks[0] || $seq->length;
$breaks[0]++;
push @pos, ($seq, $start, $end);
}
return @pos;
}
sub assemble_chimera {
# Create a chimera sequence object based on positional information:
# seq1, start1, end1, seq2, start2, end2, ...
my (@pos) = @_;
# Create the ID, sequence and split location
my ($chimera_id, $chimera_seq);
my $chimera_loc = Bio::Location::Split->new();
while ( my ($seq, $start, $end) = splice @pos, 0, 3 ) {
# Add amplicon position
$chimera_loc->add_sub_Location( $seq->location );
# Add amplicon ID
if (defined $chimera_id) {
$chimera_id .= ',';
}
# Add subsequence
my $chimera = $seq->seq;
$chimera_id .= $chimera->id;
$chimera_seq .= $chimera->subseq($start, $end);
}
# Create a sequence object
my $chimera = Bio::SeqFeature::SubSeq->new(
-seq => Bio::PrimarySeq->new( -id => $chimera_id, -seq => $chimera_seq ),
);
# Save split location object (a bit hackish)
$chimera->{_chimera} = $chimera_loc;
return $chimera;
}
sub rand_seq_orientation {
# Return a random read orientation: 1 for uncomplemented, or -1 for complemented
return int(rand()+0.5) ? 1 : -1;
}
sub rand_seq_errors {
# Introduce sequencing errors (point mutations, homopolymers) in a sequence
# based on error models
my ($self, $seq) = @_;
my $seq_str = $seq->seq();
my $error_specs = {}; # Error specifications
# First, specify errors in homopolymeric stretches
$error_specs = $self->rand_homopolymer_errors($seq_str, $error_specs)
if $self->{homopolymer_dist};
# Then, specify point sequencing errors: substitutions, insertions, deletions
$error_specs = $self->rand_point_errors($seq_str, $error_specs)
if $self->{mutation_para1};
# Finally, actually implement the errors as per the specifications
$seq->errors($error_specs) if (scalar keys %$error_specs > 0);
return $seq;
}
sub rand_homopolymer_errors {
# Specify sequencing errors in a sequence's homopolymeric stretches
my ($self, $seq_str, $error_specs) = @_;
while ( $seq_str =~ m/(.)(\1+)/g ) {
# Found a homopolymer
my $res = $1; # residue in homopolymer
my $len = length($2) + 1; # length of the homopolymer
my $pos = pos($seq_str) - $len + 1; # start of the homopolymer (residue no.)
# Apply homopolymer model based on normal distribution N(mean, standard deviation)
# Balzer: N(n, 0.03494 + n * 0.06856) Balzer et al. 2010
# Richter: N(n, 0.15 * sqrt(n)) Richter et al. 2008
# Margulies: N(n, 0.15 * n) Margulies et al. 2005
my ($stddev, $new_len, $diff) = (0, 0, 0);
if ( $self->{homopolymer_dist} eq 'balzer' ) {
$stddev = 0.03494 + $len * 0.06856;
} elsif ($self->{homopolymer_dist} eq 'richter') {
$stddev = 0.15 * sqrt($len);
} elsif ($self->{homopolymer_dist} eq 'margulies') {
$stddev = 0.15 * $len;
} else {
die "Error: Unknown homopolymer distribution '".$self->{homopolymer_dist}."'\n";
}
$new_len = int( $len + $stddev * randn() + 0.5 );
$new_len = 0 if $new_len < 0;
# We're done if no error was introduced
$diff = $new_len - $len;
next unless $diff;
# Otherwise, track the error generated
if ($diff > 0) {
# Homopolymer extension
push @{$$error_specs{$pos}{'+'}}, ($res) x $diff;
} elsif ($diff < 0) {
# Homopolymer shrinkage
for my $offset ( 0 .. abs($diff)-1 ) {
push @{$$error_specs{$pos+$offset}{'-'}}, undef;
}
}
}
return $error_specs;
}
sub rand_point_errors {
# Do some random point sequencing errors on a sequence based on a model
my ($self, $seq_str, $error_specs) = @_;
# Mutation cumulative density functions (cdf) for this sequence length
my $seq_len = length $seq_str;
if ( not defined $self->{mutation_cdf}->{$seq_len} ) {
my $mut_pdf = []; # probability density function
my $mut_freq = 0; # average
my $mut_sum = 0;
if ($self->{mutation_model} eq 'uniform') {
# Uniform error model
# para1 is the average mutation frequency
my $proba = 1 / $seq_len;
$mut_pdf = [ map { $proba } (1 .. $seq_len) ];
$mut_freq = $self->{mutation_para1};
$mut_sum = 1;
} elsif ($self->{mutation_model} eq 'linear') {
# Linear error model
# para 1 is the error rate at the 5' end of the read
# para 2 is the error rate at the 3' end
$mut_freq = abs( $self->{mutation_para2} + $self->{mutation_para1} ) / 2;
if ($seq_len == 1) {
$$mut_pdf[0] = $mut_freq;
$mut_sum = $mut_freq
} elsif ($seq_len > 1) {
my $slope = ($self->{mutation_para2} - $self->{mutation_para1}) / ($seq_len-1);
for my $i (0 .. $seq_len-1) {
my $val = $self->{mutation_para1} + $i * $slope;
$mut_sum += $val;
$$mut_pdf[$i] = $val;
}
}
} elsif ($self->{mutation_model} eq 'poly4') {
# Fourth degree polynomial error model: e = para1 + para2 * i**4
for my $i (0 .. $seq_len-1) {
my $val = $self->{mutation_para1} + $self->{mutation_para2} * ($i+1)**4;
$mut_sum += $val;
$$mut_pdf[$i] = $val;
}
$mut_freq = $mut_sum / $seq_len;
} else {
die "Error: '".$self->{mutation_model}."' is not a supported error distribution\n";
}
# Normalize to 1 if needed
if ($mut_sum != 1) {
$mut_pdf = normalize($mut_pdf, $mut_sum);
}
# TODO: Could have sanity checks so that mut_pdf should have no values < 0 or > 100
$self->{mutation_cdf}->{$seq_len} = $self->proba_cumul($mut_pdf);
$self->{mutation_avg}->{$seq_len} = $mut_freq;
}
my $mut_cdf = $self->{mutation_cdf}->{$seq_len};
my $mut_avg = $self->{mutation_avg}->{$seq_len};
# Number of mutations to make in this sequence is assumed to follow a Normal
# distribution N( mutation_freq, 0.3 * mutation_freq )
my $read_mutation_freq = $mut_avg + 0.3 * $mut_avg * randn();
my $nof_mutations = $seq_len * $read_mutation_freq / 100;
my $int_part = int $nof_mutations;
my $dec_part = rand(1) < ($nof_mutations - $int_part);
$nof_mutations = $int_part + $dec_part;
# Exit without doing anything if there are no mutations to do
return $error_specs if $nof_mutations == 0;
# Make as many mutations in read as needed based on model
my $subst_frac = $self->{mutation_ratio}->[0] / 100;
for ( 1 .. $nof_mutations ) {
# Position to mutate
my $idx = rand_weighted( $mut_cdf );
# Do a substitution or indel
if ( rand() <= $subst_frac ) {
# Substitute at given position by a random replacement nucleotide
push @{$$error_specs{$idx+1}{'%'}}, $self->rand_res( substr($seq_str, $idx, 1) );
} else {
# Equiprobably insert or delete
if ( rand() < 0.5 ) {
# Insertion after given position
push @{$$error_specs{$idx+1}{'+'}}, $self->rand_res();
} else {
# Make a deletion at given position
next if length($seq_str) == 1; # skip this deletion to avoid a 0 length
push @{$$error_specs{$idx+1}{'-'}}, undef;
}
}
}
return $error_specs;
}
sub rand_res {
# Pick a residue at random from the stored alphabet (dna, rna or protein).
# An optional residue to exclude can be specified.
my ($self, $not_nuc) = @_;
my $cdf;
my @res;
if (not defined $not_nuc) {
# Use complete alphabet
@res = @{$self->{alphabet_arr}};
$cdf = $self->{alphabet_complete_cdf};
} else {
# Remove non-desired residue from alphabet
my %res = %{$self->{alphabet_hash}};
delete $res{uc($not_nuc)};
@res = sort keys %res;
$cdf = $self->{alphabet_truncated_cdf};
}
my $res = $res[rand_weighted($cdf)];
return $res;
}
sub rand_seq_length {
# Choose the sequence length following a given probability distribution
my($avg, $model, $stddev) = @_;
my $length;
if (not $model) {
# No specified distribution: all the sequences have the length of the average
$length = $avg;
} else {
if ($model eq 'uniform') {
# Uniform distribution: integers uniformly distributed in [min, max]
my ($min, $max) = ($avg - $stddev, $avg + $stddev);
$length = $min + int( rand( $max - $min + 1 ) );
} elsif ($model eq 'normal') {
# Gaussian distribution: decimal number normally distribution in N(avg,stddev)
$length = $avg + $stddev * randn();
$length = int( $length + 0.5 );
} else {
die "Error: '$model' is not a supported read or insert length distribution\n";
}
}
$length = 1 if ($length < 1);
return $length;
}
sub rand_seq_pos {
# Pick the coordinates (start and end) of an amplicon or random shotgun read.
# Coordinate system: the first base is 1 and the number is inclusive, ie 1-2
# are the first two bases of the sequence
my ($seq_obj, $read_length, $amplicon, $mid) = @_;
# Read length includes the MID
my $length = $read_length - length($mid);
# Pick starting position
my $start;
if (defined $amplicon) {
# Amplicon always start at first position of amplicon
$start = 1;
} else {
# Shotgun reads start at a random position in genome
$start = int( rand($seq_obj->length - $length + 1) ) + 1;
}
# End position
my $end = $start + $length - 1;
return $start, $end;
}
sub randn {
# Normally distributed random value (mean 0 and standard deviation 1) using
# the Box-Mueller transformation method, adapted from the Perl Cookbook
my ($g1, $g2, $w);
do {
$g1 = 2 * rand() - 1; # uniformly distributed
$g2 = 2 * rand() - 1;
$w = $g1**2 + $g2**2; # variance
} while ( $w >= 1 );
$w = sqrt( (-2 * log($w)) / $w ); # weight
$g1 *= $w; # gaussian-distributed
if ( wantarray ) {
$g2 *= $w;
return ($g1, $g2);
} else {
return $g1;
}
}
sub randig {
# Random value sampled from the inverse gaussian (a.k.a. Wald) distribution,
# using the method at http://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
my ($mu, $lambda) = @_;
my $y = randn()**2;
my $x = $mu + ($mu**2 * $y)/(2 * $lambda) - $mu / (2 * $lambda)
* sqrt(4 * $mu * $lambda * $y + $mu**2 * $y**2);
if ( rand() <= $mu / ($mu + $x) ) {
$y = $x;
} else {
$y = $mu**2 / $x;
}
return $y;
}
sub randomize {
# Randomize an array using the Fisher-Yates shuffle described in the Perl
# cookbook.
my ($array) = @_;
my $i;
for ($i = @$array; --$i; ) {
my $j = int rand($i+1);
next if $i == $j;
@$array[$i,$j] = @$array[$j,$i];
}
return $array;
}
sub database_create {
# Read and import sequences
# Parameters:
# * FASTA file containing the sequences or '-' for stdin. REQUIRED
# * Sequencing unidirectionally? 0: no, 1: yes forward, -1: yes reverse
# * Amplicon PCR primers (optional): Should be provided in a FASTA file and
# use the IUPAC convention. If a primer sequence is given, any sequence
# that does not contain the primer (or its reverse complement for the
# reverse primer) is skipped, while any sequence that matches is trimmed
# so that it is flush with the primer sequence
# * Abundance file (optional): To avoid registering sequences in the database
# unless they are needed
# * Delete chars (optional): Characters to delete form the sequences.
# * Minimum sequence size: Skip sequences smaller than that
my ($self, $fasta_file, $unidirectional, $forward_reverse_primers,
$abundance_file, $delete_chars, $min_len) = @_;
$min_len = 1 if not defined $min_len;
# Input filehandle
if (not defined $fasta_file) {
die "Error: No reference sequences provided\n";
}
my $in;
if ($fasta_file eq '-') {
$in = Bio::SeqIO->newFh(
-fh => \*STDIN,
-format => 'fasta',
);
} else {
$in = Bio::SeqIO->newFh(
-file => $fasta_file,
-format => 'fasta',
);
}
# Get list of all IDs with a manually-specified abundance
my %ids_to_keep;
if ($abundance_file) {
my ($ids) = community_read_abundances($abundance_file);
for my $comm_num (0 .. $#$ids) {
for my $gen_num ( 0 .. scalar @{$$ids[$comm_num]} - 1 ) {
my $id = $$ids[$comm_num][$gen_num];
$ids_to_keep{$id} = undef;
}
}
}
# Initialize search for amplicons
my $amplicon_search;
if (defined $forward_reverse_primers) {
$amplicon_search = Bio::Tools::AmpliconSearch->new(
-primer_file => $forward_reverse_primers,
);
}
# Process database sequences
my %seq_db; # hash of BioPerl sequence objects (all amplicons)
my %seq_ids; # hash of reference sequence IDs and IDs of their amplicons
my %mol_types; # hash of count of molecule types (dna, rna, protein)
while ( my $ref_seq = <$in> ) {
# Skip empty sequences
next if not $ref_seq->seq;
# Record molecule type
$mol_types{$ref_seq->alphabet}++;
# Skip unwanted sequences
my $ref_seq_id = $ref_seq->id;
next if (scalar keys %ids_to_keep > 0) && (not exists $ids_to_keep{$ref_seq_id});
# If we are sequencing from the reverse strand, reverse complement now
if ($unidirectional == -1) {
$ref_seq = $ref_seq->revcom;
}
# Extract amplicons if needed
my $amp_seqs;
if (defined $amplicon_search) {
$amplicon_search->template($ref_seq);
while (my $amp_seq = $amplicon_search->next_amplicon) {
push @$amp_seqs, $amp_seq;
}
next if not defined $amp_seqs;
} else {
$amp_seqs = [ Bio::SeqFeature::SubSeq->new( -start => 1,
-end => $ref_seq->length,
-template => $ref_seq, ) ];
}
for my $amp_seq (@$amp_seqs) {
# Remove forbidden chars
if ( (defined $delete_chars) && (not $delete_chars eq '') ) {
### TODO: Use Bio::Location::Split here as well?
my $clean_seq = $amp_seq->seq;
my $clean_seqstr = $clean_seq->seq;
my $dirty_length = length $clean_seqstr;
$clean_seqstr =~ s/[$delete_chars]//gi;
my $num_dels = $dirty_length - length $clean_seqstr;
if ($num_dels > 0) {
# Update sequence with cleaned sequence string
$clean_seq->seq($clean_seqstr);
$amp_seq->seq($clean_seq);
# Adjust (decrease) end of feature
$amp_seq->end( $amp_seq->end - $num_dels );
}
}
# Skip the sequence if it is too small
next if $amp_seq->length < $min_len;
# Save amplicon sequence and create a barcode that identifies it
my $amp_bc = create_amp_barcode($amp_seq, $ref_seq_id);
$seq_db{$amp_bc} = $amp_seq;
$seq_ids{$ref_seq_id}{$amp_bc} = undef;
}
}
undef $in; # close the filehandle (maybe?!)
# Error if no usable sequences in the database
if (scalar keys %seq_ids == 0) {
die "Error: No genome sequences could be used. If you specified a file of".
" abundances for the genome sequences, make sure that their ID match the".
" ID in the FASTA file. If you specified amplicon primers, verify that ".
"they match some genome sequences.\n";
}
# Determine database type: dna, rna, protein
my $db_alphabet = $self->database_get_mol_type(\%mol_types);
$self->{alphabet} = $db_alphabet;
# Error if using amplicon on protein database
if ( ($db_alphabet eq 'protein') && (defined $forward_reverse_primers) ) {
die "Error: Cannot use amplicon primers with proteic reference sequences\n";
}
# Error if using wrong direction on protein database
if ( ($db_alphabet eq 'protein') && ($unidirectional != 1) ) {
die "Error: Got <unidirectional> = $unidirectional but can only use ".
"<unidirectional> = 1 with proteic reference sequences\n";
}
my $database = { 'db' => \%seq_db, 'ids' => \%seq_ids };
return $database;
}
sub create_amp_barcode {
# Create a barcode that is unique for each amplicon, store it and return it
my ($amp_sf, $ref_seq_id) = @_;
my $sep = '/';
my @elems = ($ref_seq_id, $amp_sf->start, $amp_sf->end, $amp_sf->strand || 1);
#### TODO: follow the spec: id:start..end/strand
my $barcode = join $sep, @elems;
$amp_sf->{_barcode} = $barcode;
return $barcode;
}
sub get_amp_barcode {
# Get the amplicon barcode
my ($amp_sf) = @_;
return $amp_sf->{_barcode};
}
sub database_get_mol_type {
# Given a count of the different molecule types in the database, determine
# what molecule type it is.
my ($self, $mol_types) = @_;
my $max_count = 0;
my $max_type = '';
while (my ($type, $count) = each %$mol_types) {
if ($count > $max_count) {
$max_count = $count;
$max_type = $type;
}
}
my $other_count = 0;
while (my ($type, $count) = each %$mol_types) {
if (not $type eq $max_type) {
$other_count += $count;
}
}
if ($max_count < $other_count) {
die "Error: Cannot determine what type of molecules the reference sequences".
" are. Got $max_count sequences of type '$max_type' and $other_count ".
"others.\n";
}
if ( (not $max_type eq 'dna') && (not $max_type eq 'rna') && (not $max_type eq 'protein') ) {
die "Error: Reference sequences are in an unknown alphabet '$max_type'\n";
}
return $max_type;
}
sub database_get_all_oids {
# Retrieve all object IDs from the database. These OIDs match the output of
# the database_get_all_seqs method.
my ($self) = @_;
my @oids;
while ( my ($oid, undef) = each %{$self->{database}->{db}} ) {
push @oids, $oid;
}
return \@oids;
}
sub database_get_all_seqs {
# Retrieve all sequence objects from the database. These sequence objects match
# the output of the database_get_all_oids method.
my ($self) = @_;
my @seqs;
while ( my (undef, $seq) = each %{$self->{database}->{db}} ) {
push @seqs, $seq;
}
return \@seqs;
}
sub database_get_seq {
# Retrieve a sequence object from the database based on its object ID
my ($self, $oid) = @_;
my $db = $self->{database}->{db};
my $seq_obj;
if (not exists $$db{$oid}) {
warn "Warning: Could not find sequence with object ID '$oid' in the database\n";
}
$seq_obj = $$db{$oid};
return $seq_obj;
}
sub database_get_children_seq {
# Retrieve all the sequences object made from a reference sequence based on the
# ID of the reference sequence
my ($self, $refseqid) = @_;
my @children;
while ( my ($child_oid, undef) = each %{$self->{database}->{ids}->{$refseqid}} ) {
push @children, $self->database_get_seq($child_oid);
}
return \@children;
}
sub database_get_parent_id {
# Based on a sequence object ID, retrieve the ID of the reference sequence it
# came from
my ($self, $oid) = @_;
my $seq_id = $self->database_get_seq($oid)->seq->id;
return $seq_id;
}
sub iupac_to_regexp {
# Create a regular expression to match a nucleotide sequence that contain
# degeneracies (in IUPAC standard)
my ($seq) = @_;
# Basic IUPAC code
#my %iupac = (
# 'A' => ['A'],
# 'C' => ['C'],
# 'G' => ['G'],
# 'T' => ['T'],
# 'U' => ['U'],
# 'R' => ['G', 'A'],
# 'Y' => ['T', 'C'],
# 'K' => ['G', 'T'],
# 'M' => ['A', 'C'],
# 'S' => ['G', 'C'],
# 'W' => ['A', 'T'],
# 'B' => ['G', 'T', 'C'],
# 'D' => ['G', 'A', 'T'],
# 'H' => ['A', 'C', 'T'],
# 'V' => ['G', 'C', 'A'],
# 'N' => ['A', 'G', 'C', 'T'],
#);
# IUPAC code
# + degenerate primer residues matching ambiguous template residues
# + degenerate primer residues matching uracil U
my %iupac = (
'A' => ['A'],
'C' => ['C'],
'G' => ['G'],
'T' => ['T'],
'U' => ['U'],
'R' => ['G', 'A', 'R'],
'Y' => ['T', 'U', 'C', 'Y'],
'K' => ['G', 'T', 'U', 'K'],
'M' => ['A', 'C', 'M'],
'S' => ['G', 'C', 'S'],
'W' => ['A', 'T', 'U', 'W'],
'B' => ['G', 'T', 'U', 'C', 'Y', 'K', 'S', 'B'],
'D' => ['G', 'A', 'T', 'U', 'R', 'K', 'W', 'D'],
'H' => ['A', 'C', 'T', 'U', 'Y', 'M', 'W', 'H'],
'V' => ['G', 'C', 'A', 'R', 'M', 'S', 'V'],
'N' => ['A', 'G', 'C', 'T', 'U', 'R', 'Y', 'K', 'M', 'S', 'W', 'B', 'D', 'H', 'V', 'N'],
);
# Regular expression to catch this sequence
my $regexp;
for my $pos (0 .. length($seq)-1) {
my $res = substr $seq, $pos, 1;
my $iupacs = $iupac{$res};
if (not defined $iupacs) {
die "Error: Primer sequence '$seq' is not a valid IUPAC sequence. ".
"Offending character is '$res'.\n";
}
if (scalar @$iupacs > 1) {
$regexp .= '['.join('',@$iupacs).']';
} else {
$regexp .= $$iupacs[0];
}
}
$regexp = qr/$regexp/i;
return $regexp;
}
sub lib_coverage {
# Calculate number of sequences needed to reach a given coverage. If the
# number of sequences is provided, calculate the coverage
my ($self, $c_struct) = @_;
my $coverage = $self->{coverage_fold};
my $nof_seqs = $self->{total_reads};
my $read_length = $self->{read_length};
# 1/ Calculate library length and size
my $ref_ids = $c_struct->{'ids'};
my $diversity = scalar @$ref_ids;
my $lib_length = 0;
for my $ref_id (@$ref_ids) {
my $seqobj = $self->database_get_seq($ref_id);
my $seqlen = $seqobj->length;
$lib_length += $seqlen;
}
# 2/ Calculate number of sequences to generate based on desired coverage. If
# both number of reads and coverage fold were given, coverage has precedence.
if ($coverage) {
$nof_seqs = ($coverage * $lib_length) / $read_length;
if ( int($nof_seqs) < $nof_seqs ){
$nof_seqs = int($nof_seqs + 1); # ceiling
}
}
# Make sure the last mate pair is always complete
if ( $self->{mate_length} && ($nof_seqs % 2)) {
$nof_seqs++;
if (not $coverage) {
warn "Warning: Added a read to make the last mate pair complete.\n"
}
}
$coverage = ($nof_seqs * $read_length) / $lib_length;
# 3/ Sanity check
# TODO: Warn only if diversity was explicitely specified on the command line
if ( $nof_seqs < $diversity) {
warn "Warning: The number of reads to produce is lower than the required ".
"diversity. Increase the coverage or number of reads to achieve this ".
"diversity.\n";
$self->{diversity}->[$self->{cur_lib}-1] = $nof_seqs;
}
return $nof_seqs, $coverage;
}
sub new_subseq {
# Create a new sequence object as a subsequence of another one and name it so
# we can trace back where it came from
my ($fragnum, $seq_feat, $unidirectional, $orientation, $start, $end, $mid,
$mate_number, $lib_number, $tracking, $qual_levels) = @_;
# If the length is too short for this read, no choice but to decrease it.
$start = 1 if $start < 1;
$end = $seq_feat->length if $end > $seq_feat->length;
# Build the sequence ID
my $name_sep = '_';
my $field_sep = ' ';
my $mate_sep = '/'; # mate pair indicator, by convention
my $newid = $fragnum;
if (defined $lib_number) {
$newid = $lib_number.$name_sep.$newid;
}
if (defined $mate_number) {
$newid .= $mate_sep.$mate_number;
}
# Create a new simulated read object
my $newseq = Bio::Seq::SimulatedRead->new(
-id => $newid,
-reference => $seq_feat->seq,
-start => $start,
-end => $end,
-strand => $orientation,
-mid => $mid,
-track => $tracking,
-coord_style => 'genbank',
-qual_levels => $qual_levels,
);
# Record location of amplicon on reference sequence in the sequence description
if ( $seq_feat->isa('Bio::SeqFeature::Amplicon') || exists($seq_feat->{_chimera}) ) {
my $amplicon_desc = gen_subseq_desc($seq_feat);
my $desc = $newseq->desc;
$desc =~ s/(reference=\S+)/$1 $amplicon_desc/;
$newseq->desc($desc);
}
# Database sequences were already reverse-complemented if reverse sequencing
# was requested
if ($unidirectional == -1) {
$orientation *= -1;
$newseq = set_read_orientation($newseq, $orientation);
}
return $newseq;
}
sub gen_subseq_desc {
my ($seq_feat) = @_;
# Chimeras have several locations (a Bio::Location::Split object)
my @locations;
if (exists $seq_feat->{_chimera}) {
@locations = $seq_feat->{_chimera}->sub_Location();
} else {
@locations = ( $seq_feat->location );
}
for (my $i = 0; $i <= scalar @locations - 1; $i++) {
my $location = $locations[$i];
my $strand = $location->strand || 1;
if ($strand == 1) {
$location = $location->start.'..'.$location->end;
} elsif ($strand == -1) {
$location = 'complement('.$location->start.'..'.$location->end.')';
} else {
die "Error: Strand should be -1 or 1, but got '".$location."'\n";
}
$locations[$i] = $location;
}
my $desc = 'amplicon='.join(',', @locations);
return $desc;
}
sub set_read_orientation {
# Set read orientation and change its description accordingly
my ($seq, $new_orientation) = @_;
$seq->strand($new_orientation);
my $desc = $seq->desc;
$desc =~ s/position=(complement\()?(\d+)\.\.(\d+)(\))?/position=/;
my ($start, $end) = ($2, $3);
if ($new_orientation == -1) {
$desc =~ s/position=/position=complement($start\.\.$end)/;
} else {
$desc =~ s/position=/position=$start\.\.$end/;
}
$seq->desc( $desc );
return $seq;
}
sub two_array_sort {
# Sort 2 arrays by taking the numeric sort of the first one and keeping the
# element of the second one match those of the first one
my ($l1, $l2) = @_;
my @ids = map { [ $$l1[$_], $$l2[$_] ] } (0..$#$l1);
@ids = sort { $a->[0] <=> $b->[0] } @ids;
my @k1;
my @k2;
for (my $i = 0; $i < scalar @ids; $i++) {
$k1[$i] = $ids[$i][0];
$k2[$i] = $ids[$i][1];
}
return \@k1, \@k2;
}
sub normalize {
# Normalize an arrayref to 1.
my ($arr, $total) = @_;
if (not $total) { # total undef or 0
die "Error: Need to provide a valid total\n";
}
$arr = [ map {$_ / $total} @$arr ];
return $arr;
}
1;
|