This file is indexed.

/usr/share/julia/base/abstractarraymath.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# This file is a part of Julia. License is MIT: http://julialang.org/license

 ## Basic functions ##

isinteger(x::AbstractArray) = all(isinteger,x)
isinteger{T<:Integer,n}(x::AbstractArray{T,n}) = true
isreal(x::AbstractArray) = all(isreal,x)
isreal{T<:Real,n}(x::AbstractArray{T,n}) = true
ctranspose(a::AbstractArray) = error("ctranspose not implemented for $(typeof(a)). Consider adding parentheses, e.g. A*(B*C') instead of A*B*C' to avoid explicit calculation of the transposed matrix.")
transpose(a::AbstractArray) = error("transpose not implemented for $(typeof(a)). Consider adding parentheses, e.g. A*(B*C.') instead of A*B*C' to avoid explicit calculation of the transposed matrix.")

## Constructors ##

vec(a::AbstractArray) = reshape(a,length(a))
vec(a::AbstractVector) = a

_sub(::Tuple{}, ::Tuple{}) = ()
_sub(t::Tuple, ::Tuple{}) = t
_sub(t::Tuple, s::Tuple) = _sub(tail(t), tail(s))

function squeeze(A::AbstractArray, dims::Dims)
    for i in 1:length(dims)
        1 <= dims[i] <= ndims(A) || throw(ArgumentError("squeezed dims must be in range 1:ndims(A)"))
        size(A, dims[i]) == 1 || throw(ArgumentError("squeezed dims must all be size 1"))
        for j = 1:i-1
            dims[j] == dims[i] && throw(ArgumentError("squeezed dims must be unique"))
        end
    end
    d = ()
    for i = 1:ndims(A)
        if !in(i, dims)
            d = tuple(d..., size(A, i))
        end
    end
    reshape(A, d::typeof(_sub(size(A), dims)))
end

squeeze(A::AbstractArray, dim::Integer) = squeeze(A, (Int(dim),))


## Unary operators ##

conj{T<:Real}(x::AbstractArray{T}) = x
conj!{T<:Real}(x::AbstractArray{T}) = x

real{T<:Real}(x::AbstractArray{T}) = x
imag{T<:Real}(x::AbstractArray{T}) = zero(x)

+{T<:Number}(x::AbstractArray{T}) = x
*{T<:Number}(x::AbstractArray{T,2}) = x

## Binary arithmetic operators ##

*(A::Number, B::AbstractArray) = A .* B
*(A::AbstractArray, B::Number) = A .* B

/(A::AbstractArray, B::Number) = A ./ B

\(A::Number, B::AbstractArray) = B ./ A

# index A[:,:,...,i,:,:,...] where "i" is in dimension "d"
# TODO: more optimized special cases
slicedim(A::AbstractArray, d::Integer, i) =
    A[[ n==d ? i : (1:size(A,n)) for n in 1:ndims(A) ]...]

function flipdim(A::AbstractVector, d::Integer)
    d > 0 || throw(ArgumentError("dimension to flip must be positive"))
    d == 1 || return copy(A)
    reverse(A)
end

function flipdim(A::AbstractArray, d::Integer)
    nd = ndims(A)
    sd = d > nd ? 1 : size(A, d)
    if sd == 1 || isempty(A)
        return copy(A)
    end
    B = similar(A)
    nnd = 0
    for i = 1:nd
        nnd += Int(size(A,i)==1 || i==d)
    end
    if nnd==nd
        # flip along the only non-singleton dimension
        for i = 1:sd
            B[i] = A[sd+1-i]
        end
        return B
    end
    alli = [ 1:size(B,n) for n in 1:nd ]
    for i = 1:sd
        B[[ n==d ? sd+1-i : alli[n] for n in 1:nd ]...] = slicedim(A, d, i)
    end
    return B
end

circshift(a::AbstractArray, shiftamt::Real) = circshift(a, [Integer(shiftamt)])
function circshift{T,N}(a::AbstractArray{T,N}, shiftamts)
    I = ()
    for i=1:N
        s = size(a,i)
        d = i<=length(shiftamts) ? shiftamts[i] : 0
        I = tuple(I..., d==0 ? [1:s;] : mod([-d:s-1-d;], s).+1)
    end
    a[(I::NTuple{N,Vector{Int}})...]
end

# Uses K-B-N summation
function cumsum_kbn{T<:AbstractFloat}(v::AbstractVector{T})
    n = length(v)
    r = similar(v, n)
    if n == 0; return r; end

    s = r[1] = v[1]
    c = zero(T)
    for i=2:n
        vi = v[i]
        t = s + vi
        if abs(s) >= abs(vi)
            c += ((s-t) + vi)
        else
            c += ((vi-t) + s)
        end
        s = t
        r[i] = s+c
    end
    return r
end

# Uses K-B-N summation
function cumsum_kbn{T<:AbstractFloat}(A::AbstractArray{T}, axis::Integer=1)
    dimsA = size(A)
    ndimsA = ndims(A)
    axis_size = dimsA[axis]
    axis_stride = 1
    for i = 1:(axis-1)
        axis_stride *= size(A,i)
    end

    if axis_size <= 1
        return A
    end

    B = similar(A)
    C = similar(A)

    for i = 1:length(A)
        if div(i-1, axis_stride) % axis_size == 0
            B[i] = A[i]
            C[i] = zero(T)
        else
            s = B[i-axis_stride]
            Ai = A[i]
            B[i] = t = s + Ai
            if abs(s) >= abs(Ai)
                C[i] = C[i-axis_stride] + ((s-t) + Ai)
            else
                C[i] = C[i-axis_stride] + ((Ai-t) + s)
            end
        end
    end

    return B + C
end

## ipermutedims in terms of permutedims ##

function ipermutedims(A::AbstractArray,perm)
    iperm = Array(Int,length(perm))
    for i = 1:length(perm)
        iperm[perm[i]] = i
    end
    return permutedims(A,iperm)
end

## Other array functions ##

function repmat(a::AbstractVecOrMat, m::Int, n::Int=1)
    o, p = size(a,1), size(a,2)
    b = similar(a, o*m, p*n)
    for j=1:n
        d = (j-1)*p+1
        R = d:d+p-1
        for i=1:m
            c = (i-1)*o+1
            b[c:c+o-1, R] = a
        end
    end
    return b
end

function repmat(a::AbstractVector, m::Int)
    o = length(a)
    b = similar(a, o*m)
    for i=1:m
        c = (i-1)*o+1
        b[c:c+o-1] = a
    end
    return b
end

# Generalized repmat
function repeat{T}(A::Array{T};
                   inner::Array{Int} = ones(Int, ndims(A)),
                   outer::Array{Int} = ones(Int, ndims(A)))
    ndims_in = ndims(A)
    length_inner = length(inner)
    length_outer = length(outer)
    ndims_out = max(ndims_in, length_inner, length_outer)

    if length_inner < ndims_in || length_outer < ndims_in
        throw(ArgumentError("inner/outer repetitions must be set for all input dimensions"))
    end

    inner = vcat(inner, ones(Int,ndims_out-length_inner))
    outer = vcat(outer, ones(Int,ndims_out-length_outer))

    size_in = size(A)
    size_out = ntuple(i->inner[i]*size(A,i)*outer[i],ndims_out)::Dims
    inner_size_out = ntuple(i->inner[i]*size(A,i),ndims_out)::Dims

    indices_in = Array(Int, ndims_in)
    indices_out = Array(Int, ndims_out)

    length_out = prod(size_out)
    R = Array(T, size_out)

    for index_out in 1:length_out
        ind2sub!(indices_out, size_out, index_out)
        for t in 1:ndims_in
            # "Project" outer repetitions into inner repetitions
            indices_in[t] = mod1(indices_out[t], inner_size_out[t])
            # Find inner repetitions using flooring division
            if inner[t] != 1
                indices_in[t] = fld1(indices_in[t], inner[t])
            end
        end
        index_in = sub2ind(size_in, indices_in...)
        R[index_out] = A[index_in]
    end

    return R
end