/usr/share/julia/base/linalg/diagonal.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | # This file is a part of Julia. License is MIT: http://julialang.org/license
## Diagonal matrices
immutable Diagonal{T} <: AbstractMatrix{T}
diag::Vector{T}
end
Diagonal(A::Matrix) = Diagonal(diag(A))
convert{T}(::Type{Diagonal{T}}, D::Diagonal{T}) = D
convert{T}(::Type{Diagonal{T}}, D::Diagonal) = Diagonal{T}(convert(Vector{T}, D.diag))
convert{T}(::Type{AbstractMatrix{T}}, D::Diagonal) = convert(Diagonal{T}, D)
convert{T}(::Type{UpperTriangular}, A::Diagonal{T}) = UpperTriangular(A)
convert{T}(::Type{LowerTriangular}, A::Diagonal{T}) = LowerTriangular(A)
function similar{T}(D::Diagonal, ::Type{T}, d::Tuple{Int,Int})
if d[1] != d[2]
throw(ArgumentError("diagonal matrix must be square"))
end
return Diagonal{T}(Array(T,d[1]))
end
copy!(D1::Diagonal, D2::Diagonal) = (copy!(D1.diag, D2.diag); D1)
size(D::Diagonal) = (length(D.diag),length(D.diag))
function size(D::Diagonal,d::Integer)
if d<1
throw(ArgumentError("dimension must be ≥ 1, got $d"))
end
return d<=2 ? length(D.diag) : 1
end
fill!(D::Diagonal, x) = (fill!(D.diag, x); D)
full(D::Diagonal) = diagm(D.diag)
getindex(D::Diagonal, i::Int, j::Int) = (checkbounds(D, i, j); unsafe_getindex(D, i, j))
unsafe_getindex{T}(D::Diagonal{T}, i::Int, j::Int) = i == j ? unsafe_getindex(D.diag, i) : zero(T)
setindex!(D::Diagonal, v, i::Int, j::Int) = (checkbounds(D, i, j); unsafe_setindex!(D, v, i, j))
function unsafe_setindex!(D::Diagonal, v, i::Int, j::Int)
if i == j
unsafe_setindex!(D.diag, v, i)
elseif v != 0
throw(ArgumentError("cannot set an off-diagonal index ($i, $j) to a nonzero value ($v)"))
end
D
end
ishermitian{T<:Real}(D::Diagonal{T}) = true
ishermitian(D::Diagonal) = all(D.diag .== real(D.diag))
issym(D::Diagonal) = true
isposdef(D::Diagonal) = all(D.diag .> 0)
factorize(D::Diagonal) = D
abs(D::Diagonal) = Diagonal(abs(D.diag))
real(D::Diagonal) = Diagonal(real(D.diag))
imag(D::Diagonal) = Diagonal(imag(D.diag))
istriu(D::Diagonal) = true
istril(D::Diagonal) = true
function triu!(D::Diagonal,k::Integer=0)
n = size(D,1)
if abs(k) > n
throw(ArgumentError("requested diagonal, $k, out of bounds in matrix of size ($n,$n)"))
elseif k > 0
fill!(D.diag,0)
end
return D
end
function tril!(D::Diagonal,k::Integer=0)
n = size(D,1)
if abs(k) > n
throw(ArgumentError("requested diagonal, $k, out of bounds in matrix of size ($n,$n)"))
elseif k < 0
fill!(D.diag,0)
end
return D
end
==(Da::Diagonal, Db::Diagonal) = Da.diag == Db.diag
-(A::Diagonal)=Diagonal(-A.diag)
+(Da::Diagonal, Db::Diagonal) = Diagonal(Da.diag + Db.diag)
-(Da::Diagonal, Db::Diagonal) = Diagonal(Da.diag - Db.diag)
*{T<:Number}(x::T, D::Diagonal) = Diagonal(x * D.diag)
*{T<:Number}(D::Diagonal, x::T) = Diagonal(D.diag * x)
/{T<:Number}(D::Diagonal, x::T) = Diagonal(D.diag / x)
*(Da::Diagonal, Db::Diagonal) = Diagonal(Da.diag .* Db.diag)
*(D::Diagonal, V::Vector) = D.diag .* V
*(A::Matrix, D::Diagonal) = scale(A,D.diag)
*(D::Diagonal, A::Matrix) = scale(D.diag,A)
A_mul_B!(A::Diagonal,B::AbstractMatrix) = scale!(A.diag,B)
At_mul_B!(A::Diagonal,B::AbstractMatrix)= scale!(A.diag,B)
Ac_mul_B!(A::Diagonal,B::AbstractMatrix)= scale!(conj(A.diag),B)
/(Da::Diagonal, Db::Diagonal) = Diagonal(Da.diag ./ Db.diag )
function A_ldiv_B!{T}(D::Diagonal{T}, v::AbstractVector{T})
if length(v) != length(D.diag)
throw(DimensionMismatch("diagonal matrix is $(length(D.diag)) by $(length(D.diag)) but right hand side has $(length(v)) rows"))
end
for i=1:length(D.diag)
d = D.diag[i]
if d == zero(T)
throw(SingularException(i))
end
v[i] *= inv(d)
end
v
end
function A_ldiv_B!{T}(D::Diagonal{T}, V::AbstractMatrix{T})
if size(V,1) != length(D.diag)
throw(DimensionMismatch("diagonal matrix is $(length(D.diag)) by $(length(D.diag)) but right hand side has $(size(V,1)) rows"))
end
for i=1:length(D.diag)
d = D.diag[i]
if d == zero(T)
throw(SingularException(i))
end
V[i,:] *= inv(d)
end
V
end
conj(D::Diagonal) = Diagonal(conj(D.diag))
transpose(D::Diagonal) = D
ctranspose(D::Diagonal) = conj(D)
diag(D::Diagonal) = D.diag
trace(D::Diagonal) = sum(D.diag)
det(D::Diagonal) = prod(D.diag)
logdet{T<:Real}(D::Diagonal{T}) = sum(log(D.diag))
function logdet{T<:Complex}(D::Diagonal{T}) #Make sure branch cut is correct
x = sum(log(D.diag))
-pi<imag(x)<pi ? x : real(x)+(mod2pi(imag(x)+pi)-pi)*im
end
# identity matrices via eye(Diagonal{type},n)
eye{T}(::Type{Diagonal{T}}, n::Int) = Diagonal(ones(T,n))
expm(D::Diagonal) = Diagonal(exp(D.diag))
logm(D::Diagonal) = Diagonal(log(D.diag))
sqrtm(D::Diagonal) = Diagonal(sqrt(D.diag))
#Linear solver
function A_ldiv_B!(D::Diagonal, B::StridedVecOrMat)
m, n = size(B, 1), size(B, 2)
if m != length(D.diag)
throw(DimensionMismatch("diagonal matrix is $(length(D.diag)) by $(length(D.diag)) but right hand side has $m rows"))
end
(m == 0 || n == 0) && return B
for j = 1:n
for i = 1:m
di = D.diag[i]
if di == 0
throw(SingularException(i))
end
B[i,j] /= di
end
end
return B
end
\(D::Diagonal, B::StridedMatrix) = scale(1 ./ D.diag, B)
\(D::Diagonal, b::StridedVector) = reshape(scale(1 ./ D.diag, reshape(b, length(b), 1)), length(b))
\(Da::Diagonal, Db::Diagonal) = Diagonal(Db.diag ./ Da.diag)
function inv{T}(D::Diagonal{T})
Di = similar(D.diag)
for i = 1:length(D.diag)
if D.diag[i] == zero(T)
throw(SingularException(i))
end
Di[i] = inv(D.diag[i])
end
Diagonal(Di)
end
function pinv{T}(D::Diagonal{T})
Di = similar(D.diag)
for i = 1:length(D.diag)
isfinite(inv(D.diag[i])) ? Di[i]=inv(D.diag[i]) : Di[i]=zero(T)
end
Diagonal(Di)
end
function pinv{T}(D::Diagonal{T}, tol::Real)
Di = similar(D.diag)
if( length(D.diag) != 0 ) maxabsD = maximum(abs(D.diag)) end
for i = 1:length(D.diag)
if( abs(D.diag[i]) > tol*maxabsD && isfinite(inv(D.diag[i])) )
Di[i]=inv(D.diag[i])
else
Di[i]=zero(T)
end
end
Diagonal(Di)
end
#Eigensystem
eigvals{T<:Number}(D::Diagonal{T}) = D.diag
eigvals(D::Diagonal) = [eigvals(x) for x in D.diag] #For block matrices, etc.
eigvecs(D::Diagonal) = eye(D)
eigfact(D::Diagonal) = Eigen(eigvals(D), eigvecs(D))
#Singular system
svdvals{T<:Number}(D::Diagonal{T}) = sort(abs(D.diag), rev = true)
svdvals(D::Diagonal) = [svdvals(v) for v in D.diag]
function svd{T<:Number}(D::Diagonal{T})
S = abs(D.diag)
piv = sortperm(S, rev = true)
U = full(Diagonal(D.diag ./ S))
Up = hcat([U[:,i] for i = 1:length(D.diag)][piv]...)
V = eye(D)
Vp = hcat([V[:,i] for i = 1:length(D.diag)][piv]...)
return (Up, S[piv], Vp)
end
function svdfact(D::Diagonal)
U, s, V = svd(D)
SVD(U, s, V')
end
|