/usr/share/julia/base/subarray.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 | # This file is a part of Julia. License is MIT: http://julialang.org/license
typealias NonSliceIndex Union{Colon, AbstractVector}
typealias ViewIndex Union{Int, NonSliceIndex}
# LD is the last dimension up through which this object has efficient
# linear indexing. If LD==length(I), then the object itself has efficient
# linear indexing.
immutable SubArray{T,N,P<:AbstractArray,I<:Tuple{Vararg{ViewIndex}},LD} <: AbstractArray{T,N}
parent::P
indexes::I
dims::NTuple{N,Int}
first_index::Int # for linear indexing and pointer
stride1::Int # used only for linear indexing
end
typealias StridedArray{T,N,A<:DenseArray,I<:Tuple{Vararg{RangeIndex}}} Union{DenseArray{T,N}, SubArray{T,N,A,I}}
typealias StridedVector{T,A<:DenseArray,I<:Tuple{Vararg{RangeIndex}}} Union{DenseArray{T,1}, SubArray{T,1,A,I}}
typealias StridedMatrix{T,A<:DenseArray,I<:Tuple{Vararg{RangeIndex}}} Union{DenseArray{T,2}, SubArray{T,2,A,I}}
typealias StridedVecOrMat{T} Union{StridedVector{T}, StridedMatrix{T}}
# Simple utilities
eltype{T,N,P,I}(::Type{SubArray{T,N,P,I}}) = T
size(V::SubArray) = V.dims
# size(V::SubArray, d::Integer) = d <= ndims(V) ? (@inbounds ret = V.dims[d]; ret) : 1
length(V::SubArray) = prod(V.dims)
similar(V::SubArray, T, dims::Dims) = similar(V.parent, T, dims)
copy(V::SubArray) = copy!(similar(V.parent, size(V)), V)
parent(V::SubArray) = V.parent
parentindexes(V::SubArray) = V.indexes
parent(a::AbstractArray) = a
parentindexes(a::AbstractArray) = ntuple(i->1:size(a,i), ndims(a))
## SubArray creation
# Drops singleton dimensions (those indexed with a scalar)
slice(A::AbstractArray, I::ViewIndex...) = _slice(A, to_indexes(I...))
slice(A::AbstractArray, I::Tuple{Vararg{ViewIndex}}) = _slice(A, to_indexes(I...))
function _slice(A, I)
checkbounds(A, I...)
slice_unsafe(A, I)
end
# The most complicated part of this is matching the axes between the
# input index tuples (denoted by J), the index tuples that get stored
# in the view (denoted by I), and the overall dimensionality of the
# view.
# The complexities increase when you create a view-of-a-view, because
# then there is also the index tuple of the parent view (denoted IV)
# to consider.
#
# Examples:
# S1 = sub(A::Matrix, 2, 3:5) ndims(S1) == length(I) == length(J) == 2
# S2 = slice(A::Matrix, 2, 3:5) ndims(S2) == 1, length(I) == length(J) == 2
# S3 = sub(A::Matrix, 4:17) ndims(S3) == length(I) == length(J) == 1
# S4 = sub(S2, 1:2) ndims(S4) == length(J) == 1, length(I) == 2
# S3 addresses the trailing dimensions of the parent by linear indexing.
# For S4, J[1] corresponds to I[2], because of the slice along
# dimension 1 in S2
slice_unsafe(A::AbstractArray, J) = _slice_unsafe(A, to_indexes(J...))
@generated function _slice_unsafe{T,NP,IndTypes}(A::AbstractArray{T,NP}, J::IndTypes)
N = 0
sizeexprs = Array(Any, 0)
Jp = J.parameters
for Jindex = 1:length(Jp)
j = Jp[Jindex]
if !(j <: Real)
N += 1
push!(sizeexprs, dimsizeexpr(j, Jindex, length(Jp), :A, :J))
end
end
dims = :(tuple($(sizeexprs...)))
LD = subarray_linearindexing_dim(A, J)
strideexpr = stride1expr(A, Jp, :A, :J, LD)
exfirst = first_index_expr(:A, :J, length(Jp))
quote
$exfirst
SubArray{$T,$N,$A,$J,$LD}(A, J, $dims, f, $strideexpr)
end
end
# Conventional style (drop trailing singleton dimensions, keep any
# other singletons by converting them to ranges, e.g., 3:3)
sub(A::AbstractArray, I::ViewIndex...) = _sub(A, I)
sub(A::AbstractArray, I::Tuple{Vararg{ViewIndex}}) = _sub(A, I)
function _sub(A, I)
checkbounds(A, I...)
sub_unsafe(A, I)
end
sub_unsafe(A::AbstractArray, J) = _sub_unsafe(A, to_indexes(J...))
@generated function _sub_unsafe{T,NP,IndTypes}(A::AbstractArray{T,NP}, J::IndTypes)
sizeexprs = Array(Any, 0)
Itypes = Array(Any, 0)
Iexprs = Array(Any, 0)
Jp = J.parameters
N = length(Jp)
while N > 0 && Jp[N] <: Real
N -= 1
end
for Jindex = 1:length(Jp)
j = Jp[Jindex]
if Jindex <= N
push!(sizeexprs, dimsizeexpr(j, Jindex, length(Jp), :A, :J))
end
if Jindex < N && j <: Real
push!(Itypes, UnitRange{Int})
push!(Iexprs, :(Int(J[$Jindex]):Int(J[$Jindex])))
else
push!(Itypes, j)
push!(Iexprs, :(J[$Jindex]))
end
end
dims = :(tuple($(sizeexprs...)))
Iext = :(tuple($(Iexprs...)))
It = Tuple{Itypes...}
LD = subarray_linearindexing_dim(A, J)
strideexpr = stride1expr(A, Jp, :A, :J, LD)
exfirst = first_index_expr(:A, :J, length(Itypes))
quote
$exfirst
SubArray{$T,$N,$A,$It,$LD}(A, $Iext, $dims, f, $strideexpr)
end
end
# Constructing from another SubArray
# This "pops" the old SubArray and creates a more compact one
@generated function _slice_unsafe{T,NV,PV,IV,PLD,IndTypes}(V::SubArray{T,NV,PV,IV,PLD}, J::IndTypes)
N = 0
sizeexprs = Array(Any, 0)
indexexprs = Array(Any, 0)
Itypes = Array(Any, 0)
Jp = J.parameters
# The next two Ints, if nonzero, record information about the place
# in the index tuple at which trailing dimensions got packed into a
# single Vector{Int}. For stride1 computation, we need to keep track
# of whether the index that triggered this had uniform stride.
# Iindex_lin is the spot in the resulting index tuple
# Jindex_lin is the corresponding spot in the input index tuple
Iindex_lin = Jindex_lin = 0
# Linear indexing inference makes use of the following variables:
# LD: the last dimension up through which linear indexing is efficient
# isLDdone: true if we've quit incrementing LD
# die_next_vector: if true, stop incrementing LD on the next
# "extended" input index
# jprev: holds the previous input index type
LD, die_next_vector, jprev, isLDdone = 0, false, Void, false # for linear indexing inference
Jindex = 0
IVp = IV.parameters
for IVindex = 1:length(IVp)
iv = IVp[IVindex]
if iv <: Real
push!(indexexprs, :(V.indexes[$IVindex]))
push!(Itypes, iv)
if !isLDdone
LD += 1
end
else
Jindex += 1
j = Jp[Jindex]
if Jindex < length(Jp) || Jindex == NV || IVindex == length(IVp)
if !(j <: Real)
N += 1
push!(sizeexprs, dimsizeexpr(j, Jindex, length(Jp), :V, :J))
end
push!(indexexprs, :(reindex(V.indexes[$IVindex], J[$Jindex])))
push!(Itypes, rangetype(iv, j))
else
# We have a linear index that spans more than one
# dimension of the parent
N += 1
push!(sizeexprs, dimsizeexpr(j, Jindex, length(Jp), :V, :J))
push!(indexexprs, :(merge_indexes(V, V.indexes[$IVindex:end], size(V.parent)[$IVindex:end], J[$Jindex], $Jindex)))
push!(Itypes, Array{Int, 1})
Iindex_lin = length(Itypes)
Jindex_lin = Jindex
break
end
if !isLDdone
if LD < PLD
LD += 1
jprev, LD, die_next_vector, isdone = nextLD(jprev, j, LD, die_next_vector)
isLDdone |= isdone
else
if j <: Real
LD += 1
else
isLDdone = true
end
end
end
end
end
for Jind = Jindex+1:length(Jp)
j = Jp[Jind]
if !(j <: Real)
N += 1
push!(sizeexprs, dimsizeexpr(j, Jind, length(Jp), :V, :J))
isLDdone = true
elseif !isLDdone
LD += 1
end
push!(indexexprs, :(J[$Jind]))
push!(Itypes, j)
end
Inew = :(tuple($(indexexprs...)))
dims = :(tuple($(sizeexprs...)))
It = Tuple{Itypes...}
LD = max(LD, subarray_linearindexing_dim(PV, It))
strideexpr = stride1expr(PV, Itypes, :(V.parent), :Inew, LD, :J, Iindex_lin, Jindex_lin)
exfirst = first_index_expr(:(V.parent), :Inew, length(Itypes))
quote
Inew = $Inew
$exfirst
SubArray{$T,$N,$PV,$It,$LD}(V.parent, Inew, $dims, f, $strideexpr)
end
end
@generated function _sub_unsafe{T,NV,PV,IV,PLD,IndTypes}(V::SubArray{T,NV,PV,IV,PLD}, J::IndTypes)
Jp = J.parameters
IVp = IV.parameters
N = length(Jp)
while N > 0 && Jp[N] <: Real
N -= 1
end
sizeexprs = Array(Any, 0)
indexexprs = Array(Any, 0)
Itypes = Array(Any, 0)
ItypesLD = Array(Any, 0)
preexprs = Array(Any, 0)
LD, die_next_vector, jprev, isLDdone = 0, false, Void, false
Jindex = 0
for IVindex = 1:length(IVp)
iv = IVp[IVindex]
if iv <: Real
push!(indexexprs, :(V.indexes[$IVindex]))
push!(Itypes, iv)
push!(ItypesLD, iv)
if !isLDdone
LD += 1
end
else
Jindex += 1
j = Jp[Jindex]
if Jindex <= N
push!(sizeexprs, dimsizeexpr(j, Jindex, length(Jp), :V, :J))
end
if Jindex < N && j <: Real
# convert scalar to a range
sym = gensym()
push!(preexprs, :($sym = reindex(V.indexes[$IVindex], Int(J[$Jindex]))))
push!(indexexprs, :($sym:$sym))
push!(Itypes, UnitRange{Int})
push!(ItypesLD, j)
elseif Jindex < length(Jp) || Jindex == NV || IVindex == length(IVp)
# simple indexing
push!(indexexprs, :(reindex(V.indexes[$IVindex], J[$Jindex])))
push!(Itypes, rangetype(iv, j))
push!(ItypesLD, Itypes[end])
else
# We have a linear index that spans more than one dimension of the parent
push!(indexexprs, :(merge_indexes(V, V.indexes[$IVindex:end], size(V.parent)[$IVindex:end], J[$Jindex], $Jindex)))
push!(Itypes, Array{Int, 1})
push!(ItypesLD, Itypes[end])
break
end
if !isLDdone
if LD < PLD
LD += 1
jprev, LD, die_next_vector, isdone = nextLD(jprev, j, LD, die_next_vector)
isLDdone |= isdone
else
if j <: Real
LD += 1
else
isLDdone = true
end
end
end
end
end
for Jind = Jindex+1:length(Jp)
j = Jp[Jind]
if Jind <= N
push!(sizeexprs, dimsizeexpr(j, Jind, length(Jp), :V, :J))
end
push!(indexexprs, :(J[$Jind]))
push!(Itypes, j)
push!(ItypesLD, Itypes[end])
end
Inew = :(tuple($(indexexprs...)))
dims = :(tuple($(sizeexprs...)))
It = Tuple{Itypes...}
LD = max(LD, subarray_linearindexing_dim(PV, It))
strideexpr = stride1expr(PV, ItypesLD, :(V.parent), :Inew, LD)
preex = isempty(preexprs) ? nothing : Expr(:block, preexprs...)
exfirst = first_index_expr(:(V.parent), :Inew, length(Itypes))
quote
$preex
Inew = $Inew
$exfirst
SubArray{$T,$N,$PV,$It,$LD}(V.parent, Inew, $dims, f, $strideexpr)
end
end
function rangetype(T1, T2)
rt = return_types(getindex, Tuple{T1, T2})
length(rt) == 1 || error("Can't infer return type")
rt[1]
end
reindex(a, b) = a[b]
reindex(a::UnitRange, b::UnitRange{Int}) = range(oftype(first(a), first(a)+first(b)-1), length(b))
reindex(a::UnitRange, b::StepRange{Int}) = range(oftype(first(a), first(a)+first(b)-1), step(b), length(b))
reindex(a::StepRange, b::Range{Int}) = range(oftype(first(a), first(a)+(first(b)-1)*step(a)), step(a)*step(b), length(b))
reindex(a, b::Int) = unsafe_getindex(a, b)
dimsizeexpr(Itype, d::Int, len::Int, Asym::Symbol, Isym::Symbol) = :(length($Isym[$d]))
function dimsizeexpr(Itype::Type{Colon}, d::Int, len::Int, Asym::Symbol, Isym::Symbol)
if d < len
:(size($Asym, $d))
else
:(tailsize($Asym, $d))
end
end
dimsize(P, d, I) = length(I)
dimsize(P, d::Int, ::Colon) = size(P, d)
dimsize(P, d::Dims, ::Colon) = prod(size(P)[d])
function tailsize(P, d)
s = 1
for i = d:ndims(P)
s *= size(P, i)
end
s
end
@generated function linearindexing{T,N,P,I,LD}(A::SubArray{T,N,P,I,LD})
length(I.parameters) == LD ? (:(LinearFast())) : (:(LinearSlow()))
end
@generated function linearindexing{A<:SubArray}(::Type{A})
T,N,P,I,LD = A.parameters
length(I.parameters) == LD ? (:(LinearFast())) : (:(LinearSlow()))
end
getindex(::Colon, i) = to_index(i)
unsafe_getindex(v::Colon, i) = to_index(i)
step(::Colon) = 1
first(::Colon) = 1
isempty(::Colon) = false
in(::Int, ::Colon) = true
## Strides
@generated function strides{T,N,P,I}(V::SubArray{T,N,P,I})
Ip = I.parameters
all(x->x<:Union{RangeIndex,Colon}, Ip) || throw(ArgumentError("strides valid only for RangeIndex indexing"))
strideexprs = Array(Any, N+1)
strideexprs[1] = 1
i = 1
Vdim = 1
for i = 1:length(Ip)
if Ip[i] != Int
strideexprs[Vdim+1] = copy(strideexprs[Vdim])
strideexprs[Vdim] = :(step(V.indexes[$i])*$(strideexprs[Vdim]))
Vdim += 1
end
strideexprs[Vdim] = :(size(V.parent, $i) * $(strideexprs[Vdim]))
end
:(tuple($(strideexprs[1:N]...)))
end
stride(V::SubArray, d::Integer) = d <= ndims(V) ? strides(V)[d] : strides(V)[end] * size(V)[end]
function stride1expr(Atype::Type, Itypes, Aexpr, Isym, LD, Jsym=Isym, Iindex_lin=0, Jindex_lin=0)
if LD == 0
return 0
end
ex = 1
for d = 1:min(LD, length(Itypes))
I = Itypes[d]
if I <: Real
ex = :($ex * size($Aexpr, $d))
elseif I <: Range && d < LD && any(x->x<:Union{Range,Colon}, Itypes[d+1:LD])
ex = :($ex * ifelse(length($Isym[$d]) == 1, size($Aexpr, $d), step($Isym[$d])))
else
if d == Iindex_lin
ex = :($ex * step_sa($Jsym[$Jindex_lin]))
else
ex = :($ex * step($Isym[$d]))
end
break
end
end
ex
end
step_sa(arg) = step(arg)
step_sa(::Integer) = 1
# This might be conservative, but better safe than sorry
function iscontiguous{T,N,P,I,LD}(::Type{SubArray{T,N,P,I,LD}})
Ip = I.parameters
LD == length(Ip) || return false
length(Ip) < 1 && return true
Ip[1] == Colon && return true
if Ip[1] <: UnitRange
# It might be stride1 == 1, or this might be because `sub` was
# used with an integer for the first index
for j = 2:length(Ip)
(Ip[j] == Colon || (Ip[j] <: AbstractVector)) && return false
end
return true
end
false
end
iscontiguous(S::SubArray) = iscontiguous(typeof(S))
first_index(V::SubArray) = first_index(V.parent, V.indexes)
function first_index(P::AbstractArray, indexes::Tuple)
f = 1
s = 1
for i = 1:length(indexes)
f += (first(indexes[i])-1)*s
s *= size(P, i)
end
f
end
function first_index_expr(Asym, Isym::Symbol, n::Int)
ex = :(f = s = 1)
for i = 1:n
ex = quote
$ex
if isempty($Isym[$i])
f = s = 0
else
f += (first($Isym[$i])-1)*s
s *= size($Asym, $i)
end
end
end
ex
end
# Detecting whether one can support fast linear indexing
function nextLD(jprev, j, LD, die_next_vector)
isdone = false
if j <: Real
if jprev != Void && !(jprev <: Real)
die_next_vector = true
end
elseif die_next_vector
LD -= 1
isdone = true
elseif j == Colon
elseif j <: UnitRange
die_next_vector = true
elseif j <: Range
if !(jprev == Void || jprev <: Real)
LD -= 1
isdone = true
end
die_next_vector = true
elseif j <: AbstractVector
LD -= 1
isdone = true
else
error("unsupported SubArray index type $j")
end
jprev = j
return jprev, LD, die_next_vector, isdone
end
function subarray_linearindexing_dim{A<:AbstractArray}(::Type{A}, It::Type)
isa(Base.linearindexing(A), Base.LinearSlow) && return 0
isempty(It.parameters) && return 0
jprev = Void
LD = 0
die_next_vector = false
while LD < length(It.parameters)
LD += 1
I = It.parameters[LD]
jprev, LD, die_next_vector, isdone = nextLD(jprev, I, LD, die_next_vector)
if isdone
break
end
end
LD
end
unsafe_convert{T,N,P<:Array,I<:Tuple{Vararg{RangeIndex}}}(::Type{Ptr{T}}, V::SubArray{T,N,P,I}) =
pointer(V.parent) + (V.first_index-1)*sizeof(T)
unsafe_convert{T,N,P<:Array,I<:Tuple{Vararg{RangeIndex}}}(::Type{Ptr{Void}}, V::SubArray{T,N,P,I}) =
convert(Ptr{Void}, unsafe_convert(Ptr{T}, V))
pointer(V::SubArray, i::Int) = pointer(V, ind2sub(size(V), i))
function pointer{T,N,P<:Array,I<:Tuple{Vararg{RangeIndex}}}(V::SubArray{T,N,P,I}, is::Tuple{Vararg{Int}})
index = first_index(V)
strds = strides(V)
for d = 1:length(is)
index += (is[d]-1)*strds[d]
end
return pointer(V.parent, index)
end
## Convert
convert{T,S,N}(::Type{Array{T,N}}, V::SubArray{S,N}) = copy!(Array(T, size(V)), V)
## Compatability
# deprecate?
function parentdims(s::SubArray)
nd = ndims(s)
dimindex = Array(Int, nd)
sp = strides(s.parent)
sv = strides(s)
j = 1
for i = 1:ndims(s.parent)
r = s.indexes[i]
if j <= nd && (isa(r,Union{Colon,Range}) ? sp[i]*step(r) : sp[i]) == sv[j]
dimindex[j] = i
j += 1
end
end
dimindex
end
## Scalar indexing
# While it'd be nice to explicitly check bounds against the SubArray dimensions,
# the lack of an extensible @inbounds mechanism makes it difficult for users to
# avoid the cost of the bounds check without rewriting their syntax to use the
# unwieldy unsafe_getindex/unsafe_setindex! function calls. So instead we define
# getindex to rely upon the bounds checks in the parent array. It's still
# advantageous to define the unsafe_ variants without any bounds checks since
# the abstract indexing fallbacks can make use of them.
@generated function getindex{T,N,P,IV,LD}(V::SubArray{T,N,P,IV,LD}, I::Int...)
ni = length(I)
if ni == 1 && length(IV.parameters) == LD # linear indexing
meta = Expr(:meta, :inline)
if iscontiguous(V)
return :($meta; getindex(V.parent, V.first_index + I[1] - 1))
end
return :($meta; getindex(V.parent, V.first_index + V.stride1*(I[1]-1)))
end
Isyms = [:(I[$d]) for d = 1:ni]
exhead, idxs = index_generate(ndims(P), IV, :V, Isyms)
quote
$exhead
getindex(V.parent, $(idxs...))
end
end
@generated function unsafe_getindex{T,N,P,IV,LD}(V::SubArray{T,N,P,IV,LD}, I::Int...)
ni = length(I)
if ni == 1 && length(IV.parameters) == LD # linear indexing
meta = Expr(:meta, :inline)
if iscontiguous(V)
return :($meta; unsafe_getindex(V.parent, V.first_index + I[1] - 1))
end
return :($meta; unsafe_getindex(V.parent, V.first_index + V.stride1*(I[1]-1)))
end
Isyms = [:(I[$d]) for d = 1:ni]
exhead, idxs = index_generate(ndims(P), IV, :V, Isyms)
quote
$exhead
unsafe_getindex(V.parent, $(idxs...))
end
end
@generated function setindex!{T,N,P,IV,LD}(V::SubArray{T,N,P,IV,LD}, v, I::Int...)
ni = length(I)
if ni == 1 && length(IV.parameters) == LD # linear indexing
meta = Expr(:meta, :inline)
if iscontiguous(V)
return :($meta; setindex!(V.parent, v, V.first_index + I[1] - 1))
end
return :($meta; setindex!(V.parent, v, V.first_index + V.stride1*(I[1]-1)))
end
Isyms = Any[:(I[$d]) for d = 1:ni]
exhead, idxs = index_generate(ndims(P), IV, :V, Isyms)
quote
$exhead
setindex!(V.parent, v, $(idxs...))
end
end
@generated function unsafe_setindex!{T,N,P,IV,LD}(V::SubArray{T,N,P,IV,LD}, v, I::Int...)
ni = length(I)
if ni == 1 && length(IV.parameters) == LD # linear indexing
meta = Expr(:meta, :inline)
if iscontiguous(V)
return :($meta; unsafe_setindex!(V.parent, v, V.first_index + I[1] - 1))
end
return :($meta; unsafe_setindex!(V.parent, v, V.first_index + V.stride1*(I[1]-1)))
end
Isyms = Any[:(I[$d]) for d = 1:ni]
exhead, idxs = index_generate(ndims(P), IV, :V, Isyms)
quote
$exhead
unsafe_setindex!(V.parent, v, $(idxs...))
end
end
# Indexing with non-scalars. For now, this returns a copy, but changing that
# is just a matter of deleting the explicit call to copy.
getindex{T,N,P,IV}(V::SubArray{T,N,P,IV}, I::ViewIndex...) = copy(sub(V, I...))
unsafe_getindex{T,N,P,IV}(V::SubArray{T,N,P,IV}, I::ViewIndex...) = copy(sub_unsafe(V, I))
# Nonscalar setindex! falls back to the AbstractArray versions
# NP is parent dimensionality, Itypes is the tuple typeof(V.indexes)
# NP may not be equal to length(Itypes), because a view of a 2d matrix A
# can be constructed as V = A[5:13] or as V = A[2:4, 1:3, 1].
function index_generate(NP, Itypes, Vsym, Isyms)
Itypes = Itypes.parameters
if isempty(Isyms)
Isyms = Any[1] # this handles the syntax getindex(V)
end
exhead = :nothing
NV = 0
for I in Itypes
NV += !(I == Int)
end
if length(Isyms) < NV
# Linear indexing in the last index
n = NV - length(Isyms)
m = length(Isyms)
strides = [gensym() for i = 1:n]
indexes = [gensym() for i = 1:n+1]
resid = gensym()
linblock = Array(Expr, 2n+2)
linblock[1] = :($(strides[1]) = size($Vsym, $m))
for k = 2:n
m += 1
linblock[k] = :($(strides[k]) = $(strides[k-1]) * size($Vsym, $m))
end
k = n+1
linblock[k] = :($resid = $(Isyms[end])-1)
for i = n:-1:1
k += 1
linblock[k] = quote
$(indexes[i+1]), $resid = divrem($resid, $(strides[i]))
$(indexes[i+1]) += 1
end
end
linblock[end] = :($(indexes[1]) = $resid+1)
exhead = Expr(:block, linblock...)
pop!(Isyms)
append!(Isyms, indexes)
end
L = length(Itypes)
indexexprs = Array(Any, L)
j = 0
for i = 1:L
if Itypes[i] <: Real
indexexprs[i] = :($Vsym.indexes[$i])
else
j += 1
indexexprs[i] = :(unsafe_getindex($Vsym.indexes[$i], $(Isyms[j])))
end
end
# Note that we drop any extra indices. We're trusting that the indices are
# already checked to be in-bounds, so any extra indices must be 1 (and no-op)
if exhead == :nothing
exhead = Expr(:meta, :inline)
end
exhead, indexexprs
end
|