/usr/share/julia/base/combinatorics.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 | # This file is a part of Julia. License is MIT: http://julialang.org/license
const _fact_table64 =
Int64[1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600,6227020800,
87178291200,1307674368000,20922789888000,355687428096000,6402373705728000,
121645100408832000,2432902008176640000]
const _fact_table128 =
UInt128[0x00000000000000000000000000000001, 0x00000000000000000000000000000002,
0x00000000000000000000000000000006, 0x00000000000000000000000000000018,
0x00000000000000000000000000000078, 0x000000000000000000000000000002d0,
0x000000000000000000000000000013b0, 0x00000000000000000000000000009d80,
0x00000000000000000000000000058980, 0x00000000000000000000000000375f00,
0x00000000000000000000000002611500, 0x0000000000000000000000001c8cfc00,
0x0000000000000000000000017328cc00, 0x0000000000000000000000144c3b2800,
0x00000000000000000000013077775800, 0x00000000000000000000130777758000,
0x00000000000000000001437eeecd8000, 0x00000000000000000016beecca730000,
0x000000000000000001b02b9306890000, 0x000000000000000021c3677c82b40000,
0x0000000000000002c5077d36b8c40000, 0x000000000000003ceea4c2b3e0d80000,
0x000000000000057970cd7e2933680000, 0x00000000000083629343d3dcd1c00000,
0x00000000000cd4a0619fb0907bc00000, 0x00000000014d9849ea37eeac91800000,
0x00000000232f0fcbb3e62c3358800000, 0x00000003d925ba47ad2cd59dae000000,
0x0000006f99461a1e9e1432dcb6000000, 0x00000d13f6370f96865df5dd54000000,
0x0001956ad0aae33a4560c5cd2c000000, 0x0032ad5a155c6748ac18b9a580000000,
0x0688589cc0e9505e2f2fee5580000000, 0xde1bc4d19efcac82445da75b00000000]
function factorial_lookup(n::Integer, table, lim)
n < 0 && throw(DomainError())
n > lim && throw(OverflowError())
n == 0 && return one(n)
@inbounds f = table[n]
return oftype(n, f)
end
factorial(n::Int128) = factorial_lookup(n, _fact_table128, 33)
factorial(n::UInt128) = factorial_lookup(n, _fact_table128, 34)
factorial(n::Union{Int64,UInt64}) = factorial_lookup(n, _fact_table64, 20)
if Int === Int32
factorial(n::Union{Int8,UInt8,Int16,UInt16}) = factorial(Int32(n))
factorial(n::Union{Int32,UInt32}) = factorial_lookup(n, _fact_table64, 12)
else
factorial(n::Union{Int8,UInt8,Int16,UInt16,Int32,UInt32}) = factorial(Int64(n))
end
function gamma(n::Union{Int8,UInt8,Int16,UInt16,Int32,UInt32,Int64,UInt64})
n < 0 && throw(DomainError())
n == 0 && return Inf
n <= 2 && return 1.0
n > 20 && return gamma(Float64(n))
@inbounds return Float64(_fact_table64[n-1])
end
# computes n!/k!
function factorial{T<:Integer}(n::T, k::T)
if k < 0 || n < 0 || k > n
throw(DomainError())
end
f = one(T)
while n > k
f = Base.checked_mul(f,n)
n -= 1
end
return f
end
factorial(n::Integer, k::Integer) = factorial(promote(n, k)...)
## other ordering related functions ##
function nthperm!(a::AbstractVector, k::Integer)
k -= 1 # make k 1-indexed
k < 0 && throw(ArgumentError("permutation k must be ≥ 0, got $k"))
n = length(a)
n == 0 && return a
f = factorial(oftype(k, n-1))
for i=1:n-1
j = div(k, f) + 1
k = k % f
f = div(f, n-i)
j = j+i-1
elt = a[j]
for d = j:-1:i+1
a[d] = a[d-1]
end
a[i] = elt
end
a
end
nthperm(a::AbstractVector, k::Integer) = nthperm!(copy(a),k)
function nthperm{T<:Integer}(p::AbstractVector{T})
isperm(p) || throw(ArgumentError("argument is not a permutation"))
k, n = 1, length(p)
for i = 1:n-1
f = factorial(n-i)
for j = i+1:n
k += ifelse(p[j] < p[i], f, 0)
end
end
return k
end
function invperm(a::AbstractVector)
b = zero(a) # similar vector of zeros
n = length(a)
for i = 1:n
j = a[i]
((1 <= j <= n) && b[j] == 0) ||
throw(ArgumentError("argument is not a permutation"))
b[j] = i
end
b
end
function isperm(A)
n = length(A)
used = falses(n)
for a in A
(0 < a <= n) && (used[a] $= true) || return false
end
true
end
function permute!!{T<:Integer}(a, p::AbstractVector{T})
count = 0
start = 0
while count < length(a)
ptr = start = findnext(p, start+1)
temp = a[start]
next = p[start]
count += 1
while next != start
a[ptr] = a[next]
p[ptr] = 0
ptr = next
next = p[next]
count += 1
end
a[ptr] = temp
p[ptr] = 0
end
a
end
permute!(a, p::AbstractVector) = permute!!(a, copy!(similar(p), p))
function ipermute!!{T<:Integer}(a, p::AbstractVector{T})
count = 0
start = 0
while count < length(a)
start = findnext(p, start+1)
temp = a[start]
next = p[start]
count += 1
while next != start
temp_next = a[next]
a[next] = temp
temp = temp_next
ptr = p[next]
p[next] = 0
next = ptr
count += 1
end
a[next] = temp
p[next] = 0
end
a
end
ipermute!(a, p::AbstractVector) = ipermute!!(a, copy!(similar(p), p))
immutable Combinations{T}
a::T
t::Int
end
eltype{T}(::Type{Combinations{T}}) = Vector{eltype(T)}
length(c::Combinations) = binomial(length(c.a),c.t)
function combinations(a, t::Integer)
if t < 0
# generate 0 combinations for negative argument
t = length(a)+1
end
Combinations(a, t)
end
start(c::Combinations) = [1:c.t;]
function next(c::Combinations, s)
comb = [c.a[si] for si in s]
if c.t == 0
# special case to generate 1 result for t==0
return (comb,[length(c.a)+2])
end
s = copy(s)
for i = length(s):-1:1
s[i] += 1
if s[i] > (length(c.a) - (length(s)-i))
continue
end
for j = i+1:endof(s)
s[j] = s[j-1]+1
end
break
end
(comb,s)
end
done(c::Combinations, s) = !isempty(s) && s[1] > length(c.a)-c.t+1
immutable Permutations{T}
a::T
end
eltype{T}(::Type{Permutations{T}}) = Vector{eltype(T)}
length(p::Permutations) = factorial(length(p.a))
permutations(a) = Permutations(a)
start(p::Permutations) = [1:length(p.a);]
function next(p::Permutations, s)
perm = [p.a[si] for si in s]
if length(p.a) == 0
# special case to generate 1 result for len==0
return (perm,[1])
end
s = copy(s)
k = length(s)-1
while k > 0 && s[k] > s[k+1]; k -= 1; end
if k == 0
s[1] = length(s)+1 # done
else
l = length(s)
while s[k] >= s[l]; l -= 1; end
s[k],s[l] = s[l],s[k]
reverse!(s,k+1)
end
(perm,s)
end
done(p::Permutations, s) = !isempty(s) && s[1] > length(p.a)
# Integer Partitions
immutable IntegerPartitions
n::Int
end
length(p::IntegerPartitions) = npartitions(p.n)
partitions(n::Integer) = IntegerPartitions(n)
start(p::IntegerPartitions) = Int[]
done(p::IntegerPartitions, xs) = length(xs) == p.n
next(p::IntegerPartitions, xs) = (xs = nextpartition(p.n,xs); (xs,xs))
function nextpartition(n, as)
if isempty(as); return Int[n]; end
xs = similar(as,0)
sizehint!(xs,length(as)+1)
for i = 1:length(as)-1
if as[i+1] == 1
x = as[i]-1
push!(xs, x)
n -= x
while n > x
push!(xs, x)
n -= x
end
push!(xs, n)
return xs
end
push!(xs, as[i])
n -= as[i]
end
push!(xs, as[end]-1)
push!(xs, 1)
xs
end
let _npartitions = Dict{Int,Int}()
global npartitions
function npartitions(n::Int)
if n < 0
0
elseif n < 2
1
elseif (np = get(_npartitions, n, 0)) > 0
np
else
np = 0
sgn = 1
for k = 1:n
np += sgn * (npartitions(n-k*(3k-1)>>1) + npartitions(n-k*(3k+1)>>1))
sgn = -sgn
end
_npartitions[n] = np
end
end
end
# Algorithm H from TAoCP 7.2.1.4
# Partition n into m parts
# in colex order (lexicographic by reflected sequence)
immutable FixedPartitions
n::Int
m::Int
end
length(f::FixedPartitions) = npartitions(f.n,f.m)
partitions(n::Integer, m::Integer) = n >= 1 && m >= 1 ? FixedPartitions(n,m) : throw(DomainError())
start(f::FixedPartitions) = Int[]
function done(f::FixedPartitions, s::Vector{Int})
f.m <= f.n || return true
isempty(s) && return false
return f.m == 1 || s[1]-1 <= s[end]
end
next(f::FixedPartitions, s::Vector{Int}) = (xs = nextfixedpartition(f.n,f.m,s); (xs,xs))
function nextfixedpartition(n, m, bs)
as = copy(bs)
if isempty(as)
# First iteration
as = [n-m+1; ones(Int, m-1)]
elseif as[2] < as[1]-1
# Most common iteration
as[1] -= 1
as[2] += 1
else
# Iterate
local j
s = as[1]+as[2]-1
for j = 3:m
if as[j] < as[1]-1; break; end
s += as[j]
end
x = as[j] += 1
for k = j-1:-1:2
as[k] = x
s -= x
end
as[1] = s
end
return as
end
let _nipartitions = Dict{Tuple{Int,Int},Int}()
global npartitions
function npartitions(n::Int,m::Int)
if n < m || m == 0
0
elseif n == m
1
elseif (np = get(_nipartitions, (n,m), 0)) > 0
np
else
_nipartitions[(n,m)] = npartitions(n-1,m-1) + npartitions(n-m,m)
end
end
end
# Algorithm H from TAoCP 7.2.1.5
# Set partitions
immutable SetPartitions{T<:AbstractVector}
s::T
end
length(p::SetPartitions) = nsetpartitions(length(p.s))
partitions(s::AbstractVector) = SetPartitions(s)
start(p::SetPartitions) = (n = length(p.s); (zeros(Int32, n), ones(Int32, n-1), n, 1))
done(p::SetPartitions, s) = s[1][1] > 0
next(p::SetPartitions, s) = nextsetpartition(p.s, s...)
function nextsetpartition(s::AbstractVector, a, b, n, m)
function makeparts(s, a, m)
temp = [ similar(s,0) for k = 0:m ]
for i = 1:n
push!(temp[a[i]+1], s[i])
end
filter!(x->!isempty(x), temp)
end
if isempty(s); return ([s], ([1], Int[], n, 1)); end
part = makeparts(s,a,m)
if a[end] != m
a[end] += 1
else
local j
for j = n-1:-1:1
if a[j] != b[j]
break
end
end
a[j] += 1
m = b[j] + (a[j] == b[j])
for k = j+1:n-1
a[k] = 0
b[k] = m
end
a[end] = 0
end
return (part, (a,b,n,m))
end
let _nsetpartitions = Dict{Int,Int}()
global nsetpartitions
function nsetpartitions(n::Int)
if n < 0
0
elseif n < 2
1
elseif (wn = get(_nsetpartitions, n, 0)) > 0
wn
else
wn = 0
for k = 0:n-1
wn += binomial(n-1,k)*nsetpartitions(n-1-k)
end
_nsetpartitions[n] = wn
end
end
end
immutable FixedSetPartitions{T<:AbstractVector}
s::T
m::Int
end
length(p::FixedSetPartitions) = nfixedsetpartitions(length(p.s),p.m)
partitions(s::AbstractVector,m::Int) = length(s) >= 1 && m >= 1 ? FixedSetPartitions(s,m) : throw(DomainError())
function start(p::FixedSetPartitions)
n = length(p.s)
m = p.m
m <= n ? (vcat(ones(Int, n-m),1:m), vcat(1,n-m+2:n), n) : (Int[], Int[], n)
end
# state consists of:
# vector a of length n describing to which partition every element of s belongs
# vector b of length n describing the first index b[i] that belongs to partition i
# integer n
done(p::FixedSetPartitions, s) = length(s[1]) == 0 || s[1][1] > 1
next(p::FixedSetPartitions, s) = nextfixedsetpartition(p.s,p.m, s...)
function nextfixedsetpartition(s::AbstractVector, m, a, b, n)
function makeparts(s, a)
part = [ similar(s,0) for k = 1:m ]
for i = 1:n
push!(part[a[i]], s[i])
end
return part
end
part = makeparts(s,a)
if m == 1
a[1] = 2
return (part, (a, b, n))
end
if a[end] != m
a[end] += 1
else
local j, k
for j = n-1:-1:1
if a[j]<m && b[a[j]+1]<j
break
end
end
if j>1
a[j]+=1
for p=j+1:n
if b[a[p]]!=p
a[p]=1
end
end
else
for k=m:-1:2
if b[k-1]<b[k]-1
break
end
end
b[k]=b[k]-1
b[k+1:m]=n-m+k+1:n
a[1:n]=1
a[b]=1:m
end
end
return (part, (a,b,n))
end
function nfixedsetpartitions(n::Int,m::Int)
numpart=0
for k=0:m
numpart+=(-1)^(m-k)*binomial(m,k)*(k^n)
end
numpart=div(numpart,factorial(m))
return numpart
end
# For a list of integers i1, i2, i3, find the smallest
# i1^n1 * i2^n2 * i3^n3 >= x
# for integer n1, n2, n3
function nextprod(a::Vector{Int}, x)
if x > typemax(Int)
throw(ArgumentError("unsafe for x > typemax(Int), got $x"))
end
k = length(a)
v = ones(Int, k) # current value of each counter
mx = [nextpow(ai,x) for ai in a] # maximum value of each counter
v[1] = mx[1] # start at first case that is >= x
p::widen(Int) = mx[1] # initial value of product in this case
best = p
icarry = 1
while v[end] < mx[end]
if p >= x
best = p < best ? p : best # keep the best found yet
carrytest = true
while carrytest
p = div(p, v[icarry])
v[icarry] = 1
icarry += 1
p *= a[icarry]
v[icarry] *= a[icarry]
carrytest = v[icarry] > mx[icarry] && icarry < k
end
if p < x
icarry = 1
end
else
while p < x
p *= a[1]
v[1] *= a[1]
end
end
end
best = mx[end] < best ? mx[end] : best
return Int(best) # could overflow, but best to have predictable return type
end
# For a list of integers i1, i2, i3, find the largest
# i1^n1 * i2^n2 * i3^n3 <= x
# for integer n1, n2, n3
function prevprod(a::Vector{Int}, x)
if x > typemax(Int)
throw(ArgumentError("unsafe for x > typemax(Int), got $x"))
end
k = length(a)
v = ones(Int, k) # current value of each counter
mx = [nextpow(ai,x) for ai in a] # allow each counter to exceed p (sentinel)
first = Int(prevpow(a[1], x)) # start at best case in first factor
v[1] = first
p::widen(Int) = first
best = p
icarry = 1
while v[end] < mx[end]
while p <= x
best = p > best ? p : best
p *= a[1]
v[1] *= a[1]
end
if p > x
carrytest = true
while carrytest
p = div(p, v[icarry])
v[icarry] = 1
icarry += 1
p *= a[icarry]
v[icarry] *= a[icarry]
carrytest = v[icarry] > mx[icarry] && icarry < k
end
if p <= x
icarry = 1
end
end
end
best = x >= p > best ? p : best
return Int(best)
end
const levicivita_lut = cat(3, [0 0 0; 0 0 1; 0 -1 0],
[0 0 -1; 0 0 0; 1 0 0],
[0 1 0; -1 0 0; 0 0 0])
# Levi-Civita symbol of a permutation.
# The parity is computed by using the fact that a permutation is odd if and
# only if the number of even-length cycles is odd.
# Returns 1 is the permutarion is even, -1 if it is odd and 0 otherwise.
function levicivita{T<:Integer}(p::AbstractVector{T})
n = length(p)
if n == 3
@inbounds valid = (0 < p[1] <= 3) * (0 < p[2] <= 3) * (0 < p[3] <= 3)
return valid ? levicivita_lut[p[1], p[2], p[3]] : 0
end
todo = trues(n)
first = 1
cycles = flips = 0
while cycles + flips < n
first = findnext(todo, first)
(todo[first] $= true) && return 0
j = p[first]
(0 < j <= n) || return 0
cycles += 1
while j ≠ first
(todo[j] $= true) && return 0
j = p[j]
(0 < j <= n) || return 0
flips += 1
end
end
return iseven(flips) ? 1 : -1
end
# Computes the parity of a permutation using the levicivita function,
# so you can ask iseven(parity(p)). If p is not a permutation throws an error.
function parity{T<:Integer}(p::AbstractVector{T})
epsilon = levicivita(p)
epsilon == 0 && throw(ArgumentError("Not a permutation"))
epsilon == 1 ? 0 : 1
end
|