/usr/share/julia/base/abstractarraymath.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | # This file is a part of Julia. License is MIT: http://julialang.org/license
## Basic functions ##
isinteger(x::AbstractArray) = all(isinteger,x)
isinteger{T<:Integer,n}(x::AbstractArray{T,n}) = true
isreal(x::AbstractArray) = all(isreal,x)
isreal{T<:Real,n}(x::AbstractArray{T,n}) = true
ctranspose(a::AbstractArray) = error("ctranspose not implemented for $(typeof(a)). Consider adding parentheses, e.g. A*(B*C') instead of A*B*C' to avoid explicit calculation of the transposed matrix.")
transpose(a::AbstractArray) = error("transpose not implemented for $(typeof(a)). Consider adding parentheses, e.g. A*(B*C.') instead of A*B*C' to avoid explicit calculation of the transposed matrix.")
## Constructors ##
vec(a::AbstractArray) = reshape(a,length(a))
vec(a::AbstractVector) = a
_sub(::Tuple{}, ::Tuple{}) = ()
_sub(t::Tuple, ::Tuple{}) = t
_sub(t::Tuple, s::Tuple) = _sub(tail(t), tail(s))
function squeeze(A::AbstractArray, dims::Dims)
for i in 1:length(dims)
1 <= dims[i] <= ndims(A) || throw(ArgumentError("squeezed dims must be in range 1:ndims(A)"))
size(A, dims[i]) == 1 || throw(ArgumentError("squeezed dims must all be size 1"))
for j = 1:i-1
dims[j] == dims[i] && throw(ArgumentError("squeezed dims must be unique"))
end
end
d = ()
for i = 1:ndims(A)
if !in(i, dims)
d = tuple(d..., size(A, i))
end
end
reshape(A, d::typeof(_sub(size(A), dims)))
end
squeeze(A::AbstractArray, dim::Integer) = squeeze(A, (Int(dim),))
## Unary operators ##
conj{T<:Real}(x::AbstractArray{T}) = x
conj!{T<:Real}(x::AbstractArray{T}) = x
real{T<:Real}(x::AbstractArray{T}) = x
imag{T<:Real}(x::AbstractArray{T}) = zero(x)
+{T<:Number}(x::AbstractArray{T}) = x
*{T<:Number}(x::AbstractArray{T,2}) = x
## Binary arithmetic operators ##
*(A::Number, B::AbstractArray) = A .* B
*(A::AbstractArray, B::Number) = A .* B
/(A::AbstractArray, B::Number) = A ./ B
\(A::Number, B::AbstractArray) = B ./ A
# index A[:,:,...,i,:,:,...] where "i" is in dimension "d"
# TODO: more optimized special cases
slicedim(A::AbstractArray, d::Integer, i) =
A[[ n==d ? i : (1:size(A,n)) for n in 1:ndims(A) ]...]
function flipdim(A::AbstractVector, d::Integer)
d > 0 || throw(ArgumentError("dimension to flip must be positive"))
d == 1 || return copy(A)
reverse(A)
end
function flipdim(A::AbstractArray, d::Integer)
nd = ndims(A)
sd = d > nd ? 1 : size(A, d)
if sd == 1 || isempty(A)
return copy(A)
end
B = similar(A)
nnd = 0
for i = 1:nd
nnd += Int(size(A,i)==1 || i==d)
end
if nnd==nd
# flip along the only non-singleton dimension
for i = 1:sd
B[i] = A[sd+1-i]
end
return B
end
alli = [ 1:size(B,n) for n in 1:nd ]
for i = 1:sd
B[[ n==d ? sd+1-i : alli[n] for n in 1:nd ]...] = slicedim(A, d, i)
end
return B
end
circshift(a::AbstractArray, shiftamt::Real) = circshift(a, [Integer(shiftamt)])
function circshift{T,N}(a::AbstractArray{T,N}, shiftamts)
I = ()
for i=1:N
s = size(a,i)
d = i<=length(shiftamts) ? shiftamts[i] : 0
I = tuple(I..., d==0 ? [1:s;] : mod([-d:s-1-d;], s).+1)
end
a[(I::NTuple{N,Vector{Int}})...]
end
# Uses K-B-N summation
function cumsum_kbn{T<:AbstractFloat}(v::AbstractVector{T})
n = length(v)
r = similar(v, n)
if n == 0; return r; end
s = r[1] = v[1]
c = zero(T)
for i=2:n
vi = v[i]
t = s + vi
if abs(s) >= abs(vi)
c += ((s-t) + vi)
else
c += ((vi-t) + s)
end
s = t
r[i] = s+c
end
return r
end
# Uses K-B-N summation
function cumsum_kbn{T<:AbstractFloat}(A::AbstractArray{T}, axis::Integer=1)
dimsA = size(A)
ndimsA = ndims(A)
axis_size = dimsA[axis]
axis_stride = 1
for i = 1:(axis-1)
axis_stride *= size(A,i)
end
if axis_size <= 1
return A
end
B = similar(A)
C = similar(A)
for i = 1:length(A)
if div(i-1, axis_stride) % axis_size == 0
B[i] = A[i]
C[i] = zero(T)
else
s = B[i-axis_stride]
Ai = A[i]
B[i] = t = s + Ai
if abs(s) >= abs(Ai)
C[i] = C[i-axis_stride] + ((s-t) + Ai)
else
C[i] = C[i-axis_stride] + ((Ai-t) + s)
end
end
end
return B + C
end
## ipermutedims in terms of permutedims ##
function ipermutedims(A::AbstractArray,perm)
iperm = Array(Int,length(perm))
for i = 1:length(perm)
iperm[perm[i]] = i
end
return permutedims(A,iperm)
end
## Other array functions ##
function repmat(a::AbstractVecOrMat, m::Int, n::Int=1)
o, p = size(a,1), size(a,2)
b = similar(a, o*m, p*n)
for j=1:n
d = (j-1)*p+1
R = d:d+p-1
for i=1:m
c = (i-1)*o+1
b[c:c+o-1, R] = a
end
end
return b
end
function repmat(a::AbstractVector, m::Int)
o = length(a)
b = similar(a, o*m)
for i=1:m
c = (i-1)*o+1
b[c:c+o-1] = a
end
return b
end
# Generalized repmat
function repeat{T}(A::Array{T};
inner::Array{Int} = ones(Int, ndims(A)),
outer::Array{Int} = ones(Int, ndims(A)))
ndims_in = ndims(A)
length_inner = length(inner)
length_outer = length(outer)
ndims_out = max(ndims_in, length_inner, length_outer)
if length_inner < ndims_in || length_outer < ndims_in
throw(ArgumentError("inner/outer repetitions must be set for all input dimensions"))
end
inner = vcat(inner, ones(Int,ndims_out-length_inner))
outer = vcat(outer, ones(Int,ndims_out-length_outer))
size_in = size(A)
size_out = ntuple(i->inner[i]*size(A,i)*outer[i],ndims_out)::Dims
inner_size_out = ntuple(i->inner[i]*size(A,i),ndims_out)::Dims
indices_in = Array(Int, ndims_in)
indices_out = Array(Int, ndims_out)
length_out = prod(size_out)
R = Array(T, size_out)
for index_out in 1:length_out
ind2sub!(indices_out, size_out, index_out)
for t in 1:ndims_in
# "Project" outer repetitions into inner repetitions
indices_in[t] = mod1(indices_out[t], inner_size_out[t])
# Find inner repetitions using flooring division
if inner[t] != 1
indices_in[t] = fld1(indices_in[t], inner[t])
end
end
index_in = sub2ind(size_in, indices_in...)
R[index_out] = A[index_in]
end
return R
end
|