/usr/share/julia/base/linalg/givens.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 | # This file is a part of Julia. License is MIT: http://julialang.org/license
# givensAlgorithm functions are derived from LAPACK, see below
abstract AbstractRotation{T}
transpose(R::AbstractRotation) = error("transpose not implemented for $(typeof(R)). Consider using conjugate transpose (') instead of transpose (.').")
function *{T,S}(R::AbstractRotation{T}, A::AbstractVecOrMat{S})
TS = typeof(zero(T)*zero(S) + zero(T)*zero(S))
A_mul_B!(convert(AbstractRotation{TS}, R), TS == S ? copy(A) : convert(AbstractArray{TS}, A))
end
function A_mul_Bc{T,S}(A::AbstractVecOrMat{T}, R::AbstractRotation{S})
TS = typeof(zero(T)*zero(S) + zero(T)*zero(S))
A_mul_Bc!(TS == T ? copy(A) : convert(AbstractArray{TS}, A), convert(AbstractRotation{TS}, R))
end
immutable Givens{T} <: AbstractRotation{T}
i1::Int
i2::Int
c::T
s::T
end
type Rotation{T} <: AbstractRotation{T}
rotations::Vector{Givens{T}}
end
convert{T}(::Type{Givens{T}}, G::Givens{T}) = G
convert{T}(::Type{Givens{T}}, G::Givens) = Givens(G.i1, G.i2, convert(T, G.c), convert(T, G.s))
convert{T}(::Type{Rotation{T}}, R::Rotation{T}) = R
convert{T}(::Type{Rotation{T}}, R::Rotation) = Rotation{T}([convert(Givens{T}, g) for g in R.rotations])
convert{T}(::Type{AbstractRotation{T}}, G::Givens) = convert(Givens{T}, G)
convert{T}(::Type{AbstractRotation{T}}, R::Rotation) = convert(Rotation{T}, R)
ctranspose(G::Givens) = Givens(G.i1, G.i2, conj(G.c), -G.s)
ctranspose{T}(R::Rotation{T}) = Rotation{T}(reverse!([ctranspose(r) for r in R.rotations]))
realmin2(::Type{Float32}) = reinterpret(Float32, 0x26000000)
realmin2(::Type{Float64}) = reinterpret(Float64, 0x21a0000000000000)
realmin2{T}(::Type{T}) = (twopar = 2one(T); twopar^trunc(Integer,log(realmin(T)/eps(T))/log(twopar)/twopar))
# derived from LAPACK's dlartg
# Copyright:
# Univ. of Tennessee
# Univ. of California Berkeley
# Univ. of Colorado Denver
# NAG Ltd.
function givensAlgorithm{T<:AbstractFloat}(f::T, g::T)
zeropar = zero(T)
onepar = one(T)
twopar = 2one(T)
safmin = realmin(T)
epspar = eps(T)
safmn2 = realmin2(T)
safmx2 = onepar/safmn2
if g == 0
cs = onepar
sn = zeropar
r = f
elseif f == 0
cs = zeropar
sn = onepar
r = g
else
f1 = f
g1 = g
scalepar = max(abs(f1), abs(g1))
if scalepar >= safmx2
count = 0
while true
count += 1
f1 *= safmn2
g1 *= safmn2
scalepar = max(abs(f1), abs(g1))
if scalepar < safmx2 break end
end
r = sqrt(f1*f1 + g1*g1)
cs = f1/r
sn = g1/r
for i = 1:count
r *= safmx2
end
elseif scalepar <= safmn2
count = 0
while true
count += 1
f1 *= safmx2
g1 *= safmx2
scalepar = max(abs(f1), abs(g1))
if scalepar > safmn2 break end
end
r = sqrt(f1*f1 + g1*g1)
cs = f1/r
sn = g1/r
for i = 1:count
r *= safmn2
end
else
r = sqrt(f1*f1 + g1*g1)
cs = f1/r
sn = g1/r
end
if abs(f) > abs(g) && cs < 0
cs = -cs
sn = -sn
r = -r
end
end
return cs, sn, r
end
# derived from LAPACK's zlartg
# Copyright:
# Univ. of Tennessee
# Univ. of California Berkeley
# Univ. of Colorado Denver
# NAG Ltd.
function givensAlgorithm{T<:AbstractFloat}(f::Complex{T}, g::Complex{T})
twopar, onepar, zeropar = 2one(T), one(T), zero(T)
czero = zero(Complex{T})
abs1(ff) = max(abs(real(ff)), abs(imag(ff)))
safmin = realmin(T)
epspar = eps(T)
safmn2 = realmin2(T)
safmx2 = onepar/safmn2
scalepar = max(abs1(f), abs1(g))
fs = f
gs = g
count = 0
if scalepar >= safmx2
while true
count += 1
fs *= safmn2
gs *= safmn2
scalepar *= safmn2
if scalepar < safmx2 break end
end
elseif scalepar <= safmn2
if g == 0
cs = onepar
sn = czero
r = f
return cs, sn, r
end
while true
count -= 1
fs *= safmx2
gs *= safmx2
scalepar *= safmx2
if scalepar > safmn2 break end
end
end
f2 = abs2(fs)
g2 = abs2(gs)
if f2 <= max(g2, onepar)*safmin
# This is a rare case: F is very small.
if f == 0
cs = zero(T)
r = hypot(real(g), imag(g))
# do complex/real division explicitly with two real divisions
d = hypot(real(gs), imag(gs))
sn = complex(real(gs)/d, -imag(gs)/d)
return cs, sn, r
end
f2s = hypot(real(fs), imag(fs))
# g2 and g2s are accurate
# g2 is at least safmin, and g2s is at least safmn2
g2s = sqrt(g2)
# error in cs from underflow in f2s is at most
# unfl / safmn2 .lt. sqrt(unfl*eps) .lt. eps
# if max(g2,one)=g2, then f2 .lt. g2*safmin,
# and so cs .lt. sqrt(safmin)
# if max(g2,one)=one, then f2 .lt. safmin
# and so cs .lt. sqrt(safmin)/safmn2 = sqrt(eps)
# therefore, cs = f2s/g2s / sqrt( 1 + (f2s/g2s)**2 ) = f2s/g2s
cs = f2s/g2s
# make sure abs(ff) = 1
# do complex/real division explicitly with 2 real divisions
if abs1(f) > 1
d = hypot(real(f), imag(f))
ff = complex(real(f)/d, imag(f)/d)
else
dr = safmx2*real(f)
di = safmx2*imag(f)
d = hypot(dr, di)
ff = complex(dr/d, di/d)
end
sn = ff*complex(real(gs)/g2s, -imag(gs)/g2s)
r = cs*f + sn*g
else
# This is the most common case.
# Neither F2 nor F2/G2 are less than SAFMIN
# F2S cannot overflow, and it is accurate
f2s = sqrt(onepar + g2/f2)
# do the f2s(real)*fs(complex) multiply with two real multiplies
r = complex(f2s*real(fs), f2s*imag(fs))
cs = onepar/f2s
d = f2 + g2
# do complex/real division explicitly with two real divisions
sn = complex(real(r)/d, imag(r)/d)
sn *= conj(gs)
if count != 0
if count > 0
for i = 1:count
r *= safmx2
end
else
for i = 1:-count
r *= safmn2
end
end
end
end
return cs, sn, r
end
doc"""
givens{T}(::T, ::T, ::Integer, ::Integer) -> {Givens, T}
Computes the tuple `(G, r) = givens(f, g, i1, i2)` where `G` is a Givens rotation and `r`
is a scalar such that `G*x=y` with `x[i1]=f`, `x[i2]=g`, `y[i1]=r`, and `y[i2]=0`. The
cosine and sine of the rotation angle can be extracted from the `Givens` type with `G.c`
and `G.s` respectively. The arguments `f` and `g` can be either `Float32`, `Float64`,
`Complex{Float32}`, or `Complex{Float64}`. The `Givens` type supports left multiplication
`G*A` and conjugated transpose right multiplication `A*G'`. The type doesn't have a `size`
and can therefore be multiplied with matrices of arbitrary size as long as `i2<=size(A,2)`
for `G*A` or `i2<=size(A,1)` for `A*G'`.
"""
function givens{T}(f::T, g::T, i1::Integer, i2::Integer)
if i1 >= i2
throw(ArgumentError("second index must be larger than the first"))
end
c, s, r = givensAlgorithm(f, g)
Givens(i1, i2, convert(T, c), convert(T, s)), r
end
"""
givens{T}(::AbstractArray{T}, ::Integer, ::Integer, ::Integer) -> {Givens, T}
Computes the tuple `(G, r) = givens(A, i1, i2, col)` where `G` is Givens rotation and `r`
is a scalar such that `G*A[:,col]=y` with `y[i1]=r`, and `y[i2]=0`. The cosine and sine of
the rotation angle can be extracted from the `Givens` type with `G.c` and `G.s`
respectively. The element type of `A` can be either `Float32`, `Float64`,
`Complex{Float32}`, or `Complex{Float64}`. The `Givens` type supports left multiplication
`G*A` and conjugated transpose right multiplication `A*G'`. The type doesn't have a `size`
and can therefore be multiplied with matrices of arbitrary size as long as `i2<=size(A,2)`
for `G*A` or `i2<=size(A,1)` for `A*G'`.
"""
function givens{T}(A::AbstractMatrix{T}, i1::Integer, i2::Integer, col::Integer)
if i1 >= i2
throw(ArgumentError("second index must be larger than the first"))
end
c, s, r = givensAlgorithm(A[i1,col], A[i2,col])
Givens(i1, i2, convert(T, c), convert(T, s)), r
end
getindex(G::Givens, i::Integer, j::Integer) = i == j ? (i == G.i1 || i == G.i2 ? G.c : one(G.c)) : (i == G.i1 && j == G.i2 ? G.s : (i == G.i2 && j == G.i1 ? -G.s : zero(G.s)))
A_mul_B!(G1::Givens, G2::Givens) = error("Operation not supported. Consider *")
function A_mul_B!(G::Givens, A::AbstractVecOrMat)
m, n = size(A, 1), size(A, 2)
if G.i2 > m
throw(DimensionMismatch("column indices for rotation are outside the matrix"))
end
@inbounds @simd for i = 1:n
tmp = G.c*A[G.i1,i] + G.s*A[G.i2,i]
A[G.i2,i] = G.c*A[G.i2,i] - conj(G.s)*A[G.i1,i]
A[G.i1,i] = tmp
end
return A
end
function A_mul_Bc!(A::AbstractVecOrMat, G::Givens)
m, n = size(A, 1), size(A, 2)
if G.i2 > n
throw(DimensionMismatch("column indices for rotation are outside the matrix"))
end
@inbounds @simd for i = 1:m
tmp = G.c*A[i,G.i1] + conj(G.s)*A[i,G.i2]
A[i,G.i2] = G.c*A[i,G.i2] - G.s*A[i,G.i1]
A[i,G.i1] = tmp
end
return A
end
function A_mul_B!(G::Givens, R::Rotation)
push!(R.rotations, G)
return R
end
function A_mul_B!(R::Rotation, A::AbstractMatrix)
@inbounds for i = 1:length(R.rotations)
A_mul_B!(R.rotations[i], A)
end
return A
end
function A_mul_Bc!(A::AbstractMatrix, R::Rotation)
@inbounds for i = 1:length(R.rotations)
A_mul_Bc!(A, R.rotations[i])
end
return A
end
*{T}(G1::Givens{T}, G2::Givens{T}) = Rotation(push!(push!(Givens{T}[], G2), G1))
|