This file is indexed.

/usr/share/julia/base/float16.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# This file is a part of Julia. License is MIT: http://julialang.org/license

function convert(::Type{Float32}, val::Float16)
    ival::UInt32 = reinterpret(UInt16, val)
    sign::UInt32 = (ival & 0x8000) >> 15
    exp::UInt32  = (ival & 0x7c00) >> 10
    sig::UInt32  = (ival & 0x3ff) >> 0
    ret::UInt32

    if exp == 0
        if sig == 0
            sign = sign << 31
            ret = sign | exp | sig
        else
            n_bit = 1
            bit = 0x0200
            while (bit & sig) == 0
                n_bit = n_bit + 1
                bit = bit >> 1
            end
            sign = sign << 31
            exp = (-14 - n_bit + 127) << 23
            sig = ((sig & (~bit)) << n_bit) << (23 - 10)
            ret = sign | exp | sig
        end
    elseif exp == 0x1f
        if sig == 0  # Inf
            if sign == 0
                ret = 0x7f800000
            else
                ret = 0xff800000
            end
        else  # NaN
            ret = 0x7fc00000 | (sign<<31)
        end
    else
        sign = sign << 31
        exp  = (exp - 15 + 127) << 23
        sig  = sig << (23 - 10)
        ret = sign | exp | sig
    end
    return reinterpret(Float32, ret)
end

# Float32 -> Float16 algorithm from:
#   "Fast Half Float Conversion" by Jeroen van der Zijp
#   ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf

const basetable = Array(UInt16, 512)
const shifttable = Array(UInt8, 512)

for i = 0:255
    e = i - 127
    if e < -24  # Very small numbers map to zero
        basetable[i|0x000+1] = 0x0000
        basetable[i|0x100+1] = 0x8000
        shifttable[i|0x000+1] = 24
        shifttable[i|0x100+1] = 24
    elseif e < -14  # Small numbers map to denorms
        basetable[i|0x000+1] = (0x0400>>(-e-14))
        basetable[i|0x100+1] = (0x0400>>(-e-14)) | 0x8000
        shifttable[i|0x000+1] = -e-1
        shifttable[i|0x100+1] = -e-1
    elseif e <= 15  # Normal numbers just lose precision
        basetable[i|0x000+1] = ((e+15)<<10)
        basetable[i|0x100+1] = ((e+15)<<10) | 0x8000
        shifttable[i|0x000+1] = 13
        shifttable[i|0x100+1] = 13
    elseif e < 128  # Large numbers map to Infinity
        basetable[i|0x000+1] = 0x7C00
        basetable[i|0x100+1] = 0xFC00
        shifttable[i|0x000+1] = 24
        shifttable[i|0x100+1] = 24
    else  # Infinity and NaN's stay Infinity and NaN's
        basetable[i|0x000+1] = 0x7C00
        basetable[i|0x100+1] = 0xFC00
        shifttable[i|0x000+1] = 13
        shifttable[i|0x100+1] = 13
    end
end

function convert(::Type{Float16}, val::Float32)
    f = reinterpret(UInt32, val)
    i = (f >> 23) & 0x1ff + 1
    sh = shifttable[i]
    f &= 0x007fffff
    h::UInt16 = basetable[i] + (f >> sh)
    # round
    # NOTE: we maybe should ignore NaNs here, but the payload is
    # getting truncated anyway so "rounding" it might not matter
    nextbit = (f >> (sh-1)) & 1
    if nextbit != 0
        if h&1 == 1 ||  # round halfway to even
            (f & ((1<<(sh-1))-1)) != 0  # check lower bits
            h += 1
        end
    end
    reinterpret(Float16, h)
end

convert(::Type{Bool},    x::Float16) = x==0 ? false : x==1 ? true : throw(InexactError())
convert(::Type{Int128},  x::Float16) = convert(Int128, Float32(x))
convert(::Type{UInt128}, x::Float16) = convert(UInt128, Float32(x))

convert{T<:Integer}(::Type{T}, x::Float16) = convert(T, Float32(x))

round{T<:Integer}(::Type{T}, x::Float16) = round(T, Float32(x))
trunc{T<:Integer}(::Type{T}, x::Float16) = trunc(T, Float32(x))
floor{T<:Integer}(::Type{T}, x::Float16) = floor(T, Float32(x))
ceil{ T<:Integer}(::Type{T}, x::Float16) = ceil(T, Float32(x))

round(x::Float16) = Float16(round(Float32(x)))
trunc(x::Float16) = Float16(trunc(Float32(x)))
floor(x::Float16) = Float16(floor(Float32(x)))
 ceil(x::Float16) = Float16( ceil(Float32(x)))

isnan(x::Float16)    = reinterpret(UInt16,x)&0x7fff  > 0x7c00
isinf(x::Float16)    = reinterpret(UInt16,x)&0x7fff == 0x7c00
isfinite(x::Float16) = reinterpret(UInt16,x)&0x7c00 != 0x7c00

function ==(x::Float16, y::Float16)
    ix = reinterpret(UInt16,x)
    iy = reinterpret(UInt16,y)
    if (ix|iy)&0x7fff > 0x7c00 #isnan(x) || isnan(y)
        return false
    end
    if (ix|iy)&0x7fff == 0x0000
        return true
    end
    return ix == iy
end

-(x::Float16) = reinterpret(Float16, reinterpret(UInt16,x) $ 0x8000)
abs(x::Float16) = reinterpret(Float16, reinterpret(UInt16,x) & 0x7fff)
for op in (:+,:-,:*,:/,:\,:^)
    @eval ($op)(a::Float16, b::Float16) = Float16(($op)(Float32(a), Float32(b)))
end
function fma(a::Float16, b::Float16, c::Float16)
    Float16(fma(Float32(a), Float32(b), Float32(c)))
end
function muladd(a::Float16, b::Float16, c::Float16)
    Float16(muladd(Float32(a), Float32(b), Float32(c)))
end
for op in (:<,:<=,:isless)
    @eval ($op)(a::Float16, b::Float16) = ($op)(Float32(a), Float32(b))
end
for func in (:sin,:cos,:tan,:asin,:acos,:atan,:sinh,:cosh,:tanh,:asinh,:acosh,
             :atanh,:exp,:log,:log2,:log10,:sqrt,:lgamma,:log1p)
    @eval begin
        $func(a::Float16) = Float16($func(Float32(a)))
        $func(a::Complex32) = Complex32($func(Complex64(a)))
    end
end

for func in (:div,:fld,:cld,:rem,:mod,:atan2,:hypot)
    @eval begin
        $func(a::Float16,b::Float16) = Float16($func(Float32(a),Float32(b)))
    end
end

ldexp(a::Float16, b::Integer) = Float16(ldexp(Float32(a), b))

^(x::Float16, y::Integer) = Float16(Float32(x)^y)

rationalize{T<:Integer}(::Type{T}, x::Float16; tol::Real=eps(x)) = rationalize(T, Float32(x); tol=tol)

reinterpret(::Type{Unsigned}, x::Float16) = reinterpret(UInt16,x)

sign_mask(::Type{Float16}) =        0x8000
exponent_mask(::Type{Float16}) =    0x7c00
exponent_one(::Type{Float16}) =     0x3c00
exponent_half(::Type{Float16}) =    0x3800
significand_mask(::Type{Float16}) = 0x03ff