This file is indexed.

/usr/share/julia/base/combinatorics.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
# This file is a part of Julia. License is MIT: http://julialang.org/license

const _fact_table64 =
    Int64[1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600,6227020800,
          87178291200,1307674368000,20922789888000,355687428096000,6402373705728000,
          121645100408832000,2432902008176640000]

const _fact_table128 =
    UInt128[0x00000000000000000000000000000001, 0x00000000000000000000000000000002,
            0x00000000000000000000000000000006, 0x00000000000000000000000000000018,
            0x00000000000000000000000000000078, 0x000000000000000000000000000002d0,
            0x000000000000000000000000000013b0, 0x00000000000000000000000000009d80,
            0x00000000000000000000000000058980, 0x00000000000000000000000000375f00,
            0x00000000000000000000000002611500, 0x0000000000000000000000001c8cfc00,
            0x0000000000000000000000017328cc00, 0x0000000000000000000000144c3b2800,
            0x00000000000000000000013077775800, 0x00000000000000000000130777758000,
            0x00000000000000000001437eeecd8000, 0x00000000000000000016beecca730000,
            0x000000000000000001b02b9306890000, 0x000000000000000021c3677c82b40000,
            0x0000000000000002c5077d36b8c40000, 0x000000000000003ceea4c2b3e0d80000,
            0x000000000000057970cd7e2933680000, 0x00000000000083629343d3dcd1c00000,
            0x00000000000cd4a0619fb0907bc00000, 0x00000000014d9849ea37eeac91800000,
            0x00000000232f0fcbb3e62c3358800000, 0x00000003d925ba47ad2cd59dae000000,
            0x0000006f99461a1e9e1432dcb6000000, 0x00000d13f6370f96865df5dd54000000,
            0x0001956ad0aae33a4560c5cd2c000000, 0x0032ad5a155c6748ac18b9a580000000,
            0x0688589cc0e9505e2f2fee5580000000, 0xde1bc4d19efcac82445da75b00000000]

function factorial_lookup(n::Integer, table, lim)
    n < 0 && throw(DomainError())
    n > lim && throw(OverflowError())
    n == 0 && return one(n)
    @inbounds f = table[n]
    return oftype(n, f)
end

factorial(n::Int128) = factorial_lookup(n, _fact_table128, 33)
factorial(n::UInt128) = factorial_lookup(n, _fact_table128, 34)
factorial(n::Union{Int64,UInt64}) = factorial_lookup(n, _fact_table64, 20)

if Int === Int32
factorial(n::Union{Int8,UInt8,Int16,UInt16}) = factorial(Int32(n))
factorial(n::Union{Int32,UInt32}) = factorial_lookup(n, _fact_table64, 12)
else
factorial(n::Union{Int8,UInt8,Int16,UInt16,Int32,UInt32}) = factorial(Int64(n))
end

function gamma(n::Union{Int8,UInt8,Int16,UInt16,Int32,UInt32,Int64,UInt64})
    n < 0 && throw(DomainError())
    n == 0 && return Inf
    n <= 2 && return 1.0
    n > 20 && return gamma(Float64(n))
    @inbounds return Float64(_fact_table64[n-1])
end

# computes n!/k!
function factorial{T<:Integer}(n::T, k::T)
    if k < 0 || n < 0 || k > n
        throw(DomainError())
    end
    f = one(T)
    while n > k
        f = Base.checked_mul(f,n)
        n -= 1
    end
    return f
end
factorial(n::Integer, k::Integer) = factorial(promote(n, k)...)

## other ordering related functions ##
function nthperm!(a::AbstractVector, k::Integer)
    k -= 1 # make k 1-indexed
    k < 0 && throw(ArgumentError("permutation k must be ≥ 0, got $k"))
    n = length(a)
    n == 0 && return a
    f = factorial(oftype(k, n-1))
    for i=1:n-1
        j = div(k, f) + 1
        k = k % f
        f = div(f, n-i)

        j = j+i-1
        elt = a[j]
        for d = j:-1:i+1
            a[d] = a[d-1]
        end
        a[i] = elt
    end
    a
end
nthperm(a::AbstractVector, k::Integer) = nthperm!(copy(a),k)

function nthperm{T<:Integer}(p::AbstractVector{T})
    isperm(p) || throw(ArgumentError("argument is not a permutation"))
    k, n = 1, length(p)
    for i = 1:n-1
        f = factorial(n-i)
        for j = i+1:n
            k += ifelse(p[j] < p[i], f, 0)
        end
    end
    return k
end

function invperm(a::AbstractVector)
    b = zero(a) # similar vector of zeros
    n = length(a)
    for i = 1:n
        j = a[i]
        ((1 <= j <= n) && b[j] == 0) ||
            throw(ArgumentError("argument is not a permutation"))
        b[j] = i
    end
    b
end

function isperm(A)
    n = length(A)
    used = falses(n)
    for a in A
        (0 < a <= n) && (used[a] $= true) || return false
    end
    true
end

function permute!!{T<:Integer}(a, p::AbstractVector{T})
    count = 0
    start = 0
    while count < length(a)
        ptr = start = findnext(p, start+1)
        temp = a[start]
        next = p[start]
        count += 1
        while next != start
            a[ptr] = a[next]
            p[ptr] = 0
            ptr = next
            next = p[next]
            count += 1
        end
        a[ptr] = temp
        p[ptr] = 0
    end
    a
end

permute!(a, p::AbstractVector) = permute!!(a, copy!(similar(p), p))

function ipermute!!{T<:Integer}(a, p::AbstractVector{T})
    count = 0
    start = 0
    while count < length(a)
        start = findnext(p, start+1)
        temp = a[start]
        next = p[start]
        count += 1
        while next != start
            temp_next = a[next]
            a[next] = temp
            temp = temp_next
            ptr = p[next]
            p[next] = 0
            next = ptr
            count += 1
        end
        a[next] = temp
        p[next] = 0
    end
    a
end

ipermute!(a, p::AbstractVector) = ipermute!!(a, copy!(similar(p), p))

immutable Combinations{T}
    a::T
    t::Int
end

eltype{T}(::Type{Combinations{T}}) = Vector{eltype(T)}

length(c::Combinations) = binomial(length(c.a),c.t)

function combinations(a, t::Integer)
    if t < 0
        # generate 0 combinations for negative argument
        t = length(a)+1
    end
    Combinations(a, t)
end

start(c::Combinations) = [1:c.t;]
function next(c::Combinations, s)
    comb = [c.a[si] for si in s]
    if c.t == 0
        # special case to generate 1 result for t==0
        return (comb,[length(c.a)+2])
    end
    s = copy(s)
    for i = length(s):-1:1
        s[i] += 1
        if s[i] > (length(c.a) - (length(s)-i))
            continue
        end
        for j = i+1:endof(s)
            s[j] = s[j-1]+1
        end
        break
    end
    (comb,s)
end
done(c::Combinations, s) = !isempty(s) && s[1] > length(c.a)-c.t+1

immutable Permutations{T}
    a::T
end

eltype{T}(::Type{Permutations{T}}) = Vector{eltype(T)}

length(p::Permutations) = factorial(length(p.a))

permutations(a) = Permutations(a)

start(p::Permutations) = [1:length(p.a);]
function next(p::Permutations, s)
    perm = [p.a[si] for si in s]
    if length(p.a) == 0
        # special case to generate 1 result for len==0
        return (perm,[1])
    end
    s = copy(s)
    k = length(s)-1
    while k > 0 && s[k] > s[k+1];  k -= 1;  end
    if k == 0
        s[1] = length(s)+1   # done
    else
        l = length(s)
        while s[k] >= s[l];  l -= 1;  end
        s[k],s[l] = s[l],s[k]
        reverse!(s,k+1)
    end
    (perm,s)
end
done(p::Permutations, s) = !isempty(s) && s[1] > length(p.a)


# Integer Partitions

immutable IntegerPartitions
    n::Int
end

length(p::IntegerPartitions) = npartitions(p.n)

partitions(n::Integer) = IntegerPartitions(n)

start(p::IntegerPartitions) = Int[]
done(p::IntegerPartitions, xs) = length(xs) == p.n
next(p::IntegerPartitions, xs) = (xs = nextpartition(p.n,xs); (xs,xs))

function nextpartition(n, as)
    if isempty(as);  return Int[n];  end

    xs = similar(as,0)
    sizehint!(xs,length(as)+1)

    for i = 1:length(as)-1
        if as[i+1] == 1
            x = as[i]-1
            push!(xs, x)
            n -= x
            while n > x
                push!(xs, x)
                n -= x
            end
            push!(xs, n)

            return xs
        end
        push!(xs, as[i])
        n -= as[i]
    end
    push!(xs, as[end]-1)
    push!(xs, 1)

    xs
end

let _npartitions = Dict{Int,Int}()
    global npartitions
    function npartitions(n::Int)
        if n < 0
            0
        elseif n < 2
            1
        elseif (np = get(_npartitions, n, 0)) > 0
            np
        else
            np = 0
            sgn = 1
            for k = 1:n
                np += sgn * (npartitions(n-k*(3k-1)>>1) + npartitions(n-k*(3k+1)>>1))
                sgn = -sgn
            end
            _npartitions[n] = np
        end
    end
end

# Algorithm H from TAoCP 7.2.1.4
# Partition n into m parts
# in colex order (lexicographic by reflected sequence)

immutable FixedPartitions
    n::Int
    m::Int
end

length(f::FixedPartitions) = npartitions(f.n,f.m)

partitions(n::Integer, m::Integer) = n >= 1 && m >= 1 ? FixedPartitions(n,m) : throw(DomainError())

start(f::FixedPartitions) = Int[]
function done(f::FixedPartitions, s::Vector{Int})
    f.m <= f.n || return true
    isempty(s) && return false
    return f.m == 1 || s[1]-1 <= s[end]
end
next(f::FixedPartitions, s::Vector{Int}) = (xs = nextfixedpartition(f.n,f.m,s); (xs,xs))

function nextfixedpartition(n, m, bs)
    as = copy(bs)
    if isempty(as)
        # First iteration
        as = [n-m+1; ones(Int, m-1)]
    elseif as[2] < as[1]-1
        # Most common iteration
        as[1] -= 1
        as[2] += 1
    else
        # Iterate
        local j
        s = as[1]+as[2]-1
        for j = 3:m
            if as[j] < as[1]-1; break; end
            s += as[j]
        end
        x = as[j] += 1
        for k = j-1:-1:2
            as[k] = x
            s -= x
        end
        as[1] = s
    end

    return as
end

let _nipartitions = Dict{Tuple{Int,Int},Int}()
    global npartitions
    function npartitions(n::Int,m::Int)
        if n < m || m == 0
            0
        elseif n == m
            1
        elseif (np = get(_nipartitions, (n,m), 0)) > 0
            np
        else
            _nipartitions[(n,m)] = npartitions(n-1,m-1) + npartitions(n-m,m)
        end
    end
end

# Algorithm H from TAoCP 7.2.1.5
# Set partitions

immutable SetPartitions{T<:AbstractVector}
    s::T
end

length(p::SetPartitions) = nsetpartitions(length(p.s))

partitions(s::AbstractVector) = SetPartitions(s)

start(p::SetPartitions) = (n = length(p.s); (zeros(Int32, n), ones(Int32, n-1), n, 1))
done(p::SetPartitions, s) = s[1][1] > 0
next(p::SetPartitions, s) = nextsetpartition(p.s, s...)

function nextsetpartition(s::AbstractVector, a, b, n, m)
    function makeparts(s, a, m)
        temp = [ similar(s,0) for k = 0:m ]
        for i = 1:n
            push!(temp[a[i]+1], s[i])
        end
        filter!(x->!isempty(x), temp)
    end

    if isempty(s);  return ([s], ([1], Int[], n, 1));  end

    part = makeparts(s,a,m)

    if a[end] != m
        a[end] += 1
    else
        local j
        for j = n-1:-1:1
            if a[j] != b[j]
                break
            end
        end
        a[j] += 1
        m = b[j] + (a[j] == b[j])
        for k = j+1:n-1
            a[k] = 0
            b[k] = m
        end
        a[end] = 0
    end

    return (part, (a,b,n,m))

end

let _nsetpartitions = Dict{Int,Int}()
    global nsetpartitions
    function nsetpartitions(n::Int)
        if n < 0
            0
        elseif n < 2
            1
        elseif (wn = get(_nsetpartitions, n, 0)) > 0
            wn
        else
            wn = 0
            for k = 0:n-1
                wn += binomial(n-1,k)*nsetpartitions(n-1-k)
            end
            _nsetpartitions[n] = wn
        end
    end
end

immutable FixedSetPartitions{T<:AbstractVector}
    s::T
    m::Int
end

length(p::FixedSetPartitions) = nfixedsetpartitions(length(p.s),p.m)

partitions(s::AbstractVector,m::Int) = length(s) >= 1 && m >= 1 ? FixedSetPartitions(s,m) : throw(DomainError())

function start(p::FixedSetPartitions)
    n = length(p.s)
    m = p.m
    m <= n ? (vcat(ones(Int, n-m),1:m), vcat(1,n-m+2:n), n) : (Int[], Int[], n)
end
# state consists of:
# vector a of length n describing to which partition every element of s belongs
# vector b of length n describing the first index b[i] that belongs to partition i
# integer n

done(p::FixedSetPartitions, s) = length(s[1]) == 0 || s[1][1] > 1
next(p::FixedSetPartitions, s) = nextfixedsetpartition(p.s,p.m, s...)

function nextfixedsetpartition(s::AbstractVector, m, a, b, n)
    function makeparts(s, a)
        part = [ similar(s,0) for k = 1:m ]
        for i = 1:n
            push!(part[a[i]], s[i])
        end
        return part
    end

    part = makeparts(s,a)

    if m == 1
        a[1] = 2
        return (part, (a, b, n))
    end

    if a[end] != m
        a[end] += 1
    else
        local j, k
        for j = n-1:-1:1
            if a[j]<m && b[a[j]+1]<j
                break
            end
        end
        if j>1
            a[j]+=1
            for p=j+1:n
                if b[a[p]]!=p
                    a[p]=1
                end
            end
        else
            for k=m:-1:2
                if b[k-1]<b[k]-1
                    break
                end
            end
            b[k]=b[k]-1
            b[k+1:m]=n-m+k+1:n
            a[1:n]=1
            a[b]=1:m
        end
    end

    return (part, (a,b,n))
end

function nfixedsetpartitions(n::Int,m::Int)
    numpart=0
    for k=0:m
        numpart+=(-1)^(m-k)*binomial(m,k)*(k^n)
    end
    numpart=div(numpart,factorial(m))
    return numpart
end


# For a list of integers i1, i2, i3, find the smallest
#     i1^n1 * i2^n2 * i3^n3 >= x
# for integer n1, n2, n3
function nextprod(a::Vector{Int}, x)
    if x > typemax(Int)
        throw(ArgumentError("unsafe for x > typemax(Int), got $x"))
    end
    k = length(a)
    v = ones(Int, k)                  # current value of each counter
    mx = [nextpow(ai,x) for ai in a]  # maximum value of each counter
    v[1] = mx[1]                      # start at first case that is >= x
    p::widen(Int) = mx[1]             # initial value of product in this case
    best = p
    icarry = 1

    while v[end] < mx[end]
        if p >= x
            best = p < best ? p : best  # keep the best found yet
            carrytest = true
            while carrytest
                p = div(p, v[icarry])
                v[icarry] = 1
                icarry += 1
                p *= a[icarry]
                v[icarry] *= a[icarry]
                carrytest = v[icarry] > mx[icarry] && icarry < k
            end
            if p < x
                icarry = 1
            end
        else
            while p < x
                p *= a[1]
                v[1] *= a[1]
            end
        end
    end
    best = mx[end] < best ? mx[end] : best
    return Int(best)  # could overflow, but best to have predictable return type
end

# For a list of integers i1, i2, i3, find the largest
#     i1^n1 * i2^n2 * i3^n3 <= x
# for integer n1, n2, n3
function prevprod(a::Vector{Int}, x)
    if x > typemax(Int)
        throw(ArgumentError("unsafe for x > typemax(Int), got $x"))
    end
    k = length(a)
    v = ones(Int, k)                  # current value of each counter
    mx = [nextpow(ai,x) for ai in a]  # allow each counter to exceed p (sentinel)
    first = Int(prevpow(a[1], x))     # start at best case in first factor
    v[1] = first
    p::widen(Int) = first
    best = p
    icarry = 1

    while v[end] < mx[end]
        while p <= x
            best = p > best ? p : best
            p *= a[1]
            v[1] *= a[1]
        end
        if p > x
            carrytest = true
            while carrytest
                p = div(p, v[icarry])
                v[icarry] = 1
                icarry += 1
                p *= a[icarry]
                v[icarry] *= a[icarry]
                carrytest = v[icarry] > mx[icarry] && icarry < k
            end
            if p <= x
                icarry = 1
            end
        end
    end
    best = x >= p > best ? p : best
    return Int(best)
end

const levicivita_lut = cat(3, [0 0  0;  0 0 1; 0 -1 0],
                              [0 0 -1;  0 0 0; 1  0 0],
                              [0 1  0; -1 0 0; 0  0 0])

# Levi-Civita symbol of a permutation.
# The parity is computed by using the fact that a permutation is odd if and
# only if the number of even-length cycles is odd.
# Returns 1 is the permutarion is even, -1 if it is odd and 0 otherwise.
function levicivita{T<:Integer}(p::AbstractVector{T})
    n = length(p)

    if n == 3
        @inbounds valid = (0 < p[1] <= 3) * (0 < p[2] <= 3) * (0 < p[3] <= 3)
        return valid ? levicivita_lut[p[1], p[2], p[3]] : 0
    end

    todo = trues(n)
    first = 1
    cycles = flips = 0

    while cycles + flips < n
        first = findnext(todo, first)
        (todo[first] $= true) && return 0
        j = p[first]
        (0 < j <= n) || return 0
        cycles += 1
        while j ≠ first
            (todo[j] $= true) && return 0
            j = p[j]
            (0 < j <= n) || return 0
            flips += 1
        end
    end

    return iseven(flips) ? 1 : -1
end

# Computes the parity of a permutation using the levicivita function,
# so you can ask iseven(parity(p)). If p is not a permutation throws an error.
function parity{T<:Integer}(p::AbstractVector{T})
    epsilon = levicivita(p)
    epsilon == 0 && throw(ArgumentError("Not a permutation"))
    epsilon == 1 ? 0 : 1
end