This file is indexed.

/usr/share/julia/base/linalg/givens.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# This file is a part of Julia. License is MIT: http://julialang.org/license
# givensAlgorithm functions are derived from LAPACK, see below

abstract AbstractRotation{T}

transpose(R::AbstractRotation) = error("transpose not implemented for $(typeof(R)). Consider using conjugate transpose (') instead of transpose (.').")

function *{T,S}(R::AbstractRotation{T}, A::AbstractVecOrMat{S})
    TS = typeof(zero(T)*zero(S) + zero(T)*zero(S))
    A_mul_B!(convert(AbstractRotation{TS}, R), TS == S ? copy(A) : convert(AbstractArray{TS}, A))
end
function A_mul_Bc{T,S}(A::AbstractVecOrMat{T}, R::AbstractRotation{S})
    TS = typeof(zero(T)*zero(S) + zero(T)*zero(S))
    A_mul_Bc!(TS == T ? copy(A) : convert(AbstractArray{TS}, A), convert(AbstractRotation{TS}, R))
end

immutable Givens{T} <: AbstractRotation{T}
    i1::Int
    i2::Int
    c::T
    s::T
end
type Rotation{T} <: AbstractRotation{T}
    rotations::Vector{Givens{T}}
end

convert{T}(::Type{Givens{T}}, G::Givens{T}) = G
convert{T}(::Type{Givens{T}}, G::Givens) = Givens(G.i1, G.i2, convert(T, G.c), convert(T, G.s))
convert{T}(::Type{Rotation{T}}, R::Rotation{T}) = R
convert{T}(::Type{Rotation{T}}, R::Rotation) = Rotation{T}([convert(Givens{T}, g) for g in R.rotations])
convert{T}(::Type{AbstractRotation{T}}, G::Givens) = convert(Givens{T}, G)
convert{T}(::Type{AbstractRotation{T}}, R::Rotation) = convert(Rotation{T}, R)

ctranspose(G::Givens) = Givens(G.i1, G.i2, conj(G.c), -G.s)
ctranspose{T}(R::Rotation{T}) = Rotation{T}(reverse!([ctranspose(r) for r in R.rotations]))

realmin2(::Type{Float32}) = reinterpret(Float32, 0x26000000)
realmin2(::Type{Float64}) = reinterpret(Float64, 0x21a0000000000000)
realmin2{T}(::Type{T}) = (twopar = 2one(T); twopar^trunc(Integer,log(realmin(T)/eps(T))/log(twopar)/twopar))

# derived from LAPACK's dlartg
# Copyright:
# Univ. of Tennessee
# Univ. of California Berkeley
# Univ. of Colorado Denver
# NAG Ltd.
function givensAlgorithm{T<:AbstractFloat}(f::T, g::T)
    zeropar = zero(T)
    onepar = one(T)
    twopar = 2one(T)

    safmin = realmin(T)
    epspar = eps(T)
    safmn2 = realmin2(T)
    safmx2 = onepar/safmn2

    if g == 0
        cs = onepar
        sn = zeropar
        r = f
    elseif f == 0
        cs = zeropar
        sn = onepar
        r = g
    else
        f1 = f
        g1 = g
        scalepar = max(abs(f1), abs(g1))
        if scalepar >= safmx2
            count = 0
            while true
                count += 1
                f1 *= safmn2
                g1 *= safmn2
                scalepar = max(abs(f1), abs(g1))
                if scalepar < safmx2 break end
            end
            r = sqrt(f1*f1 + g1*g1)
            cs = f1/r
            sn = g1/r
            for i = 1:count
                r *= safmx2
            end
        elseif scalepar <= safmn2
            count = 0
            while true
                count += 1
                f1 *= safmx2
                g1 *= safmx2
                scalepar = max(abs(f1), abs(g1))
                if scalepar > safmn2 break end
            end
            r = sqrt(f1*f1 + g1*g1)
            cs = f1/r
            sn = g1/r
            for i = 1:count
                r *= safmn2
            end
        else
            r = sqrt(f1*f1 + g1*g1)
            cs = f1/r
            sn = g1/r
        end
        if abs(f) > abs(g) && cs < 0
            cs = -cs
            sn = -sn
            r = -r
        end
    end
    return cs, sn, r
end

# derived from LAPACK's zlartg
# Copyright:
# Univ. of Tennessee
# Univ. of California Berkeley
# Univ. of Colorado Denver
# NAG Ltd.
function givensAlgorithm{T<:AbstractFloat}(f::Complex{T}, g::Complex{T})
    twopar, onepar, zeropar = 2one(T), one(T), zero(T)
    czero = zero(Complex{T})

    abs1(ff) = max(abs(real(ff)), abs(imag(ff)))
    safmin = realmin(T)
    epspar = eps(T)
    safmn2 = realmin2(T)
    safmx2 = onepar/safmn2
    scalepar = max(abs1(f), abs1(g))
    fs = f
    gs = g
    count = 0
    if scalepar >= safmx2
        while true
            count += 1
            fs *= safmn2
            gs *= safmn2
            scalepar *= safmn2
            if scalepar < safmx2 break end
        end
    elseif scalepar <= safmn2
        if g == 0
            cs = onepar
            sn = czero
            r = f
            return cs, sn, r
        end
        while true
            count -= 1
            fs *= safmx2
            gs *= safmx2
            scalepar *= safmx2
            if scalepar > safmn2 break end
        end
    end
    f2 = abs2(fs)
    g2 = abs2(gs)
    if f2 <= max(g2, onepar)*safmin

     # This is a rare case: F is very small.

        if f == 0
            cs = zero(T)
            r = hypot(real(g), imag(g))
        # do complex/real division explicitly with two real divisions
            d = hypot(real(gs), imag(gs))
            sn = complex(real(gs)/d, -imag(gs)/d)
            return cs, sn, r
        end
        f2s = hypot(real(fs), imag(fs))
     # g2 and g2s are accurate
     # g2 is at least safmin, and g2s is at least safmn2
        g2s = sqrt(g2)
     # error in cs from underflow in f2s is at most
     # unfl / safmn2 .lt. sqrt(unfl*eps) .lt. eps
     # if max(g2,one)=g2, then f2 .lt. g2*safmin,
     # and so cs .lt. sqrt(safmin)
     # if max(g2,one)=one, then f2 .lt. safmin
     # and so cs .lt. sqrt(safmin)/safmn2 = sqrt(eps)
     # therefore, cs = f2s/g2s / sqrt( 1 + (f2s/g2s)**2 ) = f2s/g2s
        cs = f2s/g2s
     # make sure abs(ff) = 1
     # do complex/real division explicitly with 2 real divisions
        if abs1(f) > 1
            d = hypot(real(f), imag(f))
            ff = complex(real(f)/d, imag(f)/d)
        else
            dr = safmx2*real(f)
            di = safmx2*imag(f)
            d = hypot(dr, di)
            ff = complex(dr/d, di/d)
        end
        sn = ff*complex(real(gs)/g2s, -imag(gs)/g2s)
        r = cs*f + sn*g
    else

     # This is the most common case.
     # Neither F2 nor F2/G2 are less than SAFMIN
     # F2S cannot overflow, and it is accurate

        f2s = sqrt(onepar + g2/f2)
     # do the f2s(real)*fs(complex) multiply with two real multiplies
        r = complex(f2s*real(fs), f2s*imag(fs))
        cs = onepar/f2s
        d = f2 + g2
     # do complex/real division explicitly with two real divisions
        sn = complex(real(r)/d, imag(r)/d)
        sn *= conj(gs)
        if count != 0
            if count > 0
                for i = 1:count
                    r *= safmx2
                end
            else
                for i = 1:-count
                    r *= safmn2
                end
            end
        end
    end
    return cs, sn, r
end

doc"""

    givens{T}(::T, ::T, ::Integer, ::Integer) -> {Givens, T}

Computes the tuple `(G, r) = givens(f, g, i1, i2)` where `G` is a Givens rotation and `r`
is a scalar such that `G*x=y` with `x[i1]=f`, `x[i2]=g`, `y[i1]=r`, and `y[i2]=0`. The
cosine and sine of the rotation angle can be extracted from the `Givens` type with `G.c`
and `G.s` respectively. The arguments `f` and `g` can be either `Float32`, `Float64`,
`Complex{Float32}`, or `Complex{Float64}`. The `Givens` type supports left multiplication
`G*A` and conjugated transpose right multiplication `A*G'`. The type doesn't have a `size`
and can therefore be multiplied with matrices of arbitrary size as long as `i2<=size(A,2)`
for `G*A` or `i2<=size(A,1)` for `A*G'`.
"""
function givens{T}(f::T, g::T, i1::Integer, i2::Integer)
    if i1 >= i2
        throw(ArgumentError("second index must be larger than the first"))
    end
    c, s, r = givensAlgorithm(f, g)
    Givens(i1, i2, convert(T, c), convert(T, s)), r
end
"""

    givens{T}(::AbstractArray{T}, ::Integer, ::Integer, ::Integer) -> {Givens, T}

Computes the tuple `(G, r) = givens(A, i1, i2, col)` where `G` is Givens rotation and `r`
is a scalar such that `G*A[:,col]=y` with `y[i1]=r`, and `y[i2]=0`. The cosine and sine of
the rotation angle can be extracted from the `Givens` type with `G.c` and `G.s`
respectively. The element type of `A` can be either `Float32`, `Float64`,
`Complex{Float32}`, or `Complex{Float64}`. The `Givens` type supports left multiplication
`G*A` and conjugated transpose right multiplication `A*G'`. The type doesn't have a `size`
and can therefore be multiplied with matrices of arbitrary size as long as `i2<=size(A,2)`
for `G*A` or `i2<=size(A,1)` for `A*G'`.
"""
function givens{T}(A::AbstractMatrix{T}, i1::Integer, i2::Integer, col::Integer)
    if i1 >= i2
        throw(ArgumentError("second index must be larger than the first"))
    end
    c, s, r = givensAlgorithm(A[i1,col], A[i2,col])
    Givens(i1, i2, convert(T, c), convert(T, s)), r
end

getindex(G::Givens, i::Integer, j::Integer) = i == j ? (i == G.i1 || i == G.i2 ? G.c : one(G.c)) : (i == G.i1 && j == G.i2 ? G.s : (i == G.i2 && j == G.i1 ? -G.s : zero(G.s)))

A_mul_B!(G1::Givens, G2::Givens) = error("Operation not supported. Consider *")
function A_mul_B!(G::Givens, A::AbstractVecOrMat)
    m, n = size(A, 1), size(A, 2)
    if G.i2 > m
        throw(DimensionMismatch("column indices for rotation are outside the matrix"))
    end
    @inbounds @simd for i = 1:n
        tmp = G.c*A[G.i1,i] + G.s*A[G.i2,i]
        A[G.i2,i] = G.c*A[G.i2,i] - conj(G.s)*A[G.i1,i]
        A[G.i1,i] = tmp
    end
    return A
end
function A_mul_Bc!(A::AbstractVecOrMat, G::Givens)
    m, n = size(A, 1), size(A, 2)
    if G.i2 > n
        throw(DimensionMismatch("column indices for rotation are outside the matrix"))
    end
    @inbounds @simd for i = 1:m
        tmp = G.c*A[i,G.i1] + conj(G.s)*A[i,G.i2]
        A[i,G.i2] = G.c*A[i,G.i2] - G.s*A[i,G.i1]
        A[i,G.i1] = tmp
    end
    return A
end
function A_mul_B!(G::Givens, R::Rotation)
    push!(R.rotations, G)
    return R
end
function A_mul_B!(R::Rotation, A::AbstractMatrix)
    @inbounds for i = 1:length(R.rotations)
        A_mul_B!(R.rotations[i], A)
    end
    return A
end
function A_mul_Bc!(A::AbstractMatrix, R::Rotation)
    @inbounds for i = 1:length(R.rotations)
        A_mul_Bc!(A, R.rotations[i])
    end
    return A
end
*{T}(G1::Givens{T}, G2::Givens{T}) = Rotation(push!(push!(Givens{T}[], G2), G1))